

PowerShell

A Beginner’s Guide to Windows PowerShell

Roger Wilson

Table of Contents

 Introduction
 Chapter One: What is Windows PowerShell

 Chapter Two: How to Use PowerShell

 Chapter Three: Commands in PowerShell

 Chapter Four: Objects in PowerShell

 Chapter Five: The Pipeline
 Chapter Six: Scripting in PowerShell
 Chapter Seven: Advanced Cmdlets in PowerShell

 Final Words

Introduction

Windows PowerShell is a scripting language and automation

engine that is designed using object-oriented concepts with the

.NET framework. It provides a Graphical User Interface (GUI)

and command line components to manipulate servers and

workstations using a scripting language that offers easy syntax.

PowerShell works simply by invoking cmdlets and scripts locally

or remotely. PowerShell uses the background Intelligent Transfer

Service (BITS) to transfer files between machines in an

asynchronized and prioritized manner.

 PowerShell has several advantages, including the ability to
execute powerful scripts to accomplish tasks that cannot be

executed using a few lines of code. Further, PowerShell variables

can hold output from values, commands, and objects, and it is

not necessary to specify the type of a particular variable.

 PowerShell holds advantages over the traditional command

line interface in several respects. First, it is integrated with the

Windows operating system and provides a scripting language

and interactive command line interface to execute scripts. On

the other hand, the command line interface is a simple Win32

application provided by Microsoft, and it can interact with any

Win32 application. Cmdlets used in PowerShell are not available

through the command prompt and can be invoked by the

automation scripts or the runtime environment. Cmdlets in

PowerShell are treated as objects, and this provides the flexibility

to use them anywhere else by passing them as input to another

cmdlet. This feature is only specific to PowerShell, which also

consists of several other capabilities, features, and functions that

are not available in the command prompt with only very basic

functionality.

 PowerShell is increasingly becoming the preferred scripting

platform for IT administrators as it supports management

operations in large corporate networks containing as many as

four hundred servers. Functions, like executing security solutions

that require a script to be constantly running in the background,

can be accomplished with PowerShell scripting. It allows

comprehensive functionality, including the ability to login to

multiple servers to check whether a specific service is installed

and running. These otherwise time-consuming operations can be

completed in much less time and limit human error as the time

spent doing non-productive processes is minimized. Tasks can

be completed in only a few minutes as scripts may be used to

complete operations related to services executing on multiple

servers.

 These are just a few examples of the benefits and features of

PowerShell. Throughout the following chapters we will take a

deep dive into PowerShell scripting and discuss in more detail

how to use PowerShell effectively. Let’s begin!

Chapter One: What is Windows PowerShell

PowerShell is a task automation solution that works across

platforms. It helps automate tasks in the Windows ecosystem

and simplifies configuration, like exchange and active directory. It

has the capability to handle large file batches, assist in setting

up new machines, control access to large file volume, and

automate the tasks related to adding network drives, taking

backups, updating security software, and granting users access to

shared files.

 The most frequent automation tasks performed using

PowerShell are working with file batches to control access to a

large number of files and automate backups, adding and

removing new users, updating security software, adding network

drives, granting access to shared files, displaying the USB

devices on computers on a network, setting an elaborate task to

run as a background process, terminating non-responsive

processes, and filtering information about computers in a

network for exporting it in HTML format.

 PowerShell consists of a scripting language, configuration
management framework, and command-line shell. Compatible

with macOS, Windows, and Linux, it is a high-level programming

language developed by Microsoft to automate configurations and

actions.

 The Command Shell

 The command shell in PowerShell is unlike any other

platform. While most shells accept and return text, PowerShell

returns .NET objects. The shell consists of a number of features:

command and parameter aliases, pipeline for chaining

commands, in-console help system, command prediction, tab

completion, and a robust command-line history.

 The Scripting Language
 PowerShell can be used as a scripting language to automate

the management of systems and to deploy solutions in

continuous integration/continuous delivery (CI/CD) environments.

PowerShell scripting language is fully extensible with its classes,

modules, scripts, and functions. Its formatting system is also

extensible and gives easy access to output. An extensible type

system helps to create dynamic types. Further, it supports built-

in data formats, like JSON, CSV, and XML. PowerShell is built

on .NET common language runtime and takes .NET objects as

inputs and outputs. It does not require parsing of text output to

extract information from the output.

 Configuration Management Environment

 The configuration management environment used by

PowerShell is the PowerShell Desired State Configuration (DSC)

and enables the management of enterprise infrastructure using

configuration as the code. DSC helps you to create declarative

configurations and custom scripts that may be used for

deployments again and again. It is possible to deploy

configuration with PowerShell’s push and pull models.

Furthermore, it allows the enforcement of configuration settings

and reporting on configuration drift.

 The PowerShell Studio 2021

 PowerShell Studio 2021 is the integrated environment for

making tools and scripting. It has an editor with many features

and supports code formatting and script debugging. It offers

several functions, such as the ability to create windows services,

modules, functions, and installers. In addition, it has several

other features, including monitoring the performance of scripts

and memory usage, debugging multiple files and modules at the

same time, and the file recovery feature.

 The PowerShell Studio makes life easy for developers as

graphical tools can be easily created using the GUI designer,

saving the time and effort required to write hundreds of lines of

code. PowerShell allows you to create controls and templates

easily with advanced GUI features. It not only allows you to

create modules but also allows you to convert existing functions

to distributable modules. All these functions can be

accomplished easily with powerful features, such as reference

highlighting, syntax coloring, code formatting, bookmarking, and

code completion.

 It also allows you to deliver solutions for your chosen
environment by using the script packager, which is versatile

because it allows you to customize packages according to

machine, platform, domain, MAC address, and user. This allows

the script to be accessed and executed only by the authorized

user. The script packager is comprehensive as it allows you to

create MSI installers to distribute executables, scripts, and

modules. PowerShell Studio also has built-in performance for

your script, so you know exactly how your script is performing

in terms of CPU usage and real-time use of memory.

 Chapter Summary

● PowerShell works across platforms and is mainly targeted at

task automation.

● It has a broad range of capabilities, including handling large

file volume, automating network tasks, manipulating shared files,

and keeping security software up to date.

● The three main components of PowerShell are a scripting

language, a command shell, and a configuration management

environment.

● While the command shell is useful for executing commands

and the scripting language helps design simple and complex

scripts, the configuration management environment is useful in

managing enterprise infrastructure.

● The PowerShell studio 2021 is an integrated environment that

also features an editor to format code and debug scripts. It has

several features, such as the ability to create windows services

and modules, monitor memory usage and script performance,

and many more functions.

Chapter Two: How to Use PowerShell

 The PowerShell language is a high-level proprietary
programming language developed by Microsoft that enables

system administrators to automate configurations and actions.

Administrators commonly utilize PowerShell to work with Active

Directory. The language can be used in the Windows

environment and is based on object-oriented concepts. It is

possible to automate repetitive and tedious tasks through

PowerShell scripts containing multiple commands. PowerShell for

Windows is analogous to Bash Scripting in Linux.

 The main component of PowerShell is the cmdlet that may

be used to manage computers from the command line. Users

are able to access data stores, such as the Certificate Store and

the Registry, similar to accessing the file system. PowerShell ISE,

its Integrated Scripting Environment, is layered on top of

PowerShell, which allows creation and running of commands and

modification of test scripts without the need to type commands

to accomplish the purpose.

 PowerShell can be invoked by clicking on the Windows icon

on the lower left-hand corner of the screen then typing

“PowerShell”. This displays the PowerShell command prompt as

shown below:

 PowerShell was developed for configuration management and

task automation and was later converted into an open-source

platform. It is available for multiple platforms, including Linux,

Windows, and MacOS. It has the .NET framework backbone, and

its functions are written in C#. A function in PowerShell is

referred to as “cmdlet” and contains functions that return a

.NET object. Some basic cmdlets are pre-configured with

PowerShell, such as those designed to move or copy files and

traverse folders.

 As mentioned earlier, PowerShell has the Integrated Scripting

Environment (ISE) that makes scripting robust and easy. The

PowerShell ISE resembles a command prompt window and

contains code-writing functionality. System administrators can use

cmdlets and modules to write code. It contains a debugging tool

that allows you to test code and identify bugs to fix them.

Users can customize PowerShell ISE by selecting a specific font,

theme, and color scheme to write scripts. PowerShell has simple

commands and syntax.

 PowerShell ISE can be invoked by clicking the Windows icon

on the lower left corner of the screen and typing “PowerShell

ISE”.

 PowerShell has been developed over the years, and since
2006, several versions have been made available. It was first

released for Windows XP, Windows Vista, and Windows Server

2003. In 2016, PowerShell 5.1 was made available for Windows

Server 2016, and was also included in the Windows 10

Anniversary update. PowerShell is also compatible with Windows

Server 2012, Windows Server 2012 R2, Windows 7 Service Pack

1, Windows Server 2008 R2, and Windows 8.1 Enterprise and

Pro editions.

 Basic Concepts in PowerShell
 PowerShell has several important concepts, including

functions, scripts, applications, and cmdlets. These concepts are

summarized below:

● Functions are commands written using PowerShell and can

be written using an Integrated Development Environment (IDE).

● Scripts have a .ps1 extension and are stored as text files on

the disk.

● Cmdlets are built-in commands written in .NET language,

such as C# or VB. They allow developers to extend existing

cmdlets.

● Debug is used to instruct a cmdlet to provide debugging

information.

● Verbose provides information in greater detail.

● Scripts are stored on the disk using the .ps1 extension.

● Applications are existing programs written in Windows.

● Confirm is used to instruct the cmdlet to give a prompt

prior to executing the command.

● What If is used to indicate that the cmdlet need not be

executed but gives information on what would happen if it were

executed.

● ErrorVariable specifies a variable that holds information about

the error.

● ErrorAction tells the cmdlet to perform a specific action in

the event of an error. It can be used to tell the cmdlet to either

stop, continue, or silently continue and inquire about a specific

action.

● OutBuffer tells the cmdlet to hold a specific count of objects

before the cmdlet is invoked.

● OutVariable tells the cmdlet to make use of a specific

variable that contains output information.

 Features of PowerShell
 The features of PowerShell are aliases, cmdlets, pipes, and

help commands. These basic commands help you write scripts.

However, a considerable complexity is associated with

PowerShell, for it is not possible to memorize all components of

PowerShell. Tools that help you deal with its complexities

include Get-Command, Tab Completion, Command String, and

Object Properties.

 Tab Completion

 Tab completion is a feature that allows you to cycle through

the commands by hitting the TAB key in the command prompt.

This means that there is no need to memorize the spellings of

the different commands. The tab completion feature provides

recommendations for commands and their paths and flags.

 Get-Command

 PowerShell has the Get -Command feature that allows you to

remember a command even when you do not know the name

of the command. PowerShell lists all commands with a VERB-

NOUN syntax. For example, a command may start with a word,

such as or and the names of the servers and files are

accompanied with the verb. Get -Command helps discover the

commands on your system.

 Command String

 PowerShell provides the ability to execute commands using a

specific syntax to accomplish common functions, like finding a

specific path within a file string. It provides all the capabilities

available in the traditional command prompt, such as using

loop, specific flags, patterns, and the ability to present the

output of a particular script. However, PowerShell has simple

syntax to complete the same operation. For example, to get all

subdirectories under a directory, the path may be provided with

the Get command, and a filter may also be provided to execute

the necessary steps:

 Get -ChildItem -Path D:\MyFolder -Filter ‘MyFile*’

 The example above provides all files available at the target

location indicated, which start with ‘MyFile’. The wildcard

character indicates that the file name should start with ‘MyFile’.

Object Properties

 PowerShell also has a way to provide structured output
instead of big strings that are less readable. For example, the

traditional ping command is Test -Connection in PowerShell and

contains designated columns to show the source, destination, IP

address, byes, and time taken. It is also possible to pass this

information to another command and execute the same or make

small modifications.

 Basic Punctuation in PowerShell

 PowerShell uses a few characters to perform frequent

functions:

● The $ sign is used for variable declaration.

● “” are used to display output.

● = is used to assign a value to a variable.

● () creates an argument.

● + concatenates two strings.

 Cmdlets in PowerShell

 Command lets or cmdlets in PowerShell are lightweight

commands used in the Windows PowerShell Environment. The

command prompt can be used to invoke and execute cmdlets.

Cmdlets are not simply commands as in the other programming

languages. They are objects of the .NET framework that can be

created using a few lines of code and can be executed

separately. Cmdlets process a single object at a time and

process objects. However, it is not possible to use them to

format output, for parsing, or presentation of errors. PowerShell

cmdlets are in the noun-verb format, separated by a hyphen. Get

(get something), Set (define something), Out (give an output),

Stop (stop something that is running), Start (run something),

and New (create something) are some common keywords in

PowerShell that occur frequently in cmdlets. Some examples of

commands include: Get -Help, which provides help on the

PowerShell topics and commands; Get -Service which is used to

find all commands containing the specified [word]; Get which

gets information about the thing that is invoked; and Get which

displays what can be done with an object.

 Data Types in PowerShell

 PowerShell consists of a number of data types, such as

Integer, Boolean, Date, Byte, and many more as indicated below:

● Byte defines an 8-bit unsigned whole number from 0 to 255.

● Decimal is a 128-bit decimal value.

● Long defines a 64-bit signed whole number, which is similar

to an integer but can hold a larger value.

● Short is a 16-bit unsigned integer, which is similar to an

integer but can take fewer values. It can take values between

-32,768 and +32,768.

● Boolean specifies a true or false condition.

● Char is a 16-bit unsigned number that can take values

between 0 and 63,535.

● Date represents a date in the calendar.

● Double is a 64-bit double precision floating point number

but with a narrower range of values when compared to the

decimal.

● Integer is a 32-bit whole number.

● String represents a text, which is a group of characters.

● Single represents a single-precision floating point number

containing 32 bits. Single is similar to the Double data type but

holds fewer values.

● Short is an unsigned integer containing 16-bits. Although it

is similar to the Integer data type, it holds far fewer values.

 Special Variables in PowerShell
 PowerShell consists of several special variables such as the
ones described below:

● $PID stores the process identifier.

● $False contains the FALSE value.

● $True contains the TRUE value.

● $Error represents an array of error objects.

● $Profile stores the path of the user profile in the default

shell.

● $Host displays the name of the host application in use

currently.

● $NULL contains an empty value or NULL value.

● $PSUICulture contains the current UI culture name.

 Chapter Summary

● PowerShell is based on object-oriented concepts.

● It is analogous to Bash scripting in the Linux operating

system.

● Most of the operations in PowerShell are carried out using

cmdlets.

● PowerShell can be simply invoked by clicking the Windows

icon on the lower left corner of the screen and typing

"PowerShell".

● Complex or elaborate code can be written in PowerShell

using its Integrated Scripting Environment (ISE).

● The main components of PowerShell are its functions,

cmdlets, scripts, and applications.

● PowerShell also includes powerful functions, such as Get-

Command, Tab-Completion, Object Properties, and Command

String.

● Cmdlets are light-weight commands in PowerShell.

● PowerShell works with a range of datatypes from Decimal,

Byte, Date, Char, and Integer, to Short, Single, Double, and

many more.

● PowerShell also works with several special variables, such as

$Host, $NULL, $Error, and many more.

Chapter Three: Commands in PowerShell

PowerShell is developed using the IEEE POSIX standard for the

Korn Shell, which also forms the foundation for Zsh and Bash.

It is designed using C# and can be used to write complex

scripts. Commands form the fundamental units of PowerShell,

and its syntax is similar to the one indicated below

 command -parameter1 -parameter2 argument1 argument2

 Command is the name of the command. The command name

is followed by which may be switch parameters, regular

parameters, or positional parameters. Parameters may or may

not have Switch parameters do not take any arguments. Regular

parameters take arguments. Positional parameters are those

whose matching parameter is inferred by the position of the

argument. In the example above, command is the name of the

command, -parameter1 is the switch parameter, -parameter2 arg1

is the parameter with the argument, and arg2 is the positional

argument.

 PowerShell has different commands, including shell function

commands, cmdlets, workflow commands, script commands, and

native Windows commands. The command name is followed by

zero or more parameters and arguments. The dash (-) precedes

a parameter, which is accompanied by the name of the

parameter. On the other hand, an argument is the value

associated with a specific parameter. An example of a command

is:

 Write-Output -InputObject Hello

 In this example, Write-Output is the command, -InputObject

is the parameter, and Hello is the argument. Another example of

the same command is indicated below:

 Write-Output Hello

 Here, the output is Hello as it is specified as PowerShell has

an intelligent interpreter, known as the parameter which does

not require all information for that parameter. The parameter

binder also matches argument type to parameter type. The

output for these commands is displayed below.

PowerShell uses a system that is quite complex. The type-

convertor converts the strings to the correct type of parameter

or gives an error message that says the type conversion has

failed. For example, the following commands give the same

output:

 Write-Output -InputObject “-InputObject”

 Write-Output “-InputObject”

 PowerShell also allows you to specify an end of parameters

parameter, which is a double hyphen (—). When the PowerShell

interpreter encounters this end of parameters parameter, it treats

the rest of the sequence as an argument even though it may

look like a parameter.

 PowerShell also provides the option to assign this output to
a string preceded by a $ sign, such as $str = Write-Output

`Hello, The output of commands can be further scrutinized by

sending it to the Get-member cmdlet in a pipeline. It is also

possible to call different methods on an object using the “dot

notation,” such as $string.ToUpper() or $string.ToLower() to

convert the string to upper case or lowercase respectively.

Another popular method is the Replace() method, which when

applied to a string can replace the occurrence of a specific word

with another one. It also allows you to create your custom

objects, such as the HashTable.

 Types of Commands in PowerShell

 The four types of commands in PowerShell are functions,

cmdlets, Win32 executables, and scripts. Some versions of

PowerShell, like v4, also have configurations. Cmdlets are derived

from a .NET class, which is compiled into a dynamic link library

(DLL) and loaded into the PowerShell process at startup.

Cmdlets are the most efficient commands. The verb-noun pair of

cmdlets function similarly to the built-in commands and can be

added at runtime.

 Functions in PowerShell have parameters similar to cmdlets

but have some limitations. The parameter specification

capabilities of functions and scripts are similar to those offered

by cmdlets, as the structure of their commands is the same.

The streaming behavior of functions is also similar to that of

cmdlets.

 PowerShell workflows are another feature that were introduced
in PowerShell v3. The syntax of workflows is similar to functions.

When a workflow is loaded into memory, a function is created

and can be viewed through PowerShell drive.

 In PowerShell, a script is a piece of PowerShell code that is
saved with a .ps1 extension and loaded into the memory and

parsed at the time of its execution. When a script runs, it is

slower than a function when it starts, but gets to the same

speed during execution. Moreover, script commands and shell

function commands are the same.

 Native Native commands are external executable programs

that can be handled by the operating system. Native commands

require the creation of a new process and run quite slowly.

Their syntax is different from other types of commands, and

they do their own parameter processing. Native commands can

be used to accomplish a wide variety of behaviors. The most

obvious example of a native command is the PowerShell

interpreter, which is invoked by giving the command Executing

powershell.exe calls an interpreter from within PowerShell by

creating a second process, which is a child process. The ability

to run child processes in PowerShell allows scripts to be

embedded inline. Fragments of scripts can be embedded into

the main script by delimiting it with braces. An example is

shown below:

 powershell { Get-Process System } | Format-Table Handles, Id,

ProcessName -Autosize

 The script above contains an embedded child process Get-

Process This code executes and displays the specific properties

related to the process, such as and The -AutoSize attribute is

used to size the columns for a convenient display. The output is

formatted as a table with these three columns. The advantage of

executing in this way is that the output is available as serialized

objects, which can be passed to other commands.

Launching PowerShell

 PowerShell can be launched in Windows 10 using the search

field. The search text field is available from the taskbar, and

PowerShell can be accessed by typing powershell and clicking on

Windows It is also possible to run PowerShell with administrator

privileges. To do so, right click on Windows PowerShell in the

search results and click Run as

 Creating and Running Scripts
 PowerShell scripts are saved with the extension “.ps1”. It is
not possible to run this script by just double-clicking the file. To

run PowerShell scripts, right click on the file with the .ps1

extension and click “Run with PowerShell”. However, in order to

run scripts, the necessary policies must be set up using Get

This command provides the current status of privileges, which

may be one of the following:

 AllSigned - It is only possible to run scripts from a trusted

developer. Prior to running the script, a prompt is available.

 Restricted - Scripts cannot be executed. This is the default
setting for Windows. It must be changed.

 Unrestricted - You can run any script. This makes the system

vulnerable and must not be used.

 RemoteSigned - It is possible to run your scripts or those

trusted by a developer.

 The command used to set the policy to the required level is:

 Set-ExecutionPolicy remoteSigned

 Running PowerShell Script

 PowerShell scripts can be executed in two ways. It is possible
to write scripts in notepad using Windows Command Line and

the file with the ps1 extension, then call the script from

PowerShell. This enables you to see the output in PowerShell.

For example, the following command can be saved with the

filename

 Write-Host “This is the new script”

 The script can be executed using PowerShell by giving the
command .\script.ps1 after navigating to the folder where the

script is saved. This gives the output in PowerShell.

Further, it is also possible to execute PowerShell scripts using

the Integrated Scripting Environment (ISE), which allows running

and executing scripts in a GUI environment. The GUI

environment is convenient as it provides several features, such

as editing multiple lines at a time, highlighting syntax, selective

execution, and tab completion to name a few. It is also possible

to work with multiple windows simultaneously. This is a useful

feature when one script makes a call to another script.

 Basic Commands in PowerShell

 PowerShell features cmdlets, which are commands with a

predefined function. They work similarly to operators in other

programming languages. Cmdlets can be classified as user,

system, and custom cmdlets. When a cmdlet is executed, an

object or an array of objects is passed in its output. It is

possible to analyze data using cmdlets or pass the output, i.e.

object(s) of cmdlets to another cmdlet using the pipe operator.

Several cmdlets can also be used in a string by separating them

using semicolons (;). Finally, cmdlets are not case-sensitive,

which means that it does not matter whether you use uppercase

or lowercase letters to define and execute the cmdlets.

 Some the basic cmdlets used frequently in PowerShell include:

● Get - Get something.

● Start - Start running something.

● Set - Define something.

● Stop - Stop a thing that is running.

● New - Create something new.

● Out - Output something.

 The Get cmdlet is one of the most common cmdlets used in

PowerShell. It can be used to get different types of content,

processes, and services with a number of parameters defined in

PowerShell. Here are a few basic commands in PowerShell you

want to understand to be able to use the Get cmdlet effectively:

 This cmdlet displays the processes that are currently running

on your computer.

 The Get-Content cmdlet displays the content of the file that

you specify as a Windows file path.

 The Get-Service cmdlet shows the list of services that are

currently running along with their status or any other parameters

that are specified in the cmdlet syntax.

 The Get-Command provides a list of all available commands

so you can select a suitable command for your precise

requirements. The Get-Command -Type Cmdlet provides a list of

cmdlets available in PowerShell.

The Get-Help command provides more information on using a

specific command. Some examples include Get-Help -Detailed

and Get-Help In this example, -Detailed and -Online are switches

that list information to complete a specific task. Other switches

of the Get-Help command include -Full and

 The Get-Module or Import-Module gives you access to

modules to automate products. Get-Module -ListAvailable

provides a list of all modules and commands available in it.

When considering modules from vendors, download and install

the module prior to running the Get -Module cmdlet. Modules

that have been installed can be imported using Import To view

cmdlets included in the module use the Get-Command

The Get-Member command shows all properties, methods, and

member types. On the other hand, the Format-List command

provides information that is useful to system administrators and

individuals with a high level of technical knowledge.

 Command Pipelines

 When commands are separated by the | operator, they form a

pipeline in PowerShell. Pipelines are a series of commands. The

output of one command is passed along to the next command

as input. The following command pipeline shows all three types

of parameters and the process of passing the output of one

command to the other through the use of the | operator:

 dir -recurse -filter *.txt | format-table name, length

The command used here is dir with a switch parameter -filter

*.txt is a parameter with an argument. This forms the first

command, which gives an output that is passed to another

command, The purpose of the second command is to present

the output from the first command as a table containing the

name and Here, name, length is the positional argument. When

a command pipeline is supplied to the PowerShell parser, it

processes each of the individual commands and provides the

result to the next command. Finally, it returns a result after

processing all the commands, one after another.

 The Parsing Process in PowerShell

 Commands in PowerShell can only be executed after they are

parsed by the PowerShell interpreter. For example, when a

simple expression, such as “3+2”, is supplied to the it is

converted into an internal representation, which is then supplied

to the This execution engine is the point where the expression

is evaluated. In the background, a tokenizer breaks up the

components of the script into internal representations called

tokens, which are processed into specific structures through

syntactic analysis. A concept associated with tokenizing is which

converts a token (with a special meaning) to a simple string.

The following example demonstrates the concept of quoting:

 Write-Output ‘-InputObject’

 This script prints the output Note that -InputObject is a built-

in object in PowerShell, but in this case, it is parsed as a

string, and the output is displayed as the string itself.

 Quoting serves different purposes in PowerShell. For example,

it can be used to specify the full path of the file present at a

specific location. The script Set-Location ‘c:\program files’ refers

to the location specified there. When the script Get-Location is

executed, the path set in the previous instance is executed.

However, when you try to accomplish the same task without

using quotes, c:\program and files are treated as different

tokens, and an error is produced.

––––––––

Chapter Summary

● The standard used to develop PowerShell was the IEEE

POSIX of the Korn Shell. The IEEE POSIX standard was also the

base standard for the design of Bash and Zsh shells.

● PowerShell has several cmdlets, including and

● The main types of commands in PowerShell are scripts,

workflows, functions, and native commands.

● To be able to execute scripts in PowerShell, it is important

to set up the required permissions using the Get-ExecutionPolicy

cmdlet and specifying remoteSigned as the privilege

● The most frequently used cmdlets in PowerShell are and

● The Get cmdlet can be used to access processes commands

services and many more.

● PowerShell uses command pipelines to feed the objects from

one cmdlet to the next one and achieve the desired output.

● Commands in PowerShell are executed after they are parsed

by the PowerShell interpreter.

Chapter Four: Objects in PowerShell

PowerShell has types and An example is the robin, a bird, which

can be considered a type belonging to the parent class of bird.

Birds have many properties such as feathers, beak, and the

ability to fly. This example gives insight into how object-oriented

programming works. Here, a type is the description of an and

the two have a In this example, a relationship may be defined

as “Robin is a bird”. A class in PowerShell is used to define a

new Classes have behaviors that are defined using When

referring to all properties and methods, the term member may

be used. When an action is performed on an it is possible to

trigger a special method called an For example, a method that

instructs the bird to fly may internally trigger another event to

swoop on prey while flying.

 Objects also have which are the template for that object. This

is also known as the type of the object and may be perceived

as its The type of the object is defined by a When we say that

Robin is a bird, we mean that Robin is the and bird is the

 Getting Object Members

 The information associated with objects is referred to as

Cmdlets allow you to get this information. The Get-Member

cmdlet allows you to find properties and methods for a specific

object. In the following example, the members returned by the

Get-Service cmdlet is passed to the Get-Member using a

command pipeline as shown below:

 Get-Service -ServiceName ‘BITS’ | Get-Member

Properties or attributes of an object can be retrieved by using

the following command. The Get-Member cmdlet is used to find

the property names as shown below:

 Get-Service | Get-Member -MemberType Property

To find property the following command may be executed:

 Get-Service -ServiceName ‘BITS’ | Select-Object -Property

‘StartType’

 Aliases are intuitive names for properties. Aliases may be

used to refer to the value of a property instead of using the

actual name of the property. Take the following example:

 Get-Service | Get-Member -MemberType ‘AliasProperty’

The methods of an object are the actions that can be performed

on it. The Get-member cmdlet lets you view the methods

associated with an object. The following command displays all

methods:

 Get-Service | Get-Member -MemberType ‘Method’

Objects have many types of members besides methods,

properties, and aliases, such as Property Sets, Script Property,

and Note Property. Script properties are used to calculate

property values. Further, the note property is used in the case

of static property names. Finally, property sets behave like

aliases and contain sets of properties.

 There are several ways to work with objects, such as
displaying their specific properties, sorting and filtering them,

counting and averaging the objects, using loops, and comparing

the objects. The following examples illustrate these concepts:

 Selecting Specific Properties
 Get-Service -ServiceName * | Select-Object -Property ‘Status’,

‘DisplayName’

In the command pipeline above, Get-Service is the cmdlet that

gets all service names. This output is passed to the Select-

Object cmdlet, which acts as a filter for the available properties

and shows the status and display name formatted as a table.

This command may be extended to include the sorting and

filtering functions as shown below:

 Sorting and Formatting the Output

 Get-Service * | Select-Object -Property ‘Status’, ‘DisplayName’

| Where-Object -FilterScript {$_.Status -eq ‘Running’ -and

$_.DisplayName -like “Windows*”} | Sort-Object -Property

‘DisplayName’ -Descending | Format-Table -AutoSize

 The example above performs several functions using the

command pipeline. First, the list of services returned by Get-

Service cmdlet are passed to the Select-Object cmdlet, and the

properties are filtered to return only the status and display

name. The Where-Object cmdlet acts as a filter to filter the

services that are running and have “Windows” in their display

name. Henceforth, the output from this command pipeline is

passed to the Sort-Object cmdlet that sorts the result according

to the display name (the property) and sorts the output in

descending order. Finally, the Format-Table cmdlet is used to

format the output as a table.

 Counting Objects in the Output

 It is also possible to count the number of objects returned

from a specific command pipeline by using the command

pipeline shown below, which contains the Measure-Object

cmdlet:

 Get-Service * | Select-Object -Property ‘Status’, ‘DisplayName’

| Where-Object -FilterScript {$_.Status -eq ‘Running’ -and

$_.DisplayName -like “Windows*”} | Sort-Object -Property

‘DisplayName’ -Descending | Measure-Object

 Looping Through the Output

 It is also possible to customize the output from a command

pipeline using loops as shown in the example below:

 Get-Service * | Select-Object -Property ‘Status’, ‘DisplayName’

| Where-Object {$_.DisplayName -Like “Windows*” -and $_.Status

-eq ‘Running’} | Foreach-Object { Write-Host -Foreground-Color

‘Yellow’ $_.DisplayName “is running” }

 The example above uses the ForEach-Object cmdlet, which

concatenates the string “is running” to every line of the output

and changes its color to yellow. The same command can also

be used to perform additional actions, like starting and stopping

a service. Several other cmdlets can be used to perform different

actions on the output, such as Compare-Object cmdlet for

making a comparison. Given the flexibility and extensibility of

command pipelines in PowerShell, you can select any logically

valid cmdlets and pass the output of one cmdlet to another to

get the desired output.

––––––––

Chapter Summary

● PowerShell consists of classes and For example, when one

refers to robin as a bird, the type is robin, and bird is its

parent Alternatively, a type may be referred to as a description

of an object.

● The parent class bird has properties such as feathers, and

which is simply stated as "robin is a bird".

● Classes in PowerShell define

● Classes have methods and

● Objects may also have templates, which are called

● Information about objects is referred to as its

● An example of retrieving attributes of an object is Get-Service

| Get-Member -MemberType

● Cmdlets can also be used to retrieve specific properties of

objects, such as Get-Service -ServiceName * | Select-Object -

Property ‘Status’; ‘DisplayName’, which displays services with two

of their properties; DisplayName; and Status.

● It is also possible to format, sort, and measure objects in

the output.

● Loops, like are also useful in looping through the objects

retrieved using cmdlets.

Chapter Five: The Pipeline

Pipelines in PowerShell are a series of commands that are

connected using the pipeline operators The results of a

command from one pipeline operator are sent to the succeeding

command. This forms a complex chain of commands in series,

also referred to as the pipeline. The general syntax of the

pipeline is depicted below:

 Command - 1 | Command - 2 | Command - 3

 The output of each command is an object, which is sent to

the next command. The order of processing of the commands is

from left to right, and the output is generated after the

processing has been completed for all commands in series. As

discussed earlier, commands in PowerShell are cmdlets. An

example of a series of cmdlets in PowerShell is included below:

 Get-Process notepad | Stop-Process
 In the example above, the Get-Process cmdlet gets an object

of the Notepad process. The | operator is used to send this

object to the Stop-Process cmdlet. This pipeline may be further

extended to include additional functions, such as sorting them

and displaying them as a table. The following example

demonstrates these additional functions:

 Get-ChildItem -Path *.txt | Where-Object {$_.length -gt 10000}

| Sort-Object -Property length | Format-Table -Property name,

length

 The Get-ChildItem cmdlet is used to get the files with the .txt

extension. These file objects are passed to the Where-Object

cmdlet, which retrieves the file objects with a length greater than

10000. This output is then passed to the Sort-Object cmdlet

according to their length. Finally, the output is passed to the

Format-Object cmdlet that formats the output in the form of a

table by their length and name.

 Working with Pipeline in PowerShell

 In pipelining, the receiving cmdlet must contain a parameter

that accepts pipeline input. It is quite simple to find out which

parameters of a cmdlet accept pipeline input. To find the

parameters of a cmdlet that accept pipeline input, use the Get-

Help cmdlet with the desired cmdlet and the -Full or -Parameter

options to retrieve the parameters that will accept pipeline input.

Examples of this are included below:

 Get-Help Start-Service -Full

 Get-Help Start-Service -Parameter *

When these commands are executed, the output clearly indicates

that -InputObject and -Name are the two parameters, which

accept pipeline input.

 There are two ways to accept pipeline input -
ByPropertyName and When cmdlet parameters accept input by

value, it is possible to accept objects that are either strings or

those that can be converted into strings. On the other hand,

when they accept input by property name, the input object must

have a property with the same name as the parameter.

 An important aspect of piping is parameter binding. Piping

objects from one command to the next allows PowerShell to link

piped objects with the parameter linked to the receiving cmdlet.

Parameter binding in PowerShell allows the linking of cmdlet

parameters with input objects when a certain set of criteria are

satisfied: the parameter accepts input from a pipeline, the

parameter was not used in the command, and the parameter

accepts object type that is sent or the type that can be

converted to the expected type of object. This means that even

though a certain cmdlet can have a number of parameters, only

the Name and InputObject parameters accept pipeline input.

 Parameter binding is an efficient process in PowerShell. It is

not possible to forcibly bind a specific parameter in PowerShell.

In pipelining, the objects from one cmdlet are piped to the next

one, one-at-a time. An example is included below:

 Get-Service | Format-Table -Property Name, DependentServices

In the example the object of the Get-Service cmdlet is passed to

the Format-Table cmdlet, which accepts this object collection.

Henceforth, the output which is displayed as a table is sorted

according to the Name and The collection of services available

after executing this command is also passed to a variable. This

is shown in the command sequence below:

 $services = Get-Service
 Format-Table -InputObject $services -Property Name,

DependentServices

 Internally, when PowerShell executes a pipeline, it enumerates

any of the types that implement the IEnumerable interface. This

interface sends members through the pipeline one-at-a-time.

 Another common example is when the objects of the Get-

Process cmdlet are piped into the Get-Member cmdlet, which

displays the class type of the process objects, along with their

methods and properties. This is shown in the example below:

 Get-Process | Get-Member

 In PowerShell, parameters are bound to the cmdlets using the

parameter binding component, which uses specific criteria to

achieve this purpose. The first criterion is that the parameter

must accept input from a pipeline. The second criterion is that

it should accept an object type that is sent or one that can be

converted to an accepted type of object. The third criterion is

that the parameter was not used as part of the command. A

typical example that illustrates this concept is the Start-Service

cmdlet, which has only two parameters that accept pipeline

input. These parameters are InputObject and which take service

objects and strings respectively.

 Common Cmdlets Used in Command Pipelines

 Most pipelines contain common cmdlets, including and

Objects are used with these cmdlets and passed from one

cmdlet to another using a pipeline. Other common cmdlets are

and The examples of these cmdlets are included below:

 Cmdlet Pipelines with Get-Service

 The Get-Service cmdlet returns objects depicting services

available on a computer. These services may be running, or they

may be those that have been stopped. Get-Service takes many

parameters, such as -RequiredServices and Some examples of

using the Get-Service cmdlet are included below:

● Get-Service Spooler | Start-Service is a series of cmdlets used

to invoke the Spooler service, whose object is passed to the

Start-Service cmdlet.

● Get-Service -Name “win*” -Exclude “WinRM” gets all services

with the name starting with “win” except the WinRM service.

● Get-Service -Displayname “*network” displays all services with

their name containing the word “network”. The same cmdlet can

be used to display services that are dependent or those that are

currently active.

● The same command can be used to display all services

starting with “s” and displaying a sorted list of services. This is

achieved by the command pipeline get-Service “s*” | Sort-Object

Cmdlet Pipelines with Where-Object

 Where-Object cmdlet gets objects with specific property values

from a collection of objects. The criteria specified to this cmdlet

may pertain to objects with a specific ID, those that were

created after a specific date or the ones using a particular

version of Windows. The following examples demonstrate the use

of the Where-Object cmdlet:

● Get-Process | Where-Object {$_.PriorityClass -eq “Normal”}

the Where-Object acts as a filter to get processes in the Normal

priority by identifying where the value of PriorityClass property is

● Another way to retrieve the objects with a priority Normal is

Get-Process | Where-Object -Property PriorityClass -eq -Value In

this example, the command gets the processes that have a

priority with the class

● Get-Service | Where-Object {$_.Status -eq “Stopped”} gets all

services that have stopped by using the Where-Object cmdlet

and filtering all services with the status “Stopped”.

Cmdlet Pipelines with Get-Member

 The Get-Member cmdlet retrieves the properties and methods

of objects. It takes several parameters, including and many

more. The names of methods and properties of a specific object

can be retrieved using the -name parameter. It is also possible

to specify other criteria using or

 The Get-Member cmdlet allows you to find out more about a

command by piping the object you want to explore. Information

on static members of the class rather than its instance can be

retrieved with the Static parameter. It is also possible to get

only specific members using the MemberType parameter.

 There are a number of ways you could use to retrieve the list

of members with the Get-Member cmdlet. To elaborate, Dynamic

retrieves all dynamic members and Event retrieves all events.

Further, PropertySet retrieves a set of properties and Properties

retrieves all property member types. Methods and properties

defined in scripts can be retrieved using Scriptmethod and

ParameterizedProperty is another member of the Get-Member

cmdlet that is neither a method nor a property, but acts like a

property that takes parameters.

 The following examples demonstrate the use of the Get-

Member cmdlet:

● Get-Service | Get-Member Force is used to retrieve the

compiler-generated members and intrinsic members of the

objects. The Get-Member command when used with the Force

parameter displays these members.

● Another way to use piping with the Get-Member cmdlet is to

use the command series Get-Service | Get-Member -View In this

example, the View parameter of the Get-Member cmdlet is used

to retrieve the extended members of the objects:

Cmdlet Pipelines with Get-Command

 The Get-Command cmdlet is a versatile cmdlet that enlists all

commands available on the computer, including cmdlets, aliases,

workflows, filters, applications, scripts, and functions. Commands

that were imported from PowerShell modules and from other

sessions are available with

 The Get-Command cmdlet works with a number of

arguments, such as and many more. Some examples of using

the Get-Command cmdlet are included below:

● Get-Command * retrieves all functions, aliases, filters, and

cmdlets.

● Sending the output of Get-Command to Get-Member retrieves

all properties and methods.

● To get the syntax of a specific cmdlet in PowerShell, the

Get-Command Get-Process -Syntax may be used.

● Get-Command -CommandType Cmdlet retrieves all cmdlets,

and Get-Command -CommandType Alias retrieves only the aliases

in PowerShell.

 It is possible to use these and other cmdlets to send the

objects available from one cmdlet to another cmdlet through a

command pipeline.

● Get-Command dir | Format-List * can be used to retrieve the

object for the and the output is routed to Format-List which

makes all properties available.

● All cmdlets that have a specific output type can be retrieved

using the Get-Command -Type Cmdlet | Where-Object

OutputType | Format-List -Property Name, This cmdlet pipeline

gives output in the form of name and output type pairs by

passing all cmdlets through the Where-Object filter to retrieve

them according to their output type and finally format the

output according to the property name and output type.

Cmdlet Pipelines with Group-Object

 The Group-Object cmdlet groups objects containing the same

value for the parameters specified. The output is in the form of

a table containing a column for the property value and the

number of items with that value. In the example illustrated

below, the Get-ChildItem cmdlet is called with the -Path

parameter, which takes the desired path along with the

parameter. The object returned by this cmdlet is passed to the

Group-Object cmdlet by specifying the parameter -Property as

The -NoElement parameter does not display the members of the

group as part of the output. The objects of this cmdlet are

passed to the Sort-Object cmdlet, which uses the value Count of

the -Property parameter to sort the results in the descending

order.

 $files = Get-ChildItem -Path $PSHOME -Recurse

 $files | Group-Object -Property extension -NoElement | Sort-

Object -Property Count -Descending

Another example of the Group-Object cmdlet uses the Property

parameter to display the odd and even numbers using the

pipeline syntax shown below:

 1..40 | Group-Object -Property {$_ % 2}

In the example the numbers from 1-40 are supplied to the

Group-Object cmdlet, and the Property parameter is used to

generate the list of odd and even numbers.

 To group the different events in the event log, the events on
the system can be passed to the Group-Object cmdlet. The

following cmdlet pipeline displays the number of events in each

log (count), followed by the type of event that define a group

(name), and the objects in each group (group):

 Get-WinEvent -LogName System -MaxEvents 1000 | Group-

Object -Property LevelDisplayName

In a similar processes can also be grouped in several ways as

indicated below:

● Get-Process | Group-Object -Property PriorityClass takes all

processes from the Get-Process cmdlet and passes them to the

Group-Object cmdlet to be grouped by the PriorityClass property.

● The Group-Object cmdlet can be used in another way by

specifying Get-Process | Group-Object -Property PriorityClass

which eliminates the members of the group from the output.

The result is displayed only with the output of the Name and

Count properties.

● The Group-Object cmdlet can also be used with the Where-

Object cmdlet by specifying Get-Process | Group-Object -Property

Name -NoElement | Where-Object {$_.Count -gt 1}. Executing

this cmdlet pipeline provides the processes available from the

Get-Process cmdlet to the Group-Object cmdlet, which groups

the objects in a specific manner then passes this output to the

Where-Object cmdlet, which has the desired criteria.

 Cmdlet Pipelines with Sort-Object

 The Sort-Object cmdlet is used to sort objects in the

ascending and descending order based on property values of the

object. When a command does not have sort properties,

PowerShell uses the sort properties belonging to the first input

object. When no sort properties are available, PowerShell

compares the objects.

 It is possible to sort objects using a single property or
multiple properties. When multiple properties are specified for

sorting objects, PowerShell uses hash tables to perform the

sorting in descending order, ascending order, or a combination

of sort orders. Properties can be sorted according to case

sensitivity and by using the Unique parameter that eliminates

duplicates. The following examples demonstrate the use of the

Sort-Object cmdlet:

● A simple use of the Sort-Object cmdlet is to see the

processes that are consuming most of the CPU time by passing

the objects of the Get-Process to the Sort-Object cmdlet.

The command is specified as Get-Process | Sort-Object -Property

CPU

It is also possible to sort the objects by not just CPU usage

but also by the name of the process by specifying the cmdlet

pipeline as indicated below:

Get-Process | Sort-Object -Property CPU, ProcessName

The output from this command pipeline can be further fine-

tuned to select specific columns, such as the pipeline indicated

below:

Get-Process | Sort-Object -Property CPU -Descending | Select-

Object ProcessName, CPU

Additional filters can be applied using the Where-Object cmdlet

as shown below:

Get-Process | Where-Object {$_.CPU -gt 10} | Sort-Object -

Property CPU -Descending | Select-Object ProcessName, CPU

The following cmdlet pipeline displays only the first ten rows of

the output sorted in descending order as shown below:

Get-Process | Sort-Object -Property CPU -Descending | Select-

Object ProcessName, CPU -First 10

● To get all the files and the subdirectories specified by a

path, and then sort the objects according to the default criteria,

use the pipeline shown below:

Get-ChildItem -Path D:\MyFolder |

The Get-ChildItem first retrieves all files and directories from the

path “D:\MyDirectory”. These objects are sent to the Sort-Object

cmdlet. In the final output, the files are sorted by name.

● It is also possible to sort the files in the current directory by

their name using the following cmdlet pipeline:

Get-ChildItem -Path C:\Test -File | Sort-Object -Property Length

The name of the file and its length are included in the output

along with other parameters, such as the time when the file was

last written.

● Memory usage is another frequently used parameter to sort

objects in PowerShell. The following example demonstrated the

use of memory, referred to as working set and abbreviated as

WS to sort the processes:

Get-Process | Sort-Object -Property WS | Select-Object -Last 5

In this example, the Get-Process retrieves all processes running

on the system. These objects are passed to the Sort-Object

cmdlet, which uses the working set (WS) to perform the sorting.

Finally, this output is sent to the Select-Object cmdlet, which

displays the last five objects using the Last property. These are

the objects with the highest memory usage.

● Further, lists in text files can also be sorted with the Sort-

Object cmdlet. The cmdlet pipeline for displaying all files in a

list is:

Get-Content -Path D:\MyFile.txt displays all files in a list.

To sort the files in alphabetical order, the cmdlet pipeline used

is:

Get-Content -Path D:\MyFile.txt |

Finally, unique items in the list can be displayed using the

pipeline:

Get-Content -Path D:\MyFile.txt | Sort-Object -Unique

● Sort-Object is a versatile cmdlet and can also be used to

sort integers in a text file. To perform this operation, the

following cmdlet pipeline may be used:

Get-Content -Path D:\MyDocument.txt | Sort-Object sorts the

contents as strings. The same cmdlet can be used to sort them

as integers by specifying the sort criteria as

Get-Content -Path D:\MyDocument.txt | Sort-Object {[int]$_}

● Properties can also be sorted in the ascending or descending

order using a hash table. In the following example, the Get-

Service cmdlet retrieves all services. This object is passed to the

Sort-Object cmdlet, and the sorting is performed using the

parameter The services are first sorted according to their status

in the descending order, such that the running services are

displayed before the stopped services. Further, the services in

each group are sorted in the ascending alphabetical order as

displayed in the cmdlet pipeline below:

Get-Service | -Property @{Expression = "Status"; Descending =

$True}, @{Expression = "DisplayName"; Descending = $False}

 Cmdlet Pipelines with Measure-Object

 Measure-Object is a versatile cmdlet used for properties, such

as lines, words, and characters in string objects, and other

numeric properties of objects. A number of the numeric

properties of objects can be calculated using the Measure-Object

cmdlet, like the sum, minimum value, maximum value, average,

and standard deviation. Some common examples of Measure-

Object are included below:

● The simplest way to use Measure-Object is to get the

number of objects supplied to it in a cmdlet pipeline, such as

0..15 | Measure-Object

The same example can be extended to obtain more numerical

measurements by supplying additional parameters, like the

example specified below:

0..15 | Measure-Object -Sum -Average -Maximum -Minimum

The information obtained from the above cmdlet pipeline is

sum, average, maximum, and minimum of the numbers

supplied.

● The cmdlet pipeline Get-ChildItem | Measure-Object -Property

length-Minimum -Maximum -Average displays the sizes of files in

the current directory along with the average file size in the

directory.

● Simply executing Get-ChildItem | Measure-Object displays the

number of files and directories in the current directory.

● It is also possible to get the complete information about

characters, words, and lines by storing and retrieving the content

in a text file using the Set-Content and Get-Content cmdlets. The

following cmdlet pipeline can be used to store content in a file,

and then retrieve the content to measure the numerical aspects

of the content:

“This”, “dog”, “has”, “a”, “tail” | Set-Content -Path C:\MyFile.txt

Get-Content C:\MyFile.txt | Measure-Object -Line -Word -

Character

This cmdlet pipeline displays columns for lines, words, and

characters so that the output shows 5 lines, 5 words, and 15

characters as the numerical indicators of the text supplied to the

file.

● The Measure-Object cmdlet can also be used to measure the

services and processes on a system. It can also be used to

measure objects that have a specific property.

To display a count of all processes, the cmdlet pipeline Get-

Service | Measure-Object may be used. Further, the processes

may be measured using the cmdlet pipeline Get-Process |

Measure-Object pipeline. Alternatively, the processes and services

can be stored in a variable and collectively piped to the

Measure-Object cmdlet to get the total count as shown below:

= Get-Service

 $processes = Get-Process
 $services + $processes | Measure-Object

The Measure-Object cmdlet can be used to get a number of

different measurements, including hash tables, scriptblock

properties, wild cards, and standard deviation. It takes a number

of parameters including which gets the average of the properties

indicated, which counts the characters in the objects supplied as

input, which displays all statistics pertaining to a property, which

counts the number of lines in an input object, and the -

Maximum and which show the maximum and minimum values

of the properties respectively. Other frequently used parameters

are the -Sum to display the sum of values of a specific property

and which indicates the number of words in input objects.

 Cmdlet Pipelines with Out-File

 It is possible to send output to a file using the Out-File

cmdlet. The following examples demonstrate the use of Out-File

cmdlet:

● The Out-File cmdlet can be used simply to append content

to the end of a text file. In order to perform this operation,

simply pass the content to the Out-File cmdlet in a pipeline.

The command pipeline used to perform this is indicated below:

‘test’ | Out-File -FilePath D:\Test.txt

The command above writes the supplied text content to the file

specified in the path. The content of the file is overwritten with

this supplied content. To append the contents of the file without

overwriting the existing content, the -Append parameter may be

added to the pipeline as shown below:

‘test’ | Out-File -FilePath D:\Test.txt -Append

● Get-Process | Out-File -FilePath D:\Processes.txt -NoClobber

writes all processes running on the computer to the file path

specified. The -NoClobber parameter is added to specify that the

file should not be overwritten.

● To specify output format for the target file, the -Encoding

parameter may be used, and ASCII may be specified as the

desired encoding.

$Procs = Get-Process

Out-File -FilePath D:\Processes.txt -InputObject $Procs -Encoding

ASCII -Width 100

The Get-Process cmdlet retrieves all processes and stores it in

the $Procs variable. Finally, the Out-File cmdlet is used along

with the path of the file specified by -FilePath parameter.

● In a similar manner, the services can be routed to a

different file using the cmdlet pipeline Get-Service | Out-File -

FilePath D:\MyServices.txt

In line with the parameters shown above, Out-File takes a

number of parameters, such as -LiteralPath and -FilePath to

specify the path to the file, -Append to append the contents at

the end of the output, -Force to overwrite existing read-only

attributes and files, -NoCobbler to detect if a file already exists

and prevent the file from being overwritten, and -InputObject to

specify the objects that are written to the file. Specifying the -

Confirm parameter asks you for a confirmation before a cmdlet

is executed, and -WhatIf describes the expected outcome if the

cmdlet is executed.

Cmdlet Pipelines with Format-Table

 The Format-Table cmdlet displays formatted output in a

pipeline. There are several ways the output can be formatted as

shown below:

● Giving Get-Host | Format-Table -Autosize gets the objects

that represent the host and passes these objects to the Format-

Table cmdlet to display the output in the form of a table.

Column width is adjusted by using the -Autosize parameter to

prevent the truncation of the output.

● Several other cmdlets can be used to filter and sort the

output, such as sorting processes and displaying them as a

table:

Get-Process | Sort-Object StartTime | Format-Table -View

StartTime

This cmdlet pipeline first gets all processes then passes those

objects to the Sort-Object cmdlet with the StartTime parameter.

This allows the objects to be sorted according to their start

date. These objects are passed to the Format-Table cmdlet,

which formats the output then displays it. The output is

displayed to show the start date.

● Another way to process the output is to retrieve the

processes and sort and display them by using a specific

grouping. An example of the cmdlet pipeline is shown below:

Get-Process | Sort-Object -Property BasePriority | Format-Table -

GroupBy BasePriority -Wrap

In the example above, the processes are retrieved using the Get-

Process cmdlet and passing to the Sort-Object cmdlet by

specifying that they must be sorted according to the property,

This output is then passed to the Format-Table cmdlet, and the

objects are grouped by An additional parameter Wrap is

specified to indicate that the data should not be truncated.

● As indicated in the examples in the preceding sections, there

are several ways to format the table displaying the output using

its properties, such as Name and

Get-Service | Format-Table -Property Name, DependentServices

The Format-Table cmdlet can use several parameters, such as -

DisplayError to display errors on the command line, -Autosize to

automatically adjust column size based on the width of the data,

-Force to forcibly display all error information, -GroupBy to group

objects in a specific format, such as using its name or a

specific expression. The -Property parameter specifies object

properties along with the order in which they are displayed.

 In effect, the output from one or multiple cmdlets can be

displayed in multiple formats using the format-list and format-

table cmdlets. At the most basic level, cmdlets, like allow you to

write output on the PowerShell console. Other tasks performed

by pipelining objects are based on services in PowerShell, such

as Get-Service and Pipelines in PowerShell are efficient tools to

restart a specific service -Name seclogon | and stopping a

service -Name seclogon | Restart-Service -PassThru | In effect,

the PowerShell pipeline can be used to perform powerful

operations by passing objects to different cmdlets and leveraging

their potential in the best possible manner.

––––––––

Chapter Summary

● Series of commands are referred to as pipelines in

PowerShell.

● The pipe operator is used to connect different cmdlets in

PowerShell to form pipelines.

● The basic syntax of a pipeline is Command - 1 | Command -

2 | Command -

● An example of a pipeline that accesses the "notepad"

process and attempts to stop it is demonstrated using the

pipeline Get-Process notepad |

● The Format-Table cmdlet is often used to format the output

from cmdlet pipelines.

● Other popular constructions of PowerShell pipelines include

Get-Process |

● The Get-Service cmdlet is also used frequently in pipelines,

as in the case of Get-Service Spooler | which starts the Spooler

service.

● The Where-Object is a common filter applied to cmdlet

pipelines. An example that demonstrates retrieving all services

with the "stopped" status is Get-Service | Where-Object

{$_.Status -eq

● Cmdlet pipelines can also be constructed using as in the

case of Get-Service | Get-Member -View which retrieves extended

members of the objects.

● Other common cmdlets used in pipelines include and

Chapter Six: Scripting in PowerShell

Powerful scripting is possible with PowerShell due to its range

of features, including task-oriented design that supports

command-line tools and existing scripts and cmdlets, which

make it possible to perform administrative tasks while giving

enough flexibility to manage processes, services, registry, and

event logs. Further, scripting allows you to manage tasks

through existing command line tools and scripts. It provides a

consistent syntax and design with data sharing through an

interface that allows pipelining objects from one cmdlet to

another.

 The flexible and extensive capabilities of PowerShell are
available because of its object-oriented interface that provides a

set of tools with the required manipulation capabilities.

Moreover, its interface is extensible and customizable, which

means that it allows enterprise developers and vendors to use

utilities and tools that can be used with PowerShell. The most

important features of PowerShell, which makes it possible to

execute simple as well as complex scripts are described below:

● Variables can be easily created in PowerShell using the $

preceding the variable name. Variables are useful in manipulating

objects. A variable name in PowerShell can have alphanumeric

characters as well as the underscore sign. An example of

creating a variable by assigning a location to it is given below:

$variable_location = Get-Location

This script contains a variable with the name “variable_location”,

which takes the object of the cmdlet The Get-Location cmdlet

gets the reference to the current location.

It is also possible to declare arrays as variables and work with

them. Arrays contain sequential elements of a specific data type.

An array may contain either variables or objects as part of its

collection. The advantage of using arrays is to be able to refer

to the entire collection with a single name while identifying the

different elements of the array using sequential indexes. An array

is also declared using a $ sign preceding the variable name as

shown below:

$Array_Test = 2, 4, 6, 8

PowerShell also allows several operations on arrays, including

getting the length of the array, retrieving a specific portion of

the array, assigning values to array elements, and traversing

through the array using loops.

In addition, it is also possible to declare hashtable variables in

the form of pairs of keys and values. An example of declaring a

hashtable variable is indicated below:

$hash = @{ Number = 1; Color = “Red”}

Another variable type that can be created using PowerShell is

the ordered dictionary, which is used to maintain the order of

the elements defined in it, unlike the hashtable that does not

maintain the order. An example indicating the definition of an

ordered dictionary is defined below:

$hash = [ordered]@{ Number = 1; Color = “Blue”}

The keys and values in a hashtable are accessible using the dot

notation such as $hash.keys or In the example above, the

notation $hash.keys refers to “number” and “color” while

$hash.values refers to “1” and “red”.

● Automatic PowerShell uses automatic variables to store

specific information. For example, the current object is stored in

a variable with the $_ operator, $^ representing the first token

from the last line in the session. Further, the execution status of

the last operation is represented by the $? operator. It contains

either a TRUE or FALSE value depending on the status of the

last operation. Finally, the $$ operator is used to indicate the

last token of the last line that the session receives. PowerShell

features several other operators, such as $ERROR representing

an error object array with the most recent errors,

$EXECUTIONCONTEXT representing the context of execution

according to the PowerShell engine, $HOME representing the full

home directory path, $PROFILE representing the full path of the

PowerShell profile including the user, application, and host. The

$SENDER object refers to the object that generated the event.

Finally, PowerShell also has the $TRUE and $FALSE variables,

which represent TRUE and FALSE respectively.

● The @ symbol is used to convert lists into arrays. For

example, an array may be defined as $var_arr = @{name=

“svchost”, “explorer”} where the variable $var_arr holds the

contents of the array defined using the @ symbol. The array

consists of two process names, svchost and To display all

processes used by both svchost and the Get-Process cmdlet may

simply be used to get all processes used by them. Executing the

cmdlet Get-Process @procs achieves this outcome.

● PowerShell has operators, like comparison operators,

arithmetic operators, logical operators, redirectional operators,

unary operators, and many more, to carry out different

operations. Arithmetic operators are used to perform basic

functions, such as addition subtraction division multiplication

and modulus Similar to any other scripting language, PowerShell

also features the comparison operators, including greater than

equal to and lesser than and combinations of these basic

operators. In addition, PowerShell has assignment operators,

including = (equal to), += (), and to perform assignment

operations, and the assignment operators and OR to perform

the logical operations.

● Split and Join The split operator is a special type of operator

that may be used to break a sentence into a number of parts

separated by a specific character, such as a whitespace. For

example, specifying “This is a sentence” -split “ ” tells

PowerShell to split the sentence wherever there is a space. This

means that the output is displayed in the form of one-word-per-

line format. Likewise, the join operator tells PowerShell to join

two words or strings using the character specified at the end of

the command definition. For example, specifying “Cat”, “the”,

“mat” -join “ ” tells PowerShell to join the words and mat using

a space between them, as indicated by the join operator.

● Backtick The backtick operator is an important operator in

PowerShell that is essentially used in word-wrapping the

command syntax. The use of the backtick operator allows

commands to span multiple lines. The backtick operator is also

used in the definition of a tab space (`t) and newline (`n). For

example, the command Write-host “Firstname `tLastname” writes

Firstname and Lastname separated by a tab space. Similarly, the

two words can be separated by a new line by specifying Write-

host “Firstname

● Decision PowerShell provides decision-making capabilities

using the if statement (boolean expression followed by some

statements), if...else (a boolean statement that must be tested

true for the if block to be executed, and false for the statements

in the else block to be executed), nested if (using multiple if

and else statements inside the blocks), and switch (to test a

variable against a list of different values) statements.

● PowerShell uses looping to execute statement sequentially for

a specific number of times. The loop executes as long as the

condition specified in the code is satisfied. Conditions are

usually specified in the if...else conditional block. The different

types of loops offered by PowerShell include a while loop, which

repeats a set of statements as long as the given statement is

true. The specified condition is tested each time before the body

of the loop is executed. The do...while loop is similar to the

while loop except that the condition specified for continuing the

loop is tested at the end of the set of statements instead of

testing them at the beginning of the loop. Furthermore, the for

loop also executes a sequence of statements sequentially

multiple times by specifying the condition at the beginning of

the loop. Finally, the foreach loop is similar to the for loop and

can be used to manipulate arrays.

● Regular A regular expression is a character sequence used to

find other strings by using a specialized syntax pattern. For

example, the $ matches the end of the line and re+ one or

more of the previous things. The expression to match word

characters is \w and one that matches nonword characters is

Similarly, \s matches whitespace and \S matches non-whitespace.

● Conditional Decision-making is an important aspect of

PowerShell. The conditions to be evaluated are supplied to the

decision-making structure. In addition, the statements to be

executed when the condition is tested true or false are also

specified in the conditional statement structure. In PowerShell,

there are several types of decision-making structures, such as

the if statement (boolean expression followed by one or more

statements), if ... else statement (a boolean expression that

executes a set of statements when it is true, and another

statement or set of statements that execute when the condition

is false), switch statement (allows a variable to be tested for

equality, and this test is done against a list of given values),

and the nested if statement.

 File and Folder Operations

 PowerShell allows the execution of a number of commands

related to the creation of files and folders and specific

operations on them. These examples are included below:

● To create a new folder, use the following cmdlet:

New-Item -Path ‘D:\MyFolder’ -ItemType

This creates a folder by the name MyFolder under the D drive.

● The following cmdlet creates a file with the name MyFile.txt

under the folder

New-Item -Path ‘D:\MyFolder MyFile.txt’ -ItemType

● It is also possible to copy a folder and save it to a different

location with a new name. The following cmdlet copies a folder

by the name MyFolder and saves it to the target location with

the name

Copy-Item ‘D:\Folders MyFolder’ ‘D:\Folders MyFolder1’

● The Copy-Item cmdlet can also be used to copy files from

one location to another. The following example demonstrates

how to copy files from one location to another:

Copy-Item ‘D:\MyFolder MyFile.txt’ ‘D:\MyFolder MyFile1.txt’

 Likewise, several operations can be carried out on files and
directories to achieve the desired result. Remove-Item can be

used to delete a directory or a file, Move-Item is used to move

files or directories, Rename-Item is used to rename a file or

folder, and Get-Content can retrieve file contents. Finally, the

Test-Path cmdlet can be used to check if a specific folder or file

exists at the specified location.

 PowerShell also offers several data and time operations, such

as setting the system date using the Set-Date cmdlet. The

following examples demonstrate the different operations on

system date and time:

● To add another day to the current data and set the new

date, the following cmdlet may be used:

set-date -Date

Similarly, it is also possible to get the system date through the

use of the following cmdlet:

Get-Date

This gives the current date in a format containing the day,

months, date, and time. The following image shows different

ways of setting the date a day ahead or a day behind the

current date.

● In a similar manner, the system time can also be retrieved

using the following cmdlet:

Get-date -displayHint time displays the current time.

In order to add sixty minutes to the current time, the following

cmdlet syntax may be used:

$timeAdded = New-TimeSpan -Minutes -60

Set-Date -adjust $timeAdded

Furthermore, PowerShell offers powerful I/O operations for

different types of files. A simple sequence of cmdlets used to

create a new file NewFile.txt, add some content, and print the

contents of the file is included below:

 New-Item D:\NewFile.txt

 Set-Content D:\NewFile.txt ‘This is a new file with some text’

 Get-Content D:\MewFile.txt

 PowerShell also allows several operations on common file

types, such as CSV, XML, and HTML files. The following

example shows brief information on the cmdlets used to work

with XML files. In the example below, a new file called

MyTestFile.xml is created, and a new tag is added with some

content. Finally, the contents of the XML file are displayed. The

sequence of steps are displayed below:

 New-Item D:\MyFolder\MyTestFile.xml -ItemType File

 Set-Content D:\MyFolder\MyTestFile.xml ‘This is a new Class’

 Get-Content D:\MyFolder\MyTestFile.xml

 Similar operations can be carried on CSV files as shown

below. The sequence of steps demonstrated in the following

cmdlets create a new file, add new content to the file, and

display the content on the console:

 New-Item D:\MyFolder\MyFile.csv -ItemType File

 Set-Content D:\MyFolder\MyFile.csv ‘Monday, Tuesday,

Wednesday’

 Get-Content D:\MyFolder\MyFile.csv

 Another frequently used filetype is the HTML file, which can

be created, edited, and displayed using a similar syntax:

 New-Item D:\MyFolder\MyFile.html -ItemType File

 Set-Content D:\MyFolder\MyFile.html ‘This is a test file’

 Get-Content D:\MyFolder\MyFile.html

 Two other important operations on files pertain to erasing the

contents of the file and adding more content to the end of the

file:

 Clear-Content D:\MyTestFile.txt

 Get-Content D:\MyTestFile.txt

 Set-Content D:\MyTestFile.txt ‘This is my life’

 Add-Content D:\MyTestFile.txt ‘story’

 Get-Content D:\MyTestFile.txt

The cmdlets displayed above manipulate the contents of First,

the contents of the file are cleared, and the file is displayed.

This confirms that all the existing content in the file has been

erased successfully. Thereafter, some new contents are added to

the same file using the cmdlet Following this action, another

word is added to the file using the Add-Content cmdlet. The last

two commands append content to the existing file. Finally, all

contents of the file are displayed in the output using the Get-

Content

Chapter Summary

● Powerful scripting is supported by PowerShell through the

use of variables, operators, arrays, looping, decision-making

constructs, conditional statements, and regular expressions.

● Scripting is also useful in supporting operations on files and

folders.

● Other common functions include setting the date and time

and performing I/O operations to name a few.

Chapter Seven: Advanced Cmdlets in PowerShell

This chapter focuses on some of the advanced functions that

can be performed using PowerShell cmdlets.

To retrieve only the unique objects from a list that has already

been sorted, the Get-Unique cmdlet can be used. In the

following example, a variable is created to store color names.

This list is printed then sorted. Finally, only the unique color

names are printed:

$ColorList = “Red”, “Blue”, “Red”, “Yellow”, “Green”

$ColorList

$ColorList | Sort

$ColorList | Sort | Get-Unique

● The Start-Sleep cmdlet instructs PowerShell to pause scripting

for the time specified and resume afterward. The period to

pause or sleep can be specified in either seconds, with a -s

parameter, or in milliseconds with a -m parameter:

Start-Sleep -s 5

Start-Sleep -m 500

● It is also possible to measure how much time a script takes

to execute in PowerShell. The Measure-Command cmdlet is used

to accomplish this purpose. A simple command to retrieve the

eventlog in PowerShell can be specified as follows:

Measure-Command {Get-Eventlog “Windows PowerShell”}

● Warning messages can be written in PowerShell using the

Write-Warning cmdlet. An example is demonstrated below. The

warning message is displayed with a unique color and

background:

Write-Warning “New Warning”

PowerShell offers several other advanced cmdlets for

administering powerful systems. It offers system administrators

with the capabilities that are characteristic of Bash scripting in

Linux, which extends the functionality of Windows systems. The

variables, decision-making constructs, looping structures,

operators, cmdlets, and scripting support available in PowerShell

make it a versatile programming environment. Administrators can

take advantage of advanced built-in commands to execute scripts

a single time or multiple times.

––––––––

Chapter Summary

 Some of the advanced cmdlets discussed in this chapter

include:

● Get-Unique cmdlet to retrieve unique values from a list of

values.

● Start-Sleep cmdlet, which causes PowerShell scripting to

pause or sleep for the specified time period.

● Measure-Command cmdlet, which is used to measure the

time taken to execute the script.

● Write-Warning cmdlet, which is useful in writing warning

messages with a specific formatting.

Final Words

PowerShell is a command-based scripting interface designed for

the Windows platform. It allows the use of simple scripts to

take care of complex and critical administrative tasks. PowerShell

offers a simple programming structure supporting variables,

arrays, basic decision constructs, looping, and many more

functions for administrators.

 The simple yet powerful programming approach of PowerShell

allows the execution of the desired services, security solutions,

and operations on one or multiple servers. Scripts can be used

to construct cmdlet pipelines and obtain the desired output and

formatting using multiple cmdlets. It also offers several advanced

cmdlets, which make it possible to complete complex

administrative tasks in a fraction of the usual time and effort.

It's simple yet powerful commands and functions make it

extremely convenient for system administrators to take care of

the most daunting system management tasks with the

customization that they intend to achieve.

	Start

