
19th Edition

deqqb YASHAVANT
KANETKAR

More Than
3 Million
Copies SOLD

AUTHENTIC
Guide To

C PROGRAMMING
Language

Let Us C
19th Edition

Yashavant Kanetkar

www.bpbonline.com

http://www.bpbonline.com

NINETEENTH REVISED & UPDATED EDITION 2023
FIRST EDITION 2007

Copyright © BPB Publications, India

© Let Us C is a registered trademark of BPB Publications, New Delhi under
registration No. 1135514

ISBN: 978-93-5551-276-5

All Rights Reserved. No part of this publication can be stored in a retrieval system
or reproduced in any form or by any means without the prior written permission
of the publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The Author and Publisher of this book have tried their best to ensure that the
programmes, procedures and functions described in the book are correct. However,
the author and the publishers make no warranty of any kind, expressed or implied,
with regard to these programmes or the documentation contained in the book. The
author and publisher shall not be liable in any event of any damages, incidental or
consequential, in connection with, or arising out of the furnishing, performance or
use of these programmes, procedures and functions. Product name mentioned are
used for identification purposes only and may be trademarks of their respective
companies.

All trademarks referred to in the book are acknowledged as properties of their
respective owners.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

http://www.bpbonline.com

Dedicated to baba,
who couldn’t be here to see this day...

iii

About Yashavant Kanetkar
Through his books and online Quest Video
Courses on C, C++, Data Structures, VC++, .NET,
etc. Yashavant Kanetkar has created, molded and
groomed lacs of IT careers in the last two and half
decades. Yashavant’s books and online courses
have made a significant contribution in creating
top-notch IT manpower in India and abroad.

Yashavant’s books are globally recognized and millions of students /
professionals have benefitted from them. His books have been
translated into Hindi, Gujarati, Japanese, Korean and Chinese
languages. Many of his books are published in India, USA, Japan,
Singapore, Korea and China.

Yashavant is a much sought-after speaker in the IT field and has
conducted seminars/workshops at TedEx, IITs, NITs, IIITs and global
software companies.

Yashavant has been honored with the prestigious “Distinguished
Alumnus Award” by IIT Kanpur for his entrepreneurial, professional and
academic excellence. This award was given to top 50 alumni of IIT
Kanpur who have made significant contribution towards their
profession and betterment of society in the last 50 years.

In recognition of his immense contribution to IT education in India, he
has been awarded the "Best .NET Technical Contributor" and "Most
Valuable Professional" awards by Microsoft for 5 successive years.

Yashavant holds a BE from VJTI Mumbai and M. Tech. from IIT Kanpur.
His current affiliations include being a Director of KICIT Pvt. Ltd. and an
Adjunct Faculty at IIIT, Bangalore. He can be reached at
kanetkar@kicit.com or through http://www.ykanetkar.com.

iv

mailto:kanetkar@kicit.com
http://www.ykanetkar.com

Acknowledgments
Let Us C has become an important part of my life. I have created and
nurtured it for last two decades. While doing so, I have received, in
addition to the compliments, a lot of suggestions from students,
developers, professors, publishers and authors. So much have their
inputs helped me in taking this book up to its 19th edition that ideally, I
should put their names too on the cover page.

In particular, I am indebted to Manish Jain who had a faith in this book
idea, believed in my writing ability, whispered the words of
encouragement and made helpful suggestions from time to time. I hope
every author gets a publisher who is as cooperative, knowledgeable and
supportive as Manish.

The previous editions of this book saw several changes and facelifts.
During this course many people helped in executing programs and
spotting bugs. I trust that with their collective acumen, all the programs
in this book would run correctly. I associate a lot of value to the work
that they did. Any errors, omissions or inconsistencies that remain are,
alas, my responsibility.

I thank all my family members for enduring the late nights, the clicking
keyboard, and mostly for putting up with a marathon book effort.

Thinking of a book cover idea is one thing, putting it into action is a
different cup of tea. This edition’s cover idea has been implemented by
Vinay Indoria. Many thanks to him!

And finally, my heartfelt gratitude to the countless students and
developers who made me look into every nook and cranny of C. I want
to remain in their debt. It is only because of them that Let Us C is now
published from India, Singapore, USA, Japan, Dubai, Korea and China in
multiple languages.

v

Preface to 19th Edition
Let Us C has been part of learning and teaching material in most
Engineering and Science Institutes round the country for years now.
From last year or so, I received several suggestions that its size be
pruned a bit, as many learners who learn C language in their Engineering
or Science curriculum have some familiarity with it. I am happy to fulfill
this request. I hope the readers would appreciate the lean look of the
current edition.

In one of the previous editions, I had realigned the chapters in such a
manner that if a C programming course is taught using Let Us C, it can be
finished in 22 lectures of one hour each, with one chapter's contents
devoted to one lecture. I am happy that many readers liked this idea and
reported that this has made their learning path trouble-free. A more
rational reorganization of end-of-chapter Exercises in the book has also
been well-received. Riding on that feedback I had introduced one more
feature in the fifteenth edition—KanNotes. These are hand-crafted
notes on C programming. From the reader’s emails I gather that they
have turned out to be very useful to help revise their concepts on the
day before the examination, viva-voce or interview.

Many readers also told me that they have immensely benefitted from
the inclusion of the chapter on Interview FAQs. I have improved this
chapter further. The rationale behind this chapter is simple—ultimately
all the readers of Let Us C sooner or later end up in an interview room
where they are required to take questions on C programming. I now
have a proof that this chapter has helped to make that journey smooth
and fruitful.

In this edition I have added a separate section titled 'Programs' in each
chapter. It contains interesting programs based on the topics covered in
the chapter. All the programs present in the book are available in source
code form at www.kicit.com/books/letusc/sourcecode. You are free to
download them, improve them, change them, do whatever with them.

A new chapter titled 'The Next Level' that I added in the last edition has
been further updated to include a few more intricate issues.

If you wish to get solutions for the Exercises in the book, they are
available in another book titled ‘Let Us C Solutions’. If you want some
more problems for practice, they are available in the book titled

vi

http://www.kicit.com/books/letusc/sourcecode

‘Exploring C’. As usual, new editions of these two books have also been
launched along with 19th edition of Let Us C.

Every new edition of Let Us C has gives me an opportunity to iron out
flaws—some typographical, some related to sequencing of topics to help
readers understand them better and some regarding the depth of the
content. In all three regards this edition has been no different.
Addressing all these issues by keeping the page count under control is a
difficult job. However, I have somehow got used to it now.

If you like ‘Let Us C’ and want to hear the complete video-recorded
lectures created by me on C language (and other subjects like C++, VC++,
C#, Java, .NET, Embedded Systems, etc.), then you can visit
www.ykanetkar.com for more details.

‘Let Us C’ is as much your book as it is mine. So if you feel that I could
have done certain job better than what I have, or you have any
suggestions about what you would like to see in the next edition, please
drop a line to sales@bpbonline.com

Countless Indians have relentlessly worked for close to three decades to
successfully establish “India” as a software brand. At times, I take secret
pleasure in seeing that Let Us C has contributed in its own small little
way in shaping so many careers that have made the “India” brand
acceptable.

Recently I was presented with “Distinguished Alumnus Award” by IIT
Kanpur. It was great to figure in a list that contained Narayan Murthy,
Chief Mentor, Infosys, Dr. D. Subbarao, former Governor, Reserve Bank
of India, Dr. Rajeev Motwani of Stanford University, Prof. H. C. Verma,
Mr. Som Mittal President of NASSCOM, Prof. Minwalla of Harvard
University, Dr. Sanjay Dhande former Director of IIT Kanpur, Prof. Arvind
and Prof. Sur of MIT USA and Prof. Ashok Jhunjhunwala of IIT Chennai.

I think Let Us C amongst my other books has been primarily responsible
for helping me get the “Distinguished Alumnus” award. What was a bit
surprising was that almost all who were present knew about the book
already and wanted to know from me what it takes to write a book that
sells in millions of copies? My reply was—make an honest effort to make
the reader understand what you have to say and keep it simple. I don’t
know how convincing was this answer, but well, that is what I have been
doing with this book in all its previous editions. I have followed the same
principle with this edition too.

vii

http://www.ykanetkar.com
mailto:sales@bpbonline.com

All the best and happy programming

Yashavant Kanetkar

viii

Contents

1. Getting Started 1
What is C? 3
Which C are we Learning? 4
Getting Started with C 4

Alphabets, Digits and Special Symbols 4
Constants, Variables and Keywords 5
Types of Constants 5
Rules for Constructing Integer Constants 5
Rules for Constructing Real Constants 6
Rules for Constructing Character Constants 7
Types of C Variables 7
Rules for Constructing Variable Names 7
C Keywords 8

The First C Program 8
Form of a C Program 9
Comments in a C Program 9
What is main()? 10
Variables and their Usage 11
printf() and its Purpose 12
Compilation and Execution 13

Receiving Input 13
Programs 15
Exercises 17
KanNotes 19

2. C Instructions 21
Types of Instructions 23
Type Declaration Instruction 23
Arithmetic Instruction 24
Integer and Float Conversions 26
Type Conversion in Assignments 27
Hierarchy of Operations 28
Associativity of Operators 30
Control Instructions 31
Programs 31
Exercises 34
KanNotes 37

ix

3. Decision Control Instruction 39
The if - else Statement 41
Multiple Statements within if - else 43
Nested if-elses 45
A Word of Caution 46
Programs 47
Exercises 49
KanNotes 53

4. More Complex Decision Making 55
Use of Logical Operators - Checking Ranges 57

The else if Clause 59
Use of Logical Operators - Yes / No Problem 59
The ! Operator 62
Hierarchy of Operators Revisited 63
The Conditional Operators 63
Programs 64
Exercises 67
KanNotes 73

5. Loop Control Instruction 75
Loops 77
The while Loop 77

Tips and Traps 79
More Operators 81

Programs 83
Exercises 85
KanNotes 87

6. More Complex Repetitions 89
The for Loop 91

Nesting of Loops 95
Mu ltiple Initializations in the for Loop 96

The break Statement 96
The continue Statement 98
The do-while Loop 99
The Odd Loop 100
Programs 101
Exercises 104
KanNotes 107

x

7. Case Control Instruction 109
Decisions using switch 111

The Tips and Traps 113
switch versus if-else Ladder 115
The goto Statement 116
Programs 118
Exercises 121
KanNotes 125

8. Functions 127
What is a Function? 129

Why use Functions? 132
Communication between Functions 133
Order of Passing Arguments 136
Using Library Functions 137
One Dicey Issue 138
Return Type of Function 139
Programs 140
Exercises 142
KanNotes 145

9. Pointers 147
Call by Value and Call by Reference 149
An Introduction to Pointers 149
Pointer Types and their Sizes 154
Back to Function Calls 155
Utility of Call by Reference 156
Conclusions 157
Uses of Pointers 157
Programs 158
Exercises 160
KanNotes 163

10. Recursion 165
Recursion 167
Programs 169
Exercises 172
KanNotes 174

11. Data Types Revisited 175
Integers—short, long, long long, signed, unsigned 177

xi

12.

Chars—signed, unsigned 178
Reals—float, double, long double 179
A Few More Issues... 180
Storage Classes in C 181

Automatic Storage Class 182
Register Storage Class 183
Static Storage Class 184
External Storage Class 185
Which to Use When 188
A Few Subtle Issues 188

Exercises 190
KanNotes 193

The C Preprocessor 195
Features of C Preprocessor 197
Macro Expansion 197

Macros with Arguments 198
Macros versus Functions 200

File Inclusion 201
Conditional Compilation 202
#if and #elif Directives 204
Miscellaneous Directives 204

#undef Directive 205
#pragma Directive 205

The Build Process 207
Programs 209
Exercises 211
KanNotes 213

13. Arrays 215
What are Arrays? 217

A Simple Program using Array 217
More on Arrays 218

Array Initialization 219
Array Elements in Memory 219
Bounds Checking 219
Passing Array Elements to a Function 220

Pointers and Arrays 221
Accessing Array Elements using Pointers 223
Passing an Array to a Function 225

Flexible Arrays 227
xii

Programs 228
Exercises 231
KanNotes 234

14. Multidimensional Arrays 237
Two-Dimensional Arrays 239

Initializing a 2-D Array 240
Memory Map of a 2-D Array 240
Pointers and 2-D Arrays 241
Pointer to an Array 243
Passing 2-D Array to a Function 244

Array of Pointers 245
3-D Array 247
Programs 248
Exercises 250
KanNotes 253

15. Strings 255
What are Strings 257
More about Strings 257
Pointers and Strings 261
Standard Library String Functions 261

strlen() 262
strcpy() 264
strcat() 266
strcmp() 266

Programs 267
Exercises 270
KanNotes 273

16. Handling Multiple Strings 275
2-D Array of Characters 277
Array of Pointers to Strings 278
Limitation of Array of Pointers to Strings 281
Programs 282
Exercises 285
KanNotes 286

17. Structures 287
Why use Structures? 289
Array of Structures 291

xiii

Intricacies of Structures 292
Structure Declaration 292
Storage of Structure Elements 293
Copying of Structure Elements 294
Nested Structures 295
Passing Structure Elements / Structure Variables 296
Packing Structure Elements 298

Uses of Structures 299
Programs 300
Exercises 303
KanNotes 305

18. Console Input/Output 307
Types of I/O 309
Console I/O Functions 309

Formatted Console I/O Functions 310
sprintf() and sscanf() Functions 317
Unformatted Console I/O Functions 318

Exercises 320
KanNotes 324

19. File Input/Output 325
File Operations 327

Opening a File 328
Reading from a File 329
Closing the File 329

Counting Characters, Tabs, Spaces, ... 330
A File-Copy Program 331
File Opening Modes 333
String (Line) I/O in Files 334
Text Files and Binary Files 335
Record I/O in Files 336

Modifying Records 338
Low-Level File I/O 340

A Low-level File-copy Program 340
Programs 343
Exercises 346
KanNotes 348

20. More Issues In Input/Output 351
Using argc and argv 353

xiv

Detecting Errors in Reading/Writing 356
Standard File Pointers 357
I/O Redirection 357

Redirecting the Output 358
Redirecting the Input 360
Both Ways at Once 360

Exercises 361
KanNotes 362

21. Operations On Bits 363
Bit Numbering and Conversion 365
Bit Operations 366
One’s Complement Operator 367
Right Shift and Left Shift Operators 368

A Word of Caution 370
Utility of << Operator 371

Bitwise AND, OR and XOR Operators 371
Utility of & Operator 372
Utility of | Operator 375
Utility of A Operator 375

The showbits() Function 375
Bitwise Compound Assignment Operators 376
Programs 377
Exercises 379
KanNotes 381

22. Miscellaneous Features 383
Enumerated Data Type 385

Uses of Enumerated Data Type 386
Are Enums Necessary? 387

Renaming Data Types with typedef 388
Typecasting 389
Bit Fields 390
Pointers to Functions 391
Functions Returning Pointers 392
Functions with Variable Number of Arguments 393
Unions 395

Utility of Unions 397
The volatile Qualifier 398
Programs 398
Exercises 401

xv

KanNotes 403

23. Interview FAQs 405

24. The Next Level 425
New Data Types 427
What is size_t? 428
Problem with gets() 428
Wide Characters 429
Storage Classes Revisited 430

Translation Unit 431
Scope 431
Linkage 431
Storage Classes of Variables 432
Variable defined as a Function Parameter 433
Variable defined inside a Function 433
Variable defined outside all Functions 433
Storage Class Specifier for a Function 434
A Final Word 434

Passing 2-D Array to a Function 435
Callback Mechanism 436
Some Interesting Limits 438
Using C++ Functions from a C Program 439
Using C++ Classes from a C Program 442
Coding Style 444

Appendix A - Compilation And Execution 447
Appendix B - Precedence Table 453
Appendix C - Chasing The Bugs 457
Appendix D - ASCII Chart 465
Periodic Tests I to IV, Course Tests I, II 469
Index 487

xvi

1 Getting Started

Well begun is half done...

You cannot be great at the start, but you have to start to be
great. So, making a beginning is important. This chapter will
help you wet your feet, before beginning a more arduous C
journey.

1

2 Let Us C

• What is C?
• Which C are we Learning?
• Getting Started with C

Alphabets, Digits and Special Symbols
Constants, Variables and Keywords
Types of C Constants
Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constants
Types of C Variables
Rules for Constructing Variable Names
C Keywords

• The First C Program
Form of a C Program
Comments in a C Program
What is main()?
Variables and their Usage
printf() and its Purpose
Compilation and Execution

• Receiving Input
• Programs
• Exercises
• KanNotes

Chapter 1: Getting Started 3

Before we can begin to write programs in C, it would be interesting to
find out what really is C, how it came into existence and how does it
compare with other programming languages. In this chapter, we would

briefly outline these issues.

Four important aspects of any language are—the way it stores data, the
way it operates upon this data, how it accomplishes input and output,
and how it lets you control the sequence of execution of instructions in
a program. We would discuss the first three of these building blocks in
this chapter.

What is C?
C is a programming language developed at AT & T’s Bell Laboratories of
USA in 1972 by Dennis Ritchie. C became popular because it is simple
and easy to use. An opinion that is often heard today is—“C has been
already superseded by languages like C++, C# and Java, so why bother to
learn C today”. I seriously beg to differ with this opinion. There are
several reasons for this. These are as follows:

(a) C++, C# or Java make use of a principle called Object Oriented
Programming (OOP) to organize programs which offers many
advantages. While using OOP, you need basic programming skills.
So, it makes more sense to first learn C and then migrate to C++, C#
or Java. Though this two-step learning process may take more time,
but at the end of it, you will definitely find it worth the trouble.

(b) Major parts of popular operating systems like Windows, UNIX, Linux
and Android are written in C. Moreover, if one is to extend the
operating system to work with new devices, one needs to write
device driver programs. These programs are written exclusively in C.

(c) Common consumer devices like microwave ovens, washing
machines and digital cameras are getting smarter by the day. This
smartness comes from a microprocessor, an operating system and a
program embedded in these devices. These programs have to run
fast and work in limited amount of memory. C is the language of
choice while building such operating systems and programs.

(d) You must have seen several computer games where the user
navigates some object, like say a spaceship and fires bullets at
invaders. The essence of all such games is speed. To match this
expectation of speed, the game has to react fast to the user inputs.
The popular gaming frameworks (like DirectX) that are used for
creating such games are written in C.

4 Let Us C

I hope that these are very convincing reasons why you should adopt C as
the first step in your quest for learning programming.

Which C are we Learning?
The official description of the C programming language was published by
Brian Kernighan and Dennis Ritchie in 1978. It is commonly referred as
K&R.

In 1983, the American National Standards Institute formed a committee,
X3J11, to establish a standard specification of C. The ANSI standard was
completed in 1989 and ratified as ANSI X3.159-1989 "Programming
Language C." This version of the language is often referred to as "ANSI
C". It is sometimes also known as C89.

In 1995, the ISO published an extension to ANSI C which is often
referred as ISO C. In March 2000, ANSI adopted ISO C. This standard is
commonly referred to as C99. All programs in this book are based on
C99 standard.

Getting Started with C
There is a close analogy between learning English language and learning
C language. This is illustrated in the Figure 1.1.

Steps in learning English language:

Steps in learning C language:

Figure 1.1 Steps in learning a language.

As with English, C language too has a set of rules that one must follow
while writing programs in it.

Alphabets, Digits and Special Symbols
Figure 1.2 shows the valid alphabets, numbers and special symbols
allowed in C.

Chapter 1: Getting Started 5

Alphabets A, B......Y, Z
a, b, , y, z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special symbols ~ ‘ ! @ # % * & * () _ - + = | \ { } [] : ; " ' < > , . ? / $

Figure 1.2 Alphabets, digits, special symbols used in C.

Constants, Variables and Keywords
The alphabets, digits and special symbols when properly combined form
constants, variables and keywords. A constant is an entity that doesn’t
change, whereas, a variable is an entity that may change. A keyword is a
word that carries special meaning. In programming languages, constants
are often called literals, whereas variables are called identifiers. Let us
now see what different types of constants and variables exist in C.

Types of C Constants
Constants in C can be divided into two major categories:
(a) Primary Constants - Integer, Real, Character
(b) Secondary Constants - Pointer, Array, String, Structure, Union,

Enum
At this stage, we would restrict our discussion to only Primary constants,
namely, Integer, Real and Character constants. Following Rules have
been laid down for constructing these different types of constants:

Rules for Constructing Integer Constants
(a) An integer constant must contain at least one digit.
(b) It must not contain a decimal point.
(c) Its value can be zero, positive or negative. If no sign precedes an

integer constant, it is assumed to be positive.
(d) Commas or blanks are not allowed within an integer constant.
(e) The allowable range for integer constants is -2147483648 to

+2147483647.

Ex.: 426 +782 -8000 -7605

6 Let Us C

Truly speaking, the range of an Integer constant depends upon the
compiler. For compilers like Visual Studio, GCC, it is -2147483648 to
+2147483647, whereas for compilers like Turbo C or Turbo C++, the
range is -32768 to +32767.

Rules for Constructing Real Constants
Real constants are often called Floating Point constants. Real constants
could be written in two forms—Fractional form and Exponential form.
Following rules must be observed while constructing real constants
expressed in fractional form:

(a) A real constant must contain at least one digit.
(b) It must contain a decimal point.
(c) It can be zero, positive or negative. Default sign is positive.
(d) Commas or blanks are not allowed within a real constant.

Ex.: +325.34 426.0 -32.76 -48.5792

The exponential form is usually used if the value of the constant is either
too small or too large. It, however, doesn’t restrict us from using
exponential form for other real constants.

In exponential form, the real constant is represented in two parts. The
part appearing before ‘e’ is called mantissa, whereas the part following
‘e’ is called exponent. Thus 0.000342 can be written in exponential form
as 3.42e-4 (which in normal arithmetic means 3.42 x 10-4).

Following rules must be observed while constructing real constants
expressed in exponential form:

(a) The mantissa part and the exponential part should be separated by
a letter e or E.

(b) The mantissa part may have a positive or negative sign. Default sign
is positive.

(c) The exponent must have at least one digit, which may be a positive
or negative integer. Default sign is positive.

(d) Range of real constants expressed in exponential form is
-3.4e38 to +3.4e38.

Ex.: +3.2e-5 4.1e8 -0.2E+3 -3.2e-5

Chapter 1: Getting Started 7

Rules for Constructing Character Constants
(a) A character constant is a single alphabet, digit or special symbol

enclosed within single inverted commas.
(b) Both the single inverted commas should point to the left. For

example, ’A’ is a valid character constant, whereas ‘A’ is not.

Ex.: 'A' 'I' '5' '='

Types of C Variables
A particular type of variable can store only the same type of constant.
For example, an integer variable can store only an integer constant, a
real variable can store only a real constant and a character variable can
store only a character constant. Hence there are as many types of
variables in C, as the types of constants in it.

In any C program many calculations are done. The results of these
calculations are stored in some cells (locations) of computer’s memory.
To make the retrieval and usage of these values easy, the memory cells
are given names. Since the value stored in each location may change,
the names given to these locations are called variable names.

The rules for constructing different types of constants are different.
However, for constructing variable names of all types, the same set of
rules applies. These rules are given below.

Rules for Constructing Variable Names
(a) A variable name is any combination of 1 to 31 alphabets, digits or

underscores. Some compilers allow variable names whose length
could be up to 247 characters. However, you should not create
unnecessarily long variable names as it adds to your typing effort.

(b) The first character in the variable name must be an alphabet or
underscore (_).

Ex.: si_int pop_e_89 avg basic_salary

We should always create meaningful variable names. For example, while
calculating simple interest, we should construct variable names like prin,
roi, noy to represent Principle, Rate of interest and Number of years,
rather than arbitrary variables like a, b, c.

8 Let Us C

Rules for creating variable names remain same for all the types of
primary and secondary variables. So, to help differentiate between
variables, it is compulsory to declare the type of any variable that we
wish to use in a program. This type declaration is done as shown below.

Ex.: int si, m_hra ;
float bassal ;
char code ;

C Keywords
Keywords are the words whose meaning has already been explained to
the C compiler (or in a broad sense to the computer). There are only 32
keywords available in C. Figure 1.3 gives a list of these keywords.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Figure 1.3 C keywords.

The keywords should not be used as variable names. However, some C
compilers allow you to construct variable names that exactly resemble
the keywords.

Compiler vendors provide additional keywords apart from the ones
given in Figure 1.3. Though it has been suggested by the ANSI committee
that every such compiler-specific keyword should be preceded by two
underscores (as in __asm), not every vendor follows this rule.

The First C Program
Once armed with the knowledge of variables, constants and keywords,
the next logical step is to combine them to form instructions. However,
instead of this, we would write our first C program now. Once we have
done that, we would see in detail the instructions that it made use of.

Chapter 1: Getting Started 9

The first program is very simple. It calculates simple interest for a set of
values representing principal, number of years and rate of interest.

/* Calculation of simple interest */
/* Author: gekay Date: 25/09/2022 */
include <stdio.h>
int main()
{

int p, n ;
float r, si ;
p = 1000 ;
n = 3 ;
r = 8.5 ;
/* formula for simple interest */
si = p * n * r / 100 ;
printf ("%f\n" , si) ;
return 0 ;

}

Let us now understand this program in detail.

Form of a C Program
Form of a C program indicates how it has to be written. Though C is free­
form language, there are certain rules about the form of a C program
that are applicable to all C programs. These are as under:

(a) Each instruction in a C program is written as a separate statement.
(b) The statements in a program must appear in the same order in

which we wish them to be executed.
(c) Blank spaces may be inserted between two words to improve the

readability of the statement.
(d) All statements should be in lower case letters.
(e) Every C statement must end with a semicolon (;). Thus ; acts as a

statement terminator.
(f) Usually, each line contains one statement. However, you can write

multiple statements in one line, provided each statement is
terminated with a ;.

Comments in a C Program
Comments are used in a C program to clarify either the purpose of the
program or the purpose of some statement in the program. It is a good

10 Let Us C

practice to begin a program with a comment indicating the purpose of
the program, its author and the date on which the program is written.

Here are a few tips for writing comments in a C program:

(a) Comments can be in small case, capital or a combination. They
should be enclosed within /* */. Thus, the first two statements in
our program are comments.

(b) Sometimes it is not very obvious as to what a particular statement
in a program accomplishes. At such times, a comment can be used
to mention the purpose of the statement(s). For example,

/* formula for simple interest */
si = p * n * r / 100 ;

(c) Any number of comments can be written at any place in the
program. So, a comment can be written before the statement, after
the statement or within the statement as shown below.

/* formula */ si = p * n * r / 100 ;
si = p * n * r / 100 ; /* formula */
si = p * n * r / /* formula */ 100 ;

(d) Comments cannot be nested. This means one comment cannot be
written inside another comment. So, following comment is invalid.

/* Cal of SI /* Author: gekay date: 25/03/2021 */ */

(e) A comment can be split over more than one line, as in,

/* This comment has
three lines
in it */

(f) ANSI C permits comments to be written in another way as follows:

// Calculation of simple interest
// Formula

What is main()?
main() forms a crucial part of any C program. Let us understand its
purpose as well as its intricacies.

Chapter 1: Getting Started 11

(a) main() is a function. It is a container for a set of statements. A C
program may have multiple functions. If it contains only one
function its name has to be main(). All statements that belong to
main() are enclosed within a pair of braces { }.

(b) Like functions in a calculator, functions in C also return a value.
main() function always returns an integer value, hence there is an
int before main(). It is known as return type of the function. The
integer value that we are returning is 0. 0 indicates success. If
statements in main() fail to do their intended work, we can return
a non-zero number from main(). This would indicate failure.

(c) The way to watch the value returned by main() varies from one
compiler to another, as shown below.

Turbo C, Turbo C++ - Alt C | Information
Visual Studio - $ReturnValue in Watch Window of Debugger
Linux - echo $? at command prompt after execution of the program

(d) Some compilers like Turbo C/C++ even permit us to return nothing
from main(). In such a case we should precede it with the keyword
void. But this is the non-standard way of writing the main()
function. We would discuss functions and their working in detail in
Chapter 8.

Variables and their Usage
Let us understand the significance of constants and variables with
reference to our program.

(a) Any variable used in the program must be declared before it is
used. For example,

int p, n ; /* declaration */
float r, si ; /* declaration */
si = p * n * r / 100 ; /* usage */

(b) In the statement,

si = p * n * r / 100 ;

* and / are the arithmetic operators. The arithmetic operators
available in C are +, -, *, / and %.

12 Let Us C

printf() and its Purpose
C does not contain any keyword to display output on the screen. All
output to screen is achieved using readymade library functions like
printf(). Let us understand this function with respect to our program.

(a) Once the value of si is calculated it needs to be displayed on the
screen. We have used printf() to do so.

(b) To be able to use the printf() function, it is necessary to use
#include <stdio.h> at the beginning of the program. #include is a
preprocessor directive. Its purpose will be clarified in Chapter 12.

(c) The general form of printf() function is,

printf ("<format string>", <list of variables>) ;

<format string> can contain,

%f for printing real values
%d for printing integer values
%c for printing character values

In addition to format specifiers like %f, %d and %c, the format
string may also contain any other characters. These characters are
printed as they are when printf() is executed.

(d) Given below are some more examples of usage of printf() function:

printf ("%f", si) ;
printf ("%d %d %f %f", p, n, r, si) ;
printf ("Simple interest = Rs. %f", si) ;
printf ("Principal = %d\nRate = %f", p, r) ;

The output of the last statement would look like this...

Principal = 1000
Rate = 8.500000

The output is split over two lines because of newline character ‘\n’.
It sends the cursor to next line. It is one of the several Escape
Sequences available in C. These are discussed in detail in Chapter
18.

(e) printf() can print values of variables as well as result of an
expressions like 3, 3 + 2, c and a + b * c - d as shown below.

Chapter 1: Getting Started 13

printf ("%d %d %d %d", 3, 3 + 2, c, a + b * c - d) ;

Note that 3 and c also represent valid expressions.

Compilation and Execution
Once you have written the program, you need to type it and instruct the
machine to execute it. Two other programs are needed to do this—
Editor and Compiler. Editor lets us type our program, whereas Compiler
converts our program into machine language program. This conversion
is necessary, since machine understands only machine language.

Apart from these two, there are other programs which you may need to
improve your programming efficiency—Preprocessor, Linker and
Debugger. Working with each one of them individually is a tedious job.
Hence, often all these are bundled together with a layer of GUI on top of
them. GUI makes using these programs easier for you. This bundle is
often called Integrated Development Environment (IDE).

There are many IDEs available. Each IDE is targeted towards a particular
operating system + microprocessor combination. This combination is
known as a platform. A compiler created for one platform does not work
with other platforms. Details of which IDE to use, from where to
download it, how to install and use it are given in Appendix A. Instead of
installing an IDE, there are online options available for compiling and
executing programs. These are also discussed in Appendix A.

Receiving Input
In our first C program we assumed the values of p, n and r to be 1000, 3
and 8.5. Every time we run the program; we would get the same value
for simple interest. If we want to calculate simple interest for some
other set of values then we are required to incorporate these values in
the program, and again compile and execute it. This means that our
program is not general enough to calculate simple interest for any set of
values without being required to make changes in the program. This is
not a good practice.

To make the program general, the program itself should ask the user to
supply the values of p, n and r through the keyboard during execution.
This can be achieved using a function called scanf(). It helps us receive
input values them from the keyboard. This is illustrated in the program
given below.

14 Let Us C

/* Calculation of simple interest */
/* Author gekay Date 25/09/2022 */
include <stdio.h>
int main()
{

int p, n ;
float r, si ;
printf ("Enter values of p, n, r") ;
scanf ("%d %d %f", &p, &n, &r) ;
si = p * n * r / 100 ;
printf ("%f\n" , si) ;
return 0 ;

}

The first printf() outputs the message ‘Enter values of p, n, r’ on the
screen. Here we have not used any expression in printf() which means
that using expressions in printf() is optional.

Note the use of ampersand (&) before the variables in the scanf()
function is necessary. & is the ‘Address of’ operator. It gives the location
number (address) used by the variable in memory. When we say &a, we
are telling scanf() at which memory location should it store the value
supplied by the user from the keyboard. The detailed working of the &
operator would be taken up in Chapter 9.

Note that a blank, a tab or a new line must separate the values supplied
to scanf(). A blank is created using a spacebar, tab using the Tab key
and new line using the Enter key. This is shown below.

Ex.: Three values separated by blank:

1000 5 15.5

Ex.: Three values separated by tab:

1000 5 15.5

Ex.: Three values separated by newline:

1000
5

15.5

Chapter 1: Getting Started 15

Problem 1.1

Ramesh’s basic salary is input through the keyboard. His dearness
allowance is 40% of basic salary, and house rent allowance is 20% of
basic salary. Write a program to calculate his gross salary.

Program

/* Calculate Ramesh’s gross salary */
include <stdio.h>
int main()
{

float bp, da, hra, grpay ;
printf ("\nEnter Basic Salary of Ramesh: ") ;
scanf ("%f", &bp) ;
da = 0.4 * bp ;
hra = 0.2 * bp ;
grpay = bp + da + hra ;
printf ("Basic Salary of Ramesh = %f\n", bp) ;
printf ("Dearness Allowance = %f\n", da) ;
printf ("House Rent Allowance = %f\n", hra) ;
printf ("Gross Pay of Ramesh is %f\n", grpay) ;
return 0 ;

}

Output

Enter Basic Salary of Ramesh: 1200
Basic Salary of Ramesh = 1200.000000
Dearness Allowance = 480.000000
House Rent Allowance = 240.000000
Gross Pay of Ramesh is 1920.000000

Problem 1.2
The distance between two cities (in kilometers) is input through the
keyboard. Write a program to convert and print this distance in meters,
feet, inches and centimeters.

16 Let Us C

Program

/* Conversion of distance */
include <stdio.h>
int main()
{

float km, m , cm, ft, inch ;
printf ("\nEnter the distance in Kilometers: ") ;
scanf ("%f", &km) ;
m = km * 1000;
cm = m * 100 ;
inch = cm / 2.54 ;
ft = inch / 12 ;
printf ("Distance in meters = %f\n", m) ;
printf ("Distance in centimeter = %f\n", cm) ;
printf ("Distance in feet = %f\n", ft) ;
printf ("Distance in inches = %f\n", inch) ;
return 0 ;

}

Output

Enter the distance in Kilometers: 3
Distance in meters = 3000.000000
Distance in centimeter = 300000.000
Distance in feet = 9842.519531
Distance in inches = 118110.234375

Problem 1.3
If the marks obtained by a student in five different subjects are input
through the keyboard, write a program to find out the aggregate marks
and percentage marks obtained by the student. Assume that the
maximum marks that can be obtained by a student in each subject is
100.

Program

/* Calculation of aggregate & percentage marks */
include <stdio.h>
int main()

Chapter 1: Getting Started 17

{
int ml, m2, m3, m4, m5, aggr ;
float per ;
printf ("\nEnter marks in 5 subjects: ") ;
scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
aggr = m1 + m2 + m3 + m4 + m5 ;
per = aggr / 5 ;
printf ("Aggregate Marks = %d\n", aggr) ;
printf ("Percentage Marks = %f\n", per) ;
return 0 ;

}

Output

Enter marks in 5 subjects: 85 75 60 72 56
Aggregate Marks = 348
Percentage Marks = 69.000000

[A] Which of the following are invalid C constants and why?

’3.15’ 35,550 3.25e2
2e-3 ‘eLearning’ "show"
‘Quest’ 23 4 6 5 2

[B] Which of the following are invalid variable names and why?

B’day int $hello
#HASH dot. number
totalArea _main() temp_in_Deg
total% 1st stack-queue
variable name %name% salary

[C] State whether the following statements are True or False:

(a) C language was developed by Dennis Ritchie.
(b) Operating systems like Windows, UNIX, Linux and Android are

written in C.
(c) C language programs can easily interact with hardware of a PC /

Laptop.

18 Let Us C

(d) A real constant in C can be expressed in both Fractional and
Exponential forms.

(e) A character variable can at a time store only one character.
(f) The maximum value that an integer constant can have varies from

one compiler to another.
(g) Usually, all C statements are written in small case letters.
(h) Spaces may be inserted between two words in a C statement.
(i) Spaces cannot be present within a variable name.
(j) C programs are converted into machine language with the help of a

program called Editor.
(k) Most development environments provide an Editor to type a C

program and a Compiler to convert it into machine language.
(l) int, char, float, real, integer, character, char, main, printf and scanf

are keywords.

[D] Match the following pairs:

(a) \n (1) Literal
(b) 3.145 (2) Statement terminator
(c) -6513 (3) Character constant
(d) ’D’ (4) Escape sequence
(e) 4.25e-3 (5) Input function
(f) main() (6) Function
(g) %f, %d, %c (7) Integer constant
(h) ; (8) Address of operator
(i) Constant (9) Output function
(j) Variable (10) Format specifier
(k) & (11) Exponential form
(l) printf() (12) Real constant
(m) scanf() (13) Identifier

[E] Point out the errors, if any, in the following programs:

(a) int main()
{

int a ; float b ; int c ;
a = 25 ; b = 3.24 ; c = a + b * b - 35 ;

}
(b) #include <stdio.h>

int main()

Chapter 1: Getting Started 19

{
int a = 35 ; float b = 3.24 ;
printf ("%d %f %d", a, b + 1.5, 235) ;

}
(c) #include <stdio.h>

int main()
{

int a, b, c ;
scanf ("%d %d %d", a, b, c) ;

}
(d) #include <stdio.h>

int main()
{

int m1, m2, m3
printf ("Enter values of marks in 3 subjects")
scanf ("%d %d %d", &m1, &m2, &m3)
printf ("You entered %d %d %d", m1, m2, m3)

}

[F] Attempt the following questions:
(a) Temperature of a city in Fahrenheit degrees is input through the

keyboard. Write a program to convert this temperature into
Centigrade degrees.

(b) The length and breadth of a rectangle and radius of a circle are
input through the keyboard. Write a program to calculate the area
and perimeter of the rectangle, and the area and circumference of
the circle.

(c) Paper of size A0 has dimensions 1189 mm x 841 mm. Each
subsequent size A(n) is defined as A(n-1) cut in half, parallel to its
shorter sides. Thus, paper of size A1 would have dimensions 841
mm x 594 mm. Write a program to calculate and print paper sizes
A0, A1, A2, ... A8.

• 3 top reasons for learning C :

- Good base for learning C++, C# or Java later
- Unix, Linux, Windows, Gaming frameworks are written in C

20 Let Us C

- Embedded systems programs are written in C

• Constants = Literals -> Cannot change

Variables = Identifiers -> May change

• Types of variables and constants : 1) Primary 2) Secondary

• 3 types in Primary : 1) Integer 2) Real (float) 3) Character

• Ranges :
1) 2-byte integers : -32768 to +32767
2) 4-byte integers : -2147483648 to +2147483647
3) floats : -3.4 x 1038 to +3.4 x 1038

• In a. char constant, both quotes must slant to the left, like ’A’

Variable has two meanings :

1) It is an entity whose value can change
2) It is a name given to a location in memory

Variable names are case-sensitive and must begin with an alphabet

• Total keywords = 32. Example char, int, float, etc.

• printfQ is a function that can print multiple constants and variables

• Format specifiers in printfQ, scanf() : int - %i, float - %f, char - %c

• main() is a function that must always return an integer value :

0 - if it meets success, 1 - if it encounters failure

• void mainQ is wrong. Correct form is int mainQ

• Use /*.....*/ or // for a comment in a program

• & is ‘address of’ operator and must be used before a variable in
scanf()

2 C Instructions

"On your mark, get set, go..."

Captain of a Cricket team is as good as his team. If the team is
not good enough, captain alone cannot do much. Same is the
case with C programming. Unless you know the instructions that
it offers, you can hardly write a good program. This chapter
discusses these instructions.

21

22 Let Us C

• Types of Instructions
• Type Declaration Instruction
• Arithmetic Instruction
• Integer and Float Conversions
• Type Conversion in Assignment
• Hierarchy of Operations
• Associativity of Operators
• Control Instructions
• Programs
• Exercises
• KanNotes

Chapter 2: C Instructions 23

Aprogram is nothing but a set of instructions. Different instructions
help us achieve different tasks in a program. In the last chapter we
saw how to write simple C programs by using different instructions. In

this chapter we would explore the instructions that we used in these
programs.

Types of Instructions
There are three types of instructions in C:

(a) Type Declaration Instruction - This instruction is used to declare the
types of variables used in a C program.

(b) Arithmetic Instruction - This instruction is used to perform
arithmetic operations on constants and variables.

(c) Control Instruction - This instruction is used to control the
sequence of execution of various statements in a C program.

Let us now take a closer look at these instructions.

Type Declaration Instruction
This instruction is used to declare the types of variables being used in
the program. The type declaration instruction is written at the beginning
of main() function. A few examples are shown below.

int bas ;
float rs, grosssal ;
char name, code ;

Here are a few subtle variations of the type declaration instruction...

(a) While declaring the type of a variable, we can also initialize it as
shown below.

int i = 10, j = 25 ;
float a = 1.5, b = 1.99 + 2.4 * 1.44 ;

(b) A variable must stand defined before using it. The following
statement is illegal since we are using variable a before defining it.

float b = a + 3.1, a = 1.5 ;

(c) The following statements would work:

24 Let Us C

int a, b, c, d ;
a = b = c = 10 ; /* each variable would be assigned a value 10 */

However, the following statement would not work:

int a = b = c = d = 10 ;

The error is we are trying to use b (to assign to a) before defining it.

Arithmetic Instruction
An arithmetic instruction in C consists of a variable name on the left
hand side of = and variable names and constants connected using
operators on the right hand side of =.

Ex.: int ad ;
float kot, deta, alpha, beta, gamma ;
ad = 3200 ;
kot = 0.0056 ;
deta = alpha * beta / gamma + 3.2 * 2 / 5 ;

Here,
*, /, -, + are the arithmetic operators.
= is an assignment operator.
2 , 5 and 3200 are integer constants.
3 .2 and 0.0056 are real constants.
ad is an integer variable.
kot, deta, alpha, beta, gamma are real variables.

The variables and constants together are called ‘operands’. While
executing an arithmetic statement, the operands on right hand side are
operated upon by the ‘arithmetic operators’ and the result is assigned,
using an assignment operator, to the variable on left-hand side.

An arithmetic statement in C could be of three types. These are as
follows:

(a) Integer mode arithmetic statement - In this statement, all operands
are either integer variables or integer constants.

Ex.: int i, king, issac, noteit ;
i = i + 1 ;

Chapter 2: C Instructions 25

king = issac * 234 + noteit - 7689 ;

(b) Real mode arithmetic statement - In this statement, all operands
are either real constants or real variables.

Ex.: float qbee, antink, si, prin, anoy, roi ;
qbee = antink + 23.123 / 4.5 * 0.3442 ;
si = prin * anoy * roi / 100.0 ;

(c) Mixed mode arithmetic statement - In this statement, some
operands are integers and some operands are real.

Ex.: float si, prin, anoy, roi, avg ;
int a, b, c, num ;
si = prin * anoy * roi / 100.0 ;
avg = (a + b + c + num) / 4 ;

Note the following points about Arithmetic instructions carefully:

(a) C allows only one variable on left-hand side of =. That is, z = k * l is
legal, whereas k * l = z is illegal.

(b) In addition to the division operator, C also provides a modular
division operator. This operator returns the remainder on dividing
one integer with another. Thus, the expression 10 / 2 yields 5,
whereas, 10 % 2 yields 0.

Note that the modulus operator (%) cannot be used with floats.
Also note that on using %, sign of the remainder is always same as
the sign of the numerator. Thus -5 % 2 yields -1, whereas, 5 % -2
yields 1.

(c) Arithmetic operations can be performed on ints, floats and chars.
Thus, the following statements are valid.

char x = 'a', y = 'b' ;
int z = x + y ;

ASCII codes are used to represent any character in memory. ASCII
codes of ‘a’ and ‘b’ are 01100001 and 01100010. Their decimal
equivalents are 97 and 98. The addition is performed on these
decimal values and not on characters themselves.

26 Let Us C

(d) No operator is assumed to be present. It must be written explicitly.
In the following example, the multiplication operator after b must
be explicitly written.

a = c.d.b(xy) usual arithmetic statement
a = c * d * b * (x * y) C statement

(e) There is no operator in C to perform exponentiation operation.
Exponentiation has to be carried out as shown below:

float a ;
a = pow (3.0, 2.0) ;
printf ("%f", a) ;

Here pow() function is a standard library function. It is being used
to raise 3.0 to the power of 2.0. The pow() function works only
with real numbers, hence we have used 3.0 and 2.0.

Note that for pow() to work, it is necessary to #include <math.h>.
#include is a preprocessor directive. We would learn more about
standard library functions in Chapter 8 and about preprocessor in
Chapter 12.

You can explore other mathematical functions like abs(), sqrt(),
sin(), cos(), tan(), etc., declared in math.h on your own.

Integer and Float Conversions
To effectively develop C programs, it is necessary to understand the
rules used for implicit conversion of floating point and integer values.
These are mentioned below. Note them carefully.

(a) An arithmetic operation between an integer and integer always
yields an integer result.

(b) An operation between a real and real always yields a real result.
(c) An operation between an integer and real always yields a real

result. In this operation, the integer is first promoted to a real and
then the operation is performed. Hence the result is real.

I think a few practical examples shown in Figure 2.1 would put the issue
beyond doubt.

Chapter 2: C Instructions 27

Figure 2.1 Integer and float conversion.

Operation Result Operation Result

5 / 2 2 2 / 5 0
5.0 / 2 2.5 2.0 / 5 0.4
5 / 2.0 2.5 2 / 5.0 0.4
5.0 / 2.0 2.5 2.0 / 5.0 0.4

Type Conversion in Assignments
If types of expressions on RHS and LHS of = are not same then the value
of the expression on RHS is promoted or demoted depending on the
type of the variable on left-hand side of =. For example, consider the
following assignment statements:

int i ;
float b ;
i = 3.5 ;
b = 30 ;

Here though 3.5 is a float, it cannot be stored in i since it is an int. Hence
3.5 (float) is demoted to 3 (int) and then stored in i. Opposite happens
in the next statement. Here, 30 is promoted to 30.0 and then stored in
b, since b being a float variable cannot hold anything except a float
value.

Instead of a simple expression used in the above examples, if a complex
expression is used, still the same rules apply. For example, consider the
following program fragment.

float a, b, c ; int s ;
s = a * b * c / 100 + 32 / 4 - 3 * 1.1 ;

Here, in the assignment statement, some operands are ints whereas
others are floats. As we know, during evaluation of the expression, the
ints would be promoted to floats and the result of the expression would
be a float. But when this float value is assigned to s, it is again demoted
to an int and then stored in s.

Observe the results of the arithmetic statements shown in Figure 2.2. It
has been assumed that k is an integer variable and a is a real variable.

28 Let Us C

Figure 2.2 Type conversion in assignments.

Arithmetic Instruction Result Arithmetic Instruction Result

k = 2 / 9 0 a = 2 / 9 0.0
k = 2.0 / 9 0 a = 2.0 / 9 0.222222
k = 2 / 9.0 0 a = 2 / 9.0 0.222222
k = 2.0 / 9.0 0 a = 2.0 / 9.0 0.222222
k = 9 / 2 4 a = 9 / 2 4.0
k = 9.0 / 2 4 a = 9.0 / 2 4.5
k = 9 / 2.0 4 a = 9 / 2.0 4.5
k = 9.0 / 2.0 4 a = 9.0 / 2.0 4.5

Note that though the following statements give the same result, 0, the
results are obtained differently.

k = 2 / 9 ;
k = 2.0 / 9 ;

In the first statement, since both 2 and 9 are integers, the result is an
integer, i.e. 0. This 0 is then assigned to k. In the second statement 9 is
promoted to 9.0 and then the division is performed. Division yields
0.222222. However, this cannot be stored in k, k being an int. Hence it is
demoted to 0 and then stored in k.

Hierarchy of Operations
While evaluating an arithmetic statement, some issues may crop up. For
example, does the expression 2 * x - 3 * y correspond to (2x)-(3y) or to
2(x-3y)? Similarly, does A / B * C correspond to A / (B * C) or to (A / B) *
C? To answer these questions satisfactorily, one has to understand the
‘hierarchy’ of operations. The priority or precedence in which the
operations are performed is called the hierarchy of operations. The
hierarchy of commonly used operators is shown in Figure 2.3.

Priority Operators Description

1st
2nd

3rd

* / %
+ -

Multiplication, Division, Modular division
Addition, Subtraction
Assignment

Figure 2.3 Hierarchy of operators.

Chapter 2: C Instructions 29

Within parentheses the same hierarchy as mentioned in Figure 2.3 is
operative. Also, if there are more than one set of parentheses, the
operations within the innermost parentheses would be performed first,
followed by the operations within the second innermost pair and so on.

A few examples would clarify the issue further.

Example 2.1 : Determine the hierarchy of operations and evaluate the
following expression, assuming that i is an integer variable:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Stepwise evaluation of this expression is shown below:

= 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8
= 6 / 4 + 4 / 4 + 8 - 2 + 5 / 8
= 1 + 4 / 4 + 8 - 2 + 5 / 8
= 1 + 1+ 8 - 2 + 5 / 8
= 1 + 1 + 8 - 2 + 0
= 2 + 8 - 2 + 0
= 10 - 2 + 0
= 8 + 0
= 8

operation: *
operation: /
operation: /
operation: /
operation: +
operation: +
operation : -
operation: +

Note that 6 / 4 gives 1 and not 1.5. This so happens because 6 and 4
both are integers and therefore 6 / 4 must evaluate to an integer.
Similarly, 5 / 8 evaluates to zero, since 5 and 8 are integers and hence 5
/ 8 must return an integer value.

Example 2.2 : Determine the hierarchy of operations and evaluate the
following expression, assuming that k is a float variable:

k = 3 / 2 * 4 + 3 / 8

Stepwise evaluation of this expression is shown below:

k = 3 / 2 * 4 + 3 / 8
k = 1 * 4 + 3 / 8 operation: /
k = 4 + 3 / 8 operation: *
k = 4 + 0 operation: /
k = 4 operation: +

Note that 3 / 8 gives zero, again for the same reason mentioned in the
previous example.

30 Let Us C

All the 45 operators in C are ranked according to their precedence. We
haven't encountered many of these operators, so we won't pursue the
subject of precedence any further here. A full-fledged list of all
operators and their precedence is given in Appendix B.

So far, we have seen how arithmetic statements written in C are
evaluated. But our knowledge would be incomplete unless we know
how to convert a general algebraic expression to a C statement. Some
examples of algebraic expressions and their equivalent C expressions are
shown in Figure 2.4.

Figure 2.4 Algebraic expressions and their C equivalent.

Algebraic Expression C Expression

axb-cxd
(m + n) (a + b)
3x2 + 2x + 5
a + b + c

d + e
2BY x
d + 1 3(z + y)

a * b - c * d
(m + n) * (a + b)
3*x*x+2*x+5
(a + b + c)/(d + e)

2 * b * y/(d +1)-x/(3 *(z+y))

Associativity of Operators
When an expression contains two operators of equal priority, the tie
between them is settled using associativity of operators. All operators in
C either have Left to Right associativity or Right to Left associativity. Let
us understand this with the help of a few examples.

Consider the expression a = 3 / 2 * 5 ;

Here there is a tie between operators of same priority, that is between /
and *. This tie is settled using the associativity of / and *. Both enjoy Left
to Right associativity. Therefore firstly / operation is done followed by *.

Consider one more expression.

a = b = 3;

Here, both assignment operators have the same priority. So, order of
operations is decided using associativity of = operator. = associates from
Right to Left. Therefore, second = is performed earlier than first =.

Chapter 2: C Instructions 31

Consider yet another expression.

z = a * b + c / d ;

Here * and / enjoy same priority and same associativity (Left to Right). In
such cases Compiler is free to perform * or / operation as per its
convenience, since no matter which is performed earlier, the result
would be the same.

Appendix B gives associativity of all the operators available in C. Note
that the precedence and associativity of all operators is predetermined
and we cannot change it.

Control Instructions
Control Instructions control the order in which the instructions in a
program get executed. In other words, the control instructions
determine the ‘flow of control’ in a program. There are four types of
control instructions in C. They are:
(a) Sequence Control Instruction
(b) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take a
decision as to which instruction is to be executed next. The Loop control
instruction helps execute a group of statements repeatedly. In the
following chapters, we are going to discuss these instructions in detail.

Problem 2.1
If lengths of three sides of a triangle are input through the keyboard,
write a program to find the area of the triangle.

Program

/* Find area of a triangle, given its sides */
include <stdio.h>
include <math.h> /* for sqrt() */

32 Let Us C

int main()

float a, b, c, sp, area ;
printf ("\nEnter sides of a triangle: ") ;
scanf ("%f %f %f", &a, &b, &c) ;
sp = (a + b + c) / 2 ;
area = sqrt (sp * (sp - a) * (sp - b) * (sp - c)) ;
printf ("Area of triangle = %f\n", area) ;
return 0 ;

Output

Enter sides of a triangle: 4 5 6
Area of triangle = 9.921567

Problem 2.2
If a five-digit number is input through the keyboard, write a program to
reverse the number.

Program

/* Reverse digits of a 5-digit number */
include <stdio.h>
int main()
{

int n, d5, d4, d3, d2, d1 ;
long int revnum ; /* offers a bigger range of integers */
printf ("\nEnter a five digit number (less than 32767): ") ;
scanf ("%d", &n) ;
d5 = n % 10 ; /* 5th digit */
n = n / 10 ; /* remaining digits */
d4 = n % 10 ; /* 4th digit */
n = n / 10 ; /* remaining digits */
d3 = n % 10 ; /* 3rd digit */
n = n / 10 ; /* remaining digits */
d2 = n % 10 ; /* 2nd digit */
n = n / 10 ; /* remaining digits */
d1 = n % 10 ; /* 1st digit */
revnum = d5 * 10000 + d4 * 1000 + d3 * 100 + d2 * 10 + d1 ;

Chapter 2: C Instructions 33

/* specifier %ld is used for printing a long integer */
printf ("The reversed number is %ld\n", revnum) ;
return 0 ;

}

Output

Enter a five digit number (less than 32767): 12345
The reversed number is 54321

Problem 2.3
Consider a currency system in which there are notes of six
denominations, namely, Re. 1, Rs. 2, Rs. 5, Rs. 10, Rs. 50, Rs. 100. If a
sum of Rs. N is entered through the keyboard, write a program to
compute the smallest number of notes that will combine to give Rs. N.

Program
#include <stdio.h>
int main()
{

int amount, nohun, nofifty, noten, nofive, notwo, noone, total ;
printf ("Enter the amount: ") ;
scanf ("%d", &amount) ;
nohun = amount / 100 ;
amount = amount % 100 ;
nofifty = amount / 50 ;
amount = amount % 50 ;
noten = amount / 10 ;
amount = amount % 10 ;
nofive = amount / 5 ;
amount = amount % 5 ;
notwo = amount / 2 ;
amount = amount % 2 ;
noone = amount / 1 ;
amount = amount % 1 ;
total = nohun + nofifty + noten + nofive + notwo + noone ;
printf ("Smallest number of notes = %d\n", total) ;
return 0 ;

}

34 Let Us C

Output

Enter the amount: 570
Smallest number of notes = 8

[A] Point out the errors, if any, in the following C statements:

(a) x = (y + 3) ;
(b) cir = 2 * 3.141593 * r ;
(c) char = ‘3’ ;
(d) 4 / 3 * 3.14 * r * r * r = vol_of_sphere ;
(e) volume = a3 ;
(f) area = 1 / 2 * base * height ;
(g) si = p * r * n / 100 ;
(h) area of circle = 3.14 * r * r ;
(i) peri_of_tri = a + b + c ;
(j) slope = (y2 - y1) + (x2 - x1) ;
(k) 3 = b = 4 = a ;
(l) count = count + 1 ;
(m) char ch = '25Apr 12' ;

[B] Evaluate the following expressions and show their hierarchy.
(a) ans = 5 * b * b * x - 3 * a * y * y - 8 * b * b * x + 10 * a * y ;

(a = 3, b = 2, x = 5, y = 4 assume ans to be an int)
(b) res = 4 * a * y / c - a * y / c ;

(a = 4, y = 1, c = 3, assume res to be an int)
(c) s = c + a * y * y / b ;

(a = 2.2, b = 0.0, c = 4.1, y = 3.0, assume s to be a float)
(d) R = x * x + 2 * x + 1 / 2 * x * x + x + 1 ;

(x = 3.5, assume R to be a float)

[C] Indicate the order in which the following expressions would be
evaluated:

Chapter 2: C Instructions 35

(a) g = 10 / 5 /2 / 1 ;
(b) b = 3 / 2 + 5 * 4 / 3 ;
(c) a = b = c = 3 + 4 ;
(d) x = 2 - 3 + 5 * 2 / 8 % 3 ;
(e) z = 5 % 3 / 8 * 3 + 4
(f) y = z = -3 % -8 / 2 + 7 ;

[D] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

int i = 2, j = 3, k, l ;
float a, b ;
k = i / j * j ;
l = j / i * i ;
a = i / j * j ;
b = j / i * i ;
printf ("%d %d %f %f\n", k, l, a, b) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int a, b, c, d ;
a = 2 % 5 ;
b = -2 % 5 ;
c = 2 % -5 ;
d = -2 % -5 ;
printf ("a = %d b = %d c = %d d = %d\n", a, b, c, d) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

float a = 5, b = 2 ;
int c, d ;
c = a % b ;

36 Let Us C

d = a / 2 ;
printf ("%d\n", d) ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

printf ("nn \n\n nn\n") ;
printf ("nn /n/n nn/n") ;
return 0 ;

}

(e) # include <stdio.h>
int main()
{

int a, b ;
printf ("Enter values of a and b") ;
scanf (" %d %d ", &a, &b) ;
printf ("a = %d b = %d", a, b) ;
return 0 ;

}

[E] State whether the following statements are True or False:

(a) * or /, + or - represents the correct hierarchy of arithmetic
operators in C.

(b) [] and { } can be used in Arithmetic instructions.
(c) Hierarchy decides which operator is used first.
(d) In C, Arithmetic instruction cannot contain constants on left side of

(e) In C ** operator is used for exponentiation operation.
(f) % operator cannot be used with floats.

[F] Fill in the blanks:

(a) In y = 10 * x / 2 + z ;__ operation will be performed first.
(b) If a is an integer variable, a = 11 / 2 would store__ in a.
(c) The expression, a = 22 / 7 * 5 / 3 would evaluate to.
(d) The expression x = -7 % 2 - 8 would evaluate to___ .

Chapter 2: C Instructions 37

(e) If d is a float the operation d = 2 / 7.0 would store___ in d.

[G] Attempt the following questions:

(a) If a five-digit number is input through the keyboard, write a
program to calculate the sum of its digits. (Hint: Use the modulus
operator %)

(b) Write a program to receive Cartesian co-ordinates (x, y) of a point
and convert them into polar co-ordinates (r, <p).

Hint: r = sqrt (x2 + y2) and <p =tan 1 (y / x)

(c) Write a program to receive values of latitude (LI, L2) and longitude
(Gl, G2), in degrees, of two places on the earth and output the
distance (D) between them in nautical miles. The formula for
distance in nautical miles is:

D = 3963 cos 1 (sin LI sin L2 + cos LI cos L2 * cos (G2 - Gl))

(d) Wind-chill factor is the felt air temperature on exposed skin due to
wind. The wind-chill temperature is always lower than the air
temperature, and is calculated as per the following formula:

wcf = 35.74 + 0.6215t + (0.4275t - 35.75) * v°16
where t is temperature and v is wind velocity. Write a program to
receive values of t and v and calculate wind-chill factor (wcf).

(e) If value of an angle is input through the keyboard, write a program
to print all its Trigonometric ratios.

(f) Two numbers are input through the keyboard into two locations C
and D. Write a program to interchange the contents of C and D.

r KanNotes

• Standard steps in interchanging contents of two variables:

t = a; a= b ; b = t;

• / gives quotient, % gives remainder. While taking %, sign of remainder
is same as sign of numerator. % doesn't work with -floats

• C offers 3> ttjpes of instructions:

38 Let Us C

1) Type declaration 2) Arithmetic 3) Control

• Declaration and assignment can be combined. Ex. : int a = 5 ;

• 3 types of Arithmetic instructions:

1) Integer mode 2) Real mode 3) Mixed mode

• Rules for arithmetic instructions :

- If one operand is float, result is a float
- Result is int only if both operands are ints

• a = pow (2, 5) ; would store 25 in a. Remember to #1nclude
<math.h>

• Every operator has 1) Priority 2) Associativity

• Priority is * / %, + -, =. Priority can be changed using ()

• Associativity comes into play when priority cannot decide which
operation to perform first. Associativity is either L to R or R to L.
+, -, *, /, % has L to R, = has R to L associativity

• Format string of printfQ can contain :

1) Format specifiers - %c, %d, %f
2) Escape sequences : \n, \t, many others
3) Any other character

• Format string of scanf() can contain only format specifiers

Control instructions control the sequence of execution of
instructions in a program

• 4 types of control instructions :

1) Sequence 2) Decision 3) Repetition 4) Case

3
Decision Control
Instruction

“Indecision cost > Wrong decision cost"

As we lead our life, we have to take decisions. Similarly, as we
make progress in C programming and try to implement
complicated logics, our program has to take decisions. But how?
Well, this chapter has the answer...

39

40 Let Us C

• The if - else Statement
• Multiple Statements within if - else
• Nested if-else s
• A Word of Caution
• Programs
• Exercises
• KanNotes

Chapter 3: Decision Control Instruction 41

We all need to alter our actions in face of changing circumstances. If
the weather is fine, then I would go for a stroll. If the highway is
busy, I would take a diversion. If you join our WhatsApp group, I would

send you interesting videos. You can notice that all these decisions
depend on some condition being met.

In C programs too, we must be able to perform different sets of actions
depending on the circumstances. In the programs written in Chapters 1
and 2, we used sequence control instruction in which the various
statements got executed sequentially, i.e., in the same order in which
they appeared in the program. In many programming situations, we
want one set of instructions to be executed in one situation, and a
different set in another situation. In C programming, such situations are
dealt with using a decision control instruction.

The if - else Statement
C uses the keywords if and else to implement the decision control
instruction. The general form of this statement looks like this:

if (this condition is true)
statementl ;

else
statement2 ;

The condition following the keyword if is always enclosed within a pair
of parentheses. If the condition is true, then statement1 is executed. If
the condition is not true, then statement2 is executed. The condition is
expressed using ‘relational’ operators. These operators allow us to
compare two values. Figure 3.1 shows how they look and how they are
evaluated in C.

this expression is true if

x == y
x != y
x < y
x > y
x <= y
x >= y

x is equal to y
x is not equal to y
x is less than y
x is greater than y
x is less than or equal to y
x is greater than or equal to y

Figure 3.1 Relational expressions and their meaning.

42 Let Us C

Here == is the equality operator and, != is the inequality operator. Note
that = is used for assignment, whereas, == is used for comparison of two
quantities. Let us now understand with the help of an example how if -
else and the relational operators are used in a program.

Example 3.1 : While purchasing certain items, a discount of 10% is
offered if the quantity purchased is more than 1000. If quantity and
price per item are input through the keyboard, write a program to
calculate the total expenses.

Given below is a program that implements this logic.

/* Calculation of total expenses */
include <stdio.h>
int main()
{

int qty, dis ;
float rate, tot ;
printf ("Enter quantity and rate ") ;
scanf ("%d %f", &qty, &rate) ;
if (qty > 1000)

dis = 10 ;
else

dis = 0 ;
tot = (qty * rate) - (qty * rate * dis / 100) ;
printf ("Total expenses = Rs. %f\n", tot) ;
return 0 ;

}

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses = Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses = Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as 1200
(value of qty) is greater than 1000. Therefore, the variable dis gets a
value 10. Using this new value, total expenses are calculated and
printed.

Chapter 3: Decision Control Instruction 43

In the second run, the condition evaluates to false, as 200 (the value of
qty) isn’t greater than 1000. Thus, dis, this time gets a value 0. Hence
the expression after the minus sign evaluates to zero, thereby offering
no discount.

Note how the statements after if and after else are indented using tab.
We would adopt this style throughout this book. Also note that if we do
not wish to do anything when the condition fails, we can drop the else
and the statement belonging to it.

Multiple Statements within if - else
It may so happen that in a program we want more than one statement
to be executed when the expression following if is satisfied. If such
multiple statements are to be executed, then they must be placed
within a pair of braces, as illustrated in the following example:

Example 3.2 : In a company an employee is paid as under:

If his basic salary is less than Rs. 1500, then HRA = 10% of basic salary
and DA = 90% of basic salary. If his salary is either equal to or above Rs.
1500, then HRA = Rs. 500 and DA = 98% of basic salary. If the employee's
salary is input through the keyboard write a program to find his gross
salary.

The program that implements this logic is given below.

/* Calculation of gross salary */
include <stdio.h>
int main()
{

float bs, gs, da, hra ;
printf ("Enter basic salary ") ;
scanf ("%f", &bs) ;
if (bs < 1500)
{

hra = bs * 10 / 100 ;
da = bs * 90 / 100 ;

}
else
{

hra = 500 ;
da = bs * 98 / 100 ;

}

44 Let Us C

gs = bs + hra + da ;
printf ("gross salary = Rs. %f\n", gs) ;
return 0 ;

}

Figure 3.2 would help you understand the flow of control in the
program.

Figure 3.2 Flowchart for Example 3.2.

A few points worth noting about the program...

(a) The group of statements after the if up to and not including the else
is called an ‘if block’. Similarly, the statements after the else form
the ‘else block’.

(b) Notice that the else is written exactly below the if. The statements
in the if block and those in the else block have been indented to the

Chapter 3: Decision Control Instruction 45

right. This formatting convention is followed throughout the book
to enable you to understand the working of the program better.

(c) Had there been only one statement to be executed in the if block
and only one statement in the else block, we could have dropped
the pair of braces.

(d) The default scope of if as well as else is the statement immediately
after them. To override this default scope, a pair of braces, as
shown in the above example, must be used.

Nested if-elses
It is perfectly alright if we write another if-else construct within either
the if block or the else block. This is called ‘nesting’ and is shown in the
following code fragment:

if (i == 1)
printf ("More questions you ask, more you know!\n") ;

else
{

if (i == 2)
printf ("If you ask a question you are a fool for some time!\n") ;

else
printf ("If you don't ask a que you are fool for a lifetime!\n") ;

}

Note that the second if-else construct is nested in the first else block. If
the condition in the first if is false, then the condition in the second if is
checked. If it is false as well, then the second else is executed.

You can observe how each time an if-else construct is nested within
another if-else construct, it is also indented to add clarity to the
program. Inculcate this habit of indentation; otherwise, you would end
up writing programs which nobody (you included) can understand easily
at a later date. Note that whether we indent or do not indent the
program, it doesn’t alter the flow of execution of instructions in the
program.

In the above program, an if-else occurs within the ‘else block’ of the first
if statement. Similarly, in some other program, an if-else may occur in
the ‘if block’ as well. Depending upon the demands of the logic at hand,
we may have deeply nested ifs and elses.

46 Let Us C

A Word of Caution
Though usually a condition is used in if statement, any valid expression
will also do. Thus, all the following if statements are valid.

if (3 + 2 % 5)
printf ("This works") ;

if (a = 10)
printf ("Even this works") ;

if (-5)
printf ("Surprisingly even this works") ;

Note that in C a non-zero value is considered to be true, whereas 0 is
considered to be false. In the first if, the expression evaluates to 5 and
since 5 is non-zero it is considered to be true. Hence the first printf()
gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if (a)
or if (10). Since 10 is non-zero, it is true hence again printf() goes to
work.

In the third if, -5 is a non-zero number, hence true. So again printf()
goes to work. In place of -5 even if a float like 3.14 were used, it would
be considered to be true. So the issue is not whether the number is
integer or float, or whether it is positive or negative. Issue is whether it
is zero or non-zero.

A common mistake while using if statement is to write a semicolon (;)
after the condition, as shown below.

scanf ("%d", &i) ;
if (i == 5) ;

printf ("You entered 5\n") ;

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if (i == 5)
;

printf ("You entered 5\n") ;

Here, if the condition evaluates to true, the ; (null statement, which
does nothing on execution) gets executed, following which printf() gets
executed. If the condition fails, then straightaway printf() gets

Chapter 3: Decision Control Instruction 47

executed. So irrespective of whether the condition evaluates to true or
false, printf() is bound to get executed. Remember that compiler would
not point out this as an error, since as far as the syntax is concerned,
nothing has gone wrong but the logic has certainly gone awry.

Problem 3.1
If cost price and selling price of an item is input through the keyboard,
write a program to determine whether the seller has made profit or
incurred loss. Also determine how much profit he made or loss he
incurred.

Program

/* Calculate profit or loss */
include <stdio.h>
int main()
{

float cp, sp, p, l ;
printf ("\nEnter cost price and selling price: ") ;
scanf ("%f %f", &cp, &sp) ;
p = sp - cp ;
l = cp - sp ;
if (p > 0)

printf ("The seller made a profit of Rs. %f\n", p) ;
if (l > 0)

printf ("The seller incurred loss of Rs. %f\n", l) ;
if (p == 0)

printf ("There is no loss, no profit\n") ;
return 0 ;

}

Output

Enter cost price and selling price: 25 15
The seller incurred loss of Rs. 10.000000

48 Let Us C

Problem 3.2
Any integer is input through the keyboard. Write a program to find out
whether it is an odd number or even number.

Program

/* Check whether a number is even or odd */
include <stdio.h>
int main()
{

int n ;
printf ("\nEnter any number: ") ;
scanf ("%d", &n) ;
if (n % 2 == 0)

printf ("The number is even\n") ;
else

printf ("The number is odd\n") ;
return 0 ;

}

Output

Enter any number: 45
The number is odd

Problem 3.3
Any year is input through the keyboard. Write a program to determine
whether the year is a leap year or not.

Program

/* Check whether a year is leap or not */
include <stdio.h>
int main()
{

int yr;
printf ("\nEnter a year: ") ;
scanf ("%d", &yr) ;
if (yr % 100 == 0)
{

Chapter 3: Decision Control Instruction 49

if (yr % 400 == 0)
printf ("Leap year\n") ;

else
printf ("Not a Leap year\n") ;

}
else
{

if (yr % 4 == 0)
printf ("Leap year\n") ;

else
printf ("Not a leap year\n") ;

}
return 0 ;

}

Output

Enter a year: 2020
Leap year

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

int a = 300, b, c ;
if (a >= 400)

b = 300 ;
c = 200 ;
printf ("%d %d\n", b, c) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int x = 10, y = 20 ;
if (x == y) ;

printf ("%d %d\n", x, y) ;

50 Let Us C

return 0 ;
}

(c) # include <stdio.h>
int main()
{

int x = 3 ;
float y = 3.0 ;
if (x == y)

printf ("x and y are equal\n") ;
else

printf ("x and y are not equal\n") ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int x = 3, y, z ;
y = x = 10 ;
z = x < 10 ;
printf ("x = %d y = %d z = %d\n", x, y, z) ;
return 0 ;

}
(e) # include <stdio.h>

int main()
{

int i = 65 ;
char j = ’A’ ;
if (i == j)

printf ("C is WOW\n") ;
else

printf ("C is a headache\n") ;
return 0 ;

}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

float a = 12.25, b = 12.52 ;

Chapter 3: Decision Control Instruction 51

if (a = b)
printf ("a and b are equal\n") ;

return 0 ;
}

(b) # include <stdio.h>
int main()
{

int j = 10, k = 12 ;
if (k >= j)
{

{
k = j ;
j = k ;

}
}
return 0 ;

}
(c) # include <stdio.h>

int main()
{

if ('X' < 'x')
printf ("ascii value of X is smaller than that of x\n") ;

}

(d) # include <stdio.h>
int main()
{

int x = 10 ;
if (x >= 2) then

printf ("%d\n", x) ;
return 0 ;

}
(e) # include <stdio.h>

int main()
{

int x = 10, y = 15 ;
if (x % 2 = y % 3)

printf ("Carpathians\n") ;
}

(f) # include <stdio.h>

52 Let Us C

int main()
{

int a, b ;
scanf ("%d %d", a, b) ;
if (a > b) ;

printf ("This is a game\n") ;
else

printf ("You have to play it\n") ;
return 0 ;

}

[C] State whether the following statements are True or False:

(a) ; is a valid statement.
(b) Ifs can be nested.
(c) If there are multiple statements in if or else block, they should be

enclosed within a pair of { }.
(d) If can occur within an if block but not in the else block.
(e) By default there is only one statement in if block and only one in

the else block.
(f) Nothing happens on execution of a null statement.

[D] Match the following pairs:

(a) Multiples statements
(b) else block
(c) ;
(d) < > <= >= == !=
(e) ==
(f) + - * / %
(g) =
(h) Default control instruction
(i) Decision control instruction

(1) Assignment operator
(2) Comparison operator
(3) Relational operators
(4) optional
(5) { }
(6) Arithmetic operators
(7) Null statement
(8) if - else
(9) Sequence

[E] Which of the following are valid ifs?

(a) if (-25)
(b) if (3.14)
(c) if (a)
(d) if (a + b)

Chapter 3: Decision Control Instruction 53

(e) if (a >= b)

[F] Attempt the following questions:

(a) A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine whether
the original and reversed numbers are equal or not.

(b) If ages of Ram, Shyam and Ajay are input through the keyboard,
write a program to determine the youngest of the three.

(c) Write a program to check whether a triangle is valid or not, if three
angles of the triangle are entered through the keyboard. A triangle
is valid if the sum of all the three angles is equal to 180 degrees.

(d) Write a program to find the absolute value of a number entered
through the keyboard.

(e) Given the length and breadth of a rectangle, write a program to find
whether the area of the rectangle is greater than its perimeter. For
example, the area of the rectangle with length = 5 and breadth = 4
is greater than its perimeter.

(f) Given three points (x1, y1), (x2, y2) and (x3, y3), write a program to
check if the three points fall on one straight line.

(g) Given the coordinates (x, y) of center of a circle and its radius, write
a program that will determine whether a point lies inside the circle,
on the circle or outside the circle. (Hint: Use sqrt() and pow()
functions)

(h) Given a point (x, y), write a program to find out if it lies on X-axis, Y-
axis or origin.

(i) According to Gregorian calendar, it was Monday on the date
01/01/01. If any year is input through the keyboard write a program
to find out what is the day on 1st January of this year.

• General form of decision control instruction :

if (condition)
statement1 ;

else
statement2 ;

54 Let Us C

• if there are several statements in if and else blocks, they must be
enclosed within { }

if (condition)
{

statement1 ; statement2 ;
}
else
{

statement3 ; statement4 ;
}

• The default scope of if and else statement is only the next statement.
So, to execute multiple statements they must be written in a pair of
braces.

Condition is built using relation operators <, >, <=, > !

• An if need not always be associated with an else. However, an else
must always be associated with an if

• An if-else statement can be nested inside another if-else statement

a = b is assignment. a == b is comparison

• In if (a == b == c) result of a == b is compared with c

• if a condition is true it is replaced by 1, if it false it is replaced by 0

• Any non-zero number is true, 0 is false

• ; is a null statement. it doesn’t do anything on execution

4 More Complex
Decision Making

“Life is complex, so are decisions in life..."

If I get good marks in my final year and if my GRE and TOEFL
scores are good and if I get good recommendations or if I do not
get a job with good prospects and if my family conditions permit
me, then I would think of doing MS in US. How can such complex
decision making be implemented in C? This chapter will show
you how...

55

56 Let Us C

• Use of Logical Operators - Checking Ranges
The else if Clause

• Use of Logical Operators - Yes / No Problem
• The ! Operator
• Hierarchy of Operators Revisited
• The Conditional Operators
• Programs
• Exercises
• KanNotes

Chapter 4: More Complex Decision Making 57

We all face situations where the action that we carry out is based
on multiple conditions. For example, I will join a company if the
company allocates a metro location, gives me a good pay package and

permits a joining period of 4 weeks. In programming too, action
performed may be based on the result of multiple conditions. Such
programming situations can be handled elegantly using Logical
Operators. This chapter explores the use of logical operators and one
more type of operators called conditional operators.

Use of Logical Operators - Checking Ranges
C allows usage of three logical operators, namely, &&, || and !. These
should be read as ‘AND’, ‘OR’ and ‘NOT’ respectively. Of these, && and
|| operators allow two or more conditions to be. Let us see how they
are used in programs. Consider the following example:

Example 4.1: The marks obtained by a student in 5 different subjects are
input through the keyboard. The student gets a division as per the
following rules:
Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail
Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this example.
These methods are given below.

/* Method - I */
include <stdio.h>
int main()
{

int ml, m2, m3, m4, m5, per ;
printf ("Enter marks in five subjects ") ;
scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
per = (m1 + m2 + m3 + m4 + m5) * 100 / 500 ;
if (per >= 60)

printf ("First division\n") ;
else
{

if (per >= 50)
printf ("Second division\n") ;

58 Let Us C

else
{

if (per >= 40)
printf ("Third division\n") ;

else
printf ("Fail\n") ;

}
}
return 0 ;

}

This is a straight-forward program. Observe that the program uses
nested if-elses. Though the program works fine, it has three
disadvantages:

(a) As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result, the whole program
creeps to the right. So much so, that entire program is not visible on
the screen. So, if something goes wrong with the program, locating
what is wrong where becomes difficult.

(b) It is difficult to match the corresponding ifs and elses.
(c) It is difficult to match the corresponding pair of braces.

All these three problems can be eliminated by usage of ‘Logical
Operators’. The following program illustrates this:

/* Method - II */
include <stdio.h>
int main()
{

int m1, m2, m3, m4, m5, per ;
printf ("Enter marks in five subjects ") ;
scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
per = (m1 + m2 + m3 + m4 + m5) / 500 * 100 ;
if (per >= 60)

printf ("First division\n") ;
if ((per >= 50) && (per < 60))

printf ("Second division\n") ;
if ((per >= 40) && (per < 50))

printf ("Third division\n") ;
if (per < 40)

printf ("Fail\n") ;

Chapter 4: More Complex Decision Making 59

return 0 ;
}

In the second if statement, the && operator is used to combine two
conditions. ‘Second division’ gets printed only if both the conditions
evaluate to true.

All the three disadvantages cited above have been overcome in this
program. However, there is a negative side to the program too. Even if
the first condition turns out to be true, all other conditions are still
checked. This will increase the time of execution of the program. This
can be avoided using the else if clause discussed in the next section.

The else if Clause
Let us now rewrite program for Example 4.1 using else if blocks.

/* else if ladder demo */
if (per >= 60)

printf ("First division\n") ;
else if (per >= 50)

printf ("Second division\n") ;
else if (per >= 40)

printf ("Third division^") ;
else

printf ("fail\n") ;

Using if - else if - else reduces the indentation of the statements. Here
the last else goes to work only if all conditions fail. Thus, the last else
handles the 'none of the above' case.

Also, if a condition is satisfied, other conditions below it are not
checked. If there is no explicit action to be taken if all conditions fail
then else statement can be omitted.

Use of Logical Operators - Yes / No Problem
Another place where logical operators are useful is when we want to
write programs for complicated logics that ultimately boil down to only
two answers—yes or no. The following example illustrates this:

Example 4.2 : A company insures its drivers in the following cases:
- If the driver is married.
- If the driver is unmarried, male & above 30 years of age.

60 Let Us C

- If the driver is unmarried, female & above 25 years of age.
In all other cases, the driver is not insured. If the marital status, sex and
age of the driver are the inputs, write a program to determine whether
the driver should be insured or not.

The final outcome of the program would be—either the driver should be
insured or the driver should not be insured. So, the program can be
conveniently written using logical operators. For this let us first identify
those cases in which the driver is insured. They are—Driver is married,
Driver is an unmarried male above 30 years of age, and Driver is an
unmarried female above 25 years of age. Since all these cases lead to
the driver being insured, they can be combined together using && and
|| as shown in the program below.

/* Insurance of driver - using logical operators */
include <stdio.h>
int main()
{

char sex, ms ;
int age ;
printf ("Enter age, sex, marital status ") ;
scanf ("%d %c %c", &age, &sex, &ms) ;
if ((ms == 'M') || (ms == 'U' && sex == 'M' && age > 30) ||

(ms == 'U' && sex == 'F' && age > 25))
printf ("Driver should be insured\n") ;

else
printf ("Driver should not be insured\n") ;

return 0 ;
}

In this program, it is important to note that:
- The driver will be insured only if one of the conditions enclosed in

parentheses evaluates to true.
- For the expression in second pair of parentheses to evaluate to true,

each condition in the expression separated by && must evaluate to
true.

- Even if one of the conditions in the second parentheses evaluates to
false, then the whole expression evaluates to false.

- The last two of the above arguments apply to third pair of
parentheses as well.

Chapter 4: More Complex Decision Making 61

In some programs we may combine the usage of if—else if—else and
logical operators. This is demonstrated in the following program.

Example 4.3 : Write a program to calculate the salary as per the
following table:

Gender Years of Service Qualifications Salary

Male >= 10 Post-Graduate 11000
>= 10 Graduate 10000
< 10 Post-Graduate 10000
< 10 Graduate 7000

Female >= 10 Post-Graduate 12000
>= 10 Graduate 9000
< 10 Post-Graduate 10000
< 10 Graduate 6000

Here is the program...

include <stdio.h>
int main()
{

char g ;
int yos, qual, sal = 0 ;
printf ("Enter Gender, Years of Service and

Qualifications (0 = G, 1 = PG): ") ;
scanf ("%c%d%d", &g, &yos, &qual) ;
if (g == 'm' && yos >= 10 && qual == 1)

sal = 11000 ;
else if ((g == 'm' && yos >= 10 && qual == 0) ||

(g == 'm' && yos < 10 && qual == 1))
sal = 10000 ;

else if (g == 'm' && yos < 10 && qual == 0)
sal = 7000 ;

else if (g == 'f' && yos >= 10 && qual == 1)
sal = 12000 ;

else if (g == 'f' && yos >= 10 && qual == 0)
sal = 9000 ;

else if (g == 'f' && yos < 10 && qual == 1)

62 Let Us C

sal = 10000 ;
else if (g == 'f' && yos < 10 && qual == 0)

sal = 6000 ;
printf ("\nSalary of Employee = %d\n", sal) ;
return 0 ;

}

I hope you can follow the implementation of this program on your own.

The ! Operator
The third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. So if the
expression evaluates to true, then applying ! operator to it results into a
false. Vice versa, if the expression evaluates to false, then applying ! to it
makes it true. Here is an example showing use of ! operator.

!(y<10)

If y is less than 10, the result will be false, since (y < 10) is true.

The NOT operator is often used to reverse the logical value of a single
variable, as in the expression

if (! flag)

This is another way of saying:

if (flag == 0)

Figure 4.1 summarizes the working of all the three logical operators.

Operands Results

x y !x !y x && y x II y
False False True True False False
False True True False False True
True False False True False True
True True False False True True

Figure 4. 1 Working of !, && and ||.

Chapter 4: More Complex Decision Making 63

Hierarchy of Operators Revisited
Since we have now added the logical operators to the list of operators
we know, it is time to review these operators and their priorities. Figure
4.2 summarizes the operators we have seen so far. The higher the
position of an operator is in the table, higher is its priority. (A full-
fledged precedence table of operators is given in Appendix B.)

Operators Type
!
* / %
+ -
< > <= >=
== ! =
&&
||

Logical NOT
Arithmetic and modulus
Arithmetic
Relational
Relational
Logical AND
Logical OR
Assignment

Figure 4. 2 Hierarchy of operators.

The Conditional Operators
The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind of
foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3

What this expression says is: “if expression 1 is true, then the value
returned will be expression 2, otherwise the value returned will be
expression 3”. Let us understand this with the help of a few examples.
(a) int x, y ;

scanf ("%d", &x) ;
y = (x > 5 ? 3 : 4) ;

This statement will store 3 in y if x is greater than 5, otherwise it will
store 4 in y.

(b) char a ;
int y ;
scanf ("%c", &a) ;
y = (a >= 65 && a <= 90 ? 1 : 0) ;

64 Let Us C

Here 1 would be assigned to y if a >=65 && a <=90 evaluates to
true, otherwise 0 would be assigned.

The following points may be noted about the conditional operators:

(a) It’s not necessary that the statement after ? or : be only arithmetic
statements. This is illustrated in the following examples:

Ex.: int i ;
scanf ("%d", &i) ;
(i == 1 ? printf ("Amitabh") : printf ("All and sundry")) ;

Ex.: char a = 'z' ;
printf ("%c", (a >= 'a' ? a : '!')) ;

(b) The conditional operators can be nested as shown below.

int big, a, b, c ;
big = (a > b ? (a > c ? 3: 4) : (b > c ? 6: 8)) ;

(c) Check out the following conditional expression:

a > b ? g = a : g = b ;

This will give you an error ‘Lvalue Required’. The error can be
overcome by enclosing the statement in the : part within a pair of
parentheses. This is shown below.

a > b ? g = a : (g = b) ;

In absence of parentheses, the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

(d) The limitation of the conditional operators is that after the ? or
after the : , only one C statement can occur.

Problem 4.1
A year is entered through the keyboard, write a program to determine
whether the year is leap or not. Use the logical operators && and ||.

Chapter 4: More Complex Decision Making 65

Program

/* Check whether a year is leap or not */
include <stdio.h>
int main()
{

int year ;
printf ("\nEnter year: ") ;
scanf ("%d", &year) ;
if (year % 400 == 0 || year % 100 != 0 && year % 4 == 0)

printf ("Leap year\n") ;
else

printf ("Not a leap year\n") ;
return 0 ;

}

Output

Enter year: 1900
Not a leap year

Problem 4.2
If a character is entered through the keyboard, write a program to
determine whether the character is a capital letter, a small case letter, a
digit or a special symbol.

The following table shows the range of ASCII values for various
characters:

Characters ASCII Values

A - Z 65 - 90
a - z 97 - 122
0 - 9 48 - 57
special symbols 0 - 47, 58 - 64, 91 - 96, 123 - 127

66 Let Us C

Program

/* Check type of character entered from the keyboard */
include <stdio.h>
int main()
{

char ch ;
printf ("\nEnter a character from the keyboard: ") ;
scanf ("%c", &ch) ;
if (ch >= 65 && ch <= 90)

printf ("The character is an uppercase letter\n") ;
if (ch >= 97 && ch <= 122)

printf ("The character is a lowercase letter\n") ;
if (ch >= 48 && ch <= 57)

printf ("The character is a digit\n") ;
if ((ch >= 0 && ch < 48) || (ch > 57 && ch < 65)

|| (ch > 90 && ch < 97) || ch > 122)
printf ("The character is a special symbol\n") ;

return 0 ;
}

Output

Enter a character from the keyboard: A
The character is an uppercase letter

Problem 4.3
If the lengths of three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is valid or not.
The triangle is valid if the sum of two sides is greater than the largest of
the three sides.

Program

/* Check whether a triangle is valid or not */
include <stdio.h>
int main()
{

int side1, side2, side3, largeside, sum ;
printf ("\nEnter three sides of the triangle: ") ;

Chapter 4: More Complex Decision Making 67

scanf ("%d %d %d", &side1, &side2, &side3) ;
if (sidel > side2)
{

if (sidel > side3)
{

sum = side2 + side3 ; largeside = sidel ;
}
else
{

sum = sidel + side2 ; largeside = side3 ;
}

}
else
{

if (side2 > side3)
{

sum = sidel + side3 ; largeside = side2 ;
}
else
{

sum = sidel + side2 ; largeside = side3 ;
}

}
if (sum > largeside)

printf ("The triangle is a valid triangle\n") ;
else

printf ("The triangle is an invalid triangle\n") ;
return 0 ;

}

Output

Enter three sides of the triangle: 3 4 5
The triangle is a valid triangle

[A] If a = l0, b = l2, c = 0, find the values of the expressions in the
following table:

68 Let Us C

Expression Value

a != 6 && b > 5
a == 9 || b < 3
! (a < 10)
!(a > 5 && c)
5 && c != 8 || !c

1

[B] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

int i = 4, z = 12 ;
if (i = 5 || z > 50)

printf ("Dean of students affairs\n") ;
else

printf ("Dosa\n") ;
return 0 ;

}
(b) #include <stdio.h>

int main()
{

int i = 4, j = -1, k = 0, w, x, y, z ;
w = i || j || k ;
x = i && j && k ;
y = i || j && k ;
z = i && j || k ;
printf ("w = %d x = %d y = %d z = %d\n", w, x, y, z) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int x = 20, y = 40, z = 45 ;
if (x > y && x > z)

printf ("biggest = %d\n", x) ;

Chapter 4: More Complex Decision Making 69

else if (y > x && y > z)
printf ("biggest = %d\n", y) ;

else if (z > x && z > y)
printf ("biggest = %d\n", z) ;

return 0 ;
}

(d) # include <stdio.h>
int main()
{

int i = -4, j, num ;
j = (num < 0 ? 0 : num * num) ;
printf ("%d\n", j) ;
return 0 ;

}
(e) # include <stdio.h>

int main()
{

int k, num = 30 ;
k = (num > 5 ? (num <= 10 ? 100 : 200) : 500) ;
printf ("%d\n", num) ;
return 0 ;

}

[C] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

char spy = 'a', password = 'z' ;
if (spy == 'a' or password == 'z')

printf ("All the birds are safe in the nest\n") ;
return 0 ;

}
(b) # include <stdio.h>

int main()
{

int i = 10, j = 20 ;
if (i = 5) && if (j = 10)

printf ("Have a nice day\n") ;
return 0 ;

70 Let Us C

}
(c) # include <stdio.h>

int main()
{

int x = 10, y = 20 ;
if (x >= 2 and y <= 50)

printf ("%d\n", x) ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int x = 2 ;
if (x == 2 && x != 0) ;

printf ("Hello\n") ;
else

printf ("Bye\n") ;
return 0 ;

}

(e) # include <stdio.h>
int main()
{

int j = 65 ;
printf ("j >= 65 ? %d : %c\n", j) ;
return 0 ;

}
(f) # include <stdio.h>

int main()
{

int i = 10, j ;
i >= 5 ? j = 10 : j = 15 ;
printf ("%d %d\n", i, j) ;
return 0 ;

}
(g) # include <stdio.h>

int main()
{

int a = 5, b = 6 ;
(a == b ? printf ("%d\n", a)) ;

Chapter 4: More Complex Decision Making 71

return 0;
}

(h) # include <stdio.h>
int main()
{

int n = 9 ;
(n == 9 ? printf ("Correct\n");: printf ("Wrong\n"););
return 0;

}

[D] Attempt the following questions:

(a) If the lengths of three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is an
isosceles, an equilateral, a scalene or a right-angled triangle.

(b) In digital world colors are specified in Red-Green-Blue (RGB) format,
with values of R, G, B varying on an integer scale from 0 to 255. In
print publishing the colors are mentioned in Cyan-Magenta-Yellow-
Black (CMYK) format, with values of C, M, Y, and K varying on a real
scale from 0.0 to 1.0. Write a program that converts RGB color to
CMYK color as per the following formulae:
White = Max^Re d / 255, Green / 255, Blue / 255)

Cyan =
White-Red / 255

White

Magenta =
White-Green/255

White

Yellow =
White - Blue / 255

White

Black = 1 - White

Note that if the RGB values are all 0, then the CMY values
are all 0 and the K value is 1.

(c) A certain grade of steel is graded according to the following
conditions:

(i) Hardness must be greater than 50
(ii) Carbon content must be less than 0.7
(iii) Tensile strength must be greater than 5600

72 Let Us C

The grades are as follows:
Grade is 10 if all three conditions are met
Grade is 9 if conditions (i) and (ii) are met
Grade is 8 if conditions (ii) and (iii) are met
Grade is 7 if conditions (i) and (iii) are met
Grade is 6 if only one condition is met
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel under
consideration and output the grade of the steel.

(d) The Body Mass Index (BMI) is defined as ratio of the weight of a
person (in kilograms) to the square of the height (in meters). Write
a program that receives weight and height, calculates the BMI, and
reports the BMI category as per the following table:

BMI Category BMI

Starvation
Anorexic
Underweight
Ideal
Overweight
Obese
Morbidly Obese

< 15
15.1 to 17.5
17.6 to 18.5
18.6 to 24.9
25 to 25.9
30 to 30.9
>= 40

[E] Answer the following questions:

(a) Using conditional operators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a special
symbol or not.

(b) Write a program using conditional operators to determine whether
a year entered through the keyboard is a leap year or not.

(c) Write a program to find the greatest of the three numbers entered
through the keyboard. Use conditional operators.

Chapter 4: More Complex Decision Making 73

(d) Write a program to receive value of an angle in degrees and check
whether sum of squares of sine and cosine of this angle is equal to
1.

(e) Rewrite the following program using conditional operators.

include <stdio.h>
int main()
{

float sal ;
printf ("Enter the salary") ;
scanf ("%f", &sal) ;
if (sal >= 25000 && sal <= 40000)

printf ("Manager\n") ;
else

if (sal >= 15000 && sal < 25000)
printf ("Accountant\n") ;

else
printf ("Clerk\n") ;

return 0 ;
}

• More complex decision making can be done using logical operators

• Logical operators are &&, || and !

Logical operators are useful in 2 situations :

1) Checking ranges 2) Solving yes/no problem

One more form of decision control instruction is :

if (condition1)
statement1 ;

else if (condition2)
statement2 ;

else if (condition3)
statement3 ;

else
statement4 ;

else goes to work if all 3 ifs fail

74 Let Us C

• Hierarchy :

! * / % + - < > <= >= && ||

• Unary operator - needs only 1 operand. Ex. ! sizeof

• Binary operator - needs 2 operands. Ex. + - * / % < > <= >=
== != && ||

• sizeof is an operator. It gives number of bytes occupied by an entity

Usage of sizeof operator :

a = sizeof (int)
b = sizeof (num) ;

• ! (a <= b) is same as (a > b }. ! (a >= b) is same as (a < b)

• a = !b does not change value of b

• a = !a means, set a to 0 if it is 1 and set it to 1 if it is 0

• lvalue required error means something is wrong on LHS of =

• Conditional operators ? : are ternary operators. General form :

expression1 ? expression2 : expression3

• ? : can have only 1 statement each

• ? : can be nested

• ? : always go together. : is not optional

• Always parenthesize assignment operation if used with

5 Loop Control
Instruction

If you wish to find averages of 100 sets of three numbers, would
you actually execute the program 100 times? Obviously not,
there has to be a better way out. This chapter will show you how
to accomplish this...

75

76 Let Us C

• Loops
• The while Loop

Tips and Traps
More Operators

• Programs
• Exercises
• KanNotes

Chapter 5: Loop Control Instruction 77

The programs that we have developed so far used either a sequential
or a decision control instruction. These programs performed the
same series of actions, in the same way, exactly once. In programming,

we frequently need to perform an action over and over, often with
variations in the details each time. The mechanism which meets this
need is the ‘Loop Control Instruction’, and loops are the subject of this
chapter.

Loops
The versatility of computer lies in its ability to perform a set of
instructions repeatedly. This involves repeating some portion of the
program either a specified number of times or until a particular
condition is satisfied. This repetitive operation is done through a loop
control instruction. There are three ways to repeat a part of a program.
They are:
(a) Using a while statement
(b) Using a for statement
(c) Using a do-while statement
Let us begin by understanding the while loop.

The while Loop
The while loop is ideally suited for situations where we wish to repeat
some instructions till a condition remains true. Let us understand this
with the help of an example. Suppose we wish to calculate simple
interest for 3 sets of values of principal, number of years and rate of
interest. Here is the program that can achieve this...

/* Calculation of simple interest for 3 sets of p, n and r */
include <stdio.h>
int main()
{

int p, n, count ;
float r, si ;
count = 1 ;
while (count <= 3)
{

printf ("\nEnter values of p, n and r ") ;
scanf ("%d %d %f", &p, &n, &r) ;
si = p * n * r / 100 ;
printf ("Simple interest = Rs. %\nf", si) ;

78 Let Us C

count = count + 1 ;
}
return 0 ;

}

Given below is the interaction with this program on its execution.

Enter values of p, n and r 1000 5 13.5
Simple interest = Rs. 675.000000
Enter values of p, n and r 2000 5 13.5
Simple interest = Rs. 1350.000000
Enter values of p, n and r 3500 5 3.5
Simple interest = Rs. 612.500000

The program executes all statements after the while 3 times. The logic
for calculating the simple interest is written in these statements and
they are enclosed within { }. These statements form the ‘body’ of the
while loop. The parentheses after the while contain a condition. So long
as this condition remains true, the statements in the body of the while
loop keep getting executed repeatedly. To begin with, the variable count
is initialized to 1 and every time the simple interest logic is executed, the
value of count is incremented by one. The variable count is often called
either a ‘loop counter’ or an ‘index variable’.

The operation of the while loop is illustrated in Figure 5.1.

Figure 5.1 Operation of while loop.

Chapter 5: Loop Control Instruction 79

Tips and Traps
Note the following points about while...
- The statements within the while loop would keep getting executed

till the condition being tested remains true. When the condition
becomes false, the control passes to the first statement that follows
the body of the while loop.

- Almost always, the while must test a condition that will eventually
become false, otherwise the loop would keep getting executed
forever, indefinitely.

int i = 1 ;
while (i <= 10)

printf ("%d\n", i) ;

This is an indefinite loop, since i always remains equal to 1. The
correct form would increment i in the body of the loop.

- Instead of incrementing a loop counter, we can decrement it and
still manage to get the body of the loop executed repeatedly. This is
shown below.

int i = 5 ;
while (i >= 1)
{

printf ("Make the computer literate!\n") ;
i = i - 1 ;

}

- It is not necessary that a loop counter must only be an int. It can
even be a float.

float a = 10.0 ;
while (a <= 10.5)
{

printf ("Raindrops on roses...") ;
printf ("...and whiskers on kittens\n") ;
a = a + 0.1 ;

}

80 Let Us C

- Even floating-point loop counters can be decremented. Once again,
the increment and decrement could be by any suitable value, not
necessarily 1.

- Multiple conditions can be used in the while loop by connecting
them using logical operators as shown in the following examples:

while (i >= 10 && j <= 15)
while (j > 10 && (b < 15 || c < 20))

- If there is only one statement within the loop then { } are optional.

- What will be the output of the following program?

include <stdio.h>
int main()
{

int i = 1 ;
while (i <= 10) ;
{

printf ("%d\n", i) ;
i = i + 1 ;

}
return 0 ;

}

This is an indefinite loop, and it doesn’t give any output at all. The
reason is, we have carelessly put a ; after the while. It would make
the loop work like this...

while (i <= 10)
;

{
printf ("%d\n", i) ;
i = i + 1 ;

}

Since the value of i is not getting incremented, the control would
keep rotating within the loop eternally. Note that enclosing printf()
and i = i +1 within a pair of braces is not an error. In fact, we can put
a pair of braces around any individual statement or set of
statements without affecting the execution of the program.

Chapter 5: Loop Control Instruction 81

More Operators
There are several operators that are frequently used with while. To
illustrate their use, let us consider a problem wherein numbers from 1
to 10 are to be printed on the screen. The program for performing this
task can be written using while in following different ways:

(a) # include <stdio.h>
int main()
{

int i = 1 ;
while (i <= 10)
{

printf ("%d\n", i) ;
i = i + 1 ;

}
return 0 ;

}

This is the most straight-forward way of printing numbers from 1 to
10.

(b) # include <stdio.h>
int main()
{

int i = 1 ;
while (i <= 10)
{

printf ("%d\n", i) ;
i++ ;

}
return 0 ;

}

Note that every time the statement i++ gets executed the
increment operator ++ increments the value of i by 1. Similarly, to
reduce the value of a variable by 1, a decrement operator -- is also
available.

However, never use n+++ to increment the value of n by 2, since
there doesn’t exist an operator +++ in C.

(c) # include <stdio.h>

82 Let Us C

int main()
{

int i = 1 ;
while (i <= 10)
{

printf ("%d\n", i) ;
i += 1 ;

}
return 0 ;

}

Note that += is a compound assignment operator. It increments the
value of i by 1. Similarly, j = j + 10 can also be written as j += 10.
Other compound assignment operators are -=, *=, / = and %=.

(d) # include <stdio.h>
int main()
{

int i = 0 ;
while (i++ < 10)

printf ("%d\n", i) ;
return 0 ;

}

In the statement while (i++ < 10), first the comparison of value of i
with 10 is performed, and then the incrementation of i takes place.
Since the incrementation of i happens after the comparison, here
the ++ operator is called a post-incrementation operator. When the
control reaches printf(), i has already been incremented, hence i
must be initialized to 0, not 1.

(e) # include <stdio.h>
int main()
{

int i = 0 ;
while (++i <= 10)

printf ("%d\n", i) ;
return 0 ;

}

In the statement while (++i <= 10), first incrementation of i takes
place, then the comparison of value of i with 10 is performed. Since

Chapter 5: Loop Control Instruction 83

the incrementation of i happens before the comparison, here the
++ operator is called a pre-incrementation operator.

p<&
Problem 5.1
Write a program to calculate overtime pay of 10 employees. Overtime is
paid at the rate of Rs. 120.00 per hour for every hour worked above 40
hours. Assume that employees do not work for fractional part of an
hour.

Program

/* Determine overtime pay of 10 employees */
include <stdio.h>
int main()
{

float otpay ;
int hour, i = 1 ;
while (i <= 10) /* Loop for 10 employees */
{

printf ("\nEnter no. of hours worked: ") ;
scanf ("%d", &hour) ;
if (hour >= 40)

otpay = (hour - 40) * 120 ;
else

otpay = 0 ;
printf ("Hours = %d Overtime pay = Rs.%f\n", hour, otpay) ;
i++ ;

}
return 0 ;

}

Output

Enter no. of hours worked: 45
Hours = 45 Overtime pay = Rs.600.000000

Enter no. of hours worked: 50
Hours = 50 Overtime pay = Rs.1200.000000

84 Let Us C

Enter no. of hours worked: 20
Hours = 20 Overtime pay = Rs.0.000000

Problem 5.2
Write a program to find the factorial value of any number entered
through the keyboard.

Program

/* Calculation of factorial value of a number */
include <stdio.h>
int main()
{

int num, i, fact ;
printf ("Enter a number: ") ;
scanf ("%d", &num) ;
fact = i = 1 ;
while (i <= num)
{

fact = fact * i ;
i++ ;

}
printf ("Factorial value of %d = %d\n", num, fact) ;
return 0 ;

}

Output

Enter a number: 7
Factorial value of 7 = 5040

Problem 5.3
Two numbers are entered through the keyboard. Write a program to
find the value of one number raised to the power of another.

Program

/* Compute value of one number raised to another */

Chapter 5: Loop Control Instruction 85

include <stdio.h>
int main()
{

float x, power ;
int y, i ;
printf ("\nEnter two numbers: ") ;
scanf ("%f %d", &x, &y) ;
power = i = 1 ;
while (i <= y)
{

power = power * x ;
i++ ;

}
printf ("%f to the power %d is %f\n", x, y, power) ;
return 0 ;

}

Output

Enter two numbers: 2.5 3
2.500000 to the power 3 is 15.625000

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

int i = 1 ;
while (i <= 10) ;
{

printf ("%d\n", i) ;
i++ ;

}
return 0 ;

}

(b) # include <stdio.h>
int main()

86 Let Us C

{
int x = 4, y, z ;
y = --x ;
z = x-- ;
printf ("%d %d %d\n", x, y, z) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int x = 4, y = 3, z ;
z = x-- - y ;
printf ("%d %d %d\n", x, y, z) ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

while ('a' < 'b')
printf ("malayalam is a palindrome\n") ;

return 0 ;
}

(e) # include <stdio.h>
int main()
{

int i ;
while (i = 10)
{

printf ("%d\n", i) ;
i = i + 1 ;

}
return 0 ;

}

(f) # include <stdio.h>
int main()
{

float x = 1.1 ;
while (x == 1.1)
{

Chapter 5: Loop Control Instruction 87

printf ("%f\n", x) ;
x = x - 0.1 ;

}
return 0 ;

}

[B] Attempt the following questions:

(a) Write a program to print all the ASCII values and their equivalent
characters using a while loop. The ASCII values vary from 0 to 255.

(b) Write a program to print out all Armstrong numbers between 1 and
500. If sum of cubes of each digit of the number is equal to the
number itself, then the number is called an Armstrong number. For
example, 153 = (1 * 1 * 1) + (5 * 5 * 5) + (3 * 3 * 3).

(c) Write a program for a matchstick game being played between the
computer and a user. Your program should ensure that the
computer always wins. Rules for the game are as follows:

- There are 21 matchsticks.
- The computer asks the player to pick 1, 2, 3, or 4 matchsticks.
- After the person picks, the computer does its picking.
- Whoever is forced to pick up the last matchstick loses the game.

(d) Write a program to enter numbers till the user wants. At the end it
should display the count of positive, negative and zeros entered.

(e) Write a program to receive an integer and find its octal equivalent.
(Hint: To obtain octal equivalent of an integer, divide it continuously
by 8 till dividend doesn’t become zero, then write the remainders
obtained in reverse direction.)

(f) Write a program to find the range of a set of numbers entered
through the keyboard. Range is the difference between the smallest
and biggest number in the list.

• Repetition control instruction is used to repeat a set of statements
in a program.

• It is implemented using

1) while loop

88 Let Us C

2) for loop
3) do - while loop

• General form of while:

i = 1 ; /* initialization of loop counter */
while (i <= 10) /* testing of loop counter */
{

statement1 ;
statement2 ;
i++ ; /* incrementation of loop counter */

}

• i++ increments vale by 1

i-- decrements value of i by 1
There are no **, // and %% operators

• The expressions i = i + 1, i++ and ++i are all same

• j = ++i ; first increments i, then assigns the incremented value to j

• j = i++ ; first assigns current value of i to j, then increments i

• while (++i < 10) first increments i, then checks condition

• while (i++ < 10) first checks condition, then increments i

• i = i + 5 is same as i += 5

• Compound assignment operators : +=, -=, *=, /= and %=

• Running sum and products are implemented using following :

s = 0 ;
p = 1 ;
while (condition)
{

/* calculate term */
s = s + term ;
p = p * term ;

}

More Complex
Repetitions6

x takes values from 1 to 10. For every x, y takes values from 0.5
to 2.25 in steps of 0.5 and for every y, z goes from 100 to 55 in
decrements of -2, and for every z, m increases in multiples of 4
starting with 4. Lost in the hoops? Well, this chapter will show
you how such complex repetitions can be implemented in C...

89

90 Let Us C

• The for Loop
Nesting of Loops
Multiple Initializations in the for Loop

• The break Statement
• The continue Statement
• The do-while Loop
• The Odd Loop
• Programs
• Exercises
• KanNotes

Chapter 6: More Complex Repetitions 91

The programs in the last chapter showed how instructions in a
program can be repeated using a while loop. This chapter explores
the other two loops—for and do-while. There is more to looping than

just repeating instructions. For example, what if we wish to terminate
the loop abruptly, or skip some instructions as the loop executes, or
repeat something infinite times, unknown number of times or only once.
All these scenarios are handled in this chapter.

The for Loop
The for loop allows us to specify three things about the loop in a single
line:

(a) Setting a loop counter to an initial value.
(b) Testing the loop counter to determine whether its value has

reached the number of repetitions desired.
(c) Increasing the value of loop counter each time the body of the loop

has been executed.

The general form of for loop is as follows:

for (initialize counter ; test counter ; increment counter)
{

do this ;
and this ;

}

Let us now write the simple interest program using for. Compare this
program with the one that we wrote using while in Chapter 5.

/* Calculation of simple interest for 3 sets of p, n and r */
include <stdio.h>
int main()
{

int p, n, count ;
float r, si ;
for (count = 1 ; count <= 3 ; count = count + 1)
{

printf ("Enter values of p, n, and r ") ;
scanf ("%d %d %f", &p, &n, &r) ;
si = p * n * r / 100 ;
printf ("Simple Interest = Rs.%f\n", si) ;

}

92 Let Us C

return 0 ;
}

You can observe that the three steps—initialization, testing and
incrementation—required for the loop construct have now been
incorporated in one single line in the for statement.
Let us now examine how the for statement gets executed:

- When for statement is executed for the first time, the value of count
is set to an initial value 1.

- Next the condition count <= 3 is tested. Since count is 1, the
condition is satisfied and the body of the loop is executed for the
first time.

- Upon reaching the closing brace of for, control is sent back to for
statement, where the value of count gets incremented by 1.

- Again, the test is performed to check whether the new value of
count is less than or equal to 3.

- If the value of count is less than or equal to 3, the statements within
the braces of for are executed again.

- The body of for loop continues to get executed till count doesn’t
exceed the final value 3.

- When count reaches the value 4, the control exits from the loop and
is transferred to the statement (if any) immediately after the body of
for.

It is important to note that the initialization, testing and incrementation
part of a for loop can be replaced by any valid expression. Thus, the
following for loops are perfectly ok.

for (i = 10 ; i ; i --)
printf ("%d ", i) ;

for (i < 4 ; j = 5 ; j = 0)
printf ("%d ", i) ;

for (i = 1; i <=10 ; printf ("%d ", i++))
;

for (scanf ("%d", &i) ; i <= 10 ; i++)
printf ("%d", i) ;

Chapter 6: More Complex Repetitions 93

Let us now write the program to print numbers from 1 to 10 in different
ways. This time we would use a for loop instead of a while loop.

(a) # include <stdio.h>
int main()
{

int i ;
for (i = 1 ; i <= 10 ; i = i + 1)

printf ("%d\n", i) ;
return 0 ;

}

Instead of i = i + 1, the statements i++ or i += 1 can also be used.
Since there is only one statement in the body of the for loop, the
pair of braces have been dropped. As with the while, the default
scope of for is the immediately next statement after for.

(b) # include <stdio.h>
int main()
{

int i ;
for (i = 1 ; i <= 10 ;)
{

printf ("%d\n", i) ;
i = i + 1 ;

}
return 0 ;

}

Here, the incrementation is done within the body of the for loop. In
spite of this, the semicolon (;) after the condition is necessary.

(c) # include <stdio.h>
int main()
{

int i = 1 ;
for (; i <= 10 ; i = i + 1)

printf ("%d\n", i) ;
return 0 ;

}
Here the initialization is done in the declaration statement itself,
but still the semicolon before the condition is necessary.

94 Let Us C

(d) # include <stdio.h>
int main()
{

int i = 1 ;
for (; i <= 10 ;)
{

printf ("%d\n", i) ;
i = i + 1 ;

}
return 0 ;

}

Here, neither the initialization nor the incrementation is done in the
for statement, but still the two semicolons are necessary.

(e) # include <stdio.h>
int main()
{

int i ;
for (i = 0 ; i++ < 10 ;)

printf ("%d\n", i) ;
return 0 ;

}

Here, the comparison as well as the incrementation is done through
the same expression, i++ < 10. Since the ++ operator comes after i,
comparison is done first, followed by incrementation. Note that it is
necessary to initialize i to 0.

(f) # include <stdio.h>
int main()
{

int i ;
for (i = 0 ; ++i <= 10 ;)

printf ("%d\n", i) ;
return 0 ;

}

Here again, both, the comparison and the incrementation are done
through the same expression, ++i <= 10. Since ++ precedes i firstly
incrementation is done, followed by comparison. Note that it is
necessary to initialize i to 0.

Chapter 6: More Complex Repetitions 95

Nesting of Loops
The way if statements can be nested, similarly whiles and fors can also
be nested. The following program shows how nested loops work.

/* Demonstration of nested loops */
include <stdio.h>
int main()
{

int r, c, sum ;
for (r = 1 ; r <= 3 ; r++) /* outer loop */
{

for (c = 1 ; c <= 2 ; c++) /* inner loop */
{

sum = r + c ;
printf ("r = %d c = %d sum = %d\n", r, c, sum) ;

}
}
return 0 ;

}

When you run this program, you will get the following output:

r = 1 c = 1 sum = 2
r = 1 c = 2 sum = 3
r = 2 c = 1 sum = 3
r = 2 c = 2 sum = 4
r = 3 c = 1 sum = 4
r = 3 c = 2 sum = 5

Here, for each value of r, the inner loop is cycled through twice, with the
variable c taking values from 1 to 2. The inner loop terminates when the
value of c exceeds 2, and the outer loop terminates when r exceeds 3.

As you can see, the body of the outer for loop is indented, and the body
of the inner for loop is further indented. These multiple indentations
make the program easier to understand.

Instead of using two statements, one to calculate sum and another to
print it out, we can compact them into one single statement by saying:

printf ("r = %d c = %d sum = %d\n", r, c, r + c) ;

96 Let Us C

The way for loops have been nested here, similarly, two while loops can
also be nested. Not only this, a for loop can occur within a while loop, or
a while within a for.

Multiple Initializations in the for Loop
The initialization expression in the for loop can contain more than one
statement separated by a comma. For example,

for (i = 1, j = 2 ; j <= 10 ; j++)

Multiple comma-separated incrementations can also be done in a for
loop. Similarly, multiple conditions are allowed in the test expression.
These conditions should be linked together using logical operators &&
and/or || as shown below.

for (i = 1, j = 2 ; j <= 10 && i <= 15 ; j++, i = i + 2)

The do-while Loop
The do-while loop looks like this:

do
{

this ;
and this ;

} while (this condition is true) ;

There is a minor difference between the working of while and do-while
loops. This difference lies in the place where the condition is tested. The
while tests the condition before executing any of the statements within
the while loop. As against this, the do-while tests the condition after
having executed the statements within the loop.

This means that do-while would execute its statements at least once,
even if the condition fails for the first time. The while, on the other hand
will not execute its statements if the condition fails for the first time.
This difference is brought about more clearly by the following program:

include <stdio.h>
int main()
{

while (4 < 1)
printf (" Credit is yours, pleasure is mine \n") ;

Chapter 6: More Complex Repetitions 97

return 0 ;
}

Here, since the condition fails the first time itself, the printf() will not
get executed at all. Let's now write the same program using a do-while
loop.

include <stdio.h>
int main()
{

do
{

printf ("Credit is yours, pleasure is mine\n") ;
} while (4 < 1) ;
return 0 ;

}

In this program, the printf() would be executed once, since first the
body of the loop is executed and then the condition is tested.

The break Statement
We often come across situations where we want to jump out of a loop
instantly, without waiting to get back to the condition. The keyword
break allows us to do this. When break is encountered inside a while,
for or do-while loop, control automatically passes to the first statement
after the loop. A break is usually associated with an if. Let’s consider the
following example to understand it:

Example 6.1: Write a program to determine whether a number is prime
or not. A prime number is said to be prime if it is divisible only by 1 or
itself.

All we have to do to test whether a number is prime or not, is to divide it
successively by all numbers from 2 to one less than itself. If remainder of
any of these divisions is zero, the number is not a prime. If no division
yields a zero then the number is a prime number. Following program
implements this logic:

include <stdio.h>
int main()
{

int num, i ;
printf ("Enter a number ") ;

98 Let Us C

scanf ("%d", &num) ;
i = 2 ;
while (i <= num - 1)
{

if (num % i == 0)
{

printf ("Not a prime number\n") ;
break ;

}
i++ ;

}
if (i == num)

printf ("Prime number\n") ;
}

In this program, the moment num % i turns out to be zero, (i.e., num is
exactly divisible by i), the message “Not a prime number” is printed and
the control breaks out of the while loop. Why does the program require
the if statement after the while loop at all? Well, there are two
possibilities the control could have reached outside the while loop:
(a) It jumped out because num turned out to be not a prime.
(b) The loop came to an end because the value of i became equal to

num.

When the loop terminates in the second case, it means that there was
no number between 2 to num - 1 that could exactly divide num. That is,
num is indeed a prime. If this is true, the program should print out the
message “Prime number”.

The keyword break, breaks the control only from the while in which it is
placed. Consider the following program, which illustrates this fact:

include <stdio.h>
int main()
{

int i = 1 , j = 1 ;
while (i++ <= 100)
{

while (j++ <= 200)
{

if (j == 150)
break ;

Chapter 6: More Complex Repetitions 99

else
printf ("%d %d\n", i, j) ;

}
}
return 0 ;

}

In this program when j equals 150, break takes the control outside the
inner while only, since it is placed inside the inner while.

The continue Statement
In some programming situations, we want to take the control to the
beginning of the loop, bypassing the statements inside the loop, which
have not yet been executed. The keyword continue allows us to do this.
When continue is encountered inside a loop, control jumps to the
beginning of the loop for performing next iteration.

A continue is usually associated with an if. As an example, let's consider
the following program:

include <stdio.h>
int main()
{

int i, j ;
for (i = 1 ; i <= 2 ; i++)
{

for (j = 1 ; j <= 2 ; j++)
{

if (i == j)
continue ;

printf ("%d %d\n", i, j) ;
}

}
return 0 ;

}

The output of the above program would be...

1 2
2 1

100 Let Us C

Note that when the value of i equals that of j, the continue statement
takes the control to the incrementation part of the inner for loop
bypassing the rest of the statements pending execution in the inner for
loop.

A small quirk—when continue is encountered in a while or do-while
control jumps to the condition, whereas in case of a for loop it takes the
control to the incrementation part of the for loop.

The Odd Loop
The loops used so far executed the statements within them a finite
number of times. However, at times one comes across a situation when
it is not known beforehand, how many times the statements in the loop
are to be executed. This situation can be programmed as shown below.

/* Execution of a loop an unknown number of times */
include <stdio.h>
int main()
{

char another;
int num ;
do
{

printf ("Enter a number ") ;
scanf ("%d", &num) ;
printf ("square of %d is %d\n", num, num * num) ;
printf ("Want to enter another number y/n ") ;
fflush (stdin) ;
scanf ("%c", &another) ;

} while (another == 'y') ;
return 0 ;

}

And here is the sample output...

Enter a number 5
square of 5 is 25
Want to enter another number y/n y
Enter a number 7
square of 7 is 49
Want to enter another number y/n n

Chapter 6: More Complex Repetitions 101

In this program, the do-while loop would keep getting executed till the
user continues to answer y. The moment user answers n, the loop
terminates, since the condition (another == 'y') fails. Note that this
loop ensures that statements within it are executed at least once.

Though it is simpler to program such a requirement using a do-while
loop, the same functionality, if required, can also be accomplished using
for and while loops. You can try doing this as an exercise.

You must be wondering why have we used the function fflush(). The
reason is to get rid of a peculiarity of scanf(). After supplying a number
when we hit the Enter key, scanf() assigns the number to variable num
and keeps the Enter key unread in the keyboard buffer. So when it’s
time to supply y or n for the question ‘Want to enter another number
(y/n)’, scanf() will read the Enter key from the buffer thinking that user
has entered the Enter key. To avoid this problem, we use the function
fflush(). It removes or ‘flushes out’ any data remaining in the buffer.
The argument to fflush() must be the buffer which we want to flush
out. Here we have used ‘stdin’, which means buffer related with
standard input device, i.e., keyboard.

Problem 6.1
Write a program to print all prime numbers from 1 to 300.

Program

/* Generate all prime numbers from 1 to 300 */
include <stdio.h>
int main()
{

int i, n = 1 ;
printf ("\nPrime numbers between 1 and 300 are :\n1\t") ;
for (n = 1 ; n <= 300 ; n++)
{

i = 2 ;
for (i = 2 ; i < n ; i++)
{

if (n % i == 0)
break ;

102 Let Us C

}
if (i == n)

printf ("%d\t", n) ;
}
return 0 ;

}

Output

Prime numbers between 1 and 300 are :
1 2 3 5 7 11 13 17 19 23
29 31 37 41 43 47 53 59 61 67
71 73 79 83 89 97 101 103 107 109
113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227
229 233 239 241 251 257 263 269 271 277
281 283 293

Problem 6.2
Write a program to add first seven terms of the following series using a
for loop.

'■ ■'■ 3
1! 2! 3!

Program

/* Sum of first seven terms of a series */
include <stdio.h>
int main()
{

int i = 1, j ;
float fact, sum = 0.0 ;
for (i = 1 ; i <= 7 ; i++)
{

fact = 1.0 ;
for (j = 1 ; j <= i ; j++)

fact = fact * j ;
sum = sum + i / fact ;

}

Chapter 6: More Complex Repetitions 103

printf ("Sum of series = %f\n", sum) ;
return 0 ;

}

Output

Sum of series = 2.718056

Problem 6.3
Write a program to generate all combinations of 1, 2 and 3 using for
loop.

Program

/* Generate all possible combinations of 1 2 3 */
include <stdio.h>
int main()
{

int i = 1, j = 1, k = 1 ;
for (i = 1 ; i <= 3 ; i++)
{

for (j = 1 ; j <= 3 ; j++)
{

for (k = 1 ; k <= 3 ; k++)
printf ("%d %d %d\n", i , j , k) ;

}
}
return 0 ;

}

Output

1 1 1
1 1 2
..
..
2 1 1
..
..
2 3 3

104 Let Us C

3 1 1
..
..
3 3 3

[A] Answer the following questions:
(a) The break statement is used to exit from:

1. An if statement
2. A for loop
3. A program
4. The main() function

(b) A do-while loop is useful when we want that the statements within
the loop must be executed:

1. Only once
2. At least once
3. More than once
4. None of the above

(c) In what sequence the initialization, testing and execution of body is
done in a do-while loop?

1. Initialization, execution of body, testing
2. Execution of body, initialization, testing
3. Initialization, testing, execution of body
4. None of the above

(d) Which of the following is not an infinite loop?

f = 1 ; y = x ;

1. int i = 1 ;
while (1)
{

i++ ;
}

2. for (; ;) ;

3. int t = 0, f ; 4. int y, x = 0 ;
while (t) do
{ {

Chapter 6: More Complex Repetitions 105

(e) Which of the following statements is true for the following
program?

include <stdio.h>
int main()
{

int x = 10, y = 100 % 90 ;
for (i = 1 ; i <= 10 ; i++) ;

if (x != y) ;
printf ("x = %d y = %d\n", x, y) ;

return 0 ;
}

1. The printf() function is called 10 times.
2. The program will produce the output x = 10 y = 10.
3. The ; after the if (x != y) will not produce an error.
4. The program will not produce any output.
5. The printf() function is called infinite times.

(f) Which of the following statement is true about a for loop used in a
C program?

1. for loop works faster than a while loop.
2. All things that can be done using a for loop can also be done

using a while loop.
3. for (; ;) implements an infinite loop.
4. for loop can be used if we want statements in a loop to get

executed at least once.
5. for loop works faster than a do-while loop.

[B] Attempt the following questions:

(a) Write a program to print the multiplication table of the number
entered by the user. The table should get displayed in the following
form:

29 * 1 = 29
29 * 2 = 58

(b) According to a study, the approximate level of intelligence of a
person can be calculated using the following formula:

i = 2 + (y + 0.5 x)

106 Let Us C

Write a program that will produce a table of values of i, y and x,
where y varies from 1 to 6, and, for each value of y, x varies from
5.5 to 12.5 in steps of 0.5.

(c) When interest compounds q times per year at an annual rate of
r % for n years, the principal p compounds to an amount a as per
the following formula
a = p (1 + r / q)nq
Write a program to read 10 sets of p, r, n & q and calculate the
corresponding as.

(d) The natural logarithm can be approximated by the following series.

x-1 1(x-1------ + —
x 2

2 1
+ -

2x

If x is input through the keyboard, write a program to calculate the
sum of first seven terms of this series.

(e) Write a program to generate all Pythagorean Triplets with side
length less than or equal to 30.

(f) Population of a town today is 100000. The population has increased
steadily at the rate of 10% per year for last 10 years. Write a
program to determine the population at the end of each year in the
last decade.

(g) Ramanujan number (1729) is the smallest number that can be
expressed as sum of two cubes in two different ways—1729 can be
expressed as l3 + 123 and 93 + 103. Write a program to print all such
numbers up to a reasonable limit.

(h) Write a program to print 24 hours of day with suitable suffixes like
AM, PM, Noon and Midnight.

(i) Write a program to produce the following output:

1

2 3

4 5 6

7 8 9 10

Chapter 6: More Complex Repetitions 107

• 3 types of loops :

1) while
2) for
3) do - while

• What can be done using one loop can always be done using the other
two

Usual usage :

while - to repeat something an unknown number of times, i.e. when
we do not know at the time of writing the program how many times
the loop is going to be executed

for - to repeat something a fixed number of times

do - while - to repeat something at least once

• Equivalent forms :

i = 1 ; for (i = 1 ; i <= 10 ; i++) i = 1 ;
while (i <= 10) { do
{ statement ; {

statement1 ; statement2 ; statement ;
statement2 ; } statement2 ;
i++ ; i++ ;

} } while (i <= 10) ;

• for (; ;) is an infinite loop. while 0 results into an error

• Multiple initializations, conditions and incrementations in a for loop
are acceptable. Ex. :

for (i = 1 , j = 2 ; i <= 10 && j <= 24 ; i++, j += 3)
{

statement1 ;
statement2 ;

}

108 Let Us C

• break - terminates the execution of the loop

continue - abandons rest of the instructions in the loop and goes for
the next iteration of the loop

Usually break and continue are used in this form :

while (condition1)
{

if (condition2)
break ;

statement1 ;
statement2 ;

}

while (condition1)
{

if (condition2)
continue ;

statement1 ;
statement2 ;

}

Case Control
Instruction

The multi-point switch

Choosing the right control instruction adds to the efficiency and
speed of the program. So, even though a situation where
different actions are to be carried out for 5 different values of
variable x can be implemented using 5 ifs, it may not be a very
efficient way of doing it. This chapter will show you how this can
be done in a better and more efficient way...

109

110 Let Us C

• Decisions Using switch
The Tips and Traps

• switch Versus if-else Ladder
• The goto Statement
• Programs
• Exercises
• KanNotes

Chapter 7: Case Control Instruction 111

In programming, we are often faced with situations where we are
required to make a choice between a number of alternatives rather
than only one or two. C provides a special control statement that allows

us to handle such cases effectively; rather than using a series of if
statements. This control instruction is the topic of this chapter. Towards
the end of the chapter, we would also study a keyword called goto and
understand why we should avoid its usage.

Decisions using switch
The control instruction that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-case-
default, since these three keywords go together to make up the control
statement. They most often appear as follows:

switch (integer expression)
{

case constant 1 :
do this ;

case constant 2 :
do this ;

case constant 3 :
do this ;

default :
do this ;

}

The integer expression following the keyword switch is any C expression
that will yield an integer value. The keyword case is followed by an
integer or a character constant. Constant used in each case must be
different from those used in other cases. The “do this” lines in the above
switch represent any valid C statement.

What happens when we run a program containing a switch statement?
First, the integer expression following the keyword switch is evaluated.
The value it gives is then matched, one-by-one, against the constant
values that follow the case statements. When a match is found, the
statements in that case, and those in all subsequent cases and default
are executed. If no match is found with any of the case statements, the
statements following the default case are executed. A few examples will
show how this control instruction works.

Consider the following program:

112 Let Us C

include <stdio.h>
int main()
{

int i = 2 ;
switch (i)
{

case 1 :
printf ("I am in case 1 \n") ;

case 2 :
printf ("I am in case 2 \n") ;

case 3 :
printf ("I am in case 3 \n") ;

default :
printf ("I am in default \n") ;

}
return 0 ;

}

The output of this program would be:

I am in case 2
I am in case 3
I am in default

The output is definitely not what we expected! We didn’t expect the
second and third lines in the above output. We got them because once
the matching case is found all the statements in subsequent cases and
default also get executed.

If you want that only case 2 should get executed, it is up to you to get
out of the switch then and there by using a break statement. The
following program shows how this is done. Note that there is no need
for a break statement after the default, since on reaching the default
case, the control comes out of the switch anyway.

include <stdio.h>
int main()
{

int i = 2 ;
switch (i)
{

case 1 :

Chapter 7: Case Control Instruction 113

printf ("I am in case 1 \n") ;
break ;

case 2 :
printf ("I am in case 2 \n") ;
break ;

case 3 :
printf ("I am in case 3 \n") ;
break ;

default :
printf ("I am in default \n") ;

}
return 0 ;

}

The output of this program would be:

I am in case 2

The Tips and Traps
Now let us understand a few tips about the usage of switch and a few
pitfalls to be avoided.

(a) The program in the previous section may give you an impression
that cases in a switch must be arranged in ascending order—1, 2, 3
and default. In fact, you can put the cases in any order you please.

(b) Even if there are multiple statements to be executed in each case,
there is no need to enclose them within a pair of braces (unlike if
and else).

(c) Every statement in a switch must belong to some case or the other.
(d) If we have no default case, and no case is satisfied, then the control

exits the switch and continues with the next instruction (if any,)
that follows the closing brace of switch.

(e) At times we may want to execute a common set of statements for
multiple cases. The following example shows how this can be
achieved:

include <stdio.h>
int main()
{

char ch;

114 Let Us C

printf ("Enter any one of the alphabets a, b, or c ") ;
scanf ("%c", &ch) ;
switch (ch)
{

case 'a' :
case 'A' :

printf ("a as in apple\n") ;
break ;

case 'b' :
case 'B' :

printf ("b as in brain\n") ;
break ;

case 'c' :
case 'C' :

printf ("c as in cookie\n") ;
break ;

default :
printf ("wish you knew what are alphabets\n") ;

return 0 ;
}

}

Here, we are making use of the fact that once a case is satisfied;
control simply falls through the switch till it doesn’t encounter a
break statement. That is why, if alphabet a is entered, case ’a’ is
satisfied and since there are no statements to be executed in this
case, control automatically reaches the next case, i.e., case ’A’ and
executes all the statements in this case.

(f) Is switch a replacement for if? Yes and no. Yes, because it offers a
better way of writing programs as compared to if, and no, because,
in certain situations, we are left with no choice but to use if. The
disadvantage of switch is that one cannot have a case in a switch
which looks like:

case i <= 20 :

All that we can have after the case is an int constant or a char
constant or an expression that evaluates to an int constant. Even a
float is not allowed.

Chapter 7: Case Control Instruction 115

The advantage of switch over if is that it leads to a more structured
program and the level of indentation is manageable, more so, if
there are multiple statements within each case of a switch.

(g) We can check the value of any expression in a switch. Thus, the
following switch statements are legal:

switch (i + j * k)
switch (23 + 45 % 4 * k)
switch (a < 4 && b > 7)

Expressions can also be used in cases provided they are constant
expressions. Thus, case 3 + 7 is correct, however, case a + b is
incorrect.

(h) The break statement when used in a switch takes the control
outside the switch. However, use of continue does not take the
control to the beginning of switch, as one is likely to believe.

(i) In principle, a switch may occur within another, but in practice, this
is rarely done. Such statements would be called nested switch
statements.

(j) The switch statement is very useful while writing menu driven
programs. This aspect of switch is illustrated in Programs section of
this chapter.

switch versus if-else Ladder
There are some things that you simply cannot do with a switch. These
are:

(a) A float expression cannot be tested using a switch.
(b) Cases can never have variable expressions as in case a + 3 :.
(c) Multiple cases cannot use same expressions. Thus, the following

switch is illegal:

switch (a)
{

case 3 :

case 1 + 2 :

}

116 Let Us C

(a), (b) and (c) above may lead you to believe that these are obvious
disadvantages with a switch, especially since there weren’t any such
limitations with if-else. Then why use a switch at all? For speed—switch
works faster than an equivalent if-else ladder. This is because compiler
generates a jump table for a switch during compilation. As a result,
during execution, it simply refers the jump table to decide which case
should be executed, rather than actually checking which case is satisfied.
As against this, if-elses are slower because the conditions in them are
evaluated at execution time. Note that a lookup in the jump table is
faster than evaluation of a condition, especially if the condition is
complex.

The goto Statement
The goto statement causes an unconditional jump to another statement
in the same function. The destination of the jump is specified using a
label following the goto keyword as shown below.

goto out ;

The label out is specified at a place in the program where we wish the
control to be transferred to as shown below.

out :

Nothing special about out, you can use any other label instead. Labels
serve only as destinations of goto statements, and have no effect at all if
the labeled statement is reached in the normal course of sequential
execution. Given below is a program that shows working of the goto
statement.

include <stdio.h>
include <stdlib.h>

int main()
{

int goals ;
printf ("Enter the number of goals scored against India") ;
scanf ("%d", &goals) ;
if (goals <= 5)

goto sos ;
else
{

Chapter 7: Case Control Instruction 117

printf ("About time soccer players learnt C\n") ;
printf ("and said goodbye to soccer\n") ;
exit (1) ; /* terminates program execution */

}
sos :

printf ("To err is human !\n") ;
return 0 ;

}

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To err is human!
Enter the number of goals scored against India 7
About time soccer players learnt C
and said goodbye to soccer

A few remarks about the program would make its working clearer.

- If the condition is satisfied, goto statement transfers control to the
label sos, causing printf() following sos to be executed.

- The label can be on a separate line or on the same line as the
statement following it, as in,

sos : printf ("To err is human !\n") ;

- Any number of gotos can take the control to the same label.

- exit() is a standard library function that terminates the execution of
the program. It is necessary to use this function since we don't want
the statement

printf ("To err is human !\n") ;

to get executed after execution of the else block.
- The argument 1 used in exit() indicates the reason for termination.

If there are multiple exit points in the program, this argument can be
used to find which exit terminated the execution.

- For exit() function to work, we need to #include the file 'stdlib.h'.

Avoid goto keyword! It obscures the flow of control and makes the
program unreliable, unreadable, and hard to debug. In a difficult

118 Let Us C

programming situation, it seems easy to use a goto to take the control
where you want. However, almost always, there is a more elegant way
of writing the same program using if, for, while, do-while and switch.
These constructs are far more logical and easier to understand.

The only programming situation in favor of using goto is when we want
to take the control out of the loop that is contained in several other
loops. The following program illustrates this:

include <stdio.h>
int main()
{

int i, j, k ;
for (i = 1 ; i <= 3 ; i++)
{

for (j = 1 ; j <= 3 ; j++)
{

for (k = 1 ; k <= 3 ; k++)
{

if (i == 3 && j == 3 && k == 3)
goto out ;

else
printf ("%d %d %d\n", i, j, k) ;

}
}

}
out :

printf ("Out of the loops at last!\n") ;
return 0 ;

}

Go through the program carefully and find out how it works. Also write a
program to implement the same logic without using goto.

Problem 7.1
Write a menu driven program which has following options:

1. Factorial of a number
2. Prime or not

Chapter 7: Case Control Instruction 119

3. Odd or even
4. Exit

Once a menu item is selected the appropriate action should be taken
and once this action is finished, the menu should reappear. Unless the
user selects the ‘Exit’ option the program should continue to work.

Program

/* Menu driven program */
include <stdio.h>
include <stdlib.h>
int main()
{

int choice, num, i, fact ;
while (1)
{

printf ("\n1. Factorial\n") ;
printf ("2. Prime\n") ;
printf ("3. Odd / Even\n") ;
printf ("4. Exit\n") ;
printf ("Your choice? ") ;
scanf ("%d", &choice) ;
switch (choice)
{

case 1 :
printf ("\nEnter number: ") ;
scanf ("%d", &num) ;
fact = 1 ;
for (i = 1 ; i <= num ; i++)

fact = fact * i ;
printf ("Factorial value = %d\n", fact) ;
break ;

case 2 :
printf ("\nEnter number: ") ;
scanf ("%d", &num) ;
for (i = 2 ; i < num ; i++)
{

if (num % i == 0)
{

printf ("Not a prime number\n") ;
break ;

120 Let Us C

}
}
if (i == num)

printf ("Prime number\n") ;
break ;

case 3 :
printf ("\nEnter number: ") ;
scanf ("%d", &num) ;
if (num % 2 == 0)

printf ("Even number\n") ;
else

printf ("Odd number\n") ;
break ;

case 4 :
exit (0) ; /* Terminates program execution */

default :
printf ("Wrong choice!\a\n") ;

}
}
return 0 ;

}

Output

1. Factorial
2. Prime
3. Odd / Even
4. Exit
Your choice?
1

Enter number: 5
Factorial value = 120

1. Factorial
2. Prime
3. Odd / Even
4. Exit
Your choice? 2

Enter number: 13

Chapter 7: Case Control Instruction 121

Prime number

1. Factorial
2. Prime
3. Odd / Even
4. Exit
Your choice? 3

Enter number: 13
Odd number

1. Factorial
2. Prime
3. Odd / Even
4. Exit
Your choice? 4

[A] What will be the output of the following programs?

(a)

(b)

include <stdio.h>
int main()
{

char suite = 3 ;
switch (suite)
{

case 1 :
printf ("Diamond\n") ;

case 2 :
printf ("Spade\n") ;

default :
printf ("Heart\n") ;

}
printf ("I thought one wears a suite\n") ;
return 0 ;

}

include <stdio.h>
int main()
{

122 Let Us C

int c = 3 ;
switch (c)
{

case '3' :
printf ("You never win the silver prize\n") ;
break ;

case 3 :
printf ("You always lose the gold prize\n") ;
break ;

default :
printf ("Of course provided you win a prize\n") ;

}
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int i = 3 ;
switch (i)
{

case 0 :
printf ("Customers are dicey\n") ;

case 1 + 2 :
printf ("Markets are pricey\n") ;

case 4 / 2 :
printf ("Investors are moody\n") ;

}
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int k ;
float j = 2.0 ;
switch (k = j + 1)
{

case 3 :
printf ("Trapped\n") ;
break ;

default :

Chapter 7: Case Control Instruction 123

printf ("Caught!\n") ;
}
return 0 ;

}

(e) # include <stdio.h>
int main()
{

int ch = 'a' + 'b' ;
switch (ch)
{

case 'a' :
case 'b' :

printf ("Look at 10 ideas, 11th will occur to you\n") ;
case 'A' :

printf ("If you have a good idea, project it\n") ;
case 'b' + 'a' :

printf ("Have ideas, will fly\n") ;
}
return 0 ;

}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

int suite = 1 ;
switch (suite) ;
{

case 0 ;
printf ("Club\n") ;

case 1 ;
printf ("Diamond\n") ;

}
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int temp ;
scanf ("%d", &temp) ;

124 Let Us C

switch (temp)
{

case (temp <= 20) :
printf ("Ooooooohhhh! Damn cool!\n") ;

case (temp > 20 && temp <= 30) :
printf ("Rain rain here again!\n") ;

case (temp > 30 && temp <= 40) :
printf ("Wish I am on Everest\n") ;

default :
printf ("Good old Nagpur weather\n") ;

}
return 0 ;

}

(c) # include <stdio.h>
int main()
{

float a = 3.5 ;
switch (a)
{

case 0.5 :
printf ("The art of C\n") ; break ;

case 1.5 :
printf ("The spirit of C\n") ; break ;

case 2.5 :
printf ("See through C\n") ; break ;

}
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int a = 3, b = 4, c ;
c = b - a ;
switch (c)
{

case 1 || 2 :
printf ("God give me a chance to change things\n") ;
break ;

case a || b :
printf ("God give me a chance to run my show\n") ;

Chapter 7: Case Control Instruction 125

break ;
}
return 0 ;

}

[C] Write a program to find the grace marks for a student using switch.
The user should enter the class obtained by the student and the
number of subjects he has failed in. Use the following logic:

- If the student gets first class and he fails in more than 3
subjects, he does not get any grace. Otherwise, he gets a grace
of 5 marks per subject.

- If the student gets second class and he fails in more than 2
subjects, he does not get any grace. Otherwise, he gets a grace
of 4 marks per subject.

- If the student gets third class and he fails in more than 1
subject, then he does not get any grace. Otherwise, he gets a
grace of 5 marks.

KanNotes

Three ways for taking decisions in a program :

1) Using if-else statement
2) Using conditional operators
3) Using the switch statement

• switch should be used when we are to find out whether a variable or
an expression has one of the several possible values

• switch should not be used for checking ranges or for a yes / no
problem

• General form :

switch (expression) -> use constant or variable expression
{

case constant expression : -> use only constant expression

case constant expression :

126 Let Us C

default :

}

• if a case fails, control jumps to the next case

• if a case is satisfied, then all statements below it up to } of switch
are executed

• Usually, a break is used at the end of statements in each case

• break takes the control out of the switch

• Continue DOES NOT take the control to the beginning of the switch

• Order in which cases are written does not matter

• Default case is optional

• cases in a switch must always be unique

• switch can be used with int, long int, char

• switch cannot be used with float, double

• switch works faster than a series of ifs

• switch is popularly used in menu driven programs to check which
choice from the menu has been made by the user

• goto keyword can take the control from any place to any other place
within the function

goto should be used only in a situation where we wish to break out
of the innermost loop in a nested loop system

• As far as possible, goto should be avoided since it is difficult to keep
track of the control when multiple gotos are used

• exit() - function - Terminates program execution

• # include <stdlib.h> for exitQ to work

8 Functions

"Think modern, think of functions..."

If you wish, you can write all the statements in a program within
main(). But that would be a stupid way of writing a program.
Programming can be done more smartly using functions. How?
Well this chapter has the answer.

127

128 Let Us C

• What is a Function
Why Use Functions

• Communication between Functions
• Order of Passing Arguments
• Using Library Functions
• One Dicey Issue
• Return Type of Function
• Programs
• Exercises
• KanNotes

Chapter 8: Functions 129

Acomputer program (except for the simplest one) cannot handle all
the tasks by itself. Instead, it requests other program-like entities—
called ‘functions’ in C—to get its tasks done. In this chapter, we will

study these functions. We will look at a variety of features of these
functions, starting with the simplest one and then working towards
those that demonstrate the power of C functions.

What is a Function?
A function is a self-contained block of statements that performs a
coherent task of some kind. Let us now look at a simple program that
introduces us to the idea of a C function

include <stdio.h>
void message() ; /* function prototype declaration */
int main()
{

message() ; /* function call */
printf ("Cry, and you stop the monotony!\n") ;
return 0 ;

}
void message() /* function definition */
{

printf ("Smile, and the world smiles with you...\n") ;
}

And here’s the output...

Smile, and the world smiles with you...
Cry, and you stop the monotony!

Here, we have defined two functions—main() and message(). In fact,
we have used the word message at three places in the program. Let us
understand the meaning of each.

The first is the function prototype declaration and is written as:

void message() ;

This prototype declaration indicates that message() is a function which
after completing its execution does not return any value. This ‘does not
return any value’ is indicated using the keyword void. It is necessary to
declare the prototype of every function that we intend to define in the
program.

130 Let Us C

The second usage of message is...

void message()
{

printf ("Smile, and the world smiles with you...\n") ;
}

This is the function definition. In this definition right now we are having
only printf(), but we can also use if, for, while, switch, etc., within it.

The third usage is.

message() ;

Here the function message() is being called by main(). When we call
the message() function, control passes to the function message(). The
activity of main() is temporarily suspended; it falls asleep while the
message() function wakes up and goes to work. When the message()
function runs out of statements to execute, the control returns to
main(), which comes to life again and begins executing its code at the
exact point where it left off. Thus, main() becomes the ‘calling’ function,
whereas message() becomes the ‘called’ function.

If you have grasped the concept of ‘calling’ a function, you are prepared
for a call to more than one function. Consider the following example:

include <stdio.h>
void italy() ;
void brazil() ;
void argentina() ;
int main()
{

printf ("I am in main\n") ;
italy() ;
brazil() ;
argentina() ;
return 0 ;

}
void italy()
{

printf ("I am in italy\n") ;
}
void brazil()

Chapter 8: Functions 131

{
printf ("I am in brazil\n") ;

}
void argentina()
{

printf ("I am in argentina\n") ;
}

The output of the above program when executed would be as under:

I am in main
I am in italy
I am in brazil
I am in argentina

A number of conclusions can be drawn from this program:
- A C program is a collection of one or more functions.

- If a C program contains only one function, it must be main().

- If a C program contains more than one function, then one (and only
one) of these functions must be main().

- Each function in a program is called in the sequence specified by the
function calls in main().

- After each function has done its thing, control returns to main().
When main() runs out of statements and function calls, the program
ends.

Given below are a few additional tips about functions.

(a) Program execution always begins with main(). Except for this fact,
all C functions enjoy a state of perfect equality. No precedence, no
priorities, nobody is nobody’s boss.

(b) Since program execution always begins with main(), every function
gets called directly or indirectly from main(). In other words, the
main() function drives other functions.

(c) Any function can be called from any other function. Even main()
can be called from other functions.

(d) A function can be called multiple times.
(e) The order in which the functions are defined in a program and the

order in which they get called need not necessarily be same.

132 Let Us C

However, it is advisable to define the functions in the same order in
which they are called. This makes the program easier to
understand.

(f) A function cannot be defined in another function. Thus, the
following program would be wrong, since argentina() is being
defined inside another function, main():

int main()
{

printf ("I am in main\n") ;
void argentina()
{

printf ("I am in argentina\n") ;
}

}

(g) There are basically two types of functions:

Library functions Ex. printf(), scanf(), etc.
User-defined functions Ex. argentina(), brazil(), etc.
Library functions are a collection of commonly required functions
grouped together and stored in a Library file on the disk. This library
of functions comes ready-made with development environments
like Turbo C, Visual Studio, GCC, etc. The procedure for calling both
types of functions is exactly same.

Why use Functions?
Why write separate functions at all? Why not squeeze the entire logic
into one function, main()? Well, for two reasons given below.

(a) Writing functions avoids rewriting the same code over and over and
promotes code reuse. Suppose you have statements in your
program that calculate area of a triangle. If later in the program,
you want to calculate the area of a different triangle, it would be
improper to write the same instructions again. Instead, you would
prefer to jump to a function that calculates area and then jump
back to the place from where you left off.

(b) If the operation of a program can be divided into separate activities,
and each activity placed in a different function, then each could be
written and checked more or less independently. Separating the

Chapter 8: Functions 133

code into modular functions also makes the program easier to
design and understand.

So, don’t try to cram the entire logic in one function. Instead, break a
program into small units and write functions for each of these isolated
subdivisions. Don’t hesitate to write functions that are called only once.
What is important is that these functions perform some logically
isolated tasks.

Communication between Functions
The functions that we have used so far weren't very flexible. We called
them and they did what they were designed to do. Now we wish to
communicate between the ‘calling’ and the ‘called’ functions.

Communication between functions is facilitated by arguments and
return values. You have unknowingly used the arguments in the printf()
and scanf() functions—the format string and the list of variables used
inside the parentheses in these functions are arguments. The arguments
are also called parameters.

Consider the following program. In this program, in main() we receive
the values of a, b and c through the keyboard and then output their
sum. However, sum is calculated in the function calsum(). So the values
of a, b and c must be passed to calsum(). Similarly, once the sum is
calculated it must be returned back to main(). That's communication in
short.

/* Sending and receiving values between functions */
include <stdio.h>
int calsum (int x, int y, int z) ;
int main()
{

int a, b, c, sum ;
printf ("Enter any three numbers ") ;
scanf ("%d %d %d", &a, &b, &c) ;
sum = calsum (a, b, c) ;
printf ("Sum = %d\n", sum) ;
return 0 ;

}
int calsum (int x, int y, int z)
{

int d ;
d = x + y + z ;

134 Let Us C

return (d);
}

And here is the output of the program...

Enter any three numbers 10 20 30
Sum = 60

There are a number of things to note about this program:

(a) The values of a, b and c are passed from main() to calsum() by
mentioning a, b and c in the parentheses while making the call.

sum = calsum (a, b, c) ;

In calsum() these values are collected in three variables x, y and z:

int calsum (int x, int y, int z)

Passing values of a, b, c is necessary, because variables are available
only to the statements of a function in which they are defined.

(b) The variables a, b and c are called ‘actual arguments’, whereas the
variables x, y and z are called ‘formal arguments’. The type, order
and number of the actual and formal arguments must always be
same.
Instead of x, y and z, we could have used the same variable names
a, b and c. But the compiler would still treat them as different
variables since they are in different functions.

(c) Note the function prototype declaration of calsum(). Instead of the
usual void, we are using int. This indicates that calsum() is going to
return a value of the type int. It is not compulsory to use variable
names in the prototype declaration. Hence, we could have written
the prototype as:

int calsum (int, int, int) ;

In the definition of calsum too, void has been replaced by int.

(d) In the earlier programs, the moment closing brace (}) of the called
function was encountered, the control returned to the calling
function. No separate return statement was necessary to send back
the control.

Chapter 8: Functions 135

This approach is fine if the called function is not going to return any
meaningful value to the calling function. In our program, however,
we want to return the sum. Therefore, it is necessary to use the
return statement. It serves two purposes:

(1) It transfers the control back to the calling function.
(2) It returns the value present in the parentheses (d in our

program) after return, to the calling function.

(e) There is no restriction on the number of return statements that
may be present in a function. Also, the return statement need not
always be present at the end of the called function. The following
function illustrates these facts:

int fun (int n)
{

if (n <= 10)
return (n * n) ;

else
return (n * n * n) ;

}

In this function, different return statements would be executed
depending on value of n.

(f) When control returns from calsum(), the returned value is
collected in the variable sum through the statement

sum = calsum (a, b, c) ;

(g) All the following are valid return statements.

return (a) ; /* or return a ; */
return (23); /* or return 23 ; */
return ;

In the last statement, only control is returned to the calling
function. Note that, the parentheses after return are optional.

(h) A function can return only one value at a time. Thus, the following
statements are invalid:

return (a, b);

136 Let Us C

return (x, 12) ;

There is a way to get around this limitation, which would be
discussed in Chapter 9.

(i) If the value of a formal argument is changed in the called function,
the corresponding change does not take place in the calling
function. For example,

include <stdio.h>
void fun (int) ;
int main()
{

int a = 30 ;
fun (a) ;
printf ("%d\n", a) ;
return 0;

}
void fun (int b)
{

b = 60 ;
printf ("%d\n", b) ;

}

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fun(), the value of a
in main() remains unchanged. This means that when values are
passed to a called function, copies of values in actual arguments are
made into formal arguments.

Order of Passing Arguments
Consider the following function call:

fun (a, b, c, d) ;

In this call, it doesn’t matter whether the arguments are passed from
left to right or from right to left. However, in some function calls, the
order of passing arguments becomes an important consideration. For
example:

Chapter 8: Functions 137

int a = 1 ;
printf ("%d %d %d\n", a, ++a, a++) ;

It appears that this printf() would output 1 2 2.

This however is not the case. Surprisingly, it outputs 3 3 1. This is
because, during a function call, the arguments are passed from right to
left. That is, firstly 1 is passed through the expression a++ and then a is
incremented to 2. Then result of ++a is passed. That is, a is incremented
to 3 and then passed. Finally, latest value of a, i.e., 3, is passed. Thus, in
right to left order, 1, 3, 3 get passed. Once printf() collects them, it
prints them in the order in which we have asked it to get them printed
(and not the order in which they were passed). Thus 3 3 1 gets printed.

It is important to note that the order of passing arguments to a function
is not specified by the language, and hence is compiler-dependent.
Consequently, any code that is written disregarding this is bound to
show unpredictable behavior. For instance, the printf() example in
question may give different outputs with different compilers.

Using Library Functions
Consider the following program:

include <stdio.h>
include <math.h>
int main()
{

float a = 0.5 ;
float w, x, y, z ;
w = sin (a) ;
x = cos (a) ;
y = tan (a) ;
z = pow (a, 2) ;
printf ("%f %f %f %f\n", w, x, y, z) ;
return 0 ;

}

Here we have called four standard library functions—sin(), cos(), tan()
and pow(). As we know, before calling any function, we must declare its
prototype. This helps the compiler in checking whether the values being
passed and returned are as per the prototype declaration. But since we
didn’t define the library functions (we merely called them), we do not

138 Let Us C

know the prototype declarations of library functions. Hence, along with
library functions a set of ‘.h’ files are also provided. These header files
contain the prototype declarations of library functions.

Library functions are divided into different groups and one header file is
provided for each group. For example, prototypes of all input/output
functions are provided in the file ‘stdio.h’, prototypes of all
mathematical functions (like sin(), cos(), tan() and pow()) are provided
in the file ‘math.h’, etc. If you open the header file ‘math.h’, the
prototypes would appear as shown below.

double sin (double) ;
double cos (double) ;
double tan (double) ;
double pow (double, double) ;

Here double indicates a real number. We would learn more about
double in Chapter 11.

Whenever we wish to call any library function, we must include the
header file that contains its prototype declaration.

One Dicey Issue
Now consider the following program:

include <stdio.h>
int main()
{

int i = 10, j = 20 ;
printf ("%d %d %d\n", i, j) ;
printf ("%d\n", i, j) ;
return 0 ;

}

This program gets successfully compiled, even though there is a
mismatch in the format specifiers and the variables in the list used in
printf(). This is because, printf() accepts variable number of arguments
—sometimes 2 arguments, sometimes 3 arguments, etc. Hence, even
with the mismatch above, the call still matches with the prototype of
printf() present in ‘stdio.h’. At run-time, when the first printf() is
executed, since there is no variable matching with the last specifier %d,
a garbage integer gets printed. Similarly, in the second printf(), since
the format specifier for j has not been mentioned, its value does not get

Chapter 8: Functions 139

printed. How to define functions with variable number of arguments is
discussed in Chapter 22.

Return Type of Function
Suppose we want to obtain square of a floating-point number using a
function. This can be achieved through a simple program shown below.

include <stdio.h>
float square (float) ;
int main()
{

float a, b ;
printf ("Enter any number ") ;
scanf ("%f", &a) ;
b = square (a) ;
printf ("Square of %f is %f\n", a, b) ;
return 0 ;

}
float square (float x)
{

float y ;
y = x * x ;
return (y) ;

}

And here are three sample runs of this program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.250000
Enter any number 2.5
Square of 2.5 is 6.250000

Since we are returning a float value from this function, we have
indicated the return type of the square() function as float in the
prototype declaration as well as in the function definition. Had we
dropped float from the prototype and the definition, the compiler
would have assumed that square() is supposed to return an integer
value. This is because, default return type of any function is int.

140 Let Us C

Problem 8.1
Write a function to calculate the factorial value of any integer entered
through the keyboard.

Program

/* Calculate factorial value of an integer using a function */
include <stdio.h>
int fact (int) ;
int main()
{

int num ;
int factorial ;
printf ("\nEnter a number: ") ;
scanf ("%d", &num) ;
factorial = fact (num) ;
printf ("Factorial of %d = %ld\n", num, factorial) ;
return 0 ;

}
int fact (int num)
{

int i ;
int factorial = 1 ;
for (i = 1 ; i <= num ; i++)

factorial = factorial * i ;
return (factorial) ;

}

Output

Enter a number: 6
Factorial of 6 = 720

Problem 8.2
Write a function power (a, b), to calculate the value of a raised to b.

Chapter 8: Functions 141

Program

/* Program to calculate power of a value */
include <stdio.h>
float power (float, int) ;
int main()
{

float x, pow ;
int y ;
printf ("\nEnter two numbers: ") ;
scanf ("%f %d", &x, &y) ;
pow = power (x , y) ;
printf ("%f to the power %d = %f\n", x, y, pow) ;
return 0 ;

}
float power (float x, int y)
{

int i ;
float p = 1 ;
for (i = 1 ; i <= y ; i++)

p = p * x ;
return (p);

}

Output

Enter two numbers: 1.5 3
1.500000 to the power 3 = 3.375000

Problem 8.3
Define a function to convert any given year into its Roman equivalent.
Use these Roman equivalents for decimal numbers: 1 - I, 5 - V, 10 - X,
50 - L, 100 - C, 500 - D, 1000 - M.

Example:
Roman equivalent of 1988 is mdcccclxxxviii.
Roman equivalent of 1525 is mdxxv.

142 Let Us C

Program

/* Convert given year into its roman equivalent */
include <stdio.h>
int romanise (int, int, char) ;
int main()
{

int yr;
printf ("\nEnter year: ") ;
scanf ("%d", &yr) ;
yr = romanise (yr, 1000, 'm') ;
yr = romanise (yr, 500, 'd') ;
yr = romanise (yr, 100, 'c') ;
yr = romanise (yr, 50, 'l') ;
yr = romanise (yr, 10, 'x') ;
yr = romanise (yr, 5, 'v') ;
romanise (yr, 1, 'i') ;
return 0 ;

}
int romanise (int y, int k, char ch)
{

int i, j ;
j = y / k ;
for (i = 1 ; i <= j ; i++)

printf ("%c", ch) ;
return (y % k) ;

}

Output

Enter year: 1988
mdcccclxxxviii

Exercises

[A] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int addmult (int, int)

Chapter 8: Functions 143

int main()
{

int i = 3, j = 4, k, l ;
k = addmult (i, j) ;
l = addmult (i, j) ;
printf ("%d %d\n", k, l) ;
return 0 ;

}
int addmult (int x, int y)
{

int u,v;
u = x + y ;
v = x * y ;
return (u,v) ;

}

(b) # include <stdio.h>
int main()
{

int a ;
a = message() ;
return 0 ;

}
void message()
{

printf ("Learn from him online at ykanetkar.com\n") ;
return ;

}

(c) # include <stdio.h>
int main()
{

float a = 15.5 ;
char ch = 'C' ;
printit (a, ch) ;
return 0 ;

}
printit (a, ch)
{

printf ("%f %c\n", a, ch) ;
}

144 Let Us C

(d) # include <stdio.h>
int main()
{

let_us_c()
{

printf ("Learn C online.,.\n") ;
printf ("At ykanetkar.com\n") ;

}
return 0 ;

}

[B] State whether the following statements are True or False:

(a) Commonly used variables are available to all the functions in a
program.

(b) To return the control back to the calling function we must use the
keyword return.

(c) The same variable names can be used in different functions without
any conflict.

(d) Every called function must contain a return statement.

(e) A function may contain more than one return statement.

(f) Each return statement in a function may return a different value.

(g) A function can still be useful even if you don’t pass any arguments
to it and the function doesn’t return any value.

(h) Same names can be used for different functions without any
conflict.

(i) A function may be called more than once from any other function.

[C] Answer the following questions:

(a) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

(b) A positive integer is entered through the keyboard. Write a function
to obtain the prime factors of this number.

Chapter 8: Functions 145

For example, prime factors of 24 are 2, 2, 2 and 3, whereas prime
factors of 35 are 5 and 7.

• Functions are a group of instructions achieving some goal

• Why create functions :

1) Better complexity management - Easy to Design, Easy to Debug
2) Provide reuse mechanism - Avoids rewriting same code repeatedly

• Types of functions :

1) Library - printf() scanfQ, powQ
2) User-defined - main()

Rules for building both are same

• Three things should be done while creating a function :

1) Function definition
2) Function call
3) Function prototype declaration

• General form :

return-type function-name (type arg1, type arg2, type arg3)
{

statement1 ; statement2 ;
return (variable/constant/expression) ; -> can return only 1 value

}

A C program is a collection of one or more functions

• if a C program contains 1 function, its name is main()

• if it contains > 1 function, then one of them must be main()

• Execution of any C program always begins with mainQ

• Function names in a program must be unique

• Any function can call any other function

146 Let Us C

• Functions can be defined in any order

• More the function calls, slower the execution

• If values are passed to a function, the function must collect it while
defining it

Arguments passed to a function are called actual arguments

Arguments received by a function are called formal arguments

• Actual & Formal arguments must match in Number, Order and Type

• Actual arguments can be constants / variables / expressions

• Formal arguments must be variables

• Nested calls are legal. Ex. : a = sin (cos (b)) ;

• Call within an expression is legal. Ex. : a = sin (b) + cos (c) ;

• The error “Unresolved external” usually means there is a mistake in
the function name spelling

• return (s) ; - Returns control & value

• return ; - Returns only control

• if value is returned from a function, we can choose to ignore it

• To ensure that no value is returned from a function, use void as the
return-type in function definition and its prototype declaration

• A function by default returns an integer value. if we do not
specifically return an integer value then a garbage integer value would
be returned

• A function can return a non-integer value. The type of value must be
suitably mentioned in the function definition and its prototype
declaration as in :

float area (float r) ; /* function prototype declaration */
float area (float r) { .. } /* function definition */

9 Pointers

When you set out on a journey and reach an important
milestone, you visit a temple and thank God. Pointer is such a
milestone in your journey of learning C programming. Once you
know it, it will open totally new vistas for you. This chapter will
show you how...

147

148 Let Us C

• Call by Value and Call by Reference
• An Introduction to Pointers
• Pointer Types and their Sizes
• Back to Function Calls
• Utility of Call by Reference
• Conclusions
• Uses of Pointers
• Programs
• Exercises
• KanNotes

Chapter 9: Pointers 149

Which feature of C do beginners find most difficult to understand?
The answer is easy: pointers. Other languages have pointers but

few use them as frequently as C does. This chapter is devoted to
pointers and their usage in function calls. Let us begin with the function
calls.

Call by Value and Call by Reference
By now, we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed something
to it, we always passed the ‘values’ of variables or expressions to the
called function. Such function calls are called ‘calls by value’. The
examples of call by value are shown below:

sum = calsum (a, b, c) ;
f = factr (a) ;

Instead of passing the value of a variable, we can pass the location
number (also called address) of the variable to a function. Such a call is
known as ‘call by reference’. To understand ‘call by reference’ and its
utility, we must first equip ourselves with knowledge of a concept called
‘pointers’.

An Introduction to Pointers
The difficulty beginners have with pointers has much to do with the
pointer terminology than the actual concept. So, in our discussion of
pointers, we will try to understand pointers in terms of programming
concepts that we already know.

Consider the declaration,

int i = 3 ;

This declaration tells the C compiler to:
(a) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.
(c) Store the value 3 at this location.

We may represent i’s location in memory by the memory map shown in
Figure 9.1. We can see that the computer has selected memory location
65524 as the place to store the value 3. The location number 65524 is
not a number to be relied upon, because some other time the computer

150 Let Us C

may choose a different location for storing the value 3. The important
point is, i’s address in memory is a number.

i ------------------ ► location name

3 —------------ ► value at location

65524 ----------------- ► location number

Figure 9. 1 Memory map of a variable.

We can print this address number through the following program:

include <stdio.h>
int main()
{

int i = 3 ;
printf ("Address of i = %u\n", &i) ;
printf ("Value of i = %d\n", i) ;
printf ("Value of i = %d\n", *(&i)) ;
return 0 ;

}

The output of the above program would be:

Address of i = 65524
Value of i = 3
Value of i = 3

The ‘&’ used in the first printf() is ‘address of’ operator. The expression
&i returns the address of the variable i, which in this case happens to be
65524. Since 65524 represents an address, there is no question of a sign
being associated with it. Hence it is printed using %u, which is a format
specifier for printing an unsigned integer.

65524 is a 16-bit address. If we execute this program on a 32-bit
machine or a 64-bit machine we would get a 32-bit address or a 64-bit
address respectively. A 32-bit address can be printed using %lu and a 64-
bit address using %llu. Some compilers give a warning/error if we use
%u, %lu or %llu to print addresses saying we are trying to treat an
address as an unsigned integer. To avoid such situations, we can use the
specifier %p which prints the address in hexadecimal format.

Chapter 9: Pointers 151

We have been using the ‘&’ operator all the time in the scanf() function.
The other pointer operator available in C is ‘*’, called ‘value at address’
operator. It is being used in the third printf(). It gives the value stored at
an address 65524, which is 3. The ‘value at address’ operator is also
called ‘indirection’ operator.

Note that printing the value of *(&i) is same as printing the value of i.

The expression &i gives the address of the variable i. This address can be
collected in a variable, by saying,

j = &i ;

Figure 9. 2 shows the memory map of i and j.

3 65524

65524 65522

Figure 9. 2 Memory map of a variable and pointer variable.

As you can see, i’s value is 3 and j’s value is i’s address. Since j is a
variable that contains the address of i, it is declared as,

int *j ;

This declaration tells the compiler that j will be used to store the address
of an integer value. In other words, j points to an integer. How do we
justify the usage of * in this declaration? For this, let us go by the
meaning of *. It stands for ‘value at address’. Thus, int *j would mean,
the value at address stored in j is an int. Here is a program that
demonstrates these relationships.

include <stdio.h>
int main()
{

int i = 3 ;
int *j ;
j = &i ;
printf ("Address of i = %u\n", &i) ;

152 Let Us C

printf ("Address of i = %u\n", j) ;
printf ("Address of j = %u\n", &j) ;
printf ("Value of j = %u\n", j) ;
printf ("Value of i = %d\n", i) ;
printf ("Value of i = %d\n", *(&i)) ;
printf ("Value of i = %d\n", *j) ;
return 0 ;

}

The output of the above program would be:

Address of i = 65524
Address of i = 65524
Address of j = 65522
Value of j = 65524
Value of i = 3
Value of i = 3
Value of i = 3

Note that the following three declarations are same. Each one is
declaring j as an integer pointer.

int* j ; int * j; int *j;

Work through the above program carefully, taking help of the memory
locations of i and j shown in Figure 9.2. This program summarizes
everything that we have discussed so far. If you don’t understand the
program’s output, or the meanings of &i, &j, *j and *(&i), re-read the
last few pages. Everything we say about pointers from here onwards will
depend on your understanding these expressions thoroughly.

The concept of pointers has been further extended in the following
program.

include <stdio.h>
int main()
{

int i = 3, *j, **k ;
j = &i ;
k = &j ;
printf ("Address of i = %u\n", &i) ;
printf ("Address of i = %u\n ", j) ;
printf ("Address of i = %u\n ", *k) ;

Chapter 9: Pointers 153

printf ("Address of j = %u\n ", &j) ;
printf ("Address of j = %u\n ", k) ;
printf ("Address of k = %u\n ", &k) ;
printf ("Value of j
printf ("Value of k
printf ("Value of i
printf ("Value of i
printf ("Value of i
printf ("Value of i
return 0 ;

= %u\n ", j) ;
= %u\n ", k) ;

= %d\n ", i) ;
= %d\n ", * (&i)) ;
= %d\n ", *j) ;
= %d\n ", **k) ;

}

The output of the above program would be:

Address of i = 65524
Address of i = 65524
Address of i = 65524
Address of j = 65522
Address of j = 65522
Address of k = 65520
Value of j = 65524
Value of k = 65522
Value of i = 3
Value of i = 3
Value of i = 3
Value of i = 3

Figure 9.3 would help you in tracing out how the program prints the
above output.

i j k

3 65524 65522

65524 65522 65520

Figure 9.3 Memory map of a variable and pointer variables.

Remember that when you run this program, the addresses that get
printed might turn out to be something different than the ones shown in

154 Let Us C

Figure 9.3. However, for any addresses, the relationship between i, j and
k would remain same.

Observe how the variables j and k have been declared,

int i, *j, **k ;

Here, i is an ordinary int, j is a pointer to an int (often called an integer
pointer), whereas k is a pointer to an integer pointer.

We can extend the above program further by creating a pointer to a
pointer to an integer pointer. Likewise, there can be a pointer to a
pointer to a pointer to a pointer to an integer pointer. There is no limit
on how far can we go on extending this definition. Possibly, till the point
we can comprehend it. And that point of comprehension is usually a
pointer to a pointer. Beyond this, one rarely requires to extend the
definition of a pointer. But just in case...

Pointer Types and their Sizes
Look at the following declarations:

int *alpha ;
char *ch;
float *s ;

Here, alpha, ch and s are declared as pointer variables, i.e., variables
that hold addresses. The declaration float *s means that s is going to
contain the address of a floating-point value. Similarly, char *ch means
that ch is going to contain the address of a char value.

Even though alpha, ch and s are different types of pointers, they all hold
addresses. So, their sizes would be same. These sizes can be obtained
using the sizeof operator as shown below.

printf ("%d %d %d", sizeof (alpha), sizeof (ch), sizeof (s)) ;

This printf() would report the size of each pointer as 2 bytes, 4 bytes or
8 bytes based on whether it is executed on 16-bit, 32-bit or 64-bit
machine respectively.

Even though alpha, ch and s are different types of pointers, they all
contain addresses (location nos.). Since addresses are always whole
numbers, they contain whole numbers.

Chapter 9: Pointers 155

Back to Function Calls
Having had the first tryst with pointers, let us now get back to what we
had originally set out to learn—the two types of function calls—call by
value and call by reference.

In ‘call by value’ the ‘value’ of each actual argument in the call is copied
into corresponding formal arguments of the called function. With this
method, the changes made to the formal arguments in the called
function have no effect on the values of actual arguments in the calling
function. The following program illustrates the ‘Call by Value’:

include <stdio.h>
void swapv (int x, int y) ;
int main()
{

int a = 10, b = 20 ;
swapv (a, b) ;
printf ("a = %d b = %d\n", a, b) ;
return 0 ;

}
void swapv (int x, int y)
{

int t ;
t = x ;
x = y ;
y = t ;
printf ("x = %d y = %d\n", x, y) ;

}

The output of the above program would be:

x = 20 y = 10
a=10b=20

Note that values of a and b remain unchanged even after exchanging
the values of x and y.

In ‘call by reference’ the addresses of actual arguments in the call are
copied into the formal arguments of the called function. This means
that, using these addresses, we can access the actual arguments and
hence can manipulate them. The following program illustrates this fact:

include <stdio.h>

156 Let Us C

void swapr (int *, int *) ;
int main()
{

int a = 10, b = 20 ;
swapr (&a, &b) ;
printf ("a = %d b = %d\n", a, b) ;
return 0 ;

}
void swapr (int *x, int *y)
{

int t ;
t = *x ;
*x = *y ;
*y = t ;

}

The output of the above program would be:

a = 20 b = 10

Note that this program manages to exchange the values of a and b using
their addresses stored in x and y.

Utility of Call by Reference
We know that the return statement can return only one value from a
function at a time. We can overcome this limitation by using call by
reference as shown in the following program.

include <stdio.h>
void areaperi (int, float *, float *) ;
int main()
{

int radius ;
float area, perimeter ;
printf ("Enter radius of a circle ") ;
scanf ("%d", &radius) ;
areaperi (radius, &area, &perimeter) ;
printf ("Area = %f\n", area) ;
printf ("Perimeter = %f\n", perimeter) ;
return 0 ;

}
void areaperi (int r, float *a, float *p)

Chapter 9: Pointers 157

{
*a = 3.14 * r * r ;
*p = 2 * 3.14 * r ;

}

And here is the output...

Enter radius of a circle 5
Area = 78.500000
Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the value
of radius but, addresses of area and perimeter. Using the addresses
stored in a and p we can change the values of area and perimeter.
Hence when control returns from the function areaperi(), we are able
to output the values of area and perimeter.

Conclusions
From the programs that we have discussed here, we can draw the
following conclusions:
(a) If we want that the value of an actual argument should not get

changed in the function being called, pass the actual argument by
value.

(b) If we want that the value of an actual argument should get changed
in the function being called, pass the actual argument by reference.

(c) If a function is to be made to return more than one value at a time,
then return these values indirectly by using a call by reference.

Uses of Pointers
Pointers are popularly used for following purposes:
(a) To return multiple values from a function in an indirect manner, call

by reference is used.

(b) To access or manipulate elements of an array or string. This would
be discussed in Chapters 13 - 16.

(c) If a large object (like array or structure) is passed to a function by
value, a copy of it would be created when the function collects it.
This leads to wastage of precious memory space. This can be
avoided by passing address of the large object and collecting it in a
pointer.

158 Let Us C

(d) At times, we are required to allocate memory for an object (like
array or structure) dynamically when the program is executing. This
dynamically allocated memory is later accessed using pointers.

(e) There are different ways in which data can be organized in memory
with a view to easily store and access it. To do this, different data
structures like, stack, queue, tree, hash table and graph are used.
To implement these data structures pointers are used.

(f) Function pointers facilitates implementation of callback mechanism
through which a library function can call our function. Function
pointers are discussed in Chapter

(g) In embedded systems often parameters like pressure, temperature,
etc. are stored at specific pre-determined locations in memory.
These values can then be accessed using pointers.

Problem 9.1
Write a function that receives 5 integers and returns the sum, average
and standard deviation of these numbers. Call this function from main()
and print the results in main().

Program

/* Function which returns sum, average and standard deviation */
include <stdio.h>
include <math.h>
void stats (int *, int *, double *) ;
int main()
{

int sum, avg ;
double stdev ;
stats (&sum, &avg, &stdev) ;
printf ("Sum = %d \nAverage = %d \nStandard deviation = %lf\n",

sum, avg, stdev) ;
return 0 ;

}
void stats (int *sum, int *avg, double *stdev)
{

int n1, n2, n3, n4, n5 ;

Chapter 9: Pointers 159

printf ("\nEnter 5 numbers: ") ;
scanf ("%d%d%d%d%d", &n1, &n2, &n3, &n4, &n5) ;
* sum = n1 + n2 + n3 + n4 + n5 ;
* avg = *sum / 5 ;
* stdev = sqrt ((pow ((n1 - *avg), 2.0) + pow ((n2 - *avg), 2.0) + \

pow ((n3 - *avg), 2.0) + pow ((n4 - *avg), 2.0) + \
pow ((n5 - *avg), 2.0)) / 4) ;

}

Output

Enter 5 numbers: 10 20 30 40 50
Sum = 150
Average = 30
Standard deviation = 15.811388

Problem 9.2
Write a program that defines a function that calculates power of one
number raised to another and factorial value of a number in one call.

Program

include <stdio.h>
void power_fact (float, int, int, float *, int *) ;
int main()
{

float a ;
int b, number, factorial ;
float pow ;
printf ("Enter a and b for calculating a raised to b: ") ;
scanf ("%f %d", &a, &b) ;
printf ("Enter number whose factorial is to be calculated: ") ;
scanf ("%d", &number) ;
power_fact (a, b, number, &pow, &factorial) ;
printf ("Power = %f Factorial = %d", pow, factorial) ;
return 0 ;

}
void power_fact (float x, int y, int num, float *power, int *fact)
{

float res = 1 ;

160 Let Us C

int i ;
for (i = 1 ; i <= y ; i++)

res = res * x ;
*power = res ;
res = 1 ;
for (i = 1 ; i <= num ; i++)

res = res * i ;
*fact = res ;

}

Output

Enter a and b for calculating a raised to b: 2 5
Enter number whose factorial is to be calculated: 6
Power = 32.000000 Factorial = 720

Problem 9.3
Figure 9.4 shows three memory locations and values stored in them.
Write a program to declare variables that implement the relationship
shown. How will you print the values and addresses shown in the figure?
On which machine the program should be executed to get such
addresses?

3.14 7fff9489c7a0 7fff9489c79c

7fff9489c79c 7fff4fd134b8 7fff9489c7a0

Figure 9.4 Memory map of 3 variables.

Program

#include <stdio.h>
int main()
{

float x = 3.14 ;
float *y ;
float **z ;

Chapter 9: Pointers 161

= &x ;
z = &y ;
printf ("%p %p %p\n", &x, &y, &z) ;
printf ("%p %p\n", y, z) ;
printf ("%f %f %f", x, *y, **z) ;
return 0 ;

}

Output

0x7ffea600ed9c 0x7ffea600eda0 0x7ffea600eda8
0x7ffea600ed9c 0x7ffea600eda0
3.140000 3.140000 3.140000

[A] What will be the output of the following programs?

(a) # include <stdio.h>
void fun (int, int) ;
int main()
{

int i = 5,j = 2 ;
fun (i, j) ;
printf ("%d %d\n", i, j) ;
return 0 ;

}
void fun (int i, int j)
{

i = i * i ;
j = j * j ;

}

(b) # include <stdio.h>
void fun (int *, int *) ;
int main()
{

int i = 5,j = 2 ;
fun (&i, &j) ;
printf ("%d %d\n", i, j) ;

162 Let Us C

(c)

return 0 ;
}
void fun (int *i, int *j)
{

*i = * * * ;
*j = *j * *j ;

}

include <stdio.h>
int main()
{

float a = 13.5 ;
float *b, *c ;
b = &a ; /* suppose address of a is 1006 */
c = b ;
printf ("%u %u %u\n", &a, b, c) ;
printf ("%f %f %f %f %f\n", a, *(&a), *&a, *b, *c) ;
return 0 ;

}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

float p = 23.24 ;
int *q, **r ;
q = &p ;
r = &q ;
printf ("%f %f\n", *q, **r) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

char ch = 'A' ;
int k = 35 ;
float a = 3.14 ;
printf ("%p %p %p\n", &ch, &k, &a) ;
return 0 ;

}

Chapter 9: Pointers 163

(c) # include <stdio.h>
void function (int *) ;
int main()
{

int i = 35, *z ;
z = function (&i) ;
printf ("%d\n", z) ;
return 0 ;

}
void function (int *m)
{

return (*m + 2) ;
}

[C] Attempt the following questions:

(a) Given three variables x, y, z, write a function to circularly shift their
values to right. In other words, if x = 5, y = 8, z = 10, after circular
shift y = 5, z = 8, x =10. Call the function with variables a, b, c to
circularly shift values.

(b) Define a function that receives weight of a commodity in Kilograms
and returns the equivalent weight in Grams, Tons and Pounds. Call
this function from main() and print the results in main().

(c) Define a function to compute the distance between two points and
use it to develop another function that will compute the area of the
triangle whose vertices are A(x1, y1), B(x2, y2), and C(x3, y3). Use
these functions to develop a function which returns a value 1 if the
point (x, y) lines inside the triangle ABC, otherwise returns a value
0. Would you get any advantage if you develop these functions to
work on call be reference principle?

• Pointers are variables which hold addresses of other variables

• Address, Reference, Memory Location, Cell number are same

• & - Address of operator, * - Value at address or Indirection operator

• &, * - Pointer operators

164 Let Us C

• & can be used only with a variable

• * can be used with variable, constant or expression

• variable is same as *&variable

• Example of pointer usage :

int i = 10 ; int *j ; int **k ;
j = &i ; k = &j ;
printf (“%d %d %d”, i, *j, **k) ;

Here j is an integer pointer. k is a pointer to an integer pointer

• Even if a is a 4-byte variable, &a, gives address of first out of these
4 bytes

• For printing address - use %p.

• Using an integer ptr - Use * to reach integer

• Using a pointer to an integer pointer - Use ** to reach integer

• 3 ways to call a function :

1) Call by value - when values of variables are passed to the called
function

2) Call by reference - when addresses of variables are passed to the
called function

3) Mixed call - when values of variables and addresses of variables
are passed to the called function

• Call by Value - Change in formal arguments doesn't affect actual
arguments

• Call by Reference : Using formal arguments actual arguments can be
changed

• Examples of call types :

1) swapv (a, b) ; - Call by value
2) swapr (&a, &b) ; - call by reference
3) sumprod (a, b, c, &s, &p) ; - Mixed call

10 Recursion

“To iterate is human, to recurse devine..."

When it comes to implementing a logic that is expressible
in the form of itself, there are two ways to do it. One is the good
old way of using loops; another is the smart way of using
recursion. This chapter shows you how to adopt the smart way...

165

166 Let Us C

• Recursion
• Programs
• Exercises
• KanNotes

Chapter 10: Recursion 167

Recursion is an important feature associated with functions in C.
Though a bit difficult to understand, it is often the most direct way
of programming a complicated logic. This chapter explores recursion in

detail.

Recursion
In C, it is possible for a function to call itself. A function is called
‘recursive’ if a statement within the body of a function calls the same
function. Sometimes called ‘circular definition’, recursion is thus the
process of defining something in terms of itself.

Let us now see a simple example of recursion. Suppose we wish to
calculate factorial value of an integer. As we know, factorial value of 4 is
4 * 3 * 2 * 1. This can also be expressed as 4! = 4 * 3! where ‘!’ stands
for factorial. Thus, factorial of a number can be expressed in the form of
itself. Hence this logic can be programmed using recursion as shown in
the following program.

include <stdio.h>
int rec (int) ;
int main()
{

int a, fact ;
printf ("Enter any number: ") ;
scanf ("%d", &a) ;
fact = rec (a) ;
printf ("Factorial value = %d\n", fact) ;
return 0 ;

}
int rec (int x)
{

int f ;
if (x == 1)

return (1) ;
else

f = x * rec (x - 1) ;
return (f) ;

}

And here is the output for three runs of the program...

Enter any number: 1

168 Let Us C

Factorial value = 1
Enter any number: 2
Factorial value = 2
Enter any number: 5
Factorial value = 120

Let us understand this recursive factorial function thoroughly. In the first
run when the number entered through scanf() is 1, let us see what
action does rec() take. The value of a (i.e., 1) is copied into x. Since x
turns out to be 1, the condition if (x == 1) is satisfied and hence 1
(which is indeed the value of 1 factorial) is returned through the return
statement.

When the number entered through scanf() is 2, the (x == 1) test fails,
so we reach the statement,

f = x * rec (x - 1) ;

And this is where we meet recursion. How do we handle the expression
x * rec (x - 1)? We multiply x by rec (x - 1). Since the current value of x
is 2, we should calculate the value (2 * rec (1)). We know that the value
returned by rec (1) is 1, so the expression reduces to (2 * 1), or simply
2. Thus the expression, x * rec (x - 1) evaluates to 2, which is stored in
the variable f, and is returned to main(), where it is duly printed out.

When value of a is 3, to visualize how the control flows from one
function call to another, take a look at Figure 10.1.

from main()

rec (int x)
{

int f ;
if (x == 1)

return (1) ;
else

f = x * rec (x - 1) ;
4

return (f) ;
}
to main() <---

...

rec (int x)
{

int f ;
if (x == 1)

return (1) ;
else

f = x * rec (x - 1) ;

return (f) ;
} }

rec (int x)
{

int f ;
if (x == 1)

return (1) ;
else

f = x * rec (x - 1) ;

return (f) ;

Figure 10.1 Working of recursive rec() function.

Chapter 10: Recursion 169

First time when rec() is called from main(), x collects 3. From here,
since x is not equal to 1, the if block is skipped and rec() is called again
with the argument (x - 1), i.e. 2. This is a recursive call. Since x is still
not equal to 1, rec() is called yet another time, with argument (2 - 1).
This time as x is 1, control goes back to previous rec() with the value 1,
and f is evaluated as 2. Similarly, each rec() evaluates its f from the
returned value, and finally 6 is returned to main(). The flow of
execution can be grasped easily by following the arrows shown in Figure
10.1.

Let it be clear that while executing the program, there do not exist so
many copies of the function rec(). These have been shown in the figure
just to help you keep track of how the control flows during successive
recursive calls.

Recursion may seem strange and complicated at first glance, but it is
often the most direct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Whenever we make a function call (recursive or normal), the parameters
and the return address get stored at a place in memory known as stack.
The stack gets unwound when the control returns from the called
function. Thus, during every recursive function call, we are working with
a fresh set of parameters.

Also, note that while writing recursive functions, you must have an if
statement somewhere in the recursive function to force the function to
return without recursive call being executed. If you don’t do this and
you call the function, you will fall in an indefinite loop, and the stack will
keep on getting filled with parameters and the return address each time
there is a call. The stack would become full soon and you would get a
run-time error indicating that the stack has become full. This is a very
common error while writing recursive functions. My advice is to use
printf() statement liberally during the development of recursive
function, so that you can watch what is going on.

Problem 10.1
A 5-digit positive integer is entered through the keyboard, write a
recursive function to calculate sum of digits of the 5-digit number.

170 Let Us C

Program

/* Calculate sum of digits of a five-digit number using recursion */
include <stdio.h>
int rsum (int) ;
int main()
{

int num, sum ;
int n ;
printf ("Enter number: ") ;
scanf ("%d", &num) ;
sum = rsum (num) ;
printf ("Sum of digits is %d\n", sum) ;
return 0 ;

}
int rsum (int n)
{

int s, remainder ;
if (n != 0)
{

remainder = n % 10 ;
s = remainder + rsum (n / 10) ;

}
else

return 0 ;
return s ;

}

Output

Enter number: 12345
Sum of digits is 15

Problem 10.2
A positive integer is entered through the keyboard, write a program to
obtain the prime factors of the number. Modify the function suitably to
obtain the prime factors recursively.

Chapter 10: Recursion 171

Program

/* Find Prime Factors of a number recursively */
include <stdio.h>
void factorize (int, int) ;
int main()
{

int num ;
printf ("Enter a number: ") ;
scanf ("%d", &num) ;
printf ("Prime factors are: ") ;
factorize (num, 2) ;
return 0 ;

}
void factorize (int n, int i)
{

if (i <= n)
{

if (n % i == 0)
{

printf ("%d ", i) ;
n = n / i ;

}
else

i++ ;
factorize (n, i) ;

}
}

Output

Enter a number: 60
Prime factors are: 2 2 3 5

Problem 10.3
Write a recursive function to obtain the first 25 numbers of a Fibonacci
sequence. In a Fibonacci sequence the sum of two successive terms
gives the third term. Following are the first few terms of the Fibonacci
sequence:

172 Let Us C

0 1 1 2 3 5 8 13 21 34 55 89....

Program

/* Generate first 25 terms of a Fibonacci sequence using recursion
#include<stdio.h>
int fibo (int) ;
int main()
{

int terms = 25, i, n = 0 ;
for (i = 1 ; i <= terms ; i++)
{

printf ("%d\t", fibo (n)) ;
n++ ;

}
return 0 ;

}
int fibo (int n)
{

if (n == 0 || n == 1)
return n ;

else
return (fibo (n - 1) + fibo (n - 2)) ;

}

Output

0 1 1 2 3 5 8 13 21 34 55
89 144 233 377 610 987 1597 2584 4181 6765
10946 17711 28657 46368

*/

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

printf ("I C, you C, we all C\n") ;
main() ;

Chapter 10: Recursion 173

return 0 ;
}

(b) # include <stdio.h>
include <stdlib.h>
int main()
{

int i = 0 ;
i++ ;
if (i <= 5)
{

printf ("C adds wings to your thoughts\n") ;
exit (0) ;
main() ;

}
return 0 ;

}

[B] Attempt the following questions:

(a) A positive integer is entered through the keyboard, write a function
to find the binary equivalent of this number:

(1) Without using recursion
(2) Using recursion

(b) Write a recursive function to obtain the sum of first 25 natural
numbers.

(c) There are three pegs labeled A, B and C. Four disks are placed on
peg A. The bottom-most disk is largest, and disks go on decreasing
in size with the topmost disk being smallest. The objective of the
game is to move the disks from peg A to peg C, using peg B as an
auxiliary peg. The rules of the game are as follows:

(1) Only one disk may be moved at a time, and it must be the top
disk on one of the pegs.

(2) A larger disk should never be placed on the top of a smaller
disk.

Write a program to print out the sequence in which the disks should
be moved such that all disks on peg A are finally transferred to peg
C.

174 Let Us C

• A function that calls itself is called a recursive function

• Any function, including mainQ can become a recursive function

• Recursive call always leads to an infinite loop. So, a provision must
be made to get outside this infinite loop

• The provision is done by making the recursive call either in the if
block or in the else block

• If recursive call is made in the if block, else block should contain the
end condition logic

• If recursive call is made in the else block, if block should contain the
end condition logic

• Fresh set of variables are born during each function call - normal call
or recursive call

• Variables die when control returns from a function

• Recursive function may or may not have a return statement

• Recursion is an alternative for loop in logics which are expressible in
the form of themselves

• Recursive calls are slower than an equivalent while / for / do-while
loop

• It becomes easy to understand the working of a recursive function if
you make several copies of the same function on paper and then
perform a dry run of the program

Being able to use the data types in a program is one thing, being
able to understand how they behave and why they behave that
way is quite a different thing. This chapter is about the second
thing...

175

176 Let Us C

• Integers—short, long, long long, signed, unsigned
• Chars—signed, unsigned
• Reals—float, double, long double
• A Few More Issues...
• Storage Classes in C

Automatic Storage Class
Register Storage Class
Static Storage Class
External Storage Class
Which to Use When
A Few Subtle Issues

• Exercises
• KanNotes

Chapter 11: Data Types Revisited 177

As seen in Chapter 1, the primary data types could be of three
varieties—char, int, and float. Each of them has several variations.

For example, a char can be an unsigned char or a signed char. We would
take a closer look at these variations of primary data types in this
chapter.

To fully define a variable, one needs to mention not only its type but
also its storage class. In this chapter, we would also explore the different
storage classes and their relevance in C programming.

Integers—short, long, long long, signed, unsigned
C offers three variations of the integer data type—short, long and long
long. Though their sizes vary across compilers, following rules apply:

(a) short is at least 2 bytes big
(b) long is at least 4 bytes big
(c) long long is at least 8 bytes big
(d) short is never bigger than int
(e) int is never bigger than long
(f) long is never bigger than long long

Based on the size, the range of each integer type varies. A 2-byte integer
can take values from -32768 to +32767, a 4-byte integer can take values
from -2147483648 to +2147483647, whereas, an 8-byte integer can take
values from -9223372036854775808 to 9223372036854775807. The
range for a specific compiler is defined in the file "limits.h" that comes
with the compiler.

Each of these integers has two further variations—signed and unsigned.
In the signed variety, the highest (leftmost) bit stores the sign of the
number—0, if the number is positive, and 1, if the number is negative.
On the other hand, in unsigned all the bits are used to store the value of
the number. These variables can be declared as shown below.

short signed int a ;
short unsigned int b ;
signed int i ;
unsigned int j ;
signed long int x ;

178 Let Us C

unsigned long int y ;
signed long long int m ;
unsigned long long int n ;

In these declarations, signed and int can be dropped. So, following
declarations would have served the same purpose as the ones made
above:

short a ;
short unsigned b ;
int i ;
unsigned j ;
long x ;
unsigned long y ;
long long m ;
unsigned long long n ;

Depending upon the programming situation, we should use the
appropriate type of integer. For example, if a variable is going to only
count things, then we can declare it as,

unsigned int num_students ;

With this, the range of permissible integer values (for a 32-bit compiler)
will shift from the range -2147483648 to +2147483647 to the range 0 to
4294967295. This doubles the size of the largest possible value that it
can take, since in an unsigned int, the left-most bit is not used to store
the sign of the number and is free to store the value of the number.

Chars—signed, unsigned
Parallel to integers, chars also can be signed or unsigned. Both occupy
one byte each, but have different ranges. To begin with, it might appear
strange as to how a char can have a sign. Consider the statement

signed char ch = 'A' ;

Here binary equivalent of the ASCII/Unicode value of ‘A’ (i.e., binary of
65) gets stored in ch. And if 65’s binary can be stored, then -54’s binary
can also be stored.

Chapter 11: Data Types Revisited 179

As with integers, signed is default. So signed char is same as char and
has a range from -128 to +127. Likewise, an unsigned char has a range
from 0 to 255.

Note that while assigning a value to an integer or a char, if it exceeds the
upper bound, then the appropriate value from negative side of the
range gets assigned. Likewise, if the lower bound is exceeded, then the
value from the positive side of the range gets assigned. The following
program illustrates this:

include <stdio.h>
int main()
{

char ch = 128 ;
char dh = -132 ;
printf ("%hhd %hhd\n", ch, ch) ;
return 0 ;

}

On execution, the program produces the output -128 124. Since ch has
been defined as a char, it cannot take a value bigger than +127. When
we attempt to assign it a value 128, it exceeds +127 by 1. So, the first
value on the negative side, i.e., -128, gets assigned to ch. Similarly, -132
exceeds -128 by 4, so 4th number from positive side, i.e., 124, gets
assigned to dh. Note that to print the number stored in a signed char we
should use the format specifier %hhd. Similarly, to get numerical output
of an unsigned char we should use %hhu.

Reals—float, double, long double
A float occupies four bytes in memory and can range from -3.4e38 to
+3.4e38. If this is insufficient, then C offers a double data type that
occupies 8 bytes in memory and has a range from -1.7e308 to +1.7e308.
A variable of type double can be declared as,

double population ;

If the situation demands usage of real numbers that lie even beyond the
range offered by double data type, then there exists a long double that
can range from -1.7e4932 to +1.7e4932. A long double occupies 10
bytes in memory.

180 Let Us C

The essence of all the data types that we have learnt so far has been
captured in Figure 11.1.

Data Type Range Bytes Format

signed char -128 to +127 1 %c

unsigned char 0 to 255 1 %c

short signed int -32768 to +32767 2 %hd

short unsigned int 0 to 65535 2 %hu

signed int -2147483648 to +2147483647 4 %d

unsigned int 0 to 4294967295 4 %u

long signed int -2147483648 to +2147483647 4 %ld

long unsigned int 0 to 4294967295 4 %lu

long long signed int -9223372036854775808 to

9223372036854775807

8 %lld

long long unsigned int 0 to 18446744073709551615 8 %llu

float -3.4e38 to +3.4e38 4 %f

double -1.7e308 to +1.7e308 8 %lf

long double -1.7e4932 to +1.7e4932 10 %Lf

Figure 11.1 Data types in C.

A Few More Issues...
Having seen all the variations of the primary types let us take a look at
some more related issues.

(a) In the ranges of chars and ints, there is an extra number on the
negative side. This is because a negative number is stored as 2’s
compliment of its binary. For example, let us see how -128 is stored.
Firstly, binary of 128 is calculated (10000000), then its 1’s
compliment is obtained (01111111). A 1’s compliment is obtained
by changing all 0s to 1s and 1s to 0s. Then 2’s compliment is
obtained by adding 1 to the 1’s compliment. Thus, for -128,
10000000 gets stored. This is an 8-bit number and it can be easily
accommodated in a char. As against this, +128 cannot be stored in a
char because its binary 010000000 (left-most 0 is for positive sign)

Chapter 11: Data Types Revisited 181

is a 9-bit number. However, +127 can be stored as its binary
01111111 turns out to be an 8-bit number.

(b) What happens when we attempt to store +128 in a char? The first
number on the negative side, i.e., -128 gets stored. This is because
from the 9-bit binary of +128, 010000000, only the right-most 8 bits
get stored. But when 10000000 is stored, the left-most bit is 1 and
it is treated as a sign bit. Thus, the number becomes -128 since it is
indeed the binary of -128, as can be understood from (b) above.
Similarly, you can verify that an attempt to store +129 in a char
results in storing -127 in it. In general, if we exceed the range from
positive side we end up on the negative side. Vice versa is also true.
If we exceed the range from negative side, we end up on positive
side.

(c) Sometimes, we come across situations where the constant is small
enough to be an int, but still we want to give it to be treated as
long. In such cases, we add the suffix ‘L’ or ‘l’ at the end of the
number, as in 23L. Likewise, 3.14 is double by default. To treat it as
a float we should use 3.14f, and 3.14l or 3.14L to treat it as a long
double.

Storage Classes in C
We have already said all that needs to be said about constants, but we
are not finished with variables. To fully define a variable, one needs to
mention not only its ‘type’ but also its ‘storage class’.

In our programs, we didn’t mention storage class of the variables used.
We were able to get away with this because storage classes have
defaults. If we don’t specify the storage class of a variable while defining
it, the compiler will assume a storage class depending on where the
variable is being defined.

A variable’s storage class tells us the following things about the variable:

(a) Where would the variable be stored.
(b) What would be the default initial value of the variable.
(c) What would be the scope of the variable; i.e., to which statements

the value of the variable would be available.
(d) What would be the life of the variable; i.e., how long would the

variable exist.

182 Let Us C

There are four storage classes in C:
(a) Automatic storage class
(b) Register storage class
(c) Static storage class
(d) External storage class
Let us examine these storage classes one by one.

Automatic Storage Class
The features of an automatic storage class variable are as follows:

Storage: Memory.
Default value: An unpredictable value, often called a garbage value.
Scope: Local to the block in which the variable is defined.
Life: Till the control remains within the block in which the

variable is defined.

Following program indicates how an automatic storage class variable is
declared, and the fact that if the variable is not initialized, it contains a
garbage value.

include <stdio.h>
int main()
{

auto int i, j ;
printf ("%d %d\n", i, j) ;
return 0 ;

}

The output of the above program could be...

1211 221

where, 1211 and 221 are garbage values of i and j. When you run this
program, you may get different output depending upon what garbage
values lay at addresses allocated to the variables. Note that the keyword
for this storage class is auto, and not automatic.

Scope and life of an automatic variable can be understood through the
following program:

Chapter 11: Data Types Revisited 183

include <stdio.h>
int main()
{

auto int i = 1 ;
{

auto int i = 2 ;
{

auto int i = 3 ;
printf ("%d ", i) ;

}
printf ("%d ", i) ;

}
printf ("%d\n", i) ;
return 0 ;

}

The output of the above program would be 3 2 1. Note that the
Compiler treats the three i’s as different variables, since they are
defined in different blocks. All three i’s are available to the innermost
printf(). This is because the innermost printf() lies in all the three
blocks (a block is all statements enclosed { }) in which the three i’s are
defined. This printf() prints 3 because when all three i’s are available,
the one which is most local (nearest to printf()) is given a priority.

Once the control comes out of the innermost block, the variable i with
value 3 dies, and hence the i in the second printf() refers to i with value
2. Similarly, when the control comes out of the next innermost block,
the third printf() refers to the i with value 1.

Register Storage Class
The features of a register storage class variable are as folows:
Storage: CPU registers.
Default value: Garbage value.
Scope: Local to the block in which the variable is defined.
Life: Till the control remains within the block in which the

variable is defined.

A value stored in a CPU register is accessed faster than the one that is
stored in memory. Therefore, if a variable is used at many places in a

184 Let Us C

program, it is better to declare its storage class as register. A good
example of frequently used variables is loop counters. We can name
their storage class as register as shown below.

register int i ;
for (i = 1 ; i <= 10 ; i++)

printf ("%d\n", i) ;

Though i is of register storage class, we cannot say for sure that its value
would be stored in a CPU register. That is because the number of CPU
registers are limited, and they may be busy doing some other tasks. In
such an event, i works as if its storage class is auto.

A float value requires 4 bytes. So, it cannot be stored in a CPU register if
the microprocessor has 16-bit CPU registers. If you use register storage
class for a float in such a case, you won’t get any error messages.
Instead, the compiler would treat it as an auto storage class variable.

Also, regardless of whether a variable gets a place in CPU register or not,
we can never use & on a register storage class variable.

Static Storage Class
The features of a static storage class variable are as follows:
Storage: Memory.
Default value: Zero.
Scope: Local to the block in which the variable is defined.
Life: Value of the variable persists between different

function calls.

The following program shows the static storage class in action:

#include <stdio.h>
void increment() ;
int main()
{

increment() ;
increment() ;
increment() ;
return 0 ;

}
void increment()

Chapter 11: Data Types Revisited 185

{
auto int i = 1 ;
static int j = 1 ;
i = i + 1 ;
j = j + 1 ;
printf (“%d %d\n”, i, j) ;

}

Here is the output of the program...

2 2
2 3
2 4

No matter how many times we call increment(), i is initialized to 1 every
time, whereas j is initialized to 1 only during the first call to increment().
When control returns from increment(), the variable i dies, whereas j
being static, continues to live with its latest value. j dies only when
execution of the program comes to an end.

External Storage Class
The features of an external storage class variable are as follows:
Storage: Memory.
Default value: Zero.
Scope: Global.
Life: As long as the program’s execution doesn’t come to

an end.

External variables differ from those we have already discussed in that
their scope is global, not local. External variables are declared outside all
functions, and are available to all the statements that care to use them.
Here is an example to illustrate this fact.

include <stdio.h>
int i ;
void increment() ;
void decrement() ;
int main()
{

printf ("\ni = %d", i) ;

186 Let Us C

increment() ;
increment() ;
decrement() ;
decrement() ;
return 0 ;

}
void increment()
{

i = i + 1 ;
printf ("on incrementing i = %d\n", i) ;

}
void decrement()
{

i = i - 1 ;
printf ("on decrementing i = %d\n", i) ;

}

The output of the program would be as follows:

i = 0
on incrementing i = 1
on incrementing i = 2
on decrementing i = 1
on decrementing i = 0

From the above output, the variable i is available to the functions
increment() and decrement() since i has been defined outside all
functions.

Look at the following program.

include <stdio.h>
int x = 21 ;
int main()
{

extern int y ;
printf ("%d %d\n", x, y) ;
return 0 ;

}
int y = 31 ;

Chapter 11: Data Types Revisited 187

Here, x and y both are global variables. Since both of them have been
defined outside all the functions, both enjoy external storage class. Note
the difference between the following statements:

extern int y ;
int y = 31 ;

Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable, no space is reserved for it,
whereas when we define it, space gets reserved for it in memory. We
had to declare y since it is being used in printf() before its definition is
encountered. There was no need to declare x since it was defined before
its use. Also remember that a variable can be declared several times but
can be defined only once.

Another small issue—what will be the output of the following program?

include <stdio.h>
int x = 10 ;
void display() ;
int main()
{

int x = 20 ;
printf ("%d\n", x) ;
display() ;
return 0 ;

}
void display()
{

printf ("%d\n", x) ;
}

Here x is defined at two places, once outside main() and once inside it.
When the control reaches printf() in main() which x gets printed? The
local variable x, since it gets a preference over the global x. Hence the
printf() outputs 20. When display() is called and control reaches the
printf() there is no such conflict, since local x (with value 20) is not
available here. Hence, this time, the value of the global x, i.e., 10 gets
printed.

188 Let Us C

Which to Use When
We can make a few ground rules for usage of different storage classes in
different programming situations with a view to:
(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:
(a) Use register storage class for only those variables that are being

used very often in a program, like loop counters.

(b) Use static storage class only if you want the variable to persist
across function calls.

(c) Use extern storage class for only those variables that are being used
by almost all the functions in the program. This would avoid
unnecessary passing of these variables as arguments when making
a function call.

(d) If absence of any of the express needs mentioned above, use auto
storage class.

A Few Subtle Issues
Let us now look at some subtle issues about storage classes.
(a) All auto variables defined in a function are created on the stack

each time the function is called. These variables die when control
goes back from the function. However, if the variables inside the
function are defined as static then they do not get created on the
stack. Instead, they are created in a place in memory called ‘Data
Segment’. Such variables die only when program execution comes
to an end.

(b) A static variable can also be defined outside all the functions. The
scope of this variable is limited to the same file in which it is
declared. This means that the variable would not be available to
any function defined in other files.

(c) If a variable is defined outside all functions, then not only is it
available to all other functions in the file in which it is defined, but is
also available to functions defined in other files. In the other files,

Chapter 11: Data Types Revisited 189

the variable should be declared as extern. This is shown in the
following program:

/* PR1.C */
include <stdio.h>
int i = 35 ;
int fun1() ;
int fun2() ;
int main()
{

printf ("%d\n", i) ;
fun1() ;
fun2() ;
return 0 ;

}

/* FUNCTIONS.C */
include <stdio.h>
extern int i ;
int fun1()
{

i++ ;
printf ("%d\n", i) ;
return 0 ;

}
int fun2()
{

i-- ;
printf ("%d\n", i) ;
return 0 ;

}

The output of the program would be

35
36
35

190 Let Us C

(d) In the following statements the first three are definitions, whereas
the last one is a declaration.

auto int i ; static int j ; register int k ; extern int l ;

When you have imbibed the stuff on storage classes presented in this
chapter, do take a look at Chapter 24 for a more detailed explanation.

[A]

(a)

(b)

What will be the output of the following programs?

include <stdio.h>
int i = 0 ;
void val() ;
int main()
{

printf ("main's i = %d\n", i) ;
i++ ;
val() ;
printf ("main's i = %d\n", i) ;
val() ;
return 0 ;

}
void val()
{

i = 100 ;
printf ("val's i = %d\n", i) ;
i++ ;

}

include <stdio.h>
int main()
{

static int count = 5 ;
printf ("count = %d\n", count--) ;
if (count != 0)

main() ;
return 0 ;

}

Chapter 11: Data Types Revisited 191

(c) # include <stdio.h>
void fnc() ;
int main()
{

func() ;
func() ;
return 0 ;

}
void func()
{

auto int i = 0 ;
register int j = 0 ;
static int k = 0 ;
i++ ; j++ ; k++ ;
printf ("%d % d %d\n", i, j, k) ;

}

(d) # include <stdio.h>
int x = 10 ;
int main()
{

int x = 20 ;
{

int x = 30 ;
printf ("%d\n", x) ;

}
printf ("%d\n", x) ;
return 0 ;

}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

long num = 2 ;
printf ("%d\n", num) ;
return 0 ;

}

(b) # include <stdio.h>

192 Let Us C

int main()
{

char ch = 200 ;
printf ("%d\n", ch) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

long float a = 25.345e454 ;
unsigned double b = 25 ;
printf ("%lf %d\n", a, b) ;
return 0 ;

}

(d) # include <stdio.h>
static int y ;
int main()
{

static int z ;
printf ("%d %d\n", y, z) ;
return 0 ;

}

[C] State whether the following statements are True or False:

(a) The value of an automatic storage class variable persists between
various function invocations.

(b) If the CPU registers are not available, the register storage class
variables are treated as static storage class variables.

(c) If we try to use register storage class for a float variable the
compiler will report an error message.

(d) The default value for automatic variable is zero.
(e) The life of static variable is till the control remains within the block

in which it is defined.
(f) If a global variable is to be defined, then the extern keyword is

necessary in its declaration.
(g) The address of register variable is not accessible.

Chapter 11: Data Types Revisited 193

• Types :
Integer - short, int, long, long long, signed, unsigned
Char - signed, unsigned
Real - float, double, long double

• Sizes of data types may vary from one compiler to another. For
example, size of an int is 2 bytes in TC, 4 bytes in VisualStudio

• For all compilers : sizeof (short) <= sizeof (int) <= sizeof (long)
<= sizeof (long long)

• In signed, left-most bit is 0/1 (+ve/-ve). In unsigned, all bits
contribute to value

• Negative integers are stored as 2s complement

• Number without a decimal point is by default an int. Use suitable
suffix to change it :

365u - unsigned, 365l - long, 365lu, 365ul - long unsigned,
365ll - long long, 365ull - long long unsigned
Capital suffix have same effect

• Number with a decimal point is by default a double. Use suitable suffix
to change it :

3.14 - double, 3.14f - float, 3.14L - long double

• Two things are needed to completely define a variable :

1) Type of variable 2) Storage class of variable

• Type signifies what type of value can be stored in the variable

Storage classes signifies storage location, default initial value, scope
and life

• Automatic storage class :

194 Let Us C

Default value - garbage, Storage - memory
Scope - local to the block ({ })
Life - till control is in the block in which variable is defined

Storage - memory

Storage - memory

• Register storage class :

Default value - garbage, Storage - CPU registers
Scope - local to the block
Life - till control is in the block in which variable is defined

• Static storage class :

Default value - 0,
Scope - local to the block
Life - till execution of program doesn’t end

• Extern storage class :

Default value - 0,
Scope - Global
Life - till execution of program doesn’t end

• CPU Registers - Internal memory of Microprocessor

• Definition of a variable reserves space, declaration doesn’t

• Redeclaration of variable is ok, redefinition is not

• int i ; Definition extern int i ; declaration

• Local variable gets a priority over global variable of same name

• Out of locals of same name, most local variable gets a priority

• Usage:
Register - For frequently used variables
Static - If variable is to live across function calls
External - If variable is required by all functions
Automatic - All other cases

12 The C Preprocessor

"Add spick and span..."

Do you think when a game company creates a game for
different mobile phones; it maintains different programs for
each phone type? It cannot afford to, as making changes in one
would necessitate changes in all others. Moreover, with so many
phone types around, this would be a difficult proposition. This
situation can be smartly handled using preprocessor directives.
This chapter shows you how...

195

196 Let Us C

• Features of C Preprocessor
• Macro Expansion

Macros with Arguments
Macros versus Functions

• File Inclusion
• Conditional Compilation
• #if and #elif Directives
• Miscellaneous Directives

#undef Directive
#pragma Directive

• The Build Process
• Programs
• Exercises
• KanNotes

Chapter 12: The C Preprocessor 197

C preprocessor is a program that processes our program before it is
passed to the compiler. We can write C programs without knowing
anything about the preprocessor or its facilities. But preprocessor is such

a great convenience that virtually all C programmers rely on it. This
chapter explores the preprocessor directives, and discusses the pros and
cons of using them in programs.

Features of C Preprocessor
The C program is known as ‘Source Code’. When the source code is
passed through ‘Preprocessor’, it creates ‘Expanded Source Code’ as per
the preprocessor directives used in the source code. Each preprocessor
directive begins with a # symbol. Following preprocessor directives may
be used in the source code:
(a) Macro expansion
(b) File inclusion
(c) Conditional compilation
(d) Miscellaneous directives
Let us understand these preprocessor directives one-by-one.

Macro Expansion
Take a look at the following program:

include <stdio.h>
define PI 3.1428
int main()
{

float r = 6.25, area ;
area = PI * r * r ;
printf ("Area of circle = %f\n", area) ;
return 0 ;

}

In the statement

define PI 3.1428

PI is called ‘macro template’, whereas, 3.1428 is called ‘macro
expansion’. During preprocessing, every macro template gets replaced
with its corresponding macro expansion. Usually, macro templates are
written in capital letters. This makes it easy for programmers to identify
macro templates while reading the program.

198 Let Us C

And now an important question—why use #define at all? Suppose the
constant 3.1428 appears many times in your program. Some day you
may wish to change all these values with a more accurate 3.142857. For
this you have to go through the program and manually change each
occurrence of the constant. However, if you have defined PI in a #define
directive, you only need to change the #define directive to:

define PI 3.142857

Once done, the change will be made in all occurrences of PI during
preprocessing. This convenience may not matter for small programs
shown above, but with large programs, macro definitions are almost
indispensable.

You may feel that the same purpose could have been served had we
used a variable pi instead of a macro template PI. But for three reasons
it would have been a bad idea.

Firstly, it is inefficient, since the compiler can generate faster and more
compact code for constants than it can for variables. Secondly, using a
variable for what is really a constant encourages sloppy thinking—if
something never changes, it is hard to imagine it as a variable. And
thirdly, there is always a danger that the variable may inadvertently get
altered somewhere in the program. So, it’s no longer a constant that you
think it is.

Given below are some more sample #defines.

define AND &&
define ARANGE (a > 25 AND a < 50)
define SLOGAN printf ("In history you can see the future\n") ;

Macros with Arguments
The macros that we have used so far are called simple macros. Macros
can have arguments, just as functions can. Here is a program that
illustrates this fact.

include <stdio.h>
define AREA(x) (3.14 * x * x)
int main()
{

float r1 = 6.25, r2 = 2.5, a ;
a = AREA (r1) ;

Chapter 12: The C Preprocessor 199

printf ("Area of circle = %f\n", a) ;
a = AREA (r2) ;
printf ("Area of circle = %f\n", a) ;
return 0 ;

}

On execution, the program produces the following output:

Area of circle = 122.656250
Area of circle = 19.625000

The preprocessor would replace every AREA(x) with (3.14 * x * x). As it
does this, x would be substituted with the argument that we use in the
macro. Thus a = AREA(r1) would be replaced with a = (3.14 * r1 * r1).

Here are a few more examples of macros with arguments:

define ISDIGIT(n) (n >= 48 && n <= 57)
define ISCAPITAL(ch) (ch >= ’A’ && ch <= ’Z’)

Here are some important points to remember while writing macros with
arguments:

(a) Do not give a space between macro template and its argument in
#define. For example, there should be no blank between AREA and
(x) in the definition, #define AREA(x) (3.14 * x * x).

(b) The entire macro expansion should be enclosed within parentheses.
Following program shows what would happen if we fail to enclose
the macro expansion within parentheses.

include <stdio.h>
define SQUARE(n) n * n
int main()
{

int j ;
j = 64/SQUARE(4) ;
printf ("j = %d\n", j) ;
return 0 ;

}

The above program would output j = 64, whereas, what we
expected was j = 4. What went wrong? Well, the macro got
expanded to

200 Let Us C

j = 64 / 4 * 4 ;

which yielded 64.

(c) Macros can be split into multiple lines, with a ‘\’ (backslash) present
at the end of each line, except the last. Given below is one such
multiline macro.

define HLINE for (i = 0 ; i < 79 ; i++) \
printf ("%c", 196) ;

(d) If you are unable to debug a macro, you should view the expanded
code of the program to see how the macro is getting expanded. If
your source code is present in the file PR1.C, then the expanded
source code would be stored in PR1.I. You need to generate this file
at the command prompt by saying:

C:\>cpp PR1.C - in Turbo C/C++
$ gcc -E -o PR1.I PR1.C - in gcc

These commands invoke the C Preprocessor which generates the
expanded source code and stores it in a file called PR1.I. You can
now open this file and see the expanded source code.

Macros versus Functions
In the above example, a macro AREA was used to calculate the area of
the circle. We could have defined a function area() for the same. This
brings us to a question—which one to use when?

If we use a macro, it would be expanded during preprocessing. As
against this, if we use a function, during execution control and value of
radius would be passed to area(), area would be calculated and
returned.

So, if we use a macro hundred times in a program, the macro expansion
(formula) goes into our source code at hundred different places, thus
increasing the program size. On the other hand, if a function is used, the
formula would occur only once in the function. At hundred places where
you need this formula there would be function calls. So, space
requirement would now be less. But passing arguments to a function
and getting back the returned value does take time and would therefore
slow down the program. This gets avoided with macros since they have

Chapter 12: The C Preprocessor 201

already been expanded and placed in the source code before
compilation. Thus, the trade-off is between memory space and time.

Moral is—if the macro is simple as in our examples, it makes nice
shorthand and avoids the overheads associated with function calls. On
the other hand, if we have a fairly large macro and it is used fairly often,
we ought to replace it with a function.

File Inclusion
The next preprocessor directive that we’ll explore is file inclusion. It
looks like this:

include "filename"

It causes the entire contents of filename to be inserted into the source
code where we have used #include. It is common for the files that are to
be included to have a .h extension. This extension stands for ‘header
file’, as its contents when included go to the head of your program.

The prototypes of all the library functions are grouped into different
categories and then stored in different header files. For example,
prototypes of all Maths related functions are stored in the file ‘math.h’,
prototypes of input/output functions are stored in the file ‘stdio.h’, etc.

Actually, there exist two ways to write #include statement. These are:

include "filename"
include <filename>

The meaning of each of these forms is given below.

include "mylib.h" This directive would look for the file mylib.h in
the current directory as well as the list of
directories specified in the include search path.

include <mylib.h> This directive would look for the file mylib.h in
the list of directories specified in the include
search path.

The include search path is a list of directories that would be searched for
the file being included. Different C compilers let you set the search path
in different manner. For Turbo C/C++ compiler the search path can be
set up by selecting ‘Directories’ from the ‘Options’ menu. On doing this,
a dialog box appears. In this dialog box against ‘Include Directories’, we

202 Let Us C

can specify the search path. We can also specify multiple include paths
separated by ‘;’ (semicolon) as shown below.

c:\tc\lib ; c:\mylib ; d:\libfiles

In Visual Studio the search path for a project can be set by right-clicking
the project name in Solution Explorer and selecting "Properties" from
the menu that pops up. This brings up a dialog box. You can now set up
the search path by going to "Include Directories" in "Configuration
Properties" tab.

Suppose we wish to create our own library of functions which we wish
to distribute to others. For this the functions should be defined in a ".c"
file and their corresponding prototype declarations and macros be
declared in a ".h" file. The definitions can then be compiled into a library
file (in machine language). While distributing the library, its compiled
version and the ".h" file should be given to users. Those who wish to use
your library would have to link your compiled library file and include
your header file. This way the function definitions in the ".c" file remain
with you and are not exposed to users of your library.

Conditional Compilation
We can, if we want, have the compiler skip over part of a source code by
inserting the preprocessing commands #ifdef and #endif, which have
the general form given below.

ifdef macroname
statement 1 ;
statement 2 ;
statement 3 ;

endif

If macroname is #defined, the block of code will be processed as usual;
otherwise not.

Where would #ifdef be useful? When would you like to compile only a
part of your program? In three cases, discussed below.

(a) We can “comment out” some lines of code that we do not need
right now as shown below.

int main()
{

Chapter 12: The C Preprocessor 203

ifdef NOTNOW
statement 1 ;
statement 2 ;

endif
statement 3 ;
statement 4 ;

}

Here, statements 1 and 2 would get compiled only if the macro
NOTNOW is defined, and we have purposefully omitted the
definition of this macro. At a later date, if we want that these
statements should also get compiled, we can either delete the
#ifdef and #endif statements or #define NOTNOW at the top.

(b) A more sophisticated use of #ifdef has to do with making the
programs portable, i.e., to make them work on two computers with
different configurations. You can do so by isolating the lines of code
that must be different for each machine by marking them off with
#ifdef, as follows:

int main()
{

ifdef INTELI7
code suitable for an Intel I7 machine

else
code suitable for other machines

endif
code common to both the computers

}

When we compile this program, it would compile only the code
suitable for other machines and the common code, since macro
INTELI7 has not been defined. If we want to run the program on an
Intel I7 machine, before recompiling the program we need to add a
statement at the top saying,

define INTELI7

Sometimes, instead of #ifdef, the #ifndef directive is used. The
#ifndef (which means ‘if not defined’) works exactly opposite to
#ifdef.

204 Let Us C

(c) Ideally, we should #include a file only once. But if by mistake we
use multiple #includes for the same file, it should get included only
once. This can be achieved using #ifndef as shown below:

/* myfile.h */
ifndef__myfile_h

define__myfile_h
/* some declarations */

endif

First time the file ‘myfile.h’ gets included, the preprocessor checks
whether a macro called __myfile_h is defined or not. If not defined
already, it gets defined and the rest of the code gets included. Next
time we attempt to include the same file, the inclusion is prevented
since __myfile_h already stands defined.

#if and #elif Directives
The #if directive can be used to test whether an expression evaluates to
a non-zero value or not. If the result of the expression is non-zero, then
subsequent lines up to a #else, #elif or #endif are compiled, otherwise
they are skipped. A simple example of #if directive is shown below:

int main()
{

if TEST <= 5
statement 1 ;

else
statement 2 ;

endif
}

If the expression, TEST <= 5 evaluates to true, then statement 1 is
compiled, otherwise statement 2 is compiled. In place of the expression
TEST <= 5, other expressions like (LEVEL == HIGH || LEVEL == LOW) or
ADAPTER == SVGA can also be used. If required, we can even use nested
conditional compilation directives.

Miscellaneous Directives
There are two more preprocessor directives available, though they are
not very commonly used. They are:
(a) #undef

Chapter 12: The C Preprocessor 205

(b) #pragma

#undef Directive
On some occasions, it may be desirable to cause a defined name to
become ‘undefined’. This can be accomplished by means of the #undef
directive as shown below:

undef PENTIUM

This would cause the definition of PENTIUM to be removed. All
subsequent #ifdef PENTIUM statements would evaluate to false. In
practice, seldom are you required to undefine a macro, but if you are
required to, then you know that there is #undef to fall back upon.

#pragma Directive
This directive is used to turn certain features on or off. Pragmas vary
from one build tool to another. Some pragmas deal with formatting
source listings and placing comments in the object file. There are others
that allow us to suppress warnings generated by the compiler. Some of
these pragmas are discussed below.

(a) #pragma startup and #pragma exit: These directives allow us to
specify functions that are called upon program startup (before
main()) or program exit (just before the program terminates). Their
usage is as follows:

include <stdio.h>
void fun1() ;
void fun2() ;
pragma startup funl
pragma exit fun2
int main()
{

printf ("Inside main\n") ;
return 0 ;

}
void fun1()
{

printf ("Inside fun1\n") ;
}
void fun2()
{

206 Let Us C

printf ("Inside fun2\n") ;
}

And here is the output of the program.

Inside funl
Inside main
Inside fun2

Note that the functions fun1() and fun2() should neither receive
nor return any value. If we want two functions to get executed at
startup then their pragmas should be defined in the reverse order
in which we want to get them called.

(b) #pragma warn: On compilation the compiler reports Errors and
Warnings in the program, if any. Errors have to be corrected.
Warnings, on the other hand, offer the programmer a hint or
suggestion that something may be wrong with a particular piece of
code. Two most common situations when warnings are displayed
are as under:

- If you have written code that is considered as bad programming
practice. For example, if a function does not return a value and
you have not declared the return type of this function as void.

- If you have written code that might cause run-time errors,
such as assigning a value using an uninitialized pointer.

The #pragma warn directive tells the compiler whether or not we
want to suppress a specific warning. Usage of this pragma is shown
below.

include <stdio.h>
pragma warn -rvl
pragma warn -par
pragma warn -rch
int f1()
{

/* return value */
/* parameter not used */
/* unreachable code */

int a = 5;
}
void f2 (int x)
{

printf ("Inside f2\n") ;
}

Chapter 12: The C Preprocessor 207

int f3()
{

int x = 6 ;
return x ;
x++ ;

}
int main()
{

fi() ;
f2 (7) ;
f3() ;
return 0 ;

}

If you go through the program, you can notice three problems
immediately. These are:
(a) Though promised, f1() doesn’t return a value.
(b) The parameter x passed to f2() is not being used anywhere.
(c) The control can never reach x++ in f3().

If we compile the program, we should expect warnings indicating
the above problems. However, this does not happen since we have
suppressed the warnings using the #pragma directives.

If we replace the ‘-’ sign with a ‘+’, then these warnings would be
flashed on compilation. Though it is a bad practice to suppress
warnings, at times, it becomes useful to suppress them. For
example, while compiling a big program you may first want to
eliminate all errors and then turn your attention to the warnings. At
such times, you may suppress the warnings. Once you have
eliminated all errors, then you may turn on the warnings and attend
to them.

The Build Process
There are many steps involved in converting a C program into an
executable form. Figure i2.i shows these different steps along with the
files created during each stage. Many software development tools hide
some of these steps from us. However, if you understand these steps, it
will make you a better programmer.

208 Let Us C

Figure 12.1 Steps involved in the build process.

Figure 12.2 summarizes the role played by each program during the
build process.

Program Input Output

Editor Program typed from
keyboard

C source code containing program
and preprocessor directives

Preprocessor C source code file Expanded Source code file created
after processing preprocessor
directives

Compiler Expanded Source code file Assembly language code

Assembler Assembly language code Relocatable Object code in machine
language

Linker Object code of our
program and object code
of library functions

Executable code in machine
language

Figure 12.2 Role of programs involved in build process.

Chapter 12: The C Preprocessor 209

Problem 12.1
Write macro definitions for the following:

1. To test whether a character is a lowercase letter or not.
2. To test whether a character is an uppercase letter or not.
3. To test whether a character is an alphabet or not. Make use of the

macros you defined in 1 and 2 above.
4. To obtain the bigger of two numbers.

Program

/* Macros ISUPPER, ISLOWER, ISAPLHA, BIG */
include <stdio.h>
#define ISUPPER(x) (x >= 65 && x <= 90 ? 1 : 0)
#define ISLOWER(x) (x >= 97 && x <= 122 ? 1 : 0)
#define ISALPHA(x) (ISUPPER(x) || ISLOWER(x))
#define BIG(x,y) (x > y ? x : y)
int main()
{

char ch ;
int d, a, b ;
printf ("\nEnter any alphabet/character: ") ;
scanf ("%c", &ch) ;
if (ISUPPER (ch) == 1)

printf ("You entered a capital letter\n") ;
if (ISLOWER (ch) == 1)

printf ("You entered a small case letter\n") ;
if (ISALPHA (ch) != 1)

printf ("You entered character other than an alphabet\n") ;
printf ("Enter any two numbers: ") ;
scanf ("%d%d", &a, &b) ;
d = BIG (a, b) ;
printf ("Bigger number is %d\n", d) ;
return 0 ;

}

Output

Enter any alphabet/character: A

210 Let Us C

You entered a capital letter
Enter any two numbers: 10 20
Bigger number is 20

Problem 12.2
Write macro definitions with arguments for calculation of area and
perimeter of a triangle, a square and a circle. Store these macro
definitions in a file “areaperi.h”. Include this file in your program, and
use the macro definitions for calculating area and perimeter for
different squares, triangles and circles.

Program

/* areaperi.h */
/* Storing the macro definitions of area and perimeter of circle, triangle
and square in the “areaperi.h” header file */
#define PI 3.1415
#define PERIC(r) (2 * PI * r)
#define AREAC(r) (PI * r * r)
#define PERIS(x) (4 * x)
#define AREAS(x) (x * x)
#define PERIT(x, y, z) (x + y + z)
#define AREAT(b, h) (0.5 * b * h)

/* Program to use macros in header file “areaperi.h” */
include <stdio.h>
include "areaperi.h"
int main()
{

int d, a, b ;
float sid1, sid2, sid3, sid, p_tri, p_cir, p_sqr, a_tri, a_cir,a_sqr ;
float r, base, height ;
printf ("\nEnter radius of circle: ") ;
scanf ("%f", &r) ;
p_cir = PERIC (r) ;
printf ("Circumference of circle = %f\n", p_cir) ;
a_cir = AREAC (r) ;
printf ("Area of circle = %f\n", a_cir) ;
printf ("Enter side of a square: ") ;

Chapter 12: The C Preprocessor 211

scanf ("%f", &sid) ;
p_sqr = PERIS (sid) ;
printf ("Perimeter of square = %f\n", p_sqr) ;
a_sqr = AREAS (sid) ;
printf ("Area of square = %f\n", a_sqr) ;
printf ("Enter length of 3 sides of triangle: ") ;
scanf ("%f %f %f", &sid1, &sid2, &sid3) ;
p_tri = PERIT (sid1, sid2, sid3) ;
printf ("Perimeter of triangle = %f\n", p_tri) ;
printf ("Enter base and height of triangle: ") ;
scanf ("%f %f", &base, &height) ;
a_tri = AREAT (base, height) ;
printf ("Area of triangle = %f\n", a_tri) ;
return 0 ;

}

Output

Enter radius of circle: 5
Circumference of circle = 31.415001
Area of circle = 78.537498
Enter side of a square: 6
Perimeter of square = 24.000000
Area of square = 36.000000
Enter length of 3 sides of triangle: 3 4 5
Perimeter of triangle = 12.000000
Enter base and height of triangle: 4 6
Area of triangle = 12.000000

[A] Answer the following questions:

(a) A preprocessor directive is:

1. A message from compiler to the programmer
2. A message from compiler to the linker
3. A message from programmer to the preprocessor
4. A message from programmer to the microprocessor

212 Let Us C

(b) Which of the following are correctly formed #define statements?

#define INCH PER FEET 12
#define SQR (X) (X * X)
#define SQR(X) X * X
#define SQR(X) (X * X)

(c) State True or False:

1. A macro must always be written in capital letters.
2. A macro must always be accommodated in a single line.
3. After preprocessing when the program is sent for compilation

the macros are removed from the expanded source code.
4. Macros with arguments are not allowed.
5. In a macro call the control is passed to the macro.

(d) A header file is:

1. A file that contains standard library functions
2. A file that contains function declarations and macros
3. A file that contains user-defined functions
4. A file that is present in current working directory

(e) All macro substitutions in a program are done:

1. Before compilation of the program
2. After compilation of the program
3. During execution of the program
4. During linking of the program

[B] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

i nt i = 2 ;
ifdef DEF

i *= i ;
else

printf ("%d\n", i) ;
endif
return 0 ;

}

(b) # include <stdio.h>
define PRODUCT(x) (x * x)

Chapter 12: The C Preprocessor 213

int main()
{

int i = 3, j, k, l ;
j = PRODUCT(i + 1) ;
k = PRODUCT(i++) ;
l = PRODUCT (++i) ;
printf ("%d %d %d %d\n", i, j, k, l) ;
return 0 ;

}

(c) # include <stdio.h>
define PI 3.14
define AREA(x, y, z) (PI * x * x + y * z) ;
int main()
{

float a = AREA (1, 5, 8) ;
float b = AREA (AREA (1, 5, 8), 4, 5) ;
printf (" a = %f\n", a) ;
printf (" b = %f\n", b) ;
return 0 ;

}

[C] Attempt the following questions:

(a) If a macro is not getting expanded as per your expectation, how will
you find out how is it being expanded by the preprocessor?

(b) Write macro definitions for the following:

1. To find arithmetic mean of two numbers.
2. To find absolute value of a number.
3. To convert an uppercase alphabet to lowercase.
4. To obtain the biggest of three numbers.

(c) Write macro definitions with arguments for calculation of Simple
Interest and Amount. Store these macro definitions in a file
“interest.h”. Include this file in your program, and use the macro
definitions for calculating Simple Interest and Amount.

• Preprocessor expands the source code as per the preprocessor
directives used in it.

214 Let Us C

• 4 types of Preprocessor directives :

1) Macro Expansion 2) File Inclusion
3) Conditional Compilation 4) Miscellaneous Directives

• # include "stdio.h" - Searches the file in Include path + Current dir

include <stdio.h> - Searches the file in Include path

• Macros - Every template is replaced by its expansion

• Macros have a global effect

• # define PLANK 6.634E-34 - Simple macro

define AREA(x) PI * x * x - Macro with argument

• Macros can take multiple arguments - #define CALC(a, b, c) (a + b *
c / 3.14)

• Macros can be split over multiple lines. Put a \ at the end of each line,
except last line

• Advantage of Macros - Faster than functions

• Advantage of Functions - Occupy less space

• Be aware of side-effects of macros with arguments

#define SQUARE(y) y * y

would expand z = SQUARE(3 + 1) into z = 3 + 1 * 3 + 1

• Conditional compilation - Compiles the code only if the condition is
true

• Conditional compilation is implemented using #ifdef, #else, #endif,
#ifndef, #if

• Miscellaneous directives :

#undef - undefines a macro that has already been defined
#pragma inline - used for compilation of program that uses assembly
language statements

• There are many other #pragma directives

13 Arrays

A variable can hold one value at a time. So, if you have 100
values, how many variables will you need? Well, answer is not
100. It is 1, and that variable is a special variable called Array.
This chapter shows you how to work with it...

215

216 Let Us C

• What are Arrays
A Simple Program Using Array

• More on Arrays
Array Initialization
Array Elements in Memory
Bounds Checking
Passing Array Elements to a Function

• Pointers and Arrays
Accessing Array Elements using Pointers
Passing an Array to a Function

• Flexible Arrays
• Programs
• Exercises
• KanNotes

Chapter 13: Arrays 217

C language provides a capability that enables the programmer to
design a set of similar data types, called array. This chapter
describes how arrays can be created and manipulated in C. Pointers and

arrays are very closely related. This relationship is also discussed in this
chapter.

What are Arrays?
Suppose we wish to arrange the percentage marks obtained by 100
students in ascending order. For this we can either construct 100
variables, each variable containing one student’s marks; or construct
one variable capable of storing hundred students' marks. Obviously, the
second alternative is better as it's easier to handle one variable than
handling 100 variables. Such a variable is called an array.

Now a formal definition of an array—an array is a collection of similar
elements. These similar elements could be percentage marks of 100
students, or salaries of 300 employees, or ages of 50 employees. What is
important is that the elements must be ‘similar’. We cannot have an
array of 10 numbers, of which 5 are ints and 5 are floats. Usually, the
array of characters is called a ‘string’, whereas an array of ints or floats
is called simply an array.

A Simple Program using Array
Let us write a program to find average marks obtained by a class of 30
students in a test.

include <stdio.h>
int main()
{

int avg, sum = 0 ;
int i ;
int marks[30] ; /* array declaration */
for (i = 0 ; i <= 29 ; i++)
{

printf ("Enter marks ") ;
scanf ("%d", &marks[i]) ; /* store data in array */

}
for (i = 0 ; i <= 29 ; i++)

sum = sum + marks[i] ; /* read data from an array*/

218 Let Us C

avg = sum / 30 ;
printf ("Average marks = %d\n", avg) ;
return 0 ;

}

There is a lot of new material in this program, so let us understand it
part by part.

Array Declaration
Like other variables, an array needs to be declared so that the compiler
will know what type of an array and how large an array we want. In our
program, we have done this through the statement:

int marks[30] ;

Here, [30] tells the compiler how many elements of the type int will be
in our array. This number is often called the ‘dimension’ of the array.

Accessing Elements of an Array
Once an array is declared, an individual element in it is referred using
marks[0], marks[1], marks[2], etc. The number used in [] specifies
the element’s position in the array. Array elements are counted starting
from 0th element. Thus, marks[2] is not the second element of the
array, but the third. 0, 1, 2 are often called subscripts and the array is
called subscripted variable. In our program we have used this form to
access array elements in two statements

scanf ("%d", &marks[i]) ; /* store data in array */
sum = sum + marks[i] ; /* read data from an array*/

In the first statement we are passing the address of marks[i] to scanf()
to receive a value in marks[i]. In the second statements we are using
marks[i] to get a running sum. Since both these statements are used in
a loop, each time through the loop, i takes a different value. So, each
time we are scanning or using a new element from the array. This ability
to use variables to represent subscripts is what makes arrays so useful.
When all the marks have been added up, the result is divided by 30, the
number of students, to get the average.

More on Arrays
Let us now discuss the features which make arrays so convenient to
program. We would also learn the possible pitfalls in using them.

Chapter 13: Arrays 219

Array Initialization
Look at the following array declarations:

int num[6] = { 2, 4, 12, 5, 45, 5 } ;
int n[] = { 2, 4, 12, 5, 45, 5 } ;
float press[] = { 12.3, 34.2, -23.4, -11.3 } ;
long int gdp[10] ;

This shows that arrays can be initialized while declaring them. When we
do so, mentioning the dimension of the array is optional, as in arrays n[]
and press[] above. Also, note that the array gdp[] has auto storage
class and it has not been initialized, so it contains garbage values. If we
declare it as a static array, all its elements would be set to 0.

Array Elements in Memory
Consider the following array declaration:

int arr[8] ;

This would reserve 32 bytes for the array in memory, 4 bytes for each of
the 8 integers. The values in it would be garbage values. The array
elements would occupy adjacent memory locations as shown in Figure
13.1.

12 34 66 -45 23 346 77 90

65508 65512 65516 65520 65524 65528 65532 65536

Figure 13.1 Layout of an array in memory.

Bounds Checking
Consider the following program:

include <stdio.h>
int main()
{

int num[40], i ;
for (i = 0 ; i <= 99 ; i++)

num[i] = i ;
return 0 ;

}

220 Let Us C

We have reserved 40 slots for num[], whereas we are attempting to fill
100 values into it. When value of i goes past 39, the values would simply
be placed in locations outside the array. If these locations contain
garbage data, then nothing would be lost. But if they contain useful
data, it would be overwritten leading to unpredictable results. In some
cases, the computer may just hang.

Issue is that there will be no error message to warn us that we are going
beyond the array size. Thus, to ensure that we do not reach beyond the
array size is entirely the programmer’s botheration and not that of
compiler.

Passing Array Elements to a Function
Array elements can be passed to a function by value, or by reference.
These two calls are illustrated below.

/* Demonstration of call by value & call by reference */
include <stdio.h>
void displayl (int) ;
void display2 (int *) ;
int main()
{

int i ;
int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;
for (i = 0 ; i <= 6 ; i++)

display1 (marks[i]) ;
for (i = 0 ; i <= 6 ; i++)

display2 (&marks[i]) ;
return 0 ;

}
void display1 (int m)
{

printf ("%d ", m) ;
}
void display2 (int *n)
{

printf ("%d ", *n) ;
}

And here’s the output...

55 65 75 56 78 78 90

Chapter 13: Arrays 221

55 65 75 56 78 78 90

Here, to display1() we are passing value of an array element, whereas
to display2() we are passing address of an array element. Since at a
time only one element or its address is being passed, they are collected
in an integer variable m, or an integer pointer n respectively. Since n
contains the address of array element, to print out the array element,
we are using the ‘value at address’ operator (*).

Pointers and Arrays
To be able to see what pointers have got to do with arrays, let us first
learn some pointer arithmetic. Consider the following example:

include <stdio.h>
int main()
{

int i = 3, *x ;
float j = 1.5, *y ;
char k = 'c', *z ;
printf ("Value of i = %d\n", i) ;
printf ("Value of j = %f\n", j) ;
printf ("Value of k = %c\n", k) ;
x = &i ; y = &j ; z = &k ;
printf ("Original address in x = %u\n", x) ;
printf ("Original address in y = %u\n", y) ;
printf ("Original address in z = %u\n", z) ;
x++ ; y++ ; z++ ;
printf ("New address in x = %u\n", x) ;
printf ("New address in y = %u\n", y) ;
printf ("New address in z = %u\n", z) ;
return 0 ;

}

Here is the output of the program.

Value of i = 3
Value of j = 1.500000
Value of k = c
Original address in x = 65524
Original address in y = 65520
Original address in z = 65519
New address in x = 65528

222 Let Us C

New address in y = 65524
New address in z = 65520

Observe the last three lines of the output. 65528 is original address in x
plus 4, 65524 is original address in y plus 4, and 65520 is original address
in z plus 1. This so happens because every time a pointer is incremented,
it points to the immediately next location of its type. So, when an
integer pointer x is incremented, it points to an address four locations
after the current location, since an int is always 4 bytes long (under
TC/TC++, since int is 2 bytes long, new address in x would be 65526).
Similarly, y points to an address 4 locations after the current location
and z points 1 location after the current location. This is a very
important result and can be effectively used while passing the entire
array to a function.

The way a pointer can be incremented, it can be decremented as well,
to point to earlier locations. Thus, the following operations can be
performed on a pointer:
(a) Addition of a number to a pointer.
(b) Subtraction of a number from a pointer.
(c) Subtraction of one pointer from another.
(d) Comparison of two pointer variables.

The program given below illustrates these operations.

include <stdio.h>
int main()
{

int arr[] = { 10, 20, 30, 45, 67, 56, 74 } ;
int i = 4, *j, *k, *x, *y ;
j = &i ;
j = j + 9 ; /* pointer plus number */
k = &i ;
k = k - 3 ; /* pointer minus number */
x = &arr[1] ;
y = &arr[5] ;
printf ("%d\n", y - x) ;
j = &arr [4] ;
k = (arr + 4) ;
if (j == k)

printf ("The two pointers point to the same location\n") ;
else

Chapter 13: Arrays 223

printf ("The two pointers point to different locations\n") ;
return 0 ;

}

We are already familiar with the operation of addition/subtraction of a
number to/from a pointer. That brings us to the third operation—
subtraction of pointers.

x and y have been declared as integer pointers and are holding
addresses of first and fifth element of the array, respectively. Suppose
the array begins at location 65502, then arr[1] and arr[5] would be
present at locations 65506 and 65522 respectively, since each integer in
the array occupies 4 bytes in memory. The expression y - x would print a
value 4, as y and x are pointing to locations that are 4 integers apart.

Pointer variables can be compared provided both variables point to
objects of the same data type. Such comparisons can be useful when
both pointer variables point to elements of the same array. The
comparison can test for either equality or inequality. Moreover, a
pointer variable can be compared with zero (usually expressed as NULL).

Do not attempt the any other operations on pointers, other than the 4
operations mentioned above... they would never work out.

Accessing Array Elements using Pointers
We have learnt these two facts above:
(a) Array elements are always stored in contiguous memory locations.
(b) A pointer when incremented always points to the next location of

its type.
Let us now correlate these two facts and access array elements using
pointers.

include <stdio.h>
int main()
{

int num[] = { 24, 34, 12, 44, 56, 17 } ;
int i, *ptr ;
ptr = &num[0] ; /* assign address of zeroth element */
for (i = 0 ; i <= 5 ; i++)
{

printf ("address = %u element = %d\n", ptr, *ptr) ;
ptr++ ; /* increment pointer to point to next integer */

224 Let Us C

}
return 0 ;

}

The output of this program would be:

address = 65512 element = 24
address = 65516 element = 34
address = 65520 element = 12
address = 65524 element = 44
address = 65528 element = 56
address = 65532 element = 17

To understand this output, let us first see how the array elements are
arranged in memory. This is shown in Figure 13.2.

24 34 12 44 56 17

65512 65516 65520 65524 65528 65532

Figure 13.2 Array elements in memory.

In the program, to begin with, we have collected the base address of the
array (address of the 0th element) in the variable ptr using the
statement,

ptr = &num[0] ; /* assigns address 65512 to j */

First time through the loop, ptr contains the address 65512, and the
value at this address is 24. These are printed using the statement,

printf ("address = %u element = %d\n", ptr, *ptr) ;

On incrementing ptr, it points to the next memory location of its type
(that is location 65516). But location 65516 contains the second element
of the array, therefore when printf() is executed for the second time, it
prints out the second element of the array and its address (i.e., 34 and
65516)... and so on till the last element of the array.

So now we know how to access array elements using subscript and using
pointer. Obviously, a question arises as to which of the two methods
should be used when? Accessing array elements by pointers is faster

Chapter 13: Arrays 225

than accessing them by subscripts. However, from the point of view of
convenience in programming, we should observe the following:

Array elements should be accessed using pointers, if the elements are to
be accessed in a fixed order, say from beginning to end, or from end to
beginning, or every alternate element or any such definite logic.

If there is no fixed logic in accessing the elements, it would be easier to
access the elements using a subscript.

Passing an Array to a Function
We already know how to pass individual elements of an array or
addresses of individual elements of an array to a function. Let us now
see how to pass an entire array to a function. Consider the following
program:

/* Demonstration of passing an array to a function */
include <stdio.h>
void displayl (int *, int) ;
void display2 (int [], int) ;
int main()
{

int num[] = { 24, 34, 12, 44, 56, 17 } ;
display! (&num[0], 6) ;
display2 (&num[0], 6) ;
return 0 ;

}
void displayl (int *ptr, int n)
{

int i ;
for (i = 0 ; i <= n - 1 ; i++)
{

printf ("element = %d\n", *ptr) ;
ptr++ ; /* increment pointer to point to next element */

}
}
void display2 (int ptr[], int n)
{

int i ;
for (i = 0 ; i <= n - 1 ; i++)

printf ("element = %d\n", ptr[i]) ;
}

226 Let Us C

Here, the address of the zeroth element and the number of elements in
the array are being passed to the display1() function. The for loop
accesses the array elements using pointers. Note that it is necessary to
pass the total number of elements in the array, otherwise the function
would not know when to terminate the for loop.

Same parameters are also being passed to display2(). But they are
received in a different form

void display2 (int ptr[], int n)

Here, though ptr is still an integer pointer, the array notation lets us use
the convenient expression ptr[i] to access array elements using,
without being required to perform any pointer arithmetic on ptr.

Note that the address of the zeroth element (often called the base
address) can also be passed by just passing the name of the array. Thus,
the following two function calls are same:

displayl (&num[0], 6) ;
displayl (num, 6) ;

The Real Thing
If you have grasped the concept of storage of array elements in memory
and the arithmetic of pointers, here is some real food for thought. Once
again consider the following array:

int num[] = { 24, 34, 12, 44, 56, 17 } ;

We know, that on mentioning the name of the array, we get its base
address. Thus, by saying *num, we would be able to refer to the zeroth
element of the array, that is, 24. One can easily see that *num and *(
num + 0) both refer to 24.

Similarly, by using *(num + 1), we can refer the first element of the
array, that is, 34. In fact, this is what the C compiler does internally.
When we say, num[i], the C compiler internally converts it to *(num +
i). This means that all the following expressions are same:

num[i] *(num + i) *(i + num) i[num]

And here is a program to prove my point.

Chapter 13: Arrays 227

/* Accessing array elements in different ways */
include <stdio.h>
int main()
{

int num[] = { 24, 34, 12, 44, 56, 17 } ;
int i ;
for (i = 0 ; i <= 5 ; i++)
{

printf ("address = %u ", &num[i]) ;
printf ("element = %d %d ", num[i], *(num + i)) ;
printf ("%d %d\n", *(i + num), i[num]) ;

}
return 0 ;

}

The output of this program would be:

address = 65512 element = 24 24 24 24
address = 65516 element = 34 34 34 34
address = 65520 element = 12 12 12 12
address = 65524 element = 44 44 44 44
address = 65528 element = 56 56 56 56
address = 65532 element = 17 17 17 17

Flexible Arrays
If we do not know the size of an array at the time of writing the
program, we can receive it during execution. This is shown below.

int max ;
scanf ("%d", &max) ;
int arr[max] ;

This makes the array more flexible, as we do not have to commit to its
size at the time of writing the program. This feature has been added in
C99 and would be rejected by older compilers, as they expect array
dimension to be a positive non-zero integer constant.

The variable-sized arrays can also be created by using a standard library
function malloc(). The following program shows how to use it.

/* Flexible array size */
include <stdio.h>

228 Let Us C

include <stdlib.h>
int main()
{

int max, i, *p ;
printf ("Enter array size: ") ;
scanf ("%d", &max) ;
p = (int *) malloc (max * sizeof (int)) ;
for (i = 0 ; i <= 5 ; i++)
{

p[i] = i * i ;
printf ("%d ", p[i]) ;

}
return 0 ;

}

To malloc() function we need to pass the number of bytes to allocate in
memory. On doing so, it allocates the bytes and returns the base
address of the allocated chunk as a void pointer. We need to convert
the void pointer into an int pointer. This conversion is necessary since
operations cannot be performed on a void pointer. The conversion is
done using the typecast operation. In the typecast operation the target
type should be enclosed within (). Once the address is assigned to p, it
can be used as a normal array through expression p[i].

Returning an Array
The way an array can be passed to a function, it can also be returned
from the function. This is shown in the program below.

include <stdio.h>
int * fun (int *num) ;
int main()
{

int max, *p, i ;
p = fun (&max) ;
for (i = 0 ; i < max ; i++)

printf ("%d ", p[i]) ;
return 0 ;

}
int * fun (int *num)
{

static int arr[] = { 10, 20, 30, 40, 50 } ;

Chapter 13: Arrays 229

*num = sizeof (arr) / sizeof (arr[0]) ;
return arr;

}

There are a few important points that you should note about the
program:
(a) arr has been declared as static to ensure that it remains alive when

control returns from fun() and we can access it in main().

(b) When we attempt to return the array arr from fun() what gets
returned is only its base address. Hence return type of fun() is int *.

(c) Since a function can return only one value, the address of array is
returned explicitly through return statement, whereas the array
size is returned through num using a call by reference.

(d) The number of elements in the array is obtained by dividing the
array size by size of its 0th element.

Problem 13.1
Write a program that interchanges elements at odd position with
elements at even position in an array of 10 elements.

Program

/* Interachange adjacent elements of an array */
include <stdio.h>
int main()
{

int num[] = { 12, 4, 5, 1, 9, 13, 11, 19, 54, 34 } ;
int i, t ;
for (i = 0 ; i <= 9 ; i = i + 2)
{

t = num[i] ;
num [i] = num [i + 1] ;
num [i + 1] = t ;

}
for (i = 0 ; i <= 9 ; i++)

printf ("%d\t", num[i]) ;
return 0 ;

230 Let Us C

}

Output

4 12 1 5 13 9 19 11 34 54

Problem 13.2
Write a program to copy the contents of a 5-element integer array into
another array in reverse order.

Program

/* Program to copy one array into another in reverse order */
include <stdio.h>
int main()
{

int arr1[5], arr2[5], i, j ;
printf ("\nEnter 5 elements of array:\n") ;
for (i = 0 ; i <= 4 ; i++)

scanf ("%d", &arr1[i]) ;
for (i = 0, j = 4 ; i <= 4 ; i++, j--)

arr2[j] = arr1[i] ;
printf ("Elements in reverse order:\n") ;
for (i = 0 ; i <= 4 ; i++)

printf ("%d\t", arr2[i]) ;
return 0 ;

}

Output

Enter 5 elements of array:
10 20 30 40 50
Elements in reverse order:
50 40 30 20 10

Problem 13.3
An array contains 10 integers. Receive the number to be searched in the
array as input. Write a program to search this number in the array and
display the number of times it occurs in the array.

Chapter 13: Arrays 231

Program

/* Program to find a number and its frequency in array */
include <stdio.h>
int main()
{

int num[] = { 7, 3, 5, 4, 6, 7, 2, 4, 6, 7 } ;
int n, i, count ;
printf ("\nEnter an element to search: ") ;
scanf ("%d", &n) ;
count = 0 ;
for (i = 0 ; i <= 9 ; i++)
{

if (num[i] == n)
count++;

}
printf ("Number %d is found %d time(s) in the array\n", n, count) ;
return 0 ;

}

Output

Enter an element to search: 7
Number 7 is found 3 time(s) in the array

[A] Answer the following questions:

(a) Are the following array declarations correct?

int a (25) ;
int size = 10, b[size] ;

(b) Which element of the array does this expression reference?

num[4]

(c) What is the difference between the 5’s in these two expressions?

int num[5] ;
num[5] = 11 ;

232 Let Us C

(d) What will happen if you try to put so many values into an array
when you initialize it that the size of the array is exceeded?

(e) What will happen if you put too few elements in an array when you
initialize it?

(f) What will happen if you assign a value to an element of an array
whose subscript exceeds the size of the array?

(g) When you pass an array as an argument to a function, what actually
gets passed?

(h) If you don’t initialize a static array, what will its elements be set to?

(i) if int s[5] is a one-dimensional array of integers, how will you refer
to the third element in the array using pointer notation?

[B] Attempt the following questions:

(a) Twenty-five numbers are entered from the keyboard into an array.
Write a program to find out how many of them are positive, how
many are negative, how many are even and how many odd.

(b) If an array arr contains n elements, then write a program to check if
arr[0] = arr[n - 1], arr[1] = arr[n - 2] and so on.

(c) Write a program using pointers to find the smallest number in an
array of 25 integers.

(d) Implement the Insertion Sort algorithm shown in Figure 13.3 on a
set of 25 numbers.

Figure 13.3 Steps involved in Insertion Sort.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Result
44 —। 33 33 <- 22 «- 0 11
33 -J 44 44 33 1 22

55 55 55 44 2 33

22 22 22 55 3 44

11 11 11 11 4 55

(e) Write a program which performs the following tasks:

- Initialize an integer array of 10 elements in main()
- Pass the entire array to a function modify()

Chapter 13: Arrays 233

- In modify() multiply each element of array by 3
- Return the control to main() and print the new array elements

in main()

(f) For the following set of sample data, compute the standard
deviation and the mean.

-6, -12, 8,13,11, 6, 7, 2, -6, -9, -10,11,10, 9, 2
The formula for standard deviation is

7 (xi-x)2

n

where x. is the data item and x is the mean. I
(g) The area of a triangle can be computed by the sine law when 2

sides of the triangle and the angle between them are known.

Area = (1 / 2) ab sin (angle)
Given the following 6 triangular pieces of land, write a program to
find their area and determine which is largest.

Plot No. a b angle
1 137.4 80.9 0.78
2 155.2 92.62 0.89
3 149.3 97.93 1.35
4 160.0 100.25 9.00
5 155.6 68.95 1.25
6 149.7 120.0 1.75

(h) For the following set of n data points (x, y), write a program to
compute the correlation coefficient r, given by

____ Z>y~Zxl>____
^[n^x2-C^xy^nHy2~(X,y>>2^

X y
34.22 102.43
39.87 100.93
41.85 97.43
43.23 97.81
40.06 98.32
53.29 98.32
53.29 100.07

234 Let Us C

54.14 97.08
49.12 91.59
40.71 94.85
55.15 94.65

(i) The X and Y coordinates of 10 different points are entered through
the keyboard. Write a program to find the distance of last point
from the first point (sum of distances between consecutive points).

(j) A dequeue is an ordered set of elements in which elements may be
inserted or retrieved from either end. Using an array simulate a
dequeue of characters and the operations retrieve left, retrieve
right, insert left, insert right. Exceptional conditions such as
dequeue full or empty should be reported. Use two pointers left
and right for this simulation.

• Array is a variable capable of holding > 1 value at a time

• Two basic properties of an array :

1) Similarity - All array elements are similar to one another
2) Adjacency - All array elements are stored in adjacent memory

locations

• 2 ways to declare an array :

int arr[10] ; /* mentioning size is compulsory */
int num[] = { 23, 34, 54, 22, 33 } ; /* size is optional */

• Array elements are always counted from 0 onwards. So arr[9] is
10th element

• Arrays have storage classes. Default storage class - auto

• Array elements can be scanned OR calculated :

scanf ("%d %d %d", &arr[7], &arr[8], &arr[9]) ;
arr[5] = 3 + 7 % 2 ;

• Arithmetic on array elements is allowed :

arr[6] = arr[1] + arr[3] / 16 ;

Chapter 13: Arrays 235

• Caution : Bounds checking of an array is programmer’s responsibility

• Typical way to process an array element by element :

int arr[10] ;
for (i = 0 ; i <= 9 ; i++)

/* process arr[i] */

• To obtain address of 0th element of array use :

int arr[10] ; int *p ;
p = arr ; /* method 1 */
p = &arr[0] ; /* method 2 */

• Sorting = Arranging array elements in ascending / descending order

• Selection sort - compare 0th element with all others, 1st will others,
etc.
Bubble sort - Compare adjacent elements repeatedly
Insertion sort - Insert each successive element at appropriate
position amongst elements before it

• On incrementing a pointer, it always points to the next location of its
type

On incrementing a float pointer, it points to the next float which is 4
bytes away
On incrementing an int pointer, it points to the next int which is 4
bytes away
On incrementing a char pointer, it points to the next char which is 1
byte away

• Only legal pointer operations :

pointer + number -> pointer
pointer - number -> pointer
pointer - pointer -> number
pointer == pointer

• 5 ways to access array elements using pointers :

- Set up a pointer holding base address of the array :
int arr[10], *p ;

236 Let Us C

p = arr ;
In a for loop use one of the five expressions :
**p ; p++ ;
* (p + i)
p[i]

OR
OR * (i + p) OR
OR i [p]

• To pass an array to a function we must always pass two things :

1) Base address of the array 2) Size of the array

• Array can neither grow nor shrink in size during execution of the
program

We cannot declare an array using int arr[n] and then receive the value
of n from keyboard

• We can make the array size flexible by changing the value of MAX
suitably :

#define MAX 20
Int arr[MAX] ;

• A variable sized array can be created in two ways"

Method 1:
int max, arr[max] ;
scanf ("%d", &max) ;

Method 2 :
int *p ;
p = (int *) malloc (n * sizeof (int)) ;

Then to access all elements we can use p[i]

14
Multidimensional
Arrays

“More the arrays, more the dimensions..."

Multidimensional personalities are always impressive. So are
multidimensional arrays. They let you accomplish so much with
so few variables. This chapter shows you how to work with a 2-D
array and its other cousins.

237

238 Let Us C

• Two-Dimensional Arrays
Initializing a 2-D Array
Memory Map of a 2-D Array
Pointers and 2-D Arrays
Pointer to an Array
Passing 2-D Array to a Function

• Array of Pointers
• 3-D Array
• Programs
• Exercises
• KanNotes

Chapter 14: Multidimensional Arrays 239

In the last chapter we explored arrays with only one dimension. It is
also possible for arrays to have two or more dimensions. This chapter
describes how multidimensional arrays can be created and manipulated

in C.

Two-Dimensional Arrays
The two-dimensional (2-D) array is also called a matrix. Let us see how
to create this array and work with it. Here is a sample program that
stores roll number and marks obtained by a student side-by-side in a
matrix.

include <stdio.h>
int main()
{

int stud[4][2] ;
int i, j ;
for (i = 0 ; i <= 3 ; i++)
{

printf ("Enter roll no. and marks") ;
scanf ("%d %d", &stud[i][0], &stud[i][1]) ;

}
for (i = 0 ; i <= 3 ; i++)

printf ("%d %d\n", stud[i][0], stud[i][1]) ;

return 0 ;
}

There are two parts to the program—in the first part, through a for loop,
we read in the values of roll number and marks, whereas, in the second
part through another for loop, we print out these values.

Look at the scanf() statement used in the first for loop:

scanf ("%d %d", &stud[i][0], &stud[i][1]) ;

In stud[i][0] and stud[i][1], the first subscript of the variable stud, is
row number which changes for every student. The second subscript tells
which of the two columns are we talking about—the zeroth column
which contains the roll number or the first column which contains the
marks. Remember that the counting of rows and columns begin with
zero. Thus, 1234 is stored in stud[0][0], 56 is stored in stud[0][1]
and so on. The complete array arrangement is shown in Figure 14.1.

240 Let Us C

column no. 0 column no. 1

row no. 0 1234 56

row no. 1 1212 33

row no. 2 1434 80

row no. 3 1312 78

Figure 14.1 2-D array.

Initializing a 2-D Array
How do we initialize a 2-D array? As simple as this...

int stud[4][2] = {
{ 1234, 56 }, { 1212, 33 }, { 1434, 80 }, { 1312, 78 }

} ;

or even this would work...

int stud[4][2] = { 1234, 56, 1212, 33, 1434, 80, 1312, 78 } ;

of course, with a corresponding loss in readability.

While initializing a 2-D array, it is necessary to mention the second
(column) dimension, whereas the first dimension (row) is optional. Thus
the following declarations are perfectly acceptable,

int arr[2][3] = { 12, 34, 23, 45, 56, 45 } ;
int arr[][3] = { 12, 34, 23, 45, 56, 45 } ;

whereas,

int arr[2][] = { 12, 34, 23, 45, 56, 45 } ;
int arr[][] = { 12, 34, 23, 45, 56, 45 } ;

would never work.

Memory Map of a 2-D Array
The array arrangement shown in Figure 14.1 is only conceptually true.
This is because memory doesn’t contain rows and columns. In memory,

Chapter 14: Multidimensional Arrays 241

whether it is a 1-D or a 2-D array, the array elements are stored in one
continuous chain. So, the actual arrangement of array elements of the 2­
D array in memory is as shown in Figure 14.2. For want of space I have
changed the array name to s.

Figure 14.2 2-D array in memory.

s[0][0] s[0][1] s[1][0] s[1][1] s[2][0] s[2][1] s[3][0] s[3][1]

1234 56 1212 33 1434 80 1312 78

65508 65512 65516 65520 65524 65528 65532 65536

We can easily refer to the marks obtained by the third student using the
subscript notation as shown below.

printf ("Marks of third student = %d", s[2][1]) ;

Can we not refer to the same element using pointer notation, the way
we did in 1-D arrays? Answer is yes. Only the procedure is slightly
difficult to understand. So, read on...

Pointers and 2-D Arrays
C language embodies an unusual but powerful capability—it can treat
parts of arrays as arrays. More specifically, each row of a 2-D array can
be thought of as a 1-D array.

Thus, the declaration,

int s[5][2] ;

can be thought of as setting up an array of 5 elements, each of which is
a 1-D array containing 2 integers. We refer to an element of a 1-D array
using one subscript. Similarly, if we can imagine s to be a 1-D array, then
we can refer to its zeroth element as s[0], the next element as s[1]
and so on. More specifically, s[0] gives the address of the zeroth 1-D
array, s[1] gives the address of the first 1-D array and so on. This fact
can be demonstrated by the following program:

/* Demo: 2-D array is an array of arrays */
include <stdio.h>
int main()
{

242 Let Us C

int s[4][2] = {
{ 1234, 56 }, { 1212, 33 }, { 1434, 80 }, { 1312, 78 }

} ;
int i ;
for (i = 0 ; i <= 3 ; i++)

printf ("Address of %d th 1-D array = %u\n", i, s[i]) ;
return 0 ;

}

And here is the output...

Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65516
Address of 2 th 1-D array = 65524
Address of 3 th 1-D array = 65532

This output is consistent with the addresses shown in Figure 14.2. Each
1-D array starts 8 bytes further along than the last one. Thus s[0] and s[
1] would yield the addresses 65508 and 65516.

Suppose we want to refer to the element s[2][1] using pointers. We
know that s[2] would give the address 65524, the address of the
second 1-D array. So (s[2] + 1) or (65524 + 1) would give the address
65528. The value at this address can be obtained through *(s[2] + 1).
We have already studied while learning 1-D arrays that num[i] is same
as *(num + i). Similarly, *(s[2] + 1) is same as, *(*(s + 2) + 1). Thus,
all the following expressions refer to the same element:

s[2][1]
* (s[2] + 1)
* (* (s + 2) + 1)

Using these concepts, the following program prints out each element of
a 2-D array using pointer notation:

/* Pointer notation to access 2-D array elements */
include <stdio.h>
int main()
{

int s[4][2] = {
{ 1234, 56 }, { 1212, 33 }, { 1434, 80 }, { 1312, 78 }

} ;
int i, j ;

Chapter 14: Multidimensional Arrays 243

for (i = 0 ; i <= 3 ; i++)
{

for (j = 0 ; j <= 1 ; j++)
printf ("%d ", *(*(s + i) + j)) ;

printf ("\n") ;
}
return 0 ;

}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Pointer to an Array
If we can have a pointer to an integer, a pointer to a float, a pointer to a
char, then can we not have a pointer to an array? We certainly can. The
following program shows how to build and use it:

/* Usage of pointer to an array */
include <stdio.h>
int main()
{

int s[4][2] = {
{ 1234, 56 }, { 1212, 33 }, { 1434, 80 }, { 1312, 78 }

} ;
int (*p)[2] ;
int i, j, *pint ;
for (i = 0 ; i <= 3 ; i++)
{

p = &s[i] ;
pint = (int *) p ;
printf ("\n") ;
for (j = 0 ; j <= 1 ; j++)

printf ("%d ", *(pint + j)) ;
}
return 0 ;

}

244 Let Us C

And here is the output...

1234 56
1212 33
1434 80
1312 78

Here p is a pointer to an array of two integers. Note that the
parentheses in the declaration of p are necessary. Absence of them
would make p an array of 2 integer pointers. Array of pointers is covered
in a later section in this chapter.

In the outer for loop, each time we store the address of a new 1-D array
in p. Thus, first time through this loop, p would contain the address of
the zeroth 1-D array. This address is then assigned to an integer pointer
pint. Lastly, in the inner for loop using the pointer pint, we have printed
the individual elements of the 1-D array to which p is pointing.

But why should we use a pointer to an array to print elements of a 2-D
array. Is there any situation where we can appreciate its usage better?
The entity pointer to an array is immensely useful when we need to pass
a 2-D array to a function. This is discussed in the next section.

Passing 2-D Array to a Function
The following program shows how we can pass a 2-D array to a function.

/* Passing 2-D array to a function */
include <stdio.h>
void display (int q[][4], int , int) ;
int main()
{

int a[3][4] = {
1, 2, 3, 4,
5, 6, 7, 8,
9, 0, 1, 6

} ;
display (a, 3, 4) ;
return 0 ;

}
void display (int q[][4], int row, int col)
{

int i, j ;
for (i = 0 ; i < row ; i++)

Chapter 14: Multidimensional Arrays 245

{
for (j = 0 ; j < col ; j++)

printf ("%d ", q[i][j]) ;
printf ("\n") ;

}
printf ("\n") ;

}

And here is the output...

1 2 3 4
5 6 7 8
9 0 1 6

In the display() function, we have collected the base address of the 2-D
array being passed to it in q, where q is pointer to an array of 4 integers.
The declaration of q looks like this:

int q[][4] ;

This is same as saying int (*q)[4]. The only advantage in using the
form q[][4] is that, we can now use the more familiar expression q[i][
j] to access array elements.

Array of Pointers
The way there can be an array of ints or an array of floats, similarly,
there can be an array of pointers. An array of pointers would be a
collection of addresses. The addresses present in it can be addresses of
isolated variables or addresses of array elements or any other
addresses. All rules that apply to an ordinary array apply to the array of
pointers as well. I think a program would clarify the concept.

include <stdio.h>
int main()
{

int *arr[4] ; /* array of integer pointers */
int i = 31, j = 5, k = 19, l = 71, m ;
arr[0] = &i ;
arr[1] = &j ;
arr[2] = &k ;
arr[3] = &l ;
for (m = 0 ; m <= 3 ; m++)

246 Let Us C

printf ("%d\n", * (arr[m])) ;
return 0 ;

}

Figure 14.3 shows the contents and the arrangement of the array of
pointers in memory. As you can observe, arr contains addresses of
isolated int variables i, j, k and l. The for loop in the program picks up
the addresses present in arr and prints the values present at these
addresses.

i j k l

31 5 19 71

65514 65510 65506 65502

arr[0] arr[1] arr[2] arr[3]

65514 65510 65506 65502

65518 65522 65526 65530

Figure 14.3 Array of pointers.

An array of pointers can even contain the addresses of other arrays’
elements. The following program would justify this:

include <stdio.h>
int main()
{

static int a[] = { 0, 1, 2, 3, 4 } ;
int *p[] = { a, a + 1, a + 2, a + 3, a + 4 } ;
printf ("%u %u %d\n", p, *p, * (*p)) ;
return 0 ;

}

I would leave it for you to figure out the output of this program.

3-D Array
I am not going to show a programming example that uses a 3-D array.
However, an example of initializing a 3-D array will consolidate your
understanding of arrays.

Chapter 14: Multidimensional Arrays 247

int arr[3][4][2] = {
{

},
{

},
{

}
} ;

{ 2, 4 }, { 7, 8 }, { 3, 4 }, { 5, 6 }

{ 7, 6 }, { 3, 4 }, { 5, 3 }, { 2, 3 }

{ 8, 9 }, { 7, 2 }, { 3, 4 }, { 5, 1 }

A 3-D array can be thought of as an array of arrays of arrays. The outer
array has three elements, each of which is a 2-D array of four 1-D arrays,
each of which contains two integers. Figure 14.4 would help you in
visualizing the situation better.

1st 2-D Array

2nd 2-D Array

0th 2-D Array

Figure 14.4 3-D array.

Again, remember that the arrangement shown in Figure 14.4 is only
conceptually true. In memory, the array elements are stored linearly as
shown in Figure 14.5.

Figure 14.5 3-D array in memory.

248 Let Us C

How would you refer to the array element 1 in the above array? The first
subscript should be [2], since the element is in third 2-D array; the
second subscript should be [3] since the element is in fourth row of the
2-D array; and the third subscript should be [1] since the element is in
second position in the 1-D array. So element 1 can be referred as arr[2
][3][1].

It may be noted here that the counting of array elements even for a 3-D
array begins with zero. We can also refer to this element using pointer
notation as shown below.

*(*(*(arr + 2) + 3) + 1)

Problem 14.1
Write a program to pick up the largest number from a 5 row by 5
column matrix.

Program

/* Pick up largest number from 5 x 5 matrix */
include <stdio.h>
int main()
{

int a[5][5] = {
{ 11, 1, 7, 9, 7 },
{ 13, 54, 56, 2, 5 },
{ 23, 43, 89, 22, 13 },
{ 14, 15, 17, 16, 19 },
{ 45, 3, 6, 8, 10 }

} ;
int i, j, big ;
big = a[0][0] ;
for (i = 0 ; i <= 4 ; i++)
{

for (j = 0 ; j <= 4 ; j++)
{

if (a[i][j] > big)
big = a[i][j];

}

Chapter 14: Multidimensional Arrays 249

}
printf ("\nLargest number in the matrix is %d\n", big) ;
return 0 ;

}

Output

Largest number in the matrix is 89

Problem 14.2
Write a program to obtain transpose of a 3 x 5 matrix. The transpose of
a matrix is obtained by exchanging the elements of each row with the
elements of the corresponding column

Program

/* Transpose of a matrix */
#include <stdio.h>
int main()
{

int mat1[3][5] = {
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15

} ;
int mat2[5][3] ;
int i, j ;
for (i = 0 ; i < 3 ; i++)
{

for (j = 0 ; j < 5 ; j++)
mat2[j][i] = mat1[i][j] ;

}
for (i = 0 ; i < 5 ; i++)
{

for (j = 0 ; j < 3 ; j++)
printf ("%d\t", mat2[i][j]) ;

printf ("\n") ;
}
return 0 ;

}

250 Let Us C

Output

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

int n[3][3] = {
{ 2, 4, 3 }, { 6, 8, 5 }, { 3, 5, 1 }

} ;
printf ("%d %d %d\n", *n, n[1][1], n[2][2]) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int n[3][3] = {
{ 2, 4, 3 }, { 6, 8, 5 }, { 3, 5, 1 }

} ;
int i, *ptr ;
ptr = &n[0][0] ;
for (i = 0 ; i <= 8 ; i++)

printf ("%d\n", *(ptr + i)) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int n[3][3] = {
2, 4, 3, 6, 8, 5, 3, 5, 1

} ;

Chapter 14: Multidimensional Arrays 251

int i, j ;
for (i = 0 ; i <= 2 ; i++)

for (j = 0 ; j <= 2 ; j++)
printf ("%d %d\n", n[i][j], *(*(n + i) + j)) ;

return 0 ;
}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

int twod[][] = {
2, 4, 6, 8

} ;
printf ("%d\n", twod) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int three[3][] = {
{ 2, 4, 3 }, { 6, 8, 2 }, { 2, 3, 1 }

} ;
printf ("%d\n", three[1][1]) ;
return 0 ;

}

[C] Attempt the following questions:

(a) How will you initialize a three-dimensional array threed[3][2][3]?
How will you refer the first and last element in this array?

(b) Match the following with reference to the program segment given
below:

int i, j, = 25 ;
int *pi, *pj = & j ;
*pj = j + 5 ;
j = *pj + 5 ;
pj = pj ;
*pi = i + j ;

252 Let Us C

Each integer quantity occupies 2 bytes of memory. The value
assigned to i begins at (hexadecimal) address F9C and the value
assigned to j begins at address F9E. Match the value represented by
expression in left column with values in the right column.

&i 301.
2. &j b. F9E
3. pj c. 35
4. *pj d. FA2
5. i e. F9C
6. pi f. 67
7. *pi g. unspecified
8. (pi + 2) h. 65
9. (*pi + 2) i. F9E
10. * (pi + 2) j. F9E

k. FAO
l. F9D

(c) Match the following with reference to the following program
segment:

int x[3][5] = {
{ 1, 2, 3, 4, 5 },
{ 6, 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 }

}, *n = &x ;

1. *(*(x + 2) + 1) a. 9
2. *(*x + 2) + 5 b. 13
3. *(*(x + 1)) c. 4
4. *(*(x) + 2) + 1 d. 3
5. * (*(x + 1) + 3) e. 2
6. *n f. 12
7. *(n +2) g. 14
8. (*(n + 3) + 1 h. 7
9. *(n + 5)+1 i. 1
10. ++*n j. 8

k. 5
l. 10
m. 6

Chapter 14: Multidimensional Arrays 253

(d) Match the following with reference to the following program
segment:

unsigned int arr[3][3] = {
{ 2, 4, 6 }, { 9, 1, 10 }, { 16, 64, 5 }

} ;
1. **arr a. 64
2. **arr < *(*arr + 2) b. 18
3. *(arr + 2) / (*(*arr + 1) > **arr) c. 6
4. *(arr[1] + 1) | arr[1][2] d. 3
5. *(arr[0]) | *(arr[2]) e. 0
6. arr[1][1] < arr[0][1] f. 16
7. arr[2][[1] & arr[2][0] g. 1
8. arr[2][2] | arr[0][1] h. 11
9. arr[0][1] A arr[0][2] i. 20
10. ++**arr + --arr[1][1] j. 2

k. 5
l. 4

(e) Write a program to find if a square matrix is symmetric.

(f) Write a program to add two 6 x 6 matrices.

(g) Write a program to multiply any two 3 x 3 matrices.

(h) Given an array p[5], write a function to shift it circularly left by two
positions. Thus, if the original array is { 15, 30, 28, 19, 61 } then after
shifting it will be { 28, 19, 61, 15, 30 } Call this function for a 4 x 5
matrix and get its rows left shifted.

• 2-D array is a collection of several 1-D arrays

If 2-D arrays are initialized at the same place where it is declared,
then mentioning the column dimension is optional

• A 2-D array is laid out linearly in memory in row-major fashion i.e.,
row after row

• Given a 2-D array int a[4][5] ;

a[2][3] == *a[2] + 3 == * (* (a + 2) + 3)

254 Let Us C

• int *p[4] ; - p is an array of 4 integer pointers. Size of p = 16
bytes

• int (*p }[4] ; - p is a pointer to an array of 4 integers. Size of p
= 4 bytes

• Typical applications of 2-D arrays :

All matrix and determinant operations

• Applications of 2-D arrays in games :

Chess, Ludo, Snakes and Ladders, Brainvita, most other board games

• 3-D array is a collection of several 2-D arrays

• Size of a 3-D array is sum of sizes of all its elements

• Following expressions are referring to the element in the 1st row, 3rd
column of the 2nd 2-D array :

a[2][1][3]

* (a[2][1] + 3)

* (* (a[2] + 1) + 3)

* (* (* (a + 2) + 1) + 3)

• For a 3-D array :

a, *a, **a, will give address

***a will give the integer at a[0][0][0]

The way an integer array is a collection of several integers, a
character array is a collection of several characters. Well,
almost. The 0 that is present at the end of a character array
makes it different. What is the importance of this 0, why it
matters and what convenience it provides? Well, this chapter
has all these answers and more...

255

256 Let Us C

C0 Contents

• What are Strings
• More about Strings
• Pointers and Strings
• Standard Library String Functions

strlenf)
strcpyf)
strcatf)
strcmpf)

• Programs
• Exercises
• KanNotes

Chapter 15: Strings 257

In the last chapter, we learnt how to define arrays of various sizes and
dimensions, how to initialize them, how to pass them to a function,
etc. With this knowledge under our belt, we are ready to handle strings,

which are, simply put, a special kind of array.

What are Strings?
The way a group of integers can be stored in an integer array, similarly a
group of characters can be stored in a character array. A string is a 1-D
array of characters terminated by a ’\0’. For example,

char name[] = { 'H', 'A', 'E', 'S', 'L', 'E', 'R', '\0' } ;

’\0’ is called null character. Note that ’\0’ and ’0’ are not same. ASCII
value of ’\0’ is 0, whereas ASCII value of ’0’ is 48. Figure 15.1 shows the
way a string is stored in memory. Note that the elements of the string
are stored in contiguous memory locations.

Figure 15.1 String in memory.

H A E S L E R \0

65518 65519 65520 65521 65522 65523 65524 65525

The terminating null (’\0’) is important, because it is the only way the
functions that work with a string can know where the string ends. In
fact, a string not terminated by a ’\0’ is not really a string, but merely a
collection of characters.

C concedes the fact that you would use strings very often and hence
provides a shortcut for initializing strings. For example, the string used
above can also be initialized as,

char name[] = "HAESLER" ;

Note that, in this declaration, ’\0’ is not necessary. C inserts the null
character automatically.

More about Strings
We can use the '\0' present at the end of a string to our advantage while
accessing its elements as shown below:

258 Let Us C

/* Program to demonstrate printing of a string */
include <stdio.h>
int main()
{

char name[] = "Klinsman" ;
int i = 0 ;
while (name[i] != '\0')
{

printf ("%c", name[i]) ;
i++ ;

}
printf ("\n") ;
return 0 ;

}

And here is the output...

Klinsman

No big deal. We have initialized a string and then printed its elements in
a while loop. But instead of changing i from 0 to 7 in the while loop, we
printed characters in the string till we did not encounter '\0'.

Here is another version of the same program; this one uses a pointer to
access the array elements.

include <stdio.h>
int main()
{

char name[] = "Klinsman" ;
char *ptr ;
ptr = name ; /* store base address of string */
while (*ptr != '\0')
{

printf ("%c", *ptr) ;
ptr++ ;

}
printf ("\n") ;
return 0 ;

}

Chapter 15: Strings 259

As with an integer array, by mentioning the name of the array, we get
the base address (address of the zeroth element) of the array. This base
address is stored in the variable ptr. Once the base address is obtained
in ptr, *ptr would yield the value at this address, which gets printed
promptly through,

printf ("%c", *ptr) ;

Then, ptr is incremented to point to the next character in the string. This
derives from two facts—array elements are stored in contiguous
memory locations and on incrementing a pointer, it points to the
immediately next location of its type. This process is carried out until ptr
points to the last character in the string, that is, ’\0’.

In fact, the character array elements can be accessed exactly in the same
way as the elements of an integer array. Thus, all the following
expressions refer to the same element:

name[i]
* (name + i)
* (i + name)
i[name]

Even though there are so many ways (as shown above) to refer to the
elements of a character array, rarely is any one of them used. This is
because printf() function has got a sweet and simple way of doing it, as
shown below. Note that printf() doesn’t print the ’\0’.

char name[] = "Klinsman" ;
printf ("%s", name) ;

The %s used in printf() is a format specifier for printing a string. The
same specification can be used to receive a string from the keyboard, as
shown below.

char name[25] ;
printf ("Enter your name ") ;
scanf ("%s", name) ;

While entering the string using scanf(), we must be cautious about two
things:

(a) The length of the string should not exceed the dimension of the
character array. This is because the C compiler doesn’t perform

260 Let Us C

bounds checking on arrays. Hence, if you carelessly exceed the
bounds, there is a danger of overwriting something important.

(b) scanf() is not capable of receiving multi-word strings. Therefore, if
we receive names such as ‘Debashish Roy’ in a string only
'Debashish' would get stored in it.
If we are prepared to take the trouble, we can make scanf() accept
multi-word strings by writing it in this manner:

char name[25] ;
printf ("Enter your full name ") ;
scanf ("%[A\n]s", name) ;

Here, [A\n] indicates that scanf() will keep receiving characters into
name[] until \n is encountered. Though workable, this is not the
best of the ways to call a function, you would agree.
The way to get around this limitation is by using the function gets().
The usage of functions gets() and its counterpart puts() is shown
below.

include <stdio.h>
int main()
{

char name[25] ;
printf ("Enter your full name: ") ;
gets (name) ;
puts ("Hello!") ;
puts (name) ;
return 0 ;

}

And here is the output...

Enter your full name: Debashish Roy
Hello!
Debashish Roy

The program and the output are self-explanatory except for the fact
that, puts() can display only one string at a time (hence the use of
two puts() in the program above). Also, on displaying a string,
unlike printf(), puts() places the cursor on the next line. Though
gets() is capable of receiving only one string at a time, the plus

Chapter 15: Strings 261

point with gets() is that it can receive a multi-word string.
However, there is a pitfall in using gets(). This is discussed in
Chapter 18, along with a solution to overcome it.

Pointers and Strings
Suppose we wish to store “Hello”. We may either store it in a string or
we may ask the C compiler to store it at some location in memory and
assign the address of the string to a char pointer. This is shown below.

char str1[] = "Hello", str2[20] = "Hi" ;
char *p = "Hello", *s = "Hi" ;

There is a subtle difference in usage of these two forms.

Here str1 acts as a constant pointer to a string, whereas, p acts as a
pointer to a constant string. As a result, observe which operations are
permitted on them, and which are not:

str1 = "Adieu" ; /* error, constant pointer cannot change */
str1 = str2 ; /* error, constant pointer cannot change */
str1++ ; /* error, constant pointer cannot change */
str1 = 'Z' ; / works, because string is not constant */
p = "Adieu" ; /* works, because pointer is not constant */
p = s ; /* works, because pointer is not constant */
p++ ; /* works, because pointer is not constant */
p = 'M' ; / error, because string is constant */

The keyword const can also be used in context of variables of type int,
float, etc. as shown below:

const float pi = 3.14 ;

Standard Library String Functions
With every C compiler, a large set of useful string handling library
functions are provided. Figure 15.2 lists the more commonly used string
functions along with their purpose.

262 Let Us C

Figure 15.2 Standard library string functions.

Function Use

strlen
strlwr

Finds length of a string
Converts a string to lowercase

strupr
strcat

Converts a string to uppercase
Appends a string at the end of another

strncat Appends first n characters of a string at the end of another
strcpy
strncpy
strcmp
strncmp
strcmpi
stricmp
strnicmp
strdup
strchr
strrchr

Copies a string into another
Copies first n characters of a string into another
Compares two strings
Compares first n characters of two strings
Compares two strings by ignoring the case
Compares two strings without regard to case (identical to strcmpi)
Compares first n characters of two strings without regard to case
Duplicates a string
Finds first occurrence of a given character in a string
Finds last occurrence of a given character in a string

strstr Finds first occurrence of a given string in another string
strset Sets all characters of string to a given character
strnset Sets first n characters of a string to a given character
strrev Reverses string

From the list given in Figure 15.2, we shall discuss functions strlen(),
strcpy(), strcatf) and strcmp(), since these are very commonly used.
This will also illustrate how the library functions in general handle
strings. Let us study these functions one by one.

strlen()
This function counts the number of characters present in a string. Its
usage is illustrated in the following program:

include <stdio.h>
include <string.h>
int main()
{

char arr[] = "Bamboozled";
int lenl, Ien2;

Chapter 15: Strings 263

lenl = strlen (arr) ;
len2 = strlen ("Humpty Dumpty") ;
printf ("string = %s length = %d\n", arr, lenl) ;
printf ("string = %s length = %d\n", "Humpty Dumpty", len2) ;
return 0 ;

}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

Note that, while calling the function strlen(), we are passing the base
address of the string. This function returns the length of the string.
While calculating the length, it doesn’t count ’\0’.

Can we not write a function xstrlen(), which imitates the standard
library function strlen()? Let us give it a try...

/* A look-alike of the function strlen() */
include <stdio.h>
int xstrlen (char *) ;
int main()
{

char arr[] = "Bamboozled" ;
int len1, len2 ;
len1 = xstrlen (arr) ;
len2 = xstrlen ("Humpty Dumpty") ;
printf ("string = %s length = %d\n", arr, len1) ;
printf ("string = %s length = %d\n", "Humpty Dumpty", len2) ;
return 0 ;

}
int xstrlen (char *s)
{

int length = 0 ;
while (*s != '\0')
{

length++ ;
s++ ;

}
return (length) ;

}

264 Let Us C

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

The function xstrlen() is fairly simple. All that it does is, it keeps
counting the characters till it reaches the end of the string, i.e. up to ’\0’.

strcpy()
This function copies the contents of one string into another. The base
addresses of the target and source strings should be supplied to this
function. Here is an example of strcpy() in action...

include <stdio.h>
include <string.h>
int main()
{

char source[] = "Sayonara", target[20] ;
strcpy (target, source) ;
printf ("source string = %s\n", source) ;
printf ("target string = %s\n", target) ;
return 0 ;

}

And here is the output...

source string = Sayonara
target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the
characters in source string into the target string till it encounters the end
of source string (’\0’). It is our responsibility to see to it that the target
string’s dimension is big enough to hold the string being copied into it.
Thus, a string gets copied into another, piece-meal, character-by­
character. There is no short-cut for this. Let us now attempt to mimic
strcpy(), via our own string copy function, which we will call xstrcpy().

include <stdio.h>
void xstrcpy (char *, char *) ;
int main()
{

char source[] = "Sayonara", target[20] ;
xstrcpy (target, source) ;

Chapter 15: Strings 265

printf ("source string = %s\n", source) ;
printf ("target string = %s\n", target) ;
return 0 ;

}
void xstrcpy (char *t, char *s)
{

while (*s != '\0')
{

*t = *s ; s++ ; t++ ;
}
*t = '\0' ;

}

The output of the program would be...

source string = Sayonara
target string = Sayonara

Note that having copied all the elements of source string into the target
string, it is necessary to place a ’\0’ into the target string, to mark its
end.

If you look at the prototype of strcpy() standard library function, it looks
like this...

strcpy (char *t, const char *s) ;

We didn’t use the keyword const in our version of xstrcpy() and still our
function worked correctly. So, what is the need of the const qualifier?

What would happen if we add the following line before the while loop in
xstrcpy()?

*s = 'K' ;

This would change the source string to “Kayonara”. We can ensure that
the source string doesn’t change even accidentally in xstrcpy() by
changing the definition as follows:

void xstrcpy (char *t, const char *s)
{

/* copying code */
}

266 Let Us C

By declaring char *s as const, we are declaring that the source string
should remain constant (should not change). It also reminds anybody
reading the program listing that the variable is not intended to change.

strcat()
This function concatenates the source string at the end of the target
string. For example, “Bombay” and “Nagpur” on concatenation would
result in a string “BombayNagpur”. Here is an example of strcat() at
work.

include <stdio.h>
include <string.h>
int main()
{

char source[] = "Folks!", target[30] = "Hello" ;
strcat (target, source) ;
printf ("source string = %s\n", source) ;
printf ("target string = %s\n", target) ;
return 0 ;

}

And here is the output...

source string = Folks!
target string = HelloFolks!

Note that the target string has been made big enough to hold the final
string. I leave it to you to develop your own xstrcat() on lines of
xstrlen() and xstrcpy().

strcmp()
This function compares two strings to find out whether they are same or
different. The two strings are compared character-by-character until
there is a mismatch or we reach end of any string, whichever occurs
first. If the two strings are identical, strcmp() returns a value zero. If
they’re not, it returns the numeric difference between the ASCII values
of the first non-matching pair of characters. Here is a program which
puts strcmp() in action.

include <stdio.h>
include <string.h>

Chapter 15: Strings 267

int main()
{

char string1[] = "Jerry", string2[] = "Ferry" ;
int i, j, k ;
i = strcmp (string1, "Jerry") ;
j = strcmp (string1, string2) ;
k = strcmp (string1, "Jerry boy") ;
printf ("%d %d %d\n", i, j, k) ;
return 0 ;

}

And here is the output...

0 4 -32

In the first call to strcmp(), the two strings are identical—“Jerry” and
“Jerry”—hence the value returned by strcmp() is zero. In the second
call, the first character of “Jerry” doesn't match with the first character
of “Ferry” and the result is 4, which is the numeric difference between
ASCII value of ’J’ and ASCII value of ’F’. In the third call to strcmp(),
“Jerry” doesn’t match with “Jerry boy”, because the null character at the
end of “Jerry” doesn’t match the blank in “Jerry boy”. The value
returned is -32, which is ASCII value of null character minus ASCII value
of space, i.e., ’\0’ minus ’ ’, which is equal to -32.

The exact value of mismatch rarely concerns us. All that we usually want
to know is whether or not the first string is alphabetically before the
second string. If it is, a negative value is returned; if it isn’t, a positive
value is returned. Try to implement this logic in a user-defined function
xstrcmp().

Programs

Problem 15.1
Write a program that extracts part of the given string from the specified
position. For example, if from the sting "Working with strings is fun",
starting from position 3, 4 characters are extracted then it should return
"king".

268 Let Us C

Program

/* To extract a substring from a string */
include <stdio.h>
include <stdlib.h>
include <string.h>
int main()
{

char str[20], news[20] ;
char *s, *t ;
int pos, n, i ;
printf ("\nEnter a string: ") ;
scanf ("%s", str) ;
printf ("Enter position and no. of characters to extract: ") ;
scanf ("%d %d", &pos, &n) ;
s = str;
t = news ;
if (pos < 0 || pos > strlen (str))
{

printf ("Improper position value") ;
exit (1) ;

}
if (n < 0)

n = 0 ;
if (n > strlen (str))

n = n - strlen (str) - 1 ;
s = s + pos;
for (i = 0 ; i < n ; i++)
{

*t = *s ;
s++ ;
t++ ;

}
*t = '\0' ;
printf ("The substring is: %s\n", news) ;
return 0 ;

}

Output

Enter a string: Nagpur

Chapter 15: Strings 269

Enter position and no. of characters to extract: 3 10
The substring is: pur

Problem 15.2
Write a program that converts a string like "124" to an integer 124.

Program

/* To convert a string to an integer */
include <stdio.h>
int main()
{

char str[6] ;
int num = 0, i ;
printf ("Enter a string containing a number: ") ;
scanf ("%s", str) ;
for (i = 0 ; str [i] != '\0' ; i++)
{

if (str[i] >= 48 && str[i] <= 57)
num = num * 10 + (str[i] - 48) ;

else
{

printf ("Not a valid string\n") ;
return 1 ;

}
}
printf ("The number is: %d\n", num) ;
return 0 ;

}

Output

Enter a string containing a number: 237
The number is: 237

Problem 15.3
Write a program that generates and prints the Fibonacci words of order
0 through 5. For example, f(0) = "A", f(1) = "B", f(2) = "BA", f(3) = "BAB",
f(4) = "BABBA", etc.

270 Let Us C

Program

/* Generate Fibonacci words of order 0 through 5 */
#include <stdio.h>
#include <string.h>
int main()
{

char str[50] ;
char lastbutoneterm[50] = "A" ;
char lastterm[50] = "B" ;
int i ;
for (i = 1 ; i <= 5 ; i++)
{

strcpy (str, lastterm) ;
strcat (str, lastbutoneterm) ;
printf ("%s\n", str) ;
strcpy (lastbutoneterm, lastterm);
strcpy (lastterm, str) ;

return 0 ;

Output

BA
BAB
BABBA
BABBABAB
BABBABABBABBA

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

char c[2] = "A" ;
printf ("%c\n", c[0]) ;
printf ("%s\n", c) ;

Chapter 15: Strings 271

return 0 ;
}

(b) # include <stdio.h>
int main()
{

char s[] = "Get organized! Learn C!!" ;
printf ("%s\n", &s[2]) ;
printf ("%s\n", s) ;
printf ("%s\n", &s) ;
printf ("%c\n", s[2]) ;
return 0 ;

}
(c) # include <stdio.h>

int main()
{

char s[] = "Borrowers of books spoil the symmetry of shelves" ;
int i = 0 ;
while (s[i] != 0)
{

printf ("%c %c\n", s[i], *(s + i)) ;
printf ("%c %c\n", i[s], *(i + s)) ;
i++ ;

}
return 0 ;

}

(d) # include <stdio.h>
int main()
{

char str1[] = { ’H’, ’e’, ’l’, ’l’, ’o’, 0 } ;
char str2[] = "Hello" ;
printf ("%s\n", str1) ;
printf ("%s\n", str2) ;
return 0 ;

}
(e) # include <stdio.h>

int main()
{

printf (5 + "Good Morning ") ;
printf ("%c\n", "abcdefgh"[4]) ;

272 Let Us C

return 0 ;
}

(f) # include <stdio.h>
int main()
{

printf ("%d %d %d\n", sizeof (’3’), sizeof ("3"), sizeof (3)) ;
return 0 ;

}
[B] Fill in the blanks:

(a) "A" is a ___________ whereas ’A’ is a ____________ .

(b) A string is terminated by a _____ character.

(c) The array char name[10] can consist of a maximum of ______
characters.

(d) The array elements are always stored in _________ memory
locations.

[C] Attempt the following questions:

(a) If the string "Alice in wonder land" is fed to the following scanf()
statement, what will be the contents of arrays str1, str2, str3 and
str4?

scanf ("%s%s%s%s", str1, str2, str3, str4) ;

(b) To uniquely identify a book a 10-digit ISBN (International Standard
Book Number) is used. The rightmost digit in ISBN is a checksum
digit. This digit is determined from the other 9 digits using the
condition that d1 + 2d2 + 3d3 + ... + 10d10 must be a multiple of 11
(where di denotes the ith digit from the right). The checksum digit d1

can be any value from 0 to 10: the ISBN convention is to use the
value X to denote 10. Write a program that receives a 10-digit
integer, computes the checksum, and reports whether the ISBN
number is correct or not.

(c) A Credit Card number is usually a 16-digit number. A valid Credit
Card number would satisfy a rule explained below with the help of a
dummy Credit Card number—4567 1234 5678 9129. Start with the
rightmost - 1 digit and multiply every other digit by 2.

4 5 6 7 1 2 3 4 5 6 7 8 9 1 2 9

8 12 2 6 10 14 18 4

Chapter 15: Strings 273

Then subtract 9 from numbers that are larger than 10. Thus, we get:

8 3 2 6 1 5 9 4

Add them all up to get 38.

Add all the other digits (5, 7, 2, 4, 6, 8, 1, 9) to get 42.

Sum of 38 and 42 is 80. Since 80 is divisible by 10, the Credit Card
number is valid.

Write a program that receives a Credit Card number and checks
using the above rule whether the Credit Card number is valid.

• Strings are character arrays ending with ‘\0’. ‘\0’ is called String
Terminator

• Other arrays do not end with ‘\0’

• ASCII values : ‘0’ = 48 ‘\0’ = 0

• Ways to output strings :

char name[] = “Sanjay” ;
printf (“%s\n”, name) ;
puts (name) ;

• Ways to input strings :

char name[30] ;
scanf (“%s”, name) ;
gets (name) ;

• To receive multiword strings :

scanf ("%[A\n]s", name) ; /* means accept everything except \n */
gets (name) ;

• Prefer scanf() for receiving name of city, gets() for receiving name
and surname

• 3 = integer 3.0 = double

‘3’ = character “3” = string ending with ‘\0’

274 Let Us C

• Standard way of processing a string :

char str[] = “Blah blah blah” ; char *p ;
p = str ;
while (*p != ‘\0’)
{

/* process current character given by *p */
p++ ;

}

• printf (“Hello”) ; - passes base address of string to printf()

• Useful string functions :

int l = strlen (str) ; /* returns length of string str */
strcpy (target, source) ; /*copies source string to target string*/
strcat (target, source) ; /* appends source at the end of target*/
int l = strcmp (str1, str2) ; /* returns 0 if strings are equal,

nonzero if they are unequal */
strupr (str) ; /* converts string str to uppercase */
strlwr (str) ; /* converts string str to lowercase */
toupper (ch) ; /* converts character ch to uppercase */
tolower (ch) ; /* converts character ch to lowercase */

• #include <string.h> for prototypes of library string functions

char p[] = “Nagpur” ;

p is a constant pointer to string
p cannot be changed
Nagpur can be changed

char *p = “Nagpur” ;

p is a pointer to a constant string
p can be changed
Nagpur cannot be changed

16
Handling Multiple

"More Puppets, More Strings..."

Instead of creating several arrays of integers, create a 2D array of
integers. Instead of creating several arrays of characters, create a 2-D
array of characters. Well, don't. Why? Read on, this chapter provides the
answer.

275

276 Let Us C

C0 Contents

2-D Array of Characters
Array of Pointers to Strings
Limitation of Array of Pointers to Strings
Programs
Exercises
KanNotes

Chapter 16: Handling Multiple Strings 277

In the last chapter, we learnt how to deal with individual strings. But
often we are required to deal with a set of strings rather an isolated
string. This chapter discusses how such situations can be handled

effectively.

2-D Array of Characters
In Chapter 14 we saw several examples of 2-D integer arrays. Let’s now
look at a similar entity, but one dealing with characters. Our example
program asks you to type your name. When you do so, it checks your
name against a list of names to see if you are worthy of entry to the
palace. Here’s the program...

include <stdio.h>
include <string.h>
int main()
{

char list[6][20] = {
"akshay", "parag", "raman",
"srinivas", "gopal", "rajesh"

} ;
int i ;
char yourname[20] ;
printf ("Enter your name ") ;
scanf ("%s", yourname) ;
for (i = 0 ; i <= 5 ; i++)
{

if (strcmp (&list[i][0], yourname) == 0)
{

printf ("Welcome, you can enter the palace\n") ;
return 0 ;

}
}
printf ("Sorry, you are a trespasser") ;
return 0 ;

}

And here is the output for two sample runs of this program...

Enter your name dinesh
Sorry, you are a trespasser
Enter your name raman
Welcome, you can enter the palace

278 Let Us C

Notice how the two-dimensional character array has been initialized.
The first dimension gives the number of names in the array, whereas the
second dimension gives the length of each item in the array.

Instead of initializing names, had these names been supplied from the
keyboard, the program segment would have looked like this...

for (i = 0 ; i <= 5 ; i++)
scanf ("%s", &list[i][0]) ;

While comparing the strings using the function strcmp(), the addresses
of the strings being compared are passed to it. If the two strings match,
strcmp() would return a value 0, otherwise it would return a non-zero
value.

The names would be stored in the memory as shown in Figure 16.1.
Note that each string ends with a ’\0’. The arrangement, as you can
appreciate, is similar to that of a 2-D numeric array.

Figure 16.1 2-D array of characters in memory.

65454 a k s h a y \0

65474 p a r a g \0

65494 r a m a n \0

65514 s r i n i v a s \0

65534 g o p a l \0

65554 r a j e s h \0 65573
(last location)

Here, 65454, 65474, etc., are the base addresses of successive names.
As seen in Figure 16.1 some of the names do not occupy all the bytes
reserved for them. For example, even though 20 bytes are reserved for
storing the name “akshay”, it occupies only 7 bytes. Thus, 13 bytes go
waste. Similarly, for each name, there is some amount of wastage. This
wastage can be avoided using an ‘array of pointers to strings’.

Array of Pointers to Strings
As we know, a pointer variable always contains an address. Therefore, if
we construct an array of pointers, it would contain a number of

Chapter 16: Handling Multiple Strings 279

addresses. Following code snippet shows how names can be stored
using an array of pointers.

char *names[] = {
"akshay", "parag", "raman",
"srinivas", "gopal", "rajesh"

} ;

In this declaration, names[] is an array of pointers. It contains base
addresses of different names. This is depicted in Figure 16.2.

raman\0

195

srinivas\0

201

akshay\0

182

210 216 189

names[]

182 189 195 201 210 216

65514 65518 65522 65526 65530 65534

Figure 16.2 Array of pointers to strings.

In 2-D array of characters, the strings occupied 120 bytes. As against
this, in array of pointers, the strings occupy only 41 bytes and the array
occupies 24 bytes—a total of 65 bytes. Thus, there is a net saving of 55
bytes. A substantial saving, you would agree.

Another advantage of use of array of pointers to store strings is it
permits easy manipulation of the strings. This is shown by the following
programs. The first one uses a 2-D array of characters to store the
names, whereas the second uses an array of pointers to strings. The
purpose of both the programs is very simple. We want to exchange the
position of the names “raman” and “srinivas”.

/* Exchange names using 2-D array of characters */
include <stdio.h>
int main()
{

char names[][20] = {
"akshay", "parag", "raman",

280 Let Us C

"srinivas", "gopal", "rajesh"
} ;

int i ;
char t ;
printf ("Original: %s %s\n", &names[2][0], &names[3][0]) ;
for (i = 0 ; i <= 19 ; i++)
{

t = names[2][i] ;
names[2][i] = names[3][i] ;
names[3][i] = t ;

}
printf ("New: %s %s\n", &names[2][0], &names[3][0]) ;
return 0 ;

}

And here is the output...

Original: raman srinivas
New: srinivas raman

Note that in this program to exchange the names, we are required to
exchange corresponding characters of the two names. In effect, 20
exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an array
of pointers to strings. Here is the program...

include <stdio.h>
int main()
{

char *names[] = {
"akshay", "parag", "raman",
"srinivas", "gopal", "rajesh"

} ;
char *temp ;
printf ("Original: %s %s\n", names[2], names[3]) ;
temp = names[2] ;
names[2] = names[3] ;
names[3] = temp ;
printf ("New: %s %s\n", names[2], names[3]) ;
return 0 ;

}

Chapter 16: Handling Multiple Strings 281

And here is the output...

Original: raman srinivas
New: srinivas raman

The output is same as the earlier program. In this program to exchange
the names we have just exchanged their addresses stored in the array of
pointers. Thus, by effecting just one exchange, we are able to
interchange names. This makes handling strings very convenient.

Thus, from the point of view of efficient memory usage and ease of
programming, an array of pointers to strings definitely scores over a 2-D
character array.

Limitation of Array of Pointers to Strings
To set up strings in a 2-D array of characters, we can either initialize it
while declaring it, or receive the strings using scanf() function. Unlike
this, while using an array of pointers to strings we can only initialize it
during declaration. Thus, the following code would never work:

char *names[6] ;
scanf ("%s", names[0]) ;

Here while declaring the array, it contains garbage addresses. And it
would be incorrect to send one of these garbage address to scanf().

To overcome this difficulty we should first use scanf() to receive a name
in string n[]. Then using malloc() allocate the space needed to
accommodate the name and then copy the name into this space. This is
shown below.

include <stdio.h>
include <string.h>
include <stdlib.h>
int main()
{

char *names[6], n[50] ;
int len, i ;
char *p ;
for (i = 0 ; i <= 5 ; i++)
{

printf ("Enter name: ") ;

282 Let Us C

scanf ("%s", n) ;
len = strlen (n) ;
p = (char *) malloc (len + 1) ; /* +1 for accommodating \0 */
strcpy (p, n) ;
names[i] = p ;

}
for (i = 0 ; i <= 5 ; i++)

printf ("%s\n", names[i]) ;
return 0 ;

}

malloc() receives number of bytes to be allocated and returns the base
address of the chunk of memory that it allocates. The returned address
is of the type void *. A void * means a pointer which is a legal address
but it is not address of a char, or address of an int, or address of any
other data type. Hence it has been converted into char * using a C
language feature called typecasting. Typecasting will be discussed in
detail in Chapter 22. The prototype of malloc() has been declared in the
header file ‘stdlib.h’.

P</2
Problem 16.1
Write a program to store a few strings using an array of pointers to
strings. Receive a string and check if it is present in the array.

Program

/* Search a string in an array */
include <stdio.h>
include <string.h>
int main()
{

char *str[] = {
'We will teach you how to...",
'Move a mountain", "Level a building",
'Erase the past", "Make a million",
'...all through C!"

} ;
i *char str1[20], *p ;

int i ;

Chapter 16: Handling Multiple Strings 283

printf ("\nEnter string to be searched: ") ;
scanf ("%s", strl) ;
p = NULL ;
for (i = 0 ; i < 6 ; i++)
{

p = strstr (str[i], str1) ;
if (p != NULL)
{

printf ("%s found in the array", str1) ;
return 0 ;

}
}
printf ("%s not found in the array", str1) ;
return 0 ;

}

Output

Enter string to be searched: Million
Million not found in the array

Problem 16.2
Write a program to alphabetically sort a set of names stored using an
array of pointers to strings.

Program

/* Sort strings alphabetically */
include <stdio.h>
include <string.h>
int main()
{

char *str[] = {
"Rajesh", "Ashish", "Milind",
"Pushkar", "Akash"

} ;
char *t ;
int i, j ;
for (i = 0 ; i < 5 ; i++)
{

284 Let Us C

for (j = i + 1 ; j < 5 ; j++)
{

if ((strcmp (str[i], str[j])) > 0)
{

t = str[i] ; str[i] = str[j] ; str[j] = t;
}

}
}
for (i = 0 ; i < 5 ; i++)

printf ("%s\t", str[i]) ;
return 0 ;

}

Output

Akash Ashish Milind Pushkar Rajesh

Problem 16.3
Write a program to reverse the strings stored in an array of pointers to
strings:

Program

/* Reverse strings stored in an array of pointers */
include <stdio.h>
include <string.h>
void xstrrev (char *ss) ;
int main()
{

char str[][35] = {
"To ere is human...",
"But to really mess things up...",
"One needs to know C !!"

} ;
int i ;
for (i = 0 ; i <= 2 ; i++)
{

xstrrev (str[i]) ;
printf ("%s\n", str[i]) ;

}

Chapter 16: Handling Multiple Strings 285

return 0 ;
}
void xstrrev (char *s)
{

int l, i ;
char *t, temp ;
l = strlen (s) ;
t = s + l - 1 ;
for (i = 1 ; i <= l / 2 ; i++)
{

temp = *s ; *s = *t ; *t = temp ;
s++ ; t-- ;

}
}

Output

...namuh si ere oT

...pu sgniht ssem yllaer ot tuB
!! C wonk ot sdeen enO

[A] Answer the following questions:

(a) How many bytes in memory would be occupied by the following
array of pointers to strings? How many bytes would be required to
store the same strings in a two-dimensional character array?

char *mess[] = {
"Hammer and tongs", "Tooth and nail",
"Spit and polish", "You and C"

} ;

(b) Write a program to delete all vowels from a sentence. Assume that
the sentence is not more than 80 characters long.

(c) Write a program that will read a line and delete from it all
occurrences of the word ‘the’.

(d) Write a program that stores a set of names of individuals and
abbreviates the first and middle name to their first letter.

286 Let Us C

(e) Write a program to count the number of occurrences of any two
vowels in succession in a line of text. For example, in the following
sentence:
“Please read this application and give me gratuity”

such occurrences are ea, ea, ui.

(f) Write a program that receives an integer (less than or equal to nine
digits in length) and prints out the number in words. For example, if
the number input is 12342, then the output should be Twelve
Thousand Three Hundred Forty Two.

r KanNoteskr&
2 ways to handle multiple related strings :

1) Using 2-D array of strings
2) Using array of pointers to strings

Pros and cons of using 2-D array of strings :

Pros :
Easy to process using 2 for loops and expression str[i][j]

Cons :
Leads to wastage of precious memory space
Leads to tedious processing of array elements

Pros and cons of using array of pointers to strings :

Pros :
Easy to process
Saves space

Cons :
Cannot change strings. Their relative positions in the array can be
changed
Cannot receive strings from keyboard easily. Can be done by
allocating space for each string using malloc() and then assigning the
addresses returned by malloc() to the array elements

17 Structures

"Address the heterogeneous world..."

Imagine a railway reservation system. The data in it like name, age,
gender, address, distance of travel, source and destination stations, is
dissimilar. How can this dissimilar data be kept together? Well, this
chapter has the answer.

287

288 Let Us C

• Why Use Structures
• Array of Structures
• Intricacies of Structures

Structure Declaration
Storage of Structure Elements
Copying of Structure Elements
Nested Structures
Passing Structure Elements / Structure Variables
Packing Structure Elements

• Uses of Structures
• Programs
• Exercises
• KanNotes

Chapter 17: Structures 289

Clanguage provides arrays and strings to let us handle similar data.
But real-world data is usually dissimilar. For example, a ‘book’ is a

collection of items like title, author, publisher, number of pages, date of
publication, etc. For dealing with such data C provides a data type called
‘structure’, which is the topic of this chapter.

Why use Structures?
Suppose we wish to store in memory name (a string), price (a float) and
number of pages (an int) of 3 books. To do this we can take following
approaches:

(a) Construct 3 arrays for storing names, prices and number of pages.
(b) Use a structure variable.

Let us examine these two approaches one-by-one. For the sake of
programming convenience, let us assume that the names of books are
single character long. Here is a program that uses 3 arrays.

include <stdio.h>
int main()
{

char name[3] ;
float price[3] ;
int pages[3], i ;
printf ("Enter names, prices and no. of pages of 3 books\n") ;
for (i = 0 ; i <= 2 ; i++)

scanf ("%c %f %d", &name[i], &price[i], &pages[i]) ;
printf ("And this is what you entered\n") ;
for (i = 0 ; i <= 2 ; i++)

printf ("%c %f %d\n", name[i], price[i], pages[i]) ;
return 0 ;

}

And here is the sample run...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512
And this is what you entered
A 100.000000 354
C 256.500000 682

290 Let Us C

F 233.700000 512

Though this approach works, it has following limitations:
(a) It obscures the fact that we are dealing with characteristics related

to a single entity—the book.

(b) If we wish to store more items related to a book (publisher, date of
publication, etc.), we would be required to create more arrays.

These limitations can be overcome by following the second approach—
using a special data type called structure. It lets us group a number of
similar/dissimilar data types together. The following example illustrates
the use of this data type:

include <stdio.h>
int main()
{

struct book
{

char name ; float price ; int pages ;
} ;
struct book b1, b2, b3 ;
printf ("Enter names, prices & no. of pages of 3 books\n") ;
scanf ("%c %f %d", &b1.name, &b1.price, &b1.pages) ;
scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages) ;
scanf ("%c %f %d", &b3.name, &b3.price, &b3.pages) ;
printf ("And this is what you entered\n") ;
printf ("%c %f %d\n", b1.name, b1.price, b1.pages) ;
printf ("%c %f %d\n", b2.name, b2.price, b2.pages) ;
printf ("%c %f %d\n", b3.name, b3.price, b3.pages) ;
return 0 ;

}

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512
And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

Chapter 17: Structures 291

The program begins with declaration of a user-defined data type called
struct book, containing 3 structure elements—name, price and pages.
Then we have defined 3 structure variables b1, b2, b3 of the type struct
book. Each of these variables consists of a character variable called
name, a float variable called price and an integer variable called pages.

Then we have received values into these variables using scanf() and
printed them out using printf(). Note that to access each element of a
structure variable we have used the dot (.) operator, as in, b1.name,
b1.price and b1.pages.

You would agree that this second approach is better than the previous
approach using arrays as it keeps dissimilar but related characteristics of
a book (name, price, pages) together.

Array of Structures
In the second approach used above, if the number of books increase,
instead of creating more variables like b4, b5, b6, etc. we should create
an array of structures as illustrated in the following program:

/* Usage of an array of structures */
include <stdio.h>
void linkfloat() ;
int main()
{

struct book
{

char name ; float price ; int pages ;
} ;
struct book b[10] ;
int i ; int dh;
for (i = 0 ; i <= 9 ; i++)
{

printf ("Enter name, price and pages\n") ;
scanf ("%c %f %d", &b[i].name, &b[i].price, &b[i].pages) ;
while ((dh = getchar()) != '\n')

;
}
for (i = 0 ; i <= 9 ; i++)

printf ("%c %f %d\n", b[i].name, b[i].price, b[i].pages) ;
return 0 ;

}

292 Let Us C

void linkfloat()
{

float a = 0, *b ;
b = &a ; /* cause emulator to be linked */
a = *b ; /* suppress the warning - variable not used */

}

Notice how the array of structures is declared...

struct book b[10] ;

This array provides space in memory for 10 structures of the type struct
book. Thus, by using one array we can take care of many books, each
having many data items.

To refer to zeroth book’s price we use b[0].price, to refer to first book’s
price we use b[1].price, etc.

When we supply first record to scanf() the values entered are assigned
to different structure elements, but the enter that we hit remains in the
keyboard buffer. If we leave it there, the next call to scanf() would take
this enter and move ahead. To prevent this from happening we have to
flush out the keyboard buffer. This is what is being achieved through the
while loop following the scanf(). Some texts may use fflush (stdin)
instead of the while loop to get the same effect. But this is not a
portable way of clearing the input buffer, and may not work with all
compilers.

If we don’t define the linkfloat() function, we may get an error
"Floating-Point Formats Not Linked" with some C Compilers. How can
we force the formats to be linked? That’s where the linkfloat() function
comes in. It forces linking of the floating-point emulator into an
application. There is no need to call this function; we just need to define
it in our program.

Intricacies of Structures
We now know how to declare a structure, how to create structure
variables, how to create an array of structures and how to access
structure elements. It is time to explore the intricacies of structures.

Structure Declaration
Declaration of a structure does not reserve any space in memory. All
that it does is, it defines the ‘form’ of the structure.

Chapter 17: Structures 293

We can combine the declaration of the structure type and definition of
structure variables in one statement as shown below. When we do so,
mentioning the structure name is optional.

struct
{

char name ; float price ; int pages ;
} bl, b2, b3 ;

Like primary variables, pointers, arrays and strings, structure variables
too can be initialized where they are declared. The syntax to do so is
quite similar to the one that is used to initialize arrays.

struct book
{

char name[10] ; float price ; int pages ;
} ;
struct book b1 = { "Basic", 130.00, 550 } ;
struct book b2 = { "Physics", 150.80, 800 } ;
struct book b3 = { 0 } ;

If a structure variable is initiated to a value { 0 }, then all its elements are
set to value 0, as in b3 above. This is a handy way of initializing structure
variables. In absence of this, we would have been required to initialize
each individual element to a value 0.

Usually, structure type declaration appears at the top of the source code
file, before any variables or functions are defined. In very large programs
they are put in a separate header file, and the file is #included in the
program we wish to use this structure type.

Storage of Structure Elements
Structure elements are always stored in contiguous memory locations.
The following program illustrates this fact:

/* Memory map of structure elements */
include <stdio.h>
int main()
{

struct book
{

char name ; float price ; int pages ;
} ;

294 Let Us C

struct book bl = { 'B', 130.00, 550 } ;
printf ("Address of name = %u\n", &b1.name) ;
printf ("Address of price = %u\n", &b1.price) ;
printf ("Address of pages = %u\n", &b1.pages) ;
return 0 ;

}

Here is the output of the program...

Address of name = 65518
Address of price = 65519
Address of pages = 65523

Actually, the structure elements are stored in memory as shown in the
Figure 17.1.

b1.name b1.price b1.pages

‘B’ 130.00 550

65518 65519 65523

Figure 17.1 Layout of structure variable in memory.

In an array of structures, all elements of the array are stored in adjacent
memory locations.

Copying of Structure Elements
Structure elements can be copied either piece-meal or all at one shot.
Both these approaches are shown in the following example:

include <stdio.h>
include <string.h>
int main()
{

struct employee
{

char name[10] ; int age ; float salary ;
} ;
struct employee e1 = { "Sanjay", 30, 5500.50 } ;
struct employee e2, e3 ;
/* piece-meal copying */
strcpy (e2.name, e1.name) ; /* e2.name = e1. name is wrong */

Chapter 17: Structures 295

e2.age = el.age ;
e2.salary = el.salary ;
/* copying all elements at one go */
e3 = e2 ;
printf ("%s %d %f\n", el.name, el.age, el.salary) ;
printf ("%s %d %f\n", e2.name, e2.age, e2.salary) ;
printf ("%s %d %f\n", e3.name, e3.age, e3.salary) ;
return 0 ;

}

The output of the program would be...

Sanjay 30 5500.500000
Sanjay 30 5500.500000
Sanjay 30 5500.500000

If all elements are to be copied, copying at one shot is preferred,
whereas, if we wish to copy only some of the elements, we need to take
the piece-meal approach.

Nested Structures
One structure can be nested within another structure. Using this facility,
complex data types can be created. The following program shows
nested structures at work:

include <stdio.h>
int main()
{

struct address
{

char phone[15] ; char city[25] ; int pin ;
} ;
struct emp
{

char name[25] ; struct address a ;
} ;
struct emp e = { "jeru", "2531046", "nagpur", 10 };
printf ("name = %s phone = %s\n", e.name, e.a.phone) ;
printf ("city = %s pin = %d\n", e.a.city, e.a.pin) ;
return 0 ;

}

296 Let Us C

And here is the output...

name = jeru phone = 2531046
city = nagpur pin = 10

Notice the method used to access the element of a structure that is part
of another structure. For this, the dot operator is used twice, as in the
expressions, e.a.pin or e.a.city.

Nested structures can be surprisingly self-descriptive, for example:

maruti.engine.bolt.large.qty

This clearly signifies that we are referring to the quantity of large sized
bolts that fit on an engine of a maruti car.

Passing Structure Elements / Structure Variables
We may either pass individual structure elements or the entire structure
variable to a function as shown in the following program:

/* Passing individual structure elements */
include <stdio.h>
struct book
{

char name[25] ; char author[25] ; int pages ;
} ;
void display1 (char *, char *, int) ;
void display2 (struct book) ;
void displays (struct book *) ;
int main()
{

struct book bl = { "Let Us C", "YPK", 464 } ;
displayl (bl.name, bl.author, bl.pages) ;
display2 (bl) ;
displays (&b1) ;
return 0 ;

}
void displayl (char *n, char *a, int pg)
{

printf ("%s %s %d\n", n, a, pg) ;
}
void display2 (struct book b)

Chapter 17: Structures 297

{
printf ("%s %s %d\n", b.name, b.author, b.pages) ;

}
void displays (struct book *pb)
{

printf ("%s %s %d\n", pb->name, pb->author, pb->pages) ;
}

And here is the output...

Let Us C YPK 464
Let Us C YPK 464
Let Us C YPK 464

Observe that in the declaration of the structure, name and author are
arrays. Therefore, when we called the display1() using,

displayl (bl.name, bl.author, bl.pages) ;

we passed base addresses of the arrays name and author, but the value
stored in pages. Thus, this is a mixed call—a call by reference as well as
a call by value. display1() proceeds to print the two strings and integer.

The structure variable b1 has been passed by value to display2() and by
reference to display3(). b1 passed to display2() is collected in variable
b of the type struct book. Likewise, address of b1 passed to display3() is
collected in ‘structure pointer’ or ‘pointer to a structure’ pb. (Refer
Figure l7.2.)

Figure l7.2 Pointer to a structure.

bl.name bl.author bl.pages

Let Us C YPK 464

65472 65497 65522

pb

65472

65526

Since we need struct book in both display2() and display3() it has been
declared globally. display2() accesses and prints the elements of b using
the ‘.’ operator.

298 Let Us C

Observe carefully, how printf() is used in display3() to print structure
elements. We can’t use pb.name or pb.pages because pb is not a
structure variable but a pointer to a structure. In such cases C provides
an operator -> to refer to the structure elements. Remember that on the
left-hand side of the ‘->’ operator, there must always be a pointer to a
structure.

Packing Structure Elements
Consider the following code snippet:

struct emp
{

int a ; char ch ; float s ;
} ;
struct emp e ;
printf ("%u %u %u\n", &e.a, &e.ch, &e.s) ;

If we execute this program using TC/TC++ Compiler we get the
addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after the int and
float begins immediately after the char.

However, if we run the same program using Visual Studio compiler then
the output turns out to be:

1245044 1245048 1245052

It can be observed from this output that the float doesn’t get stored in
the immediately next location after the char. In fact, there is a hole of
three bytes after the char. Let us understand the reason for this.

Visual Studio is a 32-bit compiler targeted to generate code for a 32-bit
microprocessor. The architecture of this microprocessor is such that it is
able to fetch the data that is present at an address, which is a multiple
of four much faster than the data present at any other address. Hence
the compiler aligns every element of a structure at an address that is
multiple of four. Hence the three holes between the char and the float.

However, some programs need to exercise precise control over the
memory areas where data is placed. For example, suppose we wish to
read the contents of the boot sector (first sector on the hard disk) into a

Chapter 17: Structures 299

structure. For this the byte arrangement of the structure elements must
match the arrangement of various fields in the boot sector of the disk.
The #pragma pack directive offers a way to fulfil this requirement. This
directive specifies packing alignment for structure members. The
pragma takes effect at the first structure declaration after the pragma is
seen.

Visual Studio compiler supports this feature, whereas Turbo C/C++
doesn’t. The following code shows how to use this directive:

pragma pack(1)
struct emp
{

int a ; char ch ; float s ;
} ;
pragma pack()
struct emp e ;
printf ("%u %u %u\n", &e.a, &e.ch, &e.s) ;

Here, #pragma pack (1) lets each structure element to begin on a 1-
byte boundary as justified by the output of the program given below.

1245044 1245048 1245049

Uses of Structures
Structures are very useful in Database Management to maintain data
about employees in an organization, books in a library, items in a store,
financial accounting transactions in a company, etc. They are also used
for many other purposes like:
(a) Changing the size of the cursor
(b) Clearing the contents of the screen
(c) Placing the cursor at an appropriate position on screen
(d) Drawing any graphics shape on the screen
(e) Receiving a key from the keyboard
(f) Checking the memory size of the computer
(g) Finding out the list of equipment attached to the computer
(h) Formatting a disk
(i) Hiding a file from the directory
(j) Displaying the directory of a disk
(k) Sending the output to printer
(l) Interacting with the mouse

300 Let Us C

And that is certainly a very impressive list! At least impressive enough to
make you realize how important a data type a structure is and to be
thorough with it if you intend to program any of the above applications.

Problem 17.1
A stack is a data structure in which addition of new element or deletion
of existing element always takes place at the same end known as ‘top’ of
stack. Write a program to implement a stack using a linked list.

Program

/* Implementation of stack using a linked list */
include <stdlib.h>
include <stdio.h>
struct node
{

int data ; struct node *link ;
} ;
void push (struct node **s, int item) ;
int pop (struct node **s) ;
int main()
{

struct node *top ;
int t, i, item ;
top = NULL ;
push (&top, 45) ; push (&top, 28) ;
push (&top, 63) ; push (&top, 55) ;
item = pop (&top) ;
printf ("Popped : %d\n", item) ;
item = pop (&top) ;
printf ("Popped : %d\n", item) ;
return 0 ;

}
void push (struct node **s, int item)
{

struct node *q ;
q = (struct node *) malloc (sizeof (struct node)) ;
q -> data = item ;

Chapter 17: Structures 301

q -> link = *s ;
* s = q ;

}
int pop (struct node **s)
{

int item ;
struct node *q ;
if (*s == NULL)

printf ("Stack is empty\n") ;
else
{

q = *s ;
item = q -> data ;
* s = q -> link ;
free (q) ;
return (item) ;

}
}

Output

Popped : 55
Popped : 63

Problem 17.2
In a data structure called queue the addition of new element takes place
at the end (called ‘rear’ of queue), whereas deletion takes place at the
other end (called ‘front’ of queue). Write a program to implement a
queue using a linked list.

Program

/* Implementation of a queue using linked list */
include <stdio.h>
include <stdlib.h>
struct queue
{

int item ; struct queue *link ;
} ;
struct queue *rear, *front ;

302 Let Us C

void add (int item) ;
int del_queue() ;
int main()
{

int item ;
rear = front = NULL ;
add (10) ; add (20) ; add (30) ;
add (40) ; add (50) ; add (60) ;
item = del_queue() ;
printf ("Deleted Item = %d\n", item) ;
item = del_queue() ;
printf ("Deleted Item = %d\n", item) ;
return 0 ;

}
void add (int item)
{

struct queue *q = (struct queue *) malloc (sizeof (struct queue)) ;
q -> item = item ;
q -> link = NULL ;
if (rear == NULL)
{

rear = q ; front = q ;
}
else
{

q -> link = rear ; rear = q ;
}

}
int del_queue()
{

int item ;
struct queue *q = rear ;
if (front == NULL)
{

printf ("Queue is empty\n") ;
return -1;

}
else
{

if (front == rear)
{

Chapter 17: Structures 303

item = q -> item ; front = rear = NULL ;
free(q) ;

}
else
{

while(q -> link -> link != NULL)
q = q -> link ;

item = q -> link -> item ;
free(q -> link) ;
front = q ;
q -> link = NULL ;

}
}
return item ;

}

Output

Deleted Item = 10
Deleted Item = 20

[A] Answer the following questions:

(a) Given the statement,

maruti.engine.bolts = 25 ;
which of the following is True?
1. bolts is a structure variable
2. engine is a structure variable
3. maruti is a structure variable
4. Option 2. and 3.

(b) struct time
{

int hours ; int minutes ; int seconds ;
} t ;
struct time *pt ;
pt = &t ;

304 Let Us C

With reference to the above declarations which of the following
refers to seconds correctly:
1. pt.seconds
2. pt -> seconds
3. time.seconds
4. time->seconds

[B] Attempt the following questions:

(a) Create a structure called student that can contain data given below:

Roll number, Name, Department, Course, Year of joining

Assume that there are not more than 450 students in the college.
(1) Write a function to print names of all students who joined in a

particular year.

(2) Write a function to print the data of a student whose roll
number is received by the function.

(b) Create a structure that can contain data of customers in a bank. The
data to be stored is Account number, Name and Balance in account.
Assume maximum of 200 customers in the bank.

(1) Define a function to print the Account number and name of
each customer with balance below Rs. 1000.

(2) If a customer requests for withdrawal or deposit, it should
receive as input Account number, amount and code (1 for
deposit, 0 for withdrawal).

Define a function that prints a message, “The balance is
insufficient for the specified withdrawal”, if on withdrawal the
balance falls below Rs. 1000.

(c) An automobile company has serial number for engine parts starting
from AA0 to FF9. The other characteristics of parts are year of
manufacture, material and quantity manufactured.

(1) Create a structure to store information corresponding to a
part.

(2) Write a program to retrieve information on parts with serial
numbers between BB1 and CC6.

(d) A record contains name of cricketer, his age, number of test
matches that he has played and the average runs that he has

Chapter 17: Structures 305

scored. Create an array of structures to hold records of 20 such
cricketers and then write a program to read these records and
arrange them in ascending order by average runs. Use the qsort()
standard library function.

(e) Suppose there is a structure called employee that holds
information like employee code, name and date of joining. Write a
program to create an array of structures and enter some data into
it. Then ask the user to enter current date. Display the names of
those employees whose tenure is greater than equal to 3 years.

(f) Create a structure called library to hold accession number, title of
the book, author name, price of the book, and flag indicating
whether book is issued or not. Write a menu-driven program that
implements the working of a library. The menu options should be:

1. Add book information
2. Display book information
3. List all books of given author
4. List the title of book specified by accession number
5. List the count of books in the library
6. List the books in the order of accession number
7. Exit

(g) Define a function that compares two given dates. To store a date,
use a structure that contains three members namely day, month
and year. If the dates are equal the function should return 0,
otherwise it should return 1.

• Structure is a collection of dissimilar (usually) elements stored in

Structure is also known as - User-defined data type / Secondary data
type / Aggregate data type / Derived data type

• Terminology :

struct employee { char name ; int age ; float salary ; } ;
struct employee e1, e2, e[10] ;

struct - Keyword employee - Structure name / tag

306 Let Us C

name, age, salary - Structure elements / Structure members
e1, e2 - Structure variables e[] - Array of structures

• Structure elements are stored in adjacent memory locations

• Size of structure variable = sum of sizes of structure elements

• 2 ways to copy structure elements :

struct emp e1 = { "Rahul", 23, 4000.50 } ;
struct emp e2, e3 ;
e2.n = e1.n ; e2.a = e1.a ; e2.s = e1.s ; -> Piecemeal copying
e3 = e1 ; -> Copying at one shot

• Structures can be nested :

struct address { char city[20] ; long int pin ; } ;
struct emp { char n[20] ; int age ; struct address a ; float s ; } ;
struct emp e ;

To access city and pin we should use e.a.city and e.a.pin

• To access structure elements using structure variable, use . operator
as in

struct emp e ; printf (“%s %d %f”, e.name, e.age, e.sal) ;

To access structure elements using structure pointer, use ->
operator as in

struct emp e ; struct emp *p ;
p = &e ;
printf (“%s %d %f”, p->name, p->age, p->sal) ;

If a structure contains a pointer to itself, it is called a self-
referential structure :

struct node { int data ;

Uses of structures :

Database Management
Printing on printer
Graphics Programming

struct node *link ; } ;

Displaying characters
Mouse Programming
All Disk Operations

18
Console
Input / Output

I want to print names, ages and salaries of 5 persons on the
screen. The names and ages should be left-justified and properly
aligned one below the other. The salaries should be aligned with
the decimal point and only two digits should be printed after
decimal point. To achieve all this, you need formatted console
printing functions. This chapter shows you which one of them to
use and how...

307

308 Let Us C

• Types of I/O
• Console I/O Functions

Formatted Console I/O Functions
sprintf() and sscanf() Functions
Unformatted Console I/O Functions

• Exercises
• KanNotes

Chapter 18: Console Input/Output 309

Clanguage has no provision for receiving data from any of the input
devices (like say keyboard, disk, etc.), or for sending data to the
output devices (like say monitor, disk, etc.). Then how do we manage

Input/Output (I/O)? Well, that is what we intend to explore in this
chapter.

Types of I/O
Though C has no keywords to perform I/O, it has to be dealt with at
some point or the other. There is not much use of writing a program
that spends all its time telling itself a secret.

Each Operating System (OS) has its own way of inputting and outputting
data from and to the files and devices. So, functions are defined that can
carry out I/O keeping in mind the particular operating system’s I/O
facilities. These functions are then compiled and made available to users
in the form of libraries.

Since I/O facilities are OS dependent, definition of an I/O function for
one OS would be different than the one for another OS, even though the
behavior of both functions would be same.

There are numerous library functions available for I/O. These can be
classified into two broad categories:

(a) Console I/O functions - Functions to receive input from
keyboard and display output to screen.

(b) File I/O functions - Functions to perform I/O operations on
files on a disk.

In this chapter we would be discussing only Console I/O functions. File
I/O functions would be discussed in Chapter 19.

Console I/O Functions
The screen and keyboard together are called a console. Console I/O
functions can be further classified into two categories—formatted and
unformatted console I/O functions.

Formatted functions allow the input read from keyboard or output to
screen to be formatted as per our requirements. For example, while
displaying values of average marks and percentage marks on the screen,
details like where this output would appear on the screen, how many
spaces would be present between the two values, the number of places
after the decimal points, etc., can be controlled using formatted

310 Let Us C

functions. The functions available under each of these two categories
are shown in Figure 18.1.

Figure 18.1 Console I/O functions.

Let us now discuss these console I/O functions in detail.

Formatted Console I/O Functions
As can be seen from Figure 18.1, the functions printf(), and scanf() fall
under the category of formatted console I/O functions. These functions
allow us to supply input in a fixed format and obtain output in specified
form. Let us discuss these functions one-by-one.

General form of printf() looks like this...

printf ("format string", list of variables);

The format string can contain:
(a) Characters that are simply printed as they are
(b) Format specifications that begin with a % sign
(c) Escape sequences that begin with a \ sign

For example, look at the following code snippet:

int avg = 346;
float per = 69.2;
printf ("Average = %d\nPercentage = %f\n", avg, per);

Chapter 18: Console Input/Output 311

The output of this code snippet would be...

Average = 346
Percentage = 69.200000

During execution printf() function examines the format string from left
to right. Till it doesn’t come across either a % or a \, it continues to
display the characters that it encounters, on to the screen. In this
example, Average = is displayed on the screen. When it comes across a
format specifier, it picks up the first variable in the list of variables and
prints its value in the specified format. In this example, when %d is met,
the variable avg is picked up and its value is printed. Similarly, when an
escape sequence is met, it takes suitable action. In this example, when
\n is met, it places the cursor at the beginning of the next line. This
process continues till the end of format string is reached.

Format Specifications
The %d and %f used in the printf() are called format specifiers. Figure
18.2 gives a list of format specifiers that can be used with the printf()
function.

Figure 18.2 Different format specifiers.

Data type Format specifier

Integer signed short
unsigned short
int
unsigned int
singed long
unsigned long
signed long long
unsigned long long
unsigned hexadecimal
unsigned octal

%hd
%hu
%d or %i
%u
%ld
%lu
%lld
%llu
%x
%o

Real float
double
long double

%f
%lf
%Lf

Character signed character
unsigned character

%c
%c

String %s

312 Let Us C

We can provide optional specifiers shown in Figure 18.3 in the format
specifications.

Specifier Description

w
.

d
-

Digits specifying field width
Decimal point separating field width from precision
(precision means number of places after the decimal point)
Digits specifying precision
Minus sign for left justifying output in specified field width

Figure 18.3 Optional format specifiers.

The field-width specifier tells printf() how many columns on screen
should be used while printing a value. For example, %10d says, “print
the variable as a decimal integer in a field of 10 columns”. If the value to
be printed happens not to fill up the entire field, the value is right
justified and is padded with blanks on the left.

If we include the minus sign in format specifier (as in %-10d), this means
left-justification is desired and the value will be padded with blanks on
the right.

If the field-width used turns out to be less than what is required to print
the number, the field-width is ignored and the complete number is
printed. Here is an example that illustrates all these features.

include <stdio.h>
int main()
{

int weight = 63 ;
printf ("weight is %d kg\n", weight) ;
printf ("weight is %2d kg\n", weight) ;
printf ("weight is %4d kg\n", weight) ;
printf ("weight is %6d kg\n", weight) ;
printf ("weight is %-6d kg\n", weight) ;
printf ("weight is %1d kg\n", weight) ;
return 0 ;

}

The output of the program would look like this ...

Chapter 18: Console Input/Output 313

Columns 0123456789012345678901234567890
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg

Specifying the field width can be useful in creating tables of numeric
values with the numbers lined up properly, as the following program
demonstrates:

include <stdio.h>
int main()
{

printf ("%10.1f %10.1f %10.1f\n", 5.0, 13.5, 133.9) ;
printf ("%10.1f %10.1f %10.1f\n", 305.0, 1200.9, 3005.3);
return 0 ;

}

This results into a much better output...

01234567890123456789012345678901
5.0 13.5 133.9

305.0 1200.9 3005.3

Note that the specifier %10.1f specifies that a float be printed right-
aligned within 10 columns, with one place beyond the decimal point.

The format specifiers can be used even while displaying a string of
characters. The following program would clarify this point:

firstname1[
surname1[
firstname2[
surname2[

] = "Sandy";
] = "Malya" ;

] = "AjayKumar" ;
] = "Gurubaxani" ;

include <stdio.h>
int main()
{

char
char
char
char
printf ("%20s%20s\n", firstname1, surname1) ;
printf ("%20s%20s\n", firstname2, surname2) ;
return 0 ;

}

314 Let Us C

And here’s the output...

012345678901234567890123456789012345678901234567890
Sandy Malya

AjayKumar Gurubaxani

The format specifier %20s prints the string in these 20 columns with
right justification. This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left-justified the
string. Had we used %-20.10s it would have meant left-justify the string
in 20 columns and print only first 10 characters of the string.

Escape Sequences
All escape sequences begin with a \. They are called because the
backslash symbol (\) is considered as an ‘escape’ character—it causes an
escape from the normal interpretation of a string, so that the next
character is recognized as one having a special meaning. Figure 18.4
shows a complete list of these escape sequences.

Escape Seq. Purpose Escape Seq. Purpose

\n New line \t Tab

\v Vertical tab \b Backspace

\r Carriage return \f Form feed

\a Alert \’ Single quote

\” Double quote \\ Backslash

\? Question mark \xhh Char in hex value

Figure 18.4 Escape sequences.

The following program shows usage of escape sequences \n, \t and \v.

include <stdio.h>
int main()
{

printf ("Maths teaches reasoning,\nnot Algebra & geometry\n") ;
printf ("Future of learning \r is remote\n") ;
printf ("You\tmust\tbe\tcrazy\vto\thate\tthis\tbook\n") ;
return 0 ;

}

Chapter 18: Console Input/Output 315

And here’s the output...

01234567890123456789012345678901234567890123456789012345...
Maths teaches reasoning,
not Algebra & geometry
is remotelearning
You must be crazy

to hate this book

The \n takes the cursor to beginning of next line. Hence in the first
printf() message after the word 'reasoning,' is printed on the next line.
In the second printf(), \r positioned the cursor to the beginning of the
line in which it is currently placed. Hence, the message got overwritten.

While using \t an 80-column screen is divided into 10 print zones of 8
columns each. Using a \t moves the cursor to the beginning of next print
zone. For example, if cursor is positioned in column 5, then printing a \t
takes the cursor to column 8. \v moves the cursor in the next line below
its current position.

\b moves the cursor one position to the left of its current position. \a
alerts the user by sounding the speaker inside the computer. Form feed
advances the computer stationery attached to the printer to the top of
the next page. Characters single quote, double quote, backslash and
question mark can be printed by preceding them with the backslash.
Thus, the statement,

printf ("He said, \"How\,s life\?\"") ;

will print...

He said, "How's life?"

Finally, the character ,A, can be printed using decimal or its octal and
hexadecimal representation using the following statement:

printf ("%c %c %c", 65, '\101', '\x41‘) ;

Ignoring Characters
Sometimes we may wish to ignore some of the characters supplied as
input. For example, while receiving a date we may wish to ignore the
separator like '.', '/' or '-'. This can be done using %*c. This means if a '.'
or '/' or '-' is entered it would be matched and ignored. The * ensures

316 Let Us C

that the character entered doesn't get assigned to any variable in the
variable list.

printf ("Enter date in dd/mm/yy or dd.mm.yy or dd-mm-yy format\n") ;
scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;
printf ("%d/%d%/%d\n", dd, mm, yy) ;

Mismatch
If there is a mismatch in the specifier and the type of value being
printed, printf() attempts to perform the specified conversion, and does
its best to produce a proper result. Sometimes the result is nonsensical,
as in case when we ask it to print a string using %d. Sometimes the
result is useful, as in the case we ask printf() to print ASCII value of a
character using %d. Sometimes the result is disastrous and the entire
program blows up.

The following program shows a few of these conversions, some sensible,
some weird:

include <stdio.h>
int main()
{

char ch = 'z' ;
int i = 125 ;
float a = 12.55 ;
char s[] = "hello there !" ;
printf ("%c %d %f\n", ch, ch, ch) ;
printf ("%s %d %f\n", s, s, s) ;
printf ("%c %d %f\n",i ,i, i) ;
printf ("%f %d\n", a, a) ;
return 0 ;

}

And here’s the output...

z122 -9362831782501783000000000000000000000000000.000000
hello there ! 3280 -
9362831782501783000000000000000000000000000.000000
} 125-9362831782501783000000000000000000000000000.000000
12.550000 0

I would leave it to you to analyze the results by yourselves. You would
find that some of the conversions are quite sensible.

Chapter 18: Console Input/Output 317

Let us now turn our attention to scanf(). The scanf() function allows us
to enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:

scanf ("format string", list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables to scanf() function. This
is necessary because the values received from keyboard must be
dropped into variables corresponding to these addresses. The values
that are supplied through the keyboard must be separated by either
blank(s), Tab(s), or newline(s). Do not include these escape sequences in
the format string. All the format specifications that we learnt in printf()
function are applicable to scanf() function as well.

sprintf() and sscanf() Functions
The sprintf() function works similar to the printf() function except for
one small difference. Instead of sending the output to the screen as
printf() does, this function writes the output to a string. The following
program illustrates this:

include <stdio.h>
int main()
{

int i = 10 ;
char ch = 'A' ;
float a = 3.14 ;
char str[20] ;
printf ("%d %c %f\n", i, ch, a) ;
sprintf (str, "%d %c %f", i, ch, a) ;
printf ("%s\n", str) ;
return 0 ;

}

In this program, the printf() prints out the values of i, ch and a on the
screen, whereas sprintf() stores these values in the string str. Since the
string str is present in memory, what is written into str using sprintf()
doesn’t get displayed on the screen. Once str has been built, its contents

318 Let Us C

can be displayed on the screen. In our program this is achieved by the
second printf() statement.

The counterpart of sprintf() is the sscanf() function. It allows us to read
characters from a string and to convert and store them in C variables
according to specified formats. The sscanf() function comes in handy for
in-memory conversion of characters to values. You may find it
convenient to read in strings from a file and then extract values from a
string by using sscanf(). The usage of sscanf() is same as scanf(), except
that the first argument is the string from which reading is to take place.

Unformatted Console I/O Functions
There are several standard library functions available under this
category—those that can deal with a single character and those that can
deal with a string of characters. For openers, let us look at those which
handle one character at a time.

fgetchar() and fputchar()
The fgetchar() function (or its equivalent getchar() macro) lets you read
a single character entered from keyboard. The character that is typed
has to be followed by Enter key. Its counterpart is fputchar() (or its
equivalent putchar() macro) which displays a character on the screen.
Their usage is shown in the following program:

include <stdio.h>
int main()
{

char ch ;
printf ("\nType any alphabet") ;
ch = getchar() ; /* must be followed by enter key */
printf ("You typed ") ;
putchar (ch) ;
return 0 ;

}

With fgetchar() you need to hit the Enter key before the function can
digest what you have typed. However, we may want a function that will
read a single character the instant it is typed without waiting for the
Enter key to be hit. There is no standard function to achieve this and
there are different solutions for different OS.

Chapter 18: Console Input/Output 319

Compilers like Turbo C and Visual Studio provide function called getch()
to achieve this. Its prototype is present in the file conio.h. This function
reads a single character from keyboard. But it does not use any buffer,
so the entered character is immediately returned without waiting for
the enter key. In Linux-based systems the same effect can be obtained
by doing some terminal settings using stty command.

gets() and puts()
gets() receives a string from the keyboard. It is terminated when an
Enter key is hit. Thus, spaces and tabs are perfectly acceptable as part of
the input string. More exactly, gets() function gets a newline (\n)
terminated string of characters from the keyboard and replaces the \n
with a \0. The puts() function works exactly opposite to gets() function.
It outputs a string to the screen.

Here is a program which illustrates the usage of these functions.

include <stdio.h>
int main()
{

char footballer[40] ;
puts ("Enter name") ;
gets (footballer) ; /* sends base address of array */
puts ("Happy footballing!") ;
puts (footballer) ;
return 0 ;

}

Following is the sample output:

Enter name
Lionel Messi
Happy footballing!
Lionel Messi

Why did we use two puts() functions to print “Happy footballing!” and
“Lionel Messi”? Because, unlike printf(), puts() can output only one
string at a time. If we attempt to print two strings using puts(), only the
first one gets printed. Similarly, unlike scanf(), gets() can be used to
read only one string at a time.

A word of caution! While using gets() if the length of the input string is
bigger than the size of the string passed to gets() then we may end up

320 Let Us C

exceeding the bounds of the string, which is dangerous. This can be
avoided using fgets() function as shown below:

char str[20] ;
puts ("Enter a string: ") ;
fgets (str, 20, stdin) ;
puts (str) ;

Here is the sample interaction with this code snippet...

Enter a string:
It is safe to use fgets than gets
It is safe to use f

Note that only 19 characters were stored in str[] followed by a '\0'. So,
bounds of the string were not exceeded. Here stdin represents standard
input device, i.e., keyboard.

[A] What will be the output of the following programs?

(a) # include <stdio.h>
include <ctype.h>
int main()
{

char ch;
ch = getchar() ;
if (islower (ch))

putchar(toupper(ch)) ;
else

putchar (tolower (ch)) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int i = 2 ;
float f = 2.5367 ;
char str[] = "Life is like that" ;
printf ("%4d\t%3.3f\t%4s\n", i, f, str) ;

Chapter 18: Console Input/Output 321

return 0 ;
}

(c) # include <stdio.h>
int main()
{

printf ("More often than \b\b not \rthe person who \
wins is the one who thinks he can !\n") ;

return 0 ;
}

(d) # include <conio.h>
char p[] = "The sixth sick sheikh's sixth ship is sick" ;
int main()
{

int i = 0 ;
while (p[i] != '\0')
{

putchar (p[i]) ;
i++ ;

}
return 0 ;

}

[B] Point out the errors, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

int i ;
char a[] = "Hello" ;
while (a != '\0')
{

printf ("%c", *a) ;
a++ ;

}
return 0 ;

}

(b) # include <stdio.h>
int main()
{

double dval ;

322 Let Us C

scanf ("%f", &dval) ;
printf ("Double Value = %lf\n", dval) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int ival ;
scanf ("%d\n", &n) ;
printf ("Integer Value = %d\n", ival) ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int dd, mm, yy ;
printf ("Enter date in dd/mm/yy or dd-mm-yy format\n") ;
scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;
printf ("The date is: %d - %d - %d\n", dd, mm, yy) ;
return 0 ;

}

(e) # include <stdio.h>
int main()
{

char text ;
sprintf (text, "°%o4d\t°%o2.2f\n°%os", 12, 3.452, "Merry Go Round") ;
printf ("%s\n", text) ;
return 0 ;

}

(f) # include <stdio.h>
int main()
{

char buffer[50] ;
int no = 97;
double val = 2.34174 ;
char name[10] = "Shweta" ;
sprintf (buffer, "%d %lf %s", no, val, name) ;
printf ("%s\n", buffer) ;
sscanf (buffer, "%4d %2.2lf %s", &no, &val, name) ;

Chapter 18: Console Input/Output 323

printf ("%s\n", buffer) ;
printf ("%d %lf %s\n", no, val, name) ;
return 0 ;

}

[C] Answer the following questions:

(a) To receive the string "We have got the guts, you get the glory!!" in
an array char str[100] which of the following functions would you
use?

1. scanf ("%s", str) ;
2. gets (str) ;
3. getchar (str) ;
4. fgetchar (str) ;

(b) If an integer is to be entered through the keyboard, which function
would you use?

1. scanf()
2. gets()
3. getche()
4. getchar()

(c) Which of the following can a format string of a printf() function
contain:

1. Characters, format specifications and escape sequences
2. Character, integers and floats
3. Strings, integers and escape sequences
4. Inverted commas, percentage sign and backslash character

(d) The purpose of the field-width specifier in a printf() function is to:

1. Control the margins of the program listing
2. Specify the maximum value of a number
3. Control the size of font used to print numbers
4. Specify how many columns should be used to print the number

(e) If we are to display the following output properly aligned which
format specifiers would you use?

Discovery of India Jawaharlal Nehru 425.50
My Experiments with Truth Mahatma Gandhi 375.50
Sunny Days Sunil Gavaskar 95.50
One More Over Erapalli Prasanna 85.00

324 Let Us C

• I/O in C is always done using functions, not using keywords

• All I/O functions can be divided into 2 broad categories :

1) Console I/O functions : a) Formatted b) Unformatted
2) Disk I/O functions

• The formatted console I/O functions can force the user to receive the
input in a fixed format and display the output in a fixed format.

• All formatted Console I/O is done using printfQ and scanf()

• Examples of formatting :

%20s - right-align a string in 20 columns
%-10d - left-align an integer in 10 columns
%12.4f - right-align a float in 12 columns with 4 places beyond
decimal point

• Escape sequences :

\n - positions cursor on next line
\r - positions cursor at beginning of same line
When we hit enter \r is generated and is converted into \r\n
\t - positions cursor at beginning of next print zone. 1 print zone = 8
columns
\v - positions cursor in the next line below current cursor position
\’, \”, \?, \\ - produces ‘ “ ? \ in the output
\xhh - represents ASCII character in hexadecimal notation

• scanf() can contain format specifier like %10.2f, but it is too
restrictive, hence rarely used

• Unformatted console I/O functions :

char - fgetchar(), fputchar(). fgetchar() - Waits for enter
int / float - no functions
string - gets(), puts(), fgets(), fputs()

Once you know how to read / write data from / to file, you have
crossed a major hurdle. With this knowledge under your belt,
you will be able to write many useful programs. This chapter
shows you how...

325

326 Let Us C

C0 Contents

• File Operations
Opening a File
Reading from a File
Closing the File

• Counting Characters, Tabs, Spaces,...
• A File-copy Program
• File Opening Modes
• String (line) I/O in Files
• Text Files and Binary Files
• Record I/O in Files

Modifying Records
• Low Level File I/O

A Low-level File-copy Program
• Programs
• Exercises
• Kan Notes

Chapter 19: File Input/Output 327

Often data is so large that all of it cannot be stored in memory and
only a limited amount of it can be displayed on the screen. Also,
memory is volatile and its contents would be lost once the program is

terminated. At such times, it becomes necessary to store the data in a
‘file’ on disk so that it can be later retrieved, used and displayed either in
part or in whole. This chapter discusses how file I/O operations can be
performed.

File Operations
There are different operations that can be carried out on a file. These
are:
(a) Creation of a new file
(b) Opening an existing file
(c) Reading from a file
(d) Writing to a file
(e) Moving to a specific location in a file (seeking)
(f) Closing a file
Let us write a program to read a file and display its contents on the
screen. We will first list the program and show what it does, and then
dissect it line-by-line. Here is the listing...

/* Display contents of a file on screen. */
include <stdio.h>
int main()
{

FILE *fp ;
char ch ;
fp = fopen ("PR1.C", "r") ;
while (1)
{

ch = fgetc (fp) ;
if (ch == EOF)

break ;
printf ("%c", ch) ;

}
printf ("\n") ;
fclose (fp) ;
return 0 ;

}

328 Let Us C

On execution of this program, it displays the contents of the file ‘PR1.C’
on the screen. Let us now understand how it does the same.

Opening a File
The basic logic of the program is as follows:
(a) Read a character from file.
(b) Display the character read on the screen.
(c) Repeat steps (a) and (b) for all characters in the file.
It would be quite inefficient to access the disk every time we want to
read a character from it. It would be more sensible to read the contents
of the file into a buffer (a chunk in memory) while opening the file and
then read the file character by character from the buffer rather than
from the disk. This is shown in Figure 19.1.

Same argument also applies to writing information in a file. Instead of
writing characters in the file on the disk one character at a time, it would
be more efficient to write characters in a buffer and then finally transfer
the contents from the buffer to the disk.

Before we can read (or write) information from (to) a file on a disk we
must open the file. To open the file we have called the function fopen().
It would open a file “PR1.C” in ‘read’ mode since we intend to read the
file contents. In fact fopen() performs three important tasks when you
open the file in “r” mode:
(a) It locates the file to be opened, on the disk.
(b) It loads the file from the disk into a buffer.
(c) It sets up a character pointer which points to the first character of

the buffer.
(d) It sets up a FILE structure and returns its address.

Chapter 19: File Input/Output 329

Let us understand the purpose of the FILE structure. To be able to
successfully read from a file, information like mode of opening, size of
file, place in the file from where the next read operation would be
performed, etc., has to be maintained. Since all this information is inter­
related, all of it is set by fopen() in a structure called FILE. fopen()
returns the address of this structure, which we have collected in the
structure pointer fp. We have declared fp as follows:

FILE *fp ;

The FILE structure has been declared in the header file “stdio.h”
(standing for standard input/output header file).

Reading from a File
A call to fopen() sets up a pointer that points to the first character in
the buffer. This pointer is one of the elements of the structure to which
fp is pointing (refer Figure 19.1).

To read the file’s contents from buffer we have called fgetc() as under.

ch = fgetc (fp) ;

fgetc() reads the character from the current pointer position, advances
the pointer position so that it now points to the next character, and
returns the character that is read, which we have collected in the
variable ch. Note that once the file has been opened, we no longer refer
to the file by its name, but through the file pointer fp.

We have used the function fgetc() in an infinite while loop. We should
break out of this loop when all the characters from the file have been
read. But how would we know this? Well, fgetc() returns a macro EOF
(End of File), once all the characters have been read and we attempt to
read one more character. The EOF macro is defined in the file “stdio.h”.

Closing the File
When we have finished reading from the file, we need to close it. This is
done using the function fclose() through the statement,

fclose (fp) ;

Once we close the file, we can no longer read from it using fgetc(). Note
that to close the file, we don’t use the filename but the file pointer fp.

330 Let Us C

On closing the file, the buffer associated with the file is removed from
memory.

In this program we have opened the file for reading. Suppose we open a
file with an intention to write characters into it. This time too, a buffer
would get associated with it. When we attempt to write characters into
this file using fputc() the characters would get written to the buffer.
When we close this file using fclose() two operations would be
performed:
(a) The characters in the buffer would be written to the file on the disk.
(b) The buffer would be eliminated from memory.
You can imagine a possibility when the buffer may become full before
we close the file. In such a case the buffer’s contents would be written
to the disk the moment it becomes full. This buffer management is done
for us by the library functions.

Counting Characters, Tabs, Spaces, ...
Having understood the first file I/O program, let us write a program that
will read a file and count how many characters, spaces, tabs and
newlines are present in it. Here is the program...

/* Count chars, spaces, tabs and newlines in a file */
include <stdio.h>
int main()
{

FILE *fp ;
char ch;
int nol = 0, not = 0, nob = 0, noc = 0 ;
fp = fopen ("PR1.C", "r") ;
while (1)
{

ch = fgetc (fp) ;
if (ch == EOF)

break ;
noc++ ;
if (ch == ' ')

nob++;
if (ch == '\n')

nol++ ;
if (ch == '\t')

not++ ;

Chapter 19: File Input/Output 331

}
fclose (fp) ;
printf ("Number of characters = %d\n", noc) ;
printf ("Number of blanks = %d\n", nob) ;
printf ("Number of tabs = %d\n", not) ;
printf ("Number of lines = %d\n", nol) ;
return 0 ;

}

Here is a sample run...

Number of characters = 125
Number of blanks = 25
Number of tabs = 13
Number of lines = 22

The above statistics are true for a file “PR1.C”, which I had on my disk.
You may give any other filename and obtain different results. I believe
the program is self-explanatory. In this program too, we have opened
the file for reading and then read it character-by-character. Let us now
try a program that needs to open a file for writing.

A File-Copy Program
We have already used the function fgetc() which reads characters from
a file. Its counterpart is a function called fputc() which writes characters
to a file. As a practical use of these character I/O functions, we can copy
the contents of one file into another, as demonstrated in the following
program. This program reads the contents of a file and copies them into
another file, character-by-character.

include <stdio.h>
include <stdlib.h>
int main()
{

FILE *fs, *ft ;
char ch ;
fs = fopen ("PR1.C", "r") ;
if (fs == NULL)
{

puts ("Cannot open source file") ; exit (1) ;
}
ft = fopen ("PR2.C", "w") ;

332 Let Us C

if (ft == NULL)
{

puts ("Cannot open target file") ;
fclose (fs) ; exit (2) ;

}
while (1)
{

ch = fgetc (fs) ;
if (ch == EOF)

break ;
else

fputc (ch, ft) ;
}
fclose (fs) ; fclose (ft) ;
return 0 ;

}

There is a possibility that when we try to open a file using the function
fopen(), the file may not be opened. While opening the file in “r” mode,
this may happen because the file being opened may not be present on
the disk at all. And you obviously cannot read a file that doesn’t exist.

Similarly, while opening the file for writing, fopen() may fail due to a
number of reasons, like, disk space may be insufficient to create a new
file, or you may not have write permission to the disk or the disk is
damaged and so on.

If fopen() fails to open a file it returns a value NULL (defined in “stdio.h”
as #define NULL 0). In this program we have handled this possibility by
checking whether fs and ft are set to NULL. If any of them has been set
to NULL we have called the exit() function to terminate the execution
of the program.

Usually, a value 0 is passed to exit() if the program termination is
normal. A non-zero value indicates an abnormal termination of the
program. If there are multiple exit points in the program, then the value
passed to exit() can be used to find out from where the execution of the
program got terminated.

The fputc() function writes a character to a file pointed to by ft. The
writing process continues till all characters from the source file have
been written to the target file, following which the while loop
terminates.

Chapter 19: File Input/Output 333

Note that this file-copy program is capable of copying only text files. To
copy binary files with extension .EXE or .JPG, we need to open the files
in binary mode, which is dealt with in detail in a later section.

File Opening Modes
Following is a list of modes in which a file can be opened along with the
tasks performed by fopen() when the file is opened.

"r" Searches file. If file is opened successfully fopen() loads it
into memory and sets up a pointer which points to the first
character in it. If the file cannot be opened, fopen()
returns NULL.

Operations possible - reading from the file.

"w" Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist, a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing to the file.

"a" Searches file. If file is opened successfully fopen() loads it
into memory and sets up a pointer that points to the last
character in it. If the file doesn’t exist, a new file is created.
Returns NULL, if unable to open file.

Operations possible - adding new contents at the end of
file.

"r+" Searches file. If file is opened successfully fopen() loads it
into memory and sets up a pointer that points to the first
character in it. Returns NULL, if unable to open the file.

Operations possible - reading existing contents, writing
new contents, modifying existing contents of the file.

"w+" Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist, a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing new contents, reading them
back and modifying existing contents of the file.

"a+" Searches file. If file is opened successfully fopen() loads it
into memory and sets up a pointer that points to the first
character in it. If the file doesn’t exist, a new file is created.

334 Let Us C

Returns NULL, if unable to open file.

Operations possible - reading existing contents, appending
new contents to end of file. Cannot modify existing
contents.

String (Line) I/O in Files
For many purposes, character I/O is just what is needed. However, in
some situations, the usage of functions that read or write entire strings
might turn out to be more efficient. Here is a program that writes strings
to a file using fputs() and then reads them back using fgets().

/* Receives strings from keyboard and writes them to file */
include <stdio.h>
include <stdlib.h>
include <string.h>
int main()
{

FILE *fp ;
char str[80] ;
fp = fopen ("POEM.TXT", "w") ;
if (fp == NULL)
{

puts ("Cannot open file") ; exit (1) ;
}
printf ("\nEnter a few lines of text:\n") ;
while (strlen (gets (str)) > 0)
{

fputs (str, fp) ; fputs ("\n", fp) ;
}
fclose (fp) ;

/* read the file back */
printf ("\nFile contents are being read now„.\n" , s) ;
fp = fopen ("POEM.TXT", "r") ;
if (fp == NULL)
{

puts ("Cannot open file") ; exit (2) ;
}
while (fgets (str, 79, fp) != NULL)

printf ("%s" , str) ;
fclose (fp) ;

Chapter 19: File Input/Output 335

return 0 ;
}

And here is a sample run of the program...

Enter a few lines of text:
Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours!

File contents are being read now„.
Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours!

During execution, after entering each string hit Enter. To terminate the
execution of the loop, hit Enter at the beginning of a line. This creates a
string of zero length, which the program recognizes as the signal to end
the loop.

We have set up a character array str to receive a string; fputs() function
writes the contents of this array to the file. Since fputs() does not
automatically add a newline character to the end of the string, we must
do this explicitly to make it easier to read the string back from the file.

While reading the file, the function fgets() takes three arguments. The
first argument is the address where the string is stored. The second
argument is the maximum length of the string. This argument prevents
fgets() from reading in too long a string and overflowing the array. The
third argument is the pointer to the structure FILE. On reading a line
from the file, the string str would contain the line contents a ‘\n’
followed by a ‘\0’. Thus the string is terminated by fgets() and we do
not have to terminate it specifically. When all the lines from the file have
been read, we attempt to read one more line, in which case fgets()
returns a NULL.

Text Files and Binary Files
All the programs that we wrote in this chapter so far worked on text
files. A text file contains only textual information like alphabets, digits

336 Let Us C

and special symbols. A good example of a text file is any C program, say
PR1.C.

As against this, a binary file is merely a collection of bytes. This
collection might be a compiled version of a C program (say PR1.EXE), or
music data stored in a MP4 file or a picture stored in a JPG file.

A very easy way to find out whether a file is a text file or a binary file is
to open that file in Notepad. If on opening the file you can make out
what is displayed then it is a text file, otherwise it is a binary file.

From the programming angle there are two main areas where text and
binary mode files are different. These are discussed below.

Text versus Binary Mode: Newlines
In text mode, a newline character is converted into the carriage return­
linefeed combination before being written to the file. Likewise, the
carriage return-linefeed combination in the file is converted back into a
newline when the file is read back. If a file is opened in binary mode,
these conversions do not take place.

Text versus Binary Mode: Storage of Numbers
While using text mode, numbers are stored as character strings. Thus,
an integer 12579 occupies 4 bytes in memory, but when written to the
file it would occupy 5 bytes, 1 byte per character. Similarly, the floating­
point number 1234.56 would occupy 7 bytes in file. Thus, numbers with
more digits would require more storage space.

Hence if large amount of numerical data is to be stored in a disk file,
using text mode may turn out to be inefficient. The solution is to open
the file in binary mode and use functions fread() and fwrite() which
work with numbers in binary format. As a result, each number would
occupy same number of bytes on disk as it occupies in memory.

Record I/O in Files
Suppose we wish to perform I/O of data about employees from/to file.
For this we would have to create a struct employee and then use the
following functions to read/write employee data from/to file.
File opened in text mode - fscanf() / fprintf()
File opened in binary mode - fread() / fwrite()

Chapter 19: File Input/Output 337

Given below is the code snippet that shows how to use these functions.
You may replace the comments with actual code to make it a fully
workable program.

/* Writes / Reads records to / from a file in text / binary mode */
include <stdio.h>
int main()
{

FILE *fp ;
struct emp
{

char name[40] ; int age ; float bs ;
} ;
struct emp e ;
char ch = 'Y' ;
fp = fopen ("EMPLOYEE.DAT", "w") ;
while (ch == 'Y')
{

printf ("Enter name, age, salary: ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fprintf (fp, "%s %d %f\n", e.name, e.age, e.bs) ;
printf ("Another record: ") ;
ch = fgetchar() ;

}
fclose (fp) ;
fp = fopen ("EMPLOYEE.DAT", "r") ;
while (fscanf (fp, "%s %d %f", e.name, &e.age, &e.bs) != EOF)

printf ("%s %d %f\n", e.name, e.age, e.bs) ;
fclose (fp) ;

ch = 'Y' ;
fp = fopen ("EMP.DAT", "wb") ;
while (ch == 'Y')
{

printf ("Enter name, age, salary: ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fwrite (&e, sizeof (e), 1, fp) ;
printf ("Another record: ") ;
ch = fgetchar() ;

}
fclose (fp) ;

338 Let Us C

fp = fopen ("EMP.DAT", "rb") ;
while (fread (&e, sizeof (e), 1, fp) == 1)

printf ("%s %d %f\n", e.name, e.age, e.bs) ;
fclose (fp) ;
return 0 ;

}

Note that we have opened the binary file ‘EMP.DAT’ in “rb” and “wb”
modes. While opening the file in text mode we can use either “r” or “rt”,
but since text mode is the default mode, we usually drop the ‘t’.

To read / write a record in a text mode file we have used fscanf() and
fprintf() respectively. They work same as scanf() and printf() except
that they have an additional first argument fp. This argument indicates
the file on which they are supposed to work.

To read / write a record in a binary mode file we have used fread() and
fwrite() respectively. Let us understand the following call:

fwrite (&e, sizeof (e), 1, fp) ;

Suppose the address of e is 400 and size of e is 48 bytes. So the above
call means—starting with address 400, write next 48 bytes, once, into a
file pointed to by fp.

Likewise, the call,

fwrite (&e, sizeof (e), 1, fp) ;

would mean—from a file pointed to by fp, read once, 48 bytes and store
them at an address starting from 400.

The text file-based record I/O has two disadvantages:
(a) The numbers would occupy a greater number of bytes, as each

number is stored as a character string.

(b) If the number of fields in the structure increase (say, by adding
address, house rent allowance, etc.), writing structures using
fprintf(), or reading them using fscanf(), would become tedious.

Modifying Records
We know how to read or write records from / to a binary mode fle. But
what if we are to modify an existing record? Well, when we open a file
fopen() returns a pointer to a structure. This structure contains a

Chapter 19: File Input/Output 339

pointer which points to the first record in the file. fread() always reads a
record from where the pointer is currently placed. Similarly, fwrite()
always writes a record where the pointer is currently placed. On using
the function fread() or fwrite(), the pointer moves to the beginning of
the next record. On closing a file, the pointer is deactivated.

The rewind() function places the pointer to the beginning of the file,
irrespective of where it is present right now. The fseek() function lets us
move the pointer from one record to another. These functions have
been used in the following code to modify an existing record in a file.

int recsize ;
recsize = sizeof (struct emp) ;
printf ("\nEnter name of employee to modify: ") ;
scanf ("%s", empname) ;
rewind (fp) ;
while (fread (&e, recsize, 1, fp) == 1)
{

if (strcmp (e.name, empname) == 0)
{

printf ("\nEnter new name, age & bs ") ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
fseek (fp, -recsize, SEEK_CUR) ;
fwrite (&e, recsize, 1, fp) ;
break ;

}
}

To move the pointer to the previous record from its current position, we
have used the function,

fseek (fp, -recsize, SEEK_CUR) ;

-recsize moves the pointer back by recsize bytes from the current
position. SEEK_CUR is a macro defined in “stdio.h”.

Similarly, if we wish to place the pointer beyond the last record in the
file, we can use

fseek (fp, 0, SEEK_END) ;

In fact, -recsize or 0 are just the offsets that tell the compiler by how
many bytes should the pointer be moved from a reference position. The

340 Let Us C

reference position could be SEEK_END, SEEK_CUR or SEEK_SET.
SEEK_END means move the pointer from the end of the file, SEEK_CUR
means move the pointer with reference to its current position and
SEEK_SET means move the pointer with reference to the beginning of
the file.

Once the pointer has been properly positioned, we have written a new
record that overwrites an existing record.

If we wish to know where the pointer is positioned right now, we can
use the function ftell(). It returns this position as a long int which is an
offset from the beginning of the file. A sample call to ftell() is shown
below.

long int position ;
position = ftell (fp) ;

Low-Level File I/O
In low-level File I/O, data cannot be written as individual characters, or
as strings or as formatted data. There is only one way to read/write data
in low-level file I/O functions—as a buffer full of bytes.

Writing a buffer full of data resembles the fwrite() function. However,
unlike fwrite(), the programmer must set up the buffer for the data,
place the appropriate values in it before writing, and take them out after
writing. Thus, the buffer in the low-level I/O functions is part of the
program, rather than being invisible as in high-level file I/O functions.

Low-level file I/O functions offer following advantages:

(a) Since these functions parallel the methods that the OS uses to write
to the disk, they are more efficient than high-level file I/O functions.

(b) Since there are fewer layers of routines to go through, low-level I/O
functions operate faster than their high-level counterparts.

Let us now write a program that uses low-level file input/output
functions.

A Low-level File-copy Program
Earlier we had written a program to copy the contents of one file to
another on a character-by-character basis. We can rewrite the same
program to read a chunk of bytes from the source file and then write
this chunk into the target file. While doing so, the chunk would be read

Chapter 19: File Input/Output 341

into the buffer and would be written to the file from the buffer. We
would manage the buffer ourselves, rather than relying on the library
functions to do so. This is what is low-level about this program. Here is a
program which shows how this can be done.

/* File-copy program which copies text, .com and .exe files */
include <fcntl.h>
include <sys\types.h>
include <sys\stat.h>
include <stdlib.h>
include <stdio.h>
int main()
{

char buffer[512], source[128], target[128] ;
int in, out, bytes ;
printf ("\nEnter source file name: ") ;
gets (source) ;
in = open (source, O_RDONLY | O_BINARY) ;
if (in == -1)
{

puts ("Cannot open file") ; exit (1) ;
}
printf ("\nEnter target file name: ") ;
gets (target) ;
out = open (target, O_CREAT | O_BINARY | O_WRONLY, S_IWRITE) ;
if (out == -1)
{

puts ("Cannot open file") ;
close (in) ; exit (2) ;

}
while ((bytes = read (in, buffer, 512)) > 0)

write (out, buffer, bytes) ;
close (in) ; close (out) ;
return 0 ;

}

Declaring the Buffer
The first difference that you will notice in this program is that we declare
a character buffer,

char buffer[512] ;

342 Let Us C

This is the buffer in which the data read from the file will be placed. The
size of this buffer is important for efficient operation. Depending on the
operating system, buffers of certain sizes are handled more efficiently
than others.

Opening a File
We have opened two files in our program, one is the source file from
which we read the information, and the other is the target file into
which we write the information read from the source file.

As in high-level file I/O, the file must be opened before we can access it.
This is done using the statement,

in = open (source, O_RDONLY | O_BINARY) ;

As usual, we have to supply to open(), the filename and the mode in
which we want to open the file. The possible file opening modes are
given below.

O_APPEND - Opens a file for appending
O_CREAT - Creates a new file for writing (no effect if file exists)
O_RDONLY - Opens a new file for reading only
O_RDWR - Creates a file for both reading and writing
O_WRONLY - Creates a file for writing only
O_BINARY - Opens a file in binary mode
O_TEXT - Opens a file in text mode

These ‘O-flags’ are defined in the file “fcntl.h”. So, this file must be
included in the program while using low-level file I/O. When two or
more O-flags are used together, they are combined using the bitwise OR
operator (|). Chapter 21 discusses bitwise operators in detail.

The other statement used in our program to open the file is,

out = open (target, O_CREAT | O_BINARY | O_WRONLY, S_IWRITE) ;

Note that since the target file doesn’t exist when it is being opened, we
have used the O_CREAT flag, and since we want to write to the file, we
have used O_WRONLY. And finally, since we want to open the file in
binary mode, we have used O_BINARY.

Chapter 19: File Input/Output 343

Whenever O_CREAT flag is used, another argument must be added to
open() function to indicate the read/write status of the file to be
created. This argument is called ‘permission argument’. Permission
arguments could be any of the following:
S_IWRITE - Writing to the file permitted
S_IREAD - Reading from the file permitted
To use these permissions, both the files “types.h” and “stat.h” present in
“sys” folder must be #included in the program along with “fcntl.h”.

File Handles
Instead of returning a FILE pointer as fopen() did, in low-level file I/O,
open() returns an integer value called ‘file handle’. This is a number
assigned to a particular file, which is used thereafter to refer to the file.
If open() returns a value of -1, it means that the file couldn’t be
successfully opened.

Interaction between Buffer and File
The following statement reads the file or as much of it as will fit into the
buffer:

bytes = read (in, buffer, 512)

Here the first argument is file handle, the second is the address of the
buffer and the third is the maximum number of bytes we want to read.

For copying the file, we must use both the read() and the write()
functions in a while loop. The read() function returns the number of
bytes actually read. This is assigned to the variable bytes. This variable is
used to tell write() how many bytes to write from the buffer to the
target file.

Problem 19.1
Write a program to read a file and display its contents along with line
numbers before each line.

Program

/* Program to display a file with line numbers */

344 Let Us C

include <stdio.h>
include <stdlib.h>
int main()
{

FILE *fp ;
char ch, source[67] ; /* max path length for some OS is 66 chars */
int count = 1 ;
printf ("\nEnter file name: ") ;
scanf ("%s", source) ;
fp = fopen (source, "r") ;
if (fp == NULL)
{

puts ("Unable to open the file.") ; exit (0) ;
}
printf ("\n%3d: ", count) ;
while ((ch = getc(fp)) != EOF)
{

if (ch == '\n')
{

count++;
printf ("\n%3d: ", count) ;

}
else

printf ("%c", ch) ;
}
fclose (fp) ;
return 0 ;

}

Output

Enter the file name: Sample.txt
1: What is this life
2: if full of care
3: We have no time
4: to stand and stare!

Problem 19.2
Write a program to append the contents of one file at the end of
another.

Chapter 19: File Input/Output 345

Program

/* Append contents of one file at the end of another */
include <stdio.h>
include <stdlib.h>
include <string.h>
int main()
{

FILE *fs, *ft ;
char source[67], target[67], str[80] ;
puts ("Enter source file name: ") ;
gets (source) ;
puts ("Enter target file name: ") ;
gets (target) ;
fs = fopen (source, "r") ;
if (fs == NULL)
{

puts ("Unable to open source file") ; exit (0) ;
}
ft = fopen (target, "a") ;
if (ft == NULL)
{

fclose (fs) ;
puts ("Unable to open target file") ; exit (0) ;

}
while (fgets (str, 79, fs) != NULL)

fputs (str, ft) ;
printf ("Appending file completed!!") ;
fclose (fs) ;
fclose (ft) ;
return 0 ;

}

Output

Enter source file name:
Sample.txt
Enter target file name:
NewSample.txt
Appending file completed!!

346 Let Us C

[A] Answer the following questions:

(a) In which file FILE structure is defined?

(b) If a file contains the line “I am a boy\r\n” then on reading this line
into the array str[] using fgets() what would str[] contain?

(c) State True or False:

1. The disadvantage of high-level file I/O functions is that the
programmer has to manage the file buffers.

2. If a file is opened for reading, it is necessary that the file must
exist.

3. If a file opened for writing already exists, its contents would be
overwritten.

4. For opening a file in append mode it is necessary that the file
should exist.

(d) On opening a file for reading which of the following activities are
performed:

1. The disk is searched for existence of the file.
2. The file contents are brought into memory.
3. A pointer is set up which points to the first character in the file.
4. All the above.

(e) Is it necessary that a file created in text mode must always be
opened in text mode for subsequent operations?

[B] Attempt the following questions:

(a) Suppose a file contains student records with each record containing
name and age of a student. Write a program to read these records
and display them in sorted order by name.

(b) Write a program to copy contents of one file to another. While
doing so replace all lowercase characters to their equivalent
uppercase characters.

(c) Write a program that merges lines alternately from two files and
writes the results to a new file. If one file has a smaller number of
lines than the other, the remaining lines from the larger file should
be simply copied into the target file.

Chapter 19: File Input/Output 347

(d) Write a program to encrypt/decrypt a file using:

(1) Offset cipher: In this cipher each character from the source file
is offset with a fixed value and then written to the target file.

For example, if character read from the source file is ‘A’, then
write a character represented by ‘A’ + 128 to the target file.

(2) Substitution cipher: In this cipher for each character read from
the source file a corresponding predetermined character is
written to the target file.

For example, if character ‘A’ is read from the source file, then a
‘!’ would be written to the target file. Similarly, every ‘B’ would
be substituted by ‘5’ and so on.

(e) In the file ‘CUSTOMER.DAT’ there are 10 records with the following
structure:

struct customer
{

int accno ; char name[30] ; float balance ;
} ;
In another file ‘TRANSACTIONS.DAT’ there are several records with
the following structure:

struct trans
{

int accno ; char trans_type ; float amount ;
} ;
The element trans_type contains D/W indicating deposit or
withdrawal of amount. Write a program to update
‘CUSTOMER.DAT’ file, i.e., if the trans_type is ‘D’ then update the
balance of ‘CUSTOMER.DAT’ by adding amount to balance for the
corresponding accno. Similarly, if trans_type is ‘W’ then subtract
the amount from balance. However, while subtracting the amount
ensure that the amount should not get overdrawn, i.e., at least 100
Rs. should remain in the account.

(f) There are 10 records present in a file with the following structure:

struct date { int d, m, y ; } ;
struct employee
{

int empcode[6] ; char empname[20] ;

348 Let Us C

struct date join_date ; float salary ;
} ;
Write a program to read these records, arrange them in ascending
order by join_date and write them to a target file.

(g) A hospital keeps a file of blood donors in which each record has the
format:

Name: 20 columns Address: 40 columns
Age: 2 columns Blood Type: 1 column (Type 1, 2, 3 or 4)
Write a program to read the file and print a list of all blood donors
whose age is below 25 and whose blood type is 2.

(h) Given a list of names of students in a class, write a program to store
the names in a file on disk. Make a provision to display the nth name
in the list, where n is read from the keyboard.

(i) Assume that a Master file contains two fields—roll number and
name of the student. At the end of the year, a set of students join
the class and another set leaves. A Transaction file contains the roll
numbers and an appropriate code to add or delete a student.
Write a program to create another file that contains the updated
list of names and roll numbers. Assume that the Master file and the
Transaction file are arranged in ascending order by roll numbers.
The updated file should also be in ascending order by roll numbers.

(j) Given a text file, write a program to create another text file deleting
the words “a”, “the”, “an” and replacing each one of them with a
blank space.

• File I/O functions :

a) High level :
1) Text mode -(i) Formatted (ii) Unformatted
2) Binary mode

b) Low Level

• High level text mode formatted file I/O functions: fprintfQ, fscanf()

• High level text mode, unformatted file I/O functions :

char - fgetc(), fputc()

Chapter 19: File Input/Output 349

int, float - no functions
string - fgets(), fputs()

• I/O is always done using a buffer of suitable size

High level file I/O functions manage the buffer themselves
While using Low level file I/O functions we have to manage the buffer

• Functions to open and close a file :

High level - fopen(), fclose()
Low level - open(), close()

• FILE *fp = fopen (“temp.dat”, “r”) ;

FILE is a structure declared in stdio.h
fopen() - Creates buffer, Creates structure

- Returns address of structure which is assigned to fp

• ch = fgetc (fp) ; - Reads char, Shifts pointer to next char

Returns ASCII value of character read
Returns EOF if no character is left for reading

• To read a file character by character till we do not reach the end :

while ((ch = fgetc (fp)) != EOF)

• To read a file line by line till we do not reach the end :

char str[80] ;
while (fgets (fp, str, 79) != NULL)

• EOF and NULL are macros defined in stdio.h

#define EOF -1
#define NULL 0

• fopenQ :

To open file for reading in text mode - “rt” or “r”
To open file for writing in text mode - “wt” or “w”
To open file for reading in binary mode - “rb”
To open file for writing in binary mode - “wb”

• Difference :

fs = fopen (s,"r") ; - Returns NULL if file is absent

350 Let Us C

Returns address of FILE structure, if present

ft = fopen (t, "w") ; - Creates new file if file is absent

Overwrites file, if present

fclose (fs) ; - Vacates the buffer

fclose (ft) ; - Writes buffer to disk, vacates the buffer

• To read / write record to a file in text mode :

struct emp e = { “Ajay”, 24, 4500.50 } ;
fprintf (fp, “%s %d %f\n”, e.name, e.age, e.sal) ;

while (fscanf (fp, “%s %d %f\n”, e.name, &e.age, &e.sal) != EOF)

• To read / write record to a file in binary mode :

struct emp e = { “Ajay”, 24, 4500.50 } ;
fwrite (&e, sizeof (e), 1, fp) ;
while (fread (&e, sizeof (e), 1, fp) != EOF)

• To move the pointer in a file ;

fseek (fp, 512L, SEEK_SET) ;
Moves the pointer 512 bytes from the beginning of file

• Other macros :
SEEK_END - from end of file
SEEK_CUR - from the current position of the pointer

• To read / write a buffer of 512 characters using low level file I/O
functions :

int in, out ; char buffer[512] ;
out = open (“trial.dat”, O_WRONLY | O_BINARY | O_CREAT) ;
in = open (“sample.dat”, O_RDONLY | O_BINARY) ;
write (out, buffer, 512) ;
n = read (in, buffer, 512) ; /* n - no. of bytes read successfully */

• Include three files while doing low level file I/O :

#include <fcntl.h>
#include <sys\stat.h>
#include <sys\types.h>

20 More Issues In
Input/Output

“More the merrier..."

Ever wondered how some programs are able to receive input at
command-line itself? And how they are able to redirect their
input and output with ease? Well, nothing great, that is, once
you have gone through this chapter...

351

352 Let Us C

• Using argc and argv
• Detecting Errors in Reading/Writing
• Standard File Pointers
• I/O Redirection

Redirecting the Output
Redirecting the Input
Both Ways at Once

• Exercises
• KanNotes

Chapter 20: More Issues In Input/Output 353

In Chapters 18 and 19 we saw how Console I/O and File I/O operations
are done in C. There are still some more issues related with
input/output that remain to be understood. These issues help in making

the I/O operations more elegant.

Using argc and argv
While executing the file-copy program in Chapter 19, we are prompted
to enter the source and target filenames. Instead of the program
prompting us to enter these filenames, we should be able to supply
them at command prompt, in the form:

filecopy PR1.C PR2.C

where, ‘filecopy’ is the executable form of our C program, ‘PR1.C’ is the
source filename and ‘PR2.C’ is the target filename. The command
prompt is C:\> if you are using command window, Search box if you are
using Windows 10 and $ prompt if you are using Linux.

This improvement is possible by passing the source filename and target
filename to the function main(). This is illustrated in the program given
below.

include <stdio.h>
include <stdlib.h>
int main (int argc, char *argv[])
{

FILE *fs, *ft ;
char ch ;
if (argc != 3)
{

puts ("Improper number of arguments\n") ;
exit (1) ;

}
fs = fopen (argv[1], "r") ;
if (fs == NULL)
{

puts ("Cannot open source file\n") ;
exit (2) ;

}
ft = fopen (argv[2], "w") ;
if (ft == NULL)
{

354 Let Us C

puts ("Cannot open target file\n") ;
fclose (fs) ;
exit (3) ;

}
while (1)
{

ch = fgetc (fs) ;
if (ch == EOF)

break ;
else

fputc (ch, ft) ;
}
fclose (fs) ;
fclose (ft) ;
return 0 ;

}

The arguments that we pass to main() at the command prompt are
called command-line arguments. The function main() can have two
arguments, traditionally named as argc and argv. Out of these, argv is an
array of pointers to strings and argc is an int whose value is equal to the
number of strings to which argv points.

When the program is executed, the strings on the command-line are
passed to main(). More precisely, the strings at the command-line are
stored in memory and address of the first string is stored in argv[0],
address of the second string is stored in argv[1] and so on. The
argument argc is set to the number of strings given at the command­
line. For example, in our sample program, if at the command prompt we
give,

filecopy PR1.C PR2.C

then,

argc would contain 3
argv[0] would contain base address of the string ‘filecopy’
argv[1] would contain base address of the string ‘PR1.C’
argv[2] would contain base address of the string ‘PR2.C’

Whenever we pass arguments to main(), it is a good habit to check
whether the correct number of arguments have been passed to main()
or not. In our program this has been done through,

Chapter 20: More Issues In Input/Output 355

if (argc != 3)
{

puts ("Improper number of arguments\n") ;
exit (1) ;

}

Rest of the program is same as the earlier file-copy program.

One final comment... the while loop that we have used in our program
can be written in a more compact form, as shown below.

while ((ch = fgetc (fs)) != EOF)
fputc (ch, ft) ;

This avoids the usage of an indefinite loop and a break statement to
terminate the loop. Here, first fgetc (fs) gets the character from the
file, assigns it to the variable ch, and then ch is compared against EOF.
Remember that it is necessary to put the expression

ch = fgetc (fs)

within a pair of parentheses, so that first the character read is assigned
to variable ch and then it is compared with EOF.

There is one more way of writing the while loop. It is shown below.

while (!feof (fs))
{

ch = fgetc (fs) ;
fputc (ch, ft) ;

}

Here, feof() is a function that returns a 0 if end of file is not reached.
Hence we use the ! operator to negate this 0 to a truth value. When the
end of file is reached, feof() returns a non-zero value, ! makes it 0 and
since now the condition evaluates to false, the while loop gets
terminated.

Note that the following three methods for opening a file are same, since
in each one of them, essentially a base address of the string (pointer to a
string) is being passed to fopen().

fs = fopen ("PR1.C" , "r") ;

356 Let Us C

fs = fopen (filename, "r") ;
fs = fopen (argv[1] , "r") ;

Detecting Errors in Reading/Writing
Not at all times when we perform a read or write operation on a file, are
we successful in doing so. So, there must be a provision to test whether
our attempt to read/write was successful or not.

The standard library function ferror() reports any error that might have
occurred during a read/write operation on a file. It returns a zero if the
read/write is successful and a non-zero value in case of a failure. The
following program illustrates the usage of ferror():

include <stdio.h>
int main()
{

FILE *fp ;
char ch ;
fp = fopen ("TRIAL", "w") ;
while (!feof (fp))
{

ch = fgetc (fp) ;
if (ferror())
{

perror ("TRIAL") ;
break ;

}
else

printf ("%c", ch) ;
}
fclose (fp) ;
return 0 ;

}

In this program, the fgetc() function would obviously fail first time
around since the file has been opened for writing, whereas fgetc() is
attempting to read from the file. The moment the error occurs, ferror()
returns a non-zero value and the if block gets executed. Instead of
printing the error message using printf(), we have used the standard
library function perror() to print the error message.

When the error occurs, the error message that is displayed is:

Chapter 20: More Issues In Input/Output 357

TRIAL: Permission denied

This means we can precede the system error message with any message
of our choice. In our program, we have just displayed the filename in
place of the error message.

Standard File Pointers
To perform reading or writing operations on a file, we need to use
fopen() to set up a file pointer to refer to this file. Most OSs also
predefine pointers for three standard files. To access these pointers, we
need not use fopen(). These standard file pointers are shown in Figure
20.1.

Standard File pointer Description

stdin Standard input device (Keyboard)
stdout Standard output device (Monitor)
stderr Standard error device (Monitor)

Figure 20.1 Standard file pointers.

So if we use the statement ch = fgetc (stdin), it would read a character
from the keyboard rather than from a file. We can use this statement
without any need to use fopen() or fclose() function calls.

I/O Redirection
Most operating systems incorporate a powerful feature called I/O
redirection that allows a program to read from and write to files, even
when such a capability has not been incorporated in the program.

Normally a C program receives its input from the standard input device,
which is assumed to be the keyboard, and sends its output to the
standard output device, which is assumed to be the monitor. In other
words, the OS makes certain assumptions about where input should
come from and where output should go. Redirection permits us to
change these assumptions.

For example, using redirection the output of the program that normally
goes to the monitor can be sent to the disk or the printer without really

358 Let Us C

making a provision for it in the program. This is often a more convenient
and flexible approach than providing a separate function in the program
to write to the disk or printer. Similarly, redirection can be used to read
information from disk file directly into a program, instead of receiving
the input from keyboard.

To use redirection facility, we need is to execute the program from the
command prompt, inserting the redirection symbols at appropriate
places. Let us understand this process with the help of a program.

Redirecting the Output
Let’s see how we can redirect the output of a program, from the screen
to a file. We’ll start by considering the simple program shown below.

/* File name: util.c */
include <stdio.h>
int main()
{

char ch ;
while ((ch = fgetc (stdin)) != EOF)

fputc (ch, stdout) ;
return 0 ;

}

On compiling this program, we would get an executable file UTIL.EXE.
Normally, when we execute this file, the fputc() function will cause
whatever we type to be printed on screen, until we type Ctrl-Z, at which
point the program will terminate, as shown in the following sample run.
The Ctrl-Z character is often called end of file character.

C>UTIL.EXE
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth AZ
C>

Now let’s see what happens when we invoke this program in a different
way, using redirection:

C>UTIL.EXE > POEM.TXT
C>

Chapter 20: More Issues In Input/Output 359

The redirection operator, ‘>’, causes any output intended for the screen
to be redirected to the file POEM.TXT. Can we prove that the output has
indeed gone to the file POEM.TXT? Yes, by opening the file POEM.TXT in
any editor. You would see the result of our typing sitting in this file.

Note that the data to be redirected to a file doesn’t need to be typed by
a user at the keyboard; the program itself can generate it. Any output
normally sent to the screen can be redirected to a disk file. As an
example, consider the following program for generating the ASCII table
on screen:

/* File name: ascii.c*/
include <stdio.h>
int main()
{

int ch ;
for (ch = 0 ; ch <= 255 ; ch++)

printf ("%d %c\n", ch, ch) ;
return 0 ;

}

When this program is compiled and then executed at command prompt
using the redirection operator,

C>ASCII.EXE > TABLE.TXT

the output is written to the file. This can be a useful capability any time
you want to capture the output in a file, rather than displaying it on the
screen.

Redirecting the Input
We can also redirect input to a program so that, instead of reading a
character from the keyboard, a program reads it from a file. To redirect
the input, we need to have a file containing some text. Suppose we use
a file called NEWPOEM.TXT containing the following lines:

Let's start at the very beginning,
A very good place to start!

We’ll assume that using some text editor these lines have been placed in
the file NEWPOEM.TXT. Now, we use the input redirection operator ‘<’
before the file, as shown below.

360 Let Us C

C>UTIL.EXE < NEWPOEM.TXT
Let's start at the very beginning,
A very good place to start!
C>

The lines are printed on the screen with no further effort on our part.

Both Ways at Once
Redirection of input and output can be done together; the input for a
program can come from a file via redirection, at the same time its
output can be redirected to a file. Such a program is called a filter. The
following command demonstrates this process:

C>UTIL.EXE < NEWPOEM.TXT > POETRY.TXT

In this case, our program receives the redirected input from the file
NEWPOEM.TXT and instead of sending the output to the screen; it
redirects it to the file POETRY.TXT.

While using such multiple redirections, don’t try to send output to the
same file from which you are receiving input. This is because the output
file is erased before it is written to. So, by the time we manage to
receive the input from a file, it is already erased.

Redirection can be a powerful tool for developing utility programs to
examine or alter data in files. Another OS operator can be used to relate
two programs directly, so that the output of one is fed directly into
another, with no files involved. This is called ‘piping’, and is done using
the operator ‘|’, called pipe. We won’t pursue this topic, but you can
read about it in the OS Help.

[A] Answer the following questions:

(a) How will you use the program given below to perform the following
operations?

- Copy the contents of one file into another.
- Create a new file and add some text to it.
- Display the contents of an existing file.

include <stdio.h>

Chapter 20: More Issues In Input/Output 361

int main()
{

char ch, str[10] ;
while ((ch = fgetc (stdin)) != -1)

fputc (ch, stdout) ;
return 0 ;

}

(b) State True or False:

1. We can send arguments at command-line even if we define
main() function without parameters.

2. To use standard file pointers we don’t need to open the file
using fopen().

3. The zeroth element of argv array points to the name of the
executable file.

(c) Write a program using command-line arguments to search for a
word in a file and replace it with the specified word. The usage of
the program is shown below.

C> change <old word> <new word> <filename>

(d) Write a program that can be used at command prompt as a
calculating utility. The usage of the program is shown below.

C> calc <switch> <n> <m>
where, n and m are two integer operands and switch is either an
arithmetic operator or a comparison operator. If arithmetic
operator is supplied, the output should be the result of the
operation. If comparison operator is supplied then the output
should be True or False.

• C>, $ are called command prompts in Windows and Linux respectively

• Command-line arguments are arguments provided to main() from
command-line

• Command-line args are collected in main() in variables argc and argv

argc - Count of arguments
argv - Vector (array) of arguments

362 Let Us C

Any variable names other than argc, argv are ok

• char *argv[] is an array of pointers to strings. So all arguments are
received as strings and their addresses are stored in argv[]

• Errors in reading / writing from / to a. file can be detected using
ferror() and reported using perror() :

ch = fgetc (fp) ;
if (ferror())

perror ("Error while reading") ;

• Most OSs predefine pointers for three standard files :

stdin - standard input device - keyboard
stdout - standard output device - monitor
stderr - standard error device - monitor

• To use and give up these pointers, we need not use fopen() and
fclose()

• The statement ch = fgetc (stdin) would read a character from the
keyboard

• If a program uses stdin then using < at command prompt input can be
redirected to be received from a file

If a program uses stdout and stderr then using > at command prompt
output and error messages can be redirected to a file

• The operators < and > are called redirection operators

21 Operations On
Bits

“Bit by bit, I take a byte..."

Char is one byte long, and char is the smallest entity that we can
handle in a C program. But, at times, we may want to access or
manipulate individual bits of a byte. How can this be done?
Well, this chapter has the answer...

363

364 Let Us C

• Bit Numbering and Conversion
• Bit Operations
• One’s Complement Operator
• Right Shift and Left Shift Operators

Utility of << Operator
• Bitwise AND, OR and XOR Operator s

Utility of & Operator
Utility of | Operator
Utility of A Operator

• The showbits() Function
• Bitwise Compound Assignment Operators
• Programs
• Exercises
• KanNotes

Chapter 21: Operations On Bits 365

So far the smallest element in memory on which we were able to
operate was a byte, i.e. a char. However, we haven’t attempted to
look within a byte to see how it is constructed out of individual bits, and

how these bits can be manipulated. Being able to operate on a bit-level,
can be very important in programming, especially when a program must
interact with the hardware. Let us now delve inside the byte and see
how it is constructed and how it can be manipulated effectively.

Bit Numbering and Conversion
A bit (short for Binary Digit) is the most basic unit of information. It can
take a value 0 or 1. 4 bits together form a nibble, 8 bits form a byte, 16
bits form a word and 32 bits form a double-word. Bits are numbered
from zero onwards, increasing from right to left as shown in Figure 21.1.

C language understands decimal, octal and hexadecimal numbering
systems. It doesn't understand binary numbering system. As against this,
hardware understands only binary. Hence while programming a
hardware, we are often required to convert the binary numbers into
decimal or hexadecimal numbers. Let us see how this conversion can be
done. Figure 21.1 shows how binary values 10110110 and 00111100 are
converted to decimal numbers.

76543210

1 0 1 1 0 1 1 0

0 * 20 + 1 * 21 + 1 * 22 + 0 * 23 + 1 * 24 + 1 * 25 + 0 * 26 + 1 * 27

= 2 + 4 + 16 + 32 + 128
= 182

76543210

0 0 1 1 1 1 0 0

0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 1 * 24 + 1 * 25 + 0 * 26 + 0 * 27

= 4 + 8 + 16 + 32
= 60

Figure 21 .1 Conversion from Binary to Decimal.

As you can see from Figure 21.1, the binary to decimal conversion
process involves remembering powers of 2. This is alright if the binary
number is a 8-bit number, but if it is a 16-bit number then remembering

366 Let Us C

powers like 215, 214, 213, etc., is difficult. A much easier method is to
convert binary numbers to hexadecimal numbers. In hexadecimal
numbering system each number is built using a combination of digits 0
to 9 and A to F. Digits A to F are symbols that are used to represent
values 10 to 15. Each hexadecimal digit can be represented using a 4-bit
nibble as shown in Figure 21.2.

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Figure 21 .2 Binary nibbles and their Hexadecimal equivalents.

Using Figure 21.2, it is very easy to convert binary values into their
equivalent hexadecimal values. This is shown in Figure 21.3.

76543210

B

1 0 1 1 0 1 1 0

6
0xB6

76543210

3

0 0 1 1 1 1 0 0

C
0x3C

Figure 21 .3 Binary to Hexadecimal conversion.

You would agree it is easier to represent the binary number in hex
rather than in decimal as it involves neither multiplication nor addition.
Quick now, what’s binary 1100 in hex? That’s right—C. You are already
getting the feel of it. With a little practice, it is easy to translate even
long numbers into hex. For example, 1100 0101 0011 1010 binary is
C53A hex.

Bit Operations
Now that we have understood the bit numbering and the binary to hex
conversion process, it is time to access and manipulate bits. Here are
some examples of operations that we may wish to perform on bits:

Chapter 21: Operations On Bits 367

(a) Set bit 3 to 0
(b) Set bit 5 to 1
(c) Check whether bit 6 is 1 (on) or 0 (off)
In (a) and (b) bits are being manipulated (a write operation), whereas, in
(c) a bit is being accessed (a read operation). To be able to access or
manipulate individual bits, C language provides a powerful set of
operators. These are shown in Figure 21.4.

Operator Meaning

~ One’s complement
>> Right shift
<< Left shift
& Bitwise AND

| Bitwise OR
A Bitwise XOR(Exclusive OR)

Figure 21.4 Bitwise operators.

These operators can operate on ints and chars but not on floats and
doubles. Before we examine these operators, let me introduce you to a
function called showbits(). Its job is to display binary equivalent of the
value that it receives. We are going to use this function at several places,
but we are going to discuss its details only towards the end of this
chapter. Let us now explore the various bitwise operators one-by-one.

One’s Complement Operator
On taking one’s complement of a number, all 1’s present in it are
changed to 0’s and all 0’s are changed to 1’s. For example, one’s
complement of 65, i.e., one’s complement of 01000001 (binary
equivalent of 65) is 10111110. One’s complement operator is
represented by the symbol ~ (tilde). Following program shows one’s
complement operator in action:

#include <stdio.h>
int main()
{

unsigned char ch = 32, dh ;
dh=~ch;

368 Let Us C

printf ("~ch = %d\n", dh) ;
printf ("~ch = %x\n", dh) ;
printf ("~ch = %X\n", dh) ;
printf ("~ch = %#X\n", dh) ;
return 0 ;

}

On execution the program produces the following output:

~ch = 223
~ch = df
~ch = DF
~ch = 0xDF

Here ch contains a value 32, whose binary equivalent is 00100000. On
taking one's complement of it, we get 11011111, which in decimal is
223. As we learnt earlier, hexadecimal equivalent of 11011111 is DF. The
hexadecimal equivalent gets printed in small case if we use %x and in
capital if we use %X. #X prints 0x before the hexadecimal number.

Right Shift and Left Shift Operators
The right shift operator is represented by >>. It needs two operands.
Thus, ch >> 3 would shift all bits in ch three places to the right. Similarly,
ch >> 5 would shift all bits 5 places to the right. If ch contains the bit
pattern 11010111, then, ch >> 1 would give 01101011 and ch >> 2
would give 00110101.

Note that as the bits are shifted to the right, blanks are created on the
left. These blanks get filled with zeros.

The left shift operator (<<) is similar to the right shift operator (>>), the
only difference being that the bits are shifted to the left, and for each bit
shifted, a 0 is added to the right of the number.

The following program demonstrates the use of >> and << operators:

include <stdio.h>
void showbits (unsigned char) ;
int main()
{

unsigned char num = 225, k ;
printf ("\nDecimal %d is same as binary ", num) ;
showbits (num) ;

Chapter 21: Operations On Bits 369

k = num >> 1 ;
printf ("\n%d right shift 1 gives ", num) ; showbits (k) ;
k = num >> 2 ;
printf ("\n%d right shift 2 gives ", num) ; showbits (k) ;
k = num << 1 ;
printf ("\n%d left shift 1 gives ", num) ; showbits (k) ;
k = num << 2 ;
printf ("\n%d left shift 2 gives ", num) ; showbits (k) ;
return 0 ;

}
void showbits (unsigned char n)
{

int i ;
unsigned char j, k, andmask ;
for (i = 7 ; i >= 0 ; i--)
{

j = i ;
andmask = 1 << j ;
k = n & andmask ;
k == 0 ? printf ("0") : printf ("1") ;

}
}

The output of the above program would be...

Decimal 225 is same as binary 11100001
225 right shift 1 gives 01110000
225 right shift 2 gives 00111000
225 left shift 1 gives 11000010
225 left shift 2 gives 10000100

Note that shifting the operand 1 bit to right is same as dividing it by 2
and ignoring the remainder. Thus,

64 >> 1 gives 32
64 >> 2 gives 16
128 >> 2 gives 32

but,

27 >> 1 is 13
49 >> 1 is 24

370 Let Us C

Likewise, left-shifting by 1 would mean multiplying by 2.

A Word of Caution
In the expression a >> b if b is negative the result is unpredictable. If a is
negative then its left most bit (sign bit) would be 1. On right shifting a it
would result in extending the sign bit. For example, if a contains -5, then
its binary equivalent would be 11111011. On right shifting it by 1, right­
most bit, i.e., 1 is lost; other bits are shifted one position to the right and
the sign is extended, i.e., it is preserved as 1. This yields 11111101,
which is equal to -3. The following program would help you get a clear
picture of this:

include <stdio.h>
void showbits (unsigned char) ;
int main()
{

char num = -5, j, k ;
printf ("\nDecimal %d is same as binary ", num) ;
showbits (num) ;
for (j = 1 ; j <= 3 ; j++)
{

k = num >> j ;
printf ("\n%d right shift %d gives ", num, j) ;
showbits (k) ;

}
return 0 ;

}
void showbits (unsigned char n)
{

int i ;
unsigned char j, k, andmask ;
for (i = 7 ; i >= 0 ; i--)
{

j = i ;
andmask = 1 << j ;
k = n & andmask ;
k == 0 ? printf ("0") : printf ("1") ;

}
}

The output of the above program would be...

Chapter 21: Operations On Bits 371

Decimal -5 is same as binary 11111011
- 5 right shift 1 gives 11111101
- 5 right shift 2 gives 11111110
- 5 right shift 3 gives 11111111

Utility of << Operator
The left shift operator is often used to create a number with a particular
bit in it set to 1. For example, we can create a number with its 3rd bit set
to 1 by using the expression 1 << 3. Binary value of 1 is 00000001. On
left-shifting this by 3 we get 00001000. Thus, we are able to create a
number with its 3rd bit set to 1. Such operations are frequently required
while writing programs that interact with hardware or while building
embedded systems or IoT systems. Hence it is often done using a macro
as shown below.

define _BV(x) (1 << x)

The _BV macro stands for Bit Value. Its argument indicates which bit in
the number would be set when this macro is used. As you must have
guessed, during processing the macro _BV(3) would get expanded to 1
<< 3, yielding 00001000.

Bitwise AND, OR and XOR Operators
These operators are represented using &, | and a respectively. All of
them operate on two operands of same type (either char or int). The
second operand is often called a mask. These operators operate on pairs
of bits to yield resultant bits. The rules that decide the values of
resultant bits are given by Truth Tables shown in Figure 21.5.

& 0 1

0

1

0 1

0 1

| 0 1

0 0 1

1 1 1

A 0 1

0

1

0 1

1 0

Figure 21.5 Truth tables of &, | and a operators.

The examples given below show what happens when these operators
are used on the same operands. The rules given in the Figure 21.5 are

372 Let Us C

applied to each pair of bits one-by-one to obtain the result. Work
through the Truth Tables and confirm that the results obtained are really
correct.

10101101 Original value 10101101 10101101
& 00100000 AND mask | 00100000 A 00100000

00100000 Result 00100000 00100000

Thus, it must be clear that the operation is being performed on
individual bits, and the operation performed on one pair of bits is
completely independent of the operation performed on the other pairs.

Utility of & Operator
& operator is used for two purposes:
(a) To check whether a particular bit of an operand is ON or OFF.
(b) To turn OFF a particular bit.

Both these uses are discussed in the following example.

Suppose, from the bit pattern 10101101 (0xAD), we want to check
whether bit number 5 is ON (1) or OFF (0). Since we want to check the
bit number 5, the second operand for the AND operation should be
00100000. This second operand if often known as AND mask. The
ANDing operation is shown below.

10101101 Original bit pattern
00100000 AND mask

00100000 Resulting bit pattern

The resulting value that we get is 32 (or 0x20), which is same as the
value of the second operand. The result turned out to be 32 (or 0x20)
since the fifth bit of the first operand is ON. Had it been OFF, the bit
number 5 in the resulting bit pattern would have evaluated to 0 and the
complete bit pattern would have been 00000000.

Thus, depending upon the bit number to be checked in the first
operand, we decide the second operand, and on ANDing these two
operands the result decides whether the bit was ON or OFF. If the bit is
ON (1), the resulting value turns out to be a non-zero value, which is

Chapter 21: Operations On Bits 373

equal to the value of second operand. If the bit is OFF (0), the result is
zero, as seen above.

Let us now turn our attention to the second use of the AND operator. As
you can see, in the bit pattern 10101101 (0xAD), 3rd bit is ON. To put it
off, we need to AND the 3rd bit with 0. While doing so the values of
other bits in the pattern should not get disturbed. For this we need to
AND the other bits with 1. This operation is shown below.

10101101 Original bit pattern
11110111 AND mask

10100101 Resulting bit pattern

The following program puts into action both the uses of & operator:

include <stdio.h>
void showbits (unsigned char) ;
int main()
{

unsigned char num = 0xAD, j ;
printf ("\nValue of num = ") ;
showbits (num) ;
j = num & 0x20 ;
if (j == 0)

printf ("\nIts fifth bit is off") ;
else

printf ("\nIts fifth bit is on") ;

j = num & 0x08 ;
if (j == 0)

printf ("\nIts third bit is off") ;
else
{

printf ("\nIts third bit is on") ;
num = num & 0xF7 ;
printf ("\nNew value of num = ") ;
showbits (num) ;
j = num & 0x08 ;
if (j == 0)

printf ("\nNow its third bit is turned off") ;
}

374 Let Us C

return 0 ;
}
void showbits (unsigned char n)
{

int i ;
unsigned char j, k, andmask ;
for (i = 7 ; i >= 0 ; i--)
{

j = i ;
andmask = 1 << j ;
k = n & andmask ;
k == 0 ? printf ("0") : printf ("1") ;

}
}

And here is the output...

Value of num = 10101101
Its fifth bit is on
Its third bit is on
New value of num = 10100101
Now its third bit is turned off

Note the use of & operator in the statements:

j = num & 0x20 ;
j = num & 0x08 ;
num = num & 0xF7 ;

A quick glance at these statements does not indicate what operation is
being carried out through them. Hence a better idea is to use the macro
_BV as shown below.

define _BV(x) (1 << x)
j = num & _BV(5) ;
j = num & _BV(3) ;
num = num & ~ _BV(3) ;

In the last statement _BV(3) would yield 00001000 and one's
complement of this number would fetch 11110111.

Chapter 21: Operations On Bits 375

Utility of | Operator
Bitwise OR operator is used to put ON a particular bit in a number. Let
us consider the bit pattern 11000011. If we want to put ON bit number
3, then the OR mask to be used would be 00001000. Note that all the
other bits in the mask are set to 0 and only the bit, which we want to set
ON in the resulting value is set to 1. The code snippet which will achieve
this is given below.

define _BV(x) (1 << x)
unsigned char num = 0xC3 ;
num = num | _BV(3) ;

Utility of A Operator
XOR operator is used to toggle (change) a bit ON or OFF. A number
XORed with another number twice gives the original number. This is
shown in the following program:

include <stdio.h>
int main()
{

unsigned char b = 0x32 ; /* Binary 00110010 */
b = b A 0x0C ;
printf ("%#02x\n", b) ; /* this will print 0x3E */
b = b A 0x0C ;
printf ("%#02x\n", b) ; /* this will print 0x32 */
return 0 ;

}

The showbits() Function
We have used this function quite often in this chapter. Now we have
sufficient knowledge of bitwise operators and hence are in a position to
understand it. The function is given below followed by brief explanation.

void showbits (unsigned char n)
{

int i ;
unsigned char k, andmask ;
for (i = 7 ; i >= 0 ; i--)
{

andmask = 1 << i ;

376 Let Us C

k = n & andmask ;
k == 0 ? printf ("0") : printf ("1") ;

}
}

All that is being done in this function is, using an AND operator and a
variable andmask, we are checking the status of individual bits of n. If
the bit is OFF, we print a 0, otherwise we print a 1.

First time through the loop, the variable andmask will contain the value
10000000, which is obtained by left-shifting 1 by seven places. If the
variable n’s most significant bit (leftmost bit) is 0, then k would contain a
value 0, otherwise it would contain a non-zero value. If k contains 0,
then printf() will print out 0, otherwise it will print out 1.

In the second go-around of the loop, the value of i is decremented and
hence the value of andmask changes, which will now be 01000000. This
checks whether the next most significant bit is 1 or 0, and prints it out
accordingly. The same operation is repeated for all bits in the number.

Bitwise Compound Assignment Operators
Consider the following bitwise operations:

unsigned char a = 0xFA, b = 0xA7, c = 0xFF, d = 0xA3, e = 0x43 ;
a = a << 1 ;
b = b >> 2 ;
c = c | 0x2A ;
d = d & 0x4A ;
e = e A 0x21 ;

These operations can be written more elegantly and in a compact
fashion as shown below.

unsigned char a = 0xFA, b = 0xA7, c = 0xFF, d = 0xA3, e = 0x43 ;
a <<= 1 ;
b >>= 2 ;
c | = 0x2A ;
d &= 0x4A ;
e A= 0x21 ;

The operators <<=, >>=, |=, &= and A= are called bitwise compound
assignment operators. Note that there does not exist an operator ~=.
This is because ~ is a unary operator and needs only one operand.

Chapter 21: Operations On Bits 377

Problem 21.1
The information about colors is to be stored in bits of an unsigned char
variable called color. Bit numbers 0 to 6, each represent 7 colors of a
rainbow, i.e., bit 0 represents violet, 1 represents indigo, and so on.
Write a program that asks the user to enter a number and based on this
number it reports which colors in the rainbow do the number
represents.

Program

/* To determine the color */
include <stdio.h>
define _BV(x) (1 << x)
void showbits (unsigned char n);
int main()
{

unsigned char color, i ;
int c ;
char *rbcolors[] = { "Violet", "Indigo", "Blue", "Green",

"Yellow", "Orange", "Red" } ;
printf ("\nEnter any number: ") ;
scanf ("%d", &c) ;
color = (unsigned char) c ;
printf ("Colors represented are:\n") ;
for (i = 0 ; i <= 6 ; i++)
{

if ((color & _BV (i)) == _BV (i))
printf ("%s\n", rbcolors[i]) ;

}
return 0 ;

}

Output

Enter any number: 3
Colors represented are:
Violet
Indigo

378 Let Us C

Problem 21.2
The time field in a structure is 2 bytes long. Distribution of different bits
which account for hours, minutes and seconds is given in Figure 21.6.
Define a function that would receive the 2-byte time and print the
equivalent hours, minutes and seconds.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HHHHHMMMMMMS S S S S

Figure 21.6 Bit-distribution for time value.

Program

/* Program to display hour, minute, and seconds */
include <stdio.h>
void display (unsigned short int time) ;
int main()
{

unsigned short int time ;
puts ("Enter any number less than 24446: ") ;
scanf ("%hu", &time) ;
display (time) ;
return 0 ;

}
void display (unsigned short int tm)
{

unsigned short int hours, minutes, seconds, temp ;
hours = tm >> 11 ;
temp = tm << 5 ;
minutes = temp >> 10 ;
temp = tm << 11 ;
seconds = (temp >> 11) * 2 ;
printf ("For Time = %hu\n", tm) ;
printf ("Hours = %hu\n", hours) ;
printf ("Minutes = %hu\n", minutes) ;
printf ("Seconds = %hu\n", seconds) ;

}

Chapter 21: Operations On Bits 379

Output

Enter any number less than 24446:
15500
For Time = 15500
Hours = 7
Minutes = 36
Seconds = 24

[A] Attempt the following questions:

(a) In an inter-college competition, various sports like cricket,
basketball, football, hockey, lawn tennis, table tennis, carom and
chess are played between different colleges. The information
regarding the games won by a particular college is stored in bit
numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8 of an integer variable game. The
college that wins in 5 or more than 5 games is awarded the
Champion of Champions trophy. If a number representing the bit
pattern mentioned above is entered through the keyboard, then
write a program to find out whether the college won the Champion
of the Champions trophy or not, along with the names of the games
won by the college.

(b) An animal could be a canine (dog, wolf, fox, etc.), a feline (cat, lynx,
jaguar, etc.), a cetacean (whale, narwhal, etc.) or a marsupial (koala,
wombat, etc.). The information whether a particular animal is
canine, feline, cetacean, or marsupial is stored in bit number 0, 1, 2
and 3, respectively of an integer variable type. Bit number 4 of the
variable type stores the information about whether the animal is
Carnivore or Herbivore.
For the following animal, complete the program to determine
whether the animal is an herbivore or a carnivore. Also determine
whether the animal is a canine, feline, cetacean or a marsupial.
struct animal
{

char name[30] ; int type ;
}
struct animal a = { "OCELOT", 18 } ;

380 Let Us C

(c) In order to save disk space, information about student is stored in
an integer variable. Bit numbers 0 to 3 indicate whether the student
is a Ist year, IInd year, IIIrd year or IVth year student respectively. Bits 4
to 7 indicate whether the student's stream is Mechanical, Chemical,
Electronics or CS. Rest of the bits store room number. Such data for
4 students is stored in the following array:
int data[] = { 273, 548, 786, 1096 } ;
Write a program that uses this data and displays the information
about the student.

(d) What will be the output of the following program?

include <stdio.h>
int main()
{

int i = 32, j = 65, k, l, m, n, o, p ;
k = i | 35 ; l = ~k ; m = i & j ;
n = j A 32 ; o = j << 2 ; p = i >> 5 ;
printf ("k = %d l = %d m = %d\n", k, l, m) ;
printf ("n = %d o = %d p = %d\n", n, o, p) ;
return 0 ;

}

[B] Answer the following questions:

(a) What is hexadecimal equivalent of each of the following binary
numbers?

01011010 11000011
1010101001110101 1111000001011010

(b) Rewrite the following expressions using bitwise compound
assignment operators:

a = a | 3 a = a & 0x48 b = b A 0x22 c = c << 2

(c) Consider an unsigned integer in which rightmost bit is numbered as
0. Write a function checkbits (x, p, n) which returns true if all "n"
bits starting from position "p" are turned on, false otherwise. For
example, checkbits (x, 4, 3) will return true if bits 4, 3 and 2 are 1
in number x.

(d) Write a program to scan an 8-bit number into a variable and check
whether its 3rd, 6th and 7th bit is on.

Chapter 21: Operations On Bits 381

(e) Write a program to receive an unsigned 16-bit integer and then
exchange the contents of its 2 bytes using bitwise operators.

(f) Write a program to receive an 8-bit number into a variable and then
exchange its higher 4 bits with lower 4 bits.

(g) Write a program to receive an 8-bit number into a variable and then
set its odd bits to 1.

(h) Write a program to receive an 8-bit number into a variable and then
check if its 3rd and 5th bit are on. If these bits are found to be on
then put them off.

(i) Write a program to receive an 8-bit number into a variable and then
check if its 3rd and 5th bit are off. If these bits are found to be off
then put them on.

(j) Rewrite the showbits() function used in this chapter using the _BV
macro.

• Bit = Binary Digit = Basic unit of information

• A bit can take a value 0 or 1

• Units :
4 bits = Nibble 8 bits = Byte 16 bits = Word
32 bits = Dword 64 bits = Qword

• 4 popular Numbering systems :

1) Binary - 0, 1 2) Octal - 0...7
3) Decimal - 0...9 4) Hexadecimal - 0...9, A...F

• PC/Laptop understand only Binary numbering system

C/C++ understand Octal, Decimal, Hexadecimal numbering systems

• Always try to convert Binary into Hexadecimal instead of Decimal, as
while converting to Hex a nibble can be replaced by its equivalent Hex
digit

382 Let Us C

• Bitwise Operations :

Set a bit to a value 0/1 -> Write operation
Check whether bit is 1 (on) or 0 (off) Read operation

• Bitwise operators purpose :
~ - Converts 0s to 1s and 1s to 0s. Useful in constructing masks
<< >> - shift out desired number of bits from left or right
& - Check whether a bit is on / off. Put off a particular bit
| - Put on a particular bit
a - Toggle a bit

• <<= >>= &= |= a= — Bitwise compound assignment operators

• a = a << 5 ; is same as a <<= 5 ;

• Except ~ all other bitwise operators are binary operators

• Remember :

Anything ANDed with 0 is 0
Anything ORed with 1 is 1
1 XORed with 1 is 0

• printf (“%#x”, var) ; prints the hexadecimal output preceded by 0x

• _BV(3) macro prepares a mask with value 00001000

• _BV(4) macro prepares a mask with value 00010000

• The _BV macro can be defined as #define _BV(x) (1 << x)

22 Miscellaneous
Features

“Features that separate men from boys...

You don't need them. But you should not avoid them. This is
because, once you know how to use them, you are well on your
way to become a star C programmer. This chapter puts you on
that way.

383

384 Let Us C

• Enumerated Data Type
Uses of Enumerated Data Type
Are Enums Necessary?

• Renaming Data Types with typedef
• Typecasting
• Bit fields
• Pointers to Functions
• Functions Returning Pointers
• Functions with Variable Number of Arguments
• Unions

Utility of Unions
• The volatile Qualifier
• Programs
• Exercise
• KanNotes

Chapter 22: Miscellaneous Features 385

The topics discussed in this chapter were either too large or far too
removed from the mainstream C programming for inclusion in the
earlier chapters. These topics provide certain useful programming

features, and could prove to be of immense help in certain programming
strategies. These include enumerated data types, the typedef keyword,
typecasting, bit fields, function pointers, functions with variable number
of arguments and unions. Let us understand them one by one.

Enumerated Data Type
The enumerated data type gives us an opportunity to invent our own
data type and define what values the variable of this data type can take.
This can help in making the program listings more readable, which can
be an advantage when a program gets complicated or when more than
one programmer would be working on it. Using enumerated data type
can also help us reduce programming errors.

As an example, one could invent a data type called mar_status which
can have four possible values—single, married, divorced or widowed.
The enum declaration of mar_status and definition of variable of type
mar_status is given below.

enum mar_status
{

single, married, divorced, widowed
} ;
enum mar_status personl, person2 ;

Now we can give values to these variables.

personl = married ;
person2 = divorced ;

Remember, we can’t use values that aren’t in the original declaration.

Thus, the following expression would cause an error:

personl = unknown ;

Internally, the compiler treats the enumerators as integers. Each value
on the list of permissible values corresponds to an integer, starting with
0. Thus, in our example, single is stored as 0, married is stored as l,
divorced as 2 and widowed as 3.

386 Let Us C

This way of assigning numbers can be overridden by the programmer by
initializing the enumerators to different integer values as shown below.

enum mar_status
{

single = 100, married = 200, divorced = 300, widowed = 400
} ;

Uses of Enumerated Data Type
Enumerated variables are usually used to clarify the operation of a
program. For example, if we need to use employee departments in a
payroll program, it makes the listing easier to read if we use values like
Assembly, Manufacturing, Accounts rather than the integer values 0, 1,
2, etc. The following program illustrates the point I am trying to make:

include <stdio.h>
include <string.h>
int main()
{

enum department
{

assembly, manufacturing, accounts, stores
} ;
struct employee
{

char name[30] ; int age ; enum department dept ;
} ;
struct employee e ;
strcpy (e.name, "Lothar Mattheus") ;
e.age = 28 ;
e.dept = manufacturing ;
printf ("Name = %s\n", e.name) ;
printf ("Age = %d\n", e.age) ;
printf ("Department = %d\n", e.dept) ;
if (e.dept == accounts)

printf ("%s is an accounant\n", e.name) ;
else

printf ("%s is not an accounant\n", e.name) ;
return 0 ;

}

And here is the output of the program...

Chapter 22: Miscellaneous Features 387

Name = Lothar Mattheus
Age = 28
Department = 1
Lothar Mattheus is not an accountant

Let us now dissect the program. We first defined the data type enum
department and specified the four possible values, namely, assembly,
manufacturing, accounts and stores. Then we defined a variable dept of
the type enum department in a structure. The structure employee has
two other elements containing employee information.

The program first assigns values to the variables in the structure. The
statement,

e.dept = manufacturing ;

assigns the value manufacturing to e.dept variable. This is much more
informative to anyone reading the program than a statement like,

e.dept = 1 ;

The next part of the program shows an important weakness of using
enum variables... there is no way to use the enumerated values directly
in input/output functions like scanf() and printf().

The printf() function is not smart enough to perform the translation;
the department is printed out as 1 and not manufacturing. Of course,
we can write a function to print the correct enumerated values, using a
switch statement, but that would reduce the clarity of the program.
Even with this limitation, however, there are many situations in which
enumerated variables are god sent!

Are Enums Necessary?
Can we not achieve the same convenience and readability by using
macros like

define ASSEMBLY 0
define MANUFACTURING 1
define ACCCOUNTS 2
define STORES 3

388 Let Us C

We can, but macros have a serious limitation—they have a global scope,
whereas, scope of enum can either be global (if declared outside all
functions) or local (if declared inside a function).

Renaming Data Types with typedef
There is one more technique, which, in some situations, can help to
clarify the source code of a C program. This technique is to make use of
the typedef declaration. Its purpose is to redefine the name of an
existing variable type.

For example, consider the following statement in which the type
unsigned long int is given a new name UTI:

typedef unsigned long int UTI ;

Now we can declare variables of the type unsigned long int by writing,

UTI var1, var2 ;

instead of

unsigned long int var1, var2 ;

Thus, typedef provides a nice shortcut. Usually, uppercase letters are
used for the new name to make it clear that we are dealing with a
renamed data type.

While the increase in readability is probably not great in this example, it
can be significant when the name of a particular data type is long and
unwieldy, as it often is with structure declarations. For example,
consider the following structure declaration:

struct employee
{

char name[30] ; int age ; float bs ;
} ;
struct employee e ;

This structure declaration can be made handier to use when renamed
using typedef as shown below.

struct employee
{

char name[30] ; int age ; float bs ;

Chapter 22: Miscellaneous Features 389

} ;
typedef struct employee EMP ;
EMP el, e2 ;

Thus, by reducing the length and apparent complexity of data types,
typedef can help to clarify source listing and save time and energy spent
in understanding a program.

The above typedef can also be written as

typedef struct employee
{

char name[30] ; int age ; float bs ;
} EMP ;
EMP e1, e2 ;

typedef can also be used to rename pointer data types as shown below.

struct employee
{

char name[30] ; int age ; float bs ;
}
typedef struct employee * PEMP ;
PEMP p ;
p -> age = 32 ;

Typecasting
Sometimes we are required to force the compiler to explicitly convert
the value of an expression to a particular data type. This would be clear
from the following example:

include <stdio.h>
int main()
{

float a, b ;
int x = 6, y = 4 ;
a = x / y ;
printf ("Value of a = %f\n", a) ;
b = (float) x / y ;
printf ("Value of b = %f\n", b) ;
return 0 ;

}

390 Let Us C

And here is the output...

Value of a = 1.000000
Value of b = 1.500000

Value of a turns out to be 1.000000 and not 1.5. This is because, 6 and 4
are both integers and hence 6 / 4 yields an integer, 1. This 1 when
stored in a is converted to 1.000000. But what if we don’t want the
quotient to be truncated? One solution is to make either x or y as float.
Let us say that other requirements of the program do not permit us to
do this. In such a case what do we do? Use typecasting. This consists of
putting a pair of parentheses around the name of the target data type.
In this program we used,

b = (float) x / y ;

The expression (float) causes the variable x to be converted from type
int to type float before being used in the division operation.

Bit Fields
Suppose we want to store the following data about an employee. Each
employee can:

(a) Be male or female
(b) Be single, married, divorced or widowed
(c) Have one of the eight different hobbies
(d) Can choose from any of the fifteen different schemes proposed by

the company to pursue his/her hobby.
This means we need 1 bit to store gender, 2 to store marital status, 3 for
hobby, and 4 for scheme (with one value used for those who are not
desirous of availing any of the schemes). Thus, we need 10 bits
altogether to store this data. So why waste multiple integers when 10
bits will do? In such cases we can use ‘bit fields’ to store several values
in a single integer. The following program shows how to use bit fields.

include <stdio.h>
define MALE 0 ;
define FEMALE 1 ;
define SINGLE 0 ;
define MARRIED 1 ;
define DIVORCED 2 ;
define WIDOWED 3 ;

Chapter 22: Miscellaneous Features 391

int main()
{

struct employee
{

unsigned gender : 1 ; unsigned mar_stat : 2 ;
unsigned hobby : 3 ; unsigned scheme : 4 ;

} ;
struct employee e ;
e.gender = MALE ;
e.mar_status = DIVORCED ;
e.hobby = 5 ;
e.scheme = 9 ;
printf ("Gender = %d\n", e.gender) ;
printf ("Marital status = %d\n", e.mar_status) ;
printf ("Bytes occupied by e = %d\n", sizeof (e)) ;
return 0 ;

}

And here is the output...

Gender = 0
Marital status = 2
Bytes occupied by e = 2

Observe the declaration of struct employee. The colon (:) in the
declaration tells the compiler that we are talking about bit fields and the
number after it tells how many bits to allot for the field. Once we have
established a bit field, we can reference it just like any other structure
element.

Pointers to Functions
Like variables, functions are also stored in memory. So, they also have
addresses. So if we store the address of a function in a variable it would
be a function pointer. Function pointers provide one more way to invoke
functions. Let us see how this can be done.

include <stdio.h>
void display() ;
int main()
{

void (*ptr)() ;
ptr = display ; /* assign address of function */

392 Let Us C

printf ("Address of function display is %u\n", ptr) ;
(*ptr)() ; /* invokes the function display() */
display() ; /* usual way of invoking a function */
return 0 ;

}
void display()
{

printf ("Long live excellence!!\n") ;
}

The output of the program would be:

Address of function display is 4198924
Long live excellence!!
Long live excellence!!

Note that, to obtain the address of a function, all that we have to do is
mention the name of the function. This is similar to mentioning the
name of the array to get its base address.

We have assigned the address of display() to ptr. The declaration of ptr
states that it is a pointer to a function that receives nothing and returns
nothing. To call the function using ptr, we are just required to write the
statement,

(*ptr)() ; /* or simply, ptr() ; */

There are two possible uses of function pointers:
(a) In implementing callback mechanisms used popularly in Windows

programming.
(a) In binding functions dynamically, at run-time in C++ programming.
The callback mechanism is discussed in Chapter 24. Dynamic binding is
explained in great detail in the book “Let Us C++” or “Test Your C++
Skills” by Yashavant Kanetkar.

Functions Returning Pointers
A function can even return a pointer. This has to be explicitly mentioned
in the prototype declaration as well as in the function definition. The
following program illustrates this:

int *fun() ;
int main()

Chapter 22: Miscellaneous Features 393

{
int *p ;
P = fun() ;
return 0 ;

}
int *fun()
{

static int i = 20 ;
return (&i) ;

}

This program just indicates how an integer pointer can be returned from
a function. Beyond that, it doesn’t serve any useful purpose. This
concept can be put to use while handling strings. For example, a
function can copy one string into another and return the pointer to the
target string. Try defining this function as an exercise.

Functions with Variable Number of Arguments
Functions like printf() can receive different number of arguments during
different calls. How can we define such functions? Well, this can be
done using three macros va_start, va_arg and va_list. These macros are
defined in the file “stdarg.h”.

These macros provide a method for accessing the arguments of the
function when a function takes a fixed number of arguments followed
by a variable number of arguments. The fixed number of arguments are
accessed in the normal way, whereas the optional arguments are
accessed using these macros. Out of these macros, va_start is used to
initialize a pointer to the beginning of the list of optional arguments. On
the other hand, the macro va_arg is used to advance the pointer to the
next argument.

Let us put these concepts into action in a program. Suppose we wish to
define a function findmax() which can find out the maximum value
from a set of values, irrespective of the number of values passed to it.
Here is how we can do it...

include <stdio.h>
include <stdarg.h>
int findmax (int, ...) ;
int main()
{

394 Let Us C

int max ;
max = findmax (5, 23, 15, 1, 92, 50) ;
printf ("maximum = %d\n", max) ;
max = findmax (3, 100, 300, 29) ;
printf ("maximum = %d\n", max) ;
return 0 ;

}
int findmax (int tot_num, ...)
{

int max, count, num ;
va_list ptr ;
va_start (ptr, tot_num) ;
max = va_arg (ptr, int) ;
for (count = 1 ; count < tot_num ; count++)
{

num = va_arg (ptr, int) ;
if (num > max)

max = num ;
}
return (max) ;

}

Note how the findmax() function has been declared. The ellipses (.)
indicate that the number of arguments after the first argument would
be different in different function calls.

Here we are making two calls to findmax(), first time to find maximum
out of 5 values and second time to find maximum out of 3 values. Note
that for each call the first argument is the count of arguments that
follow the first argument. The value of the first argument passed to
findmax() is collected in the variable tot_num. findmax() begins with a
declaration of a pointer ptr of the type va_list. Observe the next
statement carefully.

va_start (ptr, tot_num) ;

This statement sets up ptr such that it points to the first variable
argument in the list. If we are considering the first call to findmax(), ptr
would now point to 23. The statement max = va_arg (ptr, int) would
assign the integer being pointed to by ptr to max. Thus, 23 would be
assigned to max, and ptr would now start pointing to the next
argument, i.e., 15. The rest of the program is fairly straightforward. We

Chapter 22: Miscellaneous Features 395

just keep picking up successive numbers in the list and keep comparing
them with the latest value in max, till all the arguments in the list have
been scanned. The final value in max is then returned to main().

Unions
Unions are derived data types that enable us to treat the same space in
memory as a number of different variables. Let us take a look at a simple
program that illustrates this.

/* Demo of union at work */
include <stdio.h>
int main()
{

union u
{

short int i ; char ch[2] ;
} ;
union u key ;
key.i = 512 ;
printf ("key.i = %d\n", key.i) ;
printf ("key.ch[0] = %d\n", key.ch[0]) ;
printf ("key.ch[1] = %d\n", key.ch[1]) ;
return 0 ;

}

And here is the output...

key2.i = 512
key2.ch[0] = 0
key2.ch[1] = 2

To begin with, we have declared a data type union a. Then we have
defined variable key of this type. Next, the union elements are printed.
Like structure elements, union elements too are accessed using the ‘.’
operator. To understand the output of the program we first need to
understand how key looks like. This is shown in Figure 22.1.

396 Let Us C

key.i

key.ch[0] key.ch[1]

Figure 22.1 Layout of a union in memory.

As you can see, key occupies 2 bytes in memory. The same memory
locations used by key.i are also being used by key.ch[0] and key.ch[1].
What purpose does this serve? Well, now we can access the 2 bytes
taken together by using key.i, or the same 2 bytes individually by using
key.ch[0] and key.ch[1].

Let us now understand the output of the program. Binary equivalent of
512 is 00000010 00000000. So output of union elements key.ch[0] and
key.ch[1] should have been 2 and 0 respectively. But the output is
exactly the opposite. Why is it so? Because, in CPUs that follow little-
endian architecture (Intel CPUs, for example), when a 2-byte number is
stored in memory, the low byte is stored before the high byte. It means,
actually 512 would be stored in memory as 00000000 00000010. These
converted to decimal turn out to be 0 and 2. In CPUs with big-endian
architecture this reversal of bytes does not happen.

One last thing. We can’t assign different values to the different union
elements at the same time. That is, if we assign a value to key.i, it gets
automatically assigned to key.ch[0] and key.ch[1]. Vice versa, if we
assign a value to key.ch[0] or key.ch[1], it is bound to get assigned to
key.i.

Before we move on to the next section, let us reiterate that a union
provides a way to look at the same data in several different ways. For
example, suppose we declare a union as shown below.

union b
{

double d ; float f[2] ; short int i[4] ; char ch[8] ;
} ;
union b data ;

In what different ways can the data be accessed from it? Sometimes, as
a complete set of 8 bytes (data.d), sometimes as two sets of 4 bytes
each (data.f[0] and data.f[1]), sometimes as four sets of 2 bytes each

Chapter 22: Miscellaneous Features 397

(data.i[0], data.i[1], data.i[2] and data.[3]) and sometimes as 8
individual bytes (data.ch[0], data.ch[1]... data.ch[7]).

Also note that there can exist a union, each of whose elements is of
different size. In such a case, the size of the union variable will be equal
to the size of the longest element in the union.

Utility of Unions
Suppose we wish to store information about employees in an
organization. The items of information are as shown below.

Name, Grade, Age
If Grade = HSK (Highly Skilled) - hobby name, credit card number
If Grade = SSK (Semi Skilled) - vehicle number, distance from company

Since this is dissimilar information we can gather it together using a
structure as shown below.

struct employee
{

char n[20] ; char grade[4] ; int age ; char hobby[10] ;
int crcardno ; char vehno[10] ; int dist ;

} ;
struct employee e ;

Though grammatically this structure declaration is correct, it suffers
from a disadvantage. For any employee, depending upon his/her grade,
either the elements hobby and credit card number or the elements
vehicle number and distance would get used. Both sets of elements
would never get used. This would lead to wastage of memory with every
structure variable that we create, since every structure variable would
have all the four fields apart from name, grade and age.

This can be avoided by creating a union between these sets of elements
as shown below.

struct info1
{

char hobby[10] ; int crcardno ;
} ;
struct info2
{

char vehno[10] ; int dist ;

398 Let Us C

} ;
union info
{

struct infol a ; struct info2 b ;
} ;
struct employee
{

char n[20] ; char grade[4] ; int age ; union info f ;
} ;
struct employee e ;

The volatile Qualifier
When we define variables in a function the compiler may optimize the
code that uses the variable. That is, the compiler may compile the code
in a manner that will run in the most efficient way. The compiler
achieves this by using a CPU register to store the variable’s value rather
than storing it in stack.

However, if we declare the variable as volatile, then it serves as a
warning to the compiler that it should not optimize the code containing
this variable. In such a case whenever we use the variable its value
would be loaded from memory into register, operations would be
performed on it and the result would be written back to the memory
location allocated for the variable.

We can declare a volatile variable as:

volatile float temperature ;

We may want to prevent optimization when the variable is not within
the control of the program and is likely to get altered from outside the
program, typically by an embedded system.

Problem 22.1
Define three functions—fun1(), fun2() and fun3(). Each function
should receive two integers and return a float. Store the addresses of
these functions in an array. Call these functions using the addresses
stored in the array.

Chapter 22: Miscellaneous Features 399

Program

/* Call function using an array of function pointers */
include <stdio.h>
float funl (int, int) ;
float fun2 (int, int) ;
float fun3 (int, int) ;
float funl (int i, int j)
{

printf ("In fun1\n") ; return 1.0f ;
}
float fun2 (int i, int j)
{

printf ("In fun2\n") ; return 2.0f ;
}
float fun3 (int i, int j)
{

printf ("In fun3\n") ; return 3.0f ;
}
int main()
{

float (*ptr[3]) (int, int) ;
float f ; int i ;
ptr[0] = fun1 ; ptr[1] = fun2 ; ptr[2] = fun3 ;
for (i = 0 ; i < 3 ; i++)
{

f = (*ptr[i])(100, i) ;
printf ("%f\n", f) ;

}
return 0 ;

}

Output

In fun1
1.000000
In fun2
2.000000
In fun3
3.000000

400 Let Us C

Problem 22.2
Define a function which can find average of the arguments passed to it.
Note that in different calls the function may receive different number of
arguments.

Program

include <stdio.h>
include <stdarg.h>
int findavg (int, ...) ;
int main()
{

int avg ;
avg = findavg (5, 23, 15, 1, 92, 50) ;
printf ("avg = %d\n", avg) ;
avg = findavg (3, 100, 30, 29) ;
printf ("avg = %d\n", avg) ;
return 0 ;

}
int findavg (int tot_num, ...)
{

int avg, i, num, sum ;
va_list ptr ;
va_start (ptr, tot_num) ;
sum = 0 ;
for (i = 1 ; i <= tot_num ; i++)
{

num = va_arg (ptr, int) ;
sum = sum + num ;

}
return (sum / tot_num) ;

}

Output

avg = 36
avg = 53

Chapter 22: Miscellaneous Features 401

[A] What will be the output of the following programs?

(a) # include <stdio.h>
int main()
{

enum status { pass, fail, atkt } ;
enum status studl, stud2, stud3 ;
studl = pass ;
stud2 = fail ;
stud3 = atkt ;
printf ("%d %d %d\n", studl, stud2, stud3) ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

printf ("%f\n", (float) ((int) 3.5 / 2)) ;
printf ("%d\n", (int) (((float) 3 / 2) * 3)) ;
return 0 ;

}

[B] Point out the error, if any, in the following programs:

(a) # include <stdio.h>
int main()
{

typedef struct patient
{

char name[20] ; int age ;
int systolic_bp ; int diastolic_bp ;

} ptt ;
ptt p1 = { "anil", 23, 110, 220 } ;
printf ("%s %d\n", p1.name, p1.age) ;
printf ("%d %d\n", p1.systolic_bp, p1.diastolic_bp) ;
return 0 ;

}

(b) # include <stdio.h>
void show() ;
int main()

402 Let Us C

{
void (*s)() ;
s = show ;
(*s)() ;
s() ;
return 0 ;

}
void show()
{

printf ("don't show off. It won't pay in the long run\n") ;
}

(c) # include <stdio.h>
void show (int, float) ;
int main()
{

void (*s)(int, float) ;
s = show ;
(*s)(10, 3.14) ;
return 0 ;

}
void show (int i, float f)
{

printf ("%d %f\n", i, f) ;
}

[C] Attempt the following questions:

(a) Write a program, which stores information about a date in a
structure containing three members—day, month and year. Using
bit fields, the day number should get stored in first 5 bits of day, the
month number in 4 bits of month and year in 12 bits of year. Write
a program to read date of joining of 10 employees and display them
in ascending order of year.

(b) Write a program to read and store information about insurance
policy holder. The information contains details like gender, whether
the holder is minor/major, policy name and duration of the policy.
Make use of bit-fields to store this information.

Chapter 22: Miscellaneous Features 403

KanNotes

We can write programs without using miscellaneous features like
union, enum, etc. But this is not advisable.

• Often, we are required to handle an ordered listing of items. Example,
colors like red, green, blue or marital status like married, unmarried
or divorced. Instead of handling these as integers, enums offer a
better way.

• Usage of enums :

enum color { red, green, blue } ;
enum color windowcolor, buttoncolor ;
windowcolor = green ; buttoncolor = blue ;
printf ("%d %d", windowcolor , buttoncolor) ;

• A typedef declaration can be used to redefine the name of an existing
data type as in

typedef unsigned long int ULI ;
ULI var1, var2 ;

• Usually, uppercase letters are used for the new type name to make it
clear that we are dealing with a renamed data type

• typecasting can be used to forcibly convert the value of an expression
to a particular data type

• Multiple items of information can be stored in a byte using bit fields

struct employee
{

unsigned gender : 1 ; unsigned mar_stat : 2 ;
} ;
The number after colon (:) indicates the number of bits to allot for
the field

• void *p() ; - Prototype of a function p() that receives nothing and
returns a void *

404 Let Us C

• void (*P)() ; - p is pointer to a function that receives nothing and
returns nothing

• float * (*p)(int, float) ; - Pointer to a function that receives int &
float and returns a float *

• Usage of function pointer :

void (*p)() ;
P = display ; /* stores address of display function in p */
(*p)() ; /* first way to call display() */
p() ; /* one more way to call display() */

• We can define a function that receives a variable number of arguments
using macros va_list, va_start, va_arg.

• Size of astructure is sum of sizes of its elements. Elements are
accessed using the . operator

• Size of union variable is size of
Elements are accessed using the . operator

• Utility of union - Permits access to same memory locations in
multiple ways

• Usage:

union a
{

int i ; char ch[4] ;
} ;
union a z ;
z.i = 512 ;
printf ("%d %d %d %d %d", z.i, z.ch[0], z.ch[1] , z.ch[2], z.ch[3]) ;

• If a number is ABCD then in little endian architecture it is stored as
DCBA

biggest element of the union.

• Little Endian - Low byte is stored first. Big Endian - High byte is
stored first. Endianness is a matter of convenience. So, both are

23 Interview FAQs

“It's good to know how much you know..."

All that you learnt in this book would be put to test, when you
attend an interview for a programmer's position in a software
company. You may know the answer to the question, but the
way it is presented is what makes all the difference. This
chapter will guide you through those "expected" answers for
typical C interview questions.

405

406 Let Us C

In the interview room you would be tested for three skills—
Knowledge, Problem Solving Skills and Social Skills. You might be led to
believe that in the interview room what matters is your personality, how

smartly you answer questions, how are your mannerisms, etc. In fact,
the truth is much farther than that. All of these in my estimate have only
10% importance. Much more weightage is given to your knowledge and
problem-solving skills. If you are found good in these areas, then only
the interview panel would be even interested in checking your social
skills. With this in mind, I have given below questions that are very
commonly asked in the interview rooms.

Question 1
What is a Programming Paradigm?
Answer
Programming paradigm means the principle that is used for organizing
programs. There are two major Programming Paradigms, namely,
Structured Programming and Object-Oriented Programming (OOP). C
language uses the Structured Programming Paradigm, whereas, C++, C#,
VB.NET or Java make use of OOP. OOP has lots of advantages to offer.
But even while using this organizing principle you would still need a
good hold over the language elements of C and the basic programming
skills.

Question 2
Is it true that Operating Systems like Windows, Linux and UNIX are
written in C?
Answer
Major parts of popular operating systems like Windows, UNIX, Linux and
Android are written in C. This is because even today when it comes to
performance (speed of execution) nothing beats C. Also, the functions
exposed by the Operating System API can be easily called through any
language.

Moreover, if one is to extend the operating system to work with new
devices one needs to write Device Driver programs. These programs are
exclusively written in C.

Question 3
What do you mean by scope of a variable? What are the different types
of scopes that a variable can have?

VB.NET

Chapter 23: Interview FAQs 407

Answer
Scope indicates the region over which the variable's declaration has an
effect. The four kinds of scopes are—file, function, block and prototype.

Question 4
Which of the following statement is a declaration and which is a
definition?

extern int i ;
int j ;

Answer
First is declaration, second is definition.

Question 5
What are the differences between a declaration and a definition?
Answer
There are two differences between a declaration and a definition:

In the definition of a variable space is reserved for the variable and some
initial value is given to it, whereas a declaration only identifies the type
of the variable. Thus, definition is the place where the variable is created
or assigned storage, whereas declaration refers to places where the
nature of the variable is stated but no storage is allocated.

Secondly, redefinition is an error, whereas, redeclaration is not an error.

Question 6
Is it true that a global variable may have several declarations, but only
one definition? [Yes/No]
Answer
Yes

Question 7
Is it true that a function may have several declarations, but only one
definition? [Yes/No]
Answer
Yes

408 Let Us C

Question 8
When we mention the prototype of a function are we defining the
function or declaring it?
Answer
We are declaring it. When the function, along with the statements
belonging to it is mentioned, we are defining the function.

Question 9
Some books suggest that the following definitions should be preceded
by the word static. Is it correct?

int a[] = { 2, 3, 4, 12, 32 } ;
struct emp e = { "sandy", 23 } ;

Answer
Pre-ANSI C compilers had such a requirement. Compilers which conform
to ANSI C standard do not have such a requirement.

Question 10
If you are to share the variables or functions across several source files,
how would you ensure that all definitions and declarations are
consistent?

Answer
The best arrangement is to place each definition in a relevant '.c' file.
Then, put an external declaration in a header file ('.h' file) and use
#include to bring in the declaration wherever needed. The '.c' file which
contains the definition should also include the header file, so that the
compiler can check that the definition matches the declaration.

Question 11
Global variables are available to all functions. Does there exist a
mechanism by way of which I can make it available to some and not to
others?
Answer
No. The only way this can be achieved is to define the variable locally in
main() instead of defining it globally and then passing it to the functions
which need it.

Question 12
What are the different types of linkages?

Chapter 23: Interview FAQs 409

Answer
There are three different types of linkages—external, internal and none.
External linkage means global, non-static variables and functions,
internal linkage means static variables and functions with file scope, and
no linkage means local variables.

Question 13
What is size_t ?
Answer
It is the type of the result of the sizeof operator. size_t is used to
express the size of something or the number of characters in something.
For example, it is the type that you pass to malloc() to indicate how
many bytes you wish to allocate. Or it is the type returned by strlen() to
indicate the number of characters in a string.

Each implementation chooses a type like unsigned int or unsigned long
(or something else) to be its size_t, depending on what makes most
sense. Each implementation publishes its own choice of size_t in several
header files like 'stdio.h', 'stdlib.h', etc. In most implementations size_t
is defined as:

typedef unsigned int size_t ;

This means that on this particular implementation size_t is an unsigned
int. Other implementations may make other choices.

What is important is that you should not worry about what size_t looks
like for a particular implementation; all you should care about is that it is
the right type for representing object sizes and count.

Question 14
What is more efficient, a switch statement or an if-else chain?

Answer
As far as efficiency is concerned there would hardly be any difference, if
at all. If the cases in a switch are sparsely distributed the compiler may
internally use the equivalent of an if-else chain instead of a compact
jump table. However, one should use switch where one can. It is
definitely a cleaner way to program and certainly is not any less efficient
than the if-else chain.

Question 15
Can we use a switch statement to switch on strings?

410 Let Us C

Answer
No. The cases in a switch must either have integer constants or constant
expressions that evaluate to integer costants.

Question 16
In which order do the Relational, Arithmetic, Logical and Assignment
operators get evaluated in C?

Answer
Arithmetic, Relational, Logical, Assignment

Question 17
How come that the C standard says that the expression

j = i++ * i++ ;

is undefined, whereas, the expression

j = i++ && i++ ;

is perfectly legal?
Answer
According to the C standard an object's stored value can be modified
only once (by evaluation of expression) between two sequence points. A
sequence point occurs:
- At the end of full expression (expression which is not a sub­

expression in a larger expression)
- At the &&, 11 and ?: operators
- At a function call (after the evaluation of all arguments, just before

the actual call)
Since in the first expression i is getting modified twice between two
sequence points the expression is undefined. Also, the second
expression is legal because a sequence point is occurring at &&, and i is
getting modified once before and once after this sequence point.

Question 18
If a[i] = i++ is undefined, then by the same reason i = i + 1 should also
be undefined. But it is not so. Why?
Answer
The standard says that if an object is to get modified within an
expression, then all accesses to it within the same expression must be

Chapter 23: Interview FAQs 411

for computing the value to be stored in the object. The expression a[i]
= i++ is disallowed because one of the accesses of i (the one in a[i]) has
nothing to do with the value that ends up being stored in i. In this case
the compiler may not know whether the access should take place before
or after the incremented value is stored. Since there's no good way to
define it, the standard declares it as undefined. As against this, the
expression i = i + 1 is allowed because i is accessed to determine i's final
value.

Question 19
Will the expression *p++ = c be disallowed by the compiler?

Answer
No. Because here even though the value of p is accessed twice it is used
to modify two different objects p and *p.

Question 20
Why should you use functions in your C program?
Answer
There are two reasons for using functions:

(a) Writing functions avoids rewriting the same code over and over.
Suppose you have a section of code in your program that calculates
area of a triangle. If later in the program you want to calculate the
area of a different triangle, you won’t like it if you are required to
write the same instructions all over again. Instead, you would prefer
to jump to a ‘section of code’ that calculates area and then jump
back to the place from where you left off. This section of code is
nothing but a function.

(b) By using functions, it becomes easier to write programs and keep
track of what they are doing. If the operation of a program can be
divided into separate activities, and each activity placed in a
different function, then each could be written and checked more or
less independently. Separating the code into modular functions also
makes the program easier to design and understand.

Question 21
In what form are the library functions provided?

412 Let Us C

Answer
Library functions are never provided in source code form. They are
always made available in object code form obtained after compilation.

Question 22
What is the type of the variable b in the following declaration?

#define FLOATPTR float *
FLOATPTR a, b ;

Answer
float and not a pointer to a float, since on expansion the declaration
becomes:

float *a, b ;

Question 23
Is it necessary that the header files should have a .h extension?

Answer
No. However, traditionally they have been given a .h extension to
identify them as something different from the .c program files.

Question 24
What do the header files usually contain?
Answer
Header files contain Preprocessor directives like #define, structure,
union and enum declarations, typedef declarations, global variable
declarations and external function declarations. You should not write
the actual code (i.e., function bodies) or global variable definition (that is
defining or initializing instances) in header files. The #include directive
should be used to pull in header files, not other '.c' files.

Question 25
Will it result into an error if a header file is included twice? [Yes/No]
Answer
Yes, unless the header file has taken care to ensure that if already
included it doesn't get included again.

Chapter 23: Interview FAQs 413

Question 26
How can a header file ensure that it doesn't get included more than
once?
Answer
All declarations must be written in the manner shown below. Assume
that the name of the header file is ‘funcs.h’.

/* funcs.h */
#ifndef _FUNCS
#define _FUNCS
/* all declarations would go here */
#endif

Now if we include this file twice as shown below, it will get included only
once.

#include "funcs.h"
#include "funcs.h"
int main()
{

/* some code */
return 0 ;

}

Question 27
On using #include where do the header files get searched?
Answer
If #included using < > syntax, the files get searched in the predefined
include path. It is possible to change the predefined include path. If
#included with the " " syntax, in addition to the predefined include path,
the files also get searched in the current directory (usually the directory
from which you invoked the compiler).

Question 28
Can you combine the following two statements into one?

char *p;
p = (char *) malloc (100) ;

414 Let Us C

Answer

char *p = (char *) malloc (100);

Note that the typecasting operation can be dropped completely if this
program is built using gcc compiler.

Question 29
Are the expressions *ptr++ and ++*ptr same?
Answer
No. *ptr++ increments the pointer and not the value pointed by it,
whereas ++*ptr increments the value being pointed to by ptr and not
ptr.

Question 30
Can you write another expression which does the same job as ++*ptr
does?
Answer

(*ptr)++

Question 31
What would be the equivalent pointer expression for referring the array
element a[i][j][k][I]?
Answer

((*(*(a + i)+j) + k) + l)

Question 32
Where can one think of using pointers?
Answer
At lot of places, some of which are:
- Accessing array or string elements
- In passing big objects like arrays, strings and structures to functions
- Dynamic memory allocation
- Call by reference
- Implementing linked lists, trees, graphs and many other data

structures

Chapter 23: Interview FAQs 415

Question 33
How will you declare an array of three function pointers where each
function receives two ints and returns a float?
Answer

float (*arr[3]) (int, int) ;

Question 34
Is the NULL pointer same as an uninitialized pointer? [Yes/No]
Answer
No. An uninitialized pointer (often called a wild pointer) contains some
garbage address. A pointer that contain NULL indicates that it is a valid
pointer but it is not pointing to anything right now.

Question 35
In which header file is the NULL macro defined?
Answer
In files "stdio.h" and "stddef.h".

Question 36
Is there any difference between the following two statements?

char *p = 0;
char *t = NULL ;

Answer
No. NULL is #defined as 0 in the 'stdio.h' file. Thus, both p and t are null
pointers.

Question 37
What is a null pointer?
Answer
For each pointer type (like say a char pointer) C defines a special pointer
value, which is guaranteed not to point to any object or function of that
type. Usually, the null pointer constant used for representing a null
pointer is the integer 0.

416 Let Us C

Question 38
What's the difference between a null pointer, a NULL macro, the ASCII
NUL character and a null string?
Answer
A null pointer is a pointer, which doesn't point anywhere.

A NULL macro is used to represent the null pointer in source code. It has
a value 0 associated with it.

The ASCII NUL character has all its bits as 0 but doesn't have any
relationship with the null pointer.

The null string is just another name for an empty string "".

Question 39
Is there any difference in the following two statements?

char *ch = "Nagpur";
char ch[] = "Nagpur" ;

Answer
Yes. In the first statement, the character pointer ch stores the address of
the string "Nagpur". The pointer ch can be made to point to some other
character string (or even nowhere). The second statement, on the other
hand, specifies that space for 7 characters be allocated and that the
name of the location is ch. Thus, it specifies the size as well as initial
values of the characters in array ch.

Question 40
When are char a[] and char *a treated as same by the compiler?
Answer
When using them as formal parameters while defining a function.

Question 41
What is the difference in the following declarations?

char *p = "Samuel" ;
char a[] = "Samuel" ;

Chapter 23: Interview FAQs 417

Answer
Here a is an array big enough to hold Samuel and the '\0' following the
it. Individual characters within the array can be changed but the address
of the array will remain constant.

On the other hand, p is a pointer, initialized to point to a string constant.
The pointer p may be modified to point to another string, but if you
attempt to modify the string at which p is pointing the result is
undefined.

Question 42
While handling a string do we always have to process it character- by­
character or there exists a method to process the entire string as one
unit.

Answer
A string can be processed only on a character-by-character basis.

Question 43
What is the similarity between a structure, union and an enumeration?
Answer
All of them let you define new data types.

Question 44
Can a structure contain a pointer to itself?

Answer
Yes. Such structures are known as self-referential structures. They are
commonly used in declaration of a node while implementing a data
structure like linked list or binary tree.

Question 45
How are structure passing and returning implemented by the compiler?
Answer
When structures are passed as arguments to functions, the entire
structure is pushed on the stack. For big structures this is an extra
overhead. This overhead can be avoided by passing pointers to
structures instead of actual structures. To return structures a hidden
argument generated by the compiler is passed to the function. This
argument points to a location where the returned structure is copied.

418 Let Us C

Question 46
What is the difference between a structure and a union?
Answer
A union is essentially a structure in which all of the fields overlay each
other. At a time only one field can be used. We can write to one field
and read from another.

Question 47
What is the difference between an enumeration and a set of
preprocessor #defines?
Answer
There is hardly any difference between the two, except that a #define
has a global effect (throughout the file), whereas, an enumeration can
have an effect local to the block, if desired. Some advantages of
enumerations are that the numeric values are automatically assigned,
whereas, in #define we have to explicitly define them. A disadvantage of
enumeration is that we have no control over the size of enumeration
variable.

Question 48
Is there an easy way to print enumeration values symbolically?
Answer
No. You can write a small function (one per enumeration) to map an
enumeration constant to a string, either by using a switch statement or
by searching an array.

Question 49
What is the use of bit fields in a structure declaration?
Answer
Bit fields are used to save space in structures having several binary flags
or other small fields. Note that the colon notation for specifying the size
of a field in bits is valid only in structures (and in unions); you cannot use
this mechanism to specify the size of arbitrary variables.

Question 50
Can we have an array of bit fields? [Yes/No]
Answer
No.

Chapter 23: Interview FAQs 419

Question 51
Can we specify variable field width in scanf()'s format string? [Yes/No]
Answer
No. In scanf() a * in format string after a % sign is used for suppression
of assignment. That is, the current input field is scanned but not stored.

Question 52
Out of fgets() and gets() which function is safe to use?

Answer
fgets(), because unlike fgets(), gets() cannot be told the size of the
buffer into which the string supplied will be stored. As a result, there is
always a possibility of buffer overflow.

Question 53
To which numbering system can the binary number 1011011111000101
be easily converted to?

Answer
Hexadecimal, since each 4-digit binary represents one hexadecimal digit.

Question 54
Which bitwise operator is suitable for checking whether a particular bit
is on or off?
Answer
The & operator.

Question 55
Which bitwise operator is suitable for turning off a particular bit in a
number?
Answer
The & operator.

Question 56
Which bitwise operator is suitable for putting on a particular bit in a
number?

Answer
The | operator.

420 Let Us C

Question 57
What is the type of compare in the following code segment?

typedef int (*ptrtofun) (char *, char *) ;
ptrtofun compare ;

Answer
It is a pointer to function that receives two character pointers and
returns an integer.

Question 58
What are the advantages of using typedef in a program?
Answer
There are three main reasons for using typedefs:
- It makes writing of complicated declarations a lot easier. This helps

in eliminating a lot of clutter in the program.

- It helps in achieving portability in programs. If we use typedefs for
data types that are machine-dependent, only the typedefs need
change when the program is moved to a new machine platform.

- It helps in providing a better documentation for a program. For
example, a node of a doubly linked list is better understood as
ptrtolist rather than just a pointer to a complicated structure.

Question 59
What does the following prototype indicate?

void strcpy (char *target, const char *source)

Answer
We can modify the pointers source as well as target. However, the
object to which source is pointing cannot be modified.

Question 60
What does the following prototype indicate?

const char *change (char *, int)

Answer
The function change() receives a char pointer and an int, and returns a
pointer to a constant char.

Chapter 23: Interview FAQs 421

Question 61
What do you mean by const correctness?
Answer
A program is 'const correct' if it never changes (a more common term is
mutates) a constant object.

Question 62
What is the difference in the following declarations?

const char *s ;
char const *s ;

Answer
There is no difference.

Question 63
To free() we only pass the pointer to the block of memory that we want
to deallocate. Then how does free() know how many bytes it should
deallocate?
Answer
In most implementations of malloc() the number of bytes allocated is
stored adjacent to the allocated block. Hence, it is simple for free() to
know how many bytes to deallocate.

Question 64
Suppose we use realloc() to increase the allocated space for a 20-
integer array to a 40-integer array. Will it increase the array space at the
same location at which the array is present or will it try to find a
different place for the bigger array?
Answer
Both. If the first strategy fails then it adopts the second. If the first is
successful it returns the same pointer that you passed to it otherwise it
returns a different pointer for the newly allocated space.

Question 65
When reallocating memory if any other pointers point into the same
piece of memory, do we have to readjust these other pointers or do
they get readjusted automatically?

422 Let Us C

Answer
If realloc() expands allocated memory at the same place then there is
no need of readjustment of other pointers. However, if it allocates a
new region somewhere else, the programmer has to readjust the other
pointers.

Question 66
What's the difference between malloc() and calloc() functions?
Answer
As against malloc(), calloc() needs two arguments, the number of
elements to be allocated and the size of each element. For example,

p = (int *) calloc (10, sizeof (int)) ;

will allocate space for a 10-integer array. Additionally, calloc() will also
set each of this element with a value 0. Thus, the above call to calloc() is
equivalent to:

p = (int *) malloc (10 * sizeof (int)) ;
memset (p, 0, 10 * sizeof (int)) ;

Question 67
Which function should be used to free the memory allocated by
calloc()?
Answer
The same that we use with malloc(), i.e., free().

Question 68
How much maximum memory can we allocate in a single call to
malloc()?
Answer
The largest possible block that can be allocated using malloc() depends
upon the host system—particularly the size of physical memory and the
OS implementation.

Theoretically, the largest number of bytes that can be allocated should
be the maximum value that can be held in size_t which is
implementation dependent. For TC/TC++ compilers the maximum
number of bytes that can be allocated is equal to 64 KB.

Chapter 23: Interview FAQs 423

Question 69
What is difference between Dynamic memory allocation and Static
memory allocation?
Answer
In Static memory allocation during compilation arrangements are made
to facilitate memory allocation. Actual allocation is done during
execution time. In Dynamic memory allocation no arrangement is done
at compilation time. Memory allocation is done at execution time.

Question 70
Which header file should be included to dynamically allocate memory
using functions like malloc() and calloc()?
Answer
stdlib.h

Question 71
When we dynamically allocate memory is there any way to free memory
during run time?
Answer
Yes. Memory can be freed using free() function.

Question 72
Is it necessary to cast the address returned by malloc()?

Answer
It is necessary to do the typecasting if you are using TC / TC++ / Visual
Studio compilers. If you are using gcc there is no need to typecast the
returned address. Note that ANSI C defines an implicit type conversion
between void pointer types (the one returned by malloc()) and other
pointer types.

Question 73
Mention any variable argument-list function that you have used and its
prototype.

Answer

int printf (const char *format, ...) ;

424 Let Us C

Question 74
How can %f be used for both float and double arguments in printf()?
Answer
In variable length arguments lists, types char and short int are promoted
to int, and float is promoted to double.

Question 75
Can we pass a variable argument list to a function at run-time? [Yes/No]

Answer
No. Every actual argument list must be completely known at compile
time. In that sense it is not truly a variable argument list.

Question 76
How can a called function determine the number of arguments that
have been passed to it?
Answer
It cannot. Any function that takes a variable number of arguments must
be able to determine the number of arguments from the arguments
themselves. For example, the printf() function does this by looking for
format specifiers (%) in the format string. This is the reason why such
functions fail badly if there is a mismatch in the format specifiers and
the argument list.

If the arguments passed are all of same type, we can pass a sentinel
value like -1 or 0 or a NULL pointer at the end of the variable argument
list. Alternately, we can also pass the count of number of variable
arguments.

Question 77
Input / output function prototypes and macros are defined in which
header file?
Answer
stdio.h

Question 78
What are stdin, stdout and stderr?

Answer
Standard input, standard output and standard error streams.

24 The Next Level

“It's good to know how much you know...

There are C programmers and then there are 'good' C
programmers. Board the train which will help you make the
transition from a C programmer to a 'good' C programmer.

425

426 Let Us C

• New Data Types
• What is size_t ?
• Problem with gets()
• Wide Characters
• Storage Classes Revisited

Translation Unit
Scope
Linkage
Storage Classes of Variables
Variable defined as a Function Parameter
Variable defined inside a Function
Variable defined outside all Functions
Storage Class Specifier for a Function
A Final Word

• Passing 2-D Array to a Function
• Callback Mechanism
• Some Interesting Limits
• Using C++ Functions from a C Program
• Using C++ Classes from a C Program
• Coding Style

Chapter 24: The Next level 427

In the previous 23 chapters I have tried to explain different features of
C language. More thoroughly you know them, stronger programming
foundation you would have. Once you are done with them, take a peek

at this chapter which contains topics that would take a good C
programmer to the next level.

New Data Types
A few new data types have been introduced in C99. These include long
long, bool and complex. We have already seen long long in Chapter 11.
The following program demonstrates the working of bool and complex
types.

#include<stdio.h>
#include<stdbool.h>
#include<complex.h>
int main()
{

bool married = true ;
bool divorced = false ;
printf ("%d %d\n", married, divorced) ;
complex c = 3 + 2 * I ;
printf ("Real part = %.2f\n", creal (c)) ;
printf ("Imaginary part = %.2f\n", cimag (c)) ;
return 0 ;

}

Use of bool and complex types is pretty straight-forward. What is
surprising is to use them we have to include the files 'stdbool.h' and
'complex.h'. This has something to do with history of C.

Since in C89 bool and complex types were absent, programmers created
home-brewed bool and complex types using typedef, #define, enum,
structure etc. Since plenty of code was written that included these
home-brewed types in various shapes and forms, the C language
committee introduced these new types through reserved identifiers
(those which begin with _) _Bool and _Complex. But, since the obvious
choice of type name was still bool and complex they provided typedefs
to these obvious names in files 'stdbool.h' and 'complex.h'.

428 Let Us C

What is size_t?
Often in situations where size of an object (in bytes) is to be received or
returned by functions, its type is mentioned as size_t. Prototypes of few
such functions are given below.

void *malloc (size_t n) ;
void *memcpy (void *s1, void const *s2, size_t n) ;
size_t strlen (char const *s) ;

For a 32-bit compiler size_t is a typedef for unsigned int, and for a 64-bit
compiler it is typedef for unsigned long long as shown below:

typedef unsigned int size_t ; // for 32-bit compiler
typedef unsigned long long size_t ; // for 64-bit compiler

These typedefs have been done in many header files like <stddef.h>,
<stdio.h>, <stdlib.h>, <string.h>, <time.h>, and <wchar.h>.

Since size_t data type is never negative, it is often also used as type of a
loop counter variable whose value should be greater than or equal to 0.

Problem with gets()
When strings are to be received as input from keyboard using library
function gets() there is always a possibility of reading strings bigger than
the space reserved for them. Here is an example...

char city[8] ;
puts ("Enter city name") ;
gets (city) ; /* recieve city from keyboard */

On execution of this code snippet, if we submit a string 'California', the
string variable city would overflow as 'California' would need space to
accommodate 11 characters, whereas, we reserved space for only 8
charcters.

This overflow might turn out to be dangerous as we are exceeding the
bounds of the string. This can be avoided by using fgets() to read a
string from keyboard as shown below.

#include <stdio.h>
int main()

Chapter 24: The Next level 429

{
char city[8] ;
puts ("Enter city name: ") ;
fgets (city, 7, stdin) ;
puts (city) ;
return 0 ;

}

Now if we supply "California" from keyboard, "Califor\0" would be
stored in city.

It is wrongly believed that with scanf() also we would run into a similar
problem. With scanf() this problem can be avoided as shown below.

char city[8] ;
puts ("Enter city name: ") ;
scanf ("%8s", city) ;
puts (city) ;

Microsoft provides functions like scanf_s() and gets_s() (standing for
safe versions of scanf() and gets()) to get a similar effect. However,
these are non-standard functions and may not work with all compilers.

Wide Characters
If we are to write programs for international distribution then to
represent a character in different international languages, we should
wide character type rather than a simple char. Wide character constant
begin with the letter L as in L'A', L'3' and L'+'. A wide character string is
written as L"Oh my God!".

The type of wide characters is wchar_t. It is a typedef of some integer
type present in 'stddef.h'. Its size is compiler dependent and may be 8,
16, or 32 bits wide, signed or unsigned. The choice depends on what
encodings are expected to be processed on a particular platform.
Following program shows how to use wide characters:

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
int main()
{

430 Let Us C

setlocale (LC_ALL, "") ;
wchar_t ch = L'^' ;
wchar_t str[] = { 2309, 2310, 2311, 2312, 2313, 2314, 2315 } ;
wchar_t strinhex[] = { 0x905, 0x0906, 0x0907, 0x0908, 0x0909 } ;
wprintf (L"%lu\n", sizeof (ch)) ;
wprintf (L"%lc\n", ch) ;
wprintf (L"%ls\r\n", str) ;
wprintf (L"%ls\r\n", strinhex) ;
return 0 ;

}
Here is the output of the program...

4
^
3ll$£3.*^.

^l^t?

Three important points to note here are as follows:

(a) Size of wchar_t for the implementation on which I executed this
program is 4 bytes. You may get a different answer.

(b) A program's locale defines its character set, date and time
formatting conventions, monetary conventions, decimal formatting
conventions, etc. The default locale of a C program is C (also known
as POSIX) which is ASCII-only. We need to add a call the function
setlocale (LC_ALL, "") to set the locale. This indicates that all parts
of the locale should be set according to the environment variables.

(c) In Unicode every character is assigned an integer value called code
point. Code points for characters ^ l ^ t ? ^ ^ of Devanagari
script are 2309, 2310, 2311, 2312, 2313, 2314, 2315.

Storage Classes Revisited
In Chapter 11 we learnt about storage classes auto, register, static and
extern. To keep things simple that chapter obscured a few facts. It is
time to come clean on that. Before we begin our discussion on storage
classes let us understand the meanings of 'Translation unit', 'Scope' and
'Linkage'.

Chapter 24: The Next level 431

Translation Unit
We know that during preprocessing our source code is expanded based
on the preprocessor directives that we have used. This expanded source
code is called a 'translation unit'. In professional development the
program is split into several files, so preprocessor creates several
translation units. Compiler compiles each translation unit into an object
file. All these object files are then linked together by the linker to create
a final executable file.

Scope
Scope determines the portion of the program in which the variable or a
function can be used. It is also known as availability or visibility. There
are four possible scopes:

(a) Function prototype scope: Function prototype scope is most
restrictive and it ends at the end of prototype declaration of the
function. This is the most restrictive as it ends at the end of
prototype declaration of the function.

(b) Block scope: Formal arguments of a function and the variables
defined inside a function have block scope and they are available to
statements within that function.

(c) Function scope: The labels used with a goto statement have
function scope. That is why goto cannot be used to take the control
outside a function.

(d) File scope: The variables defined outside all functions and the
functions defined in a file have file scope. They are available to all
statements in that translation unit.

Linkage
We should be able to control whether variables and functions defined in
one translation unit should be visible (be available) to the linker while
processing other translation units. This is done by specifying the linkage
of the variables and functions. C language supports 3 possible linkages:

(a) No linkage: Linkage refers only to elements that have addresses at
link/load time; thus, local variables defined inside a function have
no linkage.

432 Let Us C

(b) Internal linkage: Internal linkage can be specified using static
keyword. If a variable or function in a translation unit has internal
linkage, then it is only visible to the linker within that translation
unit.

(c) External linkage: The external linkage can be specified using the
extern keyword. If a variable or function has external linkage, the
linker can also see it when processing other translation units.

By default, following entities would have external linkage:
(a) All functions
(b) Variables that are defined outside all functions

Storage Classes of Variables
Variables are stored in memory. Storage classes associated with them
determine their 'storage duration' or 'lifetime'. There are two possible
lifetimes—static and automatic. Thus, strictly speaking there are only
two storage classes—static and automatic. Variables that have static
storage class exist throughout the execution of the program. Unlike this,
variables that have automatic storage class are allocated new storage
when control reaches the block in which they are defined and die when
control goes out of the block. Since such variables come and go
automatically when control reaches and exit from the block, they are
called automatic variables.

C language provides 4 storage class specifiers—auto, register, static,
extern. Of these, the last two can be used with functions too. When
used with a variable they determine:
(a) Where the variable would be stored
(b) What will be its default initial value
(c) What will be the scope (visibility) of the variable
(d) What will be the life of the variable
We have already covered these properties in Chapter 11. But let me
present them in a new light based on whether the variable is defined—
as function parameter, or inside a function or outside all functions. We
would also examine how a function behaves, when a storage class
specifier is applied to it.

Chapter 24: The Next level 433

Variable defined as a Function Parameter
(a) Variable defined as a function parameter can either have no storage

class specifier or register storage class specifier.
(b) Its default value is the one received by it when the function is

called.
(c) It has no linkage, so it is available only to statements within the

function.
(d) It has automatic lifetime, so it dies when control returns from the

function.

Variable defined outside all Functions
(a) Variable defined outside all function cannot use auto or register

storage class specifier. It can only use static, extern or no specifier.
(b) Variable declared with extern storage class specifier is a

declaration, so no storage is allocated for it in memory. (However, if
we use extern int i = 5 ;, then it is a definition.) Variable defined
with static or no storage class specifier is stored in memory.

(c) Variable defined with extern storage is a declaration, so no
question of its default initial value. Variable defined with
static or no storage class specifier has a default initial value of 0.

(d) Variable defined with extern storage class specifier or no specifier
has external linkage, i.e., it is available in other translation units.
Variable defined with static storage class specifier has internal
linkage, i.e., it is visible only within that file (translation unit).

(e) Variable defined with extern, static or no storage class specifier has
static lifetime, i.e., it lives throughout the execution of the program.

Variable defined inside a Function
(a) Variable defined inside a function can use auto, register, static or

extern storage class specifier.
(b) Variable defined with auto, static or no storage class specifier is

stored in memory. Variable defined with register storage class
specifier is stored in CPU register if it is available. Variable with
extern storage class specifier is merely a declaration and no storage
is allocated for it.

434 Let Us C

(c) Variable defined with auto, register or no storage class specifier has
a garbage default initial value. Variable defined with static storage
class specifier has a default value of 0.

(d) Variable defined with auto, register or static storage class specifier
has no linkage and hence is visible only within the function. Variable
defined with extern storage class specifier has external linkage and
hence is visible in other translation unit.

(e) Variable defined with the auto or register specifier have automatic
lifetime. Variable defined with static or extern storage
class specifier has static lifetime, i.e., it lives throughout the
execution of the program.

Storage Class Specifier for a Function
(a) Storage class specifiers auto and register cannot be used with a

function.
(b) A function is stored in memory.
(c) Unlike variables, a function does not have a default initial value.
(d) A function defined with static storage class specifier has internal

linkage, so it is visible within the translation unit in which it is
defined. A function defined with extern storage class specifier or no
specifier has external linkage, so it is visible to other translation
units too.

(e) A function defined with static, extern or no storage class specifier
has static lifetime, i.e., it lives throughout the execution of the
program.

A Final Word
(a) An extern declaration can be used to make a definition in another

source file visible.
(b) An extern declaration can be used to make a variable visible before

its definition in the same source file.
(c) An extern declaration is valid so long as the variable it refers to is

defined only once outside all functions in any translation unit.
(d) Local variables and function arguments have no linkage. So, all

variable definitions bind to different objects. For example, in the
following function num has no linkage, hence the two num
variables are bound to two different entities.

Chapter 24: The Next level 435

int fun()
{

int num = 10 ;
{

int num = 20 ;
}

}

(e) If we declare a variable to have internal linkage in a header file,
each translation unit you include this file in will get its own copy of
that variable.

Passing 2-D Array to a Function
If we wish to pass 2-D arrays of different sizes to a function to get them
displayed, it can be done as shown in the following program:

#include <stdio.h>
void display (int rows, int cols, int arr[rows][cols]) ;
int main()
{

int arr1[3][5] = {
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15

} ;
int arr2[2][4] = {

1, 2, 3, 4,
6, 7, 8, 9

} ;
display (3, 5, arr1) ;
display (2, 4, arr2) ;
return 0 ;

}
void display (int rows, int cols, int arr[rows][cols])
{

int i, j ;
for (i = 0 ; i < rows ; i++)
{

for (j = 0 ; j < cols ; j++)

436 Let Us C

printf ("%d\t", arr[i][j]) ;
printf ("\n") ;

}
}

Note that the order of passing arguments to display() is important.
Since rows and cols are being used in the definition of arr, they must be
passed before passing the array. While defining the array in display(),
all but the first dimension must be mentioned. So if we want, we can
merely define it as int arr [][cols] or even as int (*arr)[cols].

Callback Mechanism
Usually, we call library functions to do our mundane jobs. But
sometimes the library functions call back our user-defined function. A
good example of this is the qsort() library function. This is a generic
sorting function which can sort integers, floats, longs or even objects of
user-defined types. How can the same qsort() function deal with
multiple standard data types and user-defined types. Well, the magic
happens through function pointers.

Consider the calls to qsort() function shown below:

int iarr[] = { 23, 43, 21, 55, 23, 67, 18, 29, 37, 87 } ;
float farr[] = { 1.2, 5.3, .21, 5.8, 2.9, 1.23, 6.7, 8.11 } ;
qsort (iarr, sizeof (iarr), sizeof (int), icmp) ;
qsort (farr, sizeof (farr), sizeof (float), fcmp) ;

First 3 parameters in calls to qsort() are simple to understand—base
address of the array, number of elements in the array and number of
bytes occupied by individual element of the array. These parameters
help qsort() to work on different data types. The fourth parameter is
pointer to a comparison function. Ultimately, while sorting qsort() will
have to compare two quantities to decide whether one is less that the
other. qsort() doesn't decide this. Instead it expects us to define this
comparison function and pass its address to qsort(). qsort() collects the
address of the function in a function pointer and uses it to call the
comparison function whenever it is time to compare two quantities.

With this background information about qsort(), examine the program
given below which sorts an array of integers and an array of floats using

Chapter 24: The Next level 437

the same qsort() function. Note that we have to define two comparison
functions—one that compares two ints and another that compares two
floats.

#include <stdio.h>
#include <stdlib.h>
int icmp (const void *, const void *) ;
int fcmp (const void *, const void *) ;
int main()
{

int iarr[] = { 23, 43, 21, 55, 23, 67, 18, 29, 37, 87 } ;
float farr[] = { 1.2, 5.3, .21, 5.8, 2.9, 1.23, 6.7, 8.11 } ;
int i, sz ;
sz = sizeof (iarr) / sizeof (iarr[0]) ;
qsort (iarr, sz, sizeof (int), icmp) ;
for (i = 0 ; i < sz ; i++)

printf ("%d ", iarr[i]) ;
printf ("\n") ;
sz = sizeof (farr) / sizeof (farr[0]) ;
qsort (farr, sz, sizeof (float), fcmp) ;
for (i = 0 ; i < sz ; i++)

printf ("%.2f ", farr[i]) ;
return 0 ;

}
int icmp (const void *p, const void *q)
{

const int *pint ;
const int *qint ;
pint = (int *) p ;
qint = (int *) q ;
if (*pint > *qint)

return 1 ;
else if (*pint < *qint)

return -1 ;
else

return 0 ;
}
int fcmp (const void *p, const void *q)
{

438 Let Us C

const float *pfloat ;
const float *qfloat ;
pfloat = (float *) p ;
qfloat = (float *) q ;
if (*pfloat > *qfloat)

return 1 ;
else if (*pfloat < *qfloat)

return -1 ;
else

return 0 ;
}

Here is the output of the program...

18 21 23 23 29 37 43 55 67 87
0.21 1.20 1.23 2.90 5.30 5.80 6.70 8.11

Now you can try your hand at defining a structure to represent a date
and then using it to sort 10 dates in reverse chronological order using
qsort() function.

Some Interesting Limits
Did it ever occur to you as to how many maximum nested parentheses
can be used in an expression or how many nested loops or function calls
are we allowed to make? Well, we usually believe that there may not be
an upper limit on these, because rarely are these limits tested in a
practical program. However, in reality limits do exist. Following table
shows some of these interesting limits.

Chapter 24: The Next level 439

Item Max limit

Nested () in an expression 63
Nested blocks { } 127
Cases in a switch statement 1023
Parameters in one function definition 127
Arguments in one function call 127
* in pointer declaration 12
External variables/functions in 1 translation unit 4095
#defines in one preprocessing translation unit 4095
Parameters in one macro definition 127
Arguments in one macro invocation 127
Nested #ifdef, #ifndef, #if 63
Characters in a string literal 4095
Bytes in an object 65535
Members in a single structure or union 1023
Levels of nested structure or union definitions 63
Enumeration constants in a single enumeration 1023

Figure 24.1 Some interesting limits.

Using C++ Functions from a C program
There are many successful products in the market which were initially
developed in C. But as time elapsed and new languages like C++ came
into existence, to take advantage of the new features of C++ some
modules are developed in C++. However, either due to the size of C code
or due to the time and cost involved in its conversion from C to C++ the
older modules continue to exist as C code. If these modules are to make
use of the new C++ modules, then there must be a way to do this. Let
me show you with an example how this is done. Suppose a C++ module
contains the following code:

/* function.cpp */
#include <iostream>
#include <vector>
#include "function.h"
using namespace std ;
int fun (int x, int y, int z)

440 Let Us C

{
cout << x << " " << y << " " << z << endl ;
vector<int> v ;
v.push_back (x) ;
v.push_back (y) ;
v.push_back (z) ;
return x * x ;

}

As you can notice, it defines a function fun() that uses C++ features like
cout and vector and returns an int. This code is present in a '.CPP' file. If
we wish to call fun() from C code we can do so as shown below.

/* driver.c */
#include <stdio.h>
#include "function.h"
int main()
{

int num ;
num = fun (10, 20, 30) ;
printf ("Returned value = %d\n", num) ;
return 0 ;

}

Looks simple? Well, it works because of the connecting piece which
declares the prototype of fun() in "function.h" shown below. Note that
this file is included in 'driver.c' as well as 'function.cpp'.

/* function.h */
#ifdef__cplusplus

extern "C"
{

#endif

int fun (int, int, int) ;

#ifdef__cplusplus
}

#endif

Chapter 24: The Next level 441

The __cplusplus macro tests whether the program is being compiled by
a C compiler or a C++ compiler. For C compiler __cplusplus would not
stand defined, whereas for C++ compiler it would stand defined. So, in
'driver.c' the prototype would remain

int fun (int, int, int) ;

In 'function.cpp' the prototype becomes:

extern "C" { int fun (int, int, int) ; }

The { } are used in 'function.h' to apply extern "C" to a bunch of function
prototypes, if present. By declaring the function as extern "C" we are
telling the C++ compiler not to mangle the name of function fun().
Mangling means giving a function a new name based on its current
name and its parameters. By default, the C++ compiler mangles function
names. It does this to support a concept called function overloading in
C++, where multiple functions may have same name. C compiler doesn't
do name mangling since there is no concept of function overloading in C.

Now we need to compile 'driver.c' using C compiler and 'function.cpp'
using C++ compiler. On compilation two object code files—'driver.obj'
and 'function.obj' would get created. We then need to link these two
files to produce an executable file. These steps are given below:

c:\mydir> cl /c driver.c
c:\mydir> cl /c function.cpp
c:\mydir> link driver.obj function.obj /OUT: "Final.exe"

cl is a Microsoft tool that comes with Visual Studio Community to
compile the program at command-line. The /c option ensures that cl
does compilation, creates object code and stops. Note that though we
are using cl to compile both the programs, based on the extension '.c' or
'.cpp', it suitably invokes the C or C++ compiler. While linking /OUT
switch lets us name the exe file where the executable code would be
stored. We have used the filename 'Final.exe'. On executing 'Final.exe'
we get the following output:

c:\mydir>Final.exe
10 20 30
Returned value = 100

442 Let Us C

Remember to create the files 'driver.c', 'function.cpp' and 'function.h' in
the same directory, which in my case was 'mydir'.

Instead of the cl tool if we are to compile and link the programs in Linux
world, we can do so using the following commands:

$ gcc -c driver.c
$ g++ -c function.cpp
$ g++ driver.o function.o -o Final.out
$./Final.out
10 20 30
Returned value = 100

Using C++ Classes from a C program
In the last section we saw how to call a C++ function from a C program.
If we are to call a member function of a class from a C program, we have
to write a wrapper function in C++ for the member function to be called.
We can then call this wrapper function from our C program.

Suppose we have a Trial class containing a message() method as shown
below:

/* trial.h */
/* Class declaration */
class Trial
{

public :
void message() ;

} ;

/* trial.cpp */
/* Class definition */
#include <iostream>
using namespace std ;
#include "trial.h"
void Trial :: message()
{

cout << "It worked!" ;
}

Chapter 24: The Next level 443

Obviously we cannot call message() directly from a C program as C
doesn't understand classes. So, we need to define a wrapper function as
shown below:

/* wrapper.cpp */
#include "wrapper.h"
#include "trial.h"
void wrapper()
{

Trial t ;
t.message() ;

}

The glue that connects our C program to the C++ wrapper is the file
'wrapper.h' given below:

/* wrapper.h */
#ifdef__cplusplus
extern "C" {
#endif
void wrapper() ;
#ifdef__cplusplus
}
#endif

Finally, we need to call the wrapper() function from main() as shown
below:

/* driver.c */
#include "wrapper.h"
int main()
{

wrapper() ;
return 0 ;

}

The compilation, linking and execution steps are as under:

c:\prog> cl /c driver.c
c:\prog> cl /c trial.cpp
c:\prog> cl /c wrapper.cpp

444 Let Us C

c:\prog> link *.obj /OUT: "Final.exe"
c:\prog> Final.exe
It worked!

You can try the same example in Linux as an exercise.

Coding Style
Good coding style avoids unnecessary errors and repetitive code and
overall makes you a better programmer. This is the last section of this
book. I intend to expand this section significantly in future editions. I
would love to receive inputs from readers on stuff that they would want
to see in this section. Please feel free to send in your suggestions to
kanetkar@kicit.com. As a precursor to what you may expect in future
editions, I would present here one example.

Consider the following code:

do
{

// some statements here
} while (0) ;

This loop guarantees that, no matter what, statements in the loop get
executed 'only once'. And if we are sure about this, then why should we
bother to put the statements in a loop? Well, consider this code:

int fun()
{

char *p, *q, *r ;
p = malloc (..) ;
. .
if (some condition)
{

free (P) ;
return 1 ;

}
. .
q = malloc (..) ;
. .
if (some other condition)

mailto:kanetkar@kicit.com

Chapter 24: The Next level 445

{
free (P) ;
free (q) ;
return 2 ;

}
. .
r = malloc (..) ;
. .
if (yet another condition)
{

free (P) ;
free (q) ;
free (r) ;
return 3 ;

}
return 0 ;

}

In my oPinion this is bad code for two reasons:

(a) There are multiPle exit Points from the function. Code which has
multiPle exit Points is difficult to understand and difficult to
maintain.

(b) Before every return there are rePetitive calls to free() function to
Prevent memory leaks.

Both these disadvantages can be overcome by Putting the above code in
a do-while looP as shown below.

int fun()
{

char *p, *q, *r ;
p = q = r = NULL ;
do
{

p = malloc (..) ;
..
if (some condition)

break ;
..
q = malloc (..) ;

446 Let Us C

if (some other condition)
break ;

..
r = malloc (..) ;
..
if (yet another condition)

break ;
return 0 ;

} while (0) ;
free (P) ;
free (q) ;
free (r) ;
return 1 ;

}

The do-while loop permits us to use breaks to reach the free() calls,
which are now done only at one place. Note that p, q, r have been
initialized to NULL so that they do not contain garbage address and we
do not end up calling free() for a garbage address.

Awaiting more suggestions from you!

Execution
Compilation And

In principle, you don't need an IDE to create, compile, assemble
and debug C programs. It is like saying, well, you don't need an
airplane to crisscross India, you can do it in a bullock-cart.
Modern times need modern solutions. IDE is the solution for
modern times. This chapter shows how to use it...

447

448 Let Us C

To understand C language and gain confidence in working with it you
would be required to type programs in this book and then instruct
the machine to execute them. To type any program, you need another

program called Editor. Once the program has been typed it needs to be
converted to machine language (0s and 1s) before the machine can
execute it. To carry out this conversion we need another program called
Compiler. Compiler vendors provide an Integrated Development
Environment (IDE) which consists of an Editor as well as the Compiler.
These IDEs and its online alternatives are discussed in this appendix.

IDEs
There are several IDEs available, each targeted towards different
processor and operating system combinations. Given below is a brief
description of the popular IDEs along with the links from where they can
be downloaded.

Turbo C/C++ under Windows
If you wish to use Turbo C/C++ it is available at

https://www.developerinsider.in/download-turbo-c-for-windows-7-8-8-
1-and-windows-10-32-64-bit-full-screen/

It is very easy to install and it works for Windows 7, 8, 8.1 and Windows
10 (32/64 bit) with full/window screen mode.

NetBeans under Windows
NetBeans is not a compiler. It is merely an IDE. Its Windows version can
be downloaded from

http://www.netbeans.org

For developing C programs using NetBeans under Windows, you would
also have to install Cygwin software. Cygwin comes with GCC compiler.
It is available at

https://www.cygwin.com/

There is a nice tutorial available at the following link should you face any
difficulty in setting up Cygwin and NetBeans:

https://www.wikihow.com/Run-C/C%2B%2B-Program-in-Netbeans-on-
Windows

https://www.developerinsider.in/download-turbo-c-for-windows-7-8-8-1-and-windows-10-32-64-bit-full-screen/
http://www.netbeans.org
https://www.cygwin.com/
https://www.wikihow.com/Run-C/C%252B%252B-Program-in-Netbeans-on-Windows

Appendix A: Compilation And Execution 449

NetBeans under Linux
If you propose to use NetBeans under Linux you won’t need Cygwin as
with most Linux installations (like say, Ubuntu) GCC compiler comes
preinstalled. So, you need to just download and install NetBeans for
Linux environment.

Visual Studio under Windows
If you wish to use Visual Studio Community it is available at

https://www.visualstudio.com/vs/express/

You are free to use any of the IDEs mentioned above for compiling
programs in this book. If you wish to know my personal choice, I would
prefer NetBeans + Cygwin or Visual Studio Community Edition. All the
IDEs are easy to use and are available free of cost.

Online Compilers
With ubiquitous availability of Internet, if you wish, you can completely
avoid installation of IDE on your machine. Using a browser, you can
connect to any of the following to type, compile and execute your
programs:

https://www.onlinegdb.com/
https://www.tutorialspoint.com/compile_c_online.php

The limitation of using online compilers is that you need a steady
Internet connection while you are using them. Most of these compilers
compile our program using the gcc compiler.

Compilation and Execution Steps in IDE
The compilation and execution process with each of the IDEs mentioned
in the previous section are a bit different. So, for your benefit I am giving
below these steps for each IDE.

Compilation and Execution using Turbo C++
Carry out the following steps to compile and execute programs using
Turbo C++:

(a) Start NetBeans from Start | All Programs | Turbo C++.

(b) Click ‘Start Turbo C++’ from the dialog that appears.

(c) Select File | New from menu.

https://www.visualstudio.com/vs/express/
https://www.onlinegdb.com/
https://www.tutorialspoint.com/compile_c_online.php

450 Let Us C

(d) Type the program.

(e) Save the program using F2 under a proper name (say Program1.c).

(f) Use Ctrl + F9 to compile and execute the program.

(g) Use Alt + F5 to view the output.

Compilation and Execution using NetBeans
Carry out the following steps to compile and execute programs using
NetBeans:

(a) Start NetBeans from Start | All Programs | NetBeans.

(b) Select File | New Project... from the File menu. Select Project
Category as C/C++ and Project Type as C/C++ Application from the
dialog that pops up. Click Next button.

(c) Type a suitable project name (say Program1) in Project Name
Textbox. Click Finish.

(d) Type the program.

(e) Save the program using Ctrl + S.

(f) Use F6 to compile and execute the program.

Compilation and Execution using Visual Studio Community
Carry out the following steps to compile and execute programs using
Visual Studio Community:

(a) Start Visual Studio Community from Start | All Programs | Microsoft
Visual C++ Community.

(b) Select File | New Project. from the File menu. Select Project Type
as C++ Console Application. Type a suitable project name (say
Program1) in Project name Textbox. Choose suitable location where
you wish to create the project folder. Click Create.

(c) Type the program.

(d) Save the program using Ctrl + S.

(e) Use Ctrl + F5 to compile and execute the program.

Appendix A: Compilation And Execution 451

Compilation and Execution at Linux Command-line
C programs can be compiled and executed even at command-line, i.e.,
without using any IDE. Many programmers prefer this mode. In such
cases we need to use an editor like Vim to type the program and the
GCC compiler to compile it. In such as case you need to follow the
following steps to compile and execute your program.

(a) Type the program and save it under a suitable name, ‘hello.c’.

(b) At the command prompt switch to the directory containing ‘hello.c’
using the cd command.

(c) Compile the program using GCC compiler as shown below.

$ gcc hello.c

(d) On successful compilation, GCC produces a file named ‘a.out’. This
file contains the machine language code of the program which can
now be executed.

(e) Execute the program using the following command:

$./a.out

Compilation and Execution Using Online Compilers
While using the online compilers you have to remember to choose the
language (C in our case) from the dropdown. Next, we have to type our
program and click the Run/Execute button. When we do so our typed
program is sent to the web server where it is compiled and executed.
The output created on execution is then sent back and displayed in the
browser. If any errors are found in the program during compilation they
are also relayed back and displayed in the browser.

In the past online compilers had a limitation that you could run only
single file programs using them. This has been overcome now. For
example, in www.onlinegdb.com you can create a multi-file project
easily. For this you have to first login using your google account and then
click on the menu item 'Create New Project' from the left column in the
browser window. This will create a skeleton file by the name 'main.c'. In
this file you can type main(). Then either use Ctrl M or by clicking the
'New File' icon in the top toolbar you can add a new file with a suitable

http://www.onlinegdb.com

452 Let Us C

name. We can add multiple files in this manner. Then run the project as
usual by clicking on the 'Run' button.

Onlinegdb.com also has provisions to supply command-line arguments,
debug a program using the debugger, create folders and store multiple
files in it. From the point of view of security, online compiler is not a
preferred choice for serious software development in C. Nevertheless, a
good option with zero installation and configuration headaches when
you are learning C.

Onlinegdb.com

B Precedence Table

Whether we like it, or we don't, we live in an unequal world.
Somebody gets a priority over somebody else. C programming is
no different. With 45 operators in place, somebody has to get a
priority over others. This chapter shows the exact order of their
priority...

453

454 Let Us C

Description Operator Associativity

Postfix increment / decrement ++ -- Left to Right

Function call () Left to Right

Array subscripting [] Left to Right

Structure / Union member access . Left to Right

Structure / Union member access -> Left to Right

Prefix increment / decrement ++ -- Right to left

Unary plus and minus + - Right to Left

Logical not, Bitwise not ! ~ Right to left

Typecast (type) Right to Left

Value of address (dereference) * Right to left

Address of & Right to left

Size in bytes sizeof Right to left

Multiplication, Division, Modulus * / % Left to right

Addition, Subtraction + - Left to right

Bitwise left shift, Bitwise right shift << >> Left to right

Less than, Less than or equal to < <= Left to right

Greater than, Greater than or equal to > >= Left to right

Equal to, Not equal to == != Left to right

Bitwise AND & Left to right

Bitwise XOR A Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ? : Right to left

Continued...

Appendix B: Precedence Table 455

Continued...

Assignment
+= -=

*= /= %=

<<= >>=
&= A= | =

Right to left

Right to left

Right to left

Right to left

Right to left

Comma , Left to Right

Figure B.1. Precedence and Associativity of operators.

Note the following important points about precedence and associativity
table shown in Figure B.1:
(a) Precedence and associativity of operators is pre-decided. We

cannot change them.

(b) The table lists the C operators in decreasing order of their
precedence, i.e., postfix increment/decrement operators have the
highest precedence, whereas comma operator has the lowest
precedence.

(c) If several operators occur within the same group (box) they enjoy
equal priority. For example, <, <=, > and >= belong to the same box,
hence have equal priority.

(d) The comma used in a function call is not the same as the comma
operator (often called sequential-evaluation operator).

(e) When several operators of same precedence appear in an
expression, evaluation proceeds according to associativity of
operators.

(f) If an expression includes more than one *, +, &, |, or a operator
then the direction of evaluation does not affect the results.
For example, in the expression a = 3 * 5 + 6 * 7, whether 3 * 5 is
done first and 6 * 7 is done next, or the other way round, does not
affect the result of the expression. Same is the case with following
expressions:

b = 3 + 5 + 6 + 7 ;
c = 23 | 43 | 56 ;
d = a & b & c ;

456 Let Us C

Since the order of operations is not defined by the language, the
compiler is free to evaluate such expressions in any order.

(g) Different compilers may give different results for the following
expressions:

int i = 3, j;
j = ++i * ++i ;

Some compiler may evaluate this expression as 4 * 5 and others
may evaluate it as 5 * 5. Both are correct in their own way, since
the standard is silent about how evaluation should proceed in such
situations.

(h) A sequence point is a point in a program's execution at which it is
guaranteed that all side effects of previous evaluations will have
been performed.

(i) Only the &&, ||, ? :, () and , operators constitute sequence points,
and therefore guarantee a particular order of evaluation for their
operands. For example, in the expression

a = | <= 45 && j > 50

I <= 45 is guaranteed to be evaluated before j > 50.

Chasing The Bugs

Wading through the choppy waters ..."

There are only two types of C programmers. Those who face
problems while creating a program and those who don't. The
second variety is the one who never wrote any program. This
chapter is for the first variety. It highlights some of the common
mistakes that every C programmer makes...

457

458 Let Us C

There is no shortage of horror stories about programs that took
twenty times to ‘debug’ as they did to ‘write’. Many a time programs
have to be rewritten all over again because the bugs present in them

could not be located. So how do we chase the bugs away? No sure-shot
way for that. I thought if I make a list of more common programming
mistakes, it might be of help. They are not arranged in any particular
order. But I think, surely a great help!

Bug 1
Omitting the ampersand before the variables used in scanf(). For
example,

int choice ;
scanf ("%d", choice) ;
scanf (" %d ", &choice) ;

Here, the & before the variable choice is missing. Another common
mistake with scanf() is to give blanks either just before the format string
or immediately after the format string as in the second scanf() above.
Note that this is not a mistake, but till you don't understand scanf()
thoroughly, this is going to cause trouble. Safety is in eliminating the
blanks.

Bug 2
Using the operator = instead of the operator ==. For example, the
following while loop becomes an infinite loop since every time, instead
of checking the value of i against 10, it assigns the value 10 to i. As 10 is
a non-zero value the condition will always be treated as true, forming an
infinite loop.

int i = 10 ;
while (i = 10)
{

printf ("got to get out") ;
i++ ;

}

Bug 3
Ending a loop with a semicolon. Observe the following program:

int j = 1 ;

Appendix C: Chasing The Bugs 459

while (j <= 100) ;
{

printf ("\nUpdate or perish!") ;
j++ ;

}

Here, inadvertently, we have fallen in an infinite loop. Cause is the
semicolon after while. This semicolon is treated as a null statement by
the compiler as shown below.

while (j <= 100)

This is an infinite loop since the null statement keeps getting executed
indefinitely as j never gets incremented.

Bug 4
Omitting the break statement at the end of a case in a switch
statement. Remember that, if a break is not included at the end of a
case, then execution will continue into the next case.

int ch = 1 ;
switch (ch)
{

case 1 :
printf ("\nGoodbye") ;

case 2 :
printf ("\nLieutenant") ;

}

Here, since there is no break after printf() in case 1, the control runs
into case 2 and executes the second printf() as well. However, this
sometimes turns out to be a blessing in disguise. Especially, when we
want same set of statements to get executed for multiple cases.

Bug 5
Using continue in a switch. It is a common error to believe that the way
the keyword break is used with loops and a switch; similarly, the
keyword continue can also be used with them. Remember that continue
works only with loops, never with a switch.

460 Let Us C

Bug 6
A mismatch in the number, type and order of actual and formal
arguments. Consider the following call:

yr = romanise (year, 1000, 'm') ;

Here, three arguments are being passed to romanise() in the order int,
int and char. When romanise() receives these arguments into formal
arguments, they must be received in the same order. A careless
mismatch might give strange results.

Bug 7
Omitting provisions for returning a non-integer value from a function. If
we make the following function call,

area = area_circle (1.5) ;

then, while defining area_circle() function later in the program, care
should be taken to make it capable of returning a floating-point value.
Note that unless otherwise mentioned, the compiler would assume that
this function returns a value of the type int.

Bug 8
Inserting a semicolon at the end of a macro definition. This might create
a problem as shown below.

define UPPER 25 ;

would lead to a syntax error if used in an expression, such as:

if (counter == UPPER)

This is because on preprocessing, the if statement would take the form

if (counter == 25 ;)

Bug 9
Omitting parentheses around a macro expansion. Consider the following
macro:

define SQR(x) x * x

If we use this macro as,

Appendix C: Chasing The Bugs 461

int a ;
a = 25/SQR(5) ;

we expect the value of a to be 1, whereas it turns out to be 25. This is
because, on preprocessing, the statement takes the form

a = 25 / 5 * 5 ;

Bug 10
Leaving a blank space between the macro template and the macro
expansion.

define ABS (a) (a = 0 ? a : -a)

Here, the space between ABS and (a) makes the preprocessor believe
that you want to expand ABS into (a), which is certainly not what you
want.

Bug 11
Using an expression that has side effects in a macro. Consider the
following macro:

define SUM (a) (a + a)
int w, b = 5 ;
w = SUM(b++) ;

On preprocessing, the macro would be expanded to,

w = (b++) + (b++) ;

Thus, contrary to expectation, b will get incremented twice.

Bug 12
Confusing a character constant and a character string. In the statements

ch = 'z' ; dh = “z” ;

a single character is assigned to ch, whereas a pointer to the character
string “z” is assigned to dh.

Note that their declarations should be,

char ch ; char *dh ;

462 Let Us C

Bug 13
Forgetting the bounds of an array.

int num[50], i ;
for (i = 1 ; i <= 50 ; i++)

num[i] = i * i;

Here, array num has no such element as num[50], since array counting
begins with 0 and not 1. Compiler would not give a warning if our
program exceeds the bounds. If not taken care of, in extreme cases, the
above code might even hang the computer.

Bug 14
Forgetting to reserve an extra location in a string for the null terminator.
Remember each string ends with a ‘\0’, therefore its dimension should
be declared big enough to hold the normal characters as well as the ‘\0’.
For example, dimension of the array word[] should be 9, if a string
“Jamboree” is to be stored in it.

Bug 15
Confusing the precedence of various operators.

char ch ;
FILE *fp ;
fp = fopen ("text.c", "r") ;
while (ch = fgetc (fp) != EOF)

putch (ch) ;
fclose (fp) ;

Here, the value returned by fgetc() will be first compared with EOF,
since != has a higher priority than =. As a result, the value that is
assigned to ch will be the true/false result of the test—1 if the value
returned by getc() is not equal to EOF, and 0 otherwise. The correct
form of the above while would be,

while ((ch = getc (fp)) != EOF)
putch (ch) ;

Bug 16
Confusing the operator -> with the operator . while referring to a
structure element. On the left of . operator a structure variable should

Appendix C: Chasing The Bugs 463

occur, whereas, on the left of -> operator a pointer to a structure should
occur. Following example demonstrates this:

struct emp
{

char name[35] ;
int age ;

} ;
struct emp e = { "Dubhashi", 40 } ;
struct emp *p ;
printf ("\n%d", e.age) ;
p = &e ;
printf ("\n%d",p->age) ;

Bug 17
Exceeding the range of integers and chars. Consider the following code
snippet:

char ch ;
for (ch = 0 ; ch <= 255 ; ch++)

printf ("\n%c %d", ch, ch) ;

This is an indefinite loop. Reason is, ch has been declared as a char and
its valid range is -128 to +127. So, when ch tries to become 128 (through
ch++), the range is exceeded. As a result, the -128, gets assigned to ch.
So, the condition is satisfied and the control remains within the loop.

Bug 18
Forgetting to parenthesize to enforce precedence. Consider the
following code snippet:

char ch ;
FILE *fs ;
fs = fopen ("Trial.txt", "r") ;
while ((ch = getc (fs)) != EOF)

printf ("%c", ch) ;

If we do not parenthesize the expression ch = getc (fs) then character
returned by getc() would first be compared with EOF and the result of
the comparison (0 or 1) would be stored in ch. By parenthesizing the
expression we are ensuring that the character returned by getc() is first
assigned to ch and then contents of ch are compared with EOF.

464 Let Us C

Bug 19
Forgetting to check whether the file opened for writing has been
opened successfully. Consider the following code snippet:

FILE *ft ;
ft = fopen ("Trial.txt", "w") ;
if (ft == NULL)

printf ("\nUnable to open file") ;

If the file that we are opening for writing does not exist, a new file gets
created. But this attempt to create a new file may fail for several
reasons like, insufficient space, inadequate writing permissions, etc. So,
it is a good idea to always check whether a file is opened successfully,
even if it is being opened for writing.

D ASCII Chart

“The bread & butter for any programmer..."

When it is time to represent an A in memory, whether I press it
or you press it from keyboard, the same binary should get used.
This calls for a standard way of representing it. This chapter
shows which is that standard...

465

466 Let Us C

There are 256 distinct characters used by PCs and Laptops. They can
be grouped as shown in Figure D.1.

Character Type No. of Characters

Capital letters 26

Small-case Letters 26

Digits 10 Total = 256

Special Symbols 32

Control Character 34

Graphics Character 128

Figure D.1 ASCII character set.

This 256-character set is listed in the following pages. Out of the 128
graphic characters the ones that can be used for drawing single-line and
double-line boxes are shown in Figure D.2.

Figure D.2 Characters for single-line and double-line boxes.

218 196 194 191 201 205 203 187
T lr _ ir 1

179

195 -
197

+ d 180

186

204

1
L r

206
A ir J 1 185

192
193

^ 217 200 k
202

JL J 188— —
213 - T - 184 214 F" T 183

209 210

198 h +
216

H 181 199 I- +
215

1 182

212 - ^ - 196 211 IL ^ 1 189
190 208

W7 Let Us C

Value Char Value Char Value Char Value Char Value Char Value Char
0 22 —— 44 > 66 B 88 X 110 n
1 © 23 $ 45 - 67 C 89 Y 111 0
2 • 24 'T 46 68 D 90 Z 112 p
3 V 25 >b 47 / 69 E 91 [113 q
4 ♦ 26 -> 48 0 70 F 92 \ 114 r
5 27 <- 49 1 71 G 93] 115 s
6 * 28 r- 50 2 72 H 94 A 116 t
7 • 29 51 3 73 1 95 117 u
8 □ 30 ▲ 52 4 74 J 96 118 V
9 o 31 ▼ 53 5 75 K 97 a 119 w
10 ■ 32 54 6 76 L 98 b 120 X
11 <3 33 55 7 77 M 99 c 121 y
12 2 34 11 56 8 78 N 100 d 122 z
13 J1 35 # 57 9 79 0 101 e 123 {
14 J3 36 $ 58 ■ 80 P 102 f 124 1
15 * 37 % 59 81 Q 103 g 125 }
16 ► 38 & 60 < 82 R 104 h 126
17 ◄ 39 61 = 83 S 105] 127 “H
18 $ 40 (62 > 84 T 106 j 128 c
19 11 41) 63 ? 85 U 107 k 129 u
20 n 42 * 64 @ 86 V 108 1 130 e
21 § 43 + 65 A 87 w 109 m 131 a

468 Let Us C

Value Char Value Char Value Char Value Char Value Char Value Char
132 a 154 0 176 198 220 ■ 242 >
133 a 155 C 177 199 221 1 243 <
134 a 156 £ 178 200 Ik 222 1 244 f
135 c 157 ¥ 179 1 201 IF 223 ■ 245 1
136 e 158 Pls 180 202 JL 224 a 246 4-
137 P 159 f 181 203 if 225 8 247
138 e 160 a 182 -II 204 IF 226 r 248
139 T 161 i 183 n 205 = 227 TT 249 •
140 t 162 6 184 206 nr 228 2 250
141 1 163 u 185 1 207 _L 229 o 251 V
142 A 164 n 186 1 208 JL 230 LL 252 n
143 A 165 N 187 =n 209 231 T 253 2
144 E 166 a 188 JI 210 IT 232 CD 254 ■
145 ae 167 0 189 JI 211 IL 233 0 255
146 ZE 168 <* 190 =1 212 k 234 O
147 6 169 i- 191 213 F 235 6
148 6 170 192 L 214 236 oo
149 n 171 y, 193 _L 215 237 (A
150 u 172 % 194 T 216 238 e
151 u 173 195 1- 217 J 239 n
152 V 174 « 196 — 218 r 240 =
153 0 175 » 197 + 219 241 +

E Periodic Tests,
Course Tests

"When confident, get tested...”

You should never take a test, when you are not prepared. You
should never give up an opportunity to get tested, when you are
fully prepared and confident. This chapter will help you check
your strengths and weaknesses, once you are prepared and
confident...

469

470 Let Us C

Periodic Test I
(Based on Chapters 1 to 7)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) The expression i++ is same as.

(2) type of values cannot be checked using switch-case.

(3) Every instruction in a C program must end with a.

(4) The size of an int data type is bytes.

(5) Statements written in _______ loop get executed for once even if
the condition is false.

[B] State True or False: [5 Marks, 1 Mark each]

(1) The statement for (; ;) is a valid statement.

(2) The else clause in an if - else if - else statement goes to work if all
the ifs fail.

(3) The A operator is used for performing exponentiation operations in
C.

(4) C allows only one variable on the left-hand side of = operator.

(5) Conditional operators cannot be nested.

[C] What would be the output of the following programs?
[5 Marks, 1 Mark each]

(a) # include <stdio.h>
int main()
{

int x = 5, y, z ;
y= x++;
z = x-- ;
printf ("%d %d %d", x, y, z) ;
return 0 ;

}

(b) # include <stdio.h>
int main()

Periodic Tests, Course Tests 471

{
int i = 65 ;
char ch = i;
printf ("%d %c", ch, i) ;
return 0;

}

(c) # include <stdio.h>
int main()
{

int i, j ;
for (i = 1 ; i <= 2 ; i++)
{

for (j = 1 ; j <= 2 ; j++)
{

if (i == j)
break ;

printf ("%d %d", i, j) ;
}

}
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int x = 3, i = 1 ;
while (i <=2)
{

printf ("%d ", x *= x + 4) ;
i++ ;

}
return 0 ;

}

(e) # include <stdio.h>
int main()
{

int a, b = 5 ;
a = !b ;
b = !a ;
printf ("%d %d", a, b) ;
return 0 ;

472 Let Us C

}

[D] Point out the error, if any, in the following programs:
[5 Marks, 1 Mark each]

(a) # include <stdio.h>
int main()
{

int i = 10, j = 20 ;
if (i = 5) && if (j = 10)

printf ("Those who can't teach, preach") ;
return 0 ;

}

(b) # include <stdio.h>
int main()
{

int x = 10 ;
if (x >= 2) then

printf ("\n%d", x) ;
return 0 ;

}

(c) # include <stdio.h>
int main()
{

int x = 0, y = 5, z = 10, a ;
a = x > 1 ? y > 1 : z > 1 ? 100 : 200 : 300 ;
printf ("%d" , a) ;
return 0 ;

}

(d) # include <stdio.h>
int main()
{

int x = 0, y = 5, z ;
float a = 1.5, b = 2.2, c ;
z = x || b ;
c = a && b ;
printf ("%d %f", z, c) ;
return 0 ;

}

(e) # include <stdio.h>

Periodic Tests, Course Tests 473

int main()
{

int a = 10, b = 5, c ;
c += a *= b ;
printf ("%d %d %d" , a, b, c) ;

}

[E] Attempt the following questions: [20 Marks, 5 Marks each]

(1) Write a program to calculate the sum of the following series:

1! 2! + 2! 3! + 3! 4! + 4! 5! +.....+ 9! 10!

(2) Write a program to enter the numbers till the user wants and at the
end it should display the count of positive, negative and zeros
entered.

(3) Write a program to find the range of a set of numbers that are input
through the keyboard. Range is the difference between the smallest
and biggest number in the list.

(4) If three integers are entered through the keyboard, write a program
to determine whether they form a Pythagorean triplet or not.

474 Let Us C

Periodic Test II
(Based on Chapters 8 to 12)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) and ___are pointer operators.

(2) are variables, which hold addresses of other variables.

(3) is called an 'address of' operator.

(4) The preprocessor directive that is used to give convenient names to
difficult formulae is called.

(5) For a call by reference, you should pass ________ of variables to
the called function.

[B] State True or False: [5 Marks, 1 Mark each]

(1) A function can return more than one value at a time.

(2) A fresh set of variables are created every time a function gets
called.

(3) All types of pointers are 4 bytes long.

(4) Any function can be made a recursive function.

(5) The correct build order is Preprocessing - Compilation - Assembling
- Linking.

[C] Answer the following questions: [10 Marks, 2 Marks each]

(1) Why are addresses of functions stored in the stack?

(2) How do you decide whether a variable should be passed by value or
by reference?

(3) Size of a pointer is not dependent on whose address is stored in it.
Justify.

(4) What different types of integer variables can be created in C?
Which format specifier is used with each type in printf()?

(5) A recursive call should always be subjected to an if. Why? Explain
with an example.

Periodic Tests, Course Tests 475

[D] Attempt the following questions: [20 Marks, 5 Marks each]

(1) Define a function that receives 4 integers and returns sum, product
and average of these integers.

(2) Define a recursive function which prints the prime factors of the
number that it receives when called from main().

(3) Define macros for calculating area of circle, circumference of circle,
volume of a cone and volume of sphere.

(4) Write a program that prints sizes of all types of chars, ints and reals.

476 Let Us C

Periodic Test III
(Based on Chapters 13 to 17)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) Mentioning name of an array yields of the array.

(2) C permits us to exceed and bounds of an array.

(3) Size of an array is of sizes of individual elements of an array.

(4) Array elements are always counted from onwards.

(5) A structure is usually a collection of elements.

[B] State True or False: [5 Marks, 1 Mark each]

(1) If an array size is big its elements may get stored in non-adjacent
locations.

(2) All strings end with a '\0'.

(3) Using #pragma pack you can control the layout of structure
elements in memory.

(4) Elements of 2-D array are stored in the form of rows and columns in
memory.

(5) 3-D array is a collection of several 1-D arrays.

[C] Answer the following questions: [10 Marks, 2 Marks each]

(1) What is likely to happen if the bounds of an array are exceeded?

(2) When you prefer a structure over an array to store similar
elements? Explain with an example.

(3) What is the limitation of an array of pointers to strings? How can it
be overcome?

(4) In a two-dimensional array a[4][4], why do expressions a and *a
yield same base address?

(5) How will you allocate space for a float array whose size is received
from the keyboard?

Periodic Tests, Course Tests 477

[D] Attempt the following questions: [20 Marks, 5 Marks each]

(1) Write a function that receives as parameters, a 1-D array, its size
and an integer and returns number of times the integer occurs in
the array.

(2) Create an array of pointers containing names of 10 cities. Write a
program that sorts the cities in reverse alphabetical order and
prints this reversed list.

(3) Declare a structure called student containing his name, age and
address. Create and initialize three structure variables. Define a
function to which these variables are passed. The function should
convert the names into uppercase. Print the resultant structure
variables.

(4) Write a program that checks and reports whether sum of elements
in the ith row of a 5 x 5 array is equal to sum of elements in ith
column.

478 Let Us C

Periodic Test IV
(Based on Chapters 18 to 22)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) 0xAABB | 0xBBAA evaluates to.

(2) The values of an enum are stored as.

(3) An existing data type can be given a new name using the ________
keyword.

(4) The ________ operator can be used to eliminate 3 least significant
bits from a character.

(5) The operator is used to invert the bits in a byte.

[B] State True or False: [5 Marks, 1 Mark each]

(1) To check whether a particular bit in a byte is on or off, the bitwise |
operator is useful.

(2) It is possible to create a union of structures.

(3) The callback mechanism can be implemented using function
pointers.

(4) On evaluating the expression a a 5 value of a would change.

(5) Bitwise operators can work on floats and doubles.

[C] Answer the following questions: [10 Marks, 2 Marks each]

(1) What is the utility of <<, >>, & and | bitwise operators?

(2) Define the BV macro. How would the following expressions
involving the BV macro be expanded by the preprocessor?

int a = _BV (5) ;
int b = ~ _BV (5) ;

(3) In the following expression what does p signify?

long (*p[3]) (int, float) ;

(4) Suggest a suitable printf() that can be used to print the grocery
items and their prices in the following format:

Periodic Tests, Course Tests 479

Tomato Sauce : Rs. 225.50
Liril Soap : Rs. 55.45
Pen Refill : Rs. 8.95

(5) When it is useful to make use of a union? What is the size of a union
variable? How can the elements of a union variable be accessed?

[D] Attempt the following: [20 Marks, 5 Marks each]

(1) Write a program to multiply two integers using bitwise operators.

(2) Write a program to count number of words in a given text file.

(3) Write a program that receives a set of numbers as command- line
arguments and prints their average.

(4) Write a program to check whether contents of the two files are
same by comparing them on a byte-by-byte basis.

480 Let Us C

Course Test I
(Based on all Chapters)

Time: 150 Minutes Maximum Marks: 70

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) A function that calls itself is known as a function.

(2) Preprocessor directives always begin with.

(3) The expression a[i][j] in pointer notation is.

(4) A string always ends with the character.

(5) The keywords used to implement a case control instruction are
,and.

[B] Match the following pairs: [5 Marks, 1/2 Mark each]

Shifts bits to left ? :
Convert a bit to 0 ++j
Compound assignment operator %
Put on a bit A
Type cast operator ==
Toggle bits &
Pre-increment operator *=
Comparison operator |
Modulus operator <<
Conditional operator a = (int) b

[C] Answer the following questions: [30 Marks, 3 Mark each]

(1) Dynamically allocate space for a 3-D array of dimensions 3 x 5 x 4.
Set up each elements of this array with a value 10. Report an error,
if enough memory space is not available.

(2) Create an array of pointers to strings for storing names of 5
persons. What is the limitation of this array?

(3) Create a data structure for storing following data:

Name of the fruit
Color of the fruit
Diameter of the fruit

Periodic Tests, Course Tests 481

Price of the fruit
Weight of the fruit

(4) If a function is to be called, is it necessary to mention its prototype
declaration? If yes, why?

(5) For a file being pointed to by FILE *fp, write function calls for
carrying out the following operations?

- Set pointer at 5th position from beginning of file.
- Set pointer at 20th position from current position.
- Set pointer at 15th position before end of file.

(6) Suppose there is a user-defined file called ‘myfunctions.h’.

- Write a statement to include this file in you program?
- What provision will you make in ‘myfunctions.h’ to prevent it

from getting included twice?

(7) What do argc and argv represent with regards to command-line
arguments?

(8) How will you redefine the types unsigned long int to ULI and int **
to DOUBLEPTR? What is the scope of a typedef statement?

(9) Point out errors, in any, in the following code snippet:

int a ;
float b ;
char ch ;
scanf ("%d %f %c", a, b, ch) ;
printf ("%d %f %c", &a, &b, &ch) ;

(10) What will be the output of the following code snippet?

int a = 10 , b = 20 , c= 0 ;
if (a && b || c)

printf (“Hello") ;
else

printf("Hi") ;

if (!a && !b)
printf ("Good Morning!!") ;

else

482 Let Us C

printf("Good Evening") ;

[D] Attempt the following questions: [30 Marks, 6 Marks each]

(1) Write a program that defines a function called isalnum(). The
function should receive a string and check if all characters in it are
alphabets or digits. If so, it should return a true, otherwise false.
Call this function for the following strings:

"ABCD1234"
"Nagpur - 440010"

(2) Define an enumeration to represent colors red, green, yellow,
magenta and brown. Create two variables Apple and Banana of this
enum type and assign colors red and yellow to them respectively.
Print these color values and indicate what output will they produce.

(3) Define a function called showbits() which displays all the bits of an
unsigned char that it receives. Call this function for values 45 and
30. Indicate what output will showbits() produce for these values?

(4) Write a program to generate and print all unique combinations of
numbers 1, 2, 3 and 4.

(5) Define an iterative function and a recursive function to print first
ten terms of a Fibonacci series. Which of these two functions will
run faster and why?

Periodic Tests, Course Tests 483

Course Test II
(Based on all Chapters)

Time: 150 Minutes Maximum Marks: 70

[A] State True or False: [5 Marks, 1 Mark each]

(1) Any function can be made a recursive function.

(2) Macro expansion directive can be used to replace a complicated
formula with a convenient template.

(3) In the expression, * (* (a + i) + j), the variable a must be a 2-D
array.

(4) A char array may not end with ‘\0’, but a string must.

(5) In the expression,

b = (int *) a ;

(int *) represents a typecast operation.

[B] Match the following pairs: [5 Marks, 1/2 Mark each]

Shifts bits to right j ++
Quotient ? :
Remainder *
Check bit 1 or 0 &
Post-Increment ->
Ternary operators Size of
Value at address /
Address of bitwise &
Member access %
Unary operator >>

[C] Answer the following questions: [30 Marks, 3 Marks each]

(1) Create a data structure for storing the following data:

Name of document - Leaflet / Flier / Brochure
Number of colors - 1 / 2 / 4 / 5
Size - Small / Medium / Big
Type of paper - Maplitho / Bond / Artcard
Number of copies

484 Let Us C

Type of printing - Positive / Negative

(2) For storing names of months in a year, which out of array of strings
and array of pointers to strings is preferable, and why?

(3) Consider the following structure:

struct Flower
{

char name[20] ;
int color ;
int no_of_petals ;

} ;
struct Flower f[3] ;

Write statements to receive values into array f[] and print them on
the screen.

(4) Given two matrices A3 X 3 and B3 X 3, define a function that checks
whether matrix A is transpose of matrix B.

(5) What is the difference between function declaration and function
definition? Which of the two—function redefinition or function
redeclaration is an error, and Why?

(6) Write a code snippet to carry out the following operations:

- Open a file ‘records.dat’ in read binary mode.
- Skip first 200 bytes from the beginning of the file.
- Read next 20 bytes into an array arr[].

(7) While using command-line arguments, is it necessary to use
variables argc and argv? Write statements to print the name of the
executable file and the first and second argument passed to the
program?

(8) Once a type has been given a new name using typedef, can you use
the previous type? Can the effect of typedef be also obtained using
a macro? If yes, how?

(9) What is the difference between the following declarations?

int *p[4] ;
int (*q)[4] ;

(10) What is the difference between a structure and a union as regards:

- Sharing of memory locations

Periodic Tests, Course Tests 485

- Size
- Accessing elements

[D] Attempt the following questions: [30 Marks, 6 Marks each]

(1) Consider the following statements:

int a = 20 ;
int *p ;
p = &a ;

Write statements only using p to:

- set a value 45 in a.
- multiply a with 40 and store the result in a
- print current value of a

Also write statements to perform the following operations:

- Increment p
- After incrementation, what will be present in p if variable a is at

location 4004?
- Does incrementing p cause a memory leak?

(2) Write a program that defines a function called isalpha(). The
function should receive a string and check if all characters in it are
alphabets. If so, it should return a true, otherwise false. Call this
function for the following strings:

"NambyPamby"
"Mumbai - 400010"

(3) Define an enumeration to represent marital status of a person—
single, married, divorced. Create two variables he and she of this
enum type and assign to them values single and married
respectively. Print these values and indicate what output will they
produce.

(4) Define functions countzeros() and countones() which count
number of 0s and 1s in an unsigned char that they receive. Call
both these functions for values 101 and 111. Indicate what values
will these functions return?

(5) Write a program to find maximum out of three given numbers in a
single statement. What are the pros and cons of using this
statement?

Index

"Random access begins..."

Some people like help, some people don't. But everybody
likes "quick” help. This index will help you jump to that
quick help...

487

488 Let Us C

f
\0, 257, 258
I, 62
!=, 41
#define, 197,198
#elif, 204
#else, 203
#endif, 203, 204
#if, 204
#ifdef, 202, 203
ttifndef, 203
/(include, 201, 202
ttpragma, 205, 206
#pragma exit, 205
ttpragma pack, 299
#pragma startup, 205
#pragma warn, 206
#undef, 205
., 291
->, 297
%=, 82
~, 367
&&, 57
&, 150, 371, 372
*, 150
*=,82
++, 81, 82
-, 81
+=,82
-=,82
/=,82
<, 41
<=,41
==,41
>,41
>=,41
», 368
«, 368
? :, 63, 64
1,371
IL 57
A, 371
..., 394

A

actual arguments, 134
address of operator, 14

arguments
actual, 134
formal, 134

arithmetic Instruction, 24, 25
argc, 353, 354
argv, 353, 354
array, 217, 218, 219
array

2-D, 239, 240,433
3-D, 247
accessing array elements using

pointers, 223
accessing elements, 218
bounds checking, 219
declaration, 218
initialization, 219
limitation of array of pointers to

strings, 281
memory map, 219, 241
of characters, 257
passing 2-D array, 241,432
passing to function, 220
of pointers, 245
of pointers to strings, 278
of structures, 291

assembler, 208
assembling, 208
associativity, 30
auto, 182,183

B

binary Files, 335
bit fields, 390,
bit numbering, 365
bit operations, 366
bitwise operators, 367
bounds checking, 219
break, 96,97
bugs, 457
build process, 207

c
C program

form of, 9
C++, 3
call by reference, 149,154
call by value, 149,154
callback mechanism, 436

Index 489

callling C++ function, 439
calling C++ member function, 442
case, 111, 112, 113
character constant, 7
chars,

signed and unsigned, 178
close(), 341
coding style, 444
command-line arguments, 353, 354
comment, 10
compilation, 13, 425
compilation and execution, 13, 447
compilation and execution

at Linux command-line, 451
using NetBeans, 450
using Online compilers, 451
using Turbo C++, 449
using Visual Studio, 450

compiler, 14, 208, 425
compiler

32-bit, 178
compound assignment operators, 82
conditional compilation, 202, 203
conditional operators, 63, 64
console I/O, 309
console I/O functions, 309
console I/O functions

formatted, 310, 311
unformatted, 310, 318, 319

const, 261
constants, 5, 6, 7
continue, 98
control instructions

case, 31
decision making instructions, 41
loops, 77

D

Dennis Ritchie, 3
data type

enum, 385, 386
new, 427

database management, 299
decision control instructions

switch, 111, 112
default, 111, 112
detecting errors, 356
do-while, 99
double, 179

E

EOF, 327, 329
editor, 208
ellipses, 394
else, 41, 42
enum, 385, 386, 387
errors in reading and writing, 356
escape sequences, 310, 311, 314
execution, 13, 425
expanded source code, 197, 200
extern, 185, 186

F

fclose(), 327
fcntl.h, 342
ferror(), 356, 357
fflush(), 292
fgetc(), 327, 329
fgets(), 334, 335
file I/O, 309, 327
file I/O

low level, 340
opening Modes, 333

file inclusion, 201
file closing, 329
file copy, 340
file handle, 343
file opening, 328
file operations, 327
file reading, 329
float, 179
floating-point emulator, 292
fopen(), 327, 328
for, 91, 92
formal arguments, 134
format specifications, 310, 311
format specifiers, 12
fprintf(), 336, 337
fputc(), 330, 331
fputs(), 334
fread(), 336, 337
fscanf(), 336, 337
fseek(), 336, 337
ftell(), 340
functions, 129, 130
functions

called function, 130
calling function, 130
definition, 130

490 Let Us C

order of passing arguments, 136
passing values, 133
return type, 139
returning from, 135
returning pointers, 392
variable arguments, 393

fwrite(), 336, 337

G

GCC, 6, 426
getchar(), 318
gets(), 310, 318, 428
goto, 116

H

Hierarchy of operators, 28

I

Integrated Development Environment
(IDE), 13, 449

I/O redirection, 357
input, 360
input/output, 360
output, 358

I/O types, 309
if-else, 41

multiple statements, 43
instructions, 23, 24
instructions

arithmetic instruction, 24, 25
control instruction, 31
type declaration instruction, 23
types of, 23

integer and float conversions, 26
integer constant, 5
integers

short, long, signed, unsigned, 177, 178

J

Java, 3

K

Keywords, 4, 8

L

library functions, 132
limitations,

array of pointers to strings, 281
linkage, 431
linkfloat(), 292
linker, 208
Linux command-line, 430
logical operators, 57, 59
long, 177
long double, 179
loops, 77
loops

do-while, 99, 100
for, 91, 92
nesting of, 95
odd loop, 100
tips and traps, 79
while, 77

low-level file I/O, 340

M

macro expansion, 197
macros versus functions, 200
macros with arguments, 198, 199
main(), 12
malloc(), 228, 281

N

negative numbers, 180
Storing, 180

nested if-else, 45
nesting of loops, 95
NetBeans under Linux, 449
NetBeans under Windows, 448

O

O_APPEND, 342

Index 491

O_BINARY, 342
O_CREAT, 342
O_RDONLY, 342
O_RDWR, 342
O_TEXT, 342, 343
O_WRONLY, 342
object code, 208
online compilers, 449
operator

address of, 14
associativity, 30
bitwise, 367
bitwise AND, 371, 372
bitwise OR, 371, 372,
bitwise XOR, 371, 372
bitwise compound assignment, 376
compound assignment, 82
conditional Operators, 63, 64
hierarchy, 28
left shift, 368
logical operators, 57, 59
one’s complement, 367
relational operators, 41
right shift, 368
value at address, 150, 151

operators, 13
open(), 342
order of passing arguments, 136

P

passing 2-D array, 435
perror(), 356
pointer, 149
pointers

and 2-D arrays, 241
and arrays, 221
and strings, 261
to an Array, 243
to functions, 391

precedence table, 453
preprocessor directives

conditional compilation, 202, 203
file inclusion, 201
macro expansion, 197, 198

preprocessing, 208
preprocessor, 208

features of, 197
printf(), 13, 14
putchar(), 310, 318
puts(), 310, 318

R

read(), 341, 343
real, 6, 7
reals—float, double, long double, 179
record I/O, 336, 337
recursion, 167
redirection I/O, 357
register, 183
relocatable object code, 208
relational operators, 41
return, 133, 134, 135
rewind(), 338
rules for character constants, 7
rules for integer constants, 5
rules for real constants, 6
rules for variable names, 7

S

SEEK_CUR, 339
SEEK_END, 339
SEEK_SET, 339
S_IREAD, 343
S_IWRITE, 341, 342, 343
scanf(), 15, 310, 316
scope, 431
short, 177
showbits(), 375
signed, 177
size_t, 428
sizeof(), 337, 338
sprintf(), 317
sscanf(), 317
standard file pointers, 357
standard library functions, 137
standard library string functions, 261
static, 184
stdarg.h, 393
stderr, 357
stdin, 357
stdout, 357
storage class, 181, 182, 430

specifier, 429, 432
storage classes

automatic, 182, 183
external, 185, 186
register, 183, 184
revisited, 430
static, 184

492 Let Us C

which to use when, 189
strcat(), 262, 266
strchr(), 262
strcmp(), 262, 266
strcmpi(), 262
strcpy(), 262, 264
strdup(), 262
stricmp(), 262
string I/O, 317
strings, 257
strings,

bounds checking, 260
strlen(), 262, 263
strlwr(), 262
strncat(), 262
strncmp(), 262
strncpy(), 262
strnicmp(), 262
strnset(), 262
strrchr(), 262
strrev(), 262
strset(), 262
strstr(), 262
struct, 290, 291, 292
structure, 290, 291
structure

accessing elements, 290
array of, 291
copying, 294
declaration, 290, 291
element storage, 293
intricacies of, 292
nested, 295
packing elements, 298
passing elements of, 296
passing structure variable, 296
uses, 299
variables, 291
why use, 289

strupr(), 262
switch, 111, 112, 113
switch versus if-else ladder, 115

types of I/O, 309
types of instructions, 23

U

unions, 395, 396, 397
unsigned, 177
uses of structures, 299
utility of <<, 371
utility of &, 372
utility of |, 375
utility of A, 375
utility of unions, 397

V

Visual Studio, 427
va_arg, 393
va_list, 393
va_start, 393
value at address operator, 151
variable number of arguments, 393
variables, 11

types of, 7
usage, 11

void, 129, 228, 281
volatile, 398

W

why use functions, 132
while, 77, 79
wide characters, 429
write(), 341, 343

T

Turbo C/C++, 448
text files, 335
translation unit, 431
typecasting, 389
typedef, 388
type conversion in assignment, 27
type declaration instruction, 23

	19th Edition

	About Yashavant Kanetkar

	Acknowledgments

	Preface to 19th Edition

	Yashavant Kanetkar

	Contents

	What is C?

	Which C are we Learning?

	Getting Started with C

	Alphabets, Digits and Special Symbols

	Constants, Variables and Keywords

	Types of C Constants

	Rules for Constructing Integer Constants

	Rules for Constructing Real Constants

	Rules for Constructing Character Constants

	Types of C Variables

	Rules for Constructing Variable Names

	C Keywords

	The First C Program

	Form of a C Program

	Comments in a C Program

	What is main()?

	Variables and their Usage

	printf() and its Purpose

	Compilation and Execution

	Receiving Input

	Problem 1.1

	Program

	Output

	Problem 1.2

	Program

	Output

	Problem 1.3

	Program

	Output

	"On your mark, get set, go..."

	21

	Types of Instructions

	Type Declaration Instruction

	Arithmetic Instruction

	Integer and Float Conversions

	Type Conversion in Assignments

	Hierarchy of Operations

	Associativity of Operators

	Control Instructions

	Problem 2.1

	Program

	Output

	Problem 2.2

	Program

	Output

	Problem 2.3

	Program

	Output

	“Indecision cost > Wrong decision cost"

	39

	The if - else Statement

	Multiple Statements within if - else

	Nested if-elses

	A Word of Caution

	Problem 3.1

	Program

	Output

	Problem 3.2

	Program

	Output

	Problem 3.3

	Program

	Output

	“Life is complex, so are decisions in life..."

	Use of Logical Operators - Checking Ranges

	The else if Clause

	Use of Logical Operators - Yes / No Problem

	The ! Operator

	Hierarchy of Operators Revisited

	The Conditional Operators

	Problem 4.1

	Program

	Output

	Problem 4.2

	Program

	Output

	Problem 4.3

	Program

	Output

	75

	Loops

	The while Loop

	Tips and Traps

	More Operators

	Problem 5.1

	Program

	Output

	Problem 5.2

	Program

	Output

	Problem 5.3

	Program

	Output

	The for Loop

	Nesting of Loops

	Multiple Initializations in the for Loop

	The do-while Loop

	The break Statement

	The continue Statement

	The Odd Loop

	Problem 6.1

	Program

	Output

	Problem 6.2

	Program

	Output

	Problem 6.3

	Program

	Output

	The multi-point switch

	109

	Decisions using switch

	The Tips and Traps

	switch versus if-else Ladder

	The goto Statement

	Problem 7.1

	Program

	Output

	"Think modern, think of functions..."

	127

	What is a Function?

	Why use Functions?

	Communication between Functions

	Order of Passing Arguments

	Using Library Functions

	One Dicey Issue

	Return Type of Function

	Problem 8.1

	Program

	Output

	Problem 8.2

	Program

	Output

	Problem 8.3

	Program

	Output

	Call by Value and Call by Reference

	An Introduction to Pointers

	Pointer Types and their Sizes

	Back to Function Calls

	Utility of Call by Reference

	Conclusions

	Uses of Pointers

	Problem 9.1

	Program

	Output

	Problem 9.2

	Program

	Output

	Problem 9.3

	Program

	Output

	10

	“To iterate is human, to recurse devine..."

	165

	Recursion

	Problem 10.1

	Program

	Output

	Problem 10.2

	Program

	Output

	Problem 10.3

	Program

	Output

	175

	A Few More Issues...

	Storage Classes in C

	Automatic Storage Class

	Register Storage Class

	Static Storage Class

	External Storage Class

	Which to Use When

	A Few Subtle Issues

	12

	"Add spick and span..."

	195

	Features of C Preprocessor

	Macro Expansion

	Macros with Arguments

	Macros versus Functions

	File Inclusion

	Conditional Compilation

	#if and #elif Directives

	Miscellaneous Directives

	#undef Directive

	#pragma Directive

	The Build Process

	Problem 12.1

	Program

	Output

	Problem 12.2

	Program

	Output

	13

	215

	What are Arrays?

	A Simple Program using Array

	More on Arrays

	Array Initialization

	Array Elements in Memory

	Bounds Checking

	Passing Array Elements to a Function

	Pointers and Arrays

	Accessing Array Elements using Pointers

	Passing an Array to a Function

	The Real Thing

	Flexible Arrays

	Returning an Array

	Problem 13.1

	Program

	Output

	Problem 13.2

	Program

	Output

	Problem 13.3

	Program

	Output

	14

	237

	Two-Dimensional Arrays

	Initializing a 2-D Array

	Memory Map of a 2-D Array

	Pointers and 2-D Arrays

	Pointer to an Array

	Passing 2-D Array to a Function

	Array of Pointers

	3-D Array

	Problem 14.1

	Program

	Output

	Problem 14.2

	Program

	Output

	255

	What are Strings?

	More about Strings

	Pointers and Strings

	Standard Library String Functions

	Problem 15.1

	Program

	Output

	Problem 15.2

	Program

	Output

	Problem 15.3

	Program

	Output

	16

	"More Puppets, More Strings..."

	275

	2-D Array of Characters

	Array of Pointers to Strings

	Limitation of Array of Pointers to Strings

	Problem 16.1

	Program

	Output

	Problem 16.2

	Program

	Output

	Problem 16.3

	Program

	Output

	17

	"Address the heterogeneous world..."

	287

	Why use Structures?

	Array of Structures

	Intricacies of Structures

	Structure Declaration

	Storage of Structure Elements

	Copying of Structure Elements

	Nested Structures

	Passing Structure Elements / Structure Variables

	Packing Structure Elements

	Uses of Structures

	Problem 17.1

	Program

	Output

	Problem 17.2

	Program

	Output

	18

	Types of I/O

	Console I/O Functions

	Formatted Console I/O Functions

	Unformatted Console I/O Functions

	325

	File Operations

	Opening a File

	Reading from a File

	Closing the File

	Counting Characters, Tabs, Spaces, ...

	A File-Copy Program

	File Opening Modes

	String (Line) I/O in Files

	Text Files and Binary Files

	Record I/O in Files

	Modifying Records

	Low-Level File I/O

	A Low-level File-copy Program

	Problem 19.1

	Program

	Output

	Problem 19.2

	Program

	Output

	“More the merrier..."

	351

	Using argc and argv

	Detecting Errors in Reading/Writing

	Standard File Pointers

	I/O Redirection

	Redirecting the Output

	Redirecting the Input

	Both Ways at Once

	21

	“Bit by bit, I take a byte..."

	363

	Bit Numbering and Conversion

	Bit Operations

	One’s Complement Operator

	Right Shift and Left Shift Operators

	A Word of Caution

	Utility of << Operator

	Bitwise AND, OR and XOR Operators

	Utility of & Operator

	Utility of | Operator

	Utility of A Operator

	The showbits() Function

	Bitwise Compound Assignment Operators

	Problem 21.1

	Program

	Output

	Problem 21.2

	Program

	Output

	22

	383

	Enumerated Data Type

	Uses of Enumerated Data Type

	Are Enums Necessary?

	Renaming Data Types with typedef

	Typecasting

	Bit Fields

	Pointers to Functions

	Functions Returning Pointers

	Functions with Variable Number of Arguments

	Unions

	Utility of Unions

	The volatile Qualifier

	Problem 22.1

	Program

	Output

	Problem 22.2

	Program

	Output

	23

	Question 1

	Question 2

	Question 3

	Question 4

	Question 5

	Question 6

	Question 7

	Question 8

	Question 9

	Question 10

	Question 11

	Question 12

	Question 13

	Question 14

	Question 15

	Question 16

	Question 17

	Question 18

	Question 19

	Question 20

	Question 21

	Question 22

	Question 23

	Question 24

	Question 25

	Question 26

	Question 27

	Question 28

	Question 29

	Question 30

	Question 31

	Question 32

	Question 33

	Question 34

	Question 35

	Question 36

	Question 37

	Question 38

	Question 39

	Question 40

	Question 41

	Question 42

	Question 43

	Question 44

	Question 45

	Question 46

	Question 47

	Question 48

	Question 49

	Question 50

	Question 51

	Question 52

	Question 53

	Question 54

	Question 55

	Question 56

	Question 57

	Question 58

	Question 59

	Question 60

	Question 61

	Question 62

	Question 63

	Question 64

	Question 65

	Question 66

	Question 67

	Question 68

	Question 69

	Question 70

	Question 71

	Question 72

	Question 73

	Question 74

	Question 75

	Question 76

	Question 77

	Question 78

	24

	425

	New Data Types

	What is size_t?

	Problem with gets()

	Wide Characters

	Storage Classes Revisited

	Translation Unit

	Scope

	Linkage

	Storage Classes of Variables

	Variable defined as a Function Parameter

	Variable defined outside all Functions

	Variable defined inside a Function

	Storage Class Specifier for a Function

	A Final Word

	Passing 2-D Array to a Function

	Callback Mechanism

	Some Interesting Limits

	Using C++ Functions from a C program

	Using C++ Classes from a C program

	Coding Style

	IDEs

	Turbo C/C++ under Windows

	NetBeans under Windows

	NetBeans under Linux

	Visual Studio under Windows

	Online Compilers

	Compilation and Execution Steps in IDE

	Compilation and Execution using Turbo C++

	Compilation and Execution using NetBeans

	Compilation and Execution using Visual Studio Community

	Compilation and Execution at Linux Command-line

	Compilation and Execution Using Online Compilers

	Wading through the choppy waters ..."

	Bug 1

	Bug 2

	Bug 3

	Bug 4

	Bug 5

	Bug 6

	Bug 7

	Bug 8

	Bug 9

	Bug 10

	Bug 11

	Bug 12

	Bug 13

	Bug 14

	Bug 15

	Bug 16

	Bug 17

	Bug 18

	Bug 19

	"When confident, get tested...”

	Periodic Test I (Based on Chapters 1 to 7)

	Periodic Test II (Based on Chapters 8 to 12)

	Periodic Test III (Based on Chapters 13 to 17)

	Periodic Test IV (Based on Chapters 18 to 22)

	Course Test I

	(Based on all Chapters)

	Course Test II

	(Based on all Chapters)

	"Random access begins..."

	487

	f

