
YASHAVANT KANETKAR'S

Data Structures





Data Structures 

Through C

Third Edition

Yashavant P. Kanetkar



FIRST EDITION 2019

Copyright © BPB Publications, INDIA

ISBN : 978-93-8851-139-1

All Rights Reserved. No part of this publication can be stored 

in a retrieval system or reproduced in any form or by any 

means without the prior written permission of the publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The Author and Publisher of this book have tried their best to 

ensure that the programmes, procedures and functions 

described in the book are correct. However, the author and the 

publishers make no warranty of any kind, expressed or implied, 

with regard to these programmes or the documentation 

contained in the book. The author and publisher shall not be 

liable in any event of any damages, incidental or consequential, 

in connection with, or arising out of the furnishing, 

performance or use of these programmes, procedures and 

functions. Product name mentioned are used for identification 

purposes only and may be trademarks of their respective 

companies.



All trademarks referred to in the book are acknowledged as 

properties of their respective owners.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers, 150

DN Rd. Next to Capital Cinema, V.T.

(C.S.T.) Station,

MUMBAI-400 001



Ph: 22078296/22078297

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

Published by Manish Jain for BPB Publications, 20, Ansari 

Road, Darya Ganj, New Delhi- 110002 and Printed him at 

Repro India Pvt Ltd, Mumbai



Dedicated to

Prabhakar Kanetkar



About the Author

Through his books and Quest Video Courseware DVDs on C, 

C++, Data Structures, VC++, .NET, Embedded Systems, etc. 

Yashavant Kanetkar has created, moulded and groomed lacs of 

IT careers in the last two and half decades. Yashavant’s books 

and Quest DVDs have made a significant contribution in 

creating top-notch IT manpower in India and abroad.

Yashavant’s books are globally recognized and millions of 

students / professionals have benefitted from them. Yashavant’s 

books have been translated into Hindi, Gujarati, Japanese, 

Korean and Chinese languages. Many of his books are 

published in India, USA, Japan, Singapore, Korea and China.

Yashavant is a much sought after speaker in the IT field and 

has conducted seminars/workshops at TedEx, IITs, RECs and 

global software companies.

Yashavant has been honored with the prestigious 

“Distinguished Alumnus Award” by IIT Kanpur for his 

entrepreneurial, professional and academic excellence. This 

award was given to top 50 alumni of IIT Kanpur who have 

made significant contribution towards their profession and 

betterment of society in the last 50 years.



In recognition of his immense contribution to IT education in 

India, he has been awarded the “Best .NET Technical 

Contributor” and “Most Valuable Professional” awards by 

Microsoft for 5 successive years.

Yashavant holds a BE from VJTI Mumbai and M.Tech. from IIT 

Kanpur. Yashavant’s current affiliations include being a Director 

of KICIT Pvt. Ltd. and KSET Pvt. Ltd. He can be reached at 

kanetkar@kicit.com or through http://www.kicit.com.

mailto:kanetkar@kicit.com
http://www.kicit.com


Acknowledgments

Though what matters most in a book are its contents, it is the 

parts of the whole like cover, internal layout, digital extras, 

price etc. that make it an attractive proposition. I have been 

fortunate to get help and cooperation from many individuals 

involved in this book project.

Though the book cover bears only my name, it truly reflects 

the collective wisdom of numerous students to whom I taught 

“Data Structures” for several years. I have learnt a lot from 

them. Many thanks, wherever you are.

Writing and testing programs in a book is a monumental task 

calling for incredible patience. That Vineeta Prasad, Anil 

Gakhare and Monali Mohadikar had loads of it is chiefly 

responsible for getting the book in its current form. They also 

ensured that we chose the right algorithms while implementing 

the additional programs present in the downloadable DVD.

“Experience data structures through animations”—that is the 

main theme of this book. Neeraj Srivastav took the 

responsibility of creating excellent animations while following 

stringent timelines. M.S. Prakash wrote instructions for



installing and using the programs on the DVD. Many thanks to 

both of you.

An author needs a lot of support from his publisher. That 

Manish Jain of BPB provides in abundance in my every book 

project. Bureaucracy and quiet indifference are the words which 

do not figure in his dictionary.

And lastly many thanks to my wife Seema who cheered me in 

good times, encouraged me in bad times and understood me 

at all times. If I ever wear a hat, it would be off to her!!



Contents

Introduction

1. Analysis of Algorithms

Why Analyze Algorithms?

What to Consider, What to Ignore? 

Cases to Consider During Analysis 

Rates of Growth

Asymptotic Notation for Analysis of Algorithms 

Asymptotic Analysis Examples 

Is Asym ptotic Analysis Perfect? 

Comparison of Growth Rates 

Determining Time Complexity 

Types of Algorithms 

Chapter Bullets 

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise

2. Arrays

Arrays

Two-Dimensional Arrays

Row Maj or and Column Maj or Arran gement



Common Matrix Operations 

Multidimensional Arrays 

Arrays and Polynomials 

Multiplication of Polynomials 

Chapter Bullets 

Check Your Progress

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise

3. Linked Lists

What is a Linked List 

Operations on A Linked List 

More Linked Lists 

Reversing the Links 

A Few More Operations 

Recursive Operations on Linked List 

Doubly Linked Lists 

Function d a ppend() 

Function d addatbeg() 

Function d addafterQ 

Function d delete() 

Chapter Bullets 

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise



4. Sparse Matrices

Representation of Sparse Matrix as an Array 

Common Matrix Operations 

Transpose of a Sparse Matrix 

Addition of Sparse Matrices

Linked Representation of a Sparse Matrix 

Other Forms of a Sparse Matrix 

Chapter Bullets

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise

5. Stacks

Stack as an Array

Stack as a Linked List 

Applications of Stacks 

Infix to Postfix Conversion 

Postfix to Prefix Conversion 

Other Inter-Conversions 

Evaluation of Postfix Expression 

Chapter Bullets 

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions



Case Scenario Exercise

6. Queues

Queue as an Array

Queue as a Linked-List

Circular Queue

Deque

Priority Queue

Chapter Bullets

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise

7. Trees

Binary Trees

Representation of Binary Trees in Memory

Linked Representation of Binary Trees 

Array Representation of Binary Trees 

Binary Search Trees

Operations on a Binary Search Tree 

Insertion of a Node

Traversal of a BST

Searching of a Node

Deletion of a Node

Reconstruction of a Binary Tree



Threaded Binary Tree 

AVL Trees

Binary Heap

Chapter Bullets

Check Your Progress

Sharpen Your Skills

Coding Interview Questions

Case Scenario Exercise

8. Graphs

Definitions and Terminology

Adj acent Vertices and Incident Ed ges

Graph Representations

Adj acency Matrix

Adj acency Lists

Adj acency Multi-lists

Graph Traversals

Depth First Search

Breadth First Search

Spanning tree 

Kruskal’s Algorithm 

Prim’s Algorithm 

Shortest Path 

Dijkstra’s Algorithm 

Topological Sorting 

Chapter Bullets 

Check Your Progress



Sharpen Your Skills

Coding Interview Questions

Case Scenario Exercise

9. Searching And Sorting

Searching 

Linear Search 

Binary Search 

Recursive Binary Search 

Sorting 

Internal Sorting 

External Sorting 

Internal Sorting 

Bubble Sort 

Selection Sort 

Insertion Sort 

Quick Sort 

Binary Tree Sort 

Merge Sort 

Heap Sort 

Chapter Bullets

Check Your Progress 

Sharpen Your Skills 

Coding Interview Questions 

Case Scenario Exercise



Index



Introduction

Technical book writing is a simple job. Pick a topic that 

appeals to you, spend some time understanding it, browse the 

net for some additional information and then keep writing till 

the time you do not reach the end. Easier said than done!

In fact nothing can be farther from the truth. For one, 

choosing the right subject is pretty confusing with so many 

subjects and technologies taking so big strides in the recent 

years. Secondly, none of them is so easy to master in a few 

months and thirdly presenting what you have understood in a 

simple manner is not everybody’s cup of tea.

I have realized all these facts more emphatically while writing 

this book, because I have been writing this book for last 10 

years!! It all began with attempting to write articles that would 

explain Quick Sort algorithm and Threaded Binary Trees. Once 

I had a critical mass of written material I thought of compiling 

it in the form of a book.

I however wanted the book to be a different data structures 

book. Different in the sense that, it should go beyond merely 

explaining how typical data structures like stacks, queues and 

linked lists work. I wanted the readers to experience sorting of 



an array, traversing of a doubly linked list, construction of a 

binary tree, etc.

I had a hell of a time imagining, understanding and 

programming these complicated data structures. I wanted that 

the readers of this book should not be required to undergo 

that agony. And today I am satisfied that I have been able to 

achieve this through the downloadable DVD. It lets the reader 

experience the working of different data structures through 

carefully prepared animations. I have pinned my hopes that the 

readers would appreciate this approach. The DVD is available 

at

I have tried to make this book different in one more way. 

Instead of merely learning how to perform different operations 

on a linked list, I think one can appreciate it better if one 

comes to the practical applications of it. There are numerous 

such examples and I have also tried to provide animations for 

most of them on the downloadable DVD.

Apart from this I have tried to explain all data structures with 

examples and figures. I have also provided exercises at the end 

of each chapter to hone your skills.

In the edition I have done a major overhaul of all chapters. I 

have made the Analysis of Algorithms chapter more



comprehensible by explaining this difficult topic with numerous 

examples. I hope the readers would like this approach.

I have also eliminated those algorithms and programs that are 

not commonly used and are of only academic importance. In 

this edition you would also find a lot consistency in the style 

of programming adopted while implementing different 

algorithms.

Yashavant Kanetkar



Chapter 01

Analysis of Algorithms

justifying the means

Why This Chapter Matters?

The dictum “ends justify the means” doesn’t hold good in 

Computer Science. Just because we got the right answer (end) 

does not mean that the method (means) that we employed to 

obtain it was correct. In fact, the efficiency of obtaining the 

correct answer is largely dependent on the method employed 

to obtain it. Hence scientific analysis of performance of the 

method is very important.



The method of solving a problem is known as an algorithm. 

More precisely, an algorithm is a sequence of instructions that 

act on some input data to produce desired output in a finite 

number of steps. An algorithm must have the following 

properties:

(a) Input - An algorithm must receive some input data 

supplied externally.

(b) Output - An algorithm must produce at least one output 

as the result.

(c) Finiteness - No matter what the input might be, the 

algorithm must terminate after a finite number of steps. For 

example, a procedure which goes on performing a series of 

steps infinitely is not an algorithm.

(d) Definiteness - The steps to be performed in the algorithm 

must be clear and unambiguous.

(e) Effectiveness - One must be able to perform the steps in 

the algorithm without applying any intelligence. For example, 



the step—Select three numbers which form a Pythagorean 

triplet—is not effective.



Why Analyze Algorithms?

Multiple algorithms may exist for solving a given problem. To 

determine which algorithm is more efficient than others, we 

need to analyze the algorithms. This analysis is done by 

comparing the time and/or space required for executing the 

algorithms. In this chapter we would analyze algorithms on the 

basis of time. We would carry out space based analysis in later 

chapters.

While doing time based analysis of algorithms we do not use 

conventional time units like seconds or minutes required for 

executing the algorithms. There are two reasons for this.

(a) A worse algorithm may take less time units to execute if 

we move it to a faster computer, or use a more efficient 

language.

(b) We are interested in relative efficiency of different 

algorithms rather than the exact time for one.

So instead of time units we consider the number of prominent 

operations that are carried out by the algorithm. For example,



in a searching algorithm we would try to determine the 

number of comparisons that are done to search a value in a 

list of values. Or in an algorithm to add two matrices, we 

might determine the number of arithmetic operations it 

performs.

Once we identify the prominent operations in an algorithm, we 

try to build a function that relates this number of operations 

to the size of the input. Once these functions are formed for 

algorithms under consideration, we can compare them by 

comparing the rate at which the functions grow as the input 

gets larger. This growth rate is critical since there are 

situations where one algorithm needs fewer operations than the 

other when the input size is small, but many more when the 

input size becomes larger.

Thus analysis of algorithms gives us a scientific reason to 

determine which algorithm should be chosen to solve the 

problem.



What to Consider, What to Ignore?

It is very important to decide which operations to consider and 

which operations to ignore while analyzing an algorithm. For 

this we must first identify which is the significant time 

consuming operation(s) in the algorithm. Once that is decided, 

we should determine which of these operations are integral to 

the algorithm and which merely contribute to the overheads. 

There are two classes of operations that are typically chosen 

for the significant operation—comparison or arithmetic.

For example, in Searching and Sorting algorithms the important 

task being done is the comparison of two values. While 

searching the comparison is done to check if the value is the 

one we are looking for, whereas in sorting the comparison is 

done to see whether values being compared are out of order.

The arithmetic operations fall under two groups—additive and 

multiplicative. Additive operators include addition, subtraction, 

increment, and decrement. Multiplicative operators include 

multiplication, division, and modulus. These two groups are 

counted separately because multiplication operations take longer 

time to execute than additions.



Let us now see which operations we should ignore while 

analyzing an algorithm. Suppose we have an algorithm that 

counts the number of characters in a file. This algorithm is 

given below.

Count = 0

While there are more characters in the file do

Increment Count by 1

Get the next character

End while

Print Count

If there are 500 characters present in the file we need to 

initialize Count once, check the condition 500 + 1 times (the 

+1 is for the last check when the file is empty), and increment 

the counter 500 times. Thus the total number of operations 

would be

Initializations - 1

Increments - 500

Conditional checks - 500 + 1

Printing - 1



As can be seen from these numbers, the number of 

increments and conditional checks are far too many as 

compared to number of initialization and printing operations. 

The number of initialization and printing operations would 

remain same for a file of any size and they become a much 

smaller percentage of the total as the file size increases. For a 

large file, the number of initialization and printing operations 

would be insignificant as compared to the number of 

increments and conditional checks. Thus, while analyzing this 

algorithm the initialization operation should be ignored.



Cases to Consider During Analysis

Choosing the input to consider when analyzing an algorithm 

can have a significant impact on how an algorithm will 

perform. For example, if the input list is already sorted, some 

sorting algorithms will perform very well, but other sorting 

algorithms may perform very poorly. The opposite may be true 

if the list is randomly arranged instead of sorted. Hence, 

multiple input sets must be considered while analyzing an 

algorithm. These include the following:

(a) Best Case Input - This represents the input set that allows 

an algorithm to perform quickest, i.e. this input the algorithm 

takes shortest time to execute, as it causes the algorithms to 

do the least amount of work. For example, for a searching 

algorithm the best case would be if the value we are searching 

for is found in the first location that the search algorithm 

checks. As a result, this algorithm would need only one 

comparison irrespective of the complexity of the algorithm. No 

matter how large is the input, searching in a best case will 

result in a constant time. Since possibility of best case input 

for an algorithm would usually be very small, the best case 

analysis of an algorithm is often not done.



(b) Worst Case Input - This represents the input set that 

allows an algorithm to perform slowest. Worst case is an 

important analysis because it gives us an idea of the 

maximum time an algorithm will ever take. Worst case analysis 

requires that we identify the input values that cause an 

algorithm to do the most work. For example, for a searching 

algorithm, the worst case is one where the value is in the last 

place we check or is not in the list. This could involve 

comparing the key to each list value for a total of N 

comparisons.

(c) Average Case Input - This represents the input set that 

allows an algorithm to deliver an average performance. Average­

case analysis is a four-step process. These steps are as under:

Determine the number of different groups into which all 

possible input sets can be divided.

Determine the probability that the input will come from each 

of these groups.

Determine how long the algorithm will run for each of these 

groups. All of the input in each group should take the same 

amount of time, and if they do not, the group must be split 

into two separate groups.



Calculate average case time using the formula: 
wt

»=I.P 
j=l

where, 

n = Size of input 

m = Number of groups 

= Probability that the input will be from group i 

= Time that the algorithm takes for input from group i.



Rates of Growth

While analyzing algorithms, more than the exact number of 

operations performed by the algorithm, it is the rate of 

increase in operations as the size of the problem increases 

that is of more importance. This is often called the rate of 

growth of the algorithm. What happens with small sets of 

input data is not as interesting as what happens when the 

data set gets large.

Table 1-1 shows rate of growth for some of the common 

classes of algorithms for a wide range of input sizes. You can 

observe that there isn’t a significant difference in values when 

the input is small, but once the input value gets large, there 

are big differences. Hence, while analyzing algorithms, we must 

consider what happens when the size of the input is large, 

because small input sets can hide rather dramatic differences.



Table 1-1. Rate of increase in common algorithm classes.

n log n n log n 2 n 3 n 2"

1 0.0 0.0 1.0 1.0 2.0
2 1.0 2.0 4.0 8.0 4.0

5 2.3 11.6 25.0 125.0 32.0
10 3.3 33.2 100.0 1000.0 1024.0

15 3.9 58.6 225.0 3375.0 32768.0
20 4.3 86.4 400.0 8000.0 1048576.0
30 4.9 147.2 900.0 27000.0 1073741824.0

40 5.3 212.9 1600.0 64000.0 1099511627776.0
50 5.6 282.2 2500.0 125000.0 1125899906842620.0

The data in Table 1-1 also illustrates that the faster growing 

functions increase at such a rate that they quickly dominate 

the slower-growing functions. Thus, if the algorithm’s complexity 

is a combination of a two of these classes, we can safely 

ignore the slower growing terms. On discarding these terms, 

we are left with what we call the order of the function or 

related algorithm. We usually consider one algorithm to be 

more efficient than another if its worst case running time has 

a lower order of growth.

Based on their order, algorithms can be grouped into three 

categories:



(a) Algorithms that grow at least as fast as some function

(b) Algorithms that grow no faster

(c) Algorithms that grow at the same rate

The categories (a), (b), (c) mentioned above are commonly 

represented using Asymptotic Notations Big Omega Q Big Oh 

O (g(n)) and Big Theta 0 respectively. These notations are 

discussed below in detail.



Asymptotic Notation for Analysis of Algorithms

The Big Omega category of functions are not of much interest 

to us since for all values of n greater than some threshold 

value all the functions have values that are at least as large as 

That is, all functions in this category grow as fast as g or 

even faster. Using Asymptotic Notation this is represented as

f (n) >= c g (n)

where c is some constant > o and n >= >=

Thus g(n) represents the best case or the lower bound. If 

there are positive constants such that at and to the right of 

value of f(n) always lies on or above This relationship has 

been shown graphically in Figure



Figure 1-1. Asymptotic representation of functions.

The Big Oh class of functions would be of interest to us as it 

represents the class of functions that grow no faster This 

means that for all values of n greater than some threshold all 

the functions in O have values that are no greater than Thus 

g(n) represents the worst case or upper bound. So, none of 

the functions in this class grow faster than

Using Asymptotic Notation this is represented 

as f (n) <= c g (n)

where c is some constant > o and n >= >=

Thus there are positive constants and c such that at and to 

the right of value of f(n) always lies on or below This 

relationship has been shown graphically in Figure

Big Theta represents the class of functions that are bounded 

by g(n) on either side. This means that for all values of n 

greater than some threshold all the functions in ? have values 

that are greater than and less than Using Asymptotic Notation, 

this is represented as



g (n) <= f (n) <= g (n) 

where and are some constants > o and n >= >= 1.

Thus, there are positive constants and such that at and to the 

right of value of f(n) always is bounded by g(n) on either side. 

This relationship has been shown graphically in Figure

While analyzing algorithms we are on the lookout for an 

algorithm that does better than the one that we are 

considering. Since big theta category represents a class of 

functions that grow at the same rate as the function g this 

category is usually not of interest to us.



Asymptotic Analysis Examples

Let us now see some examples of asymptotic analysis that we 

learnt above. We would consider one example of each category 

— O and

Example 1-1

If f(n) = 5n + 3 and g(n) = can we say f(n) = Q

We can say f(n) = Q(g(n)) if we can find some c and such 

that

f(n) >= c g(n), c > o, n > >=

Substituting f(n) and g(n) in this expression, we get

5n + 3 >= cn

This equation is satisfied, for c = 1 and for all values of n >=

So we can say for c = 1, = 1, f(n) = Q(g(n))



Note that g(n) can also be log n or log log n which grow 

slower than

But tightest lower bound is So f(n) =

Example 1-2

If f(n) = 5n + 3 and g(n) = can we say f(n) = O

We can say f(n) = O (g(n)) if we can find some c and such 

that

f(n) <= c g(n), where c > 0, n > >=

Substituting f(n) and g(n) in this expression, we get

5n + 3 <= cn

This equation is satisfied, for c = 6 and for all value of n >=

So for c = 6, = 3, f(n) = O (g(n))

Note that g(n) can also be which grow faster than But tightest 

upper bound is So f(n) = O



Example 1-3

If f(n) = 5n + 3 and g(n) = can we say f(n) = 0

We can say f(n) = O (g(n)) if we can find some and such that

g(n) <= f(n) <= g(n), where > 0, n > >=

Substituting f(n) and g(n) in this expression, we get

<= 5n + 3 <=

This inequality is satisfied, for = 1, = 6 and for all value of n 

>=

So for = c2 = = f(n) = 0 (g(n))



Is Asymptotic Analysis Perfect?

Suppose two algorithms have rate of growth represented by 

functions loonlog n and 2nlog n respectively. Ignoring the 

constants order of growth of both algorithms would be nlog 

So both algorithms are asymptotically same. Hence we can’t 

judge which one is better.

While doing Asymptotic Analysis we always consider input size 

n greater than some constant value But, in reality, we may 

never supply input bigger than In such cases, an asymptotically 

slower algorithm may perform better than an asymptotically 

faster algorithm.

From these examples we can conclude that asymptotic analysis 

is not perfect, but it still remains the best way available. 

Hence, it is widely used while analyzing algorithms.



Comparison of Growth Rates

Comparison of some growth rates is obvious. For example, we 

can intuitively say grows faster than which grows faster than 

But we may not be so sure when we compare growth rates of 

function and In such cases we need to follow following steps:

(a) If anything is common, cancel it out

(b) Take log of both sides and then compare

(c) Replace n with some large value of power of 2

(d) Compare the two functions

Note that if functions differ by constant value, then 

asymptotically they are same; they differ only in actual value.

Let us take a few examples to fix our ideas.

Example 1-4



Which of the following two functions is greater?

f(n) = and g(n) =

Take log of both functions n 2 2 n 
n logj 2 2 log2 n
n 2*  lofb n

2 log2 n
2 * log2 n

2100
2 ico
2 ico

2 * log2 210°
T*  -IM2 * 100
200

So, g(n) < Or in other words we can say g(n) =

Example 1-5

Which of the following two functions is greater?

f(n) = and g(n) =

Take log of both sides

n logs 3 n logj 2
Iog2 3 Iog2 2
So, g(n) <f(n)
g[n) = O( f(n))

Example 1-6

Which of the following two functions is greater?



f(n) = and g(n) = n n

Cancel out n 
n" n log; n
n log2 n
So, g(n) < f(n) 
g(n) = O( «n))

Example 1-7

Which of the following two functions is greater?

f(n) = n and g(n) =

Take log of both functions

log> n 100 * Iog2 log; n

Substitute n =
iog2 212S 100 * log2logz2123

128 100 * log; 128
128 100*  log; 27
128 100 * 7

So, f(n) < g(n)

Let us substitute n =



]og2 21024 100 * log log 2^*
1024 100 * log 1024
1024 100 * log 210
1024 100 * 10
1024 1000

So, f(n) > g(n)

So, after some value of f(n) > g(n)

Example 1-8

Which of the following two functions is greater?

If f(n) = n and g(n) = n log n

Take log of both functions

log n * log n log n + log log n

Substitute n =
log 21024 log 21024 log 21024 + log log 21024
1024 * 1024 1024 + 10

So, f(n) > g(n)



Determining Time Complexity

From the Asymptotic Analysis discussed previously, we know 

that we would be interested in Big O as it represents the 

worst case time complexity. So, let us take a few examples to 

calculate the time complexity. Note that the functions in the 

following examples are in pseudo code form and not as 

syntactically correct C code.

Example 1-9
fun() 
{ 

int i; 
for (i = 1 to n) 

printf ( "Hello\n* );
}

Here printf() would be executed n times so time complexity is

Example 1-10
fun() 
{ 

int i, j; 
for (i = 1 to n) 
{ 

for (j = 1 to n )
printf ( "HtelloVi" );

}
}



Here printf() would be executed times so time complexity is

Example 1-11
fun( int n J
{

int i = 1;
for (i = 1; i * i <= n ; i++ ) 

printf ( "Hello\n" );

i = 1, 2, 3, 4, 5, ..., k

}

The condition used in the loop i * i <= which is same as i

<= So printf() would get executed Vn times. So time 

complexity is O

Example 1-12
fun (intn) 
{

int i = 1,5 = 1; 
while ( s <= n ) 
{

s =5 + i;
printf ( "HelltAn1');

} 
}

Here we can’t say that the loop would be executed n times 

because value of s is being incremented in steps of i and not 

in steps of 1. In this function values of i and s would get 

incremented as per the following pattern:



s = 1, 3, 6, 10, 15, 21, ...

By the time s becomes greater than loop would go around k 

times.

When i = 1, s = sum of first 1 Natural numbers

When i = 2, s = sum of first 2 Natural numbers

When i = 3, s = sum of first 3 Natural numbers

When i = k, s = sum of first k Natural numbers.

When loop stops s >

This means 

k (k + 1) / 2 > n 

or + k) / 2 > n

Ignoring the lower order terms > n

So, number of iterations k will be Vn



So, time complexity is O

Example 1-13
fun (int n )
{

int i, j, k;
for (i = 1; i <= n ; i-H-) 
{

for (j = 1; j <= i; j-i-i-)
{

for ( k = 1; i <= 50; i++ ) 
printf ( "HelloXn" );

}

Let us analyse how many times each loop in this function gets 

executed.

For i = 1, j loop executes 1 time and k loop executes 50 

times.

For i = 2, j loop executes 2 times and k loop executes 2 * 50 

times.

For i = 3, j loop executes 3 times and k loop executes 3 * 50 

times.

For i = n, j loop executes n times and k loop executes n * 50 

times.

So, printf() would get executed



50 + 2 * 50 + 3 * 50 + ... + n * 50 times

= 50 * (1 + 2 + 3 + ... + n) times

= 50 * n (n + 1) / 2) times

Ignoring the lower order terms and the coefficients, time 

complexity would be O

Example 1-14 
fun (intn) 
{ 

inti;
for (i = 1; 1 < n ; i = i * 2 ) 

printf ( "Hello\nlf); 
}

In this function the value of i is incremented as per the 

following pattern:

i = 1, 2, 4, 8, 16,. n

Or

i = 2 ...

When all iterations are over would be equal to So k would be 

equal to So printf() would get executed n times. Hence time 

complexity would be O



Note that had the incrementation been done using the 

expression i = i * time complexity would be O Likewise, had it 

been done using i = i * time complexity would be O



Types of Algorithms

Though the problems might be very different it is possible that 

the algorithms used to solve them are similar. For example, 

the two problems—counting elements in a list and checking 

whether a value exists in a list are different. Still the 

algorithms for both are very similar. Hence algorithms are 

often classified as per their characteristics rather than the 

problem that they are attempting to solve. Given below is a 

list of some common types of algorithms. I do not intend to 

explain characteristics of these algorithms here. Some of them 

are explained in chapters to follow.

(a) Iterative algorithms

(b) Recursive algorithms

(c) Backtracking algorithms

(d) Divide and conquer algorithms

(e) Dynamic programming algorithms



(f) Greedy algorithms

(g) Branch and bound algorithms

(h) Brute force algorithms

(i) Randomized algorithms



Chapter Bullets

Summary of chapter

(a) Algorithm is a method of accomplishing a task in a finite 

number of steps.

(b) An algorithm must have input, output, finiteness, 

definiteness and effectiveness.

(c) Analysis of an algorithm involves determining time 

requirement or memory space requirement.

(d) Asymptotic analysis evaluates an algorithm’s performance in 

terms of input size. It calculates how time / space increases 

with input size.

(e) Asymptotic notation describes 3 rates of growth Big O, Big 

O and Big 0.

(f) Usually Big O analysis of an algorithm is done, as it 

determines the worst case time complexity.



(g) Though Asymptotic Analysis is not perfect, it is still the 

best way available to analyze algorithm’s performance.

(h) Time complexity of a function can be found out by 

determining the number of times the dominant operation is 

being performed in the function.

(i) Order of growth of two functions can be compared by 

taking log of functions and substituting a large value in place 

of n.



Check Your Progress

Exercise - Level I

[A] Pick up the correct alternative for each of the following 

questions:

(a) If algorithm Ai is asymptotically more efficient than 

algorithm A2, then which of the following statement is correct?

(1) Ai would be more efficient for all inputs

(2) Ai would be more efficient for all inputs except small 

inputs

(3) Ai would be more efficient for all inputs except large 

inputs

(4) A2 would be more efficient for small inputs

(b) The correct increasing order of Asymptotic complexity of 4 

functions given below is

fun1 (n) =

fun2 (n) =

fun3 (n) = nlog n



fun4 (n) = nA (log n)

(i) fun3, fun2, fun4, funi

(2) fun3, fun2, funi, fun4

(3) fun2, fun3, funi, fun4

(4) fun2, fun3, fun4, funi

(c) Four functions fun3() and fun40 use four different for 

loops given below, where n > 0.

for (i = 0 ; i < n ; i++)

for (i = 0 ; i < n ; i += 2)

for (i = 1 ; i < n ; i *= 2)

(1) funi

(2) fun2

(3) fun3

(4) fun4

(d) Which of the following is not O

(1) 12 1 2 * 4 5 * n + 12099

for (i = n ; i > -1 ; i /= 2)

Which function would be most efficient?



(2) n3-14

(3)  n*

(4) /

(e) Consider the following function fun(): double fun (int n) 
double fun {int n )
{

int i;
double sum;
iff n = = 0 )

return 1.0;
else
{

sum = 0.0;
for (i = 0; i < n ; i++ )

sum += fun (i);
return sum;

}
}

The time complexity of the above function is:

(1) O (1)

(2) O (n)

(3) O (n!)

(4) O (nn) 

(f) Consider the following function with n >= m. 



int gcd (int n, int m )

{
if ( n % m == 0 )

return m;

n = n % m ;

return gcd ( m, n );

}

How many recursive calls are made in the above function?

(1) 0 (log n)

(2) O (n)

(3) 0 (log log n)

(4) 0 (sqrt (n))

[B] Two different procedures are written for a given problem. 

One has a computing time given by and that for the other is 

Specify the range of n for which each would be suitable.

[C] Compare the two functions and / 4 for various values for 

Determine when the second becomes larger than the first.

[D] Which of the following function grow faster?
i. yin or log n ?
.. togn . n11. n or log n ?

Prove your claim.



Sharpen Your Skills

Exercise - Level II

[E] Determine the time complexity of the following algorithms:

(a) fun(int n)

{
int old, new, term, n;

old = new = 1;

printf (“%d %d”, old, new);

for (i = 1; i <= n; i++)

{

term = old + new;

printf (“%d”, term);

old = new;

new = term;

}

}

(b) fun (int n)

{
for (i = 1; i<= n; i++)



{
for (j = 1; j <= i; j++)

{
for (k = 1; k <= j; k++) 

printf (“Hello\n”);

}

}

}

(c) fun (int n)

{

i = 1;
while (i <= n)

{
x++;

i++;

}

}

(d) int fun (int n)

{

int i, j, count = 0;

for (i = n; i > 0; i /= 2)

{
for (j = 0; j < i; j++) 

count = count + 1;



}
return count;

}

(e) int fun (int n)

{
int i, j, count = o;

for (i = o; i < n; i++)

{

for (j = i; j > o; j--)

count = count + 1;

}

return count;

}

(f) fun (int n)

{

int i, j = o;

for (i = o; i < n; ++i)

{
while (j < n) 

j++;

}

}

(g) int fun (int n)



{
int i, j, k = 0;

for (i = n / 2; i <= n; i++)

{
for (j = 2; j <= n; j = j * 2)

k = k + n/2;

}
return k;

}

(h) fun (int n)

{

int j;

j = 1;
while (j <= n)

{

j = j * 2;
printf (“Hello\n”);

}

}

(i) fun (int n)

{

int i, j;

for (i = n, j = 0; i > 0; i /= 2, j += i) 

printf (“Hello\n”);



}

(j) fun (int n)

{

int i, j, k;
for (i = 1; i <= n; i++)

for (j = i; j <= n; j++)

for (k = j + 1; k <= n; k++) 

printf (“Hello\n”);

}

(k) fun (int n)

{

int i, j, k;
for (i = 1; i <= n; i++)

{
for (j = 1; j <= i * i; j++)

{
for (k = 1; i <= n/2; i++) 

printf (“Hello\n”);

}

}

}

(l) fun (int n)

{

int i, j, k;



for (i = n/2; i <= n; i++)

{

for (j = 1; j <= n/2; j++)

{
for (k = 1; i <= n; k = k*2)  

printf (“Hello\n”);

}

}

}

(m) fun (int n)

{

int i, j, k;
for (i = n/2; i <= n; i++)

{

for (j = 1; j <= n; j = 2 * j)

{
for (k = 1; i <= n; k = k*2)  

printf (“Hello\n”);

}

}

} 

(n) fun(int n) 

{
// Assume n >= 2



int i, j, k;
while (n > 1)

n = n /2;

}

(o) fun(int n)

{

int i, j;

for (i = 1; i <= n; i++)

{
for (j = 1; j <= n; j = j + i) 

printf (“Hello\n”);

}

}

(P) fun()

{
int i, j, n, k;

n =

for (i = 1; i <= n; i++)

{

j = 2;
while (j <= n)

{

j = j * j;
printf (“Hello\n”);



}

}

[F] Arrange the following functions in ascending order of their 

growth rate:

funi =

fun2 =

fun3 = n log n

fun4 = n log n

[G] Determine which of the following function is faster:

f ( n ) = n3 for 0 < n < 10000
= n2 for n >= 10000

g ( n ) = n for □ < n < 100
= n3 for n > 100



Coding Interview Questions

Exercise Level III

For each of the following pairs of functions f(n) and g(n), 

either f(n) = O[g(n)] or g(n) = O[f(n)], but not both.

Determine which the case is for each of the following pairs:
(a) f(n) = (n -n)/2, g(n) = 6n2

(b) f(n) = n + zVn, g(n) = n2

(c) f(n) = n + n log n, g(n) = nVrc

(d) f(n) = n -+3n + 4, g(n) = n

(e) f(n) = n log n, g[n) = n / 2

(f) f(n) = n + log n, g{n) = Jn

(g) f(n) = 2(log n) , g(n) = log n+12

(h) f(n) = 4n log n+n, g(n) = (n -n)/22



Case Scenario Exercise

Growth rates

List the following functions from highest to lowest order. If any 

are of the same order, circle them on your list.
2n log log n n3+ log n log n n2 + 5n3

2^1 n2 n3 n log n (logo)2

6 nl n (3/2)n



Chapter 02

Arrays

Friends Are Friends

Why This Chapter Matters?

Array is one data structure that has been used more than any 

other. Arrays are simple yet reliable and are used in more 

situations than you can count. Yet they have problems that are 

typical to them, which at times lead to serious performance 

issues. They are like old friends. You accept and live with their 

qualities—good as well as bad.



Data Structure is a way of organizing data in such a way that 

we can perform operations on the data in an effective way. 

Same data can be stored in different data structures. Each data 

structure has its own benefits and limitations. A data structure 

is not related with any specific language. All data structures 

can be implemented through languages like C, C++, Java, C#, 

Python, etc. In this book we would be using C language to 

implement various data structures.

Data structures are classified into two categories—linear and 

nonlinear. The elements in a linear data structure form a 

sequence, whereas elements in a nonlinear data structure do 

not.

There are two ways of representing linear data structures in 

memory— Array based lists (simply called arrays) and Linked 

Lists. In array the linear relationship between elements is 

established by storing its elements in sequential memory 

locations. In linked list the linear relationship is established 

through pointers or links. In a linked list each node contains 

the data and the address of the next node. Figure 2-1(a) and 

Figure 2-1(b) show the representation of an array and a linked 

list.



(a) Array of 6 integers

34 1 5 -6 12 9

Data Pointer to next Node

(b) Linked list of 4 integers

Figure 2-1. Array and Liked list.

Arrays are useful when the number of elements to be stored is 

fixed. They are easy to traverse, search and sort. On the other 

hand, linked lists are useful when number of data items in the 

collection is likely to vary. Linked lists are difficult to maintain 

as compared to an array. We would discuss linked lists in 

more detail in Chapter



Arrays

An Array is a finite collection of similar elements stored in 

adjacent memory locations. An array containing n number of 

elements is referenced using an index that varies from o to n 

- For example, the elements of an array arr[n] containing n 

elements are denoted by ..., where o is the lower bound of 

the array, n - 1 is the upper bound and of the array and o, 1, 

2, etc. are indices of the array. A sample arrangement of array 

elements is shown in Figure

a[OJ a[lj a[21 a[3j a(4] a[5]

34 1 5 “6 12 9

Figure 2-2. Elements in an array with their indices.

There are several operations that can be performed on an 

array. These operations are listed in Table



Table 2-1. Operations performed on arrays.

Operation Description

Traversal Processing each element in the array
Search Finding the location of an element with a given value
Insertion Adding a new element to an array
Deletion Removing an element from an array
Sorting Organizing the array elements in some order
Merging Combining two arrays into a single array
Reversing Reversing the elements of an array

Let us now see a program that shows how to perform these 

operations on an array.

Honest Solid Code {C}

Program 2-1. Implementation of various array operations

#include

#define MAX 5 

void insert (int *,  int pos, int num);

void del (int *,  int pos);

void reverse (int *);



void display (int *);

void search (int *,  int num);

int main()

{
int arr[ 5 ];

insert (arr, 1, 11);

insert (arr, 2, 12);

insert (arr, 3, 13);

insert (arr, 4, 14);

insert (arr, 5, 15);

printf (“Elements of Array:\n”);

display (arr);

del (arr, 5);

del (arr, 2);

printf (“After deletion:\n”);

display (arr);

insert (arr, 2, 222);

insert (arr, 5, 555);

printf (“After insertion:\n”);

display (arr);

reverse (arr);

printf (“After reversing:\n”);

display (arr);

search (arr, 222);

search (arr, 666);

return 0;



}

/*  inserts an element num at given position pos */  

void insert (int *arr,  int pos, int num)

{
/*  shift elements to right */

int i;

for (i = MAX - 1; i >= pos; i--)

arr[ i ] = arr[ i - 1 ];

arr[ i ] = num;

}

/*  deletes an element from the given position pos */  

void del (int *arr,  int pos)

{
/*  skip to the desired position */

int i;

for (i = pos; i < MAX; i++)

arr[ i - 1 ] = arr[ i ];

arr[ i - 1 ] = 0;

}

/*  reverses the entire array */  

void reverse (int *arr)  

{



int i;

for (i = 0; i < MAX / 2; i++)

{
int temp = arr[ i ];

arr[ i ] = arr[ MAX - 1 - i ];

arr[ MAX - 1 - i ] = temp;

}

}

/*  searches array for a given element num */  

void search (int *arr,  int num)

{

int i;

for (i = 0; i < MAX; i++)

{
if (arr[ i ] == num)

{
printf (“Element %d is at %dth position\n”, num, i + 

1);
return;

}

}
printf (“Element %d is absent\n”, num);

}

/*  displays contents of a array */  

void display (int *arr)

{



int i;

for (i = o; i < MAX; i++)

printf (“%d\t”, arr[ i ]); 

printf (“\n”);

}

Output:
Elements of Array: 
11 12 13 14 15
After deletion: 
11 13 14 0 0
After insertion: 
11 222 13 14 555
After reversing: 
555 14 13 222 11 
Element 222 is at 4th position 
Element 666 is absent

In this program we have created an array arr which contains 5 

We have passed the base address of this array to functions 

display(), reverse() and search() to perform different operations 

on the array.

The insert() function takes two arguments, the position pos at 

which the new number has to be inserted and the number 

num that has to be inserted. In this function, firstly through a 

loop, we have shifted the numbers from the specified position, 

one place to the right of their existing position. Then we have 

placed the number num at position



The del() function deletes the element present at the given 

position For this we have shifted the numbers placed after the 

position from where the number is to be deleted, one place to 

the left of their existing positions. The number at position pos 

is then overwritten with 0.

In reverse() function we have reversed the entire array by 

swapping the elements arr[o] with arr[i] with arr[3] and so on. 

Note that swapping should continue for MAX / 2 times only, 

irrespective of whether MAX is odd or even.

The search() function searches the array for the specified 

number. For this the comparison is carried out until either the 

list is exhausted or a match is found. If the match is not 

found then the function displays the relevant message.

In the display() function, the entire array is traversed to display 

the elements of the array.



Two-Dimensional Arrays

A 2-dimensional array is a collection of elements placed in m 

rows and n columns. The syntax used to declare a 2-D array 

includes two subscripts, of which one specifies the number of 

rows and the other specifies the number of columns of an 

array. These two subscripts are used to reference an element 

in an array. For example, arr[3][4] is a 2-D array containing 3 

rows and 4 columns and arr[o][2] is an element placed at row 

and column in the array. The two-dimensional array is also 

called a The pictorial representation of a matrix is shown in 

Figure

Figure 2-3. Representation of a 2-D array.



Row Major and Column Major Arrangement

Rows and columns of a matrix are only a matter of 

imagination. When a matrix gets stored in memory all its 

elements are stored linearly since computer’s memory can only 

be viewed as consecutive units of memory locations. This leads 

to two possible arrangements of elements in memory-Row 

Major Arrangement and Column Major Arrangement. Figure 2-4 

illustrates these two possible arrangements for a 2-D array.



Figure 2-4. Possible arrangements of 2-D array.

Since the array elements are stored in adjacent memory 

locations we can access any element of the array once we 

know the base address (starting address) of the array and 

number of rows and columns present in the array.

For example, if the base address of the array shown in Figure 

2-4 is 502 and we wish to refer the element 121, then the 

calculation involved would be as follows:



Row Major Arrangement

Element 121 is present at Hence location of 121 would be

= 502 + 1 * 4 + 3 = 502 + 7 = 530

In general, for an array a[m][n] the address of element a[i][j] 

would be Base address + i * n +

Column Major Arrangement

Element 121 is present at Hence location of 121 would be

= 502 + 3 * 3 + 1 = 502 + 10 = 542

In general for an array a[m][n] the address of element a[i][j] 

would be Base address + j * m + Note that C language 

permits only Row Major Arrangement.



common Matrix operations

Common matrix operations are addition, multiplication and 

transposition. The following program demonstrates these 

different matrix operations.

Honest Solid Code {C}

Program 2-2. Implementation of common matrix operations

#include

#define MAX 3

void create (int [ 3 ][ 3 ]);

void display (int [ 3 ][ 3 ]);

void matadd (int [ 3 ][ 3 ], int [ 3 ][ 3 ], int [ 3 ][ 3 ]);

void matmul (int [ 3 ][ 3 ], int [ 3 ][ 3 ], int [ 3 ][ 3 ]);

void transpose (int [ 3 ][ 3 ], int [ 3 ][ 3 ]);

int main()

{

int mat1[ 3 ][ 3 ], mat2[ 3 ][ 3 ], mat3[ 3 ][ 3 ], mat4[ 3 ][ 3 

], mat5[ 3 ][ 3 ];



printf (“Enter elements for first array:\n”);

create (mati);

printf (“Enter elements for second array:\n”);

create (mat2);

printf (“First Array:\n”);

display (mat1);

printf (“Second Array:\n”);

display (mat2);

matadd (mat1, mat2, mat3);

printf (“After Addition:\n”);

display (mat3);

matmul (mat1, mat2, mat4);

printf (“After Multiplication:\n”);

display (mat4);

transpose (mat1, mat5);

printf (“Transpose of first matrix:\n”);

display (mat5);

return 0;

}

/*  creates matrix mat */

void create (int mat[ 3 ][ 3 ])

{
int i, j;

for (i = 0; i < MAX; i++)



{
for (j = o; j < MAX; j++)

{
printf (“Enter the element:”);

scanf (“%d”, &mat[ i ][ j ]);

}

}
printf (“\n”);

}

/*  displays the contents of matrix */

void display (int mat[ 3 ][ 3 ])

{

int i, j;

for (i = 0; i < MAX; i++) 

{

for (j = 0; j < MAX; j++) 

printf (“%d\t”, mat[ i ][ j ]);

printf (“\n”);

}

}

/*  adds two matrices m1 and m2 */

void matadd (int m1[ 3 ][ 3 ], int m2[ 3 ][ 3 ], int m3[ 3 ][ 3 ]) 

{

int i, j;



for (i = o; i < MAX; i++)

{
for (j = o; j < MAX; j++)

m3[ i ][ j ] = mi[ i ][ j ] + m2[ i ][ j ];

}

}

/*  multiplies two matrices mi and m2 */

void matmul (int mi[ 3 ][ 3 ], int m2[ 3 ][ 3 ], int m3[ 3 ][ 3 ]) 

{

int i, j, k;
for (k = o; k < MAX; k++)

{
for (i = o; i < MAX; i++)

{

m3[ k ][ i ] = o;
for (j = o; j < MAX; j++)

m3[ k ][ i ] += mi[ k ][ j ] * m2[ j ][ i ];

}

}

} 

/*  obtains transpose of matrix mi */

void transpose (int mi[ 3 ][ 3 ], int m2[ 3 ][ 3 ]) 

{



int i, j;
for (i = o; i < MAX; i++)

{
for (j = o; j < MAX; j++) 

m2[ i ][ j ] = m1[ j ][ i ];

}

}

Output:

Enter elements for first array:

Enter the element: 1

Enter the element: 2

Enter the element: 3

Enter the element: 2

Enter the element: 1

Enter the element: 4

Enter the element: 4



Enter the element: 3

Enter the element: 2

Enter elements for second array:

Enter the element: 3

Enter the element: 2

Enter the element: 3

Enter the element: 4

Enter the element: 3

Enter the element: 2

Enter the element: 1

Enter the element: 3



Enter the element: 1
First Array:
12 3
2 14
4 3 2
Second Array:
3 2 3
4 3 2
13 1
After Addition:
4 4 6
6 4 6
5 6 3
After Multiplication:
14 17 10
14 19 12
26 23 20
Transpose of first matrix:
12 4
2 13
3 4 2

In this program we have defined functions create() to create an 

array of and function display() to display elements of a matrix.

The function matadd() adds the elements of two matrices mati 

and mat2 and stores the result in the third matrix mat3. 

Similarly, the function matmul() multiplies the elements of 

matrix mati with the elements of matrix mat2 and stores the 

result in mat4. The function transposes a matrix. A transpose 

of a matrix is obtained by interchanging the rows with 

corresponding columns of a given matrix. The transposed 

matrix is stored in



Multidimensional Arrays

A 3-dimensional array can be thought of as an array of arrays 

of arrays. Figure 2-5 shows a 3-D array, which is a collection of 

three 2-D arrays each containing 4 rows and 2 columns.

Figure 2-5. Representation of a 3-D array.

This array can be defined as:
inta[3][4][2] = {

{{ 2, S}, {0, 6 }, { 4, 7 }, {1, 5}}, 
{{ 3f 2 }, { S, 6 }, { 1, 6 }, {4, 5}}, 
{{ 3, 9 }, {1, 8 }, { 6, 5 }, {4, 0 } }

The outer array has three elements, each of which is a 2D 

array, which in turn holds four 1D arrays containing two 



integers each. Note that the arrangement shown in Figure 2-5 

is only conceptually true. In memory the same array elements 

are stored linearly as shown in Figure

Figure 2-6. Memory representation of a 3-D array.

As stated earlier, C permits only a Row Major arrangement for 

multi- dimensional arrays. Let us determine the location of 

element 9 in the array shown in Figure Element 9 is present 

at a[2][o][i] indicating that it is present in 0 th row, column of 

2-D array. Hence address of 9 would be

402 + 2 * 4 * 2 + 0 * 2 + 1 = 402 + 17 = 470

For any 3-D array a[x][y][z] arranged in Row Major fashion the 

element a[i][j][k] can be accessed using Base address + i * y * 

z + j * z +



The formula for Column Major arrangement would be Base 

address + i * y * z + k * y +

On similar lines for a 4-D array a[w][x][y][z] the element a[i][j][k] 

[l] can be accessed using following formulae:

Row Major : Base address + i * x * y * z + j * y * z + k * 

z + l

Column Major : Base address + i * x * y * z + j * y * z + l

* y + k



Arrays and Polynomials

Polynomials like + + + 10X - 8 can be maintained using an 

array. The simplest way to represent a polynomial of degree 

“n” is to store the coefficient of (n + 1) terms of a polynomial 

in an array. For this each element of the array should consist 

of two values—coefficient and exponent. While storing the 

polynomial it is assumed that the exponent of each successive 

term is less than that of the previous term. Once we build an 

array to represent a polynomial, we can use it to perform 

common polynomial operations like addition and multiplication. 

The following program demonstrates how we can store 

polynomials and add them.

Honest Solid Code {C}

Program 2-3. Implementation of polynomial addition

#include

#define MAX 10

struct term

{



int coeff; int exp;

};
struct poly

{
struct term t [ 10 ]; 

int noofterms;

};

void initpoly (struct poly *);

void polyappend (struct poly *,  int c, int e); 

struct poly polyadd (struct poly, struct poly);

void display (struct poly);

int main()

{
struct poly p1, p2, p3;

initpoly (&p1);

initpoly (&p2);

initpoly (&p3);

polyappend (&p1, 1, 7);

polyappend (&p1, 2, 6);

polyappend (&p1, 3, 5);

polyappend (&p1, 4, 4);

polyappend (&p1, 5, 2);

polyappend (&p2, 1, 4);

polyappend (&p2, 1, 3);



polyappend (&p2, 1, 2);

polyappend (&p2, 1, 1);

polyappend (&p2, 2, 0);

p3 = polyadd (pi, p2);

printf (“First polynomial:\n”);

display (pi);

printf (“Second polynomial:\n”);

display (p2);

printf (“Resultant polynomial:\n”);

display (p3);

return 0;

}

/*  initializes elements of struct poly */  

void initpoly (struct poly *p)

{

int i;

p -> noofterms = 0;

for (i = 0; i < MAX; i++)

{

p -> t[ i ].coeff = 0;

p -> t[ i ].exp = 0;

}

}



/*  adds the term of polynomial to the array t */  

void polyappend (struct poly *p,  int c, int e)

{
p -> t[ p -> noofterms ].coeff = c;

p -> t[ p -> noofterms ].exp = e;

(p -> noofterms) ++;

}

/*  displays the polynomial equation */

void display (struct poly p)

{
int flag = 0, i;

for (i = 0; i < p.noofterms; i++)

{
if (p.t[ i ].exp != o)

printf (“%d xA%d +”, p.t[ i ].coeff, p.t[ i ].exp); 

else

{

printf (“%d”, p.t[ i ].coeff);

flag = 1;

}

}

if (flag)

printf (“\b\b”);

printf (“\n”);

}



/*  adds two polynomials pi and p2 */

struct poly polyadd (struct poly pi, struct poly p2)

{

int i, j, c;
struct poly p3;

initpoly (&p3);

if (pi.noofterms > p2.noofterms)

c = pi.noofterms;

else

c = p2.noofterms;

for (i = o, j = o; i <= c; p3.noofterms++)

{
if (pi.t[ i ].coeff == o && p2.t[ j ].coeff == o) 

break;

if (pi.t[ i ].exp >= p2.t[ j ].exp)

{
if (pi.t[ i ].exp == p2.t[ j ].exp)

{
p3.t[ p3.noofterms ].coeff = pi.t[ i ].coeff + p2.t[ j 

].coeff;

p3.t[ p3.noofterms ].exp = pi.t[ i ].exp;

i++;

i++;

}



else

{

p3.t[ p3.noofterms ].coeff = pi.t[ i ].coeff;

p3.t[ p3.noofterms ].exp = pi.t[ i ].exp; 

i++;

}

}
else

{
p3.t[ p3.noofterms ].coeff = p2.t[ j ].coeff;

p3.t[ p3.noofterms ].exp = p2.t[ j ].exp;

j++;

}

}
return p3;

}

Output:

First polynomial:

i xA7 + 2 xA6 + 3 xA5 + 4 xA4 + 5 xA2

Second polynomial: 

1 XA4 + 1 XA3 + 1 xA2 + 1 xAi + 2



Resultant polynomial: 

1 xA7 + 2 xA6 + 3 xA5 + 5 xA4 + 1 xA3 + 6 xA2 + 1 xAi + 2

In this program the structure poly contains another structure 

element of the type struct This structure stores the coefficient 

and exponent of the term of a polynomial. The element 

noofterms stores the total number of terms that a variable of 

the type struct poly is supposed to hold. The function 

polyappend() adds the term of a polynomial to the array The 

function polyadd() adds the polynomials represented by 

variables pi and The function display() displays the polynomial.

In we have called the function polyappend() several times to 

build two polynomials represented by variables pi and Next, 

the function polyadd() is called. While doing so we have 

passed pi and p2 and collected their sum in in In this 

function, arrays representing the two polynomials are traversed. 

While traversing, the polynomials are compared on a term-by­

term basis. If the exponents of the two terms being compared 

are equal then their coefficients are added and the result is 

stored in the third polynomial. If the exponents of two terms 

are not equal then the term with the bigger exponent is added 

to the third polynomial. If the term with an exponent is



present in only one of the two polynomials then that term is 

added as it is to the third polynomial.

Lastly, the terms of the resulting polynomial are displayed 

using the function



Multiplication of polynomials

Let us now see a program that carries out multiplication of 

two polynomials.

Honest Solid Code {C}

Program 2-4. Implementation of polynomial multiplication 

#include

#define MAX 10

struct term

{
int coeff;

int exp;

};
struct poly

{
struct term t [ 10 ];

int noofterms;

};
void initpoly (struct poly *);



void polyappend (struct poly *,  int, int); 

struct poly polyadd (struct poly, struct poly); 

struct poly polymul (struct poly, struct poly); 

void display (struct poly);

int main()

{
struct poly pi, p2, p3;

initpoly (&pi);

initpoly (&p2);

initpoly (&p3);

polyappend (&pi, i, 4);

polyappend (&pi, 2, 3);

polyappend (&pi, 2, 2);

polyappend (&pi, 2, i);

polyappend (&p2, 2, 3);

polyappend (&p2, 3, 2);

polyappend (&p2, 4, i);

p3 = polymul (pi, p2);

printf (“First polynomial:\n”);

display (pi);

printf (“Second polynomial:\n”);

display (p2);

printf (“Resultant polynomial:\n”);

display (p3);

return 0;

}



/*  initializes elements of struct poly */  

void initpoly (struct poly *p)

{
int i;

p -> noofterms = o;

for (i = 0; i < MAX; i++) 

{
p -> t[ i ].coeff = 0;

p -> t[ i ].exp = 0;

}

} 

/*  adds the term of polynomial to the array t */  

void polyappend (struct poly *p,  int c, int e) 

{
p -> t[ p -> noofterms ].coeff = c;

p -> t[ p -> noofterms ].exp = e;

(p -> noofterms) ++;

} 

/*  displays the polynomial equation */  

void display (struct poly p)

{
int flag = 0, i;



for (i = o; i < p.noofterms; i++)

{
if (p.t[ i ].exp != o)

printf (“%d xA%d +”, p.t[ i ].coeff, p.t[ i ].exp); 

else

{
printf (“%d”, p.t[ i ].coeff);

flag = 1;

}

}

if (!flag)
printf (“\b\b”);

printf (“\n”);

}

/*  adds two polynomials pi and p2 */

struct poly polyadd (struct poly pi, struct poly p2)

{

int i, j, c;

struct poly p3;

initpoly (&p3);

if (pi.noofterms > p2.noofterms)

c = pi.noofterms;

else

c = p2.noofterms;



for (i = o, j = o; i <= c; p3.noofterms++)

{
if (pi.t[ i ].coeff == o && p2.t[ j ].coeff == o) 

break;

if (pi.t[ i ].exp >= p2.t[ j ].exp)

{

if (pi.t[ i ].exp == p2.t[ j ].exp)

{
p3.t[ p3.noofterms ].coeff = pi.t[ i ].coeff + p2.t[ j 

].coeff;

p3.t[ p3.noofterms ].exp = pi.t[ i ].exp;

i++;

j++;

}
else

{
p3.t[ p3.noofterms ].coeff = pi.t[ i ].coeff;

p3.t[ p3.noofterms ].exp = pi.t[ i ].exp;

i++;

}

}
else

{
p3.t[ p3.noofterms ].coeff = p2.t[ j ].coeff;

p3.t[ p3.noofterms ].exp = p2.t[ j ].exp;

j++;



}

}
return p3;

}

/*  multiplies two polynomials pi and p2 */

struct poly polymul (struct poly pi, struct poly p2)

{
int coeff, exp;

struct poly temp, p3;

initpoly (&temp);

initpoly (&p3);

if (pi.noofterms != o && p2.noofterms != o)

{
int i;

for (i = o; i < pi.noofterms; i++)

{

int j;

struct poly p;

initpoly (&p);

for (j = o; j < p2.noofterms; j++)

{

coeff = pi.t[ i ].coeff * p2.t[ j ].coeff;

exp = pi.t[ i ].exp + p2.t[ j ].exp;

polyappend (&p, coeff, exp);



}
if (i != o)

{
p3 = polyadd (temp, p); 

temp = p3;

}
else

temp = p;

}

}
return p3;

}

Output:

First polynomial:

1 XA4 + 2 XA3 + 2 XA2 + 2 XA1

Second polynomial:

2 XA3 + 3 xA2 + 4 xAl

Resultant polynomial:



2 xA7 + 7 xA6 + 14 xA5 + 18 xA4 + 14 xA3 + 8 xA2

As in the previous program, here too we have called 

polyappend() function several times to build the two 

polynomials which are represented by the variables pi and To 

carry out multiplication the function polymul() is called and pi 

and p2 are passed to it. It returns the product of polynomials 

pi and p2 which we have collected in

In polymul() function, first we have checked that whether the 

two polynomials pi and p2 are non-empty. If they are not then 

the control goes in a pair of for loop. Here, each term of first 

polynomial contained in pi is multiplied with every term of 

second polynomial contained in While doing so, we have called 

polyappend() to add the terms to The first resultant polynomial 

is stored in temporary variable temp of the type struct There 

onwards the function polyadd() is called to add the resulting 

polynomials.

Lastly, the terms of the resulting polynomial are displayed 

using the function



Chapter Bullets

Summary of chapter

(a) Array is a collection of similar elements stored in adjacent 

memory locations.

(b) Arrays cannot grow or shrink dynamically. Hence they are 

useful in situations where number of elements stored in it is 

fixed.

(c) Common array operations include traversal, searching, 

sorting, insertion, deletion, merging and reversal.

(d) Two-dimensional arrays can be arranged in memory either 

in row- major or column-major fashion.

(e) All matrix operations like transpose, addition, multiplication 

can be implemented using two-dimensional arrays.

(e) Array of structures can be used to store a polynomial and 

to perform polynomial operations like addition and 



multiplication.



Check Your Progress

Exercise - Level I

[A] Fill in the blanks:

(a) A data structure is said to be if its elements form

a sequence.

(b) An Array is a collection of elements stored in 

 memory locations.

(c) Index of an array containing n elements varies 

from_________ to .

(d) A 2-D array is also called.

[B] Pick up the correct alternative for each of the following 

questions:

(a) To traverse an array means



(i) To process each element in an array

(2) To delete an element from an array

(3) To insert an element into an array

(4) To combine two arrays into a single array

(b) A program P reads in 500 integers in the range [0..100] 

representing the scores of 500 students. It then prints the 

frequency of each score above 50. What would be the best way 

for P to store the frequencies?

(1) An array of 50 numbers

(2) An array of 100 numbers

(3) An array of 500 numbers

(4) A dynamically allocated array of 550 numbers

(c) Which of the following operations is not O(i) for an array 

of sorted data. You may assume that array elements are 

distinct.

(1) Find the largest element

(2) Delete an element

(3) Find the smallest element

(4) All of the above



Sharpen Your Skills

Exercise - Level II

[C] Answer the following:

(a) Find the location of the element a[i][2][2][i] from a 4-D 

integer array a[4][3][4][3] if the base address of the array is

(b) Design a data structure for a banking system where the 

maximum number of clients is 150. Information to be stored 

about clients— name, address, account no., balance, status as 

Low/Medium/High depending on balance.

(c) Design a data structure for Income Tax department to hold 

information for maximum 200 persons. Information to be 

stored about persons—Income Tax no., tax amount, name, 

address, whether tax paid or not for previous year, group as 

High/Low depending on amount of tax to be paid and 

category which would vary from 1 to 10.

[D] Write programs for the following:



(a) Write a program to find out the maximum and the second 

maximum number from an array of integers.

(b) Build an array called chess to represent a chessboard and 

write a function that would be capable of displaying position of 

each coin on the chessboard.

(c) There are two arrays A and A contains 25 elements, 

whereas, B contains 30 elements. Write a function to create an 

array C that contains only those elements that are common to 

A and



Coding Interview Questions

Exercise Level III

(a) The Mode of an array of numbers is the number m in the 

array that is repeated most frequently. If more than one 

number is repeated with equal maximal frequencies, there is no 

mode. Write a program that accepts an array of numbers and 

returns the mode or an indication that the mode does not 

exist.

(b) Write a program to delete duplicate elements from an array 

of 20 integers.

(c) A square matrix is symmetric if for all values of i and j 

a[i][j] = Write a program, which verifies whether a given 5 x 5 

matrix is symmetric, or not.



Case Scenario Exercise

Orthogonal Matrix

A square matrix is said to be Orthogonal if the matrix 

obtained by multiplying the matrix with its transpose is an 

identity matrix. In other words, if A is a matrix and T is its 

transpose, then matrix B obtained by multiplying A with T is 

called orthogonal if it is an identity matrix. An identity matrix 

is a square matrix in which the elements in the leading 

diagonal are 1. Write a program that receives a square matrix 

and determines whether it is Orthogonal or not.

Orthogonal matrices have applications in field of numerical 

linear algebra.

Case Scenario Exercise

Longest increasing sub-sequence

One of the interesting problems in Computer Science is to find 

the longest increasing subsequence in a given sequence. The 



subsequence should be as long as possible and its elements 

must be in ascending order. The subsequence elements need 

not be in adjacent locations and the elements need not be 

unique.

For example, in the following sequence

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

the longest increasing subsequence is

0, 2, 6, 9, 11, 15.

This subsequence has length six; the input sequence has no 

seven- member increasing subsequences. The longest increasing 

subsequence in this example is not unique. 0, 4, 6, 9, 11, 15 

or 0, 4, 6, 9, 13, 15 are other increasing subsequences of 

equal length in the same input sequence.

Write a program to obtain the longest increasing subsequence 

in a given sequence.

Longest increasing subsequences have applications in fields of 

random matrix theory, representation theory, and physics.



Chapter 03

Linked Lists

Stay connected

Why This Chapter Matters?

United we stand, divided we fall! More united and connected 

we are, more is the flexibility and scalability. Same is true with 

linked lists. Linked lists are used at numerous places in 

Computer Science. The flexibility and performance they offer is 

worth the pain of learning them.



For storing similar data in memory we can use either an array 

or a linked list. Arrays are simple to understand and elements 

of an array are easily accessible. But arrays suffer from the 

following limitations:

- Arrays have a fixed dimension. Once the size of an array is 

decided it cannot be increased or decreased during execution.

- Insertion of a new element in an array is tedious because 

during insertion each element after the specified position has 

to be shifted one position to the right.

- Deletion of an existing element in an array is inefficient 

because during deletion each element after the specified 

position has to be shifted one position to the left.

Linked list overcomes all these disadvantages. A linked list can 

grow and shrink in size during its lifetime. Thus, there is no 

maximum size of a linked list. Also, unlike arrays, while 

inserting or deleting elements in a linked list shifting of 

existing elements is not required.



What is a Linked List

While the elements of an array occupy contiguous memory 

locations, those of a linked list are not constrained to be 

stored in adjacent locations. The order of the elements is 

maintained by explicit links between them. For instance, the 

marks obtained by different students can be stored in a linked 

list as shown in Figure

Typical Node

Figure 3-1. Linked list.

Observe that the linked list is a collection of elements called 

nodes, each of which stores two items of information—an 

element of the list and a link. In Figure the data part of each 

node consists of the marks obtained by a student and the link 

part contains address of the next node. Thus the link part is a 

pointer to the next node. Hence it is shown using an arrow.



The NULL (N) in the last node indicates that it is the last 

node in the list.



Operations on A Linked List

Several operations can be performed on linked lists. This 

includes building a linked list by adding new node (at the 

beginning, at the end or in the middle of the linked list), 

deleting a node, display contents of all nodes, etc. The 

following program shows how to implement these operations. 

Go through the program carefully, a step at a time to 

understand the working of these operations.

Honest Solid Code {C}

Program 3-1. Implementation of various linked list operations

#include

#include 

struct node

{
int data; struct node * link;

};

void append (struct node **,  int);

void addatbeg (struct node **,  int);

void addafter (struct node *,  int, int);



void display (struct node *);  

int count (struct node *);  

void del (struct node **,  int);

int main()

{
struct node *p;

p = NULL; /*  empty linked list */

printf (“No. of elements in the Linked List = %d\n”, count 

(p));

append (&p, 14);

append (&p, 30);

append (&p, 25);

append (&p, 42);

append (&p, 17);

display (p);

addatbeg (&p, 99); addatbeg (&p, 88); addatbeg (&p, 77);

display (p);

addafter (p, 3, 41); addafter (p, 6, 89); addafter (p, 10, 60);

display (p);

printf (“No. of elements in the Linked List = %d\n”, count 

(p)); del (&p, 99); del (&p, 42); del (&p, 10);

display (p);

printf (“No. of elements in the linked list = %d\n”, count 

(p)); return 0;



}

/*  adds a node at the end of a linked list */

void append (struct node **q,  int num)

{
struct node *temp,  *r;

if (*q  == NULL) /*  if the list is empty, create first node */  

{

temp = (struct node *)  malloc (sizeof (struct node));

temp -> data = num;

temp -> link = NULL;

*q = temp;

}

else

{

temp = *q;

/*  go to last node */

while (temp -> link != NULL)

temp = temp -> link;

/*  add node at the end */

r = (struct node *)  malloc (sizeof (struct node));

r -> data = num;

r -> link = NULL;

temp -> link = r;

}

}



/*  adds a new node at the beginning of the linked list */  

void addatbeg (struct node **q,  int num)

{
struct node *temp;

/*  add new node */

temp = (struct node *)  malloc (sizeof (struct node));

temp -> data = num;

temp -> link = *q;

*q = temp;

} 

/*  adds a new node after the specified number of nodes */  

void addafter (struct node *q,  int loc, int num)

{
struct node *temp,  *r;  int i;

temp = q;

/*  skip to desired portion */

for (i = 0; i < loc; i++)

{

temp = temp -> link;

/*  if end of linked list is encountered */

if (temp == NULL)

{

printf (“There are less than %d elements in list\n”, loc); 

return;



}

}

/*  insert new node */

r = (struct node *)  malloc (sizeof (struct node));

r -> data = num;

r -> link = temp -> link;

temp -> link = r;

}

/*  displays the contents of the linked list */

void display (struct node *q)

{
/*  traverse the entire linked list */

while (q != NULL)

{

printf (“%d”, q -> data);

q = q -> link;

}

printf (“\n”);

}

/*  counts the number of nodes present in the linked list */

int count (struct node * q)

{
int c = 0;

/*  traverse the entire linked list */



while (q != NULL)

{
q = q -> link;

c+—+;

}
return c;

}

/*  deletes the specified node from the linked list */

void del (struct node **q,  int num)

{
struct node *old,  *temp;

temp = *q;

while (temp != NULL)

{

if (temp -> data == num)

{
/*  if node to be deleted is the first node in the linked 

list */

if (temp == *q)

*q = temp -> link;

/*  deletes the intermediate nodes in the linked list */  

else

old -> link = temp -> link;

free (temp); /*  free the memory occupied by the node

*/



return;

}
/*  traverse the linked list till the last node is reached */  

else

{
old = temp; /*  old points to the previous node */  

temp = temp -> link; /*  go to the next node */

}

}
printf (“Element %d not found\n”, num);

}

Output:

No. of elements in the Linked List = 0

14 30 25 42 17

77 88 99 14 30 25 42 17

77 88 99 41 14 30 89 25 42 17 60

No. of elements in the Linked List = 11

Element 10 not found

77 88 41 14 30 89 25 17 60

No. of elements in the linked list = 9

To begin with we have defined a structure for a node. It 

contains a data part and a link part. The variable p has been 

declared as pointer to a node. We have used p as pointer to 



the first node in the linked list. No matter how many nodes 

get added to the linked list, p would continue to point to the 

first node in the list. When no node has been added to the 

list, p has been set to NULL to indicate that the list is empty.

The append() function has to deal with two situations:

(a) The node is being added to an empty list.

(b) The node is being added at the end of an existing list.

In the first case, the condition

if (*q  == NULL)

gets satisfied. Hence, firstly memory is allocated for the node 

using Then data and the link part of this node are set up 

using the statements

temp -> data = num;

temp -> link = NULL;

Lastly, p is made to point to this node, since the first node 

has been added to the list and p must always point to the 

first node. Note that since q contains address of *q  is nothing 

but equal to



In the other case, when the linked list is not empty, the 

condition 

if (*q  == NULL)

will fail, since *q  (i.e. p is non- Now temp is made to point 

to the first node in the list through the statement

temp = *q;

Then using temp the entire linked list is traversed using the 

statements

while (temp -> link != NULL) 

temp = temp -> link;

The position of the pointers before and after traversing the 

linked list is shown in Figure



Figure 3-2. Working of append() function.

Each time through the loop the statement temp = temp -> link 

makes temp point to the next node in the list. When temp 

reaches the last node the condition temp -> link != NULL will 

fail. Once outside the loop, we allocate memory for the new 

node through the statement

r = (struct node *)  malloc (sizeof (struct node));

Then this new node’s data part is set with num and link part 

with Note that this node is now going to be the last node in 

the list.

Now we need to connect the previous last node (pointed to by 

with the new last node (pointed to by This is done through 

the statement



temp -> link = r;

How does the statement temp = temp -> link makes temp 

point to the next node in the list? Let us understand this with 

the help of an example. Suppose in a linked list containing 4 

nodes, temp is pointing to the first node. This linked list is 

shown in Figure

Figure 3-3. Connection of nodes.

Instead of showing the links to the next node we have shown 

the addresses of the next node in the link part of each node.

When we execute the statement

temp = temp -> link;

The right hand side yields This address is now stored in As a 

result, temp starts pointing to the node present at address In 



effect, the statement has shifted temp so that it has started 

pointing to the next node in the list.

Let us now understand the addatbeg() function. Suppose there 

are already 5 nodes in the list and we wish to add a new 

node at the beginning of this existing linked list. This situation 

is shown in Figure

Figure 3-4. Working of addatbeg() function.

For adding a new node at the beginning, firstly memory is 

allocated for this node and data is stored in it through the 

statement 

temp -> data = num;



Now we need to make the link part of this node point to the 

existing first node. This has been achieved through the 

statement

temp -> link = *q;

Lastly, this new node must be made the first node in the list. 

This has been attained through the statement

*q = temp;

The addafter() function permits us to add a new node after a 

specified number of node in the linked list.

To begin with, through a loop we skip the desired number of 

nodes after which a new node is to be added. Suppose we 

wish to add a new node containing data as 41 after the node 

in the list. The position of pointers once the control reaches 

outside the for loop is shown in Figure Now memory is 

allocated for the node to be inserted and 41 is stored in the 

data part of it.



Figure 3-5. Working of addafter() function.

All that remains to be done is readjustment of links such that 

41 goes in between 77 and This is achieved through the 

statements 

r -> link = temp -> link;

temp -> link = r;

The first statement makes link part of node containing 41 to 

point to the node containing The second statement ensures 



that the link part of node containing 77 points to the node 

containing On execution of the second statement the earlier 

link between 77 and 14 is severed. So now 77 no longer 

points to it points to

The display() and count() functions are straight forward. I will 

leave them for you to understand.

That brings us to the last function in the program i.e. In this 

function through the while loop, we have traversed through the 

entire linked list, checking at each node, whether it is the node 

to be deleted. If so, we have checked if the node being 

deleted is the first node in the linked list. If it is so, we have 

simply shifted p (which is same as to the next node and then 

deleted the earlier node.

If the node to be deleted is an intermediate node, then the 

position of various pointers and links before and after the 

deletion is shown in Figure



Figure 3-6. Working of del() function.



More Linked Lists

A common and a wrong impression that beginners carry is 

that a linked list is used only for storing integers. However, a 

linked list can virtually be used for storing any similar data. 

For example, there can be a linked list of a linked list of 

names, or even a linked list of records, where each record 

contains name, age and salary of an employee. These linked 

lists are shown in Figure

Linked list of floats

Linked list of names

Linked list of Structures / Records

Figure 3-7. Different types of linked list.



Reversing the Links

Having had a feel of linked list, let us now explore some more 

operations that can be performed on a linked list. How about 

reversing the links in the existing linked list such that the last 

node becomes the first node and the first becomes the last? 

Here is a program that shows how this reversal of links can 

be achieved.

Honest Solid Code {C}

Program 3-2. Program to reverse a linked list

#include

#include 

struct node 

{

int data; struct node *link;

};
void addatbeg (struct node **,  int);

void reverse (struct node **);

void display (struct node *);



int count (struct node *);

int main()

{

struct node *p;

p = NULL; /*  empty linked list */

addatbeg (&p, 7); addatbeg (&p, 43); addatbeg (&p, 17);

addatbeg (&p, 3); addatbeg (&p, 23); addatbeg (&p, 5);

display (p);

reverse (&p);

display (p);

return 0;

}

/*  adds a new node at the beginning of the linked list */  

void addatbeg (struct node **q,  int num)

{
struct node *temp;

/*  add new node */

temp = (struct node *)  malloc (sizeof (struct node));

temp -> data = num;

temp -> link = *q;

*q = temp;

}

void reverse (struct node **x)



{
struct node *q,  *r,  *s;

q = *x;
r = NULL;

/*  traverse the entire linked list */  

while (q != NULL)

{

s = r;

r = q;
q = q -> link;

r -> link = s;

}
*x = r;

}

/*  displays the contents of the linked list */

void display (struct node *q)

{

/*  traverse the entire linked list */

while (q != NULL)

{
printf (“%d”, q -> data);

q = q -> link;

}

printf (“\n”);



}

Output:

5 23 3 17 43 7

7 43 17 3 23 5

The function reverse() receives the parameter struct node ** 

which is the address of the pointer to the first node of the 

linked list. To traverse the linked list a variable q of the type 

struct node * is required. We have initialized q with the value 

of So q also starts pointing to the first node.

To begin with, we need to store the NULL value in the link 

part of the first node, which is done through the statements 

s = r;

r = q;
r -> link = s;

r which is of the type struct node * is initialized to a NULL 

value. Since r contains s would also contain Now r is assigned 

q so that r also starts pointing to the first node. Finally r -> 

link is assigned s so that r -> link becomes which is nothing 

but the link part of the first node.



But if we store a NULL value in the link part of the first node 

then the address of the second node will be lost. Hence, 

before storing a NULL value in the link part of the first node, 

q is made to point to the second node through the statement

q = q -> link;

During the second iteration of the while loop, r points to the 

first node and q points to the second node. Now the link part 

of the second node should point to the first node. This is 

done through the same statements 

s = r; 

r = q;
r -> link = s;

Since r points to the first node, s would also point to the first 

node. Now r is assigned the value of q so that r now starts 

pointing to the second node. Finally r -> link is assigned with 

s so that r -> link starts pointing to the first node. But if we 

store the value of s in the link part of second node, then the 

address of the third node would be lost. Hence, before storing 

the value of s in r -> q is made to point to the third node 

through the statement 

q = q -> link;



While traversing the nodes through the while loop each time q 

starts pointing to the next node in the list and r starts 

pointing to the previous node. As a result, when the while 

loop ends all the links have been adjusted properly such that 

last node becomes the first node and first node becomes the 

last node.

Finally, once outside the while loop, the statement *x  = is 

executed. This ensures that the pointer p now starts pointing 

to the node, which is the last node of the original list. This is 

shown in Figure



Figure 3-8. Reversing the links.





A Few More Operations

If you think carefully you can list out so many operations that 

can be performed on a linked list. For example, concatenating 

one linked list at the end of another, deleting all nodes 

present in a linked list, modifying certain elements in a linked 

list, etc. Given below is a program for concatenation of linked 

list and erasing all nodes in the list.

Honest Solid Code {C}

Program 3-3. Program to concatenate and erase a linked list

#include

#include

struct node

{
int data; struct node *link;

};
void append (struct node **,  int);

void concat (struct node **,  struct node **);

void display (struct node *);

int count (struct node *);



struct node * erase (struct node *);

int main()

{

struct node first, *second;

first = second = NULL; /*  empty linked lists */

append (&first, 1);

append (&first, 2);

append (&first, 3);

append (&first, 4);

printf (“First List:\n”);

display (first);

printf (“No. of ele. in first Linked List = %d\n”, count 

(first));

append (&second, 5);

append (&second, 6);

append (&second, 7);

append (&second, 8);

printf (“Second List:\n”);

display (second);

printf (“No. of ele. in second Linked List = %d\n”, count 

(second));

/*  the result obtained after concatenation is in the first list

*/
concat (&first, &second);

printf (“Concatenated List:\n”);

display (first);



printf (“No. of elements before erasing = %d\n”, count 

(first));
first = erase (first);

printf (“No. of elements after erasing = %d\n”, count (first)); 

return 0;

}

/*  adds a node at the end of a linked list */

*q = (struct node *) malloc (sizeof (struct node));

temp = *q;

}
else

{
/* go to last node */

while (temp -> link != NULL)

temp = temp -> link;

/* add node at the end */

temp -> link = (struct node *) malloc (sizeof (struct 

node));

void append (struct node **q,  int num)

{
struct node *temp;

temp = *q;

if (*q  == NULL) /*  if the list is empty, create first node */  

{



temp = temp -> link;

}
/*  assign data to the last node */  

temp -> data = num;

temp -> link = NULL;

} 

/*  concatenates two linked lists */

void concat (struct node **p,  struct node **q)

{

struct node *temp;

/*  if the first linked list is empty */
if (*p  == NULL)

*p = *q;
else

{
/*  if both linked lists are non-empty */

if (*q  != NULL)

{
temp = *p;  /*  points to the starting of the first list */

/*  traverse the entire first linked list */

while (temp -> link != NULL)

temp = temp -> link;

temp -> link = *q;  /*  concatenate the second list after 

the first */



}

}

}

/*  displays the contents of the linked list */

void display (struct node *q)

{
/*  traverse the entire linked list */

while (q != NULL)

{
printf (“%d”, q -> data);

q = q -> link;

}
printf (“\n”);

}

/*  counts the number of nodes present in the linked list */  

int count (struct node *q)

{
int c = 0;

/*  traverse the entire linked list */

while (q != NULL)

{
q = q -> link;

ch—+;

}



return c;

}

/*  erases all the nodes from a linked list */  

struct node * erase (struct node *q)  

{
struct node *temp;

/*  traverse till the end erasing each node */  

while (q != NULL) 

{

temp = q;

q = q -> link;

free (temp); /*  free the memory occupied by the node */  

} 
return NULL;

}

Output:

First List:

1 2 3 4

No. of elements in the first Linked List = 4



Second List:

5 6 7 8

No. of elements in the second Linked List = 4

Concatenated List:

1 2 3 4 5 6 7 8

No. of elements in Linked List before erasing = 8

No. of elements in Linked List after erasing = 0



Recursive Operations on Linked List

In C, it is possible for the functions to call themselves. A 

function is called ‘recursive’ if a statement within the body of 

a function calls the same function. Some of the operations 

that are carried out on linked lists can be easily implemented 

using recursion. These include counting the number of nodes 

present in a linked list, comparing two linked lists, copying 

one linked list into another, adding a new node at the end of 

the linked list, etc.

Given below are the functions for carrying out each of these 

operations. These functions are pretty straight-forward. Hence, I 

would omit the discussion about working of each of them. You 

can call these functions from main() after creating suitable 

linked lists using the addatend() function discussed in earlier 

section.

Honest Solid Code {C}

Program 3-4. Recursive functions to count nodes in a linked 

list, comparing two linked lists, cloning a linked list and 

adding a new node at the end of a linked list



/*  counts the number of nodes in a linked list */  

int length (struct node *q)

{
static int l;

/*  if list is empty or if NULL is encountered */  

if (q == NULL)

return (0);

else

{

l = 1 + length (q -> link);

return (l);

}

}

/*  compares 2 linked lists. Returns 1 if they are equal, 0 

otherwise */

int compare (struct node *q,  struct node *r)

{
static int flag;

if ((q == NULL) && (r == NULL))

flag = 1;
else

{
if (q == NULL || r == NULL)



flag = o;
if (q -> data != r -> data)

flag = o;
else

compare (q -> link, r -> link);

}

return (flag);

}

/*  copies a linked list into another */

void copy (struct node *q,  struct node **s)

{
if (q != NULL)

{
*s = (struct node *)  malloc (sizeof (struct node));

(*s)  -> data = q -> data;

(*s)  -> link = NULL;

copy (q -> link, &((*s)  -> link));

}

}

/*  adds a new node at the end of the linked list */  

void addatend (struct node **s,  int num)

{
if (*s  == NULL)



{
*s = (struct node *)  malloc (sizeof (struct node));

(*s)  -> data = num;

(*s)  -> link = NULL;

}
else

addatend (&((*s)  -> link), num);

}



Doubly Linked Lists

In the linked lists that we have used so far each node 

provides information about where is the next node in the list. 

It has no knowledge about where the previous node lies in 

memory. If we are at say the node in the list, then to reach 

the 14 th node we have to traverse the list right from the first 

node. To avoid this we can store in each node not only the 

address of next node but also the address of the previous 

node in the linked list. This arrangement is often known as a 

‘Doubly Linked List’ and is shown in Figure

Figure 3-9. Doubly linked list.

The following program implements the Doubly Linked List 

(DLL).



Honest Solid Code {C}

Program 3-4. Program to implement a doubly linked list

#include

#include

/*  structure representing a node of the doubly linked list */  

struct dnode

{

struct dnode *prev;  int data; struct dnode * next;

};
void d_append (struct dnode **,  int);

void d_addatbeg (struct dnode **,  int);

void d_addafter (struct dnode *,  int, int);

void d_display (struct dnode *);

int d_count (struct dnode *);

void d_delete (struct dnode **,  int);

int main()

{

struct dnode *p;

p = NULL; /*  empty doubly linked list */

d_append (&p, 11); d_append (&p, 2); d_append (&p, 14);

d_append (&p, 17); d_append (&p, 99); d_display (p);



printf (“No. of elements in the DLL = %d\n”, d_count (p)); 

d_addatbeg (&p, 33); d_addatbeg (&p, 55);

d_display (p);

printf (“No. of elements in the DLL = %d\n”, d_count (p)); 

d_addafter (p, 4, 66); d_addafter (p, 2, 96);

d_display (p);

printf (“No. of elements in the DLL = %d\n”, d_count (p)); 

d_delete (&p, 55); d_delete (&p, 2); d_delete (&p, 99); 

d_display (p);

printf (“No. of elements in the DLL = %d\n”, d_count (p));

return 0;

} 

/*  adds a new node at the end of the doubly linked list */  

void d_append (struct dnode **s,  int num)

{ 

struct dnode *r,  *q  = *s;

/*  if the linked list is empty */
if (*s  == NULL)

{

/*create  a new node */

*s = (struct dnode *)  malloc (sizeof (struct dnode));

(*s)  -> prev = NULL;

(*s)  -> data = num;

(*s)  -> next = NULL;



}
else

{
/*  traverse the linked list till the last node is reached */  

while (q -> next != NULL)

q = q -> next;

/*  add a new node at the end */

r = (struct dnode *)  malloc (sizeof (struct dnode));

r -> data = num;

r -> next = NULL;

r -> prev = q;

q -> next = r;

}

} 

/*  adds a new node at the begining of the linked list */  

void d_addatbeg (struct dnode **s,  int num)

{

struct dnode *q;

/*  create a new node */

q = (struct dnode *)  malloc (sizeof (struct dnode));

/*  assign data and pointer to the new node */  

q -> prev = NULL;

q -> data = num;

q -> next = *s;

/*  make new node the head node */

(*s)  -> prev = q;



*s = q;

}

/*  adds a new node after the specified number of nodes */  

void d_addafter (struct dnode *q,  int loc, int num)

{
struct dnode *temp;

int i;

/*  skip to desired portion */

for (i = 0; i < loc; i++)

{
q = q -> next;

/*  if end of linked list is encountered */

if (q == NULL)

{
printf (“There are less than %d elements\n”, loc); 

return;

}

}
/*  insert new node */

q = q -> prev;

temp = (struct dnode *)  malloc (sizeof (struct dnode));

temp -> data = num;

temp -> prev = q;

temp -> next = q -> next;

temp -> next -> prev = temp;

q -> next = temp;



}

/*  displays the contents of the linked list */

void d_display (struct dnode *q)

{
/*  traverse the entire linked list */

while (q != NULL)

{
printf (“%2d\t”, q -> data);

q = q -> next;

}
printf (“\n”);

}

/*  counts the number of nodes present in the linked list */  

int d_count (struct dnode * q)

{
int c = 0;

/*  traverse the entire linked list */

while (q != NULL)

{
q = q -> next;

ch—+;

}
return c;

}



/*  deletes the specified node from the doubly linked list */  

void d_delete (struct dnode **s,  int num)

{
struct dnode *q  = *s;

/*  traverse the entire linked list */

while (q != NULL)

{
/*  if node to be deleted is found */

if (q -> data == num)

{
/*  if node to be deleted is the first node */

if (q == *s)

{
*s = (*s)  -> next;

(*s)  -> prev = NULL;

}
else

{
/*  if node to be deleted is the last node */

if (q -> next == NULL)

q -> prev -> next = NULL;

else

/*  if node to be deleted is any intermediate node */  

{
q -> prev -> next = q -> next;

q -> next -> prev = q -> prev;



} 

free (q);

}

return; /*  return back after deletion */

}
q = q -> next; /*  go to next node */

}
printf (“%d not found.\n”, num);

}

Output:
11 2 14 17 99
No. of elements in the DLL = 5
55 33 11 2 14 17 99
No. of elements in the DLL = 7
55 33 96 11 2 66 14 17 99
No. of elements in the DLL = 9
33 96 11 66 14 17
No. of elements in the DLL = 6

Let us now understand the different functions that we have 

defined in the program.



Function d append()

The d_append() function adds a node at the end of the 

existing list. It also checks the special case of adding the first 

node if the list is empty.

This function accepts two parameters. The first parameter s is 

of type struct dnode**  which contains the address of the 

pointer to the first node of the list or a NULL value in case 

of empty list. The second parameter num is an integer, which 

is to be added in the list.

To begin with we initialize q which is of the type struct dnode 

* with the value stored at This is done because using q the 

entire list is traversed if it is non-empty.

If the list is empty then the condition

if (*s  == NULL)

gets satisfied. Now memory is allocated for the new node 

whose address is stored in *s  (i.e. Using s a NULL value is 



stored in its prev and next links and the value of num is 

assigned to its data part.

If the list is non-empty then through the statements

while (q -> next != NULL) 

q = q -> next;

q is made to point to the last node of the list. Then memory 

is allocated for the node whose address is stored in A NULL 

value is stored in the next part of this node, because this is 

going to be last node. Now what remains to be done is to 

link this node with rest of the list. This is done through the 

statements 

r -> prev = q; 

q -> next = r;

The statement r -> prev = q makes the prev part of the new 

node r to point to the previous node The statement q -> next 

= r makes the next part of q to point to the last node This is 

shown in Figure



Figure 3-10. Addition of a node to a Doubly linked list.



Function d addatbeg()

The d_addatbeg() function adds a node at the beginning of the 

existing list. This function accepts two parameters. The first 

parameter s is of type struct dnode**  which contains the 

address of the pointer to the first node and the second 

parameter num is an integer, which is to be added in the list.

Memory is allocated for the new node whose address is stored 

in Then num is stored in the data part of the new node. A 

NULL value is stored in prev part of the new node as this is 

going to be the first node of the list. The next part of this 

new node should contain the address of the first node of the 

list. This is done through the statement 

q -> next = *s;

Now what remains to be done is to store the address of this 

new node into the prev part of the first node and make this 

new node the first node in the list. This is done through the 

statements

(*s)  -> prev = q;



*s = q;

These operations are shown in Figure

Q P

Addition of new node at the beginning 

Related Function: d addatbegf )

New node
Before Addition 

p q

After Addition

Insertion of new node after a specified node

Related Function: daddafterf J

temp

I
New node

N 66

Before Insertion

After Insertion

Figure 3-11. Working of d_addatbeg() and





Function d addafter()

The d_addafter() function adds a node at the specified position 

of an existing list. This operation of adding a new node in 

between two existing nodes can be better understood with the 

help of Figure

This function accepts three parameters. The first parameter q 

points to the first node of the list. The second parameter loc 

specifies the node number after which the new node must be 

inserted. The third parameter num is an integer, which is to 

be added to the list.

A loop is executed to reach the position where the node is to 

be added. This loop also checks whether the position loc that 

we have mentioned, really occurs in the list or not. When the 

loop ends, we reach the loc position where the node is to be 

inserted. By this time q is pointing to the node before which 

the new node is to be added.

The statement

q = q -> prev;



makes q to point to the node after which the new node 

should be added. Then memory is allocated for the new node 

and its address is stored in The value of num is stored in the 

data part of the new node.

The prev part of the new node should point to This is done 

through the statement

temp -> prev = q;

The next part of the new node should point to the node 

whose address is stored in the next part of node pointed to 

by This is achieved through the statement

temp -> next = q -> next;

Now what remains to be done is to make prev part of the 

next node (node pointed by q -> to point to the new node. 

This is done through the statement 

temp -> next -> prev = temp;



At the end, we change the next part of q to make it point to 

the new node, and this is done through the statement

q -> next = temp;



Function d delete()

The function d_delete() deletes a node from the list if the data 

part of that node matches This function receives two 

parameters. The first parameter is the address of the pointer 

to the first node and the second parameter is the number that 

is to be deleted.

We run a loop to traverse the list. Inside the loop the data 

part of each node is compared with the num value. If the 

num value matches the data part in the node then we need to 

check the position of the node to be deleted.

If it happens to be the first node, then the first node is made 

to point to the next part of the first node. This is done 

through the statement

*s = (*s)  -> next;

Then, a value NULL is stored in prev part of the second node, 

since it is now going to become the first node. This is done 

through the statement



(*s)  -> prev = NULL;

If the node to be deleted happens to be the last node, then 

NULL is stored in the next part of the second last node. This 

is done through the statements

if (q -> next == NULL)

q -> prev -> next = NULL;

If the node to be deleted happens to be any intermediate 

node, then the address of the next node is stored in the next 

part of the previous node and the address of the previous 

node is stored in the prev part of the next node. This is done 

through the statements

q -> prev -> next = q -> next;

q -> next -> prev = q -> prev;

Finally the memory occupied by the node being deleted is 

released by calling the function Figure 3-12 shows the working 

of the d_delete() function.



Figure 3-12. Working of d_delete() function.



Chapter Bullets

Summary of chapter

(a) Linked List is a linear data structure used to store similar 

data.

(b) Unlike an array, in a linked list there’s no need to specify 

how many elements you’re going to store ahead of time. One 

can keep adding elements as long as there’s enough memory 

in the machine.

(c) Linked list is implemented using structure data type.

(d) Linked list may be singly linked or doubly linked.

(e) Singly linked lists have a single pointer pointing to the 

next node in the list. The last pointer is empty or points to 

null, signaling the end of the list.

(f) Doubly linked lists have two pointers, one pointing to the 

next node and one pointing to the previous node. The first 



node’s previous pointer points to null and the last node’s next 

pointer points to null to signal the end of the list.



Check Your Progress

Exercise - Level I

[A] State whether the following statements are True or False:

(a) Linked list is used to store similar data.

(b) All nodes in the linked may be in non-contiguous memory 

locations.

(c) The link part of the last node in a singly linked list always 

contains

(d) In a singly linked list, if we lose the location of the first 

node it is as good as having lost the entire linked list.

(e) Doubly linked list facilitates movement from one node to 

another in either direction.

(f) A doubly linked list will occupy less memory as compared 

to a corresponding singly linked list.



(g) If we are to traverse from first node to last node it would 

be faster to do so if the linked list is singly linked instead of 

doubly linked.

(h) In a structure used to represent the node of a doubly 

linked list it is necessary that the structure elements are in the 

order backward link, data, forward link.



Sharpen Your Skills

Exercise - Level II

[B] Answer the Following:

(a) Write a program that reads the name, age and salary of 10 

persons and maintains them in a linked list sorted by name.

(b) There are two linked lists A and B containing the following 

data:

A : 3, 7, 10, 15, 16, 9, 22, 17, 32

B : 16, 2, 9, 13, 37, 8, 10, 1, 28

Write a program to create:

- A linked list C that contains only those elements that are 

common in linked list A and



- A linked list D which contains all elements of A as well as B 

ensuring that there is no repetition of elements.

(c) There are two linked lists A and B containing the following 

data:

A : 7, 5, 3, 1, 20

B : 6, 25, 32, 11, 9

Write a function to combine the two lists such that the 

resulting list contains nodes in the following elements:

7, 6, 5, 25, 3, 32, 1, 11, 20, 9

You are not allowed to create any additional node while writing 

the function.



Coding Interview Questions

Exercise Level III

(a) A linked list contains some positive numbers and some 

negative numbers. Using this linked list write a program to 

create two new linked lists, one containing all positive numbers 

and the other containing all negative numbers.

(b) Write a program to delete duplicate elements in a linked 

list.



Case Scenario Exercise

Polynomials using Linked List

Polynomials like + + + iox - 8 can be maintained using a 

linked list. To achieve this, each node should consist of three 

elements, namely coefficient, exponent and a link to the next 

term. Assume that the exponent of each successive term is 

less than that of the previous term. Write a program to build 

a linked list to represent a polynomial and find the value of 

the polynomial if value of x is input through the keyboard.

Case Scenario Exercise

Polynomial operations using Linked List

Polynomials like + + + iox - 8 can be maintained using a 

linked list. To achieve this, each node should consist of three 

elements, namely coefficient, exponent and a link to the next 

term. Assume that the exponent of each successive term is 

less than that of the previous term. Write a program to build 

a linked list to represent a polynomial and perform common 

polynomial operations like addition and multiplication.





Chapter 04

Sparse Matrices

Lean is Better

Why This Chapter Matters?

Computer’s memory is a costly resource. We have to use it 

judiciously. Sparse matrices often eat away lot of costly 

memory space. This chapter explains how to conserve this 

memory and still work with matrices as usual.



71 percent of earth is occupied by water, leaving a meagerly 29 

percent for land. It is only natural that we need to conserve 

the available space. Nobody should occupy more space than 

what they deserve to occupy, be it animals, man, plants or 

matrices. There is no point in wasting costly space in 

computer’s memory in storing elements that do not deserve a 

place in it. Sparse matrix is the case in point.

If many elements from a matrix have a value 0 then the 

matrix is known as a sparse There is no precise definition of 

when a matrix is sparse and when it is not, but it is a 

concept, which we can all recognise intuitively. If the matrix is 

sparse we must consider an alternate way of representing it 

rather than the normal row major or column major 

arrangement. This is because if majority of elements of the 

matrix are 0 then an alternative through which we can store 

only the non-zero elements and keep intact the functionality of 

the matrix can save a lot of memory space. Figure 4-1 shows 

a sparse matrix of dimension 7 x 7.



Figure 4-1. Representation of a sparse matrix of dimension 7 x 7.

A common way of representing non-zero elements of a sparse 

matrix is the 3-tuple forms. In this form each non-zero element 

is stored in a row, with the and element of this row 

containing the row and column in which the element is 

present in the original matrix. The element in this row stores 

the actual value of the non-zero element. For example the 3­

tuple representation of the sparse matrix shown in Figure 4-1 

is given below.



int spmat[10j[3] = {
Z 9,

0, 3, -5,
i i, 4,

1, 6; 7,
2, 4, 9,
3, 1,3,
3, 3, 2,
4, 0,11,
4, 2, 2,
6, 2,8 

}

There are two ways in which information of a 3-tuple can be 

stored:

- Arrays

- Linked List

In both representations information about the non-zero 

elements is stored. However, as the number of non-zero 

elements in a sparse matrix may vary, it would be efficient to 

use a linked list to represent it.



Representation of Sparse Matrix as an Array

Let us see a program that accepts elements of a sparse matrix 

and creates an array containing 3-tuples of non-zero elements 

present in the sparse matrix.

Honest Solid Code {C}

Program 4-1. Sparse Matrix in 3-tuple form 

#include

#include

# define MAX1 3

# define MAX2 3 

struct sparse

{
int *sp;

int row;

};
void initsparse (struct sparse *);

void create_array (struct sparse *);

void display (struct sparse);



int count (struct sparse);

void create_tuple (struct sparse *,  struct sparse);

void display_tuple (struct sparse);

void delsparse (struct sparse *);

int main()

{
struct sparse si, s2; 

int c;

initsparse (&si);

initsparse (&s2);

create_array (&si);

printf (“Elements in Sparse Matrix:”);

display (si);

c = count (si);

printf (“Number of non-zero elements: %d\n\n”, c);

create_tuple (&s2, si);

printf (“Array of non-zero elements:”);

display_tuple (s2);

delsparse (&si);



delsparse (&s2);

return o;

}

/*  initialises element of structure */

void initsparse (struct sparse *p)

{
p -> sp = NULL;

}

/*  dynamically creates the matrix of size MAXi x MAX2 */  

void create_array (struct sparse *p)

{
int n, i;

p -> sp = (int *)  malloc (MAX1 * MAX2 * sizeof (int));

for (i = 0; i < MAX1 * MAX2; i++)

{
printf (“Enter element no. %d:”, i);

scanf (“%d”, &n);

* (p -> sp + i) = n;

}

printf (“\n”);



}

/*  displays the contents of the matrix */

void display (struct sparse p)

{
int i;

/*  traverses the entire matrix */

for (i = 0; i < MAXi * MAX2; i++)

{
/*  positions the cursor to the new line for every new row

*/
if (i % MAX2 == 0)

printf (“\n”);

printf (“%d\t”, * (p.sp + i));

}
printf (“\n\n”);

}

/*  counts the number of non-zero elements */

int count (struct sparse p)

{
int cnt = 0, i;

for (i = 0; i < MAX1 * MAX2; i++) 

{



if (*  (p.sp + i) != 0) 
cnt++;

}
return cnt;

}
/*  creates an array that stores information about non-zero 

elements */

void create_tuple (struct sparse *p,  struct sparse s)

{
int r = 0, c = -1, l = -1, i;

p -> row = count (s) + 1;

p -> sp = (int *)  malloc (p -> row * 3 * sizeof (int));

* (p -> sp + 0) = MAX1;

* (p -> sp + 1) = MAX2;

* (p -> sp + 2) = p -> row - 1;

l = 2;

for (i = 0; i < MAX1 * MAX2; i++)

{
c+—+;

/*  sets the row and column values */  

if (((i % MAX2) == 0) && (i != 0))



{

r++;

c = o;

}

/*  checks for non-zero element row, column and non-zero 

element value is assigned to the matrix */

if (*  (s.sp + i) != 0)

{

l++;
* (p -> sp + l) = r;

l++;
* (p -> sp + l) = c;

l++;
* (p -> sp + l) =  (s.sp + i);*

}

}

}

/*  displays the contents of 3-tuple */

void display_tuple (struct sparse p)

{
int i;

for (i = 0; i < p.row * 3; i++) 

{



if (i % 3 == 0) 

printf (“\n”);

printf (“%d\t”, * (p.sp + i));

}

}

/*  deallocates memory */  

void delsparse (struct sparse *p)

{
free (p -> sp);

}

Output:

Enter element no. 0: 0

Enter element no. 1: 2

Enter element no. 2: 0

Enter element no. 3: 9

Enter element no. 4: 0



Enter element no. 5: 1

Enter element no. 6: 0

Enter element no. 7: 0

Enter element no. 8: -4
Elements in Sparse Matrix' 
0 2 0
9 0 1
0 0-4

Number of non-zero elements: 4

Array of non-zero elements: 
3 3 4
0 12
10 9

12 1
2 2-4

In this program we have designed a structure called In the 

create_array() function, we have dynamically created a matrix of 

size MAX1 x The values for the matrix are accepted through 

keyboard. The display() function displays the contents of the 

sparse matrix and the count() function counts the total number 

of non-zero elements present in sparse matrix.

The create_tuple() function creates a 2-D array dynamically. But, 

the question arises as how much memory should get allocated 



for this array? Since each row in the 3-tuple form represents a 

non-zero element in the original array the new array should 

contain as many rows as the number of non-zero elements in 

the original matrix. From the 3- tuple form we must be able to 

build the original array. Hence the very first row in the new 

array should contain number of row, number of columns and 

number of non-zero elements in the original array. In the 

program we have determined the size of the new array through 

the following statements:

p -> row = count (s) + 1;

p -> sp = (int *)  malloc (p -> row * 3 * sizeof (int));

In the first statement we have obtained the count of non-zero 

elements present in the given array. To that count we have 

added 1. The first row (i.e. row) in this array stores the 

information about the total number of rows, columns and non­

zero elements present in the given array. From second row (i.e. 

row) onwards this array stores the row and column position of 

a non-zero element and the value of the non-zero element. 

Since the number of rows in the array depends on the number 

of non-zero elements in the given array we have created the 

array dynamically. The number of columns in this array would 

always be 3. The column stores the row number of the non­

zero element. The column stores the column number of the 

non-zero element and the column stores the value of non-zero 

element.



Lastly, the display_tuple() function displays the contents of 3­

tuple.



Common Matrix Operations

Common matrix operations are addition, multiplication, 

transposition, etc. Let us see how these operations are carried 

out on a sparse matrix implemented as an array. Note that 

each program that we are going to discuss now consists of 

functions— display_tuple() and We have already seen the 

working of these functions in previous program. Hence we 

shall discuss only the function(s) that perform given matrix 

operation.



Transpose of a sparse Matrix

Following program accepts elements of a sparse matrix, creates 

a 3- tuple form of non-zero elements present in the sparse 

matrix and then obtains a transpose of the sparse matrix from 

the 3-tuple form.

Honest Solid Code {C}

Program 4-2. Transpose of a Sparse Matrix 

#include

#include

#define MAX1 3

#define MAX2 3

struct sparse 

{
int *sp;

int row;

};

void initsparse (struct sparse *);  



void create_array (struct sparse *);

void display (struct sparse);

int count (struct sparse);

void create_tuple (struct sparse *,  struct sparse);

void display_tuple (struct sparse);

void transpose (struct sparse *,  struct sparse);

void display_transpose (struct sparse);

void delsparse (struct sparse *);

int main()

{

struct sparse s[ 3 ];

int c, i;

for (i = 0; i <= 2; i++) 

initsparse (&s[ i ]);

create_array (&s[ 0 ]);

printf (“Elements in Sparse Matrix:”); 

display (s[ 0 ]);

c = count (s[ 0 ]);

printf (“Number of non-zero elements: %d\n\n”, c);



create_tuple (&s[ 1 ], s[ 0 ]);

printf (“Array of non-zero elements:”); 

display_tuple (s[ 1 ]);

transpose (&s[ 2 ], s[ 1 ]);

printf (“Transpose of array:”);

display_transpose (s[ 2 ]);

for (i = 0; i <= 2; i++) 

delsparse (&s[ i ]);

return 0;

}

/*  initialises structure elements */  

void initsparse (struct sparse *p)  

{
p -> sp = NULL;

}

/*  dynamically creates the matrix of size MAX1 x MAX2 */  

void create_array (struct sparse *p)

{
int n, i;



p -> sp = (int *)  malloc (MAXi * MAX2 * sizeof (int));

for (i = 0; i < MAX1 * MAX2; i++)

{

printf (“Enter element no. %d:”, i);

scanf (“%d”, &n);

* (p -> sp + i) = n;

}
printf (“\n”);

}

/*  displays the contents of the matrix */

void display (struct sparse s)

{
int i;

/*  traverses the entire matrix */

for (i = 0; i < MAX1 * MAX2; i++)

{
/*  positions the cursor to the new line for every new row

*/
if (i % MAX2 == 0)

printf (“\n”);

printf (“%d\t”, * (s.sp + i));

}



printf (“\n\n”);

}

/*  counts the number of non-zero elements */  

int count (struct sparse s)

{

int cnt = 0, i;

for (i = 0; i < MAXi * MAX2; i++)

{
if (*  (s.sp + i) != 0) 

cnt++;

}
return cnt;

}

/*  creates an array that stores information about non-zero 

elements */

void create_tuple (struct sparse *p,  struct sparse s)

{
int r = 0, c = -1, l = -1, i;

p -> row = count (s) + 1;

p -> sp = (int *)  malloc (p -> row * 3 * sizeof (int));



* (p -> sp + o) = MAXi;

* (p -> sp + i) = MAX2;

* (p -> sp + 2) = p -> row - 1;

l = 2;

for (i = o; i < MAXi * MAX2; i++) 

{
c+—+;

/*  sets the row and column values */  

if (((i % MAX2) == o) && (i != o)) 

{
r++;

c = o;

}

/*  checks for non-zero element row, column and non-zero 

element value is assigned to the matrix */

if (*  (s.sp + i) != o)

{

l++;
* (p -> sp + l) = r;

l++;
* (p -> sp + l) = c;

l++;
* (p -> sp + l) =  (s.sp + i);*



}

}

}

/*  displays the contents of 3-tuple */  

void display_tuple (struct sparse p)

{
int i;

for (i = 0; i < p.row * 3; i++)

{
if (i % 3 == 0) 

printf (“\n”);

printf (“%d\t”, * (p.sp + i));

}
printf (“\n\n”);

}

/*  obtains transpose of an array */

void transpose (struct sparse *p,  struct sparse s)

{
int x, q, pos_1, pos_2, col, elem, c, y;

/*  allocate memory */

p -> sp = (int *)  malloc (s.row * 3 * sizeof (int));

p -> row = s.row;



/*  store total number of rows, cols and non-zero elements

* (p -> sp + o) = * (s.sp + i);

* (p -> sp + i) = * (s.sp + o);

* (p -> sp + 2) = * (s.sp + 2);

col = * (p -> sp + i);

elem = * (p -> sp + 2);

if (elem <= o) 

return;

x = 1;

for (c = o; c < col; C++)

for (y = 1; y <= elem; y++)

q = y * 3 + 1;
if (*  (s.sp + q) == c)

pOS_2 = X * 3+0;

pos_i = y * 3 + 1;



* (p -> sp + pos_2) = * (s.sp + pos_i);

pos_2 = x * 3 + 1;

pos_i = y * 3 + o;

* (p -> sp + pos_2) =  (s.sp + pos_i);*

pos_2 = x * 3 + 2;

pos_i = y * 3 + 2;

* (p -> sp + pos_2) =  (s.sp + pos_i);*

x++;

}

}

}

}

/*  displays 3-tuple after transpose operation */  

void display_transpose (struct sparse p)

{
int i;

for (i = 0; i < p.row * 3; i++)

{
if (i % 3 == 0)

printf (“\n”);

printf (“%d\t”, * (p.sp + i));

}



}

/*  deallocates memory */

void delsparse (struct sparse *p)

{
free (p -> sp);

}

Output:

Enter element no. o: 4

Enter element no. 1: 0

Enter element no. 2: 1

Enter element no. 3: 0

Enter element no. 4: 0

Enter element no. 5: 3

Enter element no. 6: -2



Enter element no. 7: 0

Enter element no. 8: 0

Elements in Sparse Matrix: 
4 0 1
□ 03
-2 0 0

Number of non-zero elements: 4

Array of non-zero elements:
3 3 4
□ 04
0 2 1
12 3
2 0 -2

Transpose of array: 
3 3 4
0 0 4
0 2-2
2 0 1
2 13

In the transpose^ function first we have allocated memory 

required to store the elements in the target 3-tuple. Next we 

have stored the total number of rows, columns and non-zero 

elements that this 3-tuple will hold. This is achieved through 

the following three statements:

* (p -> sp + 0) = * (s.sp + 1);

* (p -> sp + 1) = * (s.sp + 0);



* (p -> sp + 2) = * (s.sp + 2);

Note that, here in p -> the place where total number of rows 

should get stored we have stored total number of columns. 

Similarly in place where total number of columns should get 

stored we have stored total number of rows. This is because 

in case of transpose operation total number rows become 

equal to total number of columns and vice versa.

The transpose operation is carried out through a pair of for 

loops. The outer for loop runs till the non-zero elements of col 

number of columns (of source 3-tuple) are not scanned. In the 

inner for loop first we have obtained the position at which the 

column number of a non-zero element is stored (in the source 

3-tuple) through the statement:

q = y * 3 + 1;

Then we have checked whether the column number of a non­

zero element matches with the column number currently being 

considered i.e. If the two values match then the information is 

stored in the target 3-tuple through the statements given 

below: 

pos_2 = x * 3 + 0; 



pos_i = y * 3 + 1;

* (p -> sp + pos_2) =  (s.sp + pos_i);*

The variable pos_2 is used for the target 3-tuple, to store the 

position at which data from source 3-tuple should get copied. 

Similarly, the variable pos_i is used for the source 3-tuple, to 

extract data from it. The third statement copies the column 

position of a non-zero element from source 3-tuple to the 

target 3-tuple. This column number gets stored at the row 

position in target 3-tuple.

On similar lines the row position of a non-zero element of 

source 3-tuple is copied at the column position of the target 3­

tuple through the following statements:

pos_2 = x * 3 + 1;

pos_1 = y * 3 + 0;

* (p -> sp + pos_2) =  (s.sp + pos_1);*

Finally, the non-zero value from source 3-tuple is copied to the 

target 3- tuple through the following statements:

pos_2 = x * 3 + 2;

pos_1 = y * 3 + 2;

* (p -> sp + pos_2) =  (s.sp + pos_1);*



The target 3-tuple thus obtained is nothing but a transpose of 

an array that user has entered through create_array() function. 

But the target 3- tuple stores the information of non-zero 

elements. The elements in this 3-tuple are then displayed by 

calling display_transpose() function.



Addition of sparse Matrices

Let us now see a program that carries out addition of two 

sparse matrices represented in 3-tuple form. Here is the 

program...

Honest Solid Code {C}

Program 4-3. Addition of Sparse Matrices

#include

#include

#define MAX1 3

#define MAX2 3

#define MAXSIZE 9

#define BIGNUM 100 

struct sparse

{
int *sp;

int row;

int *result;

};



void initsparse (struct sparse *);

void create_array (struct sparse *);

int count (struct sparse);

void display (struct sparse);

void create_tuple (struct sparse *,  struct sparse);

void display_tuple (struct sparse);

void addmat (struct sparse *,  struct sparse, struct sparse);

void display_result (struct sparse);

void delsparse (struct sparse *);

int main()

{
struct sparse s[ 5 ];

int i;

for (i = 0; i <= 4; i++)

initsparse (&s[ i ]);

create_array (&s[ 0 ]);

create_tuple (&s[ 1 ], s[ 0 ]);

display_tuple (s[ 1 ]);

create_array (&s[ 2 ]);



create_tuple (&s[ 3 ], s[ 2 ]);

display_tuple (s[ 3 ]);

addmat (&s[ 4 ], s[ 1 ], s[ 3 ]);

printf (“Result of addition of two matrices:”);

display_result (s[ 4 ]);

for (i = 0; i <= 4; i++)

delsparse (&s[ i ]);

return 0;

}

/*  initialises structure elements */

void initsparse (struct sparse *p)

{
p -> sp = NULL;

p -> result = NULL;

}

/*  dynamically creates the matrix */  

void create_array (struct sparse *p)  

{
int n, i;



/*  allocate memory */

p -> sp = (int *)  malloc (MAX1 * MAX2 * sizeof (int));

/*  add elements to the array */

for (i = 0; i < MAX1 * MAX2; i++)

{

printf (“Enter element no. %d:”, i);

scanf (“%d”, &n);

* (p -> sp + i) = n;

}
printf (“\n”);

}

/*  displays the contents of the matrix */

void display (struct sparse s)

{
int i;

/*  traverses the entire matrix */

for (i = 0; i < MAX1 * MAX2; i++)

{

/*  positions the cursor to the new line for every new row

*/

if (i % MAX2 == 0)

printf (“\n”);

printf (“%d\t”, * (s.sp + i));



}

printf (“\n\n”);

}

/*  counts the number of non-zero elements */  

int count (struct sparse s)

{
int cnt = 0, i;

for (i = 0; i < MAX1 * MAX2; i++)

{

if (*  (s.sp + i) != 0) 

cnt++;

}

return cnt;

} 

/*  creates an array that stores information about non-zero 

elements */

void create_tuple (struct sparse *p,  struct sparse s)

{
int r = 0, c = -1, l = -1, i;

/*  get the total number of non-zero elements and add 1 to 

store total no. of rows, cols, and non-zero values */

p -> row = count (s) + 1;



/*  allocate memory */

p -> sp = (int *)  malloc (p -> row * 3 * sizeof (int));

/*  store information about total no. of rows, cols, and non­

zero values */

* (p -> sp + 0) = MAX1;

* (p -> sp + 1) = MAX2;

* (p -> sp + 2) = p -> row - 1;

l = 2;

/*  scan the array and store info. about non-zero values in

the 3-tuple */

for (i = 0; i < MAX1 * MAX2; i++)

{

c++;

/*  sets the row and column values */  

if (((i % MAX2) == 0) && (i != 0)) 

{
r++;

c = 0;

}



/*  checks for non-zero element row, column and non-zero 

element value is assigned to the matrix */

if (*  (s.sp + i) != 0)

{

l++;
* (p -> sp + l) = r;

l++;
* (p -> sp + l) = c;

l++;
* (p -> sp + l) =  (s.sp + i);*

}

}

}

/*  displays the contents of the matrix */  

void display_tuple (struct sparse s)

{

int i, j;

/*  traverses the entire matrix */  

printf (“Elements in a 3-tuple:\n”);

j = (*  (s.sp + 2) * 3) + 3;

for (i = 0; i < j; i++)

{



/*  positions the cursor to the new line for every new row 

*/
if (i % 3 == o)

printf (“\n”);

printf (“%d\t”, * (s.sp + i));

}
printf (“\n\n”);

}

/*  carries out addition of two matrices */

void addmat (struct sparse *p,  struct sparse si, struct sparse 

s2)

{
int i = 1, j = 1, k = 1;

int elem = 1;

int max, amax, bmax;

int rowa, rowb, cola, colb, vala, valb;

/*  get the total number of non-zero values from both 

matrices */

amax = * (s1.sp + 2);

bmax = * (s2.sp + 2);

max = amax + bmax;

/*  allocate memory for result */

p -> result = (int *)  malloc (MAXSIZE * 3 * sizeof (int));



while (elem <= max)

{
/*  check if i < max. non-zero values in 

get the values */

if (i <= amax)

{
rowa = * (s1.sp + i * 3 + 0);

cola = * (s1.sp + i * 3 + 1);

vala = * (s1.sp + i * 3 + 2);

}
else

rowa = cola = BIGNUM;

/*  check if j < max. non-zero values in 

get the values */

if (j <= bmax)

{
rowb = * (s2.sp + j * 3 + 0);

colb = * (s2.sp + j * 3 + 1);

valb = * (s2.sp + j * 3 + 2);

}
else

rowb = colb = BIGNUM;

first 3-tuple and

second 3-tuple and

/*  if row no. of both 3-tuple are same */



if (rowa == rowb) 

{

/*  if col no. of both 3-tuple are same */  

if (cola == colb)

{
/*  add tow non-zero values store in result */

* (p -> result + k  3 + 0) = rowa;*

* (p -> result + k  3 + 1) = cola;*

* (p -> result + k  3 + 2) = vala + valb;*

i++;

j++;
max--;

}

/*  if col no. of first 3-tuple is < col no. of second 3­

tuple, then add info. as it is to result */

if (cola < colb)

{
* (p -> result + k  3 + 0) = rowa;*

* (p -> result + k  3 + 1) = cola;*

* (p -> result + k  3 + 2) = vala;*

i++;

}

/*  if col no. of first 3-tuple is > col no. of second 3-tuple, 

then add info. as it is to result */



if (cola > colb)

{
* (p -> result + k  3 + 0) = rowb;*

* (p -> result + k  3 + 1) = colb;*

* (p -> result + k  3 + 2) = valb;*

j++;

}
k++;

}

/*  if row no. of first 3-tuple is < row no. of second 3­

tuple, then add info. as it is to result */

if (rowa < rowb)

{

* (p -> result + k  3 + 0) = rowa;*

* (p -> result + k  3 + 1) = cola;*

* (p -> result + k  3 + 2) = vala;*

i++;
k++;

}

/*  if row no. of first 3-tuple is > row no. of second 3­

tuple, then add info. as it is to result */

if (rowa > rowb)

{
* (p -> result + k  3 + 0) = rowb;*



* (p -> result + k  3 + 1) = colb;*

* (p -> result + k  3 + 2) = valb;*

j++;
k++;

}
elem++;

}

/*  add info about the total no. of rows, cols, and non-zero 

values that the resultant array contains to the result */

* (p -> result + 0) = MAX1;

* (p -> result + 1) = MAX2;

* (p -> result + 2) = max;

}

/*  displays the contents of the matrix */  

void display_result (struct sparse s)

{
int i;

/*  traverses the entire matrix */

for (i = 0; i < (*  (s.result + 0 + 2) + 1) * 3; i++)

{
/*  positions the cursor to the new line for every new row 

*/



if (i % 3 == 0) 

printf (“\n”);

printf (“%d\t”, * (s.result + i));

}
printf (“\n\n”);

}

/*  deallocates memory */  

void delsparse (struct sparse *p)

{

if (p -> sp != NULL) 

free (p -> sp);

if (p -> result != NULL) 

free (p -> result);

}

Output:

Enter element no. 0: 1

Enter element no. 1: 0

Enter element no. 2: 2

Enter element no. 3: 0



Enter element no. 4: 3

Enter element no. 5: 0

Enter element no. 6: 4

Enter element no. 7: 0

Enter element no. 8: 0



Elements in a 3-tuple:
3 3 4
0 0 1
0 2 2
113
2 0 4

Enter element no. 0: 0
Enter element no. 1: 0
Enter element no. 2: 0
Enter element no. 3: 1
Enter element no. 4: 0
Enter element no. 5: 2
Enter element no. 6: 0
Enter element no. 7: 9
Enter element no. 8: 0

Elements in a 3-tuple:

3 3 3
10 1
12 2
2 19

Result of addition of two matrices:
3 3 7
0 0 1
0 2 2
10 1
113
12 2
2 0 4
2 19

The function addmat() carries out addition of two sparse 

matrices. In this function firstly we have obtained the total 



number of non-zero elements that the target 3-tuple would 

hold. This has been achieved through the following statements:

amax = * (s1.sp + 2);

bmax = * (s2.sp + 2); 

max = amax + bmax;

Then we have allocated memory for the target 3-tuple that 

would store the result obtained from addition. Through a while 

loop we have carried out the addition operation. The variables 

i and j are used as counters for first 3-tuple (pointed to by 

and second 3-tuple (pointed to by respectively. Then we have 

retrieved the row number, column number and the non-zero 

value of and non-zero element respectively. The following cases 

are considered while performing addition.

(a) If the row numbers as well as column numbers of the 

non-zero values retrieved from first and second 3-tuple (pointed 

to by s1.sp and s2.sp respectively) are same then we have 

added two non-zero values vala and The row number column 

number cola and vala + valb is then copied to the target 3­

tuple poited to by

(b) If column number of first 3-tuple is less than the column 

number of second 3-tuple, then we have added the information 

about the non-zero value of first 3-tuple to the target 3-tuple.



(c) If column number of first 3-tuple is greater than the 

column number of second 3-tuple, then we have added the 

information about the non-zero value of second 3-tuple to the 

target 3-tuple.

(d) If row number of first 3-tuple is less than the row number 

of second 3-tuple, then we have added the information about 

the non-zero value of first 3-tuple to the target 3-tuple.

(e) If row number of first 3-tuple is greater than the row 

number of second 3-tuple, then we have added the information 

about the non-zero value of second 3-tuple to the target 3­

tuple.

Finally, the total number of rows, columns and non-zero values 

that the target 3-tuple holds is stored in the zeroth row of the 

target 3-tuple (pointed to by The function display_result() 

displays result of the addition operation.



Linked Representation of a Sparse Matrix

Representing a sparse matrix as an array of 3-tuples suffers 

from one important limitation. When we carry out addition or 

multiplication it is not possible to predict beforehand how 

many elements in the resultant matrix would be non-zero. As a 

result, it is not possible to predict the size of the resultant 

matrix beforehand. Instead of an array we can represent the 

sparse matrix in the form of a linked list.

In the linked list representation a separate list is maintained 

for each column as well as each row of the matrix, i.e. if the 

matrix is of size 3 x 3, then there would be 3 lists for 3 

columns and 3 lists for 3 rows. A node in a list stores the 

information about the non-zero element of the sparse matrix. 

The head node for a column list stores the column number, a 

pointer to the node, which comes first in the column, and a 

pointer to the next column head node. Thus the structure for 

column head node would be as shown below: 

struct cheadnode 

{
struct node *down;  

int colno;



struct cheadnode *next;

};

A head node for a row list stores, a pointer to the node, 

which comes first in the row list, and a pointer to the next 

row head node. The structure for row head node would be as 

shown below: 

struct rheadnode

{

struct rheadnode *next;

int rowno;

struct node *right;

};

A node on the other hand stores the row number, column 

number and the value of the non-zero element of the sparse 

matrix. It also stores a pointer to the node that is immediately 

to the right of the node in the row list as well as a pointer to 

the node that is immediately below the node in the column 

list. The structure for a node would be as shown below: 

struct node

{
int row;

int col;



int val;

struct node *down;

struct node *right;

};

In addition to this a special node is used to store the total 

number of rows, total number of columns, a pointer to the 

first row head node and a pointer to the first column head 

node. The information stored in this special node is used for 

traversing the list. The structure of this special node would be 

as shown below: 

struct spmat

{
struct rheadnode *firstrow;

int noofrows;

int noofcols;

struct cheadnode *firstcol;  

};

If a particular column list is empty then the field down of the 

column head node would be NULL. Similarly if a row list is 

empty then the field right of the row head node would be 

empty. If a node is the last node in a particular column list or 



a particular row list then the field down or the field right of 

the node would be NULL.

Figure 4-2 gives pictorial representation of linked list of a 

sparse matrix of size 3 x 3.

rhead[l]

rhead[2]

rfread[O]

Figure 4-2. Linked Representation of a sparse matrix.



Other Forms of a Sparse Matrix

A square sparse matrix can be of following types:



Diagonal Where the non zero elements are stored 
on the leading diagonal of the matrix.

Tridiagonal Where the non zero elements are placed 
below or above the leading diagonal.

Lower Triangular Where the non zero elements are placed 
below the leading diagonal.

Upper Triangular Where the non zero elements are placed 
above the leading diagonal

Figure 4-3 illustrates these four matrices.

4 0 0 0 0 3 0 0

0 1 0 0 0 0 8 0

0 0 9 0 0 0 0 5

0 0 0 12 0 0 0 0

Diagonal Matrix Tridiagonal Matrix

0 0 0 0 0 4 0 3

13 0 0 0 0 0 1 0

9 2 0 0 0 0 0 9

6 0 12 0 0 0 0 0

Lowe f Trian jular IV latrix Uppest Than jular tolatrix

Figure 4-3. Different forms of Sparse matrices.



Chapter Bullets

Summary of chapter

(a) If many elements from a matrix have a value o then the 

matrix is known as a sparse matrix.

(b) A common way of representing non-zero elements of a 

sparse matrix is the 3-tuple form.

(c) Sparse matrix can be represented using either an array or 

a linked list.

(d) A square spare matrix may take the form of a Diagonal, 

Tridiagonal, Lower Triangular or Upper Triangular matrix.



Check Your Progress

Exercise - Level I

[A] Pick up the correct alternative for each of the following 

questions:

(f) A matrix is called sparse when

(1) Most of its elements are non-zero

(2) Most of its elements are zero

(3) All of its elements are non-zero

(4) None of the above

(g) In the linked representation of a sparse matrix the head 

node for a column list stores

(1) A pointer to the next column head node

(2) A pointer to the first node in column list

(3) Column number

(4) All of the above



(h) A sparse matrix can be lower-triangular matrix

(1) When all the non-zero elements lie only on the leading 

diagonal.

(2) When all the non-zero elements lie above leading diagonal.

(3) When all the non-zero elements lie below leading diagonal.

(4) Both (3) and (4)



Sharpen Your Skills

Exercise - Level II

[B] Answer the following:

(a) Write a program to build a sparse matrix as an array. 

Write functions to check if the sparse matrix is a square, 

diagonal, lower triangular, upper triangular or tridiagonal matrix.

(b) Write a program to subtract two sparse matrices 

implemented as an array.

(c) Write a program to build a spare matrix as a linked list. 

The program should provide functions for following operations:

(i) Store an element when the row number, column number 

and the value is provided

(ii) Retrieve an element for given row and column of matrix

(iii) Add two sparse matrices

(iv) Subtract two sparse matrices



Coding Interview Questions

Exercise Level III

Write a program that carries out multiplication of two sparse 

matrices through their 3-tuple form and stores the result in 

another sparse matrix in 3-tuple form.



Case Scenario Exercise

Linked representation of Sparse Matrix

Write a program that stores sparse matrix in the linked list 

form. The skeleton code for this program is given below. You 

are required to define different functions whose prototypes are 

given in the skeleton code and the call these functions from

#define MAXi 3

#define MAX2 3

/*  structure for col head node */  

struct cheadnode

{
int colno;

struct node *down;

struct cheadnode *next;

};
/*  structure for row head node */  struct rheadnode

{
int rowno;

struct node *right;



struct rheadnode *next;

};
/*  structure for node to store element */  

struct node

{
int row, col, val;

struct node *right;

struct node *down;

};
/*  structure for special head node */

struct spmat

{
struct rheadnode *firstrow;

struct cheadnode *firstcol;

int noofrows;

int noofcols;

};
struct sparse

{
int *sp;

int row;

struct spmat *smat;

struct cheadnode *chead[  MAX2 ];

struct rheadnode *rhead[  MAX1 ];

struct node *nd;

};

void initsparse (struct sparse *);



void create_array (struct sparse *);

void display (struct sparse);

int count (struct sparse);

void create_triplet (struct sparse *,  struct sparse);

void create_llist (struct sparse *);

void insert (struct sparse *,  struct spmat *,  int, int, int);

void show_llist (struct sparse);

void delsparse (struct sparse *);



Chapter 05

Stacks

Of wads Of Notes

Why This Chapter Matters?

Be it items in a store, books in a library, or notes in a bank, 

the moment they become more than handful we start stacking 

them neatly. Similarly, while maintaining data in an orderly 

fashion it is placed in a stack. Stack data structure is used 

widely for storing variables, managing function calls, evaluating 

arithmetic expressions, etc. Hence it is important to understand 

this data structure thoroughly.



Stack is a data structure in which addition of new element or 

deletion of an existing element always takes place at the same 

end. This end is known as top of stack. This situation can be 

compared to a stack of plates in a cafeteria where every new 

plate added to the stack is added at the top . Similarly, every 

new plate taken off the stack is also from the top of the 

stack. When an item is added to a stack, the operation is 

called push , and when an item is removed from the stack the 

operation is called pop . These operations are shown in Figure 

5-1 . Because of the nature of push and pop operations Stack 

is also called last-in-first-out (LIFO) list.



Figure 5-1. Insertion and deletion of elements in a

A stack data structure can be maintained as an array or as a 

linked list. The following sections discuss these 

implementations.



Stack as an Array

Stack contains an ordered collection of elements. An array is 

used to store ordered list of elements. Hence, a stack can be 

implemented using an array. However, we are required to 

declare the size of the array before using it. So when we use 

it to store elements of a stack the stack can grow or shrink 

within the memory reserved for the array. Let us now see a 

program that implements a stack using an array.

Honest Solid Code {C}

Program 5-1. Stack as an array

#include

#define MAX 10

struct stack

{
int arr[ MAX ];

int top;

};
void initstack (struct stack *);



void push (struct stack *,  int item); 

int pop (struct stack *);

int main()

{

struct stack s;

int n;

initstack (&s);

push (&s, 2);

push (&s, -4);

push (&s, 8);

push (&s, 11);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);



n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

return o;

}

/*  intializes the stack */  

void initstack (struct stack *s)

{
s -> top = -1;

}

/*  adds an element to the stack */  

void push (struct stack *s,  int item)

{
if (s -> top == MAX - 1) 

{

printf (“Stack is full\n”);



return;

}
s -> top++;

s -> arr[ s ->top ] = item;

} 

/*  removes an element from the stack */  

int pop (struct stack *s)

{
int data;

if (s -> top == -1)

{
printf (“Stack is empty\n”);

return NULL;

}
data = s -> arr[ s -> top ];

s -> top--;

return data;

}

Output:

Item popped: 11

Item popped: 8

Item popped: -4



Item popped: 2

Stack is empty

In this program we have defined a structure called The push() 

and pop() functions are respectively used to add and delete 

items from the top of the stack. The actual storage of stack 

elements is done in an array The variable top is an index into 

this array. It contains a value where the addition or deletion is 

going to take place in the array, and thereby in the stack. To 

indicate that the stack is empty to begin with, the variable top 

is set with a value -1 by calling the function

Every time an element is added to stack, it is verified whether 

such an addition is possible at all. If it is not, then the 

message ‘Stack is full’ is displayed. Since we have declared the 

array to hold 10 elements, the stack would be considered full 

if the value of top becomes equal to 9.

In main() we have called push() function to add 4 elements to 

the stack. Then we have removed these elements from the 

stack by calling the pop() function. When we call pop() for the 

time, there are no elements present in the stack and top has 

a value -1 in it. Hence the ‘Stack is empty’ gets displayed.



Stack as a Linked List

In the earlier section we had used arrays to store the elements 

that get added to the stack. However, when implemented as 

an array it suffers from the basic limitation of an array—that 

its size cannot be increased or decreased once it is declared. 

As a result, one ends up reserving either too much memory or 

too less memory for an array and in turn for a stack. This 

problem can be overcome if we implement a stack using a 

linked list.

Each node in the linked list contains the data and a pointer 

that gives location of the next node in the list. The pointer to 

the beginning of the list serves the purpose of the top of the 

stack. Figure 5-2 shows the linked list representation of a 

stack.



Figure 5-2. Representation of stack as a linked list.

Let us now see a program that implements stack as a linked 

list.

Honest Solid Code {C}

Program 5-2. Stack as a linked list 

#include

#include



struct node

{
int data;

struct node *link;

};
void push (struct node **,  int);

int pop (struct node **);

void delstack (struct node **);

int main()

{

struct node *s  = NULL;

int n;

push (&s, 14);

push (&s, -3);

push (&s, 18);

push (&s, 29);

push (&s, 31);

push (&s, 16);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

n = pop (&s);



if (n != NULL)

printf (“Item popped: %d\n”, n);

n = pop (&s);

if (n != NULL)

printf (“Item popped: %d\n”, n);

delstack (&s);

return 0;

}

/*  adds a new node at beginning of linked list */

void push (struct node **top,  int item)

{
struct node *temp;

temp = (struct node *)  malloc (sizeof (struct node));

if (temp == NULL)

printf (“Stack is full\n”);

temp -> data = item;

temp -> link = *top;

*top = temp;

}



/*  deletes a node from beginning of linked list */  

int pop (struct node **top)

{
struct node *temp;

int item;

if (*top  == NULL)

{
printf (“Stack is empty\n”); 

return NULL;

}

temp = *top;

item = temp -> data;

*top = (*top)  -> link;

free (temp); 

return item;

} 

/*  deallocates memory */  

void delstack (struct node **top)

{
struct node *temp;



if (*top  == NULL) 

return;

while (*top  != NULL)

{
temp = *top;

*top = (*top)  -> link;

free (temp);

}

}

Output:

Item popped: 16

Item popped: 31

Item popped: 29

Here we have declared a structure called The variable s is a 

pointer to the structure Initially s is set to NULL to indicate 

that the stack is empty. In every call to the function push() we 

are creating a new node dynamically. As long as there is 

enough memory for dynamic allocation, temp would never



become If value of temp happens to be NULL then that would 

be the stage when stack would become full.

After, creating a new node, the pointer s should point to the 

newly created item of the list. Hence we have assigned the 

address of this new node to s using the pointer

In the pop() function, first we are checking whether or not a 

stack is empty. If so, then a message ‘Stack is empty’ gets 

displayed. If the stack is not empty then the topmost item 

gets removed from the list.



Applications of Stacks

Stacks are often used is in evaluation of arithmetic expression. 

An arithmetic expression consists of operands and operators. 

The operands can be constant or variables. The operators used 

in an arithmetic expression can be +, -, * and /.

While writing an arithmetic expression, the operator is placed 

between two operands as shown in the examples below.

A + B * C

A * B - C

A + B / C - D

A $ B + C

This way of representing arithmetic expressions is called infix 

notation. While evaluating an infix expression usually the 

following operator precedence is used:

- Highest priority: Exponentiation ($)

- Next highest priority: Multiplication ()  and Division (/)*



- Lowest priority: Addition (+) and Subtraction (-)

If we wish to override these priorities we can do so by using 

a pair of parentheses as shown below.

(A + B) * C

A * (B - C)

(A + B) / (C - D)

The expressions within a pair of parentheses are always 

evaluated earlier than other operations.

To make evaluation of an arithmetic expression easy, a polish 

mathematician Jan Lukasiewicz suggested a notation called 

Polish notation. As per this notation, an expression in infix 

form can be converted to either prefix or postfix form and 

then evaluated. In prefix notation the operator comes before 

the operands. In postfix notation, the operator follows the two 

operands. These forms are shown below.

A + B - Infix form

+ A B - Prefix form

A B + - Postfix form



The prefix and postfix expressions have three features:

- The operands maintain the same order as in the equivalent 

infix expression

- Parentheses are not needed to designate the expression 

unambiguously.

- While evaluating the expression the priority of the operators 

is irrelevant.

The stack data structure is used while carrying out the 

conversion of an expression given in one form to another.



Infix to Postfix Conversion

Let us now see a program that converts an arithmetic 

expression given in an infix form to a postfix form.

Honest Solid Code {C}

Program 5-3. Infix to Postfix conversion

#include

#include

#include

# define MAX 50

struct infix

{
char target[ MAX ];

char stack[ MAX ]; 

char *s,  *t;  

int top;

};
void initinfix (struct infix *);

void setexpr (struct infix *,  char *);  



void push (struct infix *,  char); char pop (struct infix *);

void convert (struct infix *);  int priority (char);

void show (struct infix);

int main()

{
struct infix p;

char expr[ MAX ];

initinfix (&p);

printf (“Enter an expression in infix form:\n”);

gets (expr);

setexpr (&p, expr);

convert (&p);

printf (“The postfix expression is:\n”);

show (p);

return 0;

} 

/*  initializes structure elements */  

void initinfix (struct infix *p)

{



p -> top = -1;

strcpy (p -> target, “”); 

strcpy (p -> stack, “”); 

p -> t = p -> target;
_ . _ uh,
p -> s = ;

} 

/*  sets s to point to given expression */  

void setexpr (struct infix *p,  char *str)  

{

p -> s = str;

} 

/*  adds an operator to the stack */  

void push (struct infix *p,  char c)

{
if (p -> top == MAX)

printf (“Stack is full\n”);

else

{
p -> top++;

p -> stack[ p -> top ] = c;

}

} 

/*  pops an operator from the stack */  



char pop (struct infix *p)

{
if (p -> top == -1)

{
printf (“Stack is empty\n”);

return -1;

}

else

{
char item = p -> stack[ p -> top ];

p -> top--;

return item;

}

}

/*  converts the given expression from infix to postfix form */  

void convert (struct infix *p)

{
char opr;

while (*(p  -> s))

{
if (*(p  -> s) == ‘’ II *(p  -> s) == ‘\t’)

{
p -> s++; 

continue;



}
if (isdigit (*(p  -> s)) || isalpha (*(p  -> s)))

{
while (isdigit (*(p  -> s)) || isalpha (*(p  -> s)))

{

*(P -> t) = *(p -> s);

p -> s++;

p -> t++;

}

}

if (*(p  -> s) == ‘(’)

{
push (p, *(p  -> s));

p -> s++;

}

if (*(p  -> s) == ‘*’ II *(p  -> s) == ‘+’ II *(p  -> s) == ‘/’ 

||
*(p -> s) == ‘%’ || *(p  -> s) == ‘-’ || *(p  -> s) == ‘$’)

{

if (p -> top != -1)

{

opr = pop (p);
while (priority (opr) >= priority (*(p  -> s)))

{
*(p -> t) = opr; p -> t++;

opr = pop (p);



}
push (p, opr);

push (p, *(p  -> s));

}
else

push (p, *(p  -> s)); 

p -> s++;

}

if (*(p  -> s) == ‘)’)

{

opr = pop (p);
while ((opr) != ‘(’)

{ 

*(p -> t) = opr;

p -> t++;

opr = pop (p);

}
p -> s++;

}

}

while (p -> top != -1)

{
char opr = pop (p);



*(p -> t) = opr; 

p -> t++;

}

*(p -> t) = ‘\o’;

}

/*  returns the priority of an operator */  

int priority (char c)

{

if (c == ’$’)

return 3;
if (c == ’*’ || c == ‘/’ || c == '%’) 

return 2;

else

{
if (c == ‘+’ || c == ‘-’)

return 1;

else

return 0;

}

} 

/*  displays the postfix form of given expr. */  

void show (struct infix p)

{



printf (“%s”, p.target);

}

Output:

Enter an expression in infix form:

4 $ 2 * 3 - 3 + 8 / 4 / (1 + 1)

Stack is empty

The postfix expression is:

42$3*3-84/11+/+

This program contains a structure called The elements target 

and stack are used to store the postfix string and to maintain 

the stack respectively. The char pointers s and t are used to 

store intermediate results while converting an infix expression 

to a postfix form. The variable top points to the top of the 

stack.

During program execution when user enters an arithmetic 

expression the function setexpr() assigns the base address of



the string to char pointer

Next, the function convert() gets called. This function converts 

the given infix expression to postfix expression. This function 

scans every character of the string in a while loop and 

performs one of the following operation depending on the type 

of character scanned.

(a) If the character scanned happens to be a space then that 

character is skipped.

(b) If character scanned is a digit or an alphabet, it is added 

to the target string pointed to by

(c) If the character scanned is a closing parentheses then it is 

pushed to the stack by calling push() function.

(d) If the character scanned is an operator, then firstly, the 

topmost element from the stack is retrieved. Through a while 

loop, the priorities of the character scanned (i.e. (p  -> and 

the character popped opr are compared. Then following steps 

are performed: 

*

(i) If opr has higher or same priority as the character scanned, 

then opr is added to the target string.

(ii) If opr has lower precedence than the character scanned, 

then the loop is terminated. opr is pushed back to the stack. 

Then, the character scanned -> is also pushed to the stack.



(e) If the character scanned is an opening parenthesis, then 

the operators present in the stack are popped through a loop. 

The loop continues till it does not encounter a closing 

parenthesis. The popped operators are added to the target 

string pointed to by

In the convert() function we have called functions The push() 

function adds a character to the stack, whereas the pop() 

function removes the topmost item from the stack. The 

priority() function returns the priority of operators used in the 

infix expression. $ (exponentiation) has the highest precedence, 

followed by *,  / and +, -. The function returns integer 3 for $, 

2 for * or /, 1 for + or - and 0 for any other character.

The while loop in convert() gets terminated if the string s is 

exhausted. By then some operators may still be in the stack. 

These operators should get added to the postfix string. This is 

done once the control reaches outside the while loop in the 

convert() function. Lastly, the converted expression is displayed 

using the show() function.

The steps performed in the conversion of a sample infix 

expression 4 $ 2 * 3 - 3 + 8 / 4 / (1 + 1) to a postfix 

expression are shown in Table



42$34 3 —84/11+/+

Infix Expression: 4$ 2 * 3 - 3 + 8/ 4/ (1 + 1)

Char Scanned Stack Contents Postfix Expression

4 Empty 4
|

$ 4

2 $ 4 2

* * 4 2 $

3 * 4 2 $ 3

- - 4 2 $ 3 *

3 - 4 2 $ 3 * 3

+ + 42$3 4 3-

8 + 42$34 3-8

/ +/ 42$34 3-8

4 +/ 42$34 3-84

/ +/ 42$34 3-84/

( +/( 42$34 3-84/

1 +/( 42$34 3-84/1

+ +/(+ 42$34 3-84/1

1 +/f+ 42$34 3-84/11

) +/ 42 $ 34 3-84/1 1 +

Empty

Table 5-1. Conversion of Infix to Postfix form.



Postfix to Prefix Conversion

Let us now see a program that converts an expression in 

postfix form to a prefix form.

Honest Solid Code {C}

Program 5-4. Postfix to Prefix conversion

#include

#include

#define MAX 50

struct postfix

{
char stack[ MAX ][ MAX ], target[ MAX ];

char temp1[ 2 ], temp2[ 2 ];

char str1[ MAX ], str2[ MAX ], str3[ MAX ]; 

int i, top;

};
void initpostfix (struct postfix *);

void setexpr (struct postfix *,  char *);

void push (struct postfix *,  char *);

void pop (struct postfix *,  char *);



void convert (struct postfix *);  

void show (struct postfix);

int main()

{

struct postfix q;

char expr[ MAX ];

initpostfix (&q);

printf (“Enter an expression in postfix form:\n”); 

gets (expr);

setexpr (&q, expr);

convert (&q);

printf (“The Prefix expression is:\n”);

show (q);

return 0;

}

/*  initializes the elements of the structure */  

void initpostfix (struct postfix *p)

{

p -> i = 0;

p -> top = -1;

strcpy (p -> target, “”);

}



/*  copies given expr. to target string */  

void setexpr (struct postfix *p,  char *c)  

{
strcpy (p -> target, c);

} 

/*  adds an operator to the stack */  

void push (struct postfix *p,  char *str)  

{
if (p -> top == MAX - 1) 

printf (“Stack is full\n”);

else

{
p -> top++;

strcpy (p -> stack[ p -> top ], str);

}

}

/*  pops an element from the stack */  

void pop (struct postfix *p,  char *a)

{
if (p -> top == -1)

printf (“Stack is empty\n”);

else

{



strcpy (a, p -> stack[ p -> top ]);

p -> top--;

}

}

/*  converts given expr. to prefix form */

void convert (struct postfix *p)

{
while (p -> target[ p -> i ] != ‘\o’)

{

/*  skip whitespace, if any */

if (p -> target[ p -> i ] == ‘’)

p -> i++;

if(p -> target[ p -> i ] == ‘%’ || p -> target[ p -> i ] ==

'* ’ ||
p -> target[ p -> i ] == ‘-’ || p -> target[ p -> i ] == ‘+’ 

||
p -> target[ p -> i ] == ‘/’ || p -> target[ p -> i ] == ‘$’) 

{

pop (p, p -> str2);

pop (p, p -> str3);

p -> temp1[ 0 ] = p -> target[ p -> i ];

p -> temp1[ 1 ] = ‘\o’;

strcpy (p -> str1, p -> temp1);



strcat (p -> stri, p -> str3);

strcat (p -> stri, p -> str2);

push (p, p -> stri);

}
else

{
p -> tempi[ o ] = p -> target[ p -> i ];

p -> tempi[ i ] = ‘\o’;

strcpy (p -> temp2, p -> tempi);

push (p, p -> temp2);

}

p -> i++;

}

} 

/*  displays the prefix form of expr. */  

void show (struct postfix p)

{

char *temp  = p.stack[ o ];

while (*temp)

{
printf (“%c”, *temp);  

temp++;

}

}



Output:

Enter an expression in postfix form:

4 2 $ 3 * 3 - 8 4 / 1 1 + / +

The Prefix expression is:

+ - * $ 4 2 3 3 / / 8 4 + 1 1

In this program the structure postfix contains character arrays 

like str3 to store the intermediate results. The character arrays 

stack and target are used to maintain the stack and to store 

the final string in the prefix form respectively.

In the convert() function the string containing expression in 

postfix form is scanned through a while loop till the string 

target is not exhausted. Following steps are performed 

depending on the type of character scanned.

(a) If the character scanned is a space then that character is 

skipped.

(b) If the character scanned contains a digit or an alphabet, it 

is pushed to the stack by calling push() function.



(c) If the character scanned contains an operator, then the 

topmost two elements are popped from the stack. These two 

elements are then stored in the array A temporary string 

temp2 containing the operator and the two operands is 

formed. This temporary string is then pushed on the stack.

The converted prefix form is stored at the position in the 

stack. Finally, the show() function displays this prefix form. The 

steps performed in the conversion of a sample postfix 

expression 4 2 $ 3 * 3 - 8 4 / 1 1 + / + to its equivalent 

prefix expression is shown in Table



Postfix Expression: 42$3*3-84/ll+/+

Char. Scanned Stack Contents

4 4

2 4 2

$ $ 4 2

3 $ 4 2 3

+ *$423

3 * $ 4 2 3, 3

- - * $ 4 2 3 3

a - * $ 4 2 3 3, 8

4 - * $ 4 2 3 3, 8, 4

/ - * $ 4 2 3 3, / 8 4

1 - * $ 4 2 3 3, / fl 4, 1

i -*$4233,/S4,l,l

+ -*$423  3, /& 4, + 11

/ -*$423  3,7/84+11

+ +-$4233//84+11

Table 5-2. Conversion of Infix to Postfix form.



Other Inter-Conversions

We have seen conversion of infix to postfix form and postfix to 

prefix form. It is also possible to carry out other conversions 

as well. Figure 5-3 summarizes the operations to be performed 

to carry out these inter- conversions.



Figure 5-3. Summary of inter-conversion of expressions.



Evaluation of Postfix Expression

The virtue of postfix notation is that it enables easy evaluation 

of expressions. To begin with, the need for parentheses is 

eliminated. Secondly, the priority of the operators is no longer 

relevant. The expression can be evaluated by making a left to 

right scan, stacking operands, and evaluating operators using 

operands popped from the stack and finally placing the result 

onto the stack. This evaluation is much simpler than 

attempting a direct evaluation of infix notation. Let us now see 

a program to evaluate a postfix expression.

Honest Solid Code {C}

Program 5-5. Evaluation of Postfix expression

#include

#include

#include

#include

#define MAX 50 

struct postfix



{
int stack[ MAX ];

int top, nn;

char *s;

};
void initpostfix (struct postfix *);

void setexpr (struct postfix *,  char *);

void push (struct postfix *,  int);

int pop (struct postfix *);

void calculate (struct postfix *);

void show (struct postfix);

int main()

{
struct postfix q;

char expr[ MAX ];

initpostfix (&q);

printf (“Enter postfix expression to be evaluated:\n”);

gets (expr);

setexpr (&q, expr);

calculate (&q);

show (q);

return 0;

}



/*  initializes structure elements */  

void initpostfix (struct postfix *p)  

{
p -> top = -1;

}

/*  sets s to point to the given expr. */  

void setexpr (struct postfix *p,  char *str)  

{
p -> s = str;

}

/*  adds digit to the stack */  

void push (struct postfix *p,  int item) 

{

if (p -> top == MAX - 1) 

printf (“Stack is full\n”);

else

{
p -> top++;

p -> stack[ p -> top ] = item;

}

} 

/*  pops digit from the stack */



int pop (struct postfix *p)

{
int data;

if (p -> top == -1)

{
printf (“Stack is empty\n”); 

return NULL;

}

data = p -> stack[ p -> top ]; 

p -> top--;

return data;

}

/*  evaluates the postfix expression */  

void calculate(struct postfix *p)

{
int n1, n2, n3;

while (*(p  -> s))

{
/*  skip whitespace, if any */

if (*(p  -> s) == ‘’ |l *(p  -> s) == ‘\t’) 

{

p -> s++;

continue;



}
/*  if digit is encountered */

if (isdigit (*(p  -> s)))

{
p -> nn = *(p  -> s) - ‘o’;

push (p, p -> nn);

}
else

{
/*  if operator is encountered */

n1 = pop (p);
n2 = pop (p);

switch (*(p  -> s))

{
case ‘+’ :

n3 = n2 + n1;

break;

case ‘-’ :

n3 = n2 - n1;

break;

case ‘/’ :

n3 = n2 / m;

break;

case ‘*’ :

n3 = n2 * n1;

break;

case ‘%’ : 



n3 = n2 % ni;

break;

case ‘$’ :

n3 = (int) pow ((double) n2, (double) ni);

break;

default :

printf (“Unknown operator\n”);

exit (i);

}

push (p, n3);

}

p -> s++;

}

}

/*  displays the result */

void show (struct postfix p)

{
p.nn = pop (&p);

printf (“Result is: %d\n”, p.nn);

}

Output:

Enter postfix expression to be evaluated:



4 2 $ 3 * 3 - 8 4 / 1 1 + / +

Result is: 46

In this program the structure postfix contains an integer array 

to store the intermediate results of the operations and top to 

store the position of the topmost element in the stack. The 

evaluation of the expression gets performed in the calculate^ 

function.

During execution the user enters an arithmetic expression in 

postfix form. In the calculate^ function, this expression gets 

scanned character by character. If the character scanned is a 

blank space, then it is skipped. If the character scanned is an 

operand, then first it is converted to a digit form (from string 

form), and then it is pushed onto the stack. If the character 

scanned is an operator, then the top two elements from the 

stack are popped, an arithmetic operation is performed 

between them and the result is then pushed back onto the 

These steps are repeated as long as the string s is not 

exhausted. The show() function displays the final result. These 

steps can be better understood if you go through the 

evaluation of a sample postfix expression shown in Table



Postfix Expression: 4 2 $ 3 * 3-84 / 1 1 + / +

Char. Scanned Stack Contents

4 4.

2 4, 2

$ 16

3 16, 3

+ 48

3 48, 3

- 45

8 45,8

4 45,8,4

/ 45, 2

i 45, 2,1

i 45, 2, 1,1

+ 45, 2, 2

/ 45, 1

+

Table 5-3. Evaluation of Postfix expression.



Chapter Bullets

Summary of chapter

(a) Stack data structure is a LIFO list in which addition of 

new elements and deletion of existing elements takes place at 

the same end.

(b) Addition of a new element to a stack is called push 

operation.

(c) Deletion of an existing element from a stack is called pop 

operation.

(d) Stack data structure can be implemented using an array or 

a linked list.

(e) If stack is implemented as a linked list, push operation is 

like adding a new node at the beginning of the linked list.

(f) If stack is implemented as a linked list, pop operation is 

like deleting an existing node from the beginning of the linked



list.

(g) Stack data structure has many applications like keeping 

track of function calls, storing local variable, evaluation of 

arithmetic expression, etc.



Check Your Progress

Exercise - Level I

[A] Fill in the blanks:

(a) A stack is a data structure in which addition of new 

element or deletion of an existing element always takes place 

at an end called

(b) The data structure stack is also called list.

(c) In notation the operators precedes the two

operands.

(d) In notation the operator follows the two operands.

[B] Pick up the correct alternative for each of the following 

questions:



(a) Adding an element to the stack means

(1) Placing an element at the front end

(2) Placing an element at the top

(3) Placing an element at the rear end

(4) None of the above

(b) Pushing an element to a stack means

(1) Removing an element from the stack

(2) Searching a given element in the stack

(3) Adding a new element to the stack

(4) Sorting the elements in the stack

(c) Popping an element from the stack means

(1) Removing an element from the stack

(2) Searching a given element in the stack

(3) Adding a new element to the stack

(4) Sorting the elements in the stack

(d) The expression A B *

(1) is an infix expression

(2) is a postfix expression



(3) is a prefix expression

(4) is a stack expression



Sharpen Your Skills

Exercise - Level II

[C] Transform the following infix expressions into their 

equivalent postfix expressions:

(A - B) * (D / E)
(A + B a D) / (E — F) + G

A * (B + D) / E - F * (G + H / K)

(A + B) * (C - D) $ E * F

(A + B) * (C $ (D - E) + F) / G) $ (H - J)

[D] Transform the following infix expressions into their 

equivalent prefix expressions:

(A - B) * (D / E)
(A + B a D) / (E - F) + G

A * (B + D) / E - F * (G + H / K)

[E] Transform each of the following prefix expression to infix.



+ A - B C

+ + A - * $ B C D / + E F * G H I

+ - $ A B C * D ** E F G

[F] Transform each of the following postfix expression to infix.

A B C + -

A B - C + D E F - + $

A B C D E - + $ * E F * -



Coding Interview Questions

Exercise Level III

[G] Write programs for the following:

(a) Copying contents of one stack to another.

(b) To check whether in a string containing an arithmetic 

expression, the opening and closing parenthesis are well- 

formed or not.



Case Scenario Exercise

Prefix to postfix and infix forms

Write a program to convert an arithmetic expression in prefix 

form to equivalent infix and postfix forms. Refer Figure 5-4 for 

the steps to be carried out in each of these conversions.



Chapter 06

Queues

Await Your Turn

Why This Chapter Matters?

Whether it is a railway reservation counter, a movie theatre or 

print jobs submitted to a network printer there is only one way 

to bring order to chaos—form a queue. If you await your turn 

patiently, there is a more likelihood that you would get a better 

service. In a computer system too there are queues of tasks 

(programs) waiting for the printer, or for access to disk 

storage, or for usage of CPU, etc. Understand this chapter 

thoroughly to be able to implement queues.



Queue is a linear data structure that permits insertion of new 

element at one end and deletion of an element at the other 

end. The end at which the deletion of an element takes place 

is called front , and the end at which insertion of a new 

element takes place is called rear .

The first element that gets added into the queue is the first 

one to get removed from the list. Hence, queue is also 

referred to as first-in-first- out (FIFO) list. The name ‘queue’ 

comes from the everyday use of the term. Consider a queue of 

people waiting at a bus stop. Each new person who comes 

takes his or her place at the end of the line, and when the 

bus arrives, the people at the front of the line board first. The 

first person in the line is the first person to leave it. Figure 6- 

^gives a pictorial representation of a queue.



n log n n log n 2 n 3 n 2"

1 0.0 0.0 1.0 1.0 2.0
2 1.0 2.0 4.0 8.0 4.0

5 2.3 11.6 25.0 125.0 32.0
10 3.3 33.2 100.0 1000.0 1024.0

15 3.9 58.6 225.0 3375.0 32768.0
20 4.3 86.4 400.0 8000.0 1048576.0
30 4.9 147.2 900.0 27000.0 1073741824.0

40 5.3 212.9 1600.0 64000.0 1099511627776.0
50 5.6 282.2 2500.0 125000.0 1125899906842620.0

Figure 6-1. Pictorial representation of a queue.

In Figure 34 is the first element and 42 is the last element 

added to the queue. Similarly, 34 will be the first element to 

get removed and 42 will be the last element to get removed 

from the queue.

Queue, being a linear data structure can be represented using 

either an array or a linked list. These implementations are 

discussed in following sections.



Queue as an Array

Representing a queue as an array would have the same 

problem that we discussed in case of stack in Chapter An 

array can store a fixed number of elements. Queue, on the 

other hand keeps on changing as we remove elements from 

the front end or add new elements at the rear end. Declaring 

an array with a maximum size would solve this problem. The 

maximum size should be large enough for a queue to expand 

or shrink. Let us now see a program that implements queue 

as an array.

Honest Solid Code {C}

Program 6-1. Implementation of queue as an array

#include

#define MAX 10

struct queue

{
int arr[ MAX ];

int front, rear;



};
void initq (struct queue *);

void addq (struct queue *,  int); 

int delq (struct queue *);

int main()

{
struct queue q;

int n;

initq (&q);

addq (&q, 34);

addq (&q, 12);

addq (&q, 53);

addq (&q, 61);

n = delq (&q);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&q);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&q);



if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&q);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&q);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

return 0;

} 

/*  intializes the queue */  

void initq (struct queue *pq)

{
pq -> front = -1;

pq -> rear = -1;

} 

/*  adds an element to the queue */  

void addq (struct queue *pq,  int item)

{



if (pq->rear == MAX - 1)

{
printf (“Queue is full\n”); 

return;

}

pq->rear++;

pq->arr[ pq->rear ] = item;

if (pq->front == -1) 

pq->front = o;

}

/*  removes an element from the queue */  

int delq (struct queue *pq)

{
int data;

if (pq->front == -1)

{

printf (“Queue is Empty\n”); 

return NULL;

}

data = pq->arr[ pq->front ];



pq->arr[ pq->front ] = o;

if (pq->front == pq->rear)

pq->front = pq->rear = -1; 

else

pq->front++; 

return data;

}

Output:

Item deleted: 34

Item deleted: 12

Item deleted: 53

Item deleted: 61

Queue is Empty

Here we have declared a structure queue containing an array 

arr to store queue elements and variables front and rear to 

monitor the two ends of the queue. The initial values of front 

and rear are set to -1, through the function initq() to mark the 



queue as empty. The functions addq() and delq() are used to 

perform addition and deletion operations on the queue.

In addq() firstly it is ascertained whether an addition is 

possible or not. Since the array indexing begins with 0 the 

maximum number of elements that can be stored in the queue 

are MAX - 1. If these many elements are already present in 

the queue then it is reported to be full. If an element can be 

added to the queue then value of rear is incremented and the 

new item is stored in the array.

If the item being added to the queue is the first element (i.e. 

if variable front has a value -1) then as soon as the item is 

added to the queue front is set to 0 indicating that the queue 

is no longer empty.

The addition of an element to the queue is illustrated in 

Figure



Figure 6-2. Addition of an element to a queue.

Let us now see how the delqO function works. Before deleting 

an element from the queue it is first ascertained whether there 

are any elements available for deletion. If not, then the queue 

is reported as empty. Otherwise, an element is deleted form 

arr[ front

Imagine a case where we add 10 elements to the queue. Value 

of rear would now be 9. Suppose we have not deleted any 

elements from the queue, then at this stage the value of front 

would be 0. Now suppose we go on deleting elements from 

the queue. When the tenth element is deleted the queue would 

fall empty. To make sure that another attempt to delete should 

be met with an ‘empty queue’ message, front and rear both 

are reset to -1 to indicate emptiness of the queue.



The deletion of elements from a queue is illustrated in Figure

Figure 6-3. Deletion of elements from a queue.

Our program has got one limitation. Suppose we go on 

adding elements to the queue till the entire array gets filled. At 

this stage the value of rear would be MAX - 1. Now if we 



delete 5 elements from the queue, at the end of these 

deletions the value of front would be 5. If now we attempt to 

add a new element to the queue then it would be reported as 

full even though in reality the first five slots of the queue are 

empty. To overcome this situation we can implement a queue 

as a circular queue, which would be discussed later in this 

chapter.



Queue as a Linked-List

Queue can also be represented using a linked list. Linked lists 

do not have any restrictions on the number of elements it can 

hold. Space for the elements in a linked list is allocated 

dynamically, hence it can grow as long as there is enough 

memory available for dynamic allocation. Figure 6-4 shows the 

representation of a queue as a linked list.

front rear

Figure 6-4. Representation of a queue as a linked list.

Let us now see a program that implements the queue as a 

linked list.

Honest Solid Code {C}



Program 6-2. Implementation of queue as a linked list 

#include

struct node

{
int data;

struct node *link;

};

struct queue

{
struct node *front;

struct node *rear;

};
void initqueue (struct queue *);

void addq (struct queue *,  int); 

int delq (struct queue *);

void delqueue (struct queue *);

int main()

{
struct queue a;

int n;

initqueue (&a);



addq (&a, 34);

addq (&a, 12);

addq (&a, 53);

addq (&a, 61);

n = delq (&a);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&a);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

n = delq (&a);

if (n != NULL)

printf (“Item deleted: %d\n”, n);

delqueue (&a);

return 0;

} 

/*  initialises data member */  

void initqueue (struct queue *q)

{



q -> front = q -> rear = NULL;

}

/*  adds an element to the queue */  

void addq (struct queue *q,  int item)

{
struct node *temp;

temp = (struct node *)  malloc (sizeof (struct node)); 

if (temp == NULL)

printf (“Queue is full\n”);

temp -> data = item;

temp -> link = NULL;

if (q -> front == NULL)

{

q -> rear = q -> front = temp; 

return;

}

q -> rear -> link = temp;

q -> rear = q -> rear -> link;

}



/*  removes an element from the queue */  

int delq (struct queue * q)

{
struct node *temp;  

int item;

if (q -> front == NULL) 

{

printf (“Queue is empty\n”); 

return NULL;

}
item = q -> front -> data;

temp = q -> front;

q -> front = q -> front -> link;

free (temp);

return item;

}

/*  deallocates memory */  

void delqueue (struct queue *q)

{
struct node *temp;

if (q -> front == NULL) 

return;



while (q -> front != NULL)

{
temp = q -> front;

q -> front = q -> front -> link; 

free (temp);

}

}

Output:

Item deleted: 34

Item deleted: 12

Item deleted: 53

In this program the structure queue contains two elements 

front and both are of the type pointers to structure To begin 

with, the queue is empty hence both front and rear are set to

The addq() function adds a new element at the rear end of 

the list. If the element added is the first element, then both 

front and rear are made to point to the new node. However, if 

the element added is not the first element then only rear is



made to point to the new node, whereas front continues to 

point to the first node in the list.

The delq() function removes an element from the list which is 

at the front end of the list. Removal of an element from the 

list actually deletes the node to which front is pointing. After 

deletion of a node, front is made to point to the next node 

that comes in the list, whereas rear continues to point to the 

last node in the list.

The function delqueue() is called before main() comes to an 

end. This is done because the memory allocated for the 

existing nodes in the list must be de-allocated.



Circular Queue

The queue that we implemented using an array suffers from 

one limitation. In that implementation there is a possibility that 

the queue is reported as full (since rear has reached the end 

of the array), even though in actuality there might be empty 

slots at the beginning of the queue.

To overcome this limitation we can implement the queue as a 

circular queue. Here as we go on adding elements to the 

queue and reach the end of the array, the next element is 

stored in the first slot of the array (provided it is free).

More clearly, suppose an array arr of n elements is used to 

implement a circular queue. As we go on adding elements to 

the queue we will reach arr[ n-1 We cannot add any more 

elements to the queue as we have reached the end of the 

array. If some elements in the queue are deleted the slots at 

the beginning of the queue will fall vacant. If now any new 

elements are to be added to the queue, instead of reporting 

that the queue is full we fill the slots at the beginning of the 

array with new elements being added to the queue.



In short, just because we have reached the end of the array 

the queue would not be reported as full. The queue would be 

reported as full only when all the slots in the array stand 

occupied.

Let us now see a program that performs the addition and 

deletion operation on a circular queue.

Honest Solid Code {C}

Program 6-3. Implementation of circular queue

#include

#define MAX 8 

struct queue

{
int arr[ MAX ];

int front, rear;

};
void initq (struct queue *);

void addq (struct queue *,  int);

int delq (struct queue *);

void display (struct queue *);



int main()

{
struct queue q;

int n;

/*  initialise circular queue */

initq (&q);
addq (&q, 14);
addq (&q, 22);
addq (&q, 13);
addq (&q, -6);
addq (&q, 25);
addq (&q, 2i);

addq (&q, 17);

maddq (&q, 18);

printf (“Elements in the circular queue:\n”);

display (&q);

n = delq (&q);

if (n != NULL)

;printf (“Item deleted: %d\n”, n);

n = delq (&q);

if (n != NULL)

printf (“Item deleted: %d\n”, n);



printf (“Elements in the circular queue after deletion:\n”); 

display (&q);

addq (&q, 9);

addq (&q, 20);

printf (“Elements in the circular queue after addition:\n”); 

display (&q);

return 0;

}

/*  initializes an empty queue */  

void initq (struct queue *pq)  

{
int i;

pq->front = pq->rear = -1;

for (i = 0; i < MAX; i++)

pq->arr[ i ] = 0;

}

/*  adds an element to the queue */  

void addq (struct queue *pq,  int item)

{
if ((pq->rear == MAX - 1 && pq->front == 0) ||



(pq->rear + 1 == pq->front))

{
printf (“Queue is full\n”);

return;

}

if (pq->rear == MAX - 1) 

pq->rear = o;

else

(pq->rear)++;

pq->arr[ pq->rear ] = item;

if (pq->front == -1) 

pq->front = 0;

}

/*  removes an element from the queue */  

int delq (struct queue *pq)

{
int data;

if (pq->front == -1)

{



printf (“Queue is empty\n”); 

return NULL;

}

data = pq->arr[ pq->front ]; 

pq->arr[ pq->front ] = o;

if (pq->front == pq->rear)

{
pq->front = -1;

pq->rear = -1;

}
else

{
if (pq->front == MAX - 1) 

pq->front = 0;

else

(pq->front)++;

}

return data;

}

/*  displays element in a queue */  

void display (struct queue *pq)

{
int i;



for (i = o; i < MAX; i++) 

printf (“%d\t”, pq->arr[ i ]);

printf (“\n”);

}

Output:

Elements in the circular queue:

14 22 13 -6 25 21 17 18

Item deleted: 14

Item deleted: 22

Elements in the circular queue after deletion:

0 0 13 -6 25 21 17 18

Elements in the circular queue after addition:

9 20 13 -6 25 21 17 18



Here the array arr is used to store the elements of the circular 

queue. The functions addq() and delqO are used to add and 

remove the elements from the queue respectively. The function 

display() displays the existing elements of the queue. The initial 

values of front and rear are set to -1, to mark the queue as 

empty.

In first we have called the addq() function 8 times to insert 

elements in the circular queue. In this function, following cases 

are considered before adding an element to the queue.

(a) First we have checked whether or not the array is full. The 

message ‘Queue is full’ gets displayed if front and rear are in 

adjacent locations with rear following the

(b) If the value of front is -1 then it indicates that the queue 

is empty and the element to be added would be the first 

element in the queue. The values of front and rear in such a 

case are set to 0 and the new element gets placed at the 

position.

(c) It may also happen that some of the positions at the front 

end of the array are vacant. This happens if we have deleted 

some elements from the queue, when the value of rear is 

MAX - 1 and the value of front is greater than 0. In such a 

case the value of rear is set to 0 and the element to be 

added is added at this position.



(d) The element is added at the rear position in case the 

value of front is either equal to or greater than o and the 

value of rear is less than MAX - 1.

Thus, after adding 8 elements the value of front and rear 

become 0 and 7 respectively. The display() function displays 

the elements in the queue. Figure 6-5 shows the circular queue 

after adding 8 elements.

Figure 6-5. Circular queue after addition of 8 elements.

Next we have called de|q() function twice to remove 2 

elements from the queue. The following conditions are checked 

while deleting an element.



(a) First we have checked whether or not the queue is empty. 

The value of front in our case is 7, hence an element at the 

front position would get deleted.

(b) Next, we have checked if the value of front has become 

equal to If it has, then the element we wish to remove is the 

only element of the queue. On removal of this element the 

queue would become empty and hence the values of front and 

rear are set to -1.

On deleting an element from the queue the value of front is 

set to 0 if it is equal to MAX - 1. Otherwise front is simply 

incremented by 1. Figure 6-6 shows the circular queue after 

deleting two elements from the queue that was earlier filled 

with 8 elements.



Figure 6-6. Circular queue after deleting two elements.



Deque

The word deque is a short form of double-ended queue and 

defines a data structure in which items can be added or 

deleted at either the front or rear end, but no changes can be 

made elsewhere in the list. Thus a deque is a generalization of 

both a stack and a queue. Figure 6-7 shows the representation 

of a deque.

Figure 6-7. Representation of a deque.

There are two variations of a deque—an Input-restricted deque 

and an Output-restricted deque.

An Input restricted deque restricts the insertion of elements at 

one end only, but the deletion of elements can be done at



both the ends of a queue.

On the contrary, an output-restricted deque, restricts the 

deletion of elements at one end only, and allows insertion to 

be done at both the ends of a deque.



Priority Queue

A priority queue is a collection of elements where the elements 

are stored according to their priority levels. The order in which 

the elements should get added or removed is decided by the 

priority of the element. Following rules are applied to maintain 

a priority queue.

(a) The element with a higher priority is processed before any 

element of lower priority.

(b) If there are elements with the same priority, then the 

element added first in the queue would get processed.

Priority queues are used for implementing job scheduling by 

the operating system where jobs with higher priorities are to 

be processed first. Another application of priority queues is 

simulation systems where priority corresponds to event times.



Chapter Bullets

Summary of chapter

(a) Queue data structure is a FIFO list in which addition of 

new elements takes place at the rear end of the queue and 

deletion of existing elements takes place at its front end.

(b) Queue data structure can be implemented using an array 

or a linked list.

(c) If queue is implemented as a linked list, then addition 

operation is like adding a new node at the end of the linked 

list.

(d) If queue is implemented as a linked list, then deletion 

operation is like deleting an existing node from the beginning 

of the linked list.

(e) There exist special types of queues like deque and priority 

queues.



Check Your Progress

Exercise - Level I

[A] Fill in the blanks:

(a) For a queue built using an array and containing n 

elements, the value of front would be  and rear 

would be .

(b) In a circular queue implemented using an array and 

holding 5 elements, if front is equal to 3 and rear is equal to 

then the new element would get placed at  position.

(c) A queue is called  when addition as well as 

deletion of elements can take place at both the ends.

(d) An is a queue in which insertion of an element

takes place at one end only but deletion occurs at both the 

ends.



(e) An  is a queue in which insertion of an element 

takes place at both the ends but deletion occurs at one end 

only.



Sharpen Your Skills

Exercise - Level II

[B] Choose the correct alternative for the following:

(a) Queue is a

(1) Linear data structure

(2) Non-linear data structure

(3) Both (1) and (2)

(4) None of the above

(b) The end at which a new element gets added to a queue is 

called

(1) front

(2) rear

(3) toP
(4) bottom



(c) The end from which an element gets removed from the 

queue is called

(1) front

(2) rear

(3) toP
(4) bottom

[C] Which of the following applications would be suitable for a 

queue.

(1) A program is to keep track of patients as they check into 

a clinic, assigning them to doctors on a first-come, first-served 

basis.

(2) An inventory of parts is to be processed by part number.

(3) A dictionary of words used by spelling checker is to be 

created.

(4) Customers are to take numbers at a bakery and be served 

in order when their numbers come up.



Coding Interview Questions

Exercise Level III

[D] Write programs for the following:

(a) Write a program to represent a deque using a linked list. 

Also write functions to add and delete elements from the 

deque.

(b) Write a menu-driven program to simulate processing of 

batch jobs by a computer system. The scheduling of these jobs 

should be handled using a priority queue. The program should 

allow user to add or remove items from the queue. It should 

also display current status i.e. the total number of items in the 

queue.

(c) Write a program to copy one queue to another when the 

queue is implemented as a linked list.



Case Scenario Exercise

Priority Queues

Suppose there are several jobs to be performed with each job 

having a priority value of 1, 2, 3, 4, etc. Write a program that 

receives the job descriptions and the priorities. Create as many 

queues as the number of priorities and queue up the jobs into 

appropriate queues. For example, suppose the priorities are 1, 

2, 3, and 4 and the data to be entered is as follows:

ABC, 2, XYZ, 1, PQR, 1, RTZ, 3, CBZ, 2, QQQ, 3, XXX, 4, 

RRR, 1

Then arrange these jobs as shown below:

Q1: XYZ, 1, PQR, 1, RRR, 1

Q2: ABC, 2, CBZ, 2

Q3: RTZ, 3, QQQ, 3



Q4: XXX, 4

The order of processing should be: Qi, Q2, Q3, Q4. Write a 

program to simulate the above problem.



Chapter 07

Trees

Of Herbs, Shrubs and Bushes

Why This Chapter Matters?

Nature is man’s best teacher. In every walk of life man has 

explored nature, learnt his lessons and then applied the 

knowledge that nature offered him to solve every-day problems 

that he faced at work- place. It isn’t without reason that there 

are data structures like Trees, Binary Trees, Search Trees, AVL 

Trees, Forests, etc. Trees are non-linear data structures. They 

have many applications in Computer Science, hence you must 

understand them comprehensively.



If large input data is stored in a linked list then time required 

to access the data is prohibitive. In such cases a data 

structure called Tree is used. This data structure is often used 

in constructing the file systems and evaluation of arithmetic 

expressions. This data structure gives a running time of O (log 

n) for most operations.

Like linked lists, a tree also consists of several nodes. Each 

node may contain links that point to other nodes in the tree. 

So a tree can be used to represent a person and all of his 

descendants as shown in Figure

Figure 7-1. A tree



Note that each node in this tree contains a name for data and 

one or more pointers to the other tree nodes. Although a tree 

may contain any number of pointers to the other tree nodes, a 

large number of have at the most two pointers to the other 

tree nodes. Such trees are called Binary



Binary Trees

Let us begin our study of binary trees by discussing some 

basic concepts and terminology.

A binary tree is a finite set of elements that is either empty or 

is partitioned into three disjoint sub-sets. The first sub-set 

contains a single element called the root of the tree. The other 

two sub-sets are themselves binary trees, called the left and 

right sub-trees of the original tree. A left or right sub-tree can 

be empty.

Each element of a binary tree is called a node of the tree. The 

tree shown in Figure 7-2(a) consists of nine nodes with A as 

its root. Its left sub-tree is rooted at B and its right sub-tree 

is rooted at This is indicated by the two branches emanating 

from A to B on the left and to C on the right. The absence 

of a branch indicates an empty sub-tree. For example, the left 

sub-tree of the binary tree rooted at C and the right sub-tree 

of the binary tree rooted at E are both empty. The binary trees 

rooted at H and I have empty right and left sub-trees.

Figure 7-2(b) illustrates a structure that is not a binary tree.



Figure 7-2. Binary tree.

Let us now learn some terminology used in association with 

binary trees.

Parent, Child : If A is the root of a binary tree and B is the 

root of its left or right sub-tree then, A is parent of B and B 

is left or right child of

Leaf : A node that has no children (such as or I in Figure is 

called a

Ancestor, Descendant : Any node is an ancestor of node n2 

(and n2 is a descendant of if n1 is either the parent of n2 or 



the parent of some ancestor of For example, in the tree shown 

in Figure A is an ancestor of

Climbing, Descending : The root of the tree is at the top and 

the leaves at the bottom. Going from the leaves to the root is 

called climbing the tree, and going from the root to the leaves 

is called descending the tree.

Degree of a node : The number of nodes connected to a 

particular node is called the degree of a particular node. For 

example, in Figure 7-2(a) the node B has a degree 3. The 

degree of a leaf node is always one.

Level : The root of the tree has level 0. Level of any other 

node in the tree is one more than the level of its parent. For 

example, in the binary tree shown in Figure node E is at level 

2 and node H is at level 3.

Depth : Depth of a node is the maximum number of links 

from root to that node. The depth of a binary tree is the 

maximum level of any leaf in the tree. This equals the length 

of the longest path from the root to any leaf. Thus the depth 

of the tree shown in Figure 7-2(a) is 3.



Height : Height of a node is the maximum number of links 

from that node to leaf node. Height of a binary tree is height 

of its root node.

Strictly binary tree : If every non-leaf node in a binary tree has 

non- empty left and right sub-trees, the tree is termed a 

strictly binary Thus the tree shown in Figure 7-3(a) is a strictly 

binary tree.

Complete binary tree : A complete binary tree (refer Figure has 

maximum number of possible nodes at all levels except the 

last level, and all the nodes of the last level appear as far left 

as possible.

Figure 7-3. Strictly and Complete binary tree.



Representation of Binary Trees in Memory

There are two ways by which we can represent a binary tree— 

Linked representation and Array representation. Both these ways 

are discussed below.



Linked Representation of Binary Trees

In liked representation each node contains addresses of its left 

child and right child. If a child is absent, the link contains a 

NULL value. For example, in Figure 7-4 _the link fields of node 

C contain the address of the nodes F and The left link field of 

node E contains the address of the node Similarly, the right 

link contains a NULL as E has no right child. The nodes G 

and H contain a NULL value in both their link fields, as these 

are the leaf nodes.

Figure 7-4. Linked representation of a Binary tree.



Array Representation of Binary Trees

When a binary tree is represented by arrays three separate 

arrays are required. One array arr stores the data fields of the 

trees. The other two arrays Ic and rc represents the left child 

and right child of the nodes. Figure 7-5 shows these three 

arrays, which represents the tree shown in Figure

Figure 7-5. Array representation of a binary tree.

The array Ic and rc contains the index of the array arr where 

the data is present. If the node does not have any left child 

or right child then the element of the array Ic or rc contains a 

value -1. The element of the array arr contains the root node 

data. Some elements of the array arr contain ‘\o’ which 

represents an empty child.



Suppose we wish to find the left and right child of the node 

E. Then we need to find the value present at index 4 in array 

Ic and rc since E is present at index 4 in the array The value 

present at index 4 in the array Ic is 9, which is the index 

position of node H in the array arr. So the left child of the 

node E is H. The right child of the node E is empty because 

the value present at index 4 in the array rc is -1.

We can also represent a binary tree using one single array. For 

this, numbers are given to each node starting from the root 

node— 0 to root node, 1 to the left node of the first level, 

then 2 to the second node from left of the first level and so 

on. In other words, the nodes are numbered from left to right 

level by level from top to bottom. Figure 7- 6(a) shows the 

numbers given to each node in the tree. Note that while 

numbering the nodes of the tree, empty nodes are also taken 

into account.



Figure 7-6. Array representation of binary tree using one array.

It can be observed that if n is the number given to the node 

then its left child is at position (2n + 1) in the array and right 

child at position (2n + If any node doesn’t have a left or a 

right child then an empty node is assumed and a value ‘\o’ is 

stored at that index in the array.



Binary Search Trees

Binary search tree (BST) is a variant of binary tree in which 

the nodes are arranged in a particular manner. A BST has the 

property that all the elements in the left sub-tree of a node n 

are less than n all the elements in the right sub-tree of n are 

greater than or equal to Figure 7-7 shows a few BSTs.

Figure 7-7. Sample BSTs.



Operations on a Binary Search Tree

There are many operations that can be performed on binary 

search trees. Insertion, Traversal, Searching and Deletion are 

the most basic amongst them. Let us now discuss these 

operations in detail.



Insertion of a Node

While inserting a node in a BST the value being inserted is 

compared with the root node. A left sub-tree is taken if the 

value is smaller than the root node and a right sub-tree if it is 

greater or equal to the node. This operation is repeated at 

each level till a node is found whose left or right sub-tree is 

empty. Finally, the new node is appropriately made the left or 

right child of this node.

If the input list is 3, 9, 1, 4, 7, 11, then Figure 7-8 shows the 

stepwise insertion of new nodes in a BST.



Figure 7-8. Creation of a Binary Search Tree.



Traversal of a BST

The traversal of a BST is to visit each node in the tree exactly 

once. There are three popular methods of BST traversal— in­

order traversal, pre-order traversal and post-order traversal. In 

each of these methods nothing needs be done to traverse an 

empty BST.

Recall that each sub-tree of a BST is a BST itself. Thus, 

traversing a BST involves visiting the root node and traversing 

its left and right sub-trees. The only difference among the 

methods is the order in which these three operations are 

performed.

To traverse a non-empty BST in pre-order, we perform the 

following three operations:

(1) Visit the root

(2) Traverse the left sub-tree in pre-order

(3) Traverse the right sub-tree in pre-order

To traverse a non-empty BST in in-order (or symmetric order):



(i) Traverse the left sub-tree in in-order

(2) Visit the root

(3) Traverse the right sub-tree in in-order

To traverse a non-empty BST in post-order:

(1) Travesrse the left sub-tree in post-order

(2) Traverse the right sub-tree in post-order

(3) Visit the root

Figure 7-9 _shows the order of visiting nodes using these 

traversal methods for the given BST.

Figure 7-9. Traversals of binary tree.



Searching of a Node

To search any node in a binary tree, initially the value to be 

searched is compared with the root node. If they match then 

the search is successful. If the value is greater than the root 

node then searching process proceeds in the right sub-tree of 

the root node, otherwise, it proceeds in the left sub-tree of the 

root node.

BST search operation is very efficient because while searching 

an element we do not need to traverse the entire tree. At 

every node, we get a hint regarding which sub-tree to search 

in. For example, in the BST shown in Figure 7-8 step 6, if we 

have to search for 7, then we know that we have to scan only 

the right sub-tree since 7 is greater than 3. Likewise, when we 

descend down the tree and reach 9 we have to search only its 

left sub-tree as 7 is less than 9.

Since at every step we eliminate half of the sub-tree from the 

search process the average search time is Same applies to 

insertion or deletion of an element in a BST. As against this, 

in a sorted array, even though searching can be done in time, 

insertion and deletion times are high. In contrast, insertion and



deletion of elements in a linked list is easier, but searching 

takes O(n) time.

Due to this efficiency BSTs are widely used in dictionary 

problems where insertion, deletion and search are done on the 

basis of some indexed key value.



Deletion of a Node

While deleting a node from a BST there are four possible 

cases that we need to consider. These are discussed below.

Case (a): Node to be deleted is absent.

If on traversing the BST the node is not found then we merely 

need to display the message that the node is absent.

Case (b): Node to be deleted has no children

In this case since the node to be deleted has no children the 

memory occupied by it should be freed and either the left link 

or the right link of the parent of this node should be set to 

Which link should be set to NULL depends upon whether the 

node being deleted is a left child or a right child of its parent.

Case (c): Node to be deleted has one child

In this case we have to adjust the pointer of the parent of the 

node to be deleted such that after deletion it points to the 

child of the node being deleted. This is shown in Figure



Figure 7-10. Deletion of a node that has only one child.

Case (d): Node to be deleted has two children

This is a more complex case. Consider node 23 shown in 

Figure The in-order successor of the node 23 is node 45. The 

in-order successor should now be copied into the node to be 

deleted and a pointer should be set up pointing to the in­

order successor (node 45). The in-order successor would always 

have one or zero child. This in-order successor should then be 

deleted using the same procedure as for deleting a one child 

or a zero child node.



Figure 7-11. Deletion of a node that has both left and right child.

A program that implements the different operations on a BST 

is given below:

Honest Solid Code {C}

Program 7-1. Implementation of various BST operations

#include

#include

#define TRUE 1

#define FALSE 0 

struct btreenode 

{
struct btreenode *leftchild;



int data;

struct btreenode *rightchild;

};

void insert (struct btreenode **,  int);

void inorder (struct btreenode *);

void preorder (struct btreenode *sr);

void postorder (struct btreenode *sr);

int search (struct btreenode *,  int);

void del (struct btreenode **,  int);

void locate (struct btreenode **,  int, struct btreenode **,  struct 

btreenode **,  int *);

int main()

{
struct btreenode *bt;

int i = 0, a[ ] = { 20, 17, 6, 18, 8, 5, 7, 10, 13 };

int flag;

bt = NULL; /*  empty tree */  

while (i <= 8)

{
insert (&bt, a[ i ]);

i++;

}
printf (“BST after insertion:”);

printf (“\nInorder:”);



inorder (bt);

printf (“\nPreorder:”);

preorder (bt);

printf (“\nPostorder:”);

postorder (bt);

flag = search (bt, 13);

if (flag == 1)

printf (“\nNode 13 found in BST”);

else

printf (“\nNode 13 not found in BST”);

del (&bt, 10);

printf (“\nBST after deleting 10:\n”); 

inorder (bt);

del (&bt, 14);

printf (“\nBST after deleting 14:\n”);

inorder (bt);

del (&bt, 8);

printf (“\nBST after deleting 8:\n”); 

inorder (bt);



del (&bt, 13);

printf (“\nBinary tree after deleting 13:\n”); 

inorder (bt);

return 0;

}

/*  inserts a new node in BST */

void insert (struct btreenode **sr,  int num)

{
if (*sr  == NULL)

{

*sr = (struct btreenode *)  malloc (sizeof (struct 

btreenode));

(*sr)->leftchild  = NULL;

(*sr)->data  = num;

(*sr)->rightchild  = NULL;

}

else /*  search the node to which new node will be attached 

*/

{

/*  if new data is less, traverse to left */

if (num < (*sr)->data)

insert (&((*sr)->leftchild),  num);

else



/*  else traverse to right */  

insert (&((*sr)->rightchild),  num);

}

}

/*  traverse BST in Left-Root-Right fashion */  

void inorder (struct btreenode *sr)

{
if (sr != NULL)

{
inorder (sr->leftchild);

printf (“%d”, sr->data);

inorder (sr->rightchild);

}

}

/*  traverse BST in Root-Left-Right fashion */  

void preorder (struct btreenode *sr)

{
if (sr != NULL)

{
printf (“%d”, sr->data);

preorder (sr->leftchild);

preorder (sr->rightchild);

}



}

/*  traverse BST in Left-Right-Root fashion */  

void postorder (struct btreenode *sr)

{
if (sr != NULL)

{
postorder (sr->leftchild);

postorder (sr->rightchild);

printf (“%d”, sr->data);

}

}

/*  search BST */

int search (struct btreenode *sr,  int num)

{

while (sr != NULL)

{
if (num == sr->data)

return 1;

else if (num < sr->data)

sr = sr->leftchild;

else

sr = sr->rightchild;

}
return 0;



}

/*  deletes a node from the BST */  

void del (struct btreenode **root,  int num)

{
int found;

struct btreenode *parent,  *x,  *xsucc;

/*  if tree is empty */  

if (*root  == NULL) 

{
printf (“Tree is empty\n”); 

return;

}

parent = x = NULL;

/*  search the node to be deleted */  

locate (root, num, &parent, &x, &found);

/*  if the node to deleted is not found */

if (found == FALSE)

{

printf (“\nNode to be deleted not found\n”); 

return;

}



/*  if the node to be deleted has two children */  

if (x->leftchild != NULL && x->rightchild != NULL) 

{
parent = x;

xsucc = x->rightchild;

while (xsucc->leftchild != NULL)

{
parent = xsucc;

xsucc = xsucc->leftchild;

}

x->data = xsucc->data;

x = xsucc;

}

/*  if the node to be deleted has no child */  

if (x->leftchild == NULL && x->rightchild == NULL) 

{
if (parent->rightchild == x) 

parent->rightchild = NULL;

else

parent->leftchild = NULL;



free (x); 

return;

}

/*  if the node to be deleted has only right child */  

if (x->leftchild == NULL && x->rightchild != NULL) 

{

if (parent->leftchild == x) 

parent->leftchild = x->rightchild;

else

parent->rightchild = x->rightchild;

free (x); 

return;

}
/*  if the node to be deleted has only left child */  

if (x->leftchild != NULL && x->rightchild == NULL) 

{
if (parent->leftchild == x) 

parent->leftchild = x->leftchild;

else

parent->rightchild = x->leftchild;

free (x); 

return;

}



}

/*  returns address of the node to be deleted, address of its 

parent and whether node is found or not */

*par = q;

if (q->data > num)

void locate (struct btreenode **root,  int num, struct btreenode

**par,

struct btreenode **x,  int *found)

{
struct btreenode *q;

q = *root;

*found = FALSE;

*par = NULL;

while (q != NULL)

{

/*  if the node to be deleted is found */

if (q->data == num)

{

*found = TRUE;

*x = q;
return;

}



q = q->leftchild;

else

q = q->rightchild;

}

}

Output:

BST after insertion:

Inorder: 5 6 7 8 10 13 17 18 20

Preorder: 20 17 6 5 8 7 10 13 18

Postorder: 5 7 13 10 8 6 18 17 20

Node 13 found in BST

BST after deleting 10:

5 6 7 8 13 17 18 20

Node to be deleted not found

BST after deleting 14:



5 6 7 8 13 17 18 20

BST after deleting 8:

5 6 7 13 17 18 20

Binary tree after deleting 13:

5 6 7 17 18 20

In main(), bt, the pointer to the root node of BST is set to 

NULL indicating the BST is empty to begin with. Then the 

insert() function is called repeatedly to insert nodes in the BST. 

Two arguments are passed to of pointer to the root node of 

BST and data that is to be inserted.

In the insert() function it is ascertained whether BST is empty 

or not. If it is empty then a new node is created and the data 

to be inserted is stored in it. The left and right child of this 

new node is set with a NULL value, as this is the first node 

being inserted.



If BST is not empty then the current node is compared with 

the data to be inserted and insert() function is called 

recursively to insert the node in the left/right sub-tree. Thus 

insert() continues to move down the levels of BST until it 

reaches a leaf node. When it does, the new node gets inserted 

in the left/right sub-tree.

The function inorder() is called to traverse BST as per in-order 

traversal. This function receives address of the root node. A 

condition is checked whether the pointer is If the pointer is 

not NULL then a recursive call is made first for traversing the 

left sub-tree and then for traversing the right sub-tree. In 

between these two recursive calls, the data of the current node 

is printed.

The functions preorder() and postorder() work in the same 

manner except for a small difference. In case of the function 

preorder() initially node’s data is printed then the recursive 

calls are made for the left and right sub-trees. On the other 

hand, in case of postorder() firstly the recursive calls for left 

and right sub-trees are made and then the node’s data is 

printed.

The function search() searches for the given data in the BST. 

The searching is done in a while loop. If the node is found 

then 1 is returned. If not, then we either go to the left or 



right sub-tree depending upon whether the node being 

searched has a value less than or greater than the current 

node’s data. If control goes beyond the while loop it means 

that node being searched is not present in the BST. In this 

case 0 is returned.

The del() function is used to delete a node in BST. It calls the 

function locate() to search the node to be deleted. If the node 

is found, locate() sets up the address of the node to be 

deleted in address of its parent in parent and TRUE/FALSE in 

found depending upon whether the node is found or not. If 

node to be deleted is not found then an appropriate message 

is displayed.

If the node to be deleted is found then one of the following 

four cases would arise:

(a) the node has two children

(b) the node has no child

(c) the node has only right child

(d) the node has only left child



How each of these cases is tackled has already been discussed 

in the previous section.



Reconstruction of a Binary Tree

If we know the sequence of nodes obtained through in- 

order/pre- order/post-order traversal it may not be feasible to 

reconstruct the binary tree. This is because two different binary 

trees may yield same sequence of nodes when traversed using 

post-order traversal. Similarly, in-order or pre-order traversal of 

different binary trees may yield the same sequence of nodes. 

However, we can construct a unique binary tree if the results 

of in-order and pre-order traversal are available. Let us 

understand this with the help of following set of in-order and 

pre-order traversal results:

In-order traversal: 4, 7, 2, 8, 5, 1, 6, 9, 3 

Pre-order traversal: 1, 2, 4, 7, 5, 8, 3, 6, 9

We know that the first value in the pre-order traversal gives us 

the root of the binary tree. So the node with data 1 becomes 

the root of the binary tree. In in-order traversal, initially the left 

sub-tree is traversed then the root node and then the right 

sub-tree. So the data before 1 in the in-order list (i.e. 4, 7, 2, 

8, 5) forms the left sub-tree and the data after 1 in the in­

order list (i.e. 6, 9, 3) forms the right sub-tree. In Figure 7-



12(a) the structure of tree is shown after separating the tree in 

left and right sub-trees.

Now look at the left sub-tree. The data in pre-order list is 2, 

so the root node of the left sub-tree is 2. Hence data before 2 

in the in-order list (i.e. 4, 7) will form the left sub-tree of the 

node that contains a value 2. The data that comes to the right 

of 2 in the in-order list (i.e. 8, 5) forms the right sub-tree of 

the node with value 2. Figure 7-12(b) shows structure of tree 

after expanding the left and right sub-tree of the node that 

contains a value 2.



Figure 7-12. Reconstruction of a binary tree.



Now the next data in pre-order list is 4, so the root node of 

the left sub- tree of the node that contains a value 2 is 4. 

The data before 4 in the in- order list forms the left sub-tree 

of the node that contains a value 4. But as there is no data 

present before 4 in in-order list, the left sub-tree of the node 

with value 4 is empty. The data that comes to the right of 4 

in the in-order list (i.e. 7) forms the right sub-tree of the node 

that contains a value 4. Figure 7-12(c) shows structure of tree 

after expanding the left and right sub-tree of the node that 

contains a value 4.

In the same way one by one all the data are picked from the 

pre-order list and are placed and their respective sub-trees are 

constructed. Figure 7-12(d) to 7-12(f) shows each step of this 

construction process.



Threaded Binary Tree

In the linked representation of a binary tree, many nodes 

contain a NULL pointer, either in their left or right fields or in 

both. Instead of wasting space in storing a NULL pointer, it 

can be efficiently used to store pointer to the in-order 

predecessor or the in-order successor of the node. These 

special pointers are called threads and binary trees containing 

threads are called threaded binary

In threaded binary trees the pointers that point to in-order 

successor of a node are called right Likewise, pointers that 

point to in-order predecessor of a node are called left The 

threads are typically denoted using arrows as shown in Figure



Figure 7-13. Threaded binary tree.

Figure 7-i3(b) shows a head node containing a value -999. The 

entire binary tree is shown as the left child of this head node. 

The right link of the head node points to itself. This head 

node is useful while creating programs for threaded binary tree. 

For example, while traversing the tree we can start with head 

node, visit each node and stop the traversal when we reach 

the head node once again. Note that in Figure 7-13(b) 

predecessor of node D and successor of node I point to the 

head node as they happen to be first and last node in the in­

order traversal sequence.

In a program to help us distinguish between a pointer and a 

thread, the structure that represents a node contains two



additional fields, leftflag and If they contain a true they 

represent a thread, and if they contain a false, then they 

represent a pointer to a child node. The structure declaration 

for a node would be as shown below.

struct thtree

{
enum boolean leftflag;

struct thtree *left;

int data;

struct thtree *right;

enum boolean rightflag;

};

A threaded binary tree created using this structure is shown in

Figure



Figure 7-14. Threaded binary tree showing links and threads.

Let us now write a program that inserts nodes in a threaded 

binary tree and visits each node in in-order traversal.

Honest Solid Code {C}

Program 7-2. Implementation of threaded binary tree

#include

#include

enum boolean { link, thread };

struct thtree

{
enum boolean leftflag;

struct thtree *left;

int data;

struct thtree *right;

enum boolean rightflag;

};
void insert (struct thtree **,  int);

void inorder (struct thtree *);



int main()

{

struct thtree *th_head;

th_head = NULL; /*  empty tree */

insert (&th_head, 11);

insert (&th_head, 9);

insert (&th_head, 13);

insert (&th_head, 8);

insert (&th_head, 10);

insert (&th_head, 12);

insert (&th_head, 14);

insert (&th_head, 15);

insert (&th_head, 7);

printf (“Threaded binary tree:\n”);

inorder (th_head);

return 0;

}

/*  inserts a node in a threaded binary tree */  

void insert (struct thtree **s,  int num)

{



struct thtree *p,  *z,  *head  = *s;

*s = head;

z->left = head;

z->right = head;

}
else /* if tree is non-empty */

{
p = head->left;

z = (struct thtree *)  malloc (sizeof (struct thtree)); z->leftflag = 

thread;

z->data = num;

z->rightflag = thread;

/*  if tree is empty */
if (*s  == NULL)

{
head = (struct thtree *)  malloc (sizeof (struct thtree));

/*  entire tree is treated as left sub-tree of the head node */  

head->leftflag = link;

head->left = z; /*  z becomes leftchild of the head node */

head->data = -9999; /*  no data */

head->right = head; /*  right link points to head node */  

head->rightflag = link;



/*  traverse till we reach head */

while (p != head)

{
if (p->data > num)

{
if (p->leftflag != thread) /*  check for a thread */  

p = p->left;

else

{

z->left = p->left;

p->left = z;

p->leftflag = link;

z->rightflag = thread;

z->right = p;

return;

}

}

else

{
if (p->data < num)

{
if (p->rightflag != thread)

p = p->right;

else



{
z->right = p->right;

p->right = z;

p->rightflag = link;

z->leftflag = thread;

z->left = p;

return;

}

}

}

}

}

}

/*  traverses the threaded binary tree in inorder */

void inorder (struct thtree *root)

{
struct thtree *p;

p = root->left;

while (p != root)

{
while (p->leftflag == link)

p = p->left;

printf (“%d\t”, p->data);



while (p->rightflag == thread) 

{
p = p->right;

if (p == root)

break;

printf (“%d\t”, p->data);

}
p = p->right;

}

}

Output:

Threaded binary tree:

7 8 9 10 11 12 13 14 15

Now, a brief explanation about the program. We have used an 

enumerated data type boolean to store information whether the 

pointer is a thread or a link. If rightflag is a thread it means 

that the node has no left/right child.



To insert a new node in the threaded BST, the insert() function 

is called. It first checks for an empty tree. If the tree is empty 

then firstly a head node is created. Then the node being 

inserted is made its left sub-tree with both links set up as 

threads. Otherwise, the node is inserted at an appropriate 

place by traversing the tree such that the BST nature of the 

tree is preserved.

The threaded binary tree’s in-order traversal is different than a 

normal tree in the sense that we do not have to stack the 

pointers to nodes visited earlier so as to reach them later. This 

is avoided by using the threads to ancestors. The procedure to 

achieve this is as follows:

This procedure begins by first going to the left sub-tree of the 

head node. Then through a while loop we follow the left 

pointers until a thread to a predecessor is found. On 

encountering this thread, we print the data for the leftmost 

node. Next, through another while loop we follow the thread 

back up to the ancestor node and print this ancestor node’s 

data. This way we continue to move up till rightflag is a 

thread. When we reach a link we go to the right child and 

again follow the same procedure by checking its left sub-tree.

As we follow these steps we are sometimes likely to reach the 

head node, and that is the time to stop the procedure.



AVL Trees

We know that height of a BST is the maximum number of 

edges from leaf node to root node. Note that if we change the 

order of insertion of nodes in a BST, we may get BSTs of 

different heights. As a confirmation, you may try creating two 

BSTs using the insertion order as 30, 40, 10, 50, 20, 5, 35 and 

50, 40, 35, 30, 20, 10, 5. In the first case you would get a 

BST of height 2 and in the second case a BST of height 6.

Also, search time in a BST depends upon its height. Searching 

is efficient if the heights of both left and right sub-trees of any 

node are equal. However, frequent insertions and deletions in a 

BST are likely to make it unbalanced. The efficiency of 

searching is ideal if the difference between the heights of left 

and right sub-trees of all the nodes in a BST is at the most 

one. Such a binary search tree is called a Balanced It was 

invented in the year 1962 by two Russian mathematicians—G. 

M. Adelson-Velskii and E. M. Landis. Hence such trees are 

also known as AVL trees. Figure 7-15 shows some examples of 

AVL trees.



Figure 7-15. AVL trees.

The balance factor of a node is calculated as height of the left 

sub-tree minus height of the right sub-tree of the node. The 

balance factor of any node in an AVL BST should be -1, 0 or 

1. If it is other than these three values then the tree is not 

balanced.

To re-balance and make it an AVL tree the nodes need to be 

properly adjusted. This is done by doing one of the 4 types of 

rotations—Left rotation, Right rotation, Left Right rotation and 

Right Left rotation. Of these, first two involve a 1 step process, 

whereas the next two involve a 2 step process.

Figure 7-16 shows LL, RR, LR and RL imbalances and how to 

correct them by doing appropriate rotations.





Figure 7-16. LL, RR, LR and RL imbalances and rotations.

In general on inserting a new node in an AVL BST we should 

carry out the following steps:

Step 1 : Calculate balance factors of all nodes

Step 2 : Identify type of imbalance 

Step 3 : Perform rotation (s)

Let me explain the imbalances and the rotations with the help 

of cases shown in Figure Let us take the first case. Assume 

that BST already contains nodes 30 and 20. When we insert 

node 10, it is inserted to the left of 30 and to the left of 20. 

Now calculate the balance factors. They turn out to be 2, 1 

and 0 for nodes 30, 20 and 10 respectively. Out of these, 

balance factor 2 is unacceptable. Since this was caused by 

inserting 10 to the left of 30 and to the left of 20, this 

imbalance is called LL imbalance. To correct it, we need to do 

right rotation about 30. Imagine as if there is string attached 

to node 30 and we are pulling it to the right. The resultant 

BST has balance factors 0, 0 and 0. Thus the tree is now 

balanced. On similar lines RR imbalance and the left rotation 

can be explained.



In the third case when we insert 20 it is inserted to the left 

of 30 and to the right of 20. Balance factors turn out to be 2, 

-1 and 0 for nodes 30, 10 and 20 respectively. To correct the 

imbalance we need to perform a left rotation around 10. The 

resultant BST has balance factors of 2, 1 and 0. To correct the 

imbalance we should now perform a right rotation around 30. 

The resultant BST has satisfactory balance factors. On similar 

lines the RL imbalance can be explained.

In all the four cases discussed above there was only one node 

that caused the imbalance. In some other case if 2 nodes are 

unbalanced then we need to rotate about the first ancestor 

that caused imbalance.



Binary Heap

Binary heap is a complete binary tree. It means all its levels 

are completely filled except perhaps last and at the last level 

nodes are as much to left as possible.

There are two types of heaps. If the value present at any node 

is greater than all its children then such a tree is called as the 

max heap or descending In case of a min heap or ascending 

heap the value present in any node is smaller than all its 

children. Figure 7-17 shows these two types of heaps.

Figure 7-17. Types of heaps.



One of the common operations carried out while using a 

binary heap is heapification of a node. While heapifying a node 

in a max heap, we need to ensure that all its children satisfy 

the heap property—Parent >= Left child, Right child. This 

operation involves following steps:

(a) Pick maximum out of given node, and its left and right 

child

(b) If maximum is root, do nothing

(c) If maximum is left, exchange root with left and heapify left 

node

(d) If maximum is right, exchange root with right and heapify 

right node

These operations are shown in Figure



Figure 7-18. Heapify operation.

Note that in the binary tree shown in Figure 7-18 node 13 and 

node 9 were violating the heap property. While heapifying 13, 

maximum out of 13, 1, and 90 is 90. Since 90 is the right 

child it is exchanged with 13. As against this, while heapifying 

9, maximum (25) turns out to be the left child. So 25 is 

exchanged with 9. Since after exchange 13 and 9 became child 

nodes, we did not have to heapify them further.

Figure 7-19 shows a case where further heapification is 

necessary.



Figure 7-19. Multi-step heapify operation.

Let us now see how see how we can create max heap out of 

a binary tree programmatically. We will be using an array to 

store the nodes in the binary tree.

Honest Solid Code {C}

Program 7-3. Construction of max heap 

#include 



void heapify (int [ ], int, int);

int main()

{

int arr[ ] = { 11, 2, 9, 13, 3, 25, 17, 1, 90, 57 };

int i, size;

size = 10;

for (i = size / 2 - 1; i >= 0; i--) 

heapify (arr, size, i);

for (i = 0; i < size; i ++) 

printf (“%d\t”, arr[ i ]);

} 

void heapify (int arr[ ], int sz, int i) 

{

int largest, lch, rch, t;

lch = 2 * i + 1;

rch = 2 * i + 2;

if (lch >= sz) 

return;



largest = i;

/*  if left child is larger than root */

if (lch < sz && arr[ lch ] > arr[ largest ])

largest = lch;

/*  if right child is larger than largest so far */  

if (rch < sz && arr[ rch ] > arr[ largest ])

largest = rch;

/*  if largest is not root */

if (largest != i)

{
t = arr[ i ];

arr[ i ] = arr[ largest ];

arr[ largest ] = t;

/*  heapify the affected sub-tree */

heapify (arr, sz, largest);

}

}

Output:



90 57 25 13 11 9 17 1 2 3

On execution of the program the binary tress shown in Figure 

7-2o(a) gets converted into a max heap shown in Figure

Figure 7-2.0. Conversion of binary tree to max heap.

The program begins by declaring an array that represents the 

binary tree. We know that in array representation of a binary 

tree, a node at location i has its left and right child at 

locations (2i + 1) and (2i + 2) respectively. Next, in the for 

loop we have repeatedly called heapify() moving level by level 

from leaf towards root, and at any level from right to left, 

starting from node at location size / 2 - The heapify() function 

finds the largest out of given node, and its left and right child.



If the given node turns out to be largest then it does nothing. 

But if left/right child turns out to be largest it exchanges the 

given node with left/right child and then proceeds to heapify 

the left/right child.

Binary heap is used in many areas of computer science. Some 

of these are listed below.

(a) Finding minimum spanning tree

(b) Finding the shortest path in a network of cities

(c) Implementing priority queues

(d) Merging K sorted arrays



Chapter Bullets

Summary of chapter

(a) Tree is a non-linear data structure.

(b) Each node in a binary tree can have 0, 1 or 2 children.

(c) Unlike trees in nature a binary tree has root at the top 

and leaves at the bottom with root node at level 0.

(d) Depth of a node is largest number of links from root to 

that node.

(e) Height of a node is largest number of links from leaf node 

to that node.

(f) A binary tree can be traversed in in-order, pre-order and 

post-order fashion

(g) If we know any two sequences out of in-order, pre-order 

and post- order, it is possible to construct the binary tree.



(h) A binary tree can be represented using array representation 

or linked representation.

(i) BST and AVL trees are special types of binary trees. They 

are created with an aim to improve the efficiency of working 

with binary trees.

(j) The property parent >= child is satisfied for all nodes in a 

max heap, and parent <= child for all nodes in a min heap.



Check Your Progress

Exercise - Level I

[A] State whether the following statements are True or False:

(a) A binary tree whose non-leaf nodes have left and the right 

child is a complete binary tree.

(b) The number of nodes attached to a particular node in a 

tree is called the degree of the node.

(c) To reconstruct a unique binary tree the in-order and pre­

order lists are required.

(d) The balance factor of a node in an AVL tree is 1 if the 

height of the left sub-tree is one less than the height of the 

right sub-tree.

[B] Fill in the blanks:



(a) In a threaded binary tree the address of the in-order 

predecessor and in-order successor are stored in  

and  child of the leaf node respectively.

(b) In any node of B-tree of order n the minimum required 

values and children are  and  respectively.

(c) In a heap if the largest element is present at the root 

node then it is called as the  heap.



Sharpen Your Skills

Exercise - Level II

[C] Answer the Following:

(a) Write a program that finds the height of a binary tree.

(b) Write a program that counts the number of nodes in a 

binary tree and the number of leaf nodes in a binary tree.

(c) Given a binary tree, create another binary tree that is 

mirror image of the given tree.

(d) Write a program that implements the non-recursive form of 

the functions preorder() and



Coding Interview Questions

Exercise Level III

[D] Answer the Following:

(a) Given any number, write a program to find whether that 

number is present in the binary tree. If present then find the 

level at which it is present.

(b) Given two binary trees, write a program that finds whether

- the two binary trees are similar

- the two binary trees are mirror images of each other.

(c) Write a program that finds the number of nodes in a 

binary tree at each level.

(d) Write a program that traverses a binary tree level by level, 

from left towards right.



(e) Write a function to insert a node t as a left child of any 

node s in a threaded binary tree.



Case Scenario Exercise

Dictionary implementation

We wish to maintain a dictionary of words as a binary tree. 

Each node should contain a word, its meaning, a synonym and 

an antonym. There must be a provision to insert a word, 

search a word and delete a word. It should be also possible 

to print the entire dictionary in alphabetical order.



Chapter 08

Graphs

spread Your Tentacles

Why This Chapter Matters!

Networking! Be it any walk of life, that’s the keyword today. 

Better your network, farther you would reach, and farther you 

spread your tentacles, better would be your network. And the 

crux of building and managing a network is hidden in a 

subject as innocuous as data structures in a topic called 

Graphs. Naturally, you must learn it to the best of your ability.



The only non-linear data structure that we have seen so far is 

tree. A tree in fact is a special type of graph. Graphs are data 

structures which have wide-ranging applications in real life. 

These include analysis of electrical circuits, finding shortest 

routes between cities, building a navigation system such as 

Google Maps, etc. To be able to understand and use the 

graph data structure one must first get familiar with the 

definitions and terms used in association with graphs. These 

are discussed below.



Definitions and Terminology

A graph consists of two sets v and e, where v is a finite, non­

empty set of vertices and e is a set of pairs of vertices. The 

pairs of vertices are called edges. A Graph can be of two 

types: Undirected graph and Directed graph.

In an undirected graph the pair of vertices representing any 

edge is unordered. Thus, the pairs (vi, v2) and (v2, vi) 

represent the same edge.

In a directed graph each edge is represented by a directed pair 

vi is the tail and v2 the head of the edge. Therefore, vi> and 

v2> represent two different edges. A directed graph is also 

called Digraph. In Figure 8-1 the graph Gi is an undirected 

graph whereas graph G2 is a directed graph.



Figure 8-1. Directed and undirected

Note that the edges of a directed graph are drawn with an 

arrow from the tail to the head.

When Google Maps uses graph, each intersection is a vertex 

and each segment of road is an edge. Any useful information 

may be associated with both vertices and edges. For example, 

a navigation system could associate a GPS coordinate with 

each vertex and distance and speed limit with each edge.



Adjacent Vertices and Incident Edges

In an undirected graph if (vi, v2) is an edge in the set of 

edges, then the vertices vi and v2 are said to be adjacent and 

the edge (vi, v2) is incident on vertices vi and In Figure 

vertex 2 in Gi is adjacent to vertices 1, 3, and 4. The edges 

incident on vertex 3 in Gi are (!. (2> 3) and (4,

If v2> is a directed edge, then vertex vi is said to be adjacent 

to v2 while v2 is adjacent from The edge v2> is incident on 

vi and In Figure in G2, vertices 1 and 3 are adjacent to vertex 

2, whereas, vertex 2 is adjacent from vertex 1. Also, the edges 

incident on vertex 2 are <i, < 2, i > and < 2, 3



Graph Representations

There are many ways of representing a graph in memory.

Often, it will turn out that one of these representations will be 

better than others for a given application. The most commonly 

used representations for graphs are

(a) Adjacency matrix

(b) Adjacency lists

(c) Adjacency multi-lists

Each of these representations is discussed below.



Adjacency Matrix

An adjacency matrix of a graph is a 2-dimensional array of 

size n x n (where n is the number of vertices in the graph) 

with the property that a[ i ][ j ] = 1 if the edge is in the set 

of edges, and a[ i ][ j ] = o if there is no such edge. The 

adjacency matrices for two sample graphs are shown in Figure

As can be seen from Figure the adjacency matrix for an 

undirected graph is symmetric. The adjacency matrix for a 

directed graph need not be symmetric. The space needed to 

represent a graph using its adjacency matrix is locations. About 

half of this space can be saved in the case of undirected 

graphs by storing only the upper or lower triangle elements of 

the matrix.



Figure 8-2. Adjacency



Adjacency Lists

This is a vertex based-representation. In this representation we 

associate with each vertex a linked list of vertices adjacent to 

it. Normally an array is used to store the vertices. Each array 

element contains the vertex label, any other related information, 

plus a pointer to a linked list of nodes containing adjacent 

vertices. The array provides random access to the adjacency list 

for any particular vertex. The adjacency lists for two sample 

graphs are shown in Figure

The advantage of this representation is that we can quickly 

find all the edges associated with a given vertex by traversing 

the list, instead of having to look through possibly hundreds of 

zero values to find a few ones in a row of an adjacency 

matrix.



( a ) Adjacency lists for undirected graph

i b ) Adjacency lists for directed graph

Figure 8-3. Adjacency

In this representation, for an undirected graph each edge­

information appears twice. For example, in Figure vertex 1 and 

2 are adjacent, hence vertex 2 appears in the list of vertex 1 

and vertex 1 appears in the list of vertex 2.

Also, for a digraph it is easy to find the vertices adjacent to a 

given vertex. For example in Figure 8-3(b) to find vertices 

adjacent to vertex 2, we simply have to follow adjacency list of 

vertex 2. However, if we are to find out vertices from which to 



which 2 is adjacent , we have to scan the adjacency lists of all 

vertices. In Figure 8-3(b) on scanning all the lists, we can 

conclude that vertex 1 is the only vertex that is adjacent from 

vertex 2. This inefficiency related to a digraph can be rectified 

by using an adjacency multi-list representation.



Adjacency Multi-lists

An adjacency multi-list is an edge-based representation rather 

than a vertex-based representation. Each node that represents 

an edge consists of 5 fields. Of these, and field are related 

and and field are related. We would soon see the relationship.

Like adjacency list, an array of vertices is also maintained.

Each array element points to a suitable edge node.

Figure 8-4. Adjacency multi-lists for undirected graph.



While constructing the multi-lists for graph shown in Figure 8-4 

firstly the fields and are filled in the 6 edge nodes, to Then 

we start with vertex 1. This vertex has 3 incident edges and E 

Hence the element of vertices array is made to point to edge 

Then the edge node for E 1 is searched for vertex 1. It is 

found in field of Since the next incident edge for vertex 1 is E 

2 the fourth field of node is set up with pointer to edge node 

Then node is examined for vertex 1. Here also 1 is found in 

field Hence pointer to node is set up in fourth field of node E 

Then is searched for vertex 1. It is found in field Since there 

are no more edges incident on vertex 1 hence fourth field of 

node is set with NULL.

Let us understand this process for vertex 2 as well. Vertex 2 

has 3 incident edges and So to begin with, the element of 

vertices array is made to point to edge Then is searched for 

vertex 2. 1 is found in field of Since the next incident edge for 

vertex 2 is the fifth field of node E 1 is set up with pointer to 

edge node Then node is examined for vertex 2. Here 2 is 

found in field V Hence the fourth field of node is setup with 

pointer to edge Then is searched for vertex 2. It is found in 

field Since there are no more edges incident on vertex 2 hence 

fourth field of node is set with NULL.



If this procedure is carried out systematically for all other 

vertices then the adjacency multi-lists shown in Figure 8-4 

would get created. If we traverse these lists for each element 

of the vertex array then we can find out the sequence of 

incident edges for each vertex. These sequences are given 

below.

Vertex 1 :

Vertex 2 :

Vertex 3 :

Vertex 4 : E

On similar lines we can also create adjacency multi-lists for a 

directed graph. Only difference being, there would be two 

elements for each vertex in the array of vertices—one when the 

vertex is head of an edge and another when it is a tail. This 

is shown in Figure



tail head

Vj Next link for Vj Next link for V;Flag Vj

Figure 8-5. Adjacency multi-lists for directed graph.

If we traverse the lists shows in Figure 8-5 for each element of 

the vertex array, then we the sequence of incident edges for 

each vertex would be as follows. These sequences are given 

below.

V

E
3



Graph Traversals

Given the root node of a binary tree, one of the most 

common operations performed is visiting every node of the 

tree in some order. Similarly, given a vertex in a directed or 

undirected graph we may wish to visit all vertices in the graph 

that are reachable from this vertex. This can be done in two 

ways—using the Depth First Search and the Breadth First 

Search algorithm. Let us now understand these algorithms.



Depth First search

In this algorithm we start at a vertex and move as far as we 

can down one path from the vertex before exploring the other 

paths. This requires some way of marking vertices so that we 

do not visit them more than once. This is done by using an 

array of vertices initialized to false values before the search. As 

each vertex is visited, the corresponding element in the array is 

set to true. Note that pre-order traversal of a binary tree is 

nothing but a depth first search.

Depth first search of an undirected graph proceeds as follows. 

We start at any vertex The start vertex v is visited. Next an 

unvisited vertex w adjacent to v is selected and a depth first 

search from w is initiated. When a vertex u is reached such 

that all its adjacent vertices have been visited, we back up to 

the last vertex visited which has an unvisited vertex w adjacent 

to it and initiate a depth first search from The search 

terminates when no unvisited vertex can be reached from any 

of the visited ones.



Figure 8-6. Graph and its adjacency

Figure 8-6 shows a graph and its adjacency lists. If a depth 

first search is initiated from vertex then the vertices of this are 

visited in the order

The depth first search algorithm is implemented in the 

program given below.

Honest Solid Code {C}

Program 8-1. Implementation of Depth First Search algorithm 

#include

void dfs (int [ 8 ][ 8 ], int, int [ 8 ], int);



int main()

{
int arr[ 8 ][ 8 ] = { o };

int visited[ 8 ] = { o };

arr[ o ][ 1 ] = arr[ 1 ][ o ] = 1;
arr[ o ][ 2 ] = arr[ 2 ][ o ] = 1;

arr[ 1 ][ 3 ] = arr[ 3 ][ 1 ] = 1;

arr[ 1 ][ 4 ] = arr[ 4 ][ 1 ] = 1;

arr[ 2 ][ 5 ] = arr[ 5 ][ 2 ] = 1;
arr[ 2 ][ 6 ] = arr[ 6 ][ 2 ] = 1;

arr[ 3 ][ 7 ] = arr[ 7 ][ 3 ] = 1;

arr[ 4 ][ 7 ] = arr[ 7 ][ 4 ] = 1;

arr[ 5 ][ 7 ] = arr[ 7 ][ 5 ] = 1;

arr[ 6 ][ 7 ] = arr[ 7 ][ 6 ] = 1;

dfs (arr, 8, visited, o);

return o;

}

void dfs (int a[ 8 ][ 8 ], int sz, int vis[ 8 ], int idx) 

{
int i;



vis[ idx ] = 1;

printf (“%d”, idx + 1);

/*  go to all columns of idx row */

for (i = 0; i < sz; i++)

{
if (vis[ i ] == 0 && a[ idx ][ i ] == 1) 

dfs (a, sz, vis, i);

}

}

Output:

1 2 4 8 5 6 3 7

The program uses adjacency matrix to create the graph shown 

in Figure Once the matrix is created, the function dfs() is 

called that visits each vertex and marks it as visited by storing 

a value in the visited array.



Breadth First Search

Starting at vertex v and marking it as visited, breadth first 

search differs from depth first search in that all unvisited 

vertices adjacent to are visited next. Then unvisited vertices 

adjacent to these vertices are visited and so on. A breadth first 

search beginning at vertex of graph shown in Figure 8-6 would 

first visit and then and Next vertices and will be visited and 

finally

Note that level-order traversal of a binary tree is nothing but 

breadth first search. The following program implements this 

algorithm.

Honest Solid Code {C}

Program 8-2. Implementation of Breadth First Search algorithm

#include

#define MAX 10 

struct queue



{
int arr[ MAX ], front, rear;

};
void addq (struct queue *,  int);

int delq (struct queue *);

int isempty (struct queue *);

void bfs (int [ 8 ][ 8 ], int, int [ 8 ]);

int main()

{
int arr[ 8 ][ 8 ] = { o };

int visited[ 8 ] = { o };

arr[ o ][ 1 ] = arr[ 1 ][ o ] = 1;
arr[ o ][ 2 ] = arr[ 2 ][ o ] = 1;

arr[ 1 ][ 3 ] = arr[ 3 ][ 1 ] = 1;

arr[ 1 ][ 4 ] = arr[ 4 ][ 1 ] = 1;

arr[ 2 ][ 5 ] = arr[ 5 ][ 2 ] = 1;
arr[ 2 ][ 6 ] = arr[ 6 ][ 2 ] = 1;

arr[ 3 ][ 7 ] = arr[ 7 ][ 3 ] = 1;

arr[ 4 ][ 7 ] = arr[ 7 ][ 4 ] = 1;

arr[ 5 ][ 7 ] = arr[ 7 ][ 5 ] = 1;

arr[ 6 ][ 7 ] = arr[ 7 ][ 6 ] = 1;

bfs (arr, 8, visited);



return o;

}

void bfs (int a[ 8 ][ 8 ], int sz, int vis[ 8 ]) 

{
struct queue q;

int idx, i;

q.front = q.rear = -1;

addq (&q, 0);

while (!isempty (&q))

{
idx = delq (&q);

if (vis[ idx ] == o)

{

vis[ idx ] = 1;

printf (“%d”, idx + 1);

for (i = o; i < sz; i++)

{

if (vis[ i ] == o && a[ idx ][ i ] == 1) 

addq (&q, i);

}

}

}

}



/*  adds an element to the queue */  

void addq (struct queue *pq,  int item) 

{
if (pq->rear == MAX - 1)

{
printf (“Queue is full\n”); 

return;

}

pq->rear++;

pq->arr[ pq->rear ] = item;

if (pq->front == -1) 

pq->front = 0;

}

/*  removes an element from the queue */  

int delq (struct queue *pq)

{
int data;

if (pq->front == -1)

{

printf (“Queue is Empty\n”);



return NULL;

}

data = pq->arr[ pq->front ];

pq->arr[ pq->front ] = 0;

if (pq->front == pq->rear)

pq->front = pq->rear = -1;

else

pq->front++;

return data;

}
int isempty (struct queue *pq)

{
if (pq->front == -1 && pq->rear == -1)

return 1;

else

return 0;

}

Output:

1 2 3 4 5 6 7 8

The function bfso visits each vertex and marks it visited. The 

functions addq() and delq() are called for maintaining the 

queue of vertices.





Spanning tree

A spanning tree of a graph is an undirected tree consisting of 

only those edges that are necessary to connect all the vertices 

in the original graph. Figure 8-7 shows a graph some of its 

spanning trees.

Figure 8-7. Graph and its spanning trees.

A spanning tree has a property that for any pair of vertices 

there exists only one path between them, and the insertion of 

any edge to a spanning tree form a unique cycle.

The particular spanning tree for a graph depends on the 

criteria used for generating it. The spanning tree resulting from 

a call to depth first tree is known as depth first spanning tree.



Similarly, a spanning tree resulting from a call to breadth first 

tree is known as a breadth first spanning tree. Figure 8-8 

shows a graph and its DFS and BFS spanning trees.

Figure 8-8. Graph and its depth / breadth first search spanning

The spanning tree is useful in analysis of electrical circuits, 

shortest route problems and designing hydraulic / road / cable 

/ computer network.

A graph may have weights on its edges. For example, if 

vertices A and B represent cities in a road network, then the 

weight on edge AB may represent cost of visiting B from A, or 

vice versa.

The cost of a spanning tree is the sum of costs of the edges 

in that tree. A minimum cost spanning tree has cost less than 

or equal to cost of all other spanning trees. Figure 8-9 shows 



a graph, its spanning trees and the minimum cost spanning 

tree.

Figure 8-9. Graph and its depth / breadth first search spanning

One method to determine a minimum cost spanning tree has 

been given by Kruskal. This method is discussed below.



Kruskal’s Algorithm

In this algorithm a minimum cost spanning tree T is built 

edge by edge. Edges are considered for inclusion in T in 

increasing order of their costs. An edge is included in T if it 

does not form a cycle with edges already in T. Let us 

understand this with the help of an example.

Consider the graph shown in Figure To find the minimum cost 

of spanning tree the edges are inserted into tree in increasing 

order of their costs. To begin with edge 4-3 is inserted as it 

has the lowest cost 1. Then the edge 4-2 is inserted which has 

a cost 2. The next edge in the order of cost is 3-2, but it is 

rejected as it forms a cyclic path between the vertices 2, 3 and 

4. Then the edge 4-1 is inserted and it is accepted as it forms 

a non-cyclic path.

The minimum cost of spanning tree is given by the sum of 

costs of the existing edges, i.e. the edges that are inserted 

while building the spanning tree of minimum cost. In our case 

it is found to be 7.



Figure 8-10. Minimum cost spanning tree using Kruskal’s

algorithm.



Prim's Algorithm

There is one more method to find the minimum cost spanning 

tree for a weighted undirected graph. This is known as Prim’s 

algorithm. The steps involved in it are given below.

(a) Choose any vertex.

(b) Add it to the spanning tree vertex set and remove it from 

graph vertices set.

(c) Identify the vertices connected with the chosen vertex.

(d) Compare the weights of edges connecting the chosen 

vertex and identified vertices.

(e) Choose connected edge which has minimum weight.

(f) Add it to the spanning tree vertex set.

While choosing a vertex we should not choose a vertex already 

in the spanning tree vertex set or if it forms a cycle.

This algorithm has been implemented on a sample graph in 

Figure The check mark indicates the vertex that is included 

after comparison.



Graph Minimum cost spanning tree
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Figure 8-11. Minimum cost spanning tree using Prim’s algorithm.



Shortest Path

A minimal spanning tree gives no indication about the shortest 

path between two nodes. Rather only the overall cost is 

minimized. In real life we are required to find shortest path 

between the two cities. For example, an airliner would be 

interested in finding most economical route between any two 

cities in a given network of cities. The algorithm to find such 

a path was first proposed by E.W.Dijkstra.



Dijkstra’s Algorithm

This algorithm works for a directed as well as an undirected 

graph. Kruskal, Prim and Dijkstra algorithms are greedy 

algorithms. Typically, greedy algorithms build a solution piece 

by piece. At every step, they make a choice that looks best at 

that moment. Note that if a problem is solvable using greedy 

algorithm, it is usually the best solution.

The steps involved in Dijkstra’s algorithm are given below.

(a) Mark all nodes as unvisited by creating a set of all the 

unvisited nodes.

(b) Assign distance values—o to initial node, infinity to others. 

(c) Set the initial node as current node and identify all of its 

unvisited neighbors.

(d) Calculate neighbor’s distances from current node.

(e) Assign smaller of newly calculated and current distance.

(f) Mark the current node as visited.

(g) Set smallest distance unvisited node as new current node. 

(h) Go back to step (c).



Dijkstra’s algorithm can be best understood with the help of 

an example. Consider the weighted digraph shown in Figure 

Let us begin with node 1 as the initial node. Set its distance 

value to 7 and distance value of other nodes to 8. These 

values are shown in Figure 8-12 in boxes. Treat node 1 as the 

current node, so its neighbors will be nodes 2, 3 and 4. 

Recalculate the distance values by comparing existing values 

with actual distances and set the lower of the two. For 

example, current distance value of node 2 is 8 and actual 

distance is 5. So lower of the two, i.e. 5 is set up as the new 

distance value. Distance values of nodes 3 and 4 would remain 

8 as there is no path from node 1 to nodes 3 and 4. Now 

mark node 1 as visited.

Next, compare the distances of nodes 2, 3 and 4 from node 1. 

They are 5, 8 and 8. Smallest amongst them is 5. So consider 

node 2 as the current node and repeat the same procedure 

again as shown in steps 3, 4 and 5 in Figure Note that in 

step 3, cost of visiting node 4 from node 2 will be current 

cost + actual distance, i.e. 5 + 2 = 7. The final result of this 

process is shown in tabular form in Figure



Figure 8-12. Implementation of Dijkstra’s algorithm.

Note that we have found shortest path of all vertices from 

vertex 1. On similar lines, if we choose any other vertex as the 

starting vertex then we can find shortest distance of other 

vertices from the chosen vertex.

The following program shows how to find the shortest path 

between any two vertices.

Honest Solid Code {C}



Program 8-3. Implementation of Dijkstra’s algorithm

if include <stdio.h>-
tfdefine INF 999 
int main( )
{

int arr[ 4 ]( 4 j ;
int cost[ 4 ][ 4 ] = {

7, 5, O, O,
7., O, O, 2,
O, 3, O, O,
4, O, 1, O 

};
int ij, j, kr n = 4 ;

for ( i = O ; i < n ; i++ ) 
{

for ( j = O; j < n ; j++ ) 
{

if ( cost( i ][ j 1 == O ) 
arr| i ][ j 1 = INF ;

e Ise 
arr[ i ][ j ] = cost} i ][j ] ;

} 
}

p firrtf ( 11 Adjacency matrix of cost of edges :\n" ) ;
for ( i = O ; i < n ; i++ ) 
{

for ( j = O; j < n ; j++ )
prfntf ( arr[ i ]( j ] ) ;

printf ( “\n" ) ;
}

for { k = O ; k < n ; k i J )
{

for ( i = O ; i < n ; i । । ) 
{

for ( j = O ; j < n ; j-n- j 
{

if ( arrf i J[ j ] > arr[ i ][ k ] + arr[ k ][ j ] ) 
arr[ i ][ j ] = arr[ 1 ][ k ] + arr[ k ][ j ]; 

}
}

}
printf ( "\n" );
rnirimi-F J' 11 Zk idrar Fanrir rriAtriv IniA/iacI' Im rn frlica t ft=t irt~a - \ im 11 1



for { i = O ; i < n ; i++ )

for ( j = O; j < n ; j++ )
prititf ( arr[ i ]( j ] ) ;

printf ( "\jn" ) ;

return O ;
}

Output:

Adjacency matrix of cost of edges: 
7 5 999 999
7 999 999 2
999 3 999 999
4 999 1 999

Adjacency matrix of lowest cost between the vertices: 
7 5 8 7
6 6 3 2
9 3 6 5
4 4 16

In the program the array cost[ ] is defined which is adjacency 

matrix of the cost of edges. In the array some values are o 

indicating that there is no direct path between the two 

vertices. One more array arr[ ] is defined which to begin with 

holds the value that the array cost[ ] holds. The only difference 

is instead of o it holds a value 999, which is defined as INF 

(infinity). Then through nested for loops the lowest value is 

assigned to each element of the array arr[ ] if the value 

already present is found to be greater.



Topological Sorting

Topological sorting is a special sorting technique that is 

relevant only for a Directed Acyclic Graph (DAG). If a DAG is 

represented using an array, then after sorting for every directed 

edge u comes before v in the array. Note that for same DAG 

multiple solutions may exist.

Let us understand the sorting procedure using a sample DAG 

shown in Figure We have to maintain a boolean array of 

vertices called visited[ Initially, all elements of this array are set 

to false indicating that we haven’t visited any vertices.



Figure 8-13. Implementation of Topological sort

Next, we have to start at a vertex with in-degree as 0, i.e. a 

vertex with no incoming edges. Suppose we start with vertex 0. 

So set value of visited[ 0 ] to true. From 0 we can go to 1, 2, 

or 3. Suppose we decide to visit 1. So set visited[ 1 ] to true. 

From 1 we can move further to 4, so set visited[ 4 ] to true. 

From 4 we cannot move any further, so we push 4 in a stack. 

Now go back to previous vertex, i.e. vertex 1. From 1 only 

vertex we can visit is 4 and it already stands visited. So push 

vertex 1 on the stack and go back to its previous vertex, i.e. 0.

From 0 we can visit 1, 2 or 3. Of these, we have already

visited 1, so let us now visit 2. Set visited[ 2 ] to true. From 2

we can visit either 4 or 5. But 5 has already been visited, so

visit 5 and set visited[ 4 ] to true. Repeat this procedure till all 

vertices are visited. By that time the contents of the stack will 

be as shown in Figure If we unwind the stack and print each 

element that is popped, we get the topological order of 

vertices. Confirm that in this order for every directed edge u 

occurs before

Note that topological sorting is not same as DFS. As shown 

in Figure the sequence of vertices of DFS and topological sort 

are different.



Chapter Bullets

Summary of chapter

(a) There are two types of graphs—directed graph and 

undirected graph.

(b) A graph can be represented using an adjacency matrix, 

adjacency lists or adjacency multi-lists.

(c) There are two algorithms for graph traversal—depth first 

search and breadth first search.

(d) A spanning tree is an undirected tree consisting of only 

those edges that are necessary to connect all vertices in the 

original graph.

(e) Minimum cost spanning tree can be obtained using 

Kruskal’s algorithm or Prim’s algorithm.

(f) The shortest path between vertices in a weighted directed 

graph can be obtained using Dijkstra’s algorithm.



Check Your Progress

Exercise - Level I

[A] State whether the following statements are true or false:

(a) If vi and v2 are two vertices of a directed graph then the 

edges v2> and vi> represent the same edge.

(b) For a graph there can exist only those many spanning 

trees as the number of vertices.

(c) To find minimum cost spanning tree edges are inserted in 

increasing order of their cost.

(d) The number of elements in the adjacency matrix of a 

graph having 6 vertices is 36.

(e) If V is the number of vertices and E is the number of 

edges in a graph, the time complexity to calculate the number 

of edges of the graph represented using an adjacency matrix is



(f) If V is the number of vertices and E is the number of 

edges in a graph, time Complexity of Depth First Search is 

O(V + E).

(g) If V is the number of vertices and E is the number of 

edges in a graph, time Complexity of Breadth First Search is 

O(V + E).

(h) Adjacency matrix of any graph is always symmetric.

(i) Dijkstra’s Algorithm works for both negative and positive 

weights.



Sharpen Your Skills

Exercise - Level II

[B] Choose the correct alternative for the following:

(a) For an adjacency matrix of a directed graph the row sum 

is the  degree of a vertex and the column sum is 

the  degree of the vertex.

(1) in, out

(2) out, in

(3) in, total

(4) total, out

(b) What is the maximum number of possible non-zero values 

in an adjacency matrix of a simple graph with n vertices?

(1) (n  (n - 1)) / 2*
(2) (n  (n + 1)) / 2*

(3) n  (n - 1)*

(4) n  (n + 1)*

(c) Breadth First Search is equivalent to which of the traversal 

in the Binary Trees?



(i) Pre-order Traversal

(2) Post-order Traversal

(3) Level-order Traversal

(4) In-order Traversal

(d) Depth First Search is equivalent to which binary tree 

traversal?

(1) Pre-order Traversal

(2) Post-order Traversal

(3) Level-order Traversal

(4) In-order Traversal

(e) The data structure used in implementation of Breadth First 

Search is

(1) Stack

(2) Queue

(3) Linked List

(4) None of the mentioned

(f) The data structure used in implementation of Breadth First 

Search is?

(1) Stack

(2) Queue

(3) Linked List

(4) None of the mentioned



(g) Joshi wants to visit 5 cities starting from Mumbai with an 

aim to minimize the cost of travel. Which of the following 

algorithm should he use?

(1) Depth First Search

(2) Kruskal’s algorithm

(3) Prim’s algorithm

(4) Dijkstra’s algorithm



Coding Interview Questions

Exercise Level III

[C] Answer the following:

(a) What would be the sequence of nodes if the graph shown 

is Figure 8-14(a) is traversed using DFS algorithm starting at 

vertex 6?

Figure 8-14. Graphs.

(b) What would be the sequence of nodes if the graph shown 

is Figure 8-14(b) is traversed using BFS algorithm starting at



vertex 5?

(c) Create a minimum spanning tree for graph shown in 

Figure 8-i4(c) using Kruskal’s algorithm.

(d) Create a minimum spanning tree for graph shown in 

Figure 8-14(c) using Prim’s algorithm.

(e) If a graph is represented using an adjacency matrix, write a 

program that finds

- the number of vertices in a graph.

- the number of adjacent vertices for a given vertex.



Case Scenario Exercise

Kruskal’s and Prim’s algorithm

Write a program to implement Kruskal’s and Prim’s algorithms.

Also analyze the time complexity of each implementation.



Chapter 09

Searching and Sorting

seek Me out, sort Me out

Why This Chapter Matters?

It would be an interesting statistic to find out how much time 

pre-computer-age generations spent in searching things and 

arranging them in an order. What a colossal waste it must 

have been to do these things manually! When history of 

computing is written ‘searching’ and ‘sorting’ would be right 

there at the top, as entities responsible for changing the way 

people do work.



We often spend time in searching some thing or the other. If 

the data is kept properly in some sorted order then searching 

becomes very easy. Think of searching a word’s meaning from 

an unordered list of words and then you will appreciate the 

way a dictionary is designed. In this chapter we are going to 

discuss different types of searching and sorting methods. Let 

us start with searching methods.



Searching

Searching is an operation that finds the location of a given 

element in a list. The search is said to be successful or 

unsuccessful depending on whether the element that is to be 

searched is found or not. Here, we will discuss two standard 

searching methods—Linear search and Binary search.



Linear search

This is the simplest method of searching. In this method, an 

element is searched in the list sequentially. This method can 

be applied to a sorted or an unsorted list. Searching in 

unsorted list starts from the element and continues until the 

element is found or the end of list is reached. As against this, 

searching in an ascending order sorted list starts from element 

and continues until the element is found or an element whose 

value is greater than the value being searched is reached.

Following program implements linear search method for an 

unsorted as well as a sorted array.

Honest Solid Code {C}

Program 9-1. Implementation of Linear Search algorithm

#include

int searchinsorted (int [ ], int, int); 

int searchinunsorted (int [ ], int, int);



int main()

{
int unsortedarr[ ] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };

int sortedarr[ ] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };

int num, pos;

printf (“Enter number to search:”);

scanf (“%d”, &num);

pos = searchinunsorted (unsortedarr, 10, num);

if (pos == -1)

printf (“Number is not present in the array\n”);

else

printf (“Number is at position %d in the array\n”, pos);

printf (“Enter number to search:”);

scanf (“%d”, &num);

pos = searchinunsorted (sortedarr, 10, num);

if (pos == -1)

printf (“Number is not present in the array\n”);

else

printf (“Number is at position %d in the array\n”, pos); 

} 

int searchinunsorted (int arr[ ], int size, int num) 

{



int i;

for (i = 0; i < size; i++)

{
if (arr[ i ] == num) 

return i;

}

return -1;

}

int searchinsorted (int arr[ ], int size, int num)

{
int i;

if (num > arr[ size - 1 ]) 

return -1;

for (i = 0; i < size; i++)

{

if (arr[ i ] > num) 

return -1;

if (arr[ i ] == num) 

return i;

}



return -1;

}

Output:

Enter number to search: 13

Number is at position 3 in the array 

Enter number to search: 100 

Number is not present in the array

In the program, num is the number that is to be searched in 

the array. While searching in inside the for loop each time arr[ 

i ] is compared with If any element is equal to it means that 

the element is found. Hence its position in the array is 

returned. If control reaches beyond the for loop, it means that 

the element is not present in the array. In this case -1 is 

returned. We have returned -1, because no element can be 

present at position -1 in the array.

While searching in a sorted array, search starts at the element 

and ends when the element is found or any element of the 

list is found to be greater than the element to be searched.

The number of comparisons in case of sorted list might be 

less as compared to the unsorted list because the search may 



not always continue till the end of the list.

The performance of linear search algorithm can be measured 

by counting the number of comparisons done to locate an 

element. In the worst case, in an array of size this algorithm 

would carry out n comparisons to reach a conclusion whether 

the element being searched is present in the array or not. 

Hence worst case time complexity of this algorithm is O



Binary search

Binary search method is very fast and efficient. This method 

requires that the list of elements be in sorted order. In this 

method, to search an element we compare it with the element 

present at the center of the list. If it matches then the search 

is successful. Otherwise, the list is divided into two halves— 

one from element to the center element (first half), and 

another from center element to the last element (second half). 

As a result, all the elements in first half are smaller than the 

center element, whereas, all the elements in second half are 

greater than the center element.

The searching will now proceed in first or second half 

depending upon whether the element is smaller or greater than 

the center element. Same process of comparing the required 

element with the center element and if not found then dividing 

the elements into two halves is repeated for the first half or 

second half. This procedure is repeated till the element is 

found or the division of half parts gives one element. Let us 

understand this with the help of Figure



Figure 9-1. Binary

Suppose an array consists of 10 sorted numbers and 57 is 

element that is to be searched. The binary search method 

when applied to this array works as follows:

(a) 57 is compared with the element present at the center of 

the list (i.e. 11). Since 57 is greater than 11, the searching is 

restricted only to the second half of the array.

(b) Now 57 is compared with the center element of the 

second half of array (i.e. 25). Here again 57 is greater than 25 

so the searching now proceeds in the elements present 

between 25 and 90.

(c) This process is repeated till 57 is found or no further 

division of sub- array is possible.



Following program implements the binary search algorithm.

Honest Solid Code {C}

Program 9-2. Implementation of Binary Search algorithm

#include

int binarysearch (int [ ], int, int);

int main()

{
int arr[ ] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };

int num, pos;

printf (“Enter number to search:”);

scanf (“%d”, &num);

pos = binarysearch (arr, 10, num);

if (pos == -1)

printf (“Number is not present in the array\n”);

else

printf (“Number is at position %d in the array\n”, pos);

return 0;

}



int binarysearch (int a[ ], int size, int num) 

{

int lower, upper, mid;

lower = 0;

upper = size;

while (lower <= upper)

{
mid = (lower + upper) / 2;

if (num == a[ mid ])

return mid;

if (num > a[ mid ])

lower = mid + 1;

if (num < a[ mid ])

upper = mid - 1;

}

return -1;

}

Output:

Enter number to search: 57

Number is at position 8 in the array



In iteration the algorithm works with n elements

In iteration it works with n / 2 elements

In iteration it works with (n / 2) / 2 elements

In iteration it works with ((n / 2) / 2) / 2 elements

This goes on till we reach an iteration where number of 

elements being worked upon becomes 1. Suppose k iterations 

would be required to reach input size of 1. Thus,

n / = 1

Taking log of both sides we get,

= log 2 n

Therefore, k = n.

During each iteration maximum of 3 comparisons are done.

Thus number of comparisons in binary search is limited to 3 * 

Ignoring the constant 3, the time complexity will be O



Thus a binary search gives better performance than linear 

search. The disadvantage of binary search is that it works only 

on sorted lists. So if searching is to be performed on an 

unsorted list then linear search is the only option.



Recursive Binary search

We have used a while loop to implement the binary search 

algorithm in Program 9-2. It is also possible to implement this 

algorithm using recursion. This recursive implementation is 

given below.

Honest Solid Code {C}

Program 9-3. Implementation of Recursive Binary Search 

algorithm

#include

int recbinsearch (int [ ], int, int, int);

int main()

{
int arr[ ] = { 1, 2, 3, 9, 11, 13, 17, 25, 57, 90 };

int num, pos;

printf (“Enter number to search:”);

scanf (“%d”, &num);

pos = recbinsearch (arr, num, 0, 10);



if (pos == -1)

printf (“Number is not present in the array\n”);

else

printf (“Number is at position %d in the array\n”, pos); 

}

int recbinsearch (int a[ ], int num, int lower, int upper)

{
int mid;

if (lower <= upper)

{
mid = (lower + upper) / 2;

if (num == a[ mid ]) 

return mid;

if (num > a[ mid ]) 

lower = mid + 1;

if (num < a[ mid ]) 

upper = mid - 1;

return recbinsearch (a, num, lower, upper);

}

return -1;

}



In recbinsearch() we compare num with the middle element. If 

it matches with middle element, we return the index mid. 

Otherwise if num is found to be greater than the mid element, 

then num can only lie in right half subarray after the mid 

element. So we call recbinsearch() for right half of the array. 

Finally, if num is found to be smaller than the mid element, 

then num can only lie in left half subarray before the mid 

element. So we call recbinsearch() for left half of the array.

To find time complexity of recursive binary search algorithm, let 

us consider 3 cases shown in Figure



Figure 9-2. Progress of recursive Binary

In case (a) it takes 3 comparisons to search 57. In case (b) it 

takes 2 comparisons to search 25. Lastly, in case (c), it takes 

4 comparisons to reach a conclusion that 100 in not present 

in the array. So, we can conclude that, in worst case, it does 

n comparisons. Note that value of log 2 10 is between 3 and 

4. To get exact number of comparisons the input array size 

must be a power of 2. We can safely conclude that that the 

time complexity of recursive binary search algorithm is O



Sorting

Sorting refers to arranging elements of a set in some order. 

There are different methods that are used to sort the data in 

ascending or descending order. These methods can be divided 

into two categories. They are as follows:



Internal Sorting

If all the data to be sorted can be accommodated at a time in 

memory then internal sorting methods are used.



External Sorting

When the data to be sorted is so large that some of the data 

is present in the memory and some is kept in auxiliary 

memory (hard disk, tape, etc.), then external sorting methods 

are used. Let us begin with internal sorting methods.



Internal Sorting

There are different types of internal sorting algorithms. We will 

discuss the common algorithms here. These algorithms sort 

the data is ascending order. With a minor change we can also 

sort the data in descending order.



Bubble sort

In this method, firstly and elements are compared. If element 

is found to be greater than the element then they are 

interchanged. Next, the 1 st element is compared with the 

element, if it is found to be greater, then they are 

interchanged. In the same way all the adjacent pairs of 

elements are compared and interchanged if required. At the 

end of this iteration the largest element gets placed at the last 

position.

Similarly, in the second iteration the comparisons are made till 

the last but one element and this time the second largest 

element gets placed at the second last position in the list.

Once all such iterations are completed the list becomes a 

sorted list. This can be easily understood with the help of 

Figure



Figure 9-3. Bubble sort at

Suppose an array arr consists of 5 numbers. The bubble sort 

algorithm works as follows:

(a) In the first iteration the element 25 is compared with 

element 17 and since 25 is greater than 17, they are 

interchanged.



(b) Now the element 25 is compared with element 31. But 25 

is less than 31, so are not interchanged.

(c) This process is repeated until (n - element is compared 

with (n - element and interchanged if required.

(d) At the end of the first iteration, the (n - element holds the 

largest number.

(e) Now the second iteration starts with the element 17. The 

above process of comparison and interchanging is repeated but 

this time the last comparison is made between (n - and (n - 

2) nd elements.

(f) If there are n elements in the array then (n - 1) iterations 

need to be performed.

The following program implements the bubble sort algorithm.

Honest Solid Code {C}

Program 9-4. Implementation of Bubble Sort algorithm



#include

void bubblesort (int [ ], int);

int main()

{
int arr[ ] = { 25, 17, 31, 13, 2 };

int i;

printf (“Bubble sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 5; i++) 

printf (“%d\t”, arr[ i ]);

bubblesort (arr, 5);

printf (“\nArray after sorting:\n”);

for (i = 0; i < 5; i++)

printf (“%d\t”, arr[ i ]);

return 0;

} 

void bubblesort (int a[ ], int size) 

{
int i, j, temp;



for (i = o; i < size - 1; i++)

{

for (j = o; j < size - i - 1; j++)

{

if (a[ j ] > a[ j + 1 ])

{
temp = a[ j ];

a[ j ] = a[ j + 1 ];

a[ j + 1 ] = temp;

}

}

} 

}

Output:

Bubble sort

Array before sorting: 

25 17 31 13 2 
Array after sorting: 

2 13 17 25 31

The elements compared in bubble sort are always adjacent.

Hence each time the elements compared are a[ j ] and a[ j +



1 If the element a[ j ] is found to be greater than a[ j + 1 ] 

then they are interchanged.

If we wish to arrange the numbers in descending order then 

we need to make a small change in the condition, as shown 

below: 

if (a[ j ] < a[ j + 1 ]) 

{
/*  exchange a[ j ] with a[ j + 1 ] */

}

When the array has 5 elements the number of comparisons 

that would be made in each iteration would be as follows:

iteration - 4 comparisons

iteration - 3 comparisons

iteration - 2 comparisons

iteration - 1 comparison

So, in general, for an array of n elements the number of 

comparisons will be n (n - 1) / So time complexity of selection 

sort algorithm is O



selection sort

This is perhaps the simplest method of sorting. In this 

method, to sort the data in ascending order, the element is 

compared with all other elements. If the element is found to 

be greater than the compared element then they are 

interchanged. So after the first iteration the smallest element 

gets placed at the position. The same procedure is repeated 

for the 1 st element and so on. This procedure can be best 

understood with the help of Figure



Figure 9-4. Selection sort at work.

Suppose an array arr consists of 5 numbers. The selection sort 

algorithm works as follows:

(a) In the first iteration the element 25 is compared with 

element 17 and since 25 is greater than 17, they are 

interchanged.



(b) Now the element 17 is compared with element 31. But 17 

is less than 31, so are not interchanged.

(c) This process is repeated till element is compared with rest 

of the elements and interchanged if necessary.

(d) At the end of the first iteration, the element is the 

smallest element.

(e) Now the second iteration starts with the element 25. The 

above process of comparison and swapping is repeated.

(f) So if there are n elements in the array, then after (n - 1) 

iterations the array is sorted.

The following program sorts the given list using selection sort 

algorithm.

Honest Solid Code {C}

Program 9-5. Implementation of Selection Sort algorithm

#include

void selectionsort (int [ ], int);



int main()

{

int arr[ ] = { 25, 17, 31, 13, 2 };

int i;

printf (“Selection sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 5; i++)

printf (“%d\t”, arr[ i ]);

selectionsort (arr, 5);

printf (“\nArray after sorting:\n”);

for (i = 0; i < 5; i++)

printf (“%d\t”, arr[ i ]);

return 0;

}

void selectionsort (int a[ ], int size) 

{
int i, j, temp;

for (i = 0; i < size - 1; i++)



{
for (j = i + 1; j < size; j++)

{

if (a[ i ] > a[ j ])

{

temp = a[ i ];

a[ i ] = a[ j ];
a[ j ] = temp;

}

}

}

}

Output:

Selection sort

Array before sorting:

25 17 31 13 2
Array after sorting:

2 13 17 25 31

Here, a[ i ] is compared with a[ j If the element a[ i ] is 

found to be greater than a[ j ] then they are interchanged. The 

value of j is starting from i + as we need to compare any 

element with all elements following it.



When the array has 5 elements the number of comparisons 

made in each iteration will be as follows:

iteration - 4 comparisons

iteration - 3 comparisons

iteration - 2 comparisons

iteration - 1 comparison

So, in general, for an array of n elements the number of 

comparisons will be n (n - 1) / So time complexity of selection 

sort algorithm is O



insertion sort

This algorithm works by inserting each element at an 

appropriate position in the array. The array is divided into two 

sets—one contains sorted values and another contains 

unsorted values. To begin with, the element at position is in 

the sorted set and the rest are in the unsorted set. During 

each iteration, the first element in the unsorted set is picked 

up and inserted at the correct position in the sorted set. The 

correct position is determined by traversing the sorted set from 

right to left and comparing the picked element with the 

elements in the sorted set. During comparison if it is found 

that picked element can be inserted then space is created for 

it by shifting the other elements one position to the right. Let 

us understand this algorithm with the help of Figure



Figure 9-5. Insertion sort at

Given below is the explanation of insertion sort algorithm for 

an array of 5 elements shown in Figure

(a) In the first iteration the element 17 is compared with the 

element 25. Since 17 is smaller than 25, 17 is inserted at place. 

Before that the element 25 is shifted one position to the right.



(b) In the second iteration, the element 31 is compared with 

element before it, i.e. 25. Since 31 is greater than 25, nothing 

is done as 31 is at its correct position.

(c) In the third iteration, the element 13 is compared 

successively with 31, 25, and 17. Since, 13 is smaller than all of 

them, they are shifted to right by one position and then 13 is 

inserted.

(d) In the fourth iteration the element 2 is compared with 

elements 31, 25, 17 and 13. Since, 2 is smaller than all of 

them, these elements are shifted to right by one position and 

then 2 is inserted.

At the end of iteration, the array becomes a sorted array. The 

following program implements the insertion sort algorithm:

Honest Solid Code {C}

Program 9-6. Implementation of Insertion Sort algorithm

#include

void insertionsort (int [ ], int);



int main()

{
int arr[ ] = { 25, 17, 31, 13, 2 };

int i;

printf (“Insertion sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 5; i++) 

printf (“%d\t”, arr[ i ]);

insertionsort (arr, 5);

printf (“\nArray after sorting:\n”);

for (i = 0; i < 5; i++)

printf (“%d\t”, arr[ i ]);

return 0;

} 

void insertionsort (int a[ ], int size) 

{
int i, j, temp;

for (i = 1; i < size; i++) 

{



temp = a[ i ];

j = i - 1;
while (j >= o && a[ j ] > temp)

{

a[ j + 1 ] = a[ j ];

j’’;

}

a[ j + 1 ] = temp;

}

}

Output:

Insertion sort

Array before sorting:

25 17 31 13 2
Array after sorting:

2 13 17 25 31

In the program the outer for loop is starting from 1 as the 

unsorted set starts at position. The inner loop is used for 

comparison to decide the position where the picked element 

and for shifting the elements one position to the right to 

make room for inserting the picked element.



Let us consider best case and worst case for analyzing the 

time complexity of this algorithm. The best case is when the 

array is already sorted and the worst case is when the array 

elements are in descending order. The important operations to 

be considered in this algorithm are comparison to determine 

where the element should be inserted and movement to create 

space for inserting the element.

In the best case the number of comparisons and movements 

will be as shown below.

for i = 1, 1 comparison + 0 movement = 1 

for i = 2, 1 comparison + 0 movement = 1

for i = 3, 1 comparison + 0 movement = 1

for i = 4, 1 comparison + 0 movement = 1

for i = n, 1 comparison + 0 movement = 1

So total number of operations will be 1 + 1 + 1 + 1.... This 

sum will be equal to Thus time complexity in best case will be 

O

In the worst case the number of comparisons and movements 

will be as shown below.



for i = 2, 1 comparison + 1 movement = 2

for i = 3, 2 comparisons + 2 movements = 4

for i = 3, 3 comparisons + 3 movements = 6

for i = 4, 3 comparisons + 3 movements = 8

for i = n, n - 1 comparisons + n - 1 movements= 2(n - 1)

If we add all this, we get

2 + 4 + 6 + 8 + ... + 2 (n - 1)

= 2 (1 + 2 + 3 + + 4. + (n -1))

= 2 (n (n -1) / 2)

= O

Thus time complexity in best case will be O



Quick sort

Quick sort is a very popular sorting method. It is also known 

as partition exchange The basis of this algorithm is that it is 

faster and easier to sort two small arrays than one large array. 

Thus the basic strategy of quick sort is to divide and conquer.

Consider a stack of papers each bearing name of a student 

and we wish to sort them by name. We can use the following 

approach. Pick a splitting value, say L (known as pivot 

element) and divide the stack of papers into two piles, A-L 

and M-Z (note that each pile may not contain the same 

number of papers). Then take the first pile and sub-divide it 

into two piles, A-F and G-L. The A-F pile can be further 

broken down into A-C and D-F. This division process goes on 

until the piles are small enough to be easily sorted. The same 

process is applied to the M-Z pile. Eventually, all the small 

sorted piles can be stacked one on top of the other to 

produce an ordered set of papers.

This strategy is based on recursion—on each attempt to sort 

the stack of papers, the pile is divided and then the same 

approach is used to sort each smaller pile (a smaller case).



The quick sort algorithm can be explained with the help of 

Figure In this figure the element marked by ‘*’ is the pivot 

element and the element marked by ‘—’ is the element whose 

position is finalized.

Figure 9-6. Quick



The array in Figure 9-6 consists of 10 elements. The quick sort 

algorithm works as follows:

(a) In the first iteration, we take the element, i.e. 11, as a 

pivot element and place it at its final position such that all 

elements to the left of it are less than 11 and all elements to 

the right of it are greater than 11. To divide the array in this 

way we use two index variables, p and q.

(b) Using index variable p we move in the array from left to 

right in search of an element greater than 11. In our case p is 

incremented till we reach 13.

(c) Similarly, using q we move in the array from right to left 

in search of an element smaller than 11. In our case q is not 

decremented even once because 3 is less than 11.

(d) Now 13 and 3 are interchanged. Again, from their current 

positions p and q are incremented and decremented 

respectively and exchanges are made appropriately if desired.

(e) The process ends when p exceeds In our case, this 

happens when p reaches 25 and q reaches 1.



(f) Now, the element 11 is interchanged with the value at index 

i.e. 1.

(g) The array is thus divided into two sub-arrays—elements to 

the left of 11 and elements to the right of 11, with 11 at its 

final position.

(h) Now the same procedure is applied to the two sub-arrays 

and then to the sub-arrays of these sub-arrays. As a result, at 

the end when all sub-arrays contain only one element, the 

original array gets sorted.

Note that it is not necessary that the pivot element must be 

the 0 th element. We can choose any other element as pivot. 

The program given below implements the quick sort algorithm.

Honest Solid Code {C}

Program 9-7. Implementation of Quick Sort algorithm

#include 

void quicksort (int [ ], int, int); 

int split (int [ ], int, int);



int main()

{
int arr[ ] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };

int i;

printf (“Quick sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

quicksort (arr, 0, 9);

printf (“Array after sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

return 0;

}

void quicksort (int a[ ], int lower, int upper)

{
int i;

if (upper > lower) 

{



i = split (a, lower, upper);

quicksort (a, lower, i - 1);

quicksort (a, i + 1, upper);

}

}

int split (int a[ ], int lower, int upper)

{
int p, q, num, temp;

p = lower + 1;

q = upper;

num = a[ lower ];

while (q >= p)

{

while (a[ p ] < num)

p++;

while (a[ q ] > num) 

q--;

if (q > p)

{
temp = a[ p ];



a[ p ] = a[ q ];
a[ q ] = temp;

}

}

temp = a[ lower ];

a[ lower ] = a[ q ];

a[ q ] = temp;

return q;

}

Output:

Quick sort

Array before sorting:

11 2 9 13 57 25 17 1 90 3
Array after sorting:

1 2 3 9 11 13 17 25 57 90

The first and last indexes passed to quicksort^) reflect the part 

of the array that is being currently processed. In the first call 

we pass 0 and 9, since there are 10 integers in our array.



In the function a condition is checked whether upper is greater 

than If the condition is satisfied then only the array will be 

split into two parts, otherwise, the control will simply be 

returned. To split the array into two parts the function split() is 

called.

In the function to start with the two variables p and q are 

assigned the values lower + 1 and Then a while loop is 

executed that checks whether the indexes p and q have 

crossed each other. If they haven’t then inside the while loop 

two more nested while loops are executed to increase the 

index p and decrease the index Then it is checked whether q 

is greater than If so, then the elements present at and 

positions are interchanged.

Finally, when the control returns to the function quicksort^) two 

recursive calls are made to function This is done to sort the 

two split sub-arrays. As a result, after all the recursive calls 

when the control reaches the function main() the arrays 

becomes sorted.

In quick sort we choose a pivot and then split the array into 

sub-arrays. Then we again choose a pivot element in each of 

these sub-arrays and further split them. The best case in quick 

sort would be when we always choose the middle element of 

the array as the pivot element. Suppose to reach a sub-array 

of 1 element we have to do k iterations.



Then, n / = 1.

Taking log of both sides we get, 

= log 2 n

Therefore, k = n.

In each of these k iterations for splitting the array we have to 

do n comparisons. Hence the total number of comparisons in 

quick sort will be n * So time complexity of quick sort in best 

case is O

The worst case in quick sort will occur when the input is an 

array which is already sorted. In this case if we take the first 

element as pivot then there won’t be any left sub-array. Except 

the pivot, all elements will be in right sub-array. Same thing 

will happen at each level. So while splitting there will be n 

comparisons at level 1, n - 1 comparison at level 2, n - 3 

comparisons at level 3, etc. So totally there will be n * (n + 1) 

/ 2 comparisons. So time complexity will be O



Binary Tree sort

Binary tree sort uses a binary search tree (BST). In this 

algorithm, each element in the input list is inserted in a BST. 

During insertion the element being inserted is compared with 

nodes in the BST starting with the root node and moving 

towards the leaf nodes. If the element is less than node, then 

it is placed in the left branch, otherwise in the right branch. 

After all elements are inserted in the BST, it is traversed in in­

order (left, root, right) to get the elements in ascending order.

Let’s understand this in more details. Suppose arr is an array 

that consists of 10 distinct elements. The elements are as 

follows:

11, 2, 9, 13, 57, 25, 17, 1, 90, 3

The BST that can be built from these elements is shown in 

Figure



Figure 9-7. Binary Tree sort at work.

The binary tree sort algorithm works as follows:

(a) To construct the binary search tree, we start with the 0 th 

element 11. It is made the root of the tree.

(b) While inserting the element, i.e. 2, 2 is compared with the 

root node 11. Since 2 is less than 11 it is made the left child 

of the root node 11.

(c) While inserting the element of the list, i.e. 13, it is 

compared with the root element 11. Since 13 is greater than 11 

it is made the right child of the root node 11.



(d) Similarly, all other elements are placed in their proper 

position in the binary search tree.

(e) Now to get the elements in the sorted order, the tree is 

traversed in in-order and the elements are restored in the 

array.

The following program implements the binary tree sort 

algorithm.

Honest Solid Code {C}

Program 9-8. Implementation of Binary Tree Sort algorithm

#include

#include

struct btreenode

{
struct btreenode *leftchild;

int data;

struct btreenode *rightchild;

};

void binarytreesort (int [ ], int);

void insert (struct btreenode **,  int);



void inorder (struct btreenode *,  int [ ], int *);

int main()

{

int arr[ ] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };

int i;

printf (“Binary Tree sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

binarytreesort (arr, 10);

printf (“Array after sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

return 0;

}

void binarytreesort (int a[ ], int size)

{

struct btreenode *bt;

int i;



bt = NULL;

for (i = 0; i < size; i++) 

insert (&bt, a[ i ]);

i = o;
inorder (bt, a, &i);

}

void insert (struct btreenode **pr,  int num)

{
if (*pr  == NULL)

{
*pr = (struct btreenode *)  malloc (sizeof (struct 

btreenode));

(*pr)->leftchild  = NULL;

(*pr)->data  = num;

(*pr)->rightchild  = NULL;

}
else

{
if (num < (*pr)->data)

insert (&((*pr)->leftchild),  num);

else

insert (&((*pr)->rightchild),  num);



}

}

void inorder (struct btreenode *pr,  int a[ ], int *p)  

{
if (pr != NULL)

{
inorder (pr->leftchild, a, p);

a[ *p  ] = pr->data;
*p = *p  + 1;

inorder (pr->rightchild, a, p);

}

}

Output:

Binary Tree sort Array before sorting:

11 2 9 13 57 25 17 1 90 3

Array after sorting:

1 2 3 9 11 13 17 25 57 90

The binarytreesort() function calls insert() function for each 

element in the array to construct the BST, and inorder() 

function to visit the constructed BST in in-order fashion.



In the insert() function it is ascertained whether BST is empty 

or not. If it is empty then a new node is created and the data 

to be inserted is stored in it. The left and right child of this 

new node is set with a NULL value, as this is the first node 

being inserted.

If BST is not empty then the current node is compared with 

the data to be inserted and insert() function is called 

recursively to insert the node in the left/right sub-tree. Thus 

insert() continues to move down the levels of BST until it 

reaches a leaf node. When it does, the new node gets inserted 

in the left/right sub-tree.

The inorder() function receives address of the root node of 

BST, address of the array and an index where each visited 

element of BST should be inserted in the array. In the function 

a condition is checked whether the pointer is If the pointer is 

not NULL then a recursive call is made first for the left child 

and then for the right child. The values passed are the address 

of the left and right children that are present in the pointers 

leftchild and rightchild respectively. In between these two calls 

the data of the current node is stored in the array.

In binary tree sort there are two distinct steps—creation of 

BST and visiting it in in-order. The worst case will be if the 

array is already in sorted order. Let us discuss the time 

complexity in this case.



While constructing the BST, to insert element of this array into 

BST we have to perform 1 comparison, to insert element we 

have to do 2 comparsions, to insert element we have to do 3 

comparisons. So to insert n elements it has to do n (n + 1) / 

2 comparisons.

If there are n elements in the list there will be n nodes in the 

BST. While performing in-order traversal of the BST we perform 

maximum of 3 comparisons for any node. For n nodes the 

maximum number of comparisons will be

So, total number of comparisons for this algorithm will be n 

(n + 1) / 2

+ 3 Ignoring constants and lower order terms, time complexity 

of binary tree sort will be O

The drawback of the binary tree sort is that additional space is 

required for building the BST.



Merge sort

Like Quick sort, Merge sort is also a recursive algorithm. It 

goes on splitting the array into sub-arrays till we get sub-arrays 

of size 1. Then it compares elements of 1-element sub-arrays 

to merge them into a 2- element sorted array. Then it merges 

two such 2-element sorted sub- arrays to build a 4-element 

sorted sub-array. This process continues up the ladder till we 

get a complete sorted array.

This merging process for two 5-element sorted sub-arrays is 

shown in Figure In the first step elements 2 and 1 are 

compared. Of these, 1 is smaller. Hence it is transferred to the 

sorted array. Then 2 and 3 are compared, and so on. I think 

you get the picture now.

Note that, if during comparison end of one of the sub-arrays 

is reached, then the remaining elements from the other sub­

array are copied into the third list.



Figure 9-8. Merge sort at work.

The following program implements the merge sort algorithm.

Honest Solid Code {C}

Program 9-9. Implementation of Merge Sort algorithm 

#include

#include 



void mergesort (int [ ], int, int);

void merge (int [ ], int, int, int);

int main()

{
int arr[ ] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 };

int i;

printf (“Merge sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

mergesort (arr, 0, 9);

printf (“Array after sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

return 0;

}

void mergesort (int arr[ ], int lower, int upper)

{



int mid;

if (lower < upper)

{
mid = (lower + upper) / 2;

mergesort (arr, lower, mid);

mergesort (arr, mid + 1, upper);

merge (arr, lower, mid, upper);

}

}

void merge (int arr[ ], int lower, int mid, int upper) 

{
int size, *b,  first, second, idx, i;

size = upper - lower + 1;

b = (int *)  malloc (size * sizeof (int));

first = lower;

second = mid + 1;

idx = 0;

while (first <= mid && second <= upper)

{
if (arr[ first ] <= arr[ second ])



{
b[ idx ] = arr[ first ]; 

first++; idx++;

}
else

{
b[ idx ] = arr[ second ]; 

second++; idx++;

}

}

while (first <= mid)

{
b[ idx ] = arr[ first ];

idx++; first++;

}

while (second <= upper)

{
b[ idx ] = arr[ second ];

idx++; second++;

}

idx = 0;

for (i = lower; i <= upper; i++)



{
arr[ i ] = b[ idx ]; 

idx++;

} 
free (b);

}

Output:

Merge sort

Array before sorting: 

11 2 9 13 57 25 17 1 90 3 
Array after sorting:

1 2 3 9 11 13 17 25 57 90

The logic of merge() function is similar to the polynomial 

addition logic discussed in Chapter The two sub-arrays being 

merged are part of the original array arr[ They are identified as 

two separate sub-arrays using mid and The first sub-array is 

from index lower to and the second from mid + 1 to For the 

purpose of merging another array b[ ] is created dynamically. 

Once array b[ ] contains the sorted elements, they are copied 

back into original array arr[ ] and the memory occupied by b[ ] 

is freed.



Suppose arr[ ] is an 8-element array. At level 1 we will split it 

into sub- arrays— arr[ o ] to arr[ 3 ] and arr[ 4 ] to arr[ 7 At 

the next level, we will split the first sub-array into two sub-sub- 

arrays—one from arr[ o ] to arr[ 1 ] and second from arr[ 2 ] 

to arr[ 3 So how many levels would we have if we are to 

reach 1-element sub-arrays? Well, it would be or in general At 

each level we are doing n comparisons for merging. So time 

complexity of merge sort algorithm would be O (n



Heap sort

In this algorithm a binary heap is used. Recall from Chapter 7 

that all levels of a binary heap are completely filled except 

perhaps last and at the last level nodes are as much to left as 

possible. In a max-heap the value at the root of any sub-tree 

is greater than or equal to the value of either of its sub-trees.

Heap sort is an improvement over the binary tree sort. Unlike 

a binary tree sort, it does not create a new binary tree from 

the input list. Instead it builds a heap by adjusting the 

position of elements within the array itself. Thus, it sorts the 

array in-place, without needing any extra space.

Given below are the steps involved in the heap sort algorithm.

(a) Build a max heap of array elements

(b) Swap Root element with last array element

(c) Build max heap excluding last element

(d) Decrease heap length by 1

(e) Repeat steps (b), (c), (d) until array gets sorted



Let us now understand this procedure with the help of an 

example. Suppose an array contains elements 11, 2, 9, 13, 57, 

25, 17, 1, 90, and 3- A binary heap representation of this array 

is shown in Figure To convert this binary heap into a max­

heap we need to repeatedly heapify the nodes in it. While 

heapifying a node in a max heap, we need to ensure that all 

its children satisfy the heap property—Parent >= Left child, 

Right child. This operation involves following steps:

(a) Pick maximum out of given node, and its left and right 

child

(b) If maximum is root, do nothing

(c) If maximum is left, exchange root with left and heapify left 

node

(d) If maximum is right, exchange root with right and heapify 

right node

These operations are shown in Figure



Figure 9-9. Heapify operation.

Note that in the binary tree shown in Figure 9-9 node 13 and 

node 9 are violating the heap property, so we need to heapify 

them. While heapifying 13, maximum out of 13, 1, and 90 is 

90. Since 90 is the right child it is exchanged with 13. As 

against this, while heapifying 9, maximum (25) turns out to be 

the left child. So 25 is exchanged with 9. Since after exchange 

13 and 9 became child nodes, we did not have to heapify 

them further.

The following program implements the heap sort algorithm:

Honest Solid Code {C}

Program 9-10. Implementation of Heap Sort algorithm



#include 

void heapsort (int [ ], int);

void heapify (int [ ], int, int);

int main()

{
int arr[ ] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 }; 

int i;

printf (“Heap sort\n”);

printf (“Array before sorting:\n”);

for (i = 0; i < 10; i++) 

printf (“%d\t”, arr[ i ]);

heapsort (arr, 10);

printf (“Array after sorting:\n”);

for (i = 0; i < 10; i++)

printf (“%d\t”, arr[ i ]);

}

void heapsort (int arr[ ], int size) 

{
int i, t;



/*  create max heap */

for (i = size / 2 - 1; i >= 0; i--) 

heapify (arr, size, i);

for (i = size - 1; i >= 0; i--)

{
/*  move current root to end */  

t = arr[ 0 ];

arr[ 0 ] = arr[ i ];

arr[ i ] = t;

/*  heapify the reduced heap */

heapify (arr, i, 0);

}

}

void heapify (int arr[ ], int sz, int i)

{
int largest, lch, rch, t;

lch = 2 * i + 1;

rch = 2 * i + 2;

if (lch >= sz)



return;

largest = i;

/*  if left child is larger than root */

if (lch < sz && arr[ lch ] > arr[ largest ]) 

largest = lch;

/*  if right child is larger than largest so far */  

if (rch < sz && arr[ rch ] > arr[ largest ]) 

largest = rch;

/*  if largest is not root */

if (largest != i)

{
t = arr[ i ];

arr[ i ] = arr[ largest ];

arr[ largest ] = t;

/*  heapify the affected sub-tree */

heapify (arr, sz, largest);

}

}



Output:

Heap sort

Array before sorting:

11 2 9 13 57 25 17 1 90 3
Array after sorting:

1 2 3 9 11 13 17 25 57 90

The program begins by declaring an array that represents the 

binary tree. We know that in array representation of a binary 

tree, a node at location i has its left and right child at 

locations (2 + 1) and (2i + 2) respectively.

Next, in the heapsort() function in a for loop we have 

repeatedly called heapify() moving level by level from leaf 

towards root, and at any level from right to left, starting from 

node at location size / 2 - The heapify() function finds the 

largest out of given node, and its left and right child. If the 

given node turns out to be largest then it does nothing. But if 

left/right child turns out to be largest it exchanges the given 

node with left/right child and then proceeds to heapify the 

left/right child.

Note that in the program we do not physically construct this 

binary tree by establishing the link between the nodes. Instead, 

we imagine this tree and then readjust the array elements to 

form a heap.



Once the max-heap is created the current root node is moved 

to the end and heapify() is called once again to heapify the 

reduced heap.

Let us now analyze the time complexity of heap sort algorithm. 

For this we must first consider the time complexity of heapify() 

function. In the worst case, while heapifying a value it does n 

comparisons. This is equal to the height of a complete binary 

tree. Since we are calling this function n times in the time 

complexity of heap sort algorithm will be O (n



Chapter Bullets

Summary of chapter

(a) Searching an element in a list can be done using linear 

search or binary search algorithm.

(b) Binary search algorithm is more efficient than linear search 

algorithm.

(c) Binary search algorithm expects the elements of a list in 

ascending order.

(d) Binary search can be done iteratively or recursively.

(e) Internal sorting is used when the input data can be 

accommodated in memory.

(f) External sorting is used when data is so huge that all of it 

cannot be stored in memory at a time.



(g) Common internal sorting algorithms include bubble sort, 

selection sort, insertion sort, quick sort, merge sort, binary tree 

sort and heap sort.



Check Your Progress

Exercise - Level I

[A] State whether the following statements are True or False:

(a) Sorting is the method of arranging a list of elements in a 

particular order.

(b) Linear search is more efficient than the binary search.

(c) Merge sort needs additional space to sort an array.

(d) Binary tree sort needs additional space to sort an array.

(e) Time complexity of Quick sort is O (n

(f) Insertion sort is more efficient than Heap sort.



Sharpen Your Skills

Exercise - Level II

[B] Answer the Following:

(a) What is the difference between an internal sorting and 

external sorting?

(b) Write a program that determines the first occurrence of a 

given sub-array within it.



Coding Interview Questions

Exercise Level III

[C] Answer the Following:

(a) Suppose an array contains n elements. Given a number x 

that may occur several times in the array. Find

- the number of occurrences of x in the array

- the position of first occurrence of x in the array.

(b) Write a program that implements insertion sort algorithm 

for a linked list of integers.

(c) Write a program that sorts the elements of a two­

dimensional array row wise / column wise.



Case Scenario Exercise

External Sorting

External sorting is useful for sorting huge amount of data that 

cannot be accommodated in the memory all at a time. So 

data from the disk is loaded into memory part by part and 

each part that is loaded is sorted and the sorted data is 

stored into some intermediate file. Finally, all the sorted parts 

present in different intermediate files are merged into one 

single file.

Initially the original file (file number 1) is partitioned into two 

files (file number 2 and 3). Then one item is read from each 

file (file number 2 and 3) and the two items are written in 

sorted order in a new file (file number 4). Once again one 

item is read from each partitioned files (file number 2 and 3) 

and these two items are written in sorted order in another 

new file (file number 5). Thus alternate pair of sorted items 

are stored in the file number 4 and 5. This procedure is 

repeated till the partitioned files (file number 2 and 3) come to 

an end.



Now following procedure is repeated twice:

(a) Read one item from file number 4 and 5 and write them 

in sorted order in file number 2.

(b) Read one item from file number 4 and 5 and write them 

in sorted order in file number 3.

Note that instead of creating two new files, the partitioned 

files (2 and 3) are being reused.

After this the following procedure is repeated 4 times:

(a) Read one item from file number 2 and 3 and write them 

in sorted order in file number 4.

(b) Read one item from file number 2 and 3 and write them 

in sorted order in file number 5.

In this way alternately items are moved from a pair of 

partitioned files to the pair of new files and from pair of new 

files to a pair of partitioned files. This procedure is repeated 

till the time we do not end up writing entire data in a single 

file. When this happens all the items in this file would be in 

sorted order.



Write a program that implements the external sort algorithm.
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Since these days most laptops do not have a DVD drive, we 

haven’t enclosed the DVD with the book. Instead its contents 

have been made available for download. They can be 

downloaded using any one of the following links:

https://drive.google.com/drive/folders/1Pe39B5RwTcUoCpzljCrWi5iC 

TM31SkT

OR

http://bit.ly/2TdCT8S

Download all the files shown when you visit this link.

Once downloaded, you can install the contents by double­

clicking the file CDStart.exe. Follow the instructions that will 

appear on the screen.

Once the installation is over you can access the animations as 

well as the sample programs.
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