
YASHAVANT KAN ETKAR'S

Im Challenges
In C Programming

101 Challenges To Solve

Solve 101 Challenges to hone C Programming skills
Practise them to be a mature C programmer

101 Challenges Series
Yashavant Kanetkar

Aditya Kanetkar BPB PUBLICATIONS

Table of Contents

CHAPTER QI BASIC CONTROL FLOW CHALLENGES
Challenge oi Round off integer

Challenge 02 Cartesian coordinates to Polar coordinates
Challenge 03 Interchange contents of two variables
Challenge 04 Weight conversions
Challenge 05 Paper sizes
Challenge 06 Currency notes
Challenge 07 Nautical miles

CHAPTER 02 DECISION MAKING CHALLENGES
Challenge 08 Biggest of five numbers
Challenge 09 Check type of character
Challenge 10 Roots of a quadratic equation
Challenge n Leap year or not
Challenge 12 Point lies inside, outside or on circle
Challenge 13 Type of triangle

Challenge 14 Collinearity of points
Challenge 15 Position of point w.r.t. axes and quadrants
Challenge 16 Boxing categories
Challenge 17 Sun signs
Challenge 18 Electricity bill
Challenge 19 RGB to CMYK Color conversion

CHAPTER 03 LOOPING CHALLENGES
Challenge 20 Wolf and Rabbit population
Challenge 21 Combination of numbers

Challenge 22 Four digit perfect square
Challenge 23 Prime number list

Challenge 24 Base conversion
Challenge 25 Natural Logarithm series

Challenge 26 Generate Pythagorean triplets
Challenge 27 Program to evaluate the Exp series

Challenge 28 Factorial value of a number
Challenge 29 Ramanujan number series

Challenge 30 Armstrong numbers
Challenge 31 Number pattern

Challenge 32 Fibonacci series

Challenge 33 Compound interest at different interest rates
Challenge 34 Display times of day with AM/PM

CHAPTER 04 FUNCTION CHALLENGES
Challenge 35 Roman equivalent of a given number
Challenge 36 GCD and LCM
Challenge 37 Point inside / outside / on the rectangle
Challenge 38 pow() function

Challenge 39 Prime factors
Challenge 40 Pascal's Triangle

CHAPTER 05 POINTER CHALLENGES
Challenge 41 Sum, Product, Average of 5 numbers
Challenge 42 Area and Perimeter of triangle

Challenge 43 Position of point with respect to triangle
Challenge 44 Area of Triangle from Points

CHAPTER 06 RECURSION CHALLENGES
Challenge 45 Towers of Hanoi
Challenge 46 Prime factors of a number
Challenge 47 Sum of digits of a number
Challenge 48 Factorial of a number
Challenge 49 Paper sizes
Challenge 50 Fibonacci sequence
Challenge 51 Decimal to Binary conversion
Challenge 52 Sum of first n natural numbers

CHAPTER 07 PREPROCESSOR CHALLENGES
Challenge 53 Assorted Macros I
Challenge 54 Assorted Macros II
Challenge 55 Macros for simple and compound interest
Challenge 56 Excel like functions
Challenge 57 Macros in a file

CHAPTER 08 ARRAY CHALLENGES
Challenge 58 Mean, Median, Mode of a set of numbers

Challenge 59 Implementation of Stack of integers
Challenge 60 Frequency of positive, negative and zero

Challenge 61 Quick sort
Challenge 62 Linear search

Challenge 63 Binary search
Challenge 64 Compare arrays
Challenge 65 Rotate array contents
Challenge 66 Reverse array contents

Challenge 67 Decimal to binary conversion
Challenge 68 Sieve of Eratosthenes

CHAPTER 09 MULTIDIMENSIONAL ARRAY CHALLENGES
Challenge 69 Transpose of a matrix
Challenge 70 Addition of matrices
Challenge 71 Multiplication of matrices
Challenge 72 Access 2D array elements in a spiral

Challenge 73 Largest square sub-matrix with all is

CHAPTER 10 STRING CHALLENGES
Challenge 74 Common string functions implementation

Challenge 75 Extracting substring
Challenge 76 Count vowels, consonants, words in a string

Challenge 77 Delete all vowels in a string
Challenge 78 String reversal

Challenge 79 Fibonacci word sequence
Challenge 80 Validity of credit card number

Challenge 81 Validity of ISBN
Challenge 82 Calendar generation

Challenge 83 Sorting of names
Challenge 84 Generation of all combination of a string
Challenge 85 Expanded digit printing
Challenge 86 Number to words

CHAPTER 11 STRUCTURE CHALLENGES
Challenge 87 Sort dates
Challenge 88 Implementation of Linked List
Challenge 89 Implementation of Stack as a Linked List
Challenge 90 Implementation of Queue as a Linked List

Challenge 91 Cricket scores

CHAPTER 12 FILE INPUT/OUTPUT CHALLENGES
Challenge 92 Display contents of source file as output

Challenge 93 Sort records in a file
Challenge 94 Encryption / Decryption of a file

Challenge 95 Command-line arguments

CHAPTER 13 BITWISE OPERATIONS CHALLENGES
Challenge 96 Display bit values of a number

Challenge 97 Pack information in bits

CHAPTER 14 MISCELLANEOUS FEATURES
Challenge 98 Calls using function pointers

Challenge 99 Function with variable number of arguments
Challenge 100 Use of bit-fields
Challenge 101 Use of bit-fields

21
BASIC CONTROL FLOW CHALLENGES

Total Challenges: 7

In a C program the sequence of execution of instructions is governed by the con­
trol instruction that is used. Unless explicitly mentioned, instructions in a C pro­

gram are executed one after the other or sequentially. Challenges 1 to 7 in this
chapter deal with programs that need sequence control instruction to implement

their logic.

Challenge 01
Write a program to round off an integer i to the next largest multiple of another

integer j. For example, 256 days when rounded off to the next largest multiple
divisible by a week results into 259.

SOLUTION
#include <stdio.h> int main()

int i, j, k ;
printf (“Enter values of i and j:\n”);

scanf (“%d %d”, &i, &j);
k = i + j - i % j;
printf (“Next largest multiple = %d\n”, k);
return o;

SAMPLE RUN
After 25 days R = 7958 W = 1800
After 50 days R = 6654 W = 1602

EXPLANATION

Suppose value of i and j are entered as 256 and 7, then k evaluates to 259 which
is the next largest multiple of 7 after 256.

Challenge 02
Write a program to receive Cartesian coordinates (x, y) of a point and convert
them into polar coordinates (r,).

SOLUTION
/* Convert Cartesian coordinates to Polar coordinates */

#include <stdio.h>
#include <math.h>

int main()

{
float x, y, r, theta;
printf (“Enter x and y coordinates:\n”);
scanf (“%f%f”, &x, &y);
r = sqrt (x * x + y * y);

theta = atan2 (y, x);
theta = theta * 180 / 3.14; /* convert to degrees */

printf (“r = %f theta = %f\n”, r, theta);
return o;

SAMPLE RUN
Enter x and y coordinates:
12 12

cr = 16.970562 theta = 44.981895

EXPLANATION
In Mathematics, a point in a plane can be represented using either Cartesian
coordinate system or Polar coordinate system. Cartesian system specifies each

point uniquely in a plane by a pair of numerical coordinates, (x, y). The Polar
coordinate system specifies each point by a distance from origin and an angle

from a reference direction.

Following formulae are used to convert a point in Cartesian coordinate system to

Polar coordinate system.
r = 7x2 + y2

<p= tan'^y/x)

Note that to compute tan inverse we are using the function atan2() rather than
atan(). This is because atan() returns value of angle in only in Ist and 4th quad­
rant, whereasatan2() returns value from Ist, 2ncf 3rd or 4 th quadrant appro­
priately.

Challenge 03
Two numbers are input through the keyboard into two locations x and y.

Write a program to interchange the contents of x and y.
SOLUTION
/* Method: I */

/* Interchanging contents of two variables x & y */
#include <stdio.h>

int main()

{
int x, y, t;
printf (“Enter the number at location x:\n”);

scanf (“%d”, &x);
printf (“Enter the number at location y:\n”);

scanf (“%d”, &y);
I* Interchange contents of x and y using t as temporary variable */
t = x;

x = y;

y = t;
printf (“Number at location x = %d\n”, x);

printf (“Number at location y = %d\n”, y);
return o;

}
I* Method: II */

/* Interchanging contents of two variables x & y */
#include <stdio.h>

int main()

{
int x, y;
printf (“Enter the number at location x: \n”);

scanf (“%d”, &x);
printf (“Enter the number at location y: \n”);

scanf (“%d”, &y);
x = x + y;

y = x - y;
x = x - y;
printf (“Number at location x: %d\n”, x);
printf (“Number at location y: %d\n”, y);

return o;

SAMPLE RUN
Enter the number at location x: 50

Enter the number at location y: 100
Number at location x: 100

Number at location y: 50

EXPLANATION
Interchanging contents of two variables can be done using two methods—using

a third variable t or without using the third variable. Both methods are given in
the programs above.
Note that the first method can be used for exchanging numbers, names, dates,

etc. whereas the second method can be used only for exchanging numbers, as
this method involves arithmetic operations which can be done only on numbers.

Challenge 04
The weight of a commodity is input through the keyboard. Write a program to
convert and print this weight in grams, quintals, metric tons and pounds.

SOLUTION
/* Conversion of weight */

#include <stdio.h>
int main()

{
float kg, g, qt, ton, lbs;

printf (“Enter weight in kilograms: \n”);
scanf (“%f”, &kg);

g = kg “ 1000.0;
qt = kg / 100.0;

ton = kg / 1000.0;
lbs = kg * 2.204;

printf (“Equivalent weight in grams = %f\n”, g);
printf (“Equivalent weight in quintals = %f\n”, qt);

printf (“Equivalent weight in metric tonnes = %f\n”, ton);
printf (“Equivalent weight in pounds = %f\n”, lbs);

return o;

}
SAMPLE RUN
Enter weight in kilograms: 45.87

Equivalent weight in grams: 45870.000000
Equivalent weight in quintals: 0.458700

Equivalent weight in metric tonnes: 0.045870
Equivalent weight in pounds: 101.097481

EXPLANATION
The program uses the following conversion formulae:

1 kg = 1000 gm
1 quintal = 100 kg

1 ton = 1000 kg
1 kg = 2.2024 lbs

Challenge 05
Paper of size Ao has dimensions 1189 mm x 841 mm. Each subsequent size A(n)
is defined as A(n-i) cut in half parallel to its shorter sides. Write a program to

calculate and print paper sizes Ao, Ai, Az, ... A8.

SOLUTION
/* Calculation of PaperSizes Ao to A8 */
#include <stdio.h>

int main()

{
int aoht, aowd;
int aiht, aiwd, azht, azwd;

int a3ht, a3wd, aqht, aqwd;
int a5ht, a5wd, a6ht, a6wd;

int ayht, a7wd, a8ht, a8wd;
aoht = 1189;

aowd = 841;
printf (“Size of Ao paper Height = %d Width = %d\n”, aoht, aowd);

aiht = aowd;
aiwd = aoht / 2;

printf (“Size of Ai paper Height = %d Width = %d\n”, aiht, aiwd);
azht = aiwd;

azwd = aiht / 2;
printf (“Size of Az paper Height = %d Width = %d\n”, azht, azwd);
a3ht = azwd;
a3wd = azht / 2;

printf (“Size of A3 paper Height = %d Width = %d\n”, a3ht, a3wd);
a4ht = a3wd;

a4wd = a3ht / 2;
printf (“Size of A4 paper Height = %d Width = %d\n”, a4ht, a4wd);

a5ht = a4wd;
a5wd = a4ht / 2;

printf (“Size of A5 paper Height = %d Width = %d\n”, a5ht, a5wd);
a6ht = a5wd;

a6wd = a5ht / 2;
printf (“Size of A6 paper Height = %d Width = %d\n”, a6ht, a6wd);

ayht = a6wd;
aywd = a6ht / 2;

printf (“Size of A7 paper Height = %d Width = %d\n”, a7ht, a7wd);

a8ht = aywd;

a8wd = ayht / 2;
printf (“Size of A8 paper Height = %d Width = %d\n”, a8ht, a8wd);

return o;

}
SAMPLE RUN
Size of Ao Paper Height = 1189 Width = 841

Size of Ai Paper Height = 841 Width = 594
Size of A2 Paper Height = 594 Width = 420

Size of A3 Paper Height = 420 Width = 297
Size of A4 Paper Height = 297 Width = 210

Size of A5 Paper Height = 210 Width = 148
Size of A6 Paper Height = 148 Width = 105

Size of A7 Paper Height = 105 Width = 74
Size of A8 Paper Height = 74 Width = 52

EXPLANATION
The paper sizes like Ao, Ai, A2, etc. follow two rules:

(a) The length to breadth ratio of each paper size is equal to 1.414.
(b) As we proceed from Ao to Ai to A2, etc. the length of each subsequent paper

size is equal to the width of the previous paper size and its width is equal to

half the length of previous paper size. This is shown in Figure i.i.

Figure 1.1. Different paper sizes.
The program uses rule (b) above to compute the length and breadth of each
paper size.

Challenge 06
Consider a currency system in which there are notes of seven denominations,
namely, Re. i, Rs. 2, Rs. 5, Rs. 10, Rs. 50, Rs. 100. If a sum of Rs. N is entered

through the keyboard, write a program to compute the smallest number of notes
that will combine to give Rs. N.

SOLUTION
/* Smallest number of notes that will combine to give the amount */

#include <stdio.h>
int main()

{
int amt, nohun, nofifty, noten, nofive, notwo, noone, totalnotes;

printf (“Enter the amountin’’);
scanf (“%d”, &amt);

nohun = amt / 100;
amt = amt % 100;
nofifty = amt / 50;
amt = amt % 50;

noten = amt / 10;
amt = amt % 10;

nofive = amt / 5;
amt = amt % 5;

notwo = amt / 2;
amt = amt % 2;

noone = amt / 1;
amt = amt % 1;

totalnotes = nohun + nofifty + noten + nofive + notwo + noone;
printf (“100 Rs. Notes = %d\n”, nohun);

printf (“50 Rs. Notes = %d\n”, nofifty);
printf (“10 Rs. Notes = %d\n”, noten);

printf (“5 Rs. Notes = %d\n”, nofive);
printf (“2 Rs. Notes = %d\n”, notwo);

printf (“1 Re. Notes = %d\n”, noone);
printf (“Smallest number of notes = %d\n”, totalnotes);

return o;

}
SAMPLE RUN
Enter the amount: 475

100 Rs. Notes = 4

5© Rs. Notes = i

io Rs. Notes = 2
5 Rs. Notes = i

2 Rs. Notes = o
i Re. Notes = o

Smallest number of notes = 8

EXPLANATION
/ operation gives the quotient, whereas % operator yields the remainder. So in

the first step we find out how many hundreds are there in the amt value using /,
and the balance amount using %. The same procedure is repeated for 50, 10, 5, 2
and 1.

Challenge 07
Write a program to receive values of latitude (Li, L2) and longitude (Gi, G2), in
degrees, of two places on the earth and outputs the distance between them in

nautical miles. The formula for distance in nautical miles is:
D = 3963 acos (sin Li sin L2 + cos Licos L2 * cos (G2 - Gi))

SOLUTION
/* Calculate distance between two places in Nautical Miles */

#include <stdio.h>
#include <math.h>

int main()

{
float lati, lat2, loni, lon2, d;
printf (“Enter Latitude and Longitude of Place i:\n”);

scanf (“%f%f”, &lati, &loni);
printf (“Enter Latitude and Longitude of Place 2:\n”);

scanf (“%f%f”, &lat2, &lon2);
lati = lati * 3.14 / 180;

lat2 = lat2 * 3.14 / 180;
loni = loni * 3.14 / 180;

lon2 = lon2 * 3.14 / 180;
d = 3963 * acos (sin (lati) * sin (lat2) + cos (lati) * cos (lat2) * cos (lon2 - loni));

printf (“Dist. between Placei & Place 2 = %f Nautical Miles\n”, d);
return o;

}
SAMPLE RUN
Enter Latitude and Longitude of Place 1:

21.14 79-o8
Enter Latitude and Longitude of Place 2:
19.07 72.87

Dist. between Place 1 & Place 2 = 428.114990 Nautical Miles

EXPLANATION
The program uses the formula
D = 3963 acos (sin Li sin L2 + cos Licos L2 * cos (G2 - Gi))

to calculate the distance between two places in nautical miles. Note that to use the

trigonometirc functions sin(), cos() and acos() we need to include the file math.h
at the beginning of the program.

02

DECISION MAKING CHALLENGES
Total Challenges: 12

If I get time, I would play Pokemon; if there is a good movie on TV I would stay
at home; if I get a visa I would fly next month; if you do it so would I. Put all

these statements in spotlight and you will notice that which action to take de­
pends on certain condition being met. Often while writing a C program one has

to perform different sets of actions depending on the satisfaction or failure of one
or multiple conditions. Challenges 8 to 19 will show you how this is done.

Challenge 08
Write a program to receive 5 numbers from keyboard and then report which is
the biggest of the 5 numbers.

SOLUTION
/* Biggest of 5 numbers */

#include <stdio.h>
int main()

{
int i, j, k, 1, m, big;

printf (“Enter 5 numbers:\n”);
scanf (“%d %d %d %d %d”, &i, &j, &k, &1, &m);

big = i;

if (j > big)

big = j;
if (k > big)

big = k;

if (1 > big)
big = 1;
if (m > big)

big = m;
printf (“Biggest Number = %d\n”, big);

return o;

}
SAMPLE RUN
Enter 5 numbers: 56

32

65
78
2

Biggest Number = 78

EXPLANATION
The logic goes this way: Assume that the first number is the biggest number.
Compare it with the second number. If the second number is bigger then store it

in big, otherwise continue the comparison with thrid number. Repeat this
process till we reach the fifth number.

Challenge 09
Write a program to receive a character from keyboard and then determine
whether the character entered is an upper case alphabet, lower case alphabet,

digit or special symbol.

SOLUTION
/* Determine type of character */
#include <stdio.h>

int main()

{
char ch;
printf (“Enter a characterin’’);

scanf (“%c”, &ch);
if (ch >= 65 && ch <= 90)

printf (“The character is an uppercase letter\n”);
if (ch >= 97 && ch <= 122)

printf (“The character is a lowercase letter\n”);
if (ch >= 48 && ch <= 57)
printf (“The character is a digit\n”);

if ((ch >= o && ch < 48) || (ch > 57 && ch < 65)

|| (ch > 90 && ch < 97) || ch > 122)
printf (“The character is a special symbol\n”);

return o;

}
SAMPLE RUN
Enter a character: 4

The character is a digit
Enter a character:

The character is a special symbol

Enter a character:
R
The character is an uppercase letter
Enter a character:

b
The character is a lowercase letter

EXPLANATION
ASCII values of all characters lie in the range o to 255. There are different pre­

assigned ranges for different types of characters. These are shown below:

Uppercase letter 65 to 90

Lower case letter 97 to 122
Digit 48 to 57

Special symbol o to 47, 58 to 64, 91 to 96,123 to 255
So in the program we have received a character and checked in which out of the

above ranges does its ASCII value lie. Accordingly, we have reported the type of
the character.

You can do a better implementation of this program—using if-else if- else clause.
This would be a better implementation because in the current implementation,

even if the first if is satisfied, rest of the ifs are unnecessarily evaluated.

Challenge 10
Write a program to receive values of a, b, c from a quadratic equation ax2 + bx
= o and determine its roots.

SOLUTION
/* Roots of Quadratic equation */

#include <stdio.h>
#include <math.h>

int main()

{
float a, b, c, disc, rooti, root2;
printf (“Enter the coefficients (a, b and c):\n”);

scanf (“%f%f%f”, &a, &b, &c);
disc = b * b - 4.0 * a * c;

if (disc < o)
printf (“No real roots\n”);

else

{
rooti = (-b + sqrt (disc)) / (2.0 * a);
root2 = (-b - sqrt (disc)) / (2.0 * a);

printf (“Root 1 = %f\n”, rooti);
printf (“Root 2 = %f\n”, root2);

}
return o;

}
SAMPLE RUN
Enter the coefficients (a, b and c):
1

5
6

Root 1 = -2.000000
Root 2 = -3.000000
Enter the coefficients (a, b and c):

4
12

9
Root 1 = -1.500000
Root 2 = -1.500000
Enter the coefficients (a, b and c):

I

I

I

No real roots

EXPLANATION

On receiving the values of a, b, c, we have calculated the value of the discrim­
inant. If discriminant is negative then the quadratic equation does not have real

roots. If not, then we have calculated the two real roots and printed them.

Challenge n
If a year is input through the keyboard, write a program to determine whether
the year is a leap year or not.

SOLUTION
/* Check whether the year is leap or not */

#include <stdio.h>
int main()

{
int yr;

printf (“Enter a year:\n”);
scanf (“%d”, &yr);
if (yr % 100 == o)

{
if (yr % 400 == o)
printf (“Leap year\n”);

else
printf (“Not a Leap year\n”);

}
else

{
if (yr % 4 == o)
printf (“Leap year\n”);

else

printf (“Not a leap year\n”);

}
return o;

}
SAMPLE RUN
Enter a year:

1984
Leap Year
Enter a year:
2005
Not a Leap Year
Enter a year:
1800
Not a Leap Year

Enter a year:

2000

Leap Year

EXPLANATION
There is a simple rule for determining whether a year is leap or not. If the year is
a century year and is divisible by 400 then it is a leap year. Also, if the year is a

non-century year and is divisible by 4, then it is a leap year. In all other situations
the year is not a leap year. The program just implements these conditions to test

whether the given year is leap or not.

Challenge 12
Given the coordinates (x, y) of center of a circle and its radius, write a program
that will determine whether a point lies inside the circle, on the circle or outside

the circle.

SOLUTION
/* Determine position of point with respect to a circle */
#include <stdio.h>

#include <math.h>
int main()

{
float centerX, centerY, radius;

float pointX, pointY;
float xDiff, yDiff;

float distance;
printf (“Enter coordinates of center of circle: \n”);
scanf ¢erX, ¢erY);
printf (“Enter radius of circle: \n”);
scanf (“%f”, &radius);
printf (“Enter coordinates of point: \n”);
scanf (“%f%f”, &pointX, &pointY);
xDiff = centerX - pointX;

yDiff = centerY - pointY;
distance = sqrt ((xDiff* xDiff) + (yDiff* yDiff));

if (distance == radius)
printf (“Point is on the circle\n”);

else if (distance < radius)
printf (“Point lies inside the circle\n”);

else
printf (“Point lies outside the circle\n”);

return o;

}
SAMPLE RUN
Enter coordinates of center of circle:

o
o

Enter radius of circle:

5
Enter coordinates of point:

5
o
Point is on the circle

EXPLANATION
The progam receives as input the coordinates of centre of circle and coordinates

of the point in question. Then it determines the distance between these two
points. Further it compares this distance with radius of the circle to determine

whether the point lies inside, outside or on the circle.

Challenge 13
If the three sides of a triangle are entered through the keyboard, write a program
to check whether the triangle is isosceles, equilateral, scalene or right angled tri­

angle.

SOLUTION
/* Determine the type of triangle */
#include <stdio.h>

int main()

{
int si, S2, S3, a, b, c;
printf (“Enter the sides of a triangle:\n”);

scanf (“%d %d %d”, &si, &S2, &S3);
if ((SI + S2 <= S3) || (S2 + S3 <= Si) || (SI + S3 <= S2))

printf (“The sides do not form a triangle\n”);
else

{
if (si != S2 && S2 != S3 && S3 != si)

printf (“Scalene triangle\n”);
if ((si == S2) && (S2 != S3))

printf (“Isosceles triangle\n”);
if ((s2 == S3) && (S3 != si))

printf (“Isosceles triangle\n”);
if ((si == S3) && (S3 != S2))

printf (“Isosceles triangle\n”);
if (si == S2 && S2 == S3)

printf (“Equilateral triangle\n”);
a = (si * si) == (S2 * S2) + (S3 * S3);

b = (S2 * S2) == (si * si) + (S3 * S3);
c = (S3 * S3) == (si * si) + (S2 * S2);

if (a || b || c)
printf (“Right-angled triangle\n”);

}
return o;

}
SAMPLE RUN
Enter the sides of a triangle:
6 8 10

Scalene triangle

Right Angled Triangle

Enter the sides of a triangle:

333
Equilateral Triangle
Enter the sides of a triangle:

5312
The sides do not form a triangle

EXPLANATION
First the program determines whether a triangle is valid or not. The triangle is

valid only if sum of its two sides is greater than the third side. If the triangle is
valid then it is determined whether the triangle is scalene (all sides unequal),
isosceles (2 sides equal), equilateral (3 sides equal). To determine whether the tri­
angle is a right angled triangle we have checked whether its sides form a

Pythogorean triplet.

Challenge 14
Given three points (xi, yi), (xz, yz) and (X3, y3), write a program to check if all the
three points fall on one straight line.

SOLUTION
/* Check whether three points are co-linear */

#include <stdio.h>
#include <math.h>

int main()

{
int xi, yi, X2, yz, X3, y3;
float si, S2, S3;

printf (“\nEnter values of xi and yi coordinates of first point:”);
scanf (“%d%d”, &xi, &yi);

printf (“\nEnter values of X2 and yz coordinates of first point:”);
scanf (“%d%d”, &X2, &yz);

printf (“\nEnter values of X3 and y3 coordinates of first point:”);
scanf (“%d%d”, &X3, &y3);
if (XI == X2 && X2 == X3)
printf (“Collinear\n”);

else if (xi != X2 && X2 != X3 && X3 != xi)

{
/* Calculate Slope of line between each pair of points */
si = (float) abs (yz - yi) / (float) abs (xz - xi);

sz = (float) abs (73 - yz) / (float) abs (X3 - xz);
S3 = (float) abs (y3 - yi) / (float) abs (X3 - xi);

if (si == S2 && sz == S3)
printf (“Collinear\n”);

else
printf (“Non Collinear\n”);

}
else

printf (“Non Collinear\n”);
return o;

}
SAMPLE RUN
Enter values of xi and yi coordinates of first point: 4 5
Enter values of xz and yz coordinates of first point: 2 5

Enter values of X3 and y3 coordinates of first point: 3 5

Collinear

Enter values of xi and yi coordinates of first point: i i
Enter values of X2 and y2 coordinates of first point: 2 2

Enter values of X3 and y3 coordinates of first point: 3 3
Collinear

EXPLANATION
The three points would be collinear if the slopes of lines joining each pair of

points are equal. While finding slopes there is a possibility that the denominator
may turn out to be zero, hence before finding slopes it it necessary to ascertain

that this is not the case.

Challenge 15
Given a point (x, y), write a program to find out if it lies on the x-axis, y- axis or on
the origin.

SOLUTION
/* Determine position of a point with respect to X and Y axes */

#include <stdio.h>
int main()

{
int x, y;

printf (“Enter the X and Y coordinates of the pointin’’);
scanf (“%d %d”, &x, &y);
if (x == o && y == o)
printf (“Point is the origin\n”);

else if (x == o && y != o)
printf (“Point lies on the Y axis\n”);

else if (x != o && y == o)
printf (“Point lies on the X axis\n”);

else

{
if (x > o && y > o)

printf (“Point lies in the First Quadrant\n”);
else if (x < o && y > o)

printf (“Point lies in the Second Quadrant\n”);

else if (x < o && y < o)
printf (“Point lies in the Third Quardant\n”);

else
printf (“Point lies in the Fourth Quadrant\n”);

}
return o;

}
SAMPLE RUN
Enter the X and Y coordinates of the point:
o o

Point is the origin
Enter the X and Y coordinates of the point:

-10 -20
Point lies in the Third Quardant

EXPLANATION

In this program we have combined the usage of if ■ else with if ■ else if ■ else to
determine the position of the point with respect to axes.

Challenge 16
In boxing the weight class of a boxer is decided as per the following table. Write a
program that receives weight as input and prints out the boxer's weight class.

Boxer Class
Weight in Pounds |

Flyweight
Bantamweight
Featherweight
Middleweight
Heavyweight

<115
115-121
122 -153
154 -189
>= 190

SOLUTION
/* Decide Boxer class based on his weight */
#include <stdio.h>

int main()

{
int weight;
printf (“Enter weight in pounds:\n”);

scanf (“%d”, &weight);
if (weight < o)

printf (“Invalid Input\n”);
else if (weight >= o && weight < 115)

printf (“Flyweight\n”);
else if (weight >= 115 && weight < 122)

printf (“Bantamweight\n”);
else if (weight >= 122 && weight < 154)
printf (“Featherweight\n”);

else if (weight >= 154 && weight < 190)
printf (“Middleweight\n”);

else

printf (“Heavyweight\n”);
return o;

}
SAMPLE RUN
Enter weight in pounds:
130
Featherweight
Enter weight in pounds:

-76

Invalid Input

EXPLANATION

We have used if - else if - else instead of nested if- elses to determines the boxer's
category. This makes the program easy to understand and maintain.

Challenge 17
Write a program that receives month and date of birth as input and prints the
corresponding Zodiac sign based on the following table:

Zodiac Sign From - To

Capricorn
Aquarius
Pisces
Aries
Taurus
Gemini
Cancer
Leo
Virgo
Libra
Scorpio
Sagittarius

December 22 - January 19
January 20 - February 17
February 18 - March 19
March 20 - April 19
April 20 - May 20
May 21 - June 20
June 21 - July 22
July 23 - August 22
August 23 - September 22
September 23 - October 22
October 23 - November 21
November 22 - December 21

SOLUTION
/* Decide Zodiac sign based on date and month of birth */
#include <stdio.h>

int main()

{
int d, m;
printf (“Enter day and month of birth:\n”);
scanf (“%d %d”, &d, &m);
if (d <= o || m <= o)

printf (“Invalid Input\n”);
else if (((d >= 22 && d <= 31) && m == 12) || (d <= 19 && m == 1))

printf (“Capricorn \n”);
else if (((d >= 20 && d <= 31) && m == 1) || (d <= 17 && m == 2))

printf (“Aquarius\n”);
else if (((d >= 18 && d <= 29) && m == 2) || (d <= 19 && m == 3))

printf (“Pisces\n”);
else if (((d >= 20 && d <= 31) && m == 3) || (d <= 19 && m == 4))

printf (“Aries\n”);
else if (((d >= 20 && d <= 30) && m == 4) || (d <= 20 && m == 5))

printf (“Taurus\n”);
else if (((d >= 21 && d <= 31) && m == 5) || (d <= 20 && m == 6))

printf (“Gemini\n”);
else if (((d >= 21 && d <= 30) && m == 6) || (d <= 22 && m == 7))

printf (“Cancer\n”);
else if (((d >= 23 && d <= 31) && m == 7) || (d <= 22 && m == 8))

printf (“Leo\n”);

else if (((d >= 23 && d <= 31) && m == 8) || (d <= 22 && m == 9))
printf (“Virgo\n”);

else if (((d >= 23 && d <= 30) && m == 9) || (d <= 22 && m == 10))
printf (“Libra\n”);

else if (((d >= 23 && d <= 31) && m == 10) || (d <= 21 && m == n))

printf (“Scorpio\n”);
else if (((d >= 22 && d <= 30) && m == n) || (d <= 21 && m == 12))
printf (“Sagittarus\n”);

else
printf (“Invalid Input\n”);

return o;

}
SAMPLE RUN
Enter day and month of birth:

32 12
Invalid Input

Enter day and month of birth:
22 3

Pisces
Enter day and month of birth:

28 12
Capricorn

EXPLANATION
The logic to determine the Zodiac sign is pretty straight-forward. Note that it is a

good practice to validate the input before using it. For example, here we have

ascertained that the value of d and m is not negative before using it to determine
the Zodiac sign. If you wish, you can further check whether the value of m is

greater than 12 and value of d is greater than 31. If yes, then the input is invalid.

Challenge 18
An Electricity utility company charges its customers on the following basis de­
pending on the category they belong to and the units that they have consumed

for the month.

Category Fixed cost Units consumed Price

Residential Rs. 50/mth for
1-phase meter

Rs. 200/mth for
3-phase meter

0 to 100 units

101 to 300 units

301 to 500 units

> 500 units

Rs. 3.76 / unit

Rs. 7.21 / unit

Rs. 9.95 / unit

Rs. 11.31 / unit

Commercial Rs. 220 / mth 0 to 200 units

> 200 units

Rs. 6.60 / unit

Rs. 9.62 / unit

Industrial Rs. 250 / mth 0 to 20 KW

>20 KW

Rs. 5.43 / unit

Rs. 6.88 / unit

Agricutural Rs. 340 / mth 0 to 5 HP

>5 HP

Rs.
258/HP/Mth

Rs.
360/HP/Mth

Write a program to calculate the monthly bill of the customer. Accept appropriate

input for each category of consumer along with meter number.

SOLUTION
/* Calculation of electricity bill*/
#include <stdio.h>

int main()

{
int ch;
float price = o;

int wronginput = o;
int meterType, numUnits, power;

printf (“Choose the type of Customer:\n”);
printf (“i. Residential\n”);

printf (“2. Commercial\n”);
printf (“3. Industrial\n”);

printf (“4. Agricultural\n”);
printf (“Enter your choice :\n”);
scanf (“%d”, &ch);
switch (ch)

{
case 1 :

printf (“Enter type of meter:\n”);

printf (“i. Single Phase Meter\n”);

printf (“2. Three Phase Meter\n”);
printf (“Enter your choice:\n”);

scanf (“%d”, &meterType);
switch (meterType)

{
case 1:

price = price + 50;
break;

case 2 :
price = price + 200;

break;
default:

wronginput = 1;

}
printf (“Enter number of units consumed:\n”);
scanf (“%d”, &numUnits);

if (numUnits >= o)

{
if (numUnits <= 100)

price = price 4- numUnits * 3.76;

else if (numUnits > 100 && numUnits <= 300)
price = price + numUnits * 7.21;

else if (numUnits > 300 && numUnits <= 500)
price = price + numUnits * 9.95;

else if (numUnits > 500)
price = price + numUnits * 11.31;

}
else

wronginput = 1;
break;

case 2 :
price = price + 220;

printf (“Enter number of units consumed:\n”);
scanf (“%d”, &numUnits);

if (numUnits >= o)

{
if (numUnits <= 200)

price = price + numUnits * 6.6;

else
price = price + numUnits *9.62;

}
else

wronginput = 1;
break;

case 3 :
price = price + 250;

printf (“Enter amount of power consumed:\n”);
scanf (“%d”, &power);

if (power >= o)

{
if (power <= 20)

price = price + power * 5.43;

else
price = price + power * 6.88;

}
else

wronginput = 1;
break;

case 4 :
price = price + 340;

printf (“Enter amount of horse power consumed:\n”);
scanf (“%d”, &power);

if (power >= o)

{
if (power <= 5)

price = price + power * 258;

else
price = price + power * 360;

}
else

wronginput = 1;
break;

default:
wronginput = 1;

}

if (wronginput == o)

printf (“Total Electricity Bill = %f\n”, price);
else

printf (“Input not entered correctly\n”);
return o;

}
SAMPLE RUN
Choose the type of Customer:
i. Residential

2. Commercial
3. Industrial

4. Agricultural Enter your choice:
1

Enter type of meter:
1. Single Phase Meter

2. Three Phase Meter Enter your choice:
2

Enter number of units consumed:

345
Total Electricity Bill = 3632.750000

EXPLANATION

When presented with choices, the program uses switch wherever branching has

to be done based on the choice made by the user. At rest of the places it uses if-
else if-else or if-else to do the decision- making.

Challenge 19
In digital world colors are specified in Red-Green-Blue (RGB) format, with values
of R, G, B varying on an integer scale from o to 255. In print publishing the col­

ors are mentioned in Cyan-Magenta-Yellow-Black (CMYK) format, with values of
C, M, Y, and K varying on a real scale from 0.0 to 1.0. Write a program that con­

verts RGB color to CMYK color as per the following formulae:

White = Max(Red/ 255, Green! 255, Blue/ 255)

(White-Ke d 1255 \Cyan = -----------------------
White J

%, (White — Green / 255 iMagenta = ------------- ;-----------
,, (White — #7^255^ J

Yellow = -----------------------
\ White J

Black =1-White

Note that if the RGB values are all o, then the CMY values are all o and the K

value is 1.

SOLUTION
/* Color conversion from RGB to CMYK format */
#include <stdio.h>

int main()

{
float red, green, blue;
float white, cyan, magenta, yellow, black;

float max;
printf (“Enter Red, Green, Blue values (o to 255):\n”);

scanf (“%f%f%f”, &red, &green, &blue);
if ((red < o || red > 255) || (green < o || green > 255) || (blue < o || blue > 255))

{
printf (“Invalid RGB values\n”);

return o;

}
if (red == o && green == o && blue == o)

{
cyan = magenta = yellow = o;
black = 1;

}
else

{

red = red / 255.0;

green = green / 255.0;
blue = blue / 255.0;

max = red;
if (green > max)

max = green;
if (blue > max)

max = blue;
white = max;

cyan = (white - red) / white;
magenta = (white - green) / white;
yellow = (white - blue) / white;
black = 1.0 - white;

}
printf (“CMYK = %f %f %f %f\n”, cyan, magenta, yellow, black);

return o;

}
SAMPLE RUN
Enter Red, Green, Blue values (o to 255):

200 140 245
CMYK = 0.183673 0.428571 0.000000 0.039216

EXPLANATION
The conversion formulae are used to convert RGB values to CMYK values. Note

that even though R, G„ B values are integers, we still have defined red, green and

blue as floats because if we keep them as integers, then division by 255 would
fetch a o, which we do not want.

23
LOOPING CHALLENGES

Total Challenges: 15

The programming challenges that we faced so far needed either a sequential or a
decision control instruction. These programs when executed always performed

the same series of actions, in the same way, exactly once. In more complex pro­
gramming situations we are required to perform an action over and over, often

with variations in the details each time. This need is met by Loop Control In­
struction, and is exemplified by Challenges 20 to 34.

Challenge 20
Here is an ecological simulation of wolf and rabbit populations. Rabbits eat grass.
Wolves eat rabbits. There is plenty of grass, so wolves are the only obstacle to the

rabbit population increase. The wolf population increases with the population of
rabbits. The day-by-day changes in the rabbit population R and the wolf popu­

lation W can be expressed by the following formulae:
R(tomorrow) = (i + a).R(today) - c.R(today).W(today)

W(tomorrow) = (i - b).W(today) + c.d.R(today).W(today)
a = 0.01 = fractional increase in rabbit population without threat from wolves

(0.01 means i % increase)
b = 0.005 = fractional decrease in wolf population without rabbit to eat c =

0.00001 = likelihood that a wolf will encounter and eat a rabbit
d = 0.01 = fractional increase in wolf population attributed to a devoured rabbit.

Assume that initially there are 10,000 rabbits and 1000 wolves. Write a program
to calculate populations of rabbits and wolves over a 1000-day period. Have the

program print the populations every 25 days. See what happens when you start
with 500 wolves instead of 1000. Try starting with 2000 wolves too.

SOLUTION
/* Calculation of rabbit and wolf population */

#include <stdio.h>
int main()

{
float a = 0.01, b = 0.005, c = 0.00001, d = 0.01;
int ri, wi, r2, W2;
int i;

printf (“Enter initial rabbit and wolf population:\n”);
scanf (“%d %d”, &ri, &wi);

if (ri < o || wi < o)
printf (“Initial population has to be non-negative. \n”);

else

{
for (i = 1; i <= 1000; i++)

{
r2 = (1 + a) * ri - c * ri * wi;
W2 = (1 - b) * wi + c * d * ri * wi;

if (i % 25 == o)
printf (“After %d days R = %d W = %d\n”, i, r2, W2);

ri = r2;

wi = W2;

}
}
return o;

}
SAMPLE RUN
Enter initial rabbit and wolf population:

IOOOO 2000
After 25 days, No of Rabbits = 7958 No of Wolves = 1800

After 50 days, No of Rabbits = 6654 No of Wolves = 1602
After 75 days, No of Rabbits = 5832 No of Wolves = 1427

After 100 days, No of Rabbits = 5337 No of Wolves = 1266
After 125 days, No of Rabbits = 5070 No of Wolves = 1116

After 150 days, No of Rabbits = 4988 No of Wolves = 990
After 175 days, No of Rabbits = 5063 No of Wolves = 869

EXPLANATION

Here ri and wi represent today's populations of rabbits and wolves respectively,
whereas r2 and W2 represent their tomorrow's populations. Beginning with

10000 and 2000 as rabbits' and wolves' populations, through the for loop their
tomorrow's populations are calculated using the formulae. The populations calcu­
lated are printed after a gap of 25 days. Whether 25 days are over is checked

through the if statement within the for loop. The same program can be run with

different initial values of ri and wi.

Challenge 21
Write a program to generate all unique combinations of 1, 2 and 3 using for
loops.

SOLUTION
/* Generate unique combinations of 1 2 3 */

#include <stdio.h>
int main()

{
int i = 1, j = 1, k = 1;

for (i = 1; i <= 3; i++) /* 1st digit */

{
for (j = 1; j <= 3; j++) /* 2nd digit */

{
for (k = 1; k <= 3; k++) /* 3rd digit */

{
if (i != j && j != k && k != i)

printf (“%d%d%d\n”, i, j, k);

}
}

}
return o;

}
SAMPLE RUN
123
132

213
231

312
321

EXPLANATION
The three loops would generate all possible combinations of i, 2 and 3. But these

won't be unique combinations. For example, combinations 1 2 1 or 3 2 2 are not
unique, as in the first combination 1 is repeated, whereas, in the second, 2 is

being repeated. The if ensures that only unique combinations get printed out.

Challenge 22
Write a program that finds four-digit perfect squares where the number repre­
sented by the first two digits and the number represented by the last two digits

are also perfect squares.

SOLUTION
#include <math.h>
#include <stdio.h>

int main()

{
int i, a, num, di, d2, d3, dq, nleft, might, x, y;
for (i = 1000; i <= 9999; i++)

{
a = sqrt ((float) i);

if (i == a * a)

{
num = i;
dq = num % io;

num = num / io;
d} = num % 10;

num = num / io;
dz = num % 10;

num = num / io;
di = num % 10;

nleft = di * 10 + d2;
nright = d3 * io + dq;

x = sqrt ((float) nleft);
y = sqrt ((float) nright);

if (nleft == x * x && nright == y * y)
printf (“Desired number = %d\n”, i);

}
}
return o;

}
SAMPLE RUN
Desired number =1600

Desired number = 1681
Desired number = 2500

Desired number = 3600

Desired number = 4900

Desired number = 6400
Desired number = 8100

EXPLANATION

Inside the for loop, first we get the square root of i and test whether i is a perfect
square or not. If it is a perfect square, then we segregate the four digits of this

number into variables di, d2, d} and dq. Next we construct two numbers nleft
and nright from the first two and the last two digits of the four digit number.
Having done this, we test whether these two numbers are perfect squares or not.

If they turn out to be perfect squares then we have met the number satisfying
our requirements. Hence we print it out. It is necessary to include the file

“math.h” for the sqrt() function to work.

Challenge 23
Write a program to print all prime numbers from i to 300.

SOLUTION
/* Generate all prime numbers from 1 to 300 */
#include <stdio.h>

int main()

{
int i, num = 1;
printf (“\nPrime numbers between 1 & 300 are:\n”);

printf (“%d\t”, num”);
while (num <=300)

{
i = 2;
while (i <= num -1)

{
if (num % i == o)

break;

else

i++;

}
if (i == num)

printf (“%d\t”, num);
num++;

}
return o;

}
SAMPLE RUN
1 2 3 5 7 11 13 17 19 23 29 31 37
41 43 47 53 59 61 67 71 73 79 83 89 97

EXPLANATION
The program runs a for loop from 1 to 300 checking and printing all primes that

it comes across. To check whether a number is prime or not, another for loop is

used. In this loop if we check whether i is a factor of num using the expression

num % i == o. If this turns out to be true, we break out of the inner for loop.
Otherwise, we increment i and try division with the incremented value. If no

number from 2 to num - 1 can divide num exactly it means that num is a prime
number. If so found, we print the prime number and then go for the next num­

ber via the outer for loop.

Challenge 24
Write a program to receive a positive integer and find its octal equivalent.

SOLUTION
/* Find octal equivalent of a number */
#include <stdio.h>

#include <math.h>
int main()

{
int num, n, rem, oct, index;

printf (“Enter a non-negative decimal numberin’’);
scanf (“%d”, &num);

if (num < o)
printf (“Invalid Input. \n”);

else

{
n = num;
oct = index = o;

while (n > o)

{
rem = n % 8;
n = n / 8;

oct = oct + rem * pow (io, index);
index++;

}
printf (“The octal equivalent of %d = %d\n”, num, oct);

}
return o;

}
SAMPLE RUN
Enter a non-negative decimal number: 45
The octal equivalent of 45 = 55

Enter a non-negative decimal number: 77
The octal equivalent of 77 = 115

EXPLANATION
To obtain octal equivalent of an integer, we need to divide it continuously by 8 till

dividend doesn't become zero, and then write the remainders obtained in reverse
direction.

We cannot print the remainders as they are obtained, since the remainders are to

be displayed in reverse order. So to construct a decimal number out of the re­

mainders obtained, we have used the pow() function to multiply each remainder
obtained with increasing powers of io, starting with io raised to o.

Challenge 25
The natural logarithm can be approximated by the following series.
x-1 lfx-lY lfx-lY
-----+ - ----- +- ----- +- ----- +•—

x 2\ x J x J 4k x J

If x is input through the keyboard, write a program to calculate the sum of first
seven terms of this series.

SOLUTION
/* Compute natural logarithm */
#include <stdio.h>

#include <math.h> int main()

{
int x, i;
float term, result;

printf (“Enter the value of x:\n”);
scanf (“%d”, &x);

if (x <= o)
printf (“Log not defined\n”);

else

{
result = o;

for (i = 1; i <= 7; i++)

{
term = (i.o / i) * pow ((x - i.o) / x, i);

result = result + term;

}
printf (“log (%d) = %f\n”, x, result);

}
return o;

}
SAMPLE RUN
Enter the value of x: 3

log (3) = 1.086367
Enter the value of x: 2

log (2) = 0.692262

EXPLANATION
log of o and log of negative number are not defined. So first we need to validate
the number whose log is to be obtained. If found valid, then we have obtained

the sum of first seven terms of the series in the for loop. Since this is a running
sum, we have to initialize result to a value o, outside the loop.

Challenge 26
Write a program to generate all Pythogorean Triplets with side length less than or
equal to 20.

SOLUTION
/* Generate Pythogorean Triplets */

#include <stdio.h>
int main()

{
int i, j, k;

for (i = 1; i <= 20; i++)

{
for (j = 1; j <= 20; j++)

{
for (k = 1; k <= 20; k++)

{
if (i * i + j * j == k * k)

printf (“%d %d %d\n”, i, j, k);

}
}

}
return o;

}
SAMPLE RUN

345
43 5

5 12 13
6 8 10
8 6 10
8 15 17

9 12 15
12513

12915
12 16 20

15817
16 12 20

EXPLANATION
Three sides of a traingle form a Pythogorean triplet if sum of squares of any two

sides is equal to the square of the third side. We check this condition for all

triangles by varying their sides from i to 20 through the for loops in turn.

Challenge 27
The exponential function ex is defined as sum of the following series:

l+x-(x2/2!)+(x3/3!)+(x4/4!)+-

If x is input through the keyboard, write a program to calculate the sum of first
ten terms of this series.

SOLUTION
#include <stdio.h>
int main()

{
float x;
int i, j;
float num, den, term, result;

printf (“Enter the value of x:\n”);
scanf (“%f”, &x);
result = o;
for (i = 1; i <= 10; i++)

{
num = den = i.o;

for (j = 1; j <= i; j++)

{
num = num * x;
den = den * j;

}
term = num / den;

result = result + term;

}
printf (“exp = %f\n”, result);
return o;

}
SAMPLE RUN
Enter the value of x: 3
exp = 19.079666
Enter the value of x: 1.5
exp = 3.481687

EXPLANATION

This program calculates the value of each term in a for loop and keeps adding it

to the running sum stored in result. The inner loop is used to caculate the
numerator and denominator of each term by keeping their running products.

Challenge 28
Write a program to find the factorial value of any number entered through the
keyboard.

SOLUTION
/* Calculation of factorial of any number */

#include <stdio.h>
int main()

{
int num, i = i;

unsigned long int fact = i;
I* factorial of 34 is beyond range of unsigned long int */

printf (“Enter any number (less than 34):\n”);
scanf (“%d”, &num);

while (i <= num)

{
fact = fact * i;
i++;

}
printf (“factorial of %d = %lu\n”, num, fact);

return o;

}
SAMPLE RUN
Enter any number (less than 34): 5

factorial of 5 = 120
Enter any number (less than 34): 7

factorial of 7 = 5040

EXPLANATION

Factorial for a given number is calculated using a running product stored in fact.
It is necessary to initialize fact to a value 1.

Challenge 29
Ramanujan number is the smallest number that can be expressed as sum of two
cubes in two different ways. Write a program to print all such numbers up to a

reasonable limit.

SOLUTION
/* Generate numbers that satisfy Ramanujan numbers property */
#include <stdio.h>

int main()

{
int i, j, k, 1;
for (i = 1; i <= 30; i++)

{
for (j = 1; j <= 30; j++)

{
for (k = 1; k <= 30; k++)

{
for (1 = 1; 1 <= 30; 1++)

{
if ((i != j && i != k && i != 1) &&

(j != i && j != k && j != 1) &&
(k != i && k != j && k != 1) &&

(1 != i && 1 != j && 1 != k))

{
if (i * i * i + j * j * j == k * k * k + 1 * 1 * 1)

printf (“%d\t%d\t%d\t%d\n”, i, j, k, 1);

}
}

}
}

}
}

SAMPLE RUN
1729 1 12 9 10
1729 1 12 10 9
4104 2 16 9 15
4104 2 16 15 9
13832 2 24 18 20
13832 2 24 20 18

EXPLANATION
1729 is the smallest number that can be expressed as sum of two cubes in two

different ways. i.e. 1729 = i3 + 123 and 1729 = 93 + io3.
The program runs 4 for loops and checks and prints other numbers that enjoy
this property.

Challenge 30
Write a program to print out all Armstrong numbers between 1 and 500. If sum
of cubes of each digit of the number is equal to the number itself, then the num­

ber is called an Armstrong number. For example, 153 = (1 * 1 * 1) + (5 * 5 * 5) + (3

* 3 * 3)
SOLUTION
/* Generate all Armstrong numbers between i & 500 */

#include <stdio.h>
int main()

{
int num, n, di, d2, d3;

printf (“Armstrong numbers between 1 & 500 are:\n”);
for (num = 1; num <= 500; num++)

{
n = num;

d3 = n % 10;
n = n / 10;

dz = n % 10;
n = n / 10;

di = n % 10;
if ((di * di * di) + (d2 * d2 * d2) + (d3 * d3 * d3) == num)

printf (“%d\n”, num);

}
return o;

}
SAMPLE RUN
Armstrong numbers between 1 & 500 are: 1

153
370

37i
407

EXPLANATION
The program iterates through a loop from 1 to 500. Each time through the loop, it

extracts individual digits of the number and checks whether they from an Am-
strong number or not.

Challenge 31
Write a program to produce the following output:

1

2 3

4 5 6

7 8 9 10

SOLUTION
/* Generate number pattern */
#include <stdio.h>

int main()

{
int i, j, lines, spaces, num_in_a_line, num;
spaces = 20;
num = 1;
for (lines = i; lines <= 4; lines++)

{
for (i = 1; i <= spaces; i++)

printf (“”);
spaces-= 2;

num_in_a_line = lines;
for (j = 1; j <= num_in_a_line; j++)

{
printf (“ %d”, num);
num++;

}
printf (“\n”);

}
return o;

}
SAMPLE RUN

1
2 3

4 5 6
7 8 9 10

EXPLANATION
In the pattern to be generated, the numbers to be printed increase from 1 on­
wards. Also, the number of numbers each line possesses is equal to the line

number they belong to. For example, first line has one number, second line has
two numbers and so on.

We have used three for loops here. The first loop controls the number of lines to
be printed. The second prints the desired number of spaces in each line to obtain

a traingular pattern. The third loop prints all the numbers that belong to a line.

Challenge 32
Write a program to print first 20 terms of Fibonacci series.

SOLUTION
/* Generate all prime numbers from 1 to 300 */
#include <stdio.h>

int main()

{
int old, new, i, newterm;
old = 1;
new = 1;
printf (“%d\n”, old);

printf (“%d\n”, new);
for (i = 3; i <= 20; i++)

{
newterm = old + new;

printf (“%d\n”, newterm);
old = new;

new = newterm;

}
return o;

}
SAMPLE RUN
1

1
2

3
5
8

13
21

EXPLANATION
First two terms of a Fibonacci series are 1 and 1. The rest of the terms are such
that their value is sum of two terms pervious to it. Thus 2 is 1 + 1, 3 is 1 + 2, 5 is 2

+ 3, etc. Since there is no logic to generate the first two terms, their values are
printed without generating their values. The rest of the terms of the series are

generated and printed through the for loop.

Challenge 33
When interest compounds q times per year at an annual rate of r % for n years,
the principal p compounds to an amount a as per the following formula
a = p(i + r/ q/ 100) nQ

Write a program to read 10 sets of p, r, n & q and calculate the corresponding as.
SOLUTION
/* Compound interest calculation */

#include <stdio.h>
#include <math.h>

int main()

{
float q, r, n, p, a;
int i;

for (i = 1; i < io; i++)

{
printf (“Enter the principal amountin’’);
scanf (“%f”, &p);

printf (“Enter the rate of interestin’’);
scanf (“%f”, &r);

printf (“Enter the number of years:\n”);
scanf (“%f”, &n);

printf (“Enter the compounding period:\n”);
scanf (“%f”, &q);

a = P * pow ((i + (r / q / 100)), (n * q));
printf (“Total amount = %f\n\n”, a);

}
return o;

}
SAMPLE RUN
Enter the principal amount: 1000
Enter the rate of interest: 7.5

Enter the number of years: 15003
Enter the compounding period: 1

Total amount = 1242.296875
Enter the principal amount: 15000

Enter the rate of interest: 12
Enter the number of years: 4

Enter the compounding period: 2

Total amount = 23907.720703

EXPLANATION

The program is pretty stright-forward. It receives the values of of p, r, n & q and
calculates the corresponding amounts in a loop that runs around 10 times.

Challenge 34
Write a program to print 24 hours of day with suitable suffixes like AM, PM,
Noon and Midnight.

SOLUTION
I* Print hours of the day with suitable suffixes */

#include <stdio.h>
int main()

{
int hour;

for (hour = o; hour <= 23; hour++)

{
if (hour == o)

{
printf (“12 Midnight\n”);
continue;

}
if (hour < 12)

printf (“%d AM\n”, hour);
if (hour == 12)

printf (“12 Noon\n”);
if (hour > 12)
printf (“%d PM\n”, hour % 12);

}
return o;

}
SAMPLE RUN
12 Midnight

1 AM
2 AM
3 AM
4 AM

11 AM
12 Noon

1 PM
2 PM

3 PM

4 PM

io PM
ii PM

EXPLANATION

The program runs a for loop for 24 hours and then based on the value of hour
outputs an appropriate message.

2.4
FUNCTION CHALLENGES

Total Challenges: 6

Afunction is a self-contained block of statements that perform a coherent task of
some kind. Every C program is a collection of one or more functions. It is also

possible to carry out communication between these functions using parameters
and return values. This chapter presents challenges related with functions and

their communication.

Challenge 35
Write a general-purpose function to convert any given year into its roman equiv­
alent. Use the following roman equivalents for decimal numbers:

1 -1, 5 - V, 10 - X, 50 - L, 100 - C, 500 - D, 1000 - M.
Example:

Roman equivalent of 1988 is mdcccclxxxviii
Roman equivalent of 1525 is mdxxv

SOLUTION
/* Convert given year into its roman equivalent */

#include <stdio.h>
int romanise (int, int, char);

int main()

{
int yr;
printf (“Enter year:\n”);
scanf (“%d”, &yr);
yr = romanise (yr, 1000, ‘m’);

yr = romanise (yr, 500, ‘d’);
yr = romanise (yr, 100, ‘c’);

yr = romanise (yr, 50, ‘1’);
yr = romanise (yr, 10, ‘x’);
yr = romanise (yr, 5, ‘v’);
yr = romanise (yr, 1, ‘i’);
return o;

}
int romanise (int y, int k, char ch)

{
int i, j;
if(y == 4)

{
printf (“iv”);
return (y % 4);

}
if(y ==9)

{
printf (“ix”);
return (y % 9);

if (y == 49)
{
printf (“il”);

return (y % 49);

}

if (y == 99)

{
printf (“ic”);
return (y % 99);

}

if (y ==499)

{
printf (“id”);

return (y % 499);

}

if (y ==999)

{
printf (“im”);
return (y % 999);

}
i = y / k;
for (i = 1; i <= j; i++)
printf (“%c”, ch);

return (y % k);

}
SAMPLE RUN
Enter year: 19
xix
Enter year: 1998

mdcccclxxxxviii

EXPLANATION

romanise() is a generic function which finds out in y how many times k occurs

and prints out ch those many times. For example, if the value of year is 1998,
then during the first call romanise() finds out in 1998 how many times 1000 oc­
curs and prints out ‘m’ those many times.

romanise() uses several if statements to take care of special cases of years like 4,
49, 99, 499 and 999.

Challenge 36
Write a program to receive two integers from the keyboard and obtain LCM and

GCD of these two numbers through functions lcm() and gcd().
SOLUTION

I* Obtain LCM and GCD of two numbers */

#include <stdio.h>
int 1cm (int, int);

int gcd (int, int);
int main()

{
int numi, nunu;

int 1, g;
printf (“Enter two positive integers:\n”);

scanf (“%d %d”, &numi, &numz);
1 = 1cm (numi, nunu);

g = gcd (numi, nunu);
printf (“LCM = %d GCD = %d”, 1, g);

return o;

}
int 1cm (int m, int nz)

{
int z;
/* store maximum out of ni and n2 in z */

z = ni > nz ? ni: nz;
while (1)

{
if(z % ni == o && z % nz == o)

break;
z++;

}
return (z);

}
int gcd (int ni, int nz)

{
int i, z;

for (i = 1; i <= ni; i++)

{
if (ni % i == o && nz % i == o)

z = i;

}
return (z);

}
SAMPLE RUN
Enter two positive integers: 4 5
LCM = 20 GCD = 1

Enter two positive integers: 12 15
LCM = 60 GCD = 3

EXPLANATION

The km() function firstly stores the larger number among ni and n2 in z. The
LCM of two numbers cannot be less than z. Then in an infinite while loop in

each iteration it is checked whether z is perfectly divisible by m and n2. If this
test condition is not true, z is incremented by 1 and the iteration continues until

the test expression of if statement is true. Final value in z is the LCM of the two
numbers.

The gcd() function finds in a loop, any number starting with 1 that can divide ni
and n2 exactly. The greatest such number is the greatest common divisor of the

two numbers ni and n2.
The LCM of two numbers could also have been found using the formula:
LCM = (numi * nurnz) / GCD.

Challenge 37
Write a program that receives coordinates of the top left corner of a rectangle, its
width and height and coordinates of a point. Write a function that determines

whether the point lies inside, outside or on the rectangle.

SOLUTION
/* Determine position of point w.r.t. a rectangle */
#include <stdio.h>

int PointlnRect (int, int, int, int, int, int);
int main()

{
int xi, y 1, wd, ht, xpt, ypt;

int pos;
printf (“Enter xi, yi, width and height of rectangle:\n”);

scanf (“%d %d %d %d”, &xi, &yi, &wd, &ht);
printf (“Enter coordinates of pointin’’);
scanf (“%d %d”, &xpt, &ypt);
pos = PointlnRect (xi, yi, wd, ht, xpt, ypt);

switch (pos)

{
case 1:

printf (“Point lies outside the rectangle”);

break;
case 2 :

printf (“Point lies inside the rectangle”);
break;

case 3 :
printf (“Point lies on the rectangle”);
break;

}
return o;

}
int PointlnRect (int xi, int yi, int wd, int ht, int xpt, int ypt)

{
int X2, y2;
X2 = xi + wd;

y2 = yi + ht;
if (xpt < xi || xpt > X2 || ypt < yi || ypt > y2)

return i;

if (xpt > xi && xpt < X2 && ypt > yi && ypt < y2)

return 2;
return 3;

}
SAMPLE RUN
Enter xi, yi, width and height of rectangle: o o 10 20
Enter coordinates of point: 5 5

Point lies inside the rectangle
Enter xi, yi, width and height of rectangle: 10 20 30 50

Enter coordinates of point: 10 35
Point lies on the rectangle

Enter xi, yi, width and height of rectangle: 15 15 30 30
Enter coordinates of point: 5 10

Point lies outside the rectangle

EXPLANATION

The function PointInRect() handles the three cases of point being outside, inside
or on the rectangle. Note the order in which these cases are tackled. If the order is

changed we would be required to check several conditions to determine whether
the point lies on the rectangle or not.

Challenge 38
Write a program that receives two numbers in a and b and then calls the function

power (a, b), to calculate the value of a raised to b.
SOLUTION
/* Calculate one number raised to the power of another */

#include <stdio.h>
float power (float, int);

int main ()

{
float a;
int b;

float result;
printf (“Enter the number and the exponent: \n”);
scanf (“%f%d”, &a, &b);
result = power (a, b);

printf (“Result = %f\n”, result);
return o;

}
float power (float n, int exponent)

{
int absexp, i;

float prod;
if (exponent == o)

return i.o;
else

{
if (exponent < o)

absexp = exponent * (-1);
else

absexp = exponent;
prod = 1.0;

for (i = 1; i <= absexp; i++)
prod = prod * n;

if (exponent < o)
prod = 1.0 / prod;

return (prod);

SAMPLE RUN
Enter the number and the exponent: 2 5
Result = 32.000000

Enter the number and the exponent: 2 -5
Result = 0.031250

EXPLANATION

The function powerf) takes into account cases like exponent being zero, negative
or positive. If the exponent is non-zero then it calculates the running product to

obtain the value of a raised to b (or n raised to exponent). It appropriately returns
this product or its reciprocal depending upon whether the exponent is positive or
negative.

Challenge 39
A positive integer is entered through the keyboard. Write a function to obtain the
prime factors of this number.
For example, prime factors of 24 are 2, 2, 2 and 3, whereas prime factors of 35 are
5 and 7.

SOLUTION
/* Obtain prime factors of a number */

#include <stdio.h>
void prime (int);

int main()

{
int num;
printf (“Enter numberin’’);
scanf (“%d”, &num);
if (num < 2)

printf (“Invalid Input\n”);
else

prime (num);
return o;

}
void prime (int num)

{
int i = 2;

printf (“Prime factors of %d are:”, num);
while (num != i)

{
if (num % i == o)

printf (“%d”, i);
else

i++;
continue;

}
num = num / i;

}

}
SAMPLE RUN
Enter number: 24

Prime factors of 24 are: 2223

Enter number: 45
Prime factors of 45 are: 335

EXPLANATION

The prime() function checks in a loop whether the num is divisible by 2, 3, 4, etc.
Any time it finds num to be perfectly divisible, it prints that factor (i) and re­

duces num to num / i. It continues to do this till num reaches 1.

Challenge 40
Write a program to generate Pascal's Triangle pattern shown below:

1
1 1
121

13 3 1
1 4 6 4 1

1 5 10 10 5 1

SOLUTION
/* Generate Pascal Triangle pattern */

#include <stdio.h>
int fact (int);

int main()

{
int i, 1, num = 5;
for (1 = o; 1 <= num; 1++)

{
for (i = o; i <= (num -1 -1); i++)

printf (“”);
for (i = o; i <= 1; i++)

printf (“%d”, fact (1) / (fact (i) * fact (1 - i)));
printf (“\n”);

}
return o;

}
int fact (int n)

{
int i, p;

p = i;
for (i = 1; i <= n; i++)

P = P * i;
return p;

}
SAMPLE RUN

1
1 1
121

13 3 1
1 4 6 4 1

1 5 10 10 5 1

EXPLANATION
From the pattern of Pascal's triangle one can note that number of entries in each

line is same as line number to which they belong. For example, first line has 1
entry, second line has 2 entries and so on.

Each ith entry in l^1 line is obtained using the formula

To obtain the factorial values in this formula we have called the fact() function
thrice, each time passing it a different argument.

The outer for loop controls the number of lines to be printed in the pattern. Out

of the two inner for loops, the first one prints the spaces, whereas the second
prints the numbers in a particular line.

25
POINTER CHALLENGES

Total Challenges: 4

Thorough knowledge of pointers is what separates men from boys. This chapter
presents simple challenges regarding pointers and their usage. More rigorous

pointers challenges would be presented in chapters on Arrays, Strings, Structures
and IO.

Challenge 41
If five numbers are received from the keyboard, write a function that would

calculate their sum, product and average. Print these results in main ().
SOLUTION
/* Calculate sum, product, average of 5 numbers */

#include <stdio.h>
void cal_spa (int, int, int, int, int, int *, int *, int *);

int main ()

{
int numi, num2, num}, num4, num5;
int sum, prod, avg;

printf (“Enter 5 numbers:\n”);
scanf (“%d %d %d %d %d”, &numi, &num2, knum}, &num4, &num5);

cal_spa (numi, nunu, num}, num4, num5, &sum, &prod, &avg);
printf (“Sum = %d\n”, sum);

printf (“Product = %d\n”, prod);
printf (“Average = %d\n”, avg);

return o;

}
void cal_spa (int ni, int n2, int n3, int n4, int n5, int *s, int *p, int *a)

{
* s = m + n2 + n3 + n4 + n5;
* p = ni * n2 * n3 * n4 * n5;

* a = *s / 5;

}
SAMPLE RUN
Enter 5 numbers:

3 5 8 12 15
Sum = 43

Product = 21600
Average = 8

EXPLANATION

We have received and passed 5 numbers to cal_spa(). Along with them we have
also passed addresses of sum, prod, avg. How do do we decide which variable's
value should be passed and which variable's address should be passed? Simple.

If we want to change the variable through the called function we should pass its

address, otherwise we should pass its value. We wanted to change values of sum,
prod and avg through cal_spa(), so we passed their addresses to it.

Challenge 42
If the lengths of the sides of a triangle are denoted by a, b, and c, then area of tri­
angle is given by

area = - aftS ~ MS - c)

where, S = (a + b + c)/2.

Write a program that receives three sides of a triangle and calculates its area and

perimeter through a function.

SOLUTION
/* Calculate area and perimeter of a triangle */
#include <stdio.h>

#include <math.h>
void cal_areaperi (float, float, float, float *, float *);

int main()

{
float si, S2, S3, area, peri;
printf (“Enter three sides of the triangle:\n”);

scanf (“%f%f%f”, &si, &S2, &S3);
cal_areaperi (si, S2, S3, &area, &peri);

printf (“Area of the triangle = %f\n”, area);
printf (“Perimeter of the triangle = %f\n”, peri);

return o;

}
void cal_areaperi (float si, float S2, float S3, float *a, float *p)

{
float s;
s = (si + S2 + S3) / 2;

* a = sqrt (s * (s - si) * (s - S2) * (s - S3));
* p = si + S2 + S3;

}
SAMPLE RUN
Enter three sides of the triangle: 345
Area of the triangle = 6.000000

Perimeter of the triangle = 12.000000

EXPLANATION

We have passed si, S2, S3 by value and area, peri by reference. This is because we
wish to change the values of area and peri through the function cal_areaperi().

Challenge 43
Write a function that receives 5 integers and returns the sum, average and stan­

dard deviation of these numbers. Call this function from main() and print the re­
sults in main().
SOLUTION
/* Calculates sum, average and standard deviation */
#include <stdio.h>

#include <math.h>
void cal_sasd (int, int, int, int, int, float *, float *, float *);

int main()

int m, n2,113,114, 115;
float sum, avg, stddev;

printf (“Enter 5 numbers :\n”);
scanf (“%d%d%d%d%d”, &m, &n2, &T13, &TL4, 8015);

cal_sasd (m, n2, n3, m|, n5, &sum, &avg, &stddev);
printf (“Sum = %f\n”, sum);

printf (“Average = %f\n”, avg);
printf (“Standard deviation = %f\n”, stddev);

return o;

void cal_sasd (int m, int n2, int 113, int 114, int 115, float *s, float *a, float *sd)

* s = ni + n2 + n3 + n4 + n5;

* a = *s / 5;
* sd = sqrt ((pow ((ni - *a), 2) + pow ((n2 - *a), 2) +

pow ((n3 - *a), 2) + pow ((n4 - *a), 2) +

pow ((n5 - *a), 2)) / 4);

SAMPLE RUN
Enter 5 numbers:

4 5 37 9
Sum = 28.000000

Average = 5.600000
Standard deviation = 2.408319

EXPLANATION
This program is similar to challenges and their explanations presented in Chal­

lenge 41 and 42.

Challenge 44
Write a function to compute the distance between two points and use it to de­
velop another function that will compute the area of the triangle whose vertices

are A (xi, yi), B (X2, y2), and C (X3, y3), if the triangle is a valid triangle.
SOLUTION
/* Calculate area of triangle */
#include <stdio.h>

#include <math.h>
float distance (int, int, int, int);

int isTriangleValid (float, float, float);
float areaOfTriangle (float, float, float);

int main()

{
int xi, yi, X2, y2, X3, y3;
float si, S2, S3, area;

int isValid = o;
printf (“Enter the coordinates of 3 vertices of the triangle: \n”);

printf (“First Vertex (x, y): \n”);
scanf (“%d %d”, &xi, &yi);
printf (“Second Vertex (x, y): \n”);
scanf (“%d %d”, &X2, &y2);

printf (“Third Vertex (x, y): \n”);
scanf (“%d %d”, &X3, &y3);
si = distance (xi, yi, X2, y2);
S2 = distance (X2, y2, X3, y3);
S3 = distance (xi, yi, X3, y3);
printf (“Length of first side = %f\n”, si);

printf (“Length of second side = %f\n”, S2);
printf (“Length of third side = %f\n”, S3);

isValid = isTriangleValid (si, S2, S3);
if (isValid)

{
area = areaOfTriangle (si, S2, S3);

printf (“Area: %f\n”, area);

}
else
printf (“The three sides do not form a triangle. \n”);

return o;

}
int isTriangleValid (float si, float S2, float S3)

{
if (si <= o || S2 <= o || S3 <= o)

return o;

else if ((si + S2 <= S3) || (s2 + S3 <= si) || (si + S3 <= S2))
return o;

else
return 1;

}
float areaOfTriangle (float si, float S2, float S3)

{
float s;

s = (si + S2 + S3) / 2.0;
return sqrt (s * (s - si) * (s - S2) * (s - S3));

}
float distance (int xi, int yi, int X2, int y2)

{
float sq;

sq = (X2 - xi) * (X2 - xi) + (y2 - yi) * (y2 - yi);
return sqrt (sq);

}
SAMPLE RUN
First Vertex (x, y):
o o

Second Vertex (x, y):
6 o

Third Vertex (x, y):
08

Length of first side = 6.000000
Length of second side = 10.000000

Length of third side = 8.000000
Area: 24.000000

EXPLANATION

Given the three vertices, the program calls distance() to obtain length of three
sides joining these vertices. Then it calls isTriangleValid() to check whether the

three sides form a valid triangle or not. If they do, then it calls areaOfTriangle() to
calculate the area of the triangle using Heron's formula.

o6
RECURSION CHALLENGES

Total Challenges: 8

Recursion is perhaps the toughest nut to crack in C programming. There are lots
of places where this feature of functions is useful. This chapter presents many

challenges that make you use recursion to perform useful tasks.

Challenge 45
There are three pegs labeled A, B and C. Four disks are placed on peg A. The bot­
tom-most disk is largest, and disks go on decreasing in size with the topmost disk

being smallest. The objective of the game is to move the disks from peg A to peg
C, using peg B as an auxiliary peg. The rules of the game are as follows:

(a) Only one disk may be moved at a time, and it must be the top disk on one of
the pegs.

(b) A larger disk should never be placed on the top of a smaller disk.
Write a program to print out the sequence in which the disks should be moved

such that all disks on peg A are finally transferred to peg C.

SOLUTION
/* Towers of Hanoi */
#include <stdio.h>

void move (int, char, char, char);
int main()

{
int n = 4;

move (n, A’, ‘B’, ‘C’);
return o;

}
void move (int n, char sp, char ap, char ep)

{
if (n == 1)

printf (“Move from %c to %c\n”, sp, ep); else

{
move (n -1, sp, ep, ap);
move (i, sp/’, ep);

move (n -1, ap, sp, ep);

}
}

SAMPLE RUN
Move from A to B
Move from A to C

Move from B to C
Move from A to B
Move from C to A
Move from C to B

Move from A to B

Move from A to C

Move from B to C
Move from B to A

Move from C to A
Move from B to C

Move from A to B
Move from A to C

Move from B to C

EXPLANATION
This problem is the famous Towers of Hanoi problem, wherein three pegs are to
be employed for transferring the disks with the given rules. Here's how we go

about it. We have three pegs: the starting peg, sp, the auxiliary peg ap, and the

ending peg, ep, where the disks must finally be. First, using the ending peg as an
auxiliary or supporting peg, we transfer all but the last disk to ap. Next the last
disk is moved from sp to ep. Now, using sp as the supporting peg, all the disks
are moved from ap to ep.
The three pegs are denoted by A’, ‘B’ and ‘C’. The recursive function move() is
called with different combinations of these pegs as starting, auxiliary and ending
pegs. Going through the following figure would be the best way to sort out how

the control flows through the program.

Figure 6.1. Towers of Hanoi for 4 Disks.

Challenge 46
If a positive integer is entered through the keyboard, write a recursive function to
obtain the prime factors of the number.

SOLUTION
/* Find Prime Factors of a number recursively */

#include <stdio.h>
void factorise (int, int);

int main()

{
int num;
printf (“Enter a numberin’’);

scanf (“%d”, &num);
printf (“Prime factors are:\n”);

factorise (num, 2);
return o;

}
void factorise (int n, int i)

{
if (i <= n)

{
if (n % i == o)

{
printf (“%d”, i);

n = n / i;

}
else

i++;
factorize (n, i);

}
}

SAMPLE RUN
Enter a number: 42
Prime factors are: 237

EXPLANATION
Since the samllest prime factor that a number can have is 2, while calling

factorise(), in addition to num we have also passed 2. In factorize() we keep

checking, starting with 2, whether i is a factor of n (means, can i divide n exactly).
If so, we print that factor, reduce n and again call factorize() recursively. If not,

we increment i and call factorizeQ to check whether the new i is a factor of n.

Challenge 47
A positive integer is entered through the keyboard, write a recursive function to
calculate sum of digits of the 5-digit number.

SOLUTION
/* Recursive sum of digits of a positive integer */

#include <stdio.h>
int rsum (int);

int main()

{
int n, rs;
printf (“Enter number:\n345”);

scanf (“%d”, &n);
rs = rsum (n);

printf (“Sum of digits = %d\n”, rs);
return o;

}
int rsum (int num)

{
int sum, digit;

if (num != o)

{
digit = num % io;
num = num / io;

sum = digit + rsum(num);

}
else

return (o);

return (sum);

}
SAMPLE RUN
Enter number: 345
Sum of digits = 12

EXPLANATION

In the rsum() function, we extract the last digit, reduce the number and call

rsum() with reduced value of num. Thus if the number entered is 3256, the call
becomes s = 6 + rsum (325). During each call such additions are kept pending,
for example the addition to 6 is kept pending as the program calls rsum (325) to
obtain sum of digits of 325. These recursive calls end when n falls to o,

whereupon the function returns a o, because sum of digits of o is o. The o, how­

ever is not returned to main(). It is returned to the previous pending call, i.e. s = 3
+ rsum (o). Now s = 3 + o is completed and the control reaches return (s). Now
the value of s, i.e. 3 is returned to the previous call made during the pending

addition 2 + rsum (3). This way all pending calls are completed and finally the
sum of 3256 is returned to main().
In short, return (o) goes to work only once (during the last call to rsum()), where­
as, for all previous calls return (s) goes to work.

Challenge 48
Write a program that uses recursion to calculate factorial value of a number en­
tered through the keyboard.

SOLUTION
/* Recursive factorial */
#include <stdio.h>
int refact (int);
int main()

{
int num, fact;
printf (“Enter any numberin’’);
scanf (“%d”, &num);
fact = refact (num);
printf (“Factorial value = %d\n”, fact);
return o;

}
int refact (int n)

{
int p;

if (n == o)
return (i);

else
p = n * refact (n -1);

return (p);

}
SAMPLE RUN
Enter any number 5

Factorial value = 120

EXPLANATION

The explanation is similar to Challenge 47. return (1) goes to work only once (dur­

ing the last call to refactQ), whereas, for all previous calls return (p) goes to work.
We return 1 when n becomes o because o! is equal to 1.

Challenge 49
Paper of size Ao has dimensions 1189 mm x 841 mm. Each subsequent size A(n)
is defined as A(n-i) cut in half parallel to its shorter sides. Write a program to

calculate and print paper sizes Ao, Ai, A2, ... A8 using recursion.

SOLUTION
/* Calculation of PaperSizes Ao to A8 using recursion */
#include <stdio.h>

void papersizes (int, int, int, int);
int main()

{
papersizes (o, 7, 1189, 841);

}
void papersizes (int i, int n, int 1, int b)

{
int newl, newb;

if (n != o)

{
printf (“A%d:L = %d B = %d\n”, i, 1, b);
newb = 1/2;
newl = b;
n-;

i++;
papersizes (i, n, newl, newb);

}
}

SAMPLE RUN
Ao:L = 1189 B = 841

Ai:L = 841 B = 594
A2:L = 594 B = 420

A3:L = 420 B = 297
A4± = 297 B = 210

A5:L = 210 B = 148
A6:L = 148 B = 105

EXPLANATION

Figure 6.2. Different paper sizes.

Figure 6.2 shows how the different paper sizes are obtained. In papersizes(), i is
used to obtain the digit in Ao, Ai, A2, etc., whereas n is used to keep track of

number of times the function should be called. The moment n falls to o, the
recursive calls are stopped. Alternately, we could have dropped n and stopped

recursive calls when i reaches 7.

Challenge 50
Write a recursive function to obtain the first 25 numbers of a Fibonacci se­
quence. In a Fibonacci sequence the sum of two successive terms gives the third

term. Following are the first few terms of the Fibonacci sequence:
11 2 3 5 8 13 21 34 55 89....

SOLUTION
/* Generate first 25 terms of a fibonacci sequence using recursion */

#include <stdio.h>
void fibo (int, int, int);

int main()

{
int i, t, old = 1, current = i;
printf (“%d\t%d\t”, old, current);

fibo (old, current, 23);
return o;

}
void fibo (int old, int current, int terms)

{
int new;

if (terms >= 1)

{
new = old + current;
printf (“%d\t”, new);

terms = terms -1;
fibo (current, new, terms);

}
}

SAMPLE RUN
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711

28657 46368 75025

EXPLANATION
This program generates the Fibonacci sequence of numbers using recursion,

terms is used to keep track of when to stop recursive calls. Since the first two
terms are printed in main(), we have generated only 23 terms through the recur­
sive calls.

Challenge 51
A positive integer is entered through the keyboard; write a function to find the
binary equivalent of this number using recursion.

SOLUTION
/* Binary equivalent of a decimal number using recursion */

#include <stdio.h>
int dec_to_binary (int);

int main()

{
int num;
printf (“Enter the numberin’’);
scanf (“%d”, &num);
printf (“The binary equivalent is:\n”);

dec_to_binary (num);
return o;

}
int dec_to_binary (int n)

{
int r;

r = n % 2;
n = n / 2;

if (n != o)
dec_to_binary (n);

printf (“%d”, r);

}
SAMPLE RUN
Enter the number: 32
The binary equivalent is: 100000
Enter the number: 45

The binary equivalent is: ioiioi

EXPLANATION
To obtain binary equivalent of a number, we have to keep dividing the dividend
till it doesn't become o. Finally, the remainders obtained during each successive

division must be written in reverse order to get the binary equivalent. Since the

remainders are to be written in the reverse order, we start printing only when n
falls to o, otherwise we make a call to dec_to_binary() with a reduced dividend
value.

Challenge 52
Write a recursive function to obtain the running sum of first 25 natural num­
bers.

SOLUTION
/* Program to obtain running sum of natural numbers using recursion *f

#include <stdio.h>
int runningSum (int);

int main()

{
int max, sum;
printf (“Enter the positive largest number for running sum:\n”);

scanf (“%d”, &max);
if (max > o)

{
sum = runningSum (max);

printf (“Running Sum: %d\n”, sum);

}
else
printf (“Entered number is negative\n”);

return o;

}
int runningSum (int n)

{
int s;
if (n == o)

return o;
else

s = n + runningSum (n -1);

return (s);

}
}

SAMPLE RUN
Enter the positive largest number for running sum: 25
Running Sum: 325

EXPLANATION

We calculate the running sum as we calculate the factorial value, starting from n
and then go on reducing it moving towards o. We stop on reaching o.

27.
PREPROCESSOR CHALLENGES

Total Challenges: 5

We can write C programs without knowing anything about the preprocessor, but
we should rather not. All good, generalized and maintainable programs usually

use C preprocessor directives in them. This chapter presents some preprocessor
challenges. If you can solve them you are well on your way to becoming a mature

C programmer.

Challenge 53
Write down macro definitions for the following and use them from main():

1. To test whether a character is a small case letter or not.

2. To test whether a character is an upper case letter or not.
3. To test whether a character is an alphabet or not. Make use of the

macros you defined in 1 and 2 above.
4. To obtain the bigger of two numbers.

SOLUTION
#include <stdio.h>

#define ISUPPER(x) (x >= 65 && x <= 90 ? 1 : o)
#define ISLOWER(x) (x >= 97 && x <= 122 ? 1 : o)

#define ISALPHA(x) (ISUPPER(x) || ISLOWER(x))
#define MAX(x,y) (x > y ? x : y)

int main()

{
char ch;
int a, b, big;

printf (“Enter any alphabet/character:\n”);
scanf (“%c”, &ch);

if (ISUPPER (ch))
printf (“You entered a capital letter\n”);

if (ISLOWER (ch))
printf (“You entered a small case letter\n”);

if (ISALPHA (ch))
printf (“You entered an alphabet\n”);

printf (“Enter any two numbers:\n”);
scanf (“%d%d”, &a, &b);

printf (“Bigger number is %d\n”, MAX (a,b));
return o;

}
SAMPLE RUN
Enter any character: A
You entered a capital letter

You entered an alphabet
Enter any two numbers: 45 66

Bigger number is 66

EXPLANATION

During preprocessing the statement if (ISUPPER (ch)) gets replaced by if (ch >=

65 && ch <= 90 ? 1 : o). Same goes for other macros. Note that while defining
one macro, other macros can be used. For example, for defining ISALPHA

macro, the macros ISUPPER and ISLOWER are being used. Also note that a
macro can take multiple arguments, like the MAX macro in our program.

Challenge 54
Write macro definitions with arguments for calculation of area and perimeter of
a triangle, a square and a circle. Store these macro definitions in a file called

“areaperi.h”. Include this file in your program, and call the macro definitions for
calculating area and perimeter for a square, triangle and circle.

SOLUTION
/* areaperi.h */

#defme PI 3.1428
#defme ARE AC (r) (PI * r * r)

#define PERIC(r) (2 * PI * r)
#defme AREAS (x) (x * x)
#define PERIS(x) (4 * x)
#define PERIT(x, y, z) (x + y + z)

#define SPERI(a, b, c) ((a + b + c) / 2)
#define AREAT(a, b, c) sqrt(SPERI(a, b, c) * \

(SPERI(a, b, c) - a) * \
(SPERI(a, b, c) -b) *\

(SPERI(a, b, c) -c))
/* Program that use macros in header file areaperi.h */

#include <stdio.h>
#include <math.h>

#include “areaperi.h”
int main()

float r, p_cir, a_cir;
float sid, p_sqr, a_sqr;
float sidi, sid2, sid3, a_tri, p_tri;

printf (“Enter radius of cirde:\n”);
scanf (“%f”, &r);

a_cir = ARE AC (r);
printf (“Area of circle = %f\n”, a_cir);

p_cir = PERIC (r);
printf (“Circumference of circle = %f\n”, p_cir);

printf (“Enter side of a square:\n”);
scanf (“%f”, &sid);

a_sqr = AREAS (sid);
printf (“Area of square = %f\n”, a_sqr);

p_sqr = PERIS (sid);

printf (“Perimeter of square = %f\n” p_sqr);

printf (“Enter length of 3 sides of triangle:\n”);
scanf (“%f %f %f”, &sidi, &sid2, &sid});

a_tri = AREAT (sidi, sid2, sid});
printf (“Area of triangle = %f\n”, a_tri);

p_tri = PERIT (sidi, sid2, sid3);
printf (“Perimeter of triangle = %f\n”, p_tri);

return o;

SAMPLE RUN
Enter radius of circle: 1

Area of circle = 3.141500
Circumference of circle = 6.283000

Enter side of a square: 5
Area of square = 25.000000

Perimeter of square = 20.000000
Enter length of 3 sides of triangle: 345

Area of triangle = 6.000000
Perimeter of triangle = 12.000000

EXPLANATION
It is agood idea to use the macro PI instead of straight-away using the value

3.1428. This ensures that the same value is available consistenly throughout the
program. This becomes especially useful if we were to use the value of pi at sev­

eral places in the program.

The macros written in “areaperi.h” get imported and get placed on top of main()
at the place where the file is #included.
Note the usage of instead of < > while including areaperi.h. ensure that file

would be searched by the preprocessor in the current project's directory apart
from the standard include path.

Challenge 55
Write down macro definitions for the following:

1. To find arithmetic mean of two numbers.
2. To find absolute value of a number.
3. To convert an uppercase alphabet to lowercase.

4. To obtain the biggest of three numbers.

SOLUTION
#include <stdio.h>
#define MEAN(x,y) ((x + y) / 2)

#define AB S(x) (x < o ? x * ■ 1: x)
#define TOLOWER(x) (x + 32)

#define MAX(x,y,z) (x > y && x>z?x:y>x && y > z ? y : z)
int main()

{
int a, b, c, m, val, big;

char ch;
printf (“Enter any two numbers:\n”);
scanf (“%d %d”, &a, &b);
m = MEAN (a, b); /* Macro substitution */

printf (“Mean is %d\n”, m);
printf (“Enter any numberin’’);

scanf (“%d”, &a);
val = ABS (a);

printf (“Absolute value is %d\n”, val);
fflush (stdin);

printf (“Enter any upper case characterin’’);
scanf (“%c”, &ch);

ch = TO LOWER (ch);
printf (“Lower case character is %c\n”, ch);

printf (“Enter any three numbers:\n”);
scanf (“%d %d %d”, &a, &b, &c);

big = MAX (a, b, c);
printf (“Biggest number is: %d\n”, big);

return o;

}
SAMPLE RUN
Enter any two numbers: 12 34
Mean is 23

Enter any number: -4

Absolute value is 4
Enter any upper case character: Z

Lower case character is z
Enter any three numbers: 12 12 23

Biggest number is: 23

EXPLANATION
Refer explanation of challenge 54.

Challenge 56
Write macro definitions with arguments for calculation of Simple Interest and
Amount. Store these macro definitions in a file called “interest.h”. Include this

file in your program, and use the macro definitions for calculating simple inter­
est and amount.

SOLUTION
/* interest.h */

#define SI(p, n, r) (p * n * r / 100)
#define AMT(p, si) (p + si)

/* interest.c */
#include <stdio.h>

#include “interesth”
int main()

{
int p, n;

float si, amt, r;
printf (“Enter Principal, no. of years and rate of interestin’’);
scanf (“%d %d %f”, &p, &n, &r);
si = SI (p, n, r);

amt = AMT (p, si);
printf (“Simple interest is: %f\n”, si);

printf (“Amount is: %f\n”, amt);
return o;

}
SAMPLE RUN
Enter Principal, no. of years and rate of interest: 1000 3 15.5
Simple interest is: 465.000000

Amount is: 1465.000000

EXPLANATION
Refer explanation of challenge 54.

Challenge 57
Write macro definitions for the following and use them in main():
DEGREES - Converts radians into degrees

RADIANS - Converts degrees into radians
ODD - Rounds a number up to the nearest odd integer

EVEN - Rounds a number up to the nearest even integer

SOLUTION
#include <stdio.h>
#define PI 3.14

#define RAD (a) (a * PI / 180)
#define DEG(n) (n * 180 / PI)

#define ODD(n) (n % 2 == o ? n + i : n)
#define EVEN(n) (n % 2 == 1 ? n + 1 : n)

int main()

{
float deg, rad;
int num, odd, even;
printf (“Enter an angle in degrees:\n”);
scanf (“%f”, °);

rad = RAD (deg);
printf (“deg = %f rad = %f\n”, deg, rad);

deg = DEG(rad);
printf (“rad = %f deg = %f\n”, rad, deg);

printf (“Enter a numberin’’);
scanf (“%d”, &num);

odd = ODD (num);
printf (“num = %d nearerst odd = %d\n”, num, odd);

printf (“Enter a numberin’’);
scanf (“%d”, &num);

even = EVEN (num);
printf (“num = %d nearerst even = %d\n”, num, even);

return o;

}
SAMPLE RUN
Enter an angle in degrees: 90

deg = 90.000000 rad = 1.570000
rad = 1.570000 deg = 90.000000

Enter a number: 35

num = 35 nearerst odd = 35

Enter a number: 23
num = 23 nearerst even = 24

EXPLANATION
Refer explanation of challenge 54.

o8
ARRAY CHALLENGES

Total Challenges: 11

Ordinary variables are capable of holding only one value at a time. If there is a
large amount of similar data to be handled, then using a different variable for

each data item would make the job unwieldy, tedious and confusing. Instead, on
combining all this similar data into an array, the whole task of organizing and

manipulating data would become easier and more efficient. This chapter
presents challenges that need arrays to conquer.

Challenge 58
If 25 numbers are entered through the keyboard, write a program to calculate
their mean, median and mode values.

SOLUTION
/* Calculate mean, median, mode of a set of numbers */

#include <stdio.h>
#define MAX 25

int main()

{
int mean, median, mode, freq, newmode, newfreq;
int arr[MAX];

int i, j, k, t, sum;
printf (“Enter %d numbers:\n”, MAX);

for (i = o; i < MAX; i++)
scanf (“%d”, &arr[i]);

sum = o;
for (i = o; i < MAX; i++)

sum = sum + arr[i];
mean = sum / MAX;

/* sort numbers */
for (i = o; i < MAX; i++)

{
for (j = i + 1; j < MAX; j++)

{
if (arr[i] > arr[j])

{
t = arr[i];

arr[i] = arr[j];
arr[j] = t;

}
}

}
if (MAX % 2 == o)

median = (arr[MAX / 2 -1] + arr[MAX / 2]) / 2;
else

median = arr[(MAX -1) / 2];
mode = arr[o];
freq = 1;

k = o;

for (i = o; i < MAX;)

{
newmode = arr[k];
newfreq = i;

for (j = i + i; j < MAX; j++)

{
if (arr[i] == arr[j])

newfreq++;

else
break;

}
if (newfreq >= freq)

{
mode = newmode;

freq = newfreq;

}
i = k = j;

}
printf (“Mean = %d\n”, mean);
printf (“Median = %d\n”, median);

printf (“Mode = %d\n”, mode);
return o;

}
SAMPLE RUN
Enter 25 numbers:
12 12 12 12 12 13 13 13 14 15 15 15 15 15 15 15 15 15 16 16 16 17 17 17 17

Mean = 14
Median = 15

Mode = 15

EXPLANATION

Calculation of mean is simple. Through a for loop we calculate the running sum

of all 25 numbers stored in the array arr[]. Then we divide it by 25 to obtain the
mean. Note the usage of MAX instead of 25. This would make the program
generic. Tomorrow if we have to obtain the mean of 30 numbers, we simply have

to replace 25 with 30 in definition of MAX, rest would be taken care of.
To obtain median we first sort numbers in ascending order using the Bubble

Sort logic implemented through a pair of for loops. Next, depending upon

whether arr[] has odd or even entries we obtain the median as either the middle
value or the average of the two middle values.
Obtaining mode is the most difficult part in this challenge. To obtain this we

have to begin with an assumtion that the very first number is the mode value.
Then we iterate through the array counting how many times each number occurs

in it. Each time we obtain a number with a higher frequency we note its value in

mode and its frequency in freq. The final value in mode is the result that we de­
sire.

Challenge 59
Write a program to implement a stack data structure. Stack is a LIFO (Last In
First Out) list in which addition and deletion takes place at the same end.

SOLUTION
#include <stdio.h>

#define MAX io
#define TRUE i

#define FALSE o
void push (int);

int pop();
int arr[MAX];

int top;
int empty = TRUE;

int main()

{
int n;
top = -1;

push (n);
push (23);

push (-8);
push (14);

push (20);
push (21);
push (2);
push (-3);
push (4);
push (12);

push (5);
n = pop();
if (n == -1 && empty == TRUE)

printf (“Stack is empty. Cannot pop\n”);

else
printf (“Popped Element: %d\n”, n);

n = pop();
if (n == -1 && empty == TRUE)

printf (“Stack is empty. Cannot pop\n”);
else

printf (“Popped Element: %d\n”, n);

n = pop();

if (n = -i && empty == TRUE)
printf (“Stack is empty. Cannot pop\n”);

else
printf (“Popped Element: %d\n”, n);

return o;

}
void push (int num)

{
if (top == MAX -1)

{
printf (“Stack is full. Cannot push element\n”);
return;

}
top++;
arr[top] = num;
empty = FALSE;

}
int pop()

{
int num;
if (top == -i)

{
empty = TRUE;
return -i;

}
num = arr[top];

top-;
return num;

}
SAMPLE RUN
Stack is full.
Item popped: 12

Item popped: 4
Item popped: -3

Item popped: 2

EXPLANATION

While performing a push operation number is added to the array arr[], whereas,

while performing a pop operation a number would be removed from arr[] (the
element is not physically removed from the array though). Both these addition
and deletion happen at an index into the array, being maintained using the vari­

able top.
Since the array elements are counted from o onwards, to begin with when the

stack is empty, top is set to -i and empty is set to TRUE to indicate emptyness of

stack. During each push operation firstly top is incremented and the then the ele­
ment being pushed is stored at arr[top]. Since we are storing an element in

stack, empty is set to FALSE. If top reaches MAX -i it means there is no space left
in the array to accommodate any more elements. This is then reported as stack is
full.

During popping, exactly reverse operations are done. Firsly the number at arr[
top] is collected in data and then value of top is reduced by i. Here too, care is
taken to check whether top has fallen to -i. If so, without popping an element

empty is set to TRUE and it is appropriately reported that the stack is empty.
Note that top and empty are declared as global variables because they are re­
quired by all three functions in the program.

Challenge 60
Twenty-five numbers are entered from the keyboard into an array. Write a pro­
gram to find the number of positives, negatives and zeros in the array.

SOLUTION
/* Calculate frequency of positives, negatives, zeros */

#include <stdio.h>
#define MAX 25

int main()

{
int num[MAX];
int i, pos, zeros, neg;

printf (“Enter 25 elements of array:\n”);
for (i = o; i < MAX; i++)

scanf (“%d”, &num[i]); /* Array Elements */
pos = zeros = neg = o;

for (i = o; i <= 24; i++)

{
if (num[i] > o)

pos+-i-;

else if (num[i] == o)
zeros++;

else
neg++;

}
printf (“Number of positives = %d\n”, pos);

printf (“Number of negatives = %d\n”, neg);
printf (“Number of zeros = %d\n”, zeros);

return o;

}
SAMPLE RUN
Enter 25 elements of array:

123453333366666-345-6-7000-50
Number of positives = 17

Number of negatives = 4
Number of zeros = 4

EXPLANATION

This challenge is fairly straight-forward. Through a for loop we keep running
sums of positives, negatives and zeros present in the array.

Challenge 61
Write a program to implement the Quick Sort algorithm on an array of io inte­
gers.

SOLUTION
/* Sort numbers using Quick Sort algorithm */

#include <stdio.h>
void quicksort (int *, int, int);

int split (int *, int, int);
int main()

{
int arr[io] = { u, 2, 9, 13, 57, 25, 17, 1, 90, 3 };

int i;
printf (“Array before sorting:\n”);

for (i = o; i <= 9; i++)
printf (“%d\t”, arr[i]);

quicksort (arr, o, 9);
printf (“\n”);

printf (“Array after sorting:\n”);
for (i = o; i <= 9; i++)

printf (“%d\t”, arr[i]);
return o;

}
void quicksort (int *a, int lower, int upper)

{
int i;

if (upper > lower)

{
i = split (a, lower, upper);
quicksort (a, lower, i -1);

quicksort (a, i + 1, upper);

}

}
int split (int *a, int lower, int upper)

{
int i, p, q, t;
p = lower + 1;
q = upper;
i = a[lower];

while (q >= p)

{
while (a[p] < i)

p++;
while (a[q] > i)

q--;
if (q > p)

{
t = a[p];
a[p] = a[q];
a[q] = t;

}
}
t = a[lower];
a[lower] = a[q];
a[q] = t;
return q;

}
SAMPLE RUN
Array before sorting:
n 2 9 13 57 25 17 1 90 3

Array after sorting:
1 2 3 9 11 13 17 25 57 90

EXPLANATION
Quick sort is a very popular sorting method. The name comes from the fact that,

in general, quick sort can sort a list of data elements significantly faster than any
of the common sorting algorithms. This algorithm is based on the fact that it is

faster and easier to sort two small arrays than one larger array. Thus, the basic
strategy of quick sort is to divide and conquer.

If you were given a large stack of papers bearing the names of the students to sort
them by name, you might use the following approach. Pick a splitting value, say

L (known as pivot element) and divide the stack of papers into two piles, A-L and
M-Z (note that the two piles will not necessarily contain the same number of pa­

pers). Then take the first pile and sub-divide it into two piles, A-F and G-L. The
A-F pile can be further broken down into A-C and D-F. This division process

goes on until the piles are small enough to be easily sorted. The same process is
applied to the M-Z pile. Eventually all the small sorted piles can be stacked one

on top of the other to produce an ordered set of papers.

This strategy is based on recursion—on each attempt to sort the stack of papers

the pile is divided and then the same approach is used to sort each smaller piles
(a smaller case).

Quick sort is also known as partition exchange sort. The quick sort procedure can

be explained with the help of Figure 8.1. In Figure 8.1 the element that is indi­
cated by is the pivot element and the element that is indicated by ‘’ is the
element whose position is finalized.

Suppose an array arr consists of io distinct elements. The quick sort algorithm
works as follows:

(a) In the first iteration, we will place the ©th element u at its final position and
divide the array. Here, n is the pivot element. To divide the array, two index

variables, p and q, are taken. The indexes are initialized in such a way that, p
refers to the Ist element 2 and q refers to the (n - i)th element 3.

(b) The job of index variable p is to search an element that is greater than the
value at oth location. So p is incremented by one till the value stored at p is
greater than oth element. In our case it is incremented till 13, as 13 is greater
that 11.

(c) Similarly, q needs to search an element that is smaller than the oth element.

So q is decremented by one till the value stored at q is smaller than the value
at oth location. In our case q is not decremented because 3 is less than n.

(d) When these elements are found they are interchanged. Again from the cur­

rent positions p and q are incremented and decremented respectively and ex­
changes are made appropriately if desired.

(e) The process ends whenever the index pointers meet or crossover. In our case,

they cross at the values i and 25 for the indexes q and p respectively. Finally,
the oth element 11 is interchanged with the value at index q, i.e. 1. The posi­

tion q is now the final position of the pivot element n.
(f) As a result, the whole array is divided into two parts, such that all the elements

before 11 are less than 11 and all the elements after n are greater than n.

(g) Now the same procedure is applied for the two sub-arrays. As a result, at the
end when all sub-arrays are left with one element, the original array becomes

sorted.
Here, it is not necessary that the pivot element whose position is to be finalized

in the first iteration must be the oth element. It can be any other element as well.

The arguments being passed to the function quicksort() would reflect the part of
the array that is being currently processed. We will pass the first and last indexes
that define the part of the array to be processed during this call. The initial call to

quicksort() would contain the arguments o and 9, since there are 10 integers in
our array.

In the function quicksort), a condition is checked whether upper is greater than

lower. If the condition is satisfied then only the array will be split into two parts,
otherwise, the control will simply be returned. To split the array into two parts

the function split() is called.
In the function split(), to start with the two variables p and q are taken which are

assigned with the values lower + 1 and upper. Then a while loop is executed that
checks whether the indices p and q have crossed each other. If they have not
crossed, then inside the while loop two more nested while loops are executed to
increase the index p and decrease the index q to their appropriate places. Then it
is checked whether q is greater than p. If so, then the elements present at pth and
qth positions are interchanged.
Finally, when the control returns to the function quicksort() two recursive calls
are made to function quicksort(). This is done to sort the two split sub-arrays. As

a result, after all the recursive calls when the control reaches the function main()
the array stands sorted.

Challenge 62
Write a program to perfrom a Linear Search on an array of 10 integers.

SOLUTION
/* Linear Search in an array */
#include <stdio.h>

int main()

{
int arr[io] = { n, 2, 9,13, 57, 25, 17, 1, 90, 3 };
int i, num;

printf (“Enter number to search:\n”);
scanf (“%d”, &num);

for (i = o; i <= 9; i++)

{
if (arr[i] == num)

break;

}
if (i == 10)

printf (“Number is not present in the array\n”);
else

printf (“The number is at position %d in the array\n”, i);
return o;

}
SAMPLE RUN
Enter number to search: 57
The number is at position 4 in the array

EXPLANATION
This is the simplest method of searching. In this method, the element is sequen­

tially searched in the list. This method can be applied to a sorted or an unsorted

list. Searching is case of a sorted list starts from ©th element and continues until
the element is found or an element whose value is greater (assuming the list is
sorted in ascending order) than the value being searched is reached. As against

this, searching in case of unsorted list starts from the oth element and continues
until the element is found or the end of list is reached.

Let us now try to understand this with the help of example. Consider the array

shown in Figure 8.2.

Figure 8.2. Linear search in an unsorted array.
The array shown in figure consists of 10 numbers. Suppose the element that is to

be searched is 57. So 57 is compared with all the elements starting with oth ele­
ment and the searching process ends either when 57 is found or the list ends.

In the program, num is the number that is to be searched in the array arr. Inside

the for loop each time arr[i] is compared with num. If any element is equal to
num then that's the position of element where the number being searched is

found. Hence break is applied to the for loop.

Challenge 63
Write a program to perfrom a Binary Search on an array of 10 integers.

SOLUTION
#include <stdio.h>
#define MAX 10

#define FOUND 1
#define NOTFOUND o

int main()

{
int arr[MAX] = { i, 2, 3, 9, n, 13, 17, 25, 57, 90 };
int mid, lower, upper, num, flag;

lower = o;
upper = MAX -1;

flag = NOTFOUND;
printf (“Enter number to search:\n”);

scanf (“%d”, &num);
mid = (lower + upper) / 2;

while (lower <= upper)

{
if (arr[mid] == num)

{
printf (“Number is at position %d in the array\n”, mid);
flag = FOUND;

break;

}
if (arr[mid] > num)

upper = mid -1;

else
lower = mid + 1;

mid = (lower + upper) / 2;

}
if (flag == NOTFOUND)
printf (“Element is not present in the array\n”);

return o;

}
SAMPLE RUN
Enter number to search: 57

The number is at position 8 in the array

EXPLANATION
Binary search method is very fast and efficient. This method requires that the list
of elements be in sorted order.
In this method, to search an element we compare it with the element present at
the center of the list. If it matches then the search is successful. Otherwise, the

list is divided into two halves: one from ©th element to the center element (first
half), and another from center element to the last element (second half). As a re­

sult, all the elements in first half are smaller than the center element, whereas, all
the elements in second half are greater than the center element.

The searching will now proceed in either of the two halves depending upon
whether the element is greater or smaller than the center element. If the element

is smaller than the center element then the searching will be done in the first
half, otherwise in the second half.

Same process of comparing the required element with the center element, and if
not found then dividing the elements into two halves is repeated for the first half

or second half. This procedure is repeated till the element is found or the division

of half parts gives one element. Let us understand this with the help of Figure

u

Figure 8.3. Binary search.
Suppose an array arr consists of io sorted numbers and 57 is element that is to be
searched. The binary search method when applied to this array works as follows:

(a) 57 is compared with the element present at the center of the list (i.e. 11). Since
57 is greater than 11, the searching is restricted only to the second half of the

array.
(b) Now 57 is compared with the center element of the second half of array (i.e.

25). Here again 57 is greater than 25 so the searching now proceeds in the ele­
ments present between the 25 and the last element 90.

(c) This process is repeated till 57 is found or no further division of sub- array is
possible.

In the program each time through the loop arr[mid] is compared with num as

mid holds the index of the middle element of array. If num is found then the
search ends. If it is not found, then for further searching it is checked whether

num is present in lower half or upper half of the array. If num is found to be
smaller than the middle element then mid - 1 is made the upper limit, keeping

lower limit as it is. Otherwise mid + i is made the lower limit of searching, keep­
ing the upper limit as it is. During each iteration the value of mid is calculated, as

mid = (lower + upper) / 2.

Challenge 64
Write a program to check whether the contents of two iD arrays are same or not.

SOLUTION
/* Check whether two arrays are equal or not */
#include <stdio.h>

#define EQUAL 1
#define NOTEQUAL o

int compare (int*, int, int*, int);
int main ()

{
int arn[] = { i, 2, 3, 4, 5 };

int arr2[] = { 2, 3, 4, 5, 6 };
int arr3[] = { 2, 4, 6, 8 };

int arr4[] = { 1, 2, 3, 4, 5 };
int result;

result = compare (arn, 5, arr2, 5);
if (result == EQUAL)

printf (“Arrays am and arm are equal\n”);
else

printf (“Arrays am and arm are not equal\n”);
result = compare (am, 5, arr3, 4);

if (result == EQUAL)
printf (“Arrays am and arr3 are equal\n”);

else
printf (“Arrays am and arr3 are not equal\n”);

result = compare (am, 5, arr4, 5);
if (result == EQUAL)

printf (“Arrays am and am}, are equal\n”);
else

printf (“Arrays am and am}, are not equal\n”);
result = compare (arm, 5, arr3, 4);

if (result == EQUAL)
printf (“Arrays arm and an*3 are equal\n”);

else
printf (“Arrays arm and an*3 are not equal\n”);

}
int compare (int *am, int szi, int *arm, int sz2)

{

int i;

if (szi != SZ2)
return NOTEQUAL;

else

{
for (i = o; i < szi; i++)

{
if (arn[i] != arrz[i])

return NOTEQUAL;

}
return EQUAL;

}
}

SAMPLE RUN
Arrays arri and arr2 are not equal

Arrays arri and arr} are not equal
Arrays arri and arrq are equal

Arrays arr2 and arr} are not equal

EXPLANATION

In the compare() function, we first check whether the number of elements in the
two arrays are same or not. If they are not, without comparing the elements we

report that the two arrays are unequal. If the number of elements is equal, then
we check the contents of the two arrays element by element. Any time there is a

mismatch we stop any further comparisons and report that the two arrays are un­
equal. If all elements match, we report that the two arrays are equal.

Challenge 65
Write a program that rotates the contents of a iD array of integers by desired
number of places.

SOLUTION
/* Rotate elements of iD array */

#include <stdio.h>
void printarray (int*, int);

void rotatearray (int*, int, int);
int main()

{
int arr[] = { i, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

printarray (arr, 10);
rotatearray (arr, 10, 10);

printarray (arr, 10);

}
void printarray (int* arr, int size)

{
int i;
for (i = o; i < size; i++)

printf (“%d\t”, arr[i]);

printf (“\n”);

}
void rotatearray (int *arr, int size, int k)

{
void rotatearraybyone (int*, int);

int i;
for (i = o; i < k; i++)

rotatearraybyone (arr, size);

}
void rotatearraybyone (int *arr, int n)

int i, tmp;
tmp = arr[o];

for (i = o; i < n; i++)
arr[i] = arr[i + 1];

arr[i -1] = tmp;

SAMPLE RUN

123456789 10
123456789 10
EXPLANATION

As the name suggests, rotatearraybyoneQ function rotates all array elements by
one position. We have called it from rotatearrayQ function k times.

Note that we have not declared the prototype of rotatearraybyone() on top of
main(). This is because we want rotatearraybyone() to be callable only from ro-

tatearray() and not from any other function.

Challenge 66
Write a program to reverse the contents of a iD array.

SOLUTION
/* Reverse the contents of a iD array */
#include <stdio.h>

void reverse (int*, int);
int main ()

{
int arr[] = { i, 2, 3, 4, 5, 6, 7, 8, 9,10 };

int i;
reverse (arr, io);
for (i = o; i < io; i++)

printf (“%d\t”, arr[i]);

}
void reverse (int *arr, int size)

{
int begin, end, t;

begin = o;
end = size -1;

while (begin <= end)

{
t = arr[begin];
arr[begin] = arr[end];

arr[end] = t;
begin++;

end-;

}

}
SAMPLE RUN
10 987654321

EXPLANATION

The reverse() function excanges first element with last element, second element

with second last element, etc. It continues this till begin doesn't cross end.

Challenge 67
Write a program to obtain binary equivalent of a positive decimal integer.

SOLUTION
I* Obtain binary equivalent of a positive integer */
#include <stdio.h>

#include <string.h>
void binaryEquivalent (int);

int is Valid (int);
int main()

{
int num;
printf (“Enter a non-negative decimal number\n”);
scanf (“%d”, &num);

if (isValid (num))
binaryEquivalent (num);

else
printf (“Invalid input\n”);

return o;

}
int isValid (int n)

{
if (n <= o)

return o;

else
return i;

}
void binaryEquivalent (int n)

{
char binaryf 100];

int rem, front, back, index;
char ch;

index = o;
while (n != o)

{
rem = n % 2;
if (rem == o)

binaryf index] = ‘o’;

else

binary[index] = T;

index++;
n = n / 2;

}
binaryf index] = ‘\o’;

front = o;
back = index -1;

while (front < back)

{
ch = binaryf front];
binaryf front] = binaryf back];

binaryf back] = ch;
front++;

back-;

}
printf (“Binary Equivalent: %s\n”, binary);

}
SAMPLE RUN
Enter a non-negative decimal number: 55

Binary Equivalent: iioin

EXPLANATION

isValid() checks whether the number is positive or not. In the binaryEquivalent()
function as we perform successive divisions by 2, we do not print the remain­

ders. Instead, we collect them in a character array called binayf]. This is neces­
sary because in the binary equivalent of a decimal number, remainders obtained

have to be arranged in reverse order. Once the dividend becomes zero, we ex­

change the contents of the array binaryf] in the following manner:
first with last,
second with last but one,

third with last but two,
etc.

After these exchanges, final contents of the binaryf] array are printed out.

Challenge 68
Implement in a program the following procedure to generate prime numbers
from i to too. This procedure is called sieve of Eratosthenes.

Step i Fill an array num[100] with numbers from i to 100.
Step 2 Starting with the second entry in the array, set all its multiples to zero.

Step 3 Proceed to the next non-zero element and set all its multiples to zero.
Step 4 Repeat Step 3 till you have set up the multiples of all the non-zero ele­

ments to zero.
Step 5 At the conclusion of Step 4, all the non-zero entries left in the array

would be prime numbers, so print out these numbers.

SOLUTION
/* Sieve of Eratosthenes */
#include <stdio.h>

int main()

{
int num[100], i, j, k, step;
I* fill array with numbers from 1 to 100 */

for (i = o; i <= 99; i++)
num[i] = i + 1;

for (i = 1; i <= 99; i++)

{
if (num[i] != o)

{
k = num[i] *2 -1;
step = num[i];

for (j = k; j <= 99; j = j + step)
num[j] = o;

}

}
printf (“\nPrime numbers between 1 & 100 are:\n”);
for (i = o; i <= 99; i++)

{
if (num[i] != o)

printf (“%d\t”, num[i]);

}
return o;

}
SAMPLE RUN

Prime numbers between i & 100 are:
1 2 3 5 7 11 13 17 19 23 29 31 37
41 43 47 53 59 61 67 71 73 79 83 89 97
EXPLANATION

The first for loop fills the array arr[] with numbers from i to ioo. The second for

loop visits each array element starting from arr[i] and if it is found to be non­

zero then sets all its multiples to o through the third for loop. The last for loop
prints all the non-zero elements left in the array, which are indeed the prime

numbers.

29
MULTIDIMENSIONAL ARRAY CHALLENGES

Total Challenges: 5

To deal with a set of numbers an array datatype is used and to deal with multiple
sets of numbers a two-dimensional array is used. This chapter presents some

interesting challenges realted with 2D arrays.

Challenge 69
Write a program to obtain transpose of 3 x 3 matrix.

SOLUTION
/* Transpose of a matrix */
#include <stdio.h>

#define ROWS 3
#define COLS 3

void create (int [ROWS][COLS]);
void display (int [ROWS][COLS]);

void transpose (int [ROWS][COLS], int [ROWS][COLS]);
int main()

{
int mati[ROWS][COLS], mat2[ROWS][COLS];

printf (“Enter array elements:\n\n”);
create (mati);

transpose (mati, mat2);
printf (“Transpose of matrix:\n”);

display (mat2);
return o;

}
I* creates matrix mat */

void create (int mat[ROWS][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

{
printf (“Enter the element:”);

scanf (“%d”, &mat[i][j]);

}

}
printf (“\n”);

}
I* displays the contents of matrix */

void display (int mat[ROWS][COLS])

{
int i, j;

for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

printf (“%d\t”, mat[i][j]);

printf (“\n”);

}
}
/* obtains transpose of matrix mi */
void transpose (int mi[ROWS][COLS], int m2[ROWS][COLS])

{
int i, j;

for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)
m2[i][j] = mi[j][i];

}
}

SAMPLE RUN
Enter array elements:

Enter the element: i
Enter the element: 2

Enter the element: 3
Enter the element: 4

Enter the element: 5
Enter the element: 6

Enter the element: 7
Enter the element: 8

Enter the element: 9
Transpose of matrix:
14 7
2 5 8
3 6 9
EXPLANATION

In this program the function create() is used to create an 2D array (matrix) of

ints. The display() function displays the elements of the matrix.
The function transpose^ transposes a matrix. A transpose of a matrix is obtained
by interchanging the rows with corresponding columns of a given matrix. Note

how mi and m2 have been declared inf the transpose() function. This is the way
to receive a 2D array passed to a function. The transposed matrix is stored in

mat2.

Challenge 70
Write a program to obtain sum of two 3x3 matrices.

SOLUTION
/* Addition of matrices */
#include <stdio.h>

#define ROWS 3
#define COLS 3

void create (int [ROWS][COLS]);
void display (int [ROWS][COLS]);

void matadd (int [ROWS][COLS], int [ROWS][COLS], int [ROWS][COLS

]);
int main()

{
int mati[ROWS][COLS], mat2[ROWS][COLS];
int mat3[ROWS][COLS

printf (“Enter elements for first array:\n\n”);
create (mati);

printf (“Enter elements for second array:\n\n”);
create (mat2);

printf (“First Array:\n”);
display (mati);

printf (“Second Array:\n”);
display (mat2);

matadd (mati, mat2, mat3);
printf (“After Addition:\n”);

display (mat3);
return o;

}
I* creates matrix mat */

void create (int mat[ROWS][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

{
printf (“Enter the element:”);

scanf (“%d”, &mat[i][j]);

}

}
printf (“\n”);

}
/* displays the contents of matrix */

void display (int mat[ROWS][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

printf (“%d\t”, mat[i][j]);
printf (“\n”);

}
}
I* adds two matrices mi and m2 */
void matadd (int mi[ROWS][COLS], int m2[ROWS][COLS], int m}[ROWS

][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

m3[i][j] = mi[i][j] + m2[i][j];

}
}

SAMPLE RUN
Enter elements for first array:
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter elements for second array:

Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2
First Array:
111
111
111
Second Array:
2 2 2
2 2 2
2 2 2
After Addition:
3 3 3
3 3 3
3 3 3
EXPLANATION

In this program the function create() is used to create an 2D array (matrix) of
ints. The display() function displays the elements of the matrix.
The function matadd() adds the elements of two matrices mati and mat2 and

stores the result in the third matrix matj. Note that usually two for loops would
be used to access all the elements of a 2D array.

Challenge 71
Write a program to obtain product of two 3x3 matrices.

SOLUTION
/* Multiplication of matrices */
#include <stdio.h>

#define ROWS 3
#define COLS 3

void create (int [ROWS][COLS]);
void display (int [ROWS][COLS]);

void matmul (int [ROWS][COLS], int [ROWS][COLS], int [ROWS][COLS

]);
int main()

{
int mati[ROWS][COLS], mat2[ROWS][COLS];
int mat3[ROWS][COLS];

printf (“Enter elements for first array:\n\n”);
create (mati);

printf (“Enter elements for second array:\n\n”);
create (mat2);

printf (“First Array:\n”);
display (mati);

printf (“Second Array:\n”);
display (mat2);

matmul (mati, mat2, mat3);
printf (“After Addition:\n”);

display (mat3);
return o;

}
I* creates matrix mat */

void create (int mat[ROWS][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

{
printf (“Enter the element:”);

scanf (“%d”, &mat[i][j]);

}

}
printf (“\n”);

}
/* displays the contents of matrix */

void display (int mat[ROWS][COLS])

{
int i, j;
for (i = o; i < ROWS; i++)

{
for (j = o; j < COLS; j++)

printf (“%d\t”, mat[i][j]);
printf (“\n”);

}
}
I* multiplies two matrices mi and m2 */
void matmul (int mi[ROWS][COLS], int m2[ROWS][COLS], int m3[ROWS

][COLS])

{
int i, j, k;
for (k = o; k < ROWS; k++)

{
for (i = o; i < COLS; i++)

{
m3[k][i] = o;
for (j = o; j < COLS; j++)

m3[k][i]+= mi[k][j]*m2[j][i];

}
}

}
SAMPLE RUN
Enter elements for first array:
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter the element: 1
Enter the element: 1

Enter the element: 1

Enter the element: i

Enter the element: i
Enter the element: i

Enter elements for second array:
Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2

Enter the element: 2
Enter the element: 2
First Array:
111
111
111
Second Array:
2 2 2
2 2 2
2 2 2
After Addition:
6 6 6
6 6 6
6 6 6
EXPLANATION

In this program the function create() is used to create an 2D array (matrix) of
ints. The display() function displays the elements of the matrix.
The function matmul() multiplies the elements of matrix mati with the elements

of matrix mat2 and stores the result in mat4.
In matmul() the third for loop multiplies each element of a given row with corre­
sponding elements of a given column. The given row and col are generated by

the first and the second for loop respectively.

Challenge 72
Given a 2D array, write a program to visit all its elements in a spiral fashion. For
example, for the array given below

{1, 2,3,4}

{5> 6,7,8}
{ 9, 10, 11, 12 }
{ 13, 14, 15,16 }

The elements should be visited in the order:
1 2 3 4 8 12 115 14 13 9 5 6 7 1110

SOLUTION
#include <stdio.h>

#defme ROWS 4
#define COLS 4

int main()

{
int arr[ROWS][COLS] = {

{i, 2,3,4},

{5.6,7,81,
{ 9,10, 11,12 },

{ 13,14,15,16 }

};
int i;
int toprow, bottomrow, leftcol, rightcol;
toprow = o;
bottomrow = ROWS - 1;

leftcol = o;
rightcol = COLS - 1;

while (toprow <= bottomrow && leftcol <= rightcol)

{
for (i = leftcol; i <= rightcol; i++)

printf (“%d”, arr[toprow][i]);

toprow++;
for (i = toprow; i <= bottomrow; i++)

printf (“%d”, arr[i][rightcol]);
rightcol-;

for (i = rightcol; i >= leftcol; i-)
printf (“%d”, arr[bottomrow][i]);

bottomrow-;

for (i = bottomrow; i >= toprow; i-)

printf (“%d”, arr[i][leftcol]);
leftcol++;

}
return o;

}
SAMPLE RUN
i 2 3 4 8 i2 16 15 14 13 9 5 6 7 1110

EXPLANATION

The program moves through the matrix using 4 for loops. The first one moves
from left to right, second from top to bottom, third from right to left and fourth

from bottom to top. These loops are executed till toprow doesn't cross the bot­

tomrow and leftcol doesn't cross the rightcol.
You can change the values of ROWS, COLS and correspondingly the values in
the array and execute it for different-sized matrices.

Challenge 73
Given a matrix that contains only is and/or os, write a program to obtain the
order of largest square sub-matrix with all is.

SOLUTION
/* Obtain order of largest square sub-matrix with all is */

#include <stdio.h>
#define ROW 5

#define COL 5
int maxisubmatrix (int [ROW][COL]);

int main ()

{
int arr[ROW][COL] = {

{ 1, o, o, 1, 1 },
{ O, I, I, I, o },

{I, I, I, I, I},

{ O, I, I, I, o },

{ O, O, O, I, I }

};
int maxi;

maxi = maxisubmatrix (arr);
printf (“Order of largest sqr. sub-mat. with all is = %d\n”, maxi);

}
int maxisubmatrix (int arr[ROW][COL])

{
int aux[ROW][COL] = { o };

int i, j, min, max;
int minimum (int, int, int);

for (i = o; i < COL; i++)
aux[o][i] = arr[o][i];

for (i = o; i < ROW; i++)
aux[i][o] = arr[i][o];

for (i = 1; i < ROW; i++)

{
for (j = 1; j < COL; j++)

{
if (arr[i][j] == i)

{
min = minimum (aux[i - i][j -1], aux[i][j -1], aux[i - i][j]);

aux[i][j] = min + i;

}
else

aux[i][j] = o;

}

}
max = o;

for (i = o; i < ROW; i++)

{
for (j = o; j < COL; j++)

{
if (aux[i][j] > max)

max = aux[i][j];

}
}
return max;

}
int minimum (int a, int b, int c)

{
int min;
min = a;

if (b < min)
min = b;

if (c < min)
min = c;

return min;

}
SAMPLE RUN
Order of largest square submatrix with all is = 3

EXPLANATION
To find the order of the largest square submatrix with all is we have used one

more matrix aux[][]. If arr[i][j] is the rightmost and the bottommost entry of

the largest square submatrix with all is, then finally aux[i][j] would contain the
size of the largest square submatrix with all is. To achieve this, we have followed
the following procedure:

We set zeroth row and zeroth column of aux[][] to be the same as arr[][]. Then

starting from the first row, and first column, if arr[i][j] is o, then the bottom­
most and rightmost entry in the possible sub-matrix would be o, which is not

possible (because minimum size of the desired sub-matrix would be i) so, we

store o in aux[i][j].
If arr[i] [j] is i, then obtain the minimum value present in aux[][] out of ele­
ments present above, to the left, and in the upper diagonal of aux[i][j]- Add i to

this minimum value and store it in aux[i][j].
That is, if the values at top, left and upper diagonal in aux[][] are all o, it means

that the values in arr[][] at top, left and upper diagonal are o. In this case even
though arr[i][j] is i, the maximum size of square sub- matrix whose rightmost

and bottommost element is arr[i][j], would be i.
In our example, for aux[2][2], the left, top and upper diagonal values of aux[][]
are all 1, which means that the value of arr[][] at these 3 places is 1, so that com­
bined with arr[2][2] will give rise to square sub-matrix of all is of size 2 and

ending at arr[2][2].

IO
STRING CHALLENGES

Total Challenges: 13

The way a group of integers can be stored in an integer array, likewise a group of
characters can be stored in a character array. Character arrays are often called

‘strings’. They are used by programming languages to manipulate text such as
words and sentences. This chapter present several challenges related with their
access and storage.

Challenge 74
Write a program to implement the following functions:
strlen: Finds the length of the string

strcpy: Copies contents of one string to another string strcat: Appends one string
at the end of another string

strcmp:Compares two strings to find whether they are identical or not

SOLUTION
/* Implements different string functions */
#include <stdio.h>

int xstrlen (char *);
void xstrcpy (char *, char *);

void xstrcat (char *, char *);
int xstrcmp (char *, char *);

void show (char *);
int main()

{
char si[] = “kicit”;

char S2[] = “Nagpur”;
char S3(20];

int len;
printf (“String si: %s\n”, si);

len = xstrlen (si);
printf (“length of the string si: %d\n”, len);

printf (“String S2: %s\n”, S2);
xstrcpy (S3, si);

printf (“String S3 after copying si to it: %s\n”, S3);
xstrcat (S3, S2);

printf (“String S3 after concatenation: %s\n”, S3);
if (xstrcmp (si, S2) == o)

printf (“The strings si and S2 are similar\n”);
else

printf (“The strings si and S2 are not similar\n”);
return o;

}
/* finds the length of the string */

int xstrlen (char *s)

{
int 1 = o;

while (*s)

{
1++;
s++;

}
return (1);

}
/* copies source string s to the target string t */
void xstrcpy (char *t, char *s)

{
while (*s)

{
*t = *s;
t++;
s++;

}
* t = ‘\o’;

}
/* concatenates the two strings */

void xstrcat (char *t, char *s)

{
while (*t)

t++;
while (*s)

{
* t = *s;

t++;
s++;

* t = ‘\o’;

}
/* compares two strings s and t for equality */
int xstrcmp (char *s, char *t)

{
while (*s == *t)

{
if (*s == ‘\o’)

break;

return (*s - *t);

}
SAMPLE RUN
String si: kicit

length of the string si: 5
String S2: Nagpur

String S3 after copying si to it: kicit
String S3 after concatenation: kicitNagpur

The strings si and S2 are not similar

EXPLANATION

In this program we have created three arrays of characters, si, S2 and S3.

The function xstrlenQ is fairly simple. It receives only one parameter— the base
address of a string. All that it does is, it keeps counting the characters till the end
of string is not met. Or in other words, it keeps counting characters till the point­

er s doesn't point to ‘\o’.

The function xstrcpy() receives two parameters. These parameters are the base
addresses of the target and source strings respectively. This function copies the

source string whose base address is received in pointer s, to the target string
whose base address is received in the pointer t. The function goes on copying the
source string into the target string till it doesn't encounter the end of source

string. Once the end of source string is reached, a ‘\o’ is stored at the end of the
target string. It is our responsibility to see to it that target string’s dimension is

big enough to hold the string being copied into it.

The function xstrcatQ also receives two parameters. Here also the parameters are
the pointers to the base addresses of the target and source strings respectively.

This function adds the source string whose base address is stored in pointer s at
the end of target string whose base address is stored in pointer t. In the first

while loop we have made the pointer t to point to the end of the string. In the sec­
ond while loop the contents of source string pointed to by s are added character

by character to the target string pointed to by t. Lastly, we have added a null
terminating character ‘\o’ at the end of the target string pointed to by t.
Another useful string function is xstrcmpf) which compares two strings to find
out whether they are same or different. The two strings si and S2 pointed to by s

and t respectively, are compared character by character until there is a mismatch
or end of one of the string is reached, whichever occurs first. If the two strings

are identical, xstrcmp() function returns a o. Otherwise, it returns the numeric
difference between the ASCII values of the first non-matching pair of characters.

Challenge 75
Write a program that extracts a string from the left, right or middle of a string.

SOLUTION
#include <stdio.h>
#include <string.h>

#include <stdlib.h>
#define WRONG o

#define CORRECT i
char * getsub (char *, int, int);

char * leftsub (char *, int);
char * rightsub (char *, int);
int main ()
{

char str[] = “Four hundred and thirty two”;
char *s;

printf (“String: %s\n”, str);
s = getsub (str, 5,7);
if(s != NULL)
{

printf (“Substring: %s\n”, s);
free (s);

}

s = leftsub (str, 4);

if (s != NULL)
{

printf (“Left substring: %s\n”, s);
free (s);

}

s = rightsub (str, 3);

if (s != NULL)
{

printf (“Right substring: %s\n”, s);
free (s);

}

return o;
}

char* getsub (char *str, int spos, int n)
{

int len, input, i;
char *t;
input = CORRECT;
len = strlen (str);
if (spos < o || spos >= len)

{
input = WRONG;

printf (“Starting index out of range\n”);

}
else if (len <= o)

{
input = WRONG;
printf (“Length of substring specified invalid\n”);

}
else if (spos + n -1 >= len)

{
input = WRONG;

printf (“Length out of range\n”);

}
else

{
t = (char*) malloc (n + i);
for (i = o; i < n; i++)

t[i] = str[spos + i];

t[i] = ‘\o’;
}
if (input == WRONG)

return NULL;
else

return (t);

}
char* leftsub (char *str, int n)

{
int len, input, i;
char *t;

input = CORRECT;
len = strlen (str);

if (n < o || n > len)

{
input = WRONG;
printf (“Length of left substring specified invalid\n”);

}
else

{
t = (char*) malloc (n + i);

for (i = o; i < n; i++)

t[i] = str[i];

t[i] = ‘\°’;
}
if (input == WRONG)

return NULL;

else
return (t);

}
char* rightsub (char *str, int n)

{
int len, input, i;
char *t;
len = strlen (str);

input = CORRECT;
if (n < o || n > len)

{
input = WRONG;

printf (“Length of right substring specified invalid. \n”);

}
else

{
t = (char*) malloc (n + i);
for (i = o; i < n; i++)

t[n - i -1] = str[len - i -1];

t[n] = ‘\o’;

}
if (input == WRONG)

return NULL;
else

return (t);

SAMPLE RUN
String str: Four hundred thirty two

Sub string: hundred
Left sub string: Four

Right sub string: two

EXPLANATION

The functions getsub(), leftsub() and rightsub() are used to extract specified num­
ber of characters from a specified position in a string. They differ only in the

starting position from which the characters are to be extracted.

The function getsub() receives three parameters. The first is the base address of
the string from which the characters are to be extracted. The second is the start­
ing position of the string from where the extraction should begin and the third is

the number of characters to be extracted.

Both the functions leftsub() and rightsub() receive two parameters that represents
the base address of the string and the number of characters to be extracted from
the left side or right side of the string respectively. Note that none of these three

functions make any changes to the contents of the string from which characters

are being extracted. Instead, they create a new string t by allocating new memory
of sufficient size and returns t as a final result of the extraction operation.

Challenge 76
Write a program that counts vowels, consonants and words present in a sentence
that is received from the keyboard.

SOLUTION
/* Count vowels, consonants and words in a sentence */

#include <stdio.h>
int main()
{

char str[80];
int vows, consos, words;
char *s, *t;
printf (“Enter a sentence not more than 80 characters long:\n”);
fgets (str, 80, stdin);
vows = consos = words = o;
s = str;

while (*s != ‘\o’)
{

if (isalpha (*s))
{

switch (*s)
{

case ‘a’:
case ‘e’:

case ‘i’:
case ‘o’:

case ‘u’ :
case ‘A’ :

case ‘E’:
case ‘I’ :

case ‘O’:
case ‘U’ :

VOWS++;

break;

default:
consos++;

}
s++;

}

else if (isspace (*s))

{
words++;

while (isspace (*s))
s++;

}
else

s++;

}
printf (“Vowels = %d\n”, vows);
printf (“Consonants = %d\n”, consos);

printf (“Words = %d\n”, words);
return o;

}
SAMPLE RUN
Enter a sentence not more than 80 characters long:
Able was I ere I saw elba

Vowels = io
Consonants = 9

Words = 7

EXPLANATION

isalpha() is a library function that checks whether a character is an alphabet or
not. If it found so, then through a switch we have checked if the alphabet is a
vowel or a consonant.

If isalpha() finds that the character is not an alphabet, then the isspace() function
is used to check whether the character is a space or not. If it is a space then the

while loop goes to the next non-blank character. Once it reaches the non-blank
character we increment the word count. This accounts for the possibility that
there are multiple spaces between words and word count is not incremented

every time we come across a space.

Challenge 77
Write a program to delete all vowels from a sentence. Assume that the sentence is
not more than 80 characters long.

SOLUTION
/* Delete all vowels from a sentence */
#include <stdio.h>
int main()

{
char str[80], stri[80];

char *s, *t;
printf (“Enter a sentence not more than 80 characters long:\n”);

fgets (str, 80, stdin);
s = str;

t = stri;
while (*s != ‘\o’)

{
switch (*s)

{
case ‘a’:

case ‘e’:
case ‘i’:

case ‘o’:
case ‘u’ :

case A’ :
case ‘E’:

case ‘I’:
case ‘O’:

case ‘U’:
s++;

break;
default:

*t = *s;
s++;

t++;

}

}
*t = ‘\o’;
printf (“Sentence after removing all vowels:\n%s\n”, stri);

return o;

}
SAMPLE RUN
Enter a sentence not more than 80 characters long:
A sentence cannot start with because.

Sentence after removing all vowels is:
sntnc cnnt strt wth bcs.

EXPLANATION

The program traverses the source string str using a while loop, looking for vow­
els. If it comes across a vowel, it simply goes to the next character in the string.
As against this, if it comes across a character other than a vowel, it copies it into

the target string stri.
Note two things in the program:

(a) Usage of pointers to copy characters from source string str to target string stri.
Had we not used pointers we would have been required to use an index vari­

able for the arrays and increment it every time we copy a character.

(b) Usage of fgets() to read a string from keyboard (stdin). This is a safer method
than gets() because it stops reading the string beyond 80 characters. This pre­
vents accidently exceeding the bounds of a string.

Challenge 78
Write a program to reverse the strings stored in the following 2D array of char­
acters:

char s[][100] = {
"To err is human...",
"But to really mess things up...",
"One needs to know Cl!"

};

SOLUTION
/* Reverse strings stored in a 2D array */
#include <stdio.h>
#include <string.h>

void strreverse (char *);

int main()
{

char s[][100] = {
"To err is human",
"But to really mess things up",
"One needs to know C"

};
int i;

for (i = 0; i < 3; i++)
{

strreverse { s[i]);
printf ("%s\n", s[i]) ;

}

return 0;
}

void strreverse (char *str)
{

int begin, end;
begin = 0;
end = strlen (str) -1;

while (begin < end)
{

char ch = str[begin];
str[begin] = str[end];
str[end] = ch;

begin++;
end-;

}
}
SAMPLE RUN
namuh si rre oT

pu sgniht ssem yllaer ot tuB
C wonk ot sdeen enO

EXPLANATION

The strreverse() function sets up two indexes— begin and end at the beginning
and end of the string respectively. Then it goes on exchanging character present

Challenge 79
Write a program that generates and prints the Fibonacci words of order o
through 5. If f(o) = “a”, f(i) = “b”, f(2) = “ba”, f(3) = “bab”, f(4) = “babba”, etc.

SOLUTION
/* Generate Fibonacci words of order o through 5 */

#include <stdio.h>
#include <string.h>

int main()

{
char str[50];
char lastbutonetermf 50] = “A”;

char lasttermf 50] = “B”;
int i;

for (i = 1; i <= 5; i++)

{
strcpy (str, lastterm);
strcat (str, lastbutoneterm);

printf (“%s\n”, str);
strcpy (lastbutoneterm, lastterm);

strcpy (lastterm, str);

}
return o;

}
SAMPLE RUN
a

b
ba

bab
babba

EXPLANATION

strcpy() function copies source string to target string, whereas strcat() concate­
nates (appends) source string at the end of target string. These functions are
effectively used to build the sequence of Fibonacci words.

Challenge 80
A Credit Card number is usually a 16-digit number. A valid Credit Card number
would satisfy a rule explained below with the help of a dummy Credit Card num­

ber—4567 1234 5678 9129. Start with the rightmost - 1 digit and multiply every
other digit by 2.
4567 1234 5678 9129

8 12 2 6 10 14 18 4

Then subtract 9 from any number larger than 10. Thus we get:

83261594
Add them all up to get 38.

Add all the other digits to get 42.
Sum of 38 and 42 is 80. Since 80 is divisible by 10, the Credit Card number is

valid.
Write a program that receives a Credit Card number and checks using the above

rule whether the Credit Card number is valid.

SOLUTION
/* Verify correctness of Credit Card Number */
#include <stdio.h>

#define WRONG o
#define CORRECT 1

int main ()

{
char str[16];
int input, i, digit, sum, multiple;

input = CORRECT;
sum = o;

printf (“Enter a 16 digit credit card numberin’’);
scanf (“%s”, str);

for (i = 15; i >= o; i-)

{
if (str[i] < ‘o’ || str[i] > ‘9’)

{
input = WRONG;

break;

}
else

{
digit = str[i] - ‘o’;

if (i % 2 == o)

{
multiple = digit * 2;
if (multiple >= 10)

digit = multiple - 9;
else

digit = multiple;

}
sum = sum + digit;

}

}
if (input == WRONG)

printf (“Credit card number must contain only digits\n”);
else

{
if (sum % 10 == o)

printf (“Credit card number is valid\n”);
else

printf (“Credit card number is invalid\n”);

}
return o;

}
SAMPLE RUN
Enter a 16 digit credit card number:

4181 3620 0022 8855
Credit card number is valid

Enter a 16 digit credit card number:
1234567898765432

Credit card number is invalid

EXPLANATION
Since the Credit Card number is received as a string, each digit present in it is
stored as ASCII value of the digit. Hence while doing arithmetic, each character

is first converted into a number by subtracting ASCII value of o from it.
Note the way the program checks for wrong input using the macros. Rest of the

program is pretty straight-forward.

Challenge 81
To uniquely identify a book a 10-digit ISBN number is used. The ISBN number

is considered to be correct if the sum d + 2d + 3d + ... + rod is a multiple of
11 (where d . denotes the ith digit from the right). The digits d^ to d^ can take

any value from o to 9, whereas d can be any value from o to 10. The ISBN con­
vention is to use the value X to denote 10. Write a program that receives a 10-
character ISBN number and reports whether the ISBN number is correct or not.

SOLUTION
#include <stdio.h>

#define CORRECT 1
#define WRONG o

int main()
{

char str[10];
int sum, i, digit, input, weight;
printf (“Enter an ISBN number: \n”);
scanf (“%s”, str);

sum = o;
input = CORRECT;
weight = 10;
for (i = o; i <= 8; i++)
{

if (str[i] >= ‘o’ || str[i] <= ‘9’)
{

digit = str[i] - ‘o’;

sum = sum + weight * digit;
weight-;

}

else
{

input = WRONG;

break;
}

}

if (input == CORRECT)
{

if (str[9] >= ‘o’ && str[9] <= ‘9’)
{

digit = str[i] - ‘o’;

sum = sum + digit;

}
else if (str[9] == ‘x’ || str[9] == ‘X’)

{
digit = 10;
sum = sum + digit;

}
else

input = WRONG;

}
if (input == WRONG)

printf (“Invalid input\n”); else

{
if (sum % 11 == o)

printf (“ISBN number verified and found to be correct\n”);
else

printf (“Checksum error in ISBN number\n”);

}
return o;

}
SAMPLE RUN
Enter an ISBN number: 1572224940

ISBN number verified and found to be correct
Enter an ISBN number: 1572225181

ISBN number verified and found to be correct

EXPLANATION

The program first gets weighted sum of digits dj to d^ in a for loop. Then it adds

d to the weighted sum and checks if it is divisible by 11.
Note that the program considers the possibility of wrong input as well as d
being a digit or character x.

Challenge 82
Write a program that receives the month and year from the keyboard as integers
and prints the calendar in the following format.

December 2016

Mon Tue Wed Thu

1

Fri

2

Sat

3

Sun

4

5 6 7 8 9 10 11

12 13 14 IS 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Note that according to the Gregorian calendar oi/oi/oi was Monday. With this
as the base, the calendar should be generated.

SOLUTION
/* Program to display calendar of any year */

#include <stdio.h>
void gotoxy (int col, int row);

int main()

{
char -'months[] = {

“January”, “February”, “March”,

“April”, “May”, “June”,
“July”, “August”, “September”,

“October”, “November”, “December”

};
int days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
long int ndays, Idays, tdays;

int m, y, sum, fday, i, r, c;
printf (“Enter year & month:\n”);

scanf (“%d %d”, &y, &m);
ndays = (y -1) * 365I;

Idays = (y -1) / 4 - (y -1) / 100 + (y -1) / 400;
tdays = ndays + Idays;

if ((y % 400 == o) || (y % 100 != o && y % 4 == o))
daysj 1] = 29;

else
daysj 1] = 28;

sum = o;
for (i = o; i <= m - 2; i++)

sum = sum + daysj i];

tdays = tdays + sum;

fday = tdays % y;
system (“clear”);

gotoxy (25, 2);
printf (“%s %d”, monthsf m - 1], y);

gotoxy (5, 5);
printf (“................-...

gotoxy (10, 6);
printf (“Mon Tue Wed Thu Fri Sat Sun”);
gotoxy (5, 7);
printf (“................-..

r = 9;
c = 11 + 6 * fday;

for (i = 1; i <= daysf m -1]; i++)

{
gotoxy (c, r);
printf (“%d”, i);

if (c <= 41)
c = c + 6;

else

{
c = 11;
r = r + 1;

}
}
gotoxy (5,15);
printf (“................-..

return o;

}
void gotoxy (int x, int y)

{
printf (“%c[%d;%df”, oxiB, y, x);

}
SAMPLE RUN

Mon Tue Wed

July 2015

Thu Fri Sat Sun

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

EXPLANATION
To understand the program let us assume that we wish to generate the calendar

for July 2015. The program first calcuates number of days that have elapsed from

01/01/01 upto 30/06/2015 and stores it in tdays. Then it finds out how many of
these days could not be evened out into weeks by taking a % by 7. If the value

stored in fday is o, it means that all days got evened out, hence coming day, i.e.
01/07/2015 is beginning of a fresh week, i.e. Monday. If fday is 1 then coming
day is Tuesday, if it is 2 then coming day is Wednesday, etc.
Once the day is determined, the column below which the calendar has to start

gets decided and this is recorded in c. Then the printing takes place—firstly the
name of month and year, then Mon, Tue, etc. and finally the dates through a for
loop.

Note that the month is printed by picking the appropriate value from monthsj]
array, whereas the dates are printed in suitable row and column by appropriately

updating the values of r and c.

Before printing is started, the screen is cleared by calling the system() function.
Before printing each date the cursor is suitably positioned on the screen by call­

ing the gotoxy() function. In the gotoxy() function we have printed the ANSI es­
cape code using:

printf (“%c[%d;%df”, oxiB, y, x);

The ANSI escape codes (or escape sequences) are a method using in-band sig­
naling to control the formatting, color, and other output options on video text
terminals. To encode this formatting information, certain sequences of bytes are
embedded into the text, which the terminal looks for and interprets as com­

mands, rather than as character codes. oxiB is decimal 27 which is the ASCII
value of Esc. The sequence 27(10:20 when sent to terminal window would posi­

tion the cursor at 10th row, 20th column.
In NetBeans one more setting needs to be done to display the output in suitable

row and column. Right click on the project name in the “Projects” window. Then
select Properties -> select Run -> Change console type from internal terminal to

external terminal. A black window would appear as an external terminal. All out-
uput of the program would be now sent to this external terminal window.

Challenge 83
Write a program to sort a set of names stored in an array in alphabetical order.

SOLUTION
/* Sort strings alphabetically */
#include <stdio.h>

int main()

{
char *str[] = {

“Rajesh”,

“Ashish”,
“Milind”,

“Pushkar”,
“Akash”

};
char *t;

int i, j;
for (i = o; i < 5; i++)

{
for (j = i + 1; j < 5; j++)

{
if ((strcmp (str[i], str[j])) > o)

{
t = str[i];
str[i] = str[j];
str[j] = t;

}
}

}
for (i = o; i < 5; i++)

printf (“%s\n”, str[i]);
return o;

}
SAMPLE RUN
Akash
Ashish

Milind
Pushkar

Rajesh

EXPLANATION

str[] stores address of each string. The bubble sort logic is implemented using

two for loops. Whether alphabetic order of two strings pointed by str[i] and str[j

] is correct or not is determined from the value returned by strcmp(). If the order
is incorrect then the addresses stored in str[i] and str[j] are interchanged.

Challenge 84
Write a program to generate and print all possible combinations of the characters
present in a given string.

SOLUTION
#include <stdio.h>
#include <string.h>
void permute (char*, int, int);

void swap (char*, char*);
int main()

{
char str[] = “JOKE”;

int n;
n = strlen (str);
permute (str, o, n -1);
return o;

}
void permute (char *str, int begin, int end)

{
int i;
if (begin == end)

{
printf (“%s\n”, str);
return;

}
else

{
for (i = begin; i <= end; i++)

{
swap (str + begin, str + i);
permute (str, begin + i, end);
swap (str + begin, str + i);

}
}

}
void swap (char *s, char *t)

{
char ch;

ch = *s;

*s = *t;

*t = ch;

}
SAMPLE RUN
JOKE

JOEK
JKOE

JKEO
JEKO

JEOK
OJKE

OJEK
OKJE

OKEJ
OEKJ

OEJK
KOJE

KOEJ
KJOE

KJEO
KEJO

KEOJ
EOKJ

EOJK
EKOJ

EKJO
EJKO

EJOK

EXPLANATION

In the permute() function in the for loop starting from the first position, we place

all the characters in the string at this position one by one, and call the permute()
function recursively on the remaining part of the string. Once done with that, we
replace the character at the first position to what it was initially. The following fig­

ure demonstrates this for a string “ABC”.

Figure 10.1. All possible combination of} characters.

Challenge 85
Write a program that receives a 5-digit number and prints it out in large size as
shown below:

ftfffttt ft # # tt ft tt tt It ft
#

#

7 J 1J 1J J.‘ 'J
** ** If ff ft # # # # rtrr tr rrrrrr

ll li j i f “
ft It If H ft # If 1< fl 1J1J

rr TT ft ft ff #

#

#

ll tl !l It H ft ff ft ff tf 11' 1 1 I11 1' 1' I11 ft fl ft It It # il II IIII
ft fl ff ff TT

SOLUTION
/* Display a given number in banner form */
#include <stdio.h>

#include <string.h>
void gotoxy (int col, int row);

int main()

{
int digits[][8][5] = {

{
1,1,1,1,1,
1,0,0,0,1,

1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,

1,0,0,0,1,

1,1,1,1,1

{
0,0,1,o,o,
0,1,1,0,0,

0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,1,1,1,0

b
{

1,1,1,1,1,
0,0,0,0,1,

'{
iTlTl

‘I‘O‘O‘O‘O

‘I‘O‘O‘O‘O

‘I‘O‘O‘O‘O

<J<I<I<I<I

‘O‘O‘O‘O‘I

‘O‘O‘O‘O‘I

<J<I<I<I<I

}

‘{
o'oTo'o

‘o‘oTo‘o
‘o‘oTo‘o

<I<I<I<I<I

‘o‘oTo‘i

‘O‘O‘O‘O‘I

‘O‘O‘O‘O‘I

‘O‘O‘O‘O‘I

}

‘{
1T1T1

‘I‘O‘O‘O‘O

‘I‘O‘O‘O‘O

‘I‘O‘O‘O‘O

<I<I<I<J<I

‘I‘O‘O‘O‘O

‘I‘O‘O‘O‘O

<I<J<I<I<J

}

I‘lTl‘1
‘O‘O‘O‘O‘I

‘O‘O‘O‘O‘I

<J<I<I<I<I

‘I‘O‘O‘O‘O

I‘O‘O‘O‘O

I,I,I,I,I,

1,0,0,0,0,
1,0,0,0,0,

I,I,I,I,I,

1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,

I,I,I,I,I
},

{

I,I,I,I,I,

0,0,0,0,1,
0,0,0,0,1,

0,0,0,0,1,
0,0,0,0,1,

0,0,0,0,1,
0,0,0,0,1,

0,0,0,0,1
}.

{

I,I,I,I,I,

1,0,0,0,1,
1,0,0,0,1,
I,I,I,I,I,

1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,

I,I,I,I,I

},

{

I,I,I,I,I,

1,0,0,0,1,
1,0,0,0,1,
I,I,I,I,I,

0,0,0,0,1,

0,0,0,0,1,
0,0,0,0,1,

I,I,I,I,I

}

};
char str[6];

int i, j, k, 1, r, c;
printf (“\nEnter a 5 digit number:”);
scanf (“%s”, str);
if (strlen (str) > 5)

{
printf (“Your number has more than 5 digits\n”);

return 1;

}
system (“clear”);

i = o;
while (str[i] != ‘\o’)

{
j = str[i] - 48;
for (r = o, k = o; r <= 7; k++, r++)

{
for (1 = o, c = i * 6; 1 <= 4; 1++, C++)

{
if (digits[j][k][1] == 1)

{
gotoxy (c, r);

printf (“#”);

}

}
}
i++;

}
printf (“\n”);
return o;

}
void gotoxy (int x,int y)

{
printf (“%c[%d;%df”, oxiB, y, x);

}
SAMPLE RUN

a

#

#

tt
a

tttttttttt#
it
tt
ttttttfttttt

tttttttttt
tt
tt

tttttttttt
#
tt #

tttttttttt # tt # ### tt tt
tt tt tt tt tt
tt tt ft tt tt
tttttt tt tttttttttt tttttttttt

EXPLANATION

Let us begin with the digits[][][] array. It is a collection of several 2D arrays,
where each 2D array is a 8 row by 5 column matrix containing os and is. In this
matrix where a digit is being drawn it contains a 1, whereas the empty space con­

tains a o. The number to be printed is received as a string, so while printing each
character of the string is first converted into a digit by subtracting 48 (ASCII

value of o) from it.

Before printing, the screen is cleared by calling the system() function. While

printing through the for loops, firstly the appropriate matrix is picked up from
the 3D array and then for all is present in this matrix # is printed, whereas all os

are ignored. While printing is, the curosr is first suitably positioned on the

screen using gotoxy() function.
Don’t forget to activate the external terminal window from Projects | Properties |
Run | Console type.

For detailed explanation of gotoxy() and external terminal window please refer
explanation in Challenge 82.

Challenge 86
Write a program that receives an integer (less than or equal to nine digits in
length) and prints out the number in words. For example, if the number input is

12342, then the output should be Twelve Thousand Three Hundred Forty Two.

SOLUTION
/* Convert number to words */
#include<stdio.h>

void convert (long, char []);
char *one[] = {

“”, “One”, “Two”, “Three”, “Four”, “Five”,
“Six”, “Seven”, “Eight”, “Nine”, “Ten”,

“Eleven”, “Twelve”, “Thirteen”, “Fourteen”,
“Fifteen”, “Sixteen”, “Seventeen”, “Eighteen”,

“ Nineteen”

};
char *ten[] = {

“”, “”, “Twenty”, “Thirty”, “Forty”, “Fifty”,

“Sixty”, “Seventy”, “Eighty”, “Ninety”

};
int main()

{
long num;
printf (“\nEnter any Number (max 9 digits):”);
scanf (“%ld”, &num);
if (num <= o)

printf (“No negative numbers please...\n”);
else

{
convert ((num / 10000000), “Crore”);

convert (((num / 100000) % 100), “Lakh”);
convert (((num / 1000) % 100), “Thousand”);

convert (((num / 100) % 10), “Hundred”);
convert ((num % 100),“”);

}

}
void convert (long n, char *s)

{
if (n > 19)

printf (“%s %s”, ten[n / io], one[n % io]);

else
printf (“%s”, one[n]);

if (n)
printf (“%s”, s);

}
SAMPLE RUN
Enter any Number (max 9 digits): 12345
Twelve Thousand Three Hundred Forty Five

EXPLANATION
The explanation of this program is skipped and the reader is encouraged to exe­

cute the program and analyse its working on his own.

11
STRUCTURE CHALLENGES

Total Challenges: 5

In real life we usually deal with entities that are collections of things, each thing
having its own attributes, just as the entity we call a ‘book’ is a collection of

things, such as title, author, call number, publisher, number of pages, date of
publication, etc. As you can see, all this data is dissimilar-author is a string,

whereas number of pages is an integer. For dealing with such collections, C pro­
vides a data type called ‘structure’. A structure gathers together, different atoms

of information that comprise a given entity. This chapter presents challenges re­
lated with structures.

Challenge 87
Write a program to sort birth dates of employees stored in an array of structures.

SOLUTION
/* Sort as per birth dates */
#include <stdio.h>
#define MAX 5
struct employee

{
char emp_name[20];

int date;
int month;

int year;

};
void sortdates (struct employee'1', int);
void printemployees (struct employee", int);

int compare (struct employee, struct employee);
int main()

{
struct employee e[MAX] = {

{ “Rahul”, 19, 11, 1992 },
{ “Sameer”, 24, 6, 1991 },

{ “Prashant”, 22,11,1993 },
{ “Soujanya”, 12,12,1992 },

{ “Sarmishta”, 14,10, 1992 }

};
sortdates (e, MAX);
printemployees (e, MAX);

}
void sortdates (struct employee *e, int size)

{
int i, j;
for (i = o; i < size; i++)

{
for (j = i + 1; j < size; j++)

{
if (compare (e[i], e[j]) == 1)

{
struct employee t = e[i];

e[i] = e[j];

e[j] = t;

}

}
}

}
/* Returns i if first employee is older than the second */

int compare (struct employee ei, struct employee e2)

{
if (ei.year < e2.year)

return i;

else if (ei.year > e2.year)
return o;

else

{
if (ei.month < e2.month)

return i;
else if (ei.month > e2.month)

return o;

else

{
if (ei.date < e2.date)

return i;

else if (e2.date > ei.date)
return o;

else
return o;

}
}

}
void printemployees (struct employee* e, int size)

{
int i;

for (i = o; i < size; i++)
printf (“%s %d.%d.%d\n”, e[i].emp_name, e[i].date, e[i].month, e[i].year);

}
SAMPLE RUN
Prashant 22.11.1993

Soujanya 12.12.1992

Rahul 19.11.1992
Sarmishta 14.10.1992

Sameer 24.6.1991

EXPLANATION
The program uses the simple Bubble Sort logic to sort dates. In this logic, during
the first iteration, first date is compared with all other dates. The positions of

dates are exchanged in such a manner that the record with most recent date
comes in the first position. This record is left undisturbed during rest of the

iterations. During the second iteration, second date is compared with rest of the
dates and the record with most recent date out of them is brought to second posi­

tion. Similar procedure is followed during rest of the iterations.

The compare() function is used to decide which out of the two dates is more re­
cent by comparing the years, months and dates in that order.

Challenge 88
Write a progam to implement a Linked List data structure.

SOLUTION
#include <stdio.h>
#include <malloc.h>

/* structure containing a data part and link part */
struct node

{
int data;

struct node * link;

};
void append (struct node **, int);
void addatbeg (struct node **, int);

void addafter (struct node *, int, int);
void display (struct node *);

int count (struct node *);
void del (struct node **, int);

int main()

{
struct node *p;
p = NULL; /* empty linked list */

printf (“No. of elements in the Linked List = %d\n”, count (p));
append (&p, 14);

append (&p, 30);
append (&p, 25);

append (&p, 42);
append (&p, 17);

display (p);
addatbeg (&p, 999);
addatbeg (&p, 888);
addatbeg (&p, 777);

display (p);
addafter (p, 7, o);

addafter (p, 2, 1);
addafter (p, 5, 99);

display (p);
printf (“No. of elements in the Linked List = %d\n”, count (p));

del (&p, 99);

del (&p, i);

del (&p, io);
display (p);
printf (“No. of elements in the linked list = %d\n”, count (p));
return o;

}
/* adds a node at the end of a linked list */

void append (struct node **q, int num)

{
struct node “temp, *r;
if (*q == NULL) /* if the list is empty, create first node */

{
temp = (struct node *) malloc (sizeof (struct node));

temp -> data = num;
temp -> link = NULL;

*q = temp;

}
else

{
temp = *q;
/* go to last node */

while (temp -> link != NULL)
temp = temp -> link;

/* add node at the end */
r = (struct node *) malloc (sizeof (struct node));

r -> data = num;
r -> link = NULL;

temp -> link = r;

}

}
/* adds a new node at the beginning of the linked list */

void addatbeg (struct node **q, int num)

{
struct node *temp;
/* add new node */

temp = (struct node *) malloc (sizeof (struct node));
temp -> data = num;

temp -> link = *q;

*q = temp;

}
/* adds a new node after the specified number of nodes */

void addafter (struct node *q, int loc, int num)

{
struct node “temp, *r;
int i;

if (loc <= o)

{
printf (“Invalid value for location. Unable to add element\n”);
return;

}
temp = q;

/* skip to desired portion */
for (i = o; i < loc; i++)

{
temp = temp -> link;

I* if end of linked list is encountered */
if (temp == NULL)

{
printf (“There are less than %d elements in list\n”, loc);

return;

}

}
I* insert new node */

r = (struct node *) malloc (sizeof (struct node));
r -> data = num;

r -> link = temp -> link;
temp -> link = r;

}
/* displays the contents of the linked list */

void display (struct node *q)

{
/* traverse the entire linked list */
while (q != NULL)

{
printf (“%d”, q -> data);

q = q -> link;

}

printf (“\n”);

}
/* counts the number of nodes present in the linked list */
int count (struct node * q)
{

int c = o;

/* traverse the entire linked list */
while (q != NULL)

{
q = q -> link;

C++;

}

return c;

}
I* deletes the specified node from the linked list */
void del (struct node **q, int num)

{
struct node *old, *temp;

temp = *q;
while (temp != NULL)
{

if (temp -> data == num)

{
/* if node to be deleted is the first node in the linked list */

if (temp == *q)
*q = temp -> link;

else
old -> link = temp -> link;

/* free the memory occupied by the node */
free (temp);

return;
}

else
{

old = temp;
temp = temp -> link;

}

}
printf (“Element %d not found in Linked List\n”, num);

}
SAMPLE RUN
Number of elements in the linked list = o 14 30 25 42 17

777 888 999 14 30 25 42 17

777 99 1 0 888 999 14 30 25 42 17
Number of elements in the linked list = n
Element 10 is not present in the linked list.

777 o 888 999 14 30 25 42 17
Number of elements in the linked list = 9

EXPLANATION
While the elements of an array occupy contiguous memory locations, those of a

linked list are not constrained to be stored in adjacent locations. The individual
elements are stored “somewhere” in memory, rather like a family dispersed, but

still bound together. The order of the elements is maintained by explicit links be­
tween them. For instance, the marks obtained by different students can be stored

in a linked list as shown in Figure ii.i.

Figure 11.1. Linked list.
Observe that the linked list is a collection of elements called nodes, each of which

stores two items of information-an element of the list and a link. A link is a point­
er or an address that indicates explicitly the location of the node containing the

successor of the list element. In Figure ii.i, the arrows represent the links. The

data part of each node consists of the marks obtained by a student and the link
part is a pointer to the next node. The NULL in the last node indicates that this is
the last node in the list.

There are several operations that we can think of performing on linked lists. Our
program shows how to build a linked list by adding new nodes at the beginning,

at the end or in the middle of the linked list. It also contains a function display()
which displays all the nodes present in the linked list and a function del() which
can delete any node in the linked list.
To begin with we have defined a structure for a node. It contains a data part and

a link part. The variable p has been declared as pointer to a node. We have used

this pointer as pointer to the first node in the linked list. No matter how many

nodes get added to the linked list, p would continue to pointer to the first node in

the list. When no node has been added to the list, p has been set to NULL to indi­
cate that the list is empty.

The appendf) function has to deal with two situations:
(a) The node is being added to an empty list.
(b) The node is being added at the end of an existing list.
In the first case, the condition
if(*q = NULL)

gets satisfied. Hence, space is allocated for the node using malloc(). Data and the
link part of this node are set up using the statements

temp -> data = num;
temp -> link = NULL;

Lastly, p is made to point to this node, since the first node has been added to the

list and p must always point to the first node. Note that *q is nothing but equal to

P-
In the other case, when the linked list is not empty, the condition

if (*q == NULL)

would fail, since *q (i.e. p is non- NULL). Now temp is made to point to the first
node in the list through the statement
temp = *q;

Then using temp we have traversed through the entire linked list using the state­
ments

while (temp -> link != NULL)
temp = temp -> link;

The position of the pointers before and after traversing the linked list is shown in

Figure 11.2.

Figure 11.2. Working of append () function.

Each time through the loop the statement temp = temp -> link makes temp point
to the next node in the list. When temp reaches the last node the condition temp

-> link != NULL would fail. Once outside the loop we allocate space for the new

node through the statement

r = (struct node *) malloc (sizeof (struct node));

Once the space has been allocated for the new node its data part is stuffed with
num and the link part with NULL. Note that this node is now going to be the last
Node in the list.

All that now remains to be done is connecting the previous last node with the

new last node. The previous last node is being pointed to by temp and the new
last node is being pointed to by r. They are connected through the statement

temp -> link = r;

this link gets established.

There is often a confusion as to how the statement temp = temp -> link makes
temp point to the next node in the list. Let us understand this with the help of an

example. Suppose in a linked list containing 4 nodes, temp is pointing at the first
node. This is shown in Figure 11.3.

temp
| 200 | 14 100 1 30 400 1 25 500 1 42 N |

200 100 400 500

Figure 11.3. Connection of nodes.
Instead of showing the links to the next node we have shown the addresses of the
next node in the link part of each node.

When we execute the statement
temp = temp -> link;

the right hand side yields 100. This address is now stored in temp. As a result,
temp starts pointing to the node present at address 100. In effect the statement
has shifted temp so that it has started pointing to the next node in the list.
Let us now understand the addatbeg() function. Suppose there are already 5
nodes in the list and we wish to add a new node at the beginning of this existing

linked list. This situation is shown in Figure 11.4.

Figure 11.4. Working of addatbegf) function.
For adding a new node at the beginning, firstly space is allocated for this node
and data is stored in it through the statement

temp -> data = num;

Now we need to make the link part of this node point to the existing first node.
This has been achieved through the statement
temp -> link = *q;
Lastly, this new node must be made the first node in the list. This has been at­

tained through the statement
*q = temp;

The addafterf) function permits us to add a new node after a specified number of
node in the linked list.

To begin with, through a loop we skip the desired number of nodes after which a
new node is to be added. Suppose we wish to add a new node containing data as

99 after the 3rd node in the list. The position of pointers once the control reaches

outside the for loop is shown in Figure 11.5. Now space is allocated for the node
to be inserted and 99 is stored in the data part of it.

Figure 11.5. Working of addafter() function.
All that remains to be done is readjustment of links such that 99 goes in between

30 and 25. This is achieved through the statements
r -> link = temp -> link;
temp -> link = r;

The first statement makes link part of node containing 99 to point to the node

containing 25. The second statement ensures that the link part of node con­
taining 30 points to the node containing 99. On execution of the second state­

ment the earlier link between 30 and 25 is severed. So now 30 no longer points to
25, it points to 99.

The display() and count() functions are straight forward. I leave them for you to
understand.

That brings us to the last function in the program i.e. del(). In this function
through the while loop, we have traversed through the entire linked list, checking
at each node, whether it is the node to be deleted. If so, we have checked if the

node being deleted is the first node in the linked list. If it is so, we have simply

shifted p (which is same as *q) to the next node and then deleted the earlier
node.
If the node to be deleted is an intermediate node, then the position of various

pointers and links before and after the deletion is shown in Figure n.6.

Figure 11.6. Working of del() function.

Challenge 89
Write a program to implement stack data structure as a linked list.

SOLUTION
/* Implementation of stack as a linked list */
#include <stdio.h>

#include <stdlib.h>
#define TRUE 1

#define FALSE o
struct node

{
int data;

struct node -'link;

};
void push (struct node**, int);
int pop (struct node**);

void deistack (struct node**);
int empty = TRUE;

int main ()

{
struct node *s = NULL;
int i;

push (&s, 14);
push (&s, -3);

push (&s, 18);
push (&s, 29);

push (&s, 31);
push (&s, 56);

push (&s, 14);
i = pop (&s);

if (empty == FALSE)
printf (“Item popped = %d\n”, i);

i = pop (&s);
if (empty == FALSE)

printf (“Item popped = %d\n”, i);
i = pop (&s);

if (empty == FALSE)
printf (“Item popped = %d\n”, i);

deistack (&s);

return o;

}
void push (struct node '“'top, int n)

{
struct node *temp;

temp = (struct node'') malloc (sizeof (struct node));
if (temp == NULL)

{
printf (“Stack is full\n”);
return;

}
temp -> data = n;
temp -> link = ''top;

''top = temp;
empty = FALSE;

}
int pop (struct node **top)

{
struct node ''temp;

int data;
if(*top == NULL)

{
printf (“Stack is empty\n”);

empty = TRUE;
return -i;

}
temp = -'top;

data = temp -> data;
-'top = temp -> link;

free (temp);
return data;

}
void deistack (struct node **top)

{
struct node *temp;

if (-Top == NULL)
return;

while (*top != NULL)

{
temp = "top;
“top = temp -> link;
free (temp);

}

}
SAMPLE RUN
Item popped: 16
Item popped: 31

Item popped: 29

EXPLANATION
The stack as linked list is represented as a singly connected list. Each node in the
linked list contains the data and a pointer that gives location of the next node in

the list. The pointer to the beginning of the list serves the purpose of the top of

the stack. Figure 11.7 shows the linked list representation of a stack.

Figure 11.7. Representation of stack, as a linked list.
Let us now see a program that implements stack as a linked list.

Here we have designed a structure called node. The variable s is a pointer to the
structure node. Initially s is set to NULL to indicate that the stack is empty. In

every call to the function push() we are creating a new node dynamically. As long
as there is enough space for dynamic memory allocation temp would never be­

come NULL. If value of temp happens to be NULL then that would be the stage
when stack would become full.

After, creating a new node, the pointer s should point to the newly created item
of the list. Hence we have assigned the address of this new node to s using the

pointer top. The stack as a linked list would grow as shown in Figure 11.8. Once
an element is pushed to the stack we are setting a global variable empty to
FALSE.

top

Figure 11.8. Stack as a linked list after insertion of elements.
In the pop() function, first we are checking whether or not a stack is empty. If the
stack is empty then a message ‘Stack is empty.’ gets displayed. If the stack is not
empty then the topmost item gets removed from the list. The stack after remov­

ing three items from the list would be as shown in Figure 11.9.
top

Figure 11.9. Stack as a linked list after deletion of elements.

Challenge 90
Write a program to implement Queue data structure as a linked list.

SOLUTION
/* Implementation of queue as a linked list */
#include <stdio.h>

#include <stdlib.h>
#define TRUE 1

#define FALSE o
struct node

{
int data;

struct node -'link;

};
struct queue

{
struct node -'front;
struct node -'rear;

};
int empty;

void initqueue (struct queue-');
void add (struct queue-', int);

int delete (struct queue-');
void delqueue (struct queue-');
int main ()

{
struct queue a;
int i;

initqueue (&a);
add (&a, n);
add (&a, -8);
add (&a, 23);

add (&a, 19);
add (&a, 15);

add (&a, 16);
add (&a, 28);

i = delete (&a);
if (empty == FALSE)

printf (“Element removed from the queue = %d\n”, i);

{
struct node *temp;
int data;

if (q -> front == NULL)

{
printf (“Queue is empty\n”);
empty = TRUE;

return -i;

}
temp = q -> front;
data = temp -> data;

q -> front = temp -> link;
free (temp);

return data;

}
void delqueue (struct queue *q)

{
struct node "temp;
if (q -> front == NULL)

return;
while (q -> front != NULL)

{
temp = q -> front;

q -> front = temp -> link;
free (temp);

}
q -> rear = NULL;

}
SAMPLE RUN
Element removed from the queue = n
Element removed from the queue = -8
Element removed from the queue = 23

EXPLANATION
Queue can also be represented using a linked list. As discussed earlier, linked
lists do not have any restrictions on the number of elements it can hold. Space

for the elements in a linked list is allocated dynamically, hence it can grow as
long as there is enough memory available for dynamic allocation. The item in the

queue represented as a linked list would be a structure as shown below:

struct node

{
<dataType> data;

struct node “link;

};
where dataType represents the type of data such as an int, float, char, etc. Figure

n.io shows the representation of a queue as a linked list.

Figure 11.10. Queue as a Linked List.
In this program the structure queue contains two data members, front and rear,

both are of the type pointers to the structure node. To begin with, the queue is
empty hence both front and rear are set to NULL. Also the global variable empty

is set to TRUE.

The addq() function adds a new element at the rear end of the list. If the element

added is the first element, then both front and rear are made to point to the new
node. However, if the element added is not the first element then only rear is

made to point to the new node, whereas front continues to point to the first node
in the list. Each time an element is addes to the queue, empty is set to FALSE.

The delq() function removes an element from the list which is at the front end of
the list. Removal of an element from the list actually deletes the node to which

front is pointing. After deletion of a node, front is made to point to the next node
that comes in the list, whereas rear continues to point to the last node in the list.
The function delqueue() is called before the function main() comes to an end.
This is done because the memory allocated for the existing nodes in the list must
be de-allocated.

Challenge 91
A record contains name of cricketer, his age, number of test matches that he has
played and the average runs that he has scored in each test match. Create an

array of structures to hold records of 20 such cricketers and then write a program
to read these records and arrange them in ascending order by average runs. Use

the qsort() standard library function.
SOLUTION
/* Create array of structures, sort and display */
#include <stdio.h>

#include <stdlib.h>
#define MAX io void fun();
int comp_fun (const void *, const void *);
void sortbyavg();

void display();
void setdata();

struct cric_player

{
char name[20];
int age;

int notest;
int avgrun;

};
struct cric_player cp[MAX];

int main()

{
/* set the values of the structure elements */
setdata ();

I* sort the array of structures */
sortbyavg();

printf (“Data sorted on Average Runs:\n”);
display ();

return o;

}
/* Function to set the values of the structure */
void setdata()

{
int i;

for (i = o; i < MAX; i++)

printf (“Enter name, age, matches played, average:\n”);
fflush (stdin);

scanf (“%s %d %d %d”, &cp[i [name, &cp[i].age, &cp[i].notest, &cp[i].av-
grun);

}
}
/* Function used for sorting the array of structures */
void sortbyavg()

{
struct cric_player t;

qsort ((struct cric_player *) cp, MAX, sizeof (cp[o]), comp_fun);

}
int comp_fun (const void *pi, const void *pz)

{
float avgi, avgz;
avgi = ((struct cric_player *) pi) -> avgrun;

avg2 = ((struct cric_player *) p2) -> avgrun;
return (avgi - avg2);

}
I* Function to display all the entries present in the structure */

void display()

{
int i;
for (i = o; i < MAX; i++)

printf (“%s\t%d\t%d\t%d\n”, cp[i].name, cp[i].age, cp[i].notest, cp[i].av­
grun);

}
SAMPLE RUN
Enter name, age, matches played, average: Dinesh 24 10 75
Enter name, age, matches played, average: Suresh 24 12 77

Enter name, age, matches played, average: Sanjay 21 13 68
Enter name, age, matches played, average: Vinod 23 10 80

Enter name, age, matches played, average: Sameer 21 10 55
Enter name, age, matches played, average: Prashant 22 10 45

Enter name, age, matches played, average: Roshan 22 10 55
Enter name, age, matches played, average: Rakesh 22 10 46

Enter name, age, matches played, average: Shekhar 28 13 44

Enter name, age, matches played, average: Shyam 21 10 40

Data sorted on Average Runs:
Shyam 2110 40

Ram 28 13 44
Prash 22 10 45

Rakesh 22 10 46
Sameer 21 10 55

Roshan 22 10 55
Sanjay 2113 68

Dinesh 24 10 75
Suresh 24 12 77

Vinod 23 10 80

EXPLANATION

Here sorting of records is done by calling the qsort() library function as shown
below:

qsort ((struct cric_player *) cp, MAX, sizeof (cp[o]), comp_fun);

Four paremeters are passed to qsort():
- Base address of the array being sorted
- Number of elements in the array

- Size of individual element of the array
- Base address of the comparison function

qsort() calls the comparison function comp_fun() using the address of the func­
tion passed to it. This means we can give any name to the comparison function.

The comparison function when called receives addresses of two elements that

qsort() is comparing at the moment. Since qsort() is a generic function that can
be used to sort any array, the comparison function receives the addresses as void
pointers. Hence it is necessary to cast these pointers suitably. In our case, we

have converted them into struct pointers. Then using the struct pointers we have

accessed avgrun element present in the structures being compared.

12

FILE IO CHALLENGES
Total Challenges: 4

Often it becomes necessary to store data in a file rather than just store it in mem­
ory or display it on screen. At such times, file IO operations need to be done.

This chapter presents challenges related with this aspect of C programming.

Challenge 92
Write a program to read a file and display its contents along with line numbers
before each line.

SOLUTION
/* Program to display a files contents along with line numbers */

#include <stdio.h>
#include <stdlib.h>

int main()

{
FILE *fp;
char ch;

char sourcef 67];
int count = 1;

puts (“Enter the file name :”);
scanf (“%s”, source);

fp = fopen (source, “r”);
if (fp = NULL)

{
puts (“Unable to open the file\n”);
exit (1);

}
printf (“Filename : %s”, source);
printf (“\nLine: %d\t”, count);

while ((ch = getc(fp)) != EOF)

{
if (ch == ‘\n’)

{
count++;
printf (“\nLine: %d\t”, count);

}
else

printf (“%c”, ch);

}
fclose (fp);
return o;

}
SAMPLE RUN

Enter the file name :
main.c
Filename : main.c
Line: 1 /* Program to display a file with line numbers */
Line: 2 # include <stdio.h>
Line: 3 #include <stdlib.h>
Line: 4
Line: 5 int main()
Line: 6 {
Line: 7 FILE *fp;
Line: 8 char ch ;
Line: 9 char source[67];
Line: 10 int count = 1;
Line: 11
Line: 12 puts ("Enter the file name : ");
Line: 13 scanf ("%s", source);
Line: 14
Line: 15 fp = fopen (source, "r");
Line: 16
Line: 17 if (fp == NULL)
Line: 18 {
Line: 19 puts ("Unable to open the file\n");
Line: 20 exit (1);
Line: 21 }
Line: 22
Line: 23 printf { "Filename : %s", source);
Line: 24
Line: 25 printf { "\nLine: %d\t", count);
Line: 26 while ((ch = getc(fp)) != EOF)
Line: 27 {
Line: 28 if (ch == '\n')
Line: 29 {
Line: 30 count++;
Line: 31 printf ("\nLine: %d\t", count);
Line: 32 }
Line: 33 else
Line: 34 printf ("%c", ch);
Line: 35 }
Line: 36
Line: 37 fclose (fp);
Line: 38 return 0 ;
Line: 39 }
Line: 40
EXPLANATION

The program opens the file supplied to scanf() for reading using the fopen() func­
tion. In the sample run we have given the same file as the one in which the pro­

gram is stored.

Once the file is opened, through a for loop using the getc() function the file is
read character by character. Each time we come across a ‘\n’ we increment the

count and print the line number in a fresh line.

Challenge 93
Suppose a file contains student's records with each record containing name and
age of a student. Write a program to read these records and display them in sort­

ed order by name.

SOLUTION
/* Read records from a file and display them in alphabetical order by names.
‘STUDENT.DAT file is already created. Data has been written to it using the

fwrite() function. */
#include <stdio.h>

#include <string.h>
int main()

{
FILE *fp;

struct stud

{
char name[40];
int age;

};
struct stud s, studf 10], temp;

int n, i, j;
fp = fopen (“STUDENT.DAT”, “rb”);

if (fp = NULL)

{
printf (“Cannot open file\n”);
return o;

}
n = o;

while (fread (&s, sizeof (s), 1, fp) == 1)

{
stud[n] = s;
n++;

}
fclose (fp);

for (i = o; i < n -1; i++)

{
for (j = i + 1; j < n; j++)

{
if (strcmp (stud[i [.name, stud[j].name) > o)

{
temp = stud[i];
stud[i] = stud[j];

stud[j] = temp;

}

}

for (i = o; i < n; i++)
printf (“Name: %s, age: %d\n”, studf i J.name, stud[i].age);

return o;

}
SAMPLE RUN
Akash 2i

Akshay 24
Bishnu 23

Deepak 21
Sudha 22

Surabhi 23

EXPLANATION
The program opens the file “student.dat” and reads it record by record. Each

record read is stored in the array stud[]. Once the reading of the file is over, the
usual Bubble Sort logic is used to sort records in alphabetical order by name, str-

cmp() function's return value is used to determine which name is smaller than
the other in alphabetical order.

Challenge 94
Write a program to encrypt/decrypt a file using a substitution cipher. In this ci­
pher each character read from the source file is substituted by a corresponding

predetermined character and this character is written to the target Hie.
For example, if character ‘A’ is read from the source file, and if we have decided

that every A’ is to be substituted by '!’, then a '!’ would be written to the target
file in place of every A’. Similarly, every ‘B’ would be substituted by ‘5’ and so on.

SOLUTION
/* Encrypt / Decrypt a file using substitution cipher */

/* encdec.c */
#include <stdio.h>

void encryptf);
void decrypt();

FILE *fs, -ft;
int main (int argc, char *argv[])

{
if (argc != 4)

{
puts (“Improper usage. Correct usage is:\n”);
puts (“encdec <source filename> ctarget filename> E/D\n”);
exit (1);

}
fs = fopen (argv[i], “r”);

if (fs == NULL)

{
puts (“Cannot open source file\n”);
exit (2);

}
ft = fopen (argv[2], “w”);

if (ft == NULL)

{
puts (“Cannot open target file\n”);
fclose (fs);

exit (3);

}
if (*argv[3] == ‘e’ || *argv[3] == ‘E’)

{
encrypt();

printf (“File %s encrypted successfully\n”, argv[i]);

}
else

{
if (*argv[3] == ‘d’ || *argv[3] == ‘D’)

{
decrypt();

printf (“File %s decrypted successfully\n”, argv[1]);

}
else

{
fclose (fs);
fclose (ft);

puts (“Improper usage\n”);
exit (4);

}

}
fclose (fs);
fclose (ft);

return o;

}
void encrypt()

{
char ch;
int i;

char arn[97] = “IOP{}asdfghjkl;ASDFGHJKL:zxcvbn m,./
ZXCVBNMo?’i234567890-=\~!@#$%A&*()_+|qwertyuiop[]QWERTYU”;

char arr2[97] = “‘1234567890-=^! @#$%A&“()_+|qw ertyuiopf]QWER-
TYUIOP{}asdfghjkl;’A SDFGHJKL:zxcvbnm,./ZXCVBNM<>?”;
arr2[93] = ‘\\’;
arri[93] = ‘\\’;
arr2[94] =
arri[94] =

arr2[95] = ‘\n’;
arri[95] = ‘\n’;

arrif 96] = ‘\t’;
arr2[96] = ‘\t’;

while ((ch = getc (fs)) != EOF)

{
for (i = o; i <= 96; i++)

{
if (ch == am[i])

break;

}
putc (arr2[i], ft);

}
}
void decrypt()

{
char ch;
int i;

char am[97] = “IOP{}asdfghjkl;‘ASDFGHJKL:zxcvbn m,./
ZXCVBNM<>?’i23456789o-=~!@#$%A&“()_+|qwertyuiop[]QWERTYU”;

char arr2[97] = ‘“1234567890-=-!@#$%A&*()_+|qw ertyuiopf]QWER-
TYUIOP{}asdfghjkl;A SDFGHJKL:zxcvbnm,./ZXCVBNM<>?”;

arr2[93] = ‘\\’;
arri[93] = ‘\\’;

arr2[94] =
arri[94] =

arr2[95] = ‘\n’;
arri[95] = ‘\n’;

arri[96] = ‘\t’;
arr2[96] = ‘\t’;

while ((ch = getc (fs)) != EOF)

{
for (i = o; i <= 96; i++)

{
if (ch == arr2[i])

break;

}
putc (arri[i], ft);

}

}
SAMPLE RUN
C:\> encdec sample.c newsample.c

Improper usage. Correct usage is:

encdec <source filename> ctarget filename> E/D

C:\> encdec sample.c newsample.c E
File sample.c encrypted successfully

C:\> encdec newsample.c sample.c D
File newsample.c decrypted successfully

EXPLANATION
The program first validates the input by checking whether 4 arguments have

been provided or not, source and target files could be opened succesfully or not
and the character E or D is provided as the last argument or not.

If the input is found to be valid then the substitution cipher is implemented

through the encryptf) and decrypt() functions. These functions use two arrays
arri[] and arr2[] to store all characters that can be typed from the keyboard. Fol­
lowing care is taken while creating these arrays:

(a) Every character must occur only once in each array.
(b) Order of characters in the two arrays should be different.

(c) The same arrays must be used for encryption as well as decryption.
Note that the special characters like back slash, single quote, double quote, etc.

are filled into the two arrays separately.
Once the arrays are created the encryption logic is simple. Each character read

from the source file is searched in arri[]. Once it is found, the corresponding
character (i.e. the one present at i^1 position) from arr2[] is written to the target
file.

The decryption logic works exactly opposite-search in arr2[] and replace from
arri[].

{
bytes = read (inhandle, buffer, 512);
if (bytes > o)

write (outhandle, buffer, bytes);
else

break;

}
close (inhandle);
close (outhandle);

return o;

}
SAMPLE RUN
C:\> filecopy pn.c newpri.c

EXPLANATION
Instead of performing the I/O on a character-by-character basis this program

reads a chunk of bytes from the source file and then writes this chunk into the
target file. While doing so, the chunk would be read into the buffer and would be

written to the file from the buffer. Hence to begin with we have created a char­

acter buffer called buffer[]. The size of this buffer is important for efficient oper­
ation. Depending on the operating system, buffers of certain sizes are handled
more efficiently than others.

Next we have opened the source and target files using the open() function. We

have to supply to open() the filename and the ‘O-flags’ to indicate the mode in
which we want to open the file. These ‘O-flags’ are defined in the file “fcntl.h”. So
this file must be included in the program. When two or more O-flags are used to­

gether, they are combined using the bitwise OR operator (|). Note the second call

to open().
outhandle = open (target, O.CREAT | O.BINARY | O.WRONLY, S.IWRITE);
Since the target file doesn't exist when it is being opened, we have used the

O_CREAT flag. Whenever O_CREAT flag is used, another argument must be

added to open() function to indicate the read/write status of the file to be created.
This argument is called ‘permission argument’. Permission arguments could be
any of the following:

S_IWRITE - Writing to the file permitted
S_IREAD - Reading from the file permitted

To use these permissions, the files “types.h” and “stat.h” must be #include d in
the program alongwith “fcntl.h”.

Instead of returning a FILE pointer open() returns an integer value called ‘file

handle’. This is a number assigned to a particular file, which is used thereafter to

refer to the file. If open() returns a value of -i, it means that the file couldn't be
successfully opened.

The following statement reads the file or as much of it as will fit into the buffer:
bytes = read (inhandle, buffer, 512);

The read() function takes three arguments. The first argument is the file handle,
the second is the address of the buffer and the third is the maximum number of

bytes we want to read.

The read() function returns the number of bytes actually read. This is an impor­
tant number, since it may very well be less than the buffer size (512 bytes), and
we will need to know just how full the buffer is before we can do anything with

its contents. In our program we have assigned this number to the variable bytes.

For copying the file, we must use both the read() and the write() functions in a
while loop. The read() function returns the number of bytes actually read. This is

assigned to the variable bytes. This value will be equal to the buffer size (512
bytes) until the end of file, when the buffer may only be partially full. The vari­

able bytes therefore is used to tell write(), as to how many bytes to write from the
buffer to the target file.

13
BITWISE OPERATION CHALLENGES

Total Challenges: 2

Programming languages are byte-oriented, whereas hardware tends to be bit-
oriented. Bitwise operators allow us to delve inside the byte and see how it is con­

structed and how it can be manipulated effectively. This chapter offers challenges
related to this.

Challenge 96
Define a showbits() function that would print the binary value stored in a one-
byte entity. Call it a couple of times to display binary contents of different values.

SOLUTION
#include <stdio.h>

void showbits (unsigned char);
int main()

{
char numi = 15;

char num2 = 23;
printf (“\nDecimal %d is same as binary”, numi);

showbits (numi);
printf (“\nDecimal %d is same as binary”, nuirn);

showbits (num2);
return o;

}
void showbits (unsigned char n)

{
int i;

unsigned char j, k, andmask;
for (i = 7; i >= o; i-)

{
i = i;
andmask = 1 «j;
k = n & andmask;

k == o ? printf (“o”) : printf (“1”);

}
}

SAMPLE RUN
Decimal 15 is same as binary 00001111
Decimal 23 is same as binary oooioui

EXPLANATION

All that is being done in the showbits() function is, using an AND operator and a
variable andmask, we are checking the status of individual bits of n. If the bit is
OFF we print a o, otherwise we print a 1.

First time through the loop, the variable andmask will contain the value

10000000, which is obtained by left-shifting 1, seven places. If the variable n’s
most significant bit (leftmost bit) is o, then k would contain a value o, otherwise

it would contain a non-zero value. If k contains o, then printf() will print out o,
otherwise it will print out i.

In the second go-around of the loop, the value of i is decremented and hence the
value of andmask changes, which will now be 01000000. This checks whether
the next most significant bit is i or o, and prints it out accordingly. The same

operation is repeated for all bits in the number.

Challenge 97
An animal could be a canine (dog, wolf, fox, etc.), a feline (cat, lynx, jaguar, etc.), a
cetacean (whale, narwhal, etc.) or a marsupial (koala, wombat, etc.). The infor­

mation whether a particular animal is canine, feline, cetacean, or marsupial is

stored in bit number o, i, 2 and 3 respectively of a integer variable called type. Bit
number 4 of the variable type stores the information about whether the animal is
Carnivore or Herbivore.

For the following animal, complete the program to determine whether the animal
is a herbivore or a carnivore. Also determine whether the animal is a canine, fe­

line, cetacean or a marsupial.
struct animal

{
char name[30];

int type;

}
struct animal a = { “OCELOT”, 18 };

SOLUTION
/* Determine the type of animal */
#include <stdio.h>

int main()

{
struct animal

{
char name[30];
int type;

};
struct animal a = { “OCELOT”, 18 };

int ani;
printf (“Animal is:\n”);

ani = a.type;
if ((ani & 1) == 1)

printf (“Canine\n”);
if ((ani & 2) == 2)

printf (“Feline\n”);
if ((ani & 4) == 4)

printf (“Catacean\n”);
if ((ani & 8) == 8)

printf (“Marsupial\n”);

printf (“Animal is also a:\n”);
if ((ani & 16) == 16)
printf (“Carnivore\n”);

else
printf (“Herbivore\n”);

return o;

}
SAMPLE RUN
Animal is: Feline
Animal is also a: Carnivore

EXPLANATION
Using the & operator repeatedly it is checked whether the corresponding bit is i
or o. For example, using

if ((ani & 4) == 4)
it is being checked whether bit number 2 is 1 or o.

Once the status of the bit is determined appopriate messages are printed.

L4
MISCELLANEOUS CHALLENGES

Total Challenges: 4

There are certain useful programming features that are of immense help in cer­
tain programming strategies. These include bit fields, function pointers, func­

tions with variable number of arguments and unions. This chapter presents chal­
lenges related to these features of C programming.

Challenge 98
Create an array of four function pointers. Each pointer should point to a different
function. Each of these functions should receive two integers and return a float.

Using a loop call each of these functions using the addresses present in the array.

SOLUTION
/* Create and use an array of function pointers */
#include <stdio.h>

float funi (int, int);
float fun2 (int, int);

float fun3 (int, int);
float fun4 (int, int);

float funi (int i, int j)

{
printf (“In funi i = %d j = %d\n”, i, j);
return (float)(i + j);

}
float fun2 (int i, int j)

{
printf (“In fun2 i = %d j = %d\n”, i, j);

return (float)(i - j);

}
float fun3 (int i, int j)

{
printf (“In fun3 i = %d j = %d\n”, i, j);
return (float)(i * j);

}
float fun4 (int i, int j)

{
printf (“In fun4 i = %d j = %d\n”, i, j);

return (float)(i / j);

}
int main()

{
float (*ptr[4]) (int, int);
float f;

int i;
ptr [o] = funi;

ptr [1] = fun2;

ptr [2] = fun3;

ptr [3] = furq.;
for (i = o; i <= 3; i++)

{
f = (*ptr [i]) (100, i + 1);

printf (“%f\n”, f);

}
return o;

}
SAMPLE RUN
In funi i = 100 j = 1

101.000000
In fun2 i = 100 j = 2

98.000000
In fun3 i = 100 j = 3

300.000000
In fun4 i = 100 j = 4

25.000000

EXPLANATION

Functions funi(), fun2(), fun3() and fun4() all receive an int and a float, perform

some arithmetic operation on them and return the float result. The addresses of
these functions are stored in the array of function pointers ptr[]. Note the defi­

nition of this array. Then in a for loop using the expression
f = (*ptr [i]) (100, i + 1);

the function whose address is present at the ith location in the array is called.

During each call 100 and the current value of i is passed to the function and the

result reurned by it is collected in f and printed out.

Challenge 99
Write a function that receives variable number of arguments, where the argu­
ments are the coordinates of a point. Based on the number of arguments re­

ceived, the function should display type of shape (like a point, line, triangle, etc.)
that can be drawn.

SOLUTION
/* Function with variable number of arguments */

#include <stdio.h>
#include <stdarg.h>

void shape (int,...);
int main()

{
shape (1, 5,10);

shape (2,1,1,10,1);
shape (3,15,10, 5, 25, 20, 25);

return o;

}
void shape (int tot_pt, ...)

{
int count, x, y;
va_list ptr;

switch (tot_pt)

{
case 1:

printf (“Type of shape is point\n”);

break;
case 2 :

printf (“Type of shape is line\n”);
break;

case 3 :
printf (“Type of shape is triangle\n”);
break;

}
va_start (ptr, tot_pt);
for (count = i; count <= tot_pt; count++)

{
x = va_arg (ptr, int);

y = va_arg (ptr, int);

printf (“x%d = %d, y%d = %d\n”, count, x, count, y);

}
}

SAMPLE RUN
Type of shape is point

xi = 5, yi = 10
Type of shape is line

xi = 1, yi = 1
X2 = 10, ya = 1

Type of shape is triangle
xi = 15, yi = 10

X2 = 5, y2 = 25
X3 = 20, y3 = 25

EXPLANATION

Note how the shape() function has been declared. The ellipses (...) indicate that
the number of arguments after the first argument would be variable. Here we are

making three calls to shape(). For each call the first argument is the number of
pairs of coordinates that follow the first argument.

The value of the first argument passed to shape() is collected in the variable
tot_pt. shape() begins with a declaration of a pointer ptr of the type va_list. Ob­
serve the next statement carefully.

va_start (ptr, tot_pt);

This statement sets up ptr such that it points to the first variable argument in the
list. If we are considering the first call to shape(), ptr would now point to 5. The

statement x = va_arg (ptr, int) would assign the integer being pointed to by ptr to
x. Thus 5 would be assigned to x, and ptr would now start pointing to the next

argument, i.e.,10. This is assigned to y by using va_arg once more. The rest of the
program is fairly straightforward. We just keep picking up successive numbers
in the list and keep printing them, till all the arguments in the list have been

scanned.

Note that the va_start and va_arg macros are declared in the header file
“stdarg.h”, which needs to be included to be able to use these macros.

Challenge 100
Write a program, which stores information about a date in a structure containing
three members-day, month and year. Using bit fields the day number should get

stored in first 5 bits of day, the month number in 4 bits of month and year in 12
bits of year. Write a program to read date of joining of 10 employees and display

them in ascending order of year.

SOLUTION
/* To store joining dates using bit fields */
#include <stdio.h>

int main()

{
struct date

{
unsigned day : 5;
unsigned month : 4;

unsigned year : 12;

};
struct date dt[10], temp;
int i, j, d, m, y;

printf (“Enter joining dates (dd-mm-yyyy) of 10 employees\n”);
for (i = o; i < 10; i++)

{
scanf (“%d %d %d”, &d, &m, &y);

if(((d<i) || (d > 31)) ||
((m<i)||(m>i2))||

((y<i9oo) 1| (y >2004)))

{
printf (“Invalid date, enter new date\n”);
i-;
continue;

}
dt[i].day = d;
dt[i].month = m;

dt[i].year = y;

}
for (i = o; i < 9; i++)

{
for (j = i + 1; j < 10; j++)

{
if (dt[j].year < dt[i].year)

{
temp = dt[i];
dt[i] = dt[j];

dt[j] = temp;

}

}
}
printf (“Sorted Joining dates:\n”);
for (i = o; i < io; i++)

printf (“%d %d %d\n”, dt[i].day, dt[i].month, dt[i].year);
return o;

}
SAMPLE RUN
Enter joining dates (dd-mm-yyyy) of io employees
I I 2010

2 2 2013
3 3 2011

4 4 2014

5 5 2OI3
6 6 2016
7 7 2014

8 8 2012
9 9 2011
10 10 2013
Sorted Joining dates:

1 1 2010
3 3 2011

9 9 2011
8 8 2012

2 2 2013

5 5 2OI3
10 10 2013
7 7 2014
4 4 2014
6 6 2016

EXPLANATION

The colon (:) in the above declaration of struct date tells the compiler that we are
talking about bit fields and the number after it tells how many bits to allot for the
field. The bit fields are accessed using the normal way of accessing structure ele­

ments using the .operator. Sorting of dates is done using the Bubble Sort logic.

Challenge 101
Write a program to read and store information about insurance policy holder.
The information contains details like gender, whether the holder is minor/major,

policy name and duration of the policy. Make use of bitfields to store this infor­
mation.

SOLUTION
#include <stdio.h>

#include <string.h>
int main()

{
struct policy-holder

{
unsigned gender : i;

unsigned status : i;
char name[20];

unsigned dr : 5;

};
struct policy-holder h;
int g, s, d;

char n[20];
printf (“Enter gender (o-Male, i-Female):\n”);
scanf (“%d”, &g);
printf (“Enter status (o-Minor, i-Major):\n”);
scanf (“%d”, &s);
printf (“Enter name of the policy holder:\n”);
scanf (“%s”, n);
printf (“Enter duration (1 to 25 yrs) of the policy:\n”);

scanf (“%d”, &d);
h.gender = g;

h.status = s;
strcpy (h.name, n);

h.dr = d;
printf (“Name: %s\n”, h.name);

printf (“Gender: %s\n”, h.gender == o ? “Male” : “Female”);
printf (“Status: %s\n”, h.status == o ? “Minor” : “Major”);
printf (“Duration %d\n”, h.dr);
return o;

}

SAMPLE RUN
Enter gender (o-Male, i-Female): o
Enter status (o-Minor, i-Major): i

Enter name of the policy holder: Dinesh
Enter duration (i to 25 yrs) of the policy: 10

Name: Dinesh
Gender: Male

Status: Major
Duration 10

EXPLANATION
Observe the structure declaration carefully. It uses bit fields. The : (colon) in the

declaration indicates tells the compiler how many bits to allot for the field.
Once we have established a bit field, we can reference it just like any other struc­

ture element, as shown in the following statements:
h.gender = g;
h.status = s;

	101 Challenges Series

	CHAPTER QI BASIC CONTROL FLOW CHALLENGES

	CHAPTER 02 DECISION MAKING CHALLENGES

	CHAPTER 03 LOOPING CHALLENGES

	CHAPTER 04 FUNCTION CHALLENGES

	CHAPTER 05 POINTER CHALLENGES

	CHAPTER 06 RECURSION CHALLENGES

	CHAPTER 07 PREPROCESSOR CHALLENGES

	CHAPTER 08 ARRAY CHALLENGES

	CHAPTER 09 MULTIDIMENSIONAL ARRAY CHALLENGES

	CHAPTER 10	STRING CHALLENGES

	CHAPTER 11	STRUCTURE CHALLENGES

	CHAPTER 12	FILE INPUT/OUTPUT CHALLENGES

	CHAPTER 13	BITWISE OPERATIONS CHALLENGES

	CHAPTER 14	MISCELLANEOUS FEATURES

	Challenge 01

	Challenge 02

	Challenge 03

	Challenge 04

	Challenge 05

	Challenge 06

	Challenge 07

	Challenge 08

	Challenge 09

	Challenge 10

	Challenge n

	Challenge 12

	Challenge 13

	Challenge 14

	Challenge 15

	Challenge 16

	Challenge 17

	Challenge 18

	Challenge 19

	Challenge 20

	Challenge 21

	Challenge 22

	Challenge 23

	Challenge 24

	Challenge 25

	Challenge 26

	Challenge 27

	Challenge 28

	Challenge 29

	Challenge 30

	Challenge 31

	Challenge 32

	Challenge 33

	Challenge 34

	Challenge 35

	Challenge 36

	Challenge 37

	Challenge 38

	Challenge 39

	Challenge 40

	Challenge 41

	Challenge 42

	Challenge 43

	Challenge 44

	Challenge 45

	Challenge 46

	Challenge 47

	Challenge 48

	Challenge 49

	Challenge 50

	Challenge 51

	Challenge 52

	Challenge 53

	Challenge 54

	Challenge 55

	Challenge 56

	Challenge 57

	Challenge 58

	Challenge 59

	Challenge 60

	Challenge 61

	Challenge 62

	Challenge 63

	Challenge 64

	Challenge 65

	Challenge 66

	Challenge 67

	Challenge 68

	Challenge 69

	Challenge 70

	Challenge 71

	Challenge 72

	Challenge 73

	Challenge 74

	Challenge 75

	Challenge 76

	Challenge 77

	Challenge 78

	Challenge 79

	Challenge 80

	Challenge 81

	Challenge 82

	Challenge 83

	Challenge 84

	Challenge 85

	Challenge 86

	Challenge 87

	Challenge 88

	Challenge 89

	Challenge 90

	Challenge 91

	Challenge 92

	Challenge 93

	Challenge 94

	Challenge 96

	Challenge 97

	Challenge 98

	Challenge 99

	Challenge 100

	Challenge 101

