
S P R I N G E R  B R I E F S  O N
C Y B E R  S E C U R I T Y  S Y S T E M S  A N D  N E T W O R K S

Shankar Karuppayah

Advanced 
Monitoring in  
P2P Botnets
A Dual Perspective



SpringerBriefs on Cyber Security Systems
and Networks

Editor-in-Chief

Yang Xiang, Digital Research and Innovation Capability, Swinburne University of
Technology, Hawthorn, Melbourne, VIC, Australia

Series editors

Liqun Chen, University of Surrey, Guildford, UK
Kim-Kwang Raymond Choo, University of Texas at San Antonio, San Antonio,
TX, USA
Sherman S. M. Chow, Department of Information Engineering, The Chinese
University of Hong Kong, Shatin, Hong Kong
Robert H. Deng, School of Information Systems, Singapore Management
University, Singapore, Singapore
Dieter Gollmann, Hamburg University of Technology, Hamburg, Germany
Javier Lopez, University of Málaga, Málaga, Spain
Kui Ren, University at Buffalo, Buffalo, NY, USA
Jianying Zhou, Singapore University of Technology and Design, Singapore,
Singapore



The series aims to develop and disseminate an understanding of innovations,
paradigms, techniques, and technologies in the contexts of cyber security systems
and networks related research and studies. It publishes thorough and cohesive
overviews of state-of-the-art topics in cyber security, as well as sophisticated
techniques, original research presentations and in-depth case studies in cyber
systems and networks. The series also provides a single point of coverage of
advanced and timely emerging topics as well as a forum for core concepts that may
not have reached a level of maturity to warrant a comprehensive textbook. It
addresses security, privacy, availability, and dependability issues for cyber systems
and networks, and welcomes emerging technologies, such as artificial intelligence,
cloud computing, cyber physical systems, and big data analytics related to cyber
security research. The mainly focuses on the following research topics:

Fundamentals and Theories

• Cryptography for cyber security
• Theories of cyber security
• Provable security

Cyber Systems and Networks

• Cyber systems security
• Network security
• Security services
• Social networks security and privacy
• Cyber attacks and defense
• Data-driven cyber security
• Trusted computing and systems

Applications and Others

• Hardware and device security
• Cyber application security
• Human and social aspects of cyber security

More information about this series at http://www.springer.com/series/15797

http://www.springer.com/series/15797


Shankar Karuppayah

Advanced Monitoring in P2P
Botnets
A Dual Perspective

123



Shankar Karuppayah
National Advanced IPv6 Centre (NAv6)
Universiti Sains Malaysia
USM, Penang
Malaysia

ISSN 2522-5561 ISSN 2522-557X (electronic)
SpringerBriefs on Cyber Security Systems and Networks
ISBN 978-981-10-9049-3 ISBN 978-981-10-9050-9 (eBook)
https://doi.org/10.1007/978-981-10-9050-9

Library of Congress Control Number: 2018940630

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Nature
2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
part of Springer Nature
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore



All Praise To God!



Foreword

Botnets—is it exaggerated to call them one of the most dangerous weapons of mass
destruction? They represent definitely the most low-cost one, and not general nor
soldier has to get his hands dirty using them: a little silent and unnoticed invasion in
your and my computer, smartphone, or smart TV, and whoops!—your hardware
has become part of a gigantic evil army. Maybe while you read this, your own
hardware is armed for a million- or billion-computer attack, helping to find entry
holes into critical servers, to turn the computers of even more people into slave
soldiers, to paralyze the entire infrastructure of an enterprise, or to confuse the
metro system of a big city. Today, most attacks still only target the IT infrastructure
of big service providers and enterprises, health systems, governments, etc., yet we
witness already increasingly dramatic effects: National elections become suspicious
due to successful attacks, ransoms are demanded after virtually disabling big health
infrastructures by blocking their administrative IT, huge financial losses are trig-
gered by paralyzing fully IT-dependent services like banks or online shops, and
government secrets are digitally spied by potential enemies.

Ironically, the ever-continuing digitization of our society is currently readying
even more crucial sectors of our life for those new weapons of mass destruction.
One aspect of this is critical infrastructures that will soon be fully dependent on
networked IT: For instance, the complex decentralized energy production and
storage that marks the smart grid evolution will hardly be controllable without
interconnected IT acting as the nervous system of this complex body. What is more,
the Internet of things and the ongoing fourth wave of the industrial revolution will
potentially bring forth a direct attack path for botnets to every facet of our economy,
even our very lives.

In light of these huge global threads, works like the present monograph written by
Shankar Karuppayah are desperately needed. Why? Because it is great time to form
much more forceful armies of defense against the huge evil botnet armies that threaten
us. Some of these armies shall be at the same scale as botnets, acting as globally
operating defense armies. Some of them will be small but with highly effective
stealthy special missions, capable of shutting down an evil army with a sneak attack.
Like the botnets themselves, these armies will mainly consist of hard- and software,
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and their success will depend on the capabilities of the brains that design and launch
them. As we need many more highly capable researchers and developers on the
defense side, we have to have accurate and detailed means of knowledge transfer that
put these brains in a state of superior skill and understanding effectively and efficiently.

As a first and crucial step toward this aim, the first part of Mr. Karuppayah’s
book provides general background knowledge, terminology, and insights into
related work in his first two introductory chapters. His third chapter delivers
extremely illustrative and enlightening insights into three very relevant sample
botnets. The following chapters four and five represent the very core of the effort
that this book represents: Here, Mr. Karuppayah treats the two crucial measures for
infiltrating the evil armies, as a prerequisite for any effective countermeasure. The
first approach is called crawling—it tries to elicit information by talking to botnet
nodes in their own jargon. With the second approach, called sensing, defenders
become integral parts of the attack armies, i.e., botnets. In both cases, Mr.
Karuppayah also takes on the hat of the dark side, trying to determine how the
attackers would react to his infiltration measures. Then, in turn, he takes the per-
spective of the defense army again, trying to retain an edge in the arms race. This
changing of perspectives is an indispensable quality of any brain working on botnet
defense, a quality that can best be learned by example, and Mr. Karuppayah’s
example is a model one to learn from.

In conclusion, one can consider the present book as small but extremely valuable
prerequisite for anyone who wants to defend our civilization on maybe the most
decisive and critical battlefields of our time a battlefield that is becoming the central
arena for war, espionage, terrorism, and crime alike. In short, one can truly call it a
timely book on one of the biggest evils of our time.

Darmstadt, Germany
March 2018

Prof. Dr. Max Mühlhäuser
Full Professor (Computer Science)

Head of Telecooperation Lab, TU Darmstadt
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Preface

Botnets are increasingly being held responsible for most of the cybercrimes that
occur nowadays. They are used to carry out malicious activities like banking cre-
dential theft and DDoS attacks to generate profit for their owner, the botmaster.
Recent botnets have been observed to prefer P2P-based architectures to overcome
some of the drawbacks of the earlier architectures.

The distributed nature of such botnets requires the defenders, i.e., researchers
and law enforcement agencies, to use specialized tools such as crawlers and sensor
nodes to monitor them. However, realizing this, botmasters have introduced various
countermeasures to impede botnet monitoring, e.g., automated blacklisting mech-
anisms. The presence of anti-monitoring mechanisms not only renders monitoring
data to be inaccurate or incomplete, but may also adversely affect the success rate of
botnet takedown attempts that rely upon such data. Most of the existing monitoring
mechanisms identified from the related works only attempt to tolerate
anti-monitoring mechanisms as much as possible, e.g., crawling bots with lower
frequency. However, this may also introduce noise into the gathered data, e.g., due
to the longer delay in crawling the botnet. This in turn may also deteriorate the
quality of the data.

This book addresses most of the major issues associated with monitoring in P2P
botnets as described above. Specifically, it analyzes the anti-monitoring mecha-
nisms of three existing P2P botnets—(1) GameOver Zeus, (2) Sality, and
(3) ZeroAccess—and proposes countermeasures to circumvent some of them. In
addition, this book also proposes several advanced anti-monitoring mechanisms
from the perspective of a botmaster to anticipate future advancement of the botnets.
This includes a set of lightweight crawler detection mechanisms as well as a set of
novel mechanisms to detect sensor nodes deployed in P2P botnets. To ensure that
the defenders do not loose this arms race, this book also includes countermeasures
to circumvent the proposed anti-monitoring mechanisms.

The works discussed in this book have been evaluated using either real-world
botnet datasets; i.e., those were gathered using crawlers and sensor nodes, or
simulated datasets. Evaluation results indicate that most of the anti-monitoring
mechanisms implemented by existing botnets can either be circumvented or
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tolerated to obtain better quality of monitoring data. However, many crawlers and
sensor nodes in existing botnets are found vulnerable to the anti-monitoring
mechanisms that are proposed from the perspective of a botmaster in this book.
Existing and future botnet monitoring mechanisms should apply the findings of this
book to obtain high-quality monitoring data and to remain stealthy from the bots or
the botmasters.

Penang, Malaysia Shankar Karuppayah
March 2018
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Chapter 1
Introduction

Banking fraud, spam campaigns, and denial-of-service attacks are types of cyber-
crimes that are profitable business. These attacks are often carried out using botnets,
a collection of vulnerable machines infected with malware that are controlled by
a botmaster via a Command-and-Control Server (C2). Traditional botnets utilize a
centralized architecture for the communication with the botmaster. However, if such
a (C2) is taken down, the botmaster cannot communicate with its bots anymore.
Recent Peer-to-Peer (P2P)-based botnets, e.g., GameOver Zeus [1], Sality [2], or
ZeroAccess [3], adopt a distributed architecture and establish a communication over-
lay between participating bots. Due to the lack of central entities, such botnets are
much more resilient to attacks than centralized botnets. In fact, all (counter-)attacks
against P2P-based botnets require detailed insights into the nature of these botnets,
in particular the botnet population and the connectivity structure among the bots [4].
As a consequence, monitoring such botnets is an important task for analysts.

Since botnets are valuable assets to the botmasters, they often attempt to impede
the performance of monitoring mechanisms. Although some of the existing and
proposed mechanisms are still in their infancy, it is just a matter of time before more
advanced countermeasures are introduced.

In the following, some essential background information that is useful to under-
stand the rest of the chapters is presented.

1.1 Botnet Architectures

A botnet consists of infected machines or bots that are controlled by a botmaster via
a Command-and-Control Server (C2). The C2 is used to disseminate new configura-
tions andupdates to the bots and also to upload stolen data from the infectedmachines,
e.g., credit card credentials or passwords.A botnet can be classified according to three
architectures as described in the following.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.,
part of Springer Nature 2018
S. Karuppayah, Advanced Monitoring in P2P Botnets, SpringerBriefs on Cyber
Security Systems and Networks, https://doi.org/10.1007/978-981-10-9050-9_1
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2 1 Introduction

Fig. 1.1 Comparison of botnet architectures

1.1.1 Centralized Botnets

Traditional botnets were observed to utilize centralized C2s. The C2s are often
deployed either on self-deployed Internet Relay Chat (IRC) servers or hacked web-
servers. The network topology of such botnets are depicted in Fig. 1.1a. Bots in
centralized botnets regularly poll the C2s for newer updates from botmasters and
apply them as soon as they are available. Although centralized C2s are easy to
deploy and have low communication latency, the architecture poses itself as a single
point of failure, e.g., botnet takedown attempts. The removal of the C2 server ren-
ders the entire botnet incapable of retrieving commands or contacting the botmaster.
Moreover, defenders can also easily enumerate all infected machines using only the
server’s communication logs.

1.1.2 Decentralized Botnets

The weakness of centralized botnets led to the next generation of botnets to adopt a
decentralized architecture where the simplicity and efficiency of a centralized archi-



1.1 Botnet Architectures 3

tecture is retained as much as possible but with improved resilience against bot-
net takedowns by adding redundant C2s as depicted in Fig. 1.1b. Botmasters were
observed to experiment with several strategies to implement the redundant C2 fea-
ture. Most commonly, the bots have several hard-coded C2 address that are contacted
sequentially if an existing C2 is not reachable.

More advanced strategies utilized the implementation of Domain Generation
Algorithm (DGA) or fast-fluxing mechanisms. A DGA is an algorithm that gen-
erates time-sensitive domain names of C2s using a common seed, e.g., date of the
day, across the different bots. This way, the botmaster is able to register many domain
names in advance that would be contacted by the bots in the future. Even if some
of the C2s are taken down, the botmaster is still able to re-establish communication
via future domain names. However, since the DGA is often hard-coded in the bot’s
binary, through reverse-engineering, one can identify future domain names that will
be used in the bots. Therefore, defenders are able to find out and register these domain
names to hijack the botnet from the botmasters [5].

Another variant of the redundancy strategy in C2s is implemented using Domain
Name System (DNS) fast-fluxing networks. In such networks, the IP addresses of
multiple C2s is cycled rapidly via the usage of DNS records for a domain name. In
contrast to DGA-basedmechanisms, if the botmasters are in control of the fluctuation
of the IPs, defenders are not able to predict which IP address will be used to point
bots to a C2 in the future. Moreover, an advanced variant of fast-fluxing is called
double fast-fluxing: it cycles a list of name servers which are utilized by the bots
to resolve the C2’s domain name. Such a design introduces an additional layer of
fluctuation to increase resiliency and to prevent botnet takedowns.

1.1.3 P2P Botnets

Recent botnets are observed to adopt a P2P-based architecture which eliminates
vulnerabilities that were present in the other architectures. Bots in P2P botnets are
interconnected via an overlay that consists of neighborhood relationships between a
bot and a subset of other bots as depicted in Fig. 1.1c. This overlay ismaintained using
a Membership Maintenance (MM) mechanism that is botnet-specific (cf. Sect. 3).
Like traditional P2P networks, P2P-based botnets also experience node churn, i.e.,
nodes joining and leaving the network at high frequency. To withstand churn, the
MM mechanism ensures that participating bots remain connected to the overlay by
ensuring that unresponsive bots, e.g., offline bots, are removed from theNeighborlist
(NL) of the bot and replaced by responsive ones.

In a P2P botnet, a botmaster can pick any bot within the botnet to inject commands
which are eventually disseminated to all bots, albeitwith a higher delay.Nevertheless,
the ability to inject commands to any bot in the network is advantageous not only
because it allows the botmaster to havemany entry points but it also cloaks the source
of the command to prevent any traceback attempts.



4 1 Introduction

AlthoughP2P botnets are very resilient, takedown attempts on P2P botnets are still
possible through sinkholing attacks that require a vulnerability within the botnet’s
design or communication protocols. However, such an attack requires enumeration
information of all bots in the botnet using monitoring mechanisms as presented in
the following section.

1.2 P2P Botnet Monitoring

The most common P2P botnet monitoring mechanisms are the honeypot, crawlers,
and sensors. Honeypots are special systems with the only purpose of being infected
by a malware so that subsequent communication of the honeypot can be logged for
analysis (cf. Sect. 2.3.1). Although honeypots are easy to deploy, they can only gather
limited information about the bots in a botnet.

In contrast, crawlers leverage the botnet’s communication protocol to iteratively
request neighbors of bots until all bots have been discovered (cf. Sect. 2.3.2). How-
ever, this monitoring mechanism requires a complete reverse engineering of the
botnet’s binary to understand and re-implement the botnet’s communication proto-
cols to send and receive valid botnet-messages. The major drawback of crawlers is
the inability to contact bots behind network devices that implement NetworkAddress
Translation (NAT) [6]; such bots which are not directly reachable from the Internet,
i.e., non-routable, represent the majority segment of a botnet’s population, i.e., up to
90% [4].

Sensors are deployed to address the drawbacks of crawlers (cf. Sect. 2.3.3). Sen-
sors are deployed using public IP addresses to enable all bots to contact them directly.
Since non-routable nodes in P2P networks remain connected to the botnet overlay
through nodes with public IP addresses, sensors will eventually be contacted by the
non-routable bots. Therefore, sensors aim to be responsive to all bots contacting them
to remain in the NL of bots as reliable neighbors, i.e., always online and responsive.
By responding to incoming request messages, sensors can enumerate both routable
and non-routable nodes based on their identities, e.g., IP address and/or botnet spe-
cific identifiers. However, a major drawback with sensors is that they often cannot
obtain the inter-connectivity among bots.

1.3 Outline

The remainder of this book is outlined as follows: Chap.2 presents the requirements
for any botnet monitoring mechanism and a formal model for P2P botnets. In addi-
tion, the chapter also discusses the state of the art in both botnet monitoring and
anti-monitoring mechanisms. Chapter3 presents the summary analysis of reverse
engineering of three major P2P botnets that are focused in this book.
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The major contributions of this book are presented in Chaps. 4 and 5. Chapter4
presents works that improve efficiency of existing crawlers as well as proposals that
botmasters could use in the future to impede crawler capabilities. Similarly, Chap.5
introduces novel sensor detection mechanisms to discern sensors from bots and also
proposals to circumvent them as well. Finally, Chap. 6 presents a summary of this
book and details the future work in the field of advanced P2P botnet monitoring.
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Chapter 2
Requirements and State of the Art

This present chapter provides a discussion on botnet monitoring as well as the com-
mon challenges. In more detail, Sect. 2.1 presents the requirements of a botnet moni-
toringmechanismwith an emphasis on P2P botnets. Then, Sect. 2.2 presents a formal
model on P2P botnets that is used throughout this book.

In Sect. 2.3, the related work in botnet monitoring is discussed. After that,
Sect. 2.4 discusses the challenges commonly faced in botnetmonitoring. In particular,
Sect. 2.4.1 introduces issues stemming from the dynamic nature of P2P networks.
Section2.4.2 elaborates on the pollution of monitoring results due to monitoring
activities of unknown third parties. In addition, Sect. 2.4.3 discusses the various anti-
monitoringmechanisms implemented in botnets and those proposed by related work.
Finally, a thorough discussion sums up the chapter in Sect. 2.5.

2.1 Requirements of a Botnet Monitoring Mechanism

In the following, the functional and non-functional requirements of a botnet moni-
toring mechanism are presented.

2.1.1 Functional Requirements

Any botnet monitoring mechanism has to conform to the following functional
requirements:

1. Genericity: To ensure adaptability across different botnets, a monitoring mech-
anism should be designed and developed in a generic manner. Hence, the
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monitoring mechanism should be easily adapted to any P2P botnets by only
implementing the necessary communication protocols.

2. Protocol Compliance: Monitoring mechanisms should comply with the proto-
cols of the botnet under scrutiny. Compliance is important asmost botnets respond
only to valid messages that strictly adhere to the protocols, e.g., encryption and
decryption routines.

3. Enumeration of Bots: Enumeration capability is an important aspect of a moni-
toring mechanism. Through enumeration, it is possible to estimate the population
size of the botnet. Bot enumeration is usually done by leveraging on the botnet-
specific request and replymessages. Every valid response or an unsolicited request
message from a bot indicates the presence of an active bot.

4. Neutrality: A monitoring mechanism should stay neutral during monitoring to
avoid introducing artificial noise that may taint the observed behavior of a botnet.
Specifically, a mechanism should avoid executing command from the botmaster
or disseminating them further to other bots.
Besides that, the mechanism should also avoid introducing noise that may disrupt
or hamper the normal activities of the bots. Disrupting the activity of the bots
will introduce bias or noise in the monitoring data and may lead to inaccurate
conclusion of the real nature of the botnet.

5. Logging: All information gathered from a monitoring mechanism should be
logged alongside the associated timestamps. The log should include additional
botnet-specific metadata such as the details of the latest command known to the
bot or its unique identifiers (if available).
The logged information is particularly useful to inform the relevant stakehold-
ers, i.e., Internet Service Providers (ISPs) and network administrators, about the
infections as well as to understand the botnet itself. For instance, the information
from a crawler can be used to reconstruct the botnet’s network topology from
the crawler’s point of view. This information can then be further analyzed using
graph analysis techniques to identify most influential bots in the botnet overlay.

2.1.2 Non-functional Requirements

The following non-functional requirements are directly related to the quality of a
botnet monitoring mechanism as well as its collected data.

1. Scalability: A monitoring mechanism may be defined as scalable when its per-
formance does not deteriorate with an increased number of bots in a botnet. In
existing and earlier botnets, the total population ranged anywhere between several
thousand to a few million bots. However, scalability of a monitoring mechanism
is not only about handling high volume of request and reply messages of bots in
a botnet, but also system resources regarding memory, bandwidth, computational
resources and storage space.
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2. Stealthiness: It is important to ensure that a mechanism is not identifiable dur-
ing monitoring. Since monitoring activities threaten the economy of the botnets
themselves, botmasters may retaliate against such monitoring mechanisms, e.g.,
DDoS attack. The retaliation attacks may cause disruption to an ongoingmonitor-
ing activity or renders the IP address completely unusable for further monitoring.

3. Efficiency: Efficiency is two-fold and can be observed as probing and resource
efficiency. For probing activities, efficiencymanifests on the ability ofminimizing
noise introduced in the resulting monitoring data, e.g., a delay in probing or
crawling bots may lead to bias in the resulting data [26].
The resource efficiency focuses on the ability to performmonitoringwithminimal
resources, e.g., minimum number of request messages. A crawler could omit
sending the (optional) probe messages and utilize the neighborlist request/reply
message instead to assert the responsiveness of a bot as well as to obtain the
neighbors of the bot.

4. Accuracy: Accuracy is two-fold and can be observed in enumeration and connec-
tivity accuracy. For bots enumeration, accuracymanifests in the ability to discover
all bots and identify those that are online or offline at a given point in time.
Besides bot enumeration, the (inter-)connectivity among the bots is also impor-
tant, e.g., for botnet takedown operations that involves strategically invalidating
the inter-connectivity among bots. Hence, the connectivity accuracy is the ability
to capture the exact botnet topology at a given point in time.
Monitoring activities of others may also introduce noise in the resulting mon-
itoring data. For instance, a sensor may yield very high uptime compared to
regular bots and consequently affect churn measurements that are relying upon
the uptime of bots. As such, monitoring activities should be identified and their
footprint should be removed from the monitoring data.

5. MinimalOverhead/Noise: Amonitoringmechanism should ensure that its activ-
ities or footprints do not affect the botnet by significantly alter the nature or behav-
ior for both the botnet itself and other monitoring parties. Although it is evident
that existing monitoring activities will introduce noise, it is crucial to ensure that
necessary steps to reduce the noise are taken.

2.2 Formal Model for P2P Botnets

This section introduces a formal model for P2P botnets that will be useful to under-
stand the various work presented in Chaps. 3–5.

A P2P botnet can bemodeled by a directed graphG = (V, E), which is a common
practice [5, 6, 21], where V is the set of bots in the botnet and E is the set of
edges or inter-connectivity between the bots, i.e., the neighborhood relationship.
Bots V in a botnet can be further classified into two different categories of bots, i.e.,
V = Vs ∪ Vn , : superpeers Vs are bots that are directly routable and non-superpeers
Vn for those that are not directly routable, e.g., behind stateful firewalls, proxies, and
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network devices that use NAT. Please note that in the remainder of this book, the
terms bot, peer, and node are used synonymously.

All bots use a MM mechanism (cf. Sect. 1.1.3) that establishes and maintains
neighborhood relationships, i.e., a neighborlist, to ensure a connected botnet over-
lay. Hence, bots have connections to a subset of other bots, i.e., neighbors, in
the overlay. These connections or edges E ⊆ V × V , are represented as a set of
directed edges (u, v) with u, v ∈ V . The neighborlist NL of a bot v ∈ V is defined
as NLv = {u ∈ V |∀u ∈ V : (v, u) ∈ E}. Hence, the outdegree of a bot v can be
defined as the number of outgoing edges or neighbors maintained by the bot:
deg+(v) = |NLv|. Themaximumoutdegree is governed by the global botnet-specific
value of maximum entries NLMAX that can be stored at any given point in time, i.e.,
|NLv| ≤ NLMAX ≤ |V |. Moreover, the popularity or indegree of a bot v in the botnet
can be measured based on the number of bots that have v as an entry in their NLs:
deg−(v) = |(u, v) ∈ E |.

Bots in a P2P botnet use a MM mechanism to maintain their NLs regularly
following a botnet-specific interval that is often referred to as MM-cycle. In each
cycle, a bot probes for the responsiveness of all of its neighbors by sending a probe
message to each of them. The responsiveness of neighbors can be verified based on
a valid response to the sent messages. In this formal model, this probe message is
referred to as the probeMsg.

If the bot has low amount of neighbors or many neighbors are not responsive,
additional neighbors can be requested to fill up the NL . For this purpose, a peer v
can request its neighbor u to select a subset of u’s neighbors L ⊆ NLu and share
them with v via a neighborlist request method that is referred to as the requestL in
this model. The decision on which exact entries are picked in the returned response
message L depends on the neighbor selection criteria employed by the botnet.

Bots (re)joining the overlay often announce their existence to a subset of existing
superpeers using a message that is referred to as announceMsg in this proposed
model. The information of these superpeers can originate from a hard-coded list
within the malware binary for new bots or from previous bot communications for
bots rejoining the overlay. Superpeers receiving such a message will check if the
new bot is a potential superpeer by sending a message to the port that is used by
the sender for receiving incoming requests. The information about which port to
check is often transmitted along with the initial message to the superpeer. A valid
response to the message indicates the new bot is a potential superpeer candidate
as well. Therefore, the information of the new superpeer can be stored within the
existing superpeer’s NL and further propagated when being requested by other bots
in need of new neighbors.

Non-superpeers would fail to receive the probe messages sent by the superpeers
due to the presence of NAT-like devices that drop unsolicited messages, i.e., mes-
sages initiated remotely. Such bots are often not included in the neighborlists of the
superpeers. These bots only rely upon existing superpeers to relay any update to or
from the botmaster.
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2.3 Related Work on Botnet Monitoring

The open nature of P2P botnets allows anyone with knowledge of the botnet com-
munication protocols to participate and communicate with bots in the network (cf.
Sect. 1.2). This openness is often exploited to monitor P2P botnets by disguising as
another bot. P2P botnet monitoring is often done with the aim of identifying and
enumerating all infected machines. Besides using the monitoring data to perform
cleanup activities, the data can also provide valuable information in understanding
P2P botnets.

Monitoring also allows understanding the modus-operandi of the botnets them-
selves. For instance, by analyzing the commands that are regularly issued in the
botnet, it may be possible to identify the operators. Monitoring data is also useful
and important in the event of a botnet takedown attempt to ensure a higher success
rate [21].

In the following, the state of the art of three common botnet monitoring mech-
anisms: honeypots, crawlers, and sensor nodes, are presented with respect to the
requirements presented in Sect. 2.1.

2.3.1 Honeypots

Honeypots or honeynets are machines or a network of machines designed to appear
as lucrative targets in the eyes of malware and attackers. Such machines or networks
aim at being infected to monitor any subsequent malicious activities [23]. Using
honeypots is easy and straightforward as no prior knowledge of the malware or its
communication protocol is required to conduct monitoring.

A malware-infected honeypot would contact its C2, e.g., IRC, to communicate
with the botmaster. By monitoring the network traffic generated by the honeypot,
it is possible to identify the C2, e.g., IRC server, that is being used. Moreover, the
information about other infected machines that are contacting the C2 can also be
obtained by inspecting the C2 communication logs [19].

The main disadvantage of honeypots is that they have minimal control over the
actions that are taken by the bots within the honeypot environment, e.g., participating
in an ongoing attack. In [19], the author reported his efforts to rate-limit the generated
network traffic and manual blocking of certain ports to minimize the damage that
may be done by the malware. These efforts are taken mainly because it may be
illegal if a user knowingly volunteers to be part of the botnet activities or participate
in an ongoing attack. Besides that, if the traffic generated by the infected honeypot
is encrypted, only communication metadata can be obtained.

The limitations associated with honeypots have led to the development of more
advancedmonitoringmechanisms like crawlers and sensor nodes. Thesemechanisms
allows more control over monitoring activities like selectively refuse to respond
or forward certain messages, e.g., new botmaster commands. Furthermore, these
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mechanisms can communicate with bots and increase their monitoring coverage
appropriately. Therefore, in the remainder part of this book, the focus is only on the
usage of these two advanced mechanisms in the context of monitoring P2P botnets.

2.3.2 Crawlers

Due to the self-organizing nature of P2P botnets, bots can request additional neigh-
bors when the number of responsive neighbors in their NL is low. This observation
is exploited by the crawler, which is a computer program that mimics the behav-
ior of a bot that is low on neighbors and request additional neighbors. Since bots
only respond to communication messages that conforms to their protocol, a crawler
needs to implement parts of the botnet protocol for sending valid requestL request
messages and parsing the replies accordingly (Functional Requirement 2 and 4).

Starting with a list of seed nodes, i.e., superpeers, that is retrieved by reverse
engineering the malware binary, a crawler requests the neighbors of this node and
iteratively sends requestL to all newly discovered bots to obtain their respective NL
as depicted in Fig. 2.1. The goal of crawling is to obtain an accurate snapshot of the
botnet by identifying all infected bots as well as the inter-connectivity among them.
Each snapshot is a directed graph that contains information of all discovered bots
along with their neighborhood relationships as described in the formal model (cf.
Sect. 2.2). A visualization of such a snapshot is presented in Fig. 2.2.

Fig. 2.1 A crawler requesting the neighborlist of bot BA
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Fig. 2.2 GameOver Zeus
network connectivity graph
among 23,196 nodes
reconstructed via crawling.
The blue dots indicate the
nodes (systems infected with
GameOver ZeuS) and the
green lines indicate the edges
between nodes (Source: Dell
SecureWorks.)

Requesting NL of all bots can be implemented using graph traversal techniques
such as Depth-First Search (DFS) or Breadth-First Search (BFS). These techniques
can be implemented within the crawlers by using either a stack or a queue-based
implementation as the node selection strategy. Finally, the information ofwho knows
whom can be stored for further analysis (Functional Requirement 5). Take note that it
is important for a crawler to request the NL of bots in quick successions to reduce the
network bias, e.g., address aliasing, churn effects introduced in the resulting snapshot
[15, 27] (cf. Sect. 2.4.1). Accurate snapshots are important to conduct an effective
botnet take-down attempt or to analyze the resilience of the botnet against attacks
(Non-Functional Requirement 3 and 4).

However, crawling often fails to enumerate all bots in the botnet. Depending on
the MM mechanism of the some botnets, crawlers can only contact the superpeers,
i.e., bots that are directly reachable. Bots that are behind network and security devices
such as NAT, proxies, and firewalls, i.e., non-superpeers, are not directly reachable
by crawlers, but make up the majority of the entire botnet population (according to
[21] 60–90% ). As such, in our example in Fig. 2.1, the crawler would not be able to
discover nor communicate with bot BF .

One of the first P2P botnets that have caught the attention of the public and media
was Storm [11]. This botnet initially coexisted together with theOVERNET P2P file
sharing network, and eventually moved on to a bot-only network which is referred to
as Stormnet. From then on, many researchers attempted to monitor Storm and pre-
sented their analysis [8, 11, 14, 27]. The results presented by the researchers were
interesting due to discrepancies stemming from differing approaches and assump-
tions in monitoring the botnet [21, 31].
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Since Storm initially coexisted with OVERNET, one of the main challenges was
to distinguish bots from clients of OVERNET. Wang et al. presented a method-
ology to identify bots based on the observation that the DHT IDs of the Storm
bots are not persistent over reboots and, therefore, change frequently compared to
benign users [27].

One of the earliest work on monitoring Storm was performed by Holz et al. using
a BFS-based crawler called StormCrawler [11]. This crawler iteratively queries each
bot starting from a seedlist and sends 16 route requestmessages consisting of
carefully selected DHT IDs, i.e., evenly spaced around the DHT space, to increase
the chances of retrieving undiscovered peers. Due to the open nature of P2P botnets,
many researchers started activelymonitoring Storm and experimentedwith it. Kanich
et al. reported the presence of many unknown third parties that monitor the botnet
in parallel by using a built-in heuristic on their Stormdrain crawler to identify non-
bots. This heuristic is based on a design flaw of the OVERNET ID generator within
the binary that is capable of only generating a small range of IDs [14]. However,
the authors admitted that they were not able to identify researchers that could have
chosen IDs that fall within the range that is used by bots in Storm.

Most crawlers on Storm have been reported to conduct crawling by randomly
searching for IDs around the DHT space in the hope of eventually discovering all
participating bots. However, as reported by Salah and Strufe [22], a more accurate
snapshot can be obtained using their KAD Crawler that crawls the entire KAD
network in a distributed manner by leveraging the design of KAD itself, which
is similar to the design adopted by OVERNET. Their distributed crawling is not
dependent on online nodes, unlike existing Storm crawlers, instead splits the KAD
ID space into multiple zones and assigning crawlers to dedicated zone to retrieve the
routing tables of all nodes within each zone. The results from the different zones can
then be aggregated as the snapshot of the botnet.

Other P2P botnets have also attracted the attention of researchers in monitoring
them. For instance, Dittrich and Dietrich deployed a DFS-based crawler to crawl
Nugache [7]. Their crawler conducts pre-crawls and utilizes that information as
an input for their priority-queue based implementation that prioritizes nodes which
have been observed more often available and responsive in the pre-crawls. More
recently, Rossow et al. presented their analysis on the resiliency of P2P botnets,
namelyGameOver Zeus, ZeroAccess, and Sality, using their BFS-based crawler that
starts crawling froma seednode and appends newly discovered nodes frompreviously
crawled bots at the end of the queue. In 2014,Yan et al. introduced SPTracker to crawl
the three botnets mentioned above [31, 32]. In contrast to conventional crawling,
SPTracker includes node injection (cf. Sect. 2.3.3) as a complementary mechanism
to obtain better crawl results.

From the domain of unstructured P2P file sharing network, Stutzbach et al. pre-
sented Cruiser to crawl Gnutella [26]. This crawler prioritizes ultrapeers from the
two-tier design of the Gnutella network and can quickly capture an accurate repre-
sentation of the P2P network. The authors also report of an observed connectivity
bias among peers which are most likely connected to peers with higher uptime.
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Similar observations in unstructured P2P botnets have also been reported by other
researchers [21, 32].

Although most of the proposed botnet crawlers meet all functional requirements
presented in Sect. 2.1.1, not much focus have been given on the non-functional
requirements such as stealthiness, accuracy and the amount of noise being intro-
duced within the footprint of the botnet (cf. Table 2.2). These unmet requirements
will become more apparent upon discussing the challenges encountered in monitor-
ing P2P botnets in Sect. 2.4 where the challenges affect the accuracy of the crawl
data (cf. Non-Functional Requirement 4).

2.3.3 Sensor Nodes

Due to the presence of network devices that allow sharing of IP addresses across
many machines, e.g., NAT, botmasters also experience the same problem of regular
P2P networks which often have two distinct classes of devices: superpeers and non-
superpeers. As peers behind NAT are not directly reachable, botnets follow a two-tier
network structure to enable all bots participating in the overlay management remain
connected among themselves. The non-superpeers rely upon the superpeers to remain
connected to the botnet and to receive new updates or commands from the botmaster.
Commands from the botmaster is then retrieved by polling the superpeers for newer
updates. The superpeers can relay any information from the botmasters to requesting
bots, and therefore circumventing the NAT traversal issues.

Fortunately, this two-tiered network design can be exploited in monitoring bot-
nets. Kang et al. were the first to propose a mechanism called sensors to enumerate
structured P2P botnets [13], e.g., Storm. The sensors are directly routable and are
deployed using strategic DHT IDs intended to intercept route requests of other bots.
Since the requests were initiated by the bots themselves, the sensors can identify the
non-superpeers based on the intercepted request messages. In contrast to crawling,
sensors can enumerate both superpeers and non-superpeers (cf. Sect. 2.3.2). This
idea has also been extended and applied for monitoring other unstructured P2P bot-
nets [21].

By exploiting the node announcement mechanism that is required in each P2P
botnet, a sensor node can be announced to existing superpeer bots (cf. Sect. 2.2) using
the announceMsgmethod.When a non-superpeer requests additional neighbors from
a superpeer, information about the sensor node may also eventually be handed out.
Hence, non-superpeers will include the sensor into their NL and thereafter will
regularly probe the sensor for its responsiveness. Therefore, sensors can enumerate
bots that are not directly routable or discovered via crawling. An example of the
depiction is provided in Fig. 2.3.

As explained in Sect. 1.1.3, entries in an NL are only removed or replaced if
the associated bot has (consistently) remained unresponsive when being probed. To
avoid being removed from the NL of the bots, sensors must always be responsive
when being probed by bots. The high availability of a sensor also directly influences
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Fig. 2.3 A sensor enumerating both superpeers and non-superpeers

its popularity [15], i.e., the number of bots that have the sensor in their NL . The
longer a sensor remains responsive, the higher the probability of bots propagating
the sensor’s information to other bots which in turn improves the coverage of the
sensor.

A variation of a sensor node is often used in sinkholing attacks on P2P botnets.
However, such attacks requires a vulnerability within the botnet protocol that is
exploitable to overwrite information in a bot’sNL.By invalidating all entries of a bot’s
NL , except those of the sensor(s), bots can only communicate to the sensor. As such,
all communication from the botmaster can be filtered and thus the communication
between the botmaster and its bots is disrupted.

Although sensors can enumerate bots that are not discoverable by crawlers, unfor-
tunately, they cannot retrieve the connectivity information among bots. It is not pos-
sible to actively request the NL of the non-superpeers, except in cases where a
botnet’s design allows UDP hole-punching techniques [21]. Even though crawlers
and sensors have their own set of advantages and disadvantages, they often used
to complement each other to obtain better monitoring results. For instance, some
researchers have augmented their sensors with crawling capabilities for monitoring
[31, 32]. The following section looks at the challenges associated with monitoring
activities.
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2.4 Challenges in Botnet Monitoring

Botnet monitoring can be conducted easily by anyone with sufficient knowledge of
the botnet’s protocol. However, some challenges need to be considered while moni-
toring to ensure the reliability and the quality of the collected data. These challenges,
if not addressed, can result in distorted or incomplete monitoring data that lead to
wrong interpretations. (Non-Functional Requirement 3–5.)

These challenges are detailed in the following section and are mainly caused by
the dynamic nature of P2P (bot-)networks itself (Sect. 2.4.1), noise resulting from
monitoring activities by unknown third parties (Sect. 2.4.2), and anti-monitoring
countermeasures that were deployed by the botnets (Sect. 2.4.3).

2.4.1 The Dynamic Nature of P2P Botnets

The dynamic nature of the P2P botnet overlay, which is similar to a regular P2P
file-sharing networks, poses several challenges to monitoring mechanisms. These
challenges are discussed in detail in the following:

1. Churn and Diurnal Effects: A botnet overlay experiences high churn rate of
nodes joining and leaving the network at high frequency [26]. Therefore, crawlers
that crawl bots with either a lower frequency or taking longer to complete a full
crawl may introduce a significant network bias, i.e., in considering bots to be
online that have already went offline, within the produced snapshot. In addition,
newly arrived peers might also be missed by the crawler [26].
Bots within the overlay also experience diurnal effects where significant portions
of bots go offline and come online based on geographical timezones [26], e.g.,
computers that are turned on/off during or after working hours. This observation
also suggests that any short-term measurement of a botnet, i.e., less than a week,
would be heavily influenced by such diurnal effects.

2. IPAddress Aliasing: Primarily contributed due to the shortage of IPv4 addresses
and security concerns, IP address aliasing frequently occurs in P2P botnets. ISPs
and organizations use devices such as NAT and proxies to share their network’s
limited number of available IP addresses. However, the network traffic generated
by several machines behind such a device would seem to originate from only a
single IP address. Thus, measurements that rely upon IP addresses alone may
underestimate the total number of infected machines.
Moreover, ISPs or organizations that run a DHCP service for a dynamic allo-
cation of IP addresses for their users may also affect ongoing measurements.
For instance, traffic originating from an infected machine will be observed from
several IP addresses due to different addresses (re)allocated to existing bots by
the DHCP servers, e.g., after reboots or the expiry of a lease period. IP address
aliasing can also occur due to the presence of load-balancing infrastructures that
may be used by the network administrators. These aliasing issues may lead to
over-estimation of the number of infected machines.
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Table 2.1 UIDs of existing
P2P botnets that are
retrievable from crawling [21]

Botnet UID

Kelihos V1 16 bytes

Kelihos V2 16 bytes

Kelihos V3 16 bytes

Miner None

Nugache (Not shared)

Sality V3 4 bytes (non-persistent)

Sality V4 4 bytes (non-persistent)

Storm 16 bytes

Waledac 20 bytes

ZeroAccess V1 (not shared)

ZeroAccess V2 4 bytes (not shared)

GameOver Zeus 20 bytes

One way to overcome the IP address aliasing issue is to use persistent and unique
botnet-specific identifiers (UID), if applicable, to enumerate and associate the
infections accurately [21]. As depicted in Table 2.1, although many botnets use
some kind of UIDs, not all of them can be used to uniquely distinguish the bots.
For instance, the UID of Sality is not reboot-persistent and hence unreliable to be
used to distinguish unique bots. Moreover in some extreme cases like the Miner
botnet, there is no UID at all, hence rendering attempts to obtain a more accurate
estimation of the botnet population difficult or impossible. Therefore, unique bots
should be at least distinguished using the combination of the IP address and port
number in the absence of a reliable UID.

2.4.2 Noise from Unknown Third Party Monitoring Activities

To handle the dynamic nature of P2P networks, mediation steps can be designed to
obtain a more accurate measurements. However, the second challenging aspect of
botnet monitoring is the presence of unknown third party monitoring activities. As
explained in Sect. 2.3, botnet monitoring activities generate a considerable amount
of noise that is imprinted into the botnet’s footprint. When third parties are unknown,
footprints of their monitoring activities will, unfortunately, be attributed as belonging
to the bots [14]. For instance, consider the scenario if you are interested in conducting
a churn measurement in a particular botnet. As discussed in Sect. 2.3.3, sensors that
are deployed, aim to be highly responsive for a prolonged period to ensure high
popularity. However, the presence of sensor nodes with longer session lengths may
skew the churn measurements as most bots have significantly shorter session lengths
[10]. Hence, any derived churn model may not be representative of the real churn in
the botnet.
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Kanich et al. monitored the Storm botnet and took the active pollution into account
by leveraging upon a flaw within the botnet’s ID generator [14] (cf. Sect. 2.3.2). The
authors classified the different type of sensors that were deployed based on their
responses to sent request messages [8]. Besides that, they also described how they
had to stop relying on the nature of the botnet’s participants and carefully handle
all received request and response messages. Their crawler often crashed within the
first few minutes of crawling the network due to the presence of many malformed
packets and the ongoing pollution attack within the botnet which uses bogon source
IP addresses. Therefore, they had to put in much engineering effort, to enable their
crawler to be fault-tolerant and continue crawling successfully. However, they also
warned about future monitoring mechanisms which may become more stealthy and
indistinguishable from bots. As a consequence, stealthymonitoringmechanisms will
directly influence the botnet’s footprint and further taint any gathered monitoring
results.

2.4.3 Anti-monitoring Mechanisms

The third challenge in monitoring P2P botnets is the most interesting aspect of them
all: anti-monitoring mechanisms deployed by botmasters. Botnets are an important
asset to their botmasters. Consequently, their malicious activities also attract the
attention of researchers and law enforcement agencies.

In the past, botnet monitoring activities have resulted in several botnets to be suc-
cessfully taken down [20, 21]. For these reasons, botmasters are aware of the moni-
toring activities and have equipped recent botnets with anti-monitoring mechanisms.
Moreover, many additional countermeasures have been proposed in the academia
to impede crawling and deployment of sensor nodes. However, to the best of our
knowledge, none of these proposals have yet been seen to be adopted by existing
botnets.

Anti-monitoring mechanisms can be classified into the follow categories: (1)
Prevention, (2) Detection and (3) Response. The first category of anti-monitoring
mechanisms aim to impede or prevent monitoring activities. The second category
focuses on detecting ongoing monitoring activities and the last category addresses
on actions towards detected monitoring activities.

2.4.3.1 Prevention

Anti-monitoring mechanisms in this category, which are commonly implemented in
many of recent botnets, aim to impede monitoring activities by design. Nevertheless,
a majority of them are focused only on impeding performance of crawlers. In the
following, mechanisms targeting crawlers will first be discussed, and followed by
those targeting sensors.
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A majority of anti-monitoring mechanisms against crawlers are focused on the
neighborlist return mechanism of the botnets (cf. Sect. 1.1.3) as detailed in the fol-
lowing:

1. Restrictedneighborlist replies:ManyP2Pbotnets restrict the size of the returned
NL when being requested, by handing out only a small fraction of their overall
neighbors. In addition, botnets also utilize custom neighbor selection strategy to
decide which neighbors are to be picked and returned when being requested. For
instance, bots in Sality returns only one random (but active) neighbor [9] and
ZeroAccess [29] return the 16 most-recently probed neighbors when requested.
Meanwhile, botnets such as the GameOver Zeus [1, 4] implement a mechanism
that returns only ten neighbors that are “close” to a botnet-specific ID specified
within the requestL message and the ID of a bot’s neighbors. This restriction
mechanism utilizes the Kademlia-like XOR-distance metric [18] to calculate the
notion of closeness between two bots. However, despite the presence of such
restriction mechanisms, crawling is still possible. In Sality and ZeroAccess, a
crawler needs to send requestLmessages continuously to all discovered bots until
the results converge, i.e., no newly discovered bots [17, 31, 32]. Similarly for the
GameOver Zeus, a crawler needs to repeatedly query bots for their neighbor lists
by spoofing different IDs chosen randomly as reported by Rossow et al. [21].
Nevertheless, the restriction mechanisms of these botnets implies that crawlers
can only achieve a limited accuracy and are not able to provably retrieve or
discover the complete neighborlist of a bot. Hence, the accuracy of the obtained
monitoring data may be low or poor.

2. Ratbot: A theoretical and DHT-based structured P2P botnet called RatBot was
proposed by Yan et al. that returns spoofed non-existing IP addresses when
requested to hinder attempts to enumerate the botnet [30]. This mechanismmakes
the crawling process difficult and inefficient due to additional nodes that do not
respond. Ratbot can also lead to an overestimation of the botnet size, which
may be a preferred feature for botmasters, e.g., publicity among potential clients.
Although crawlers may still work within RatBot, the introduction of excessive
noise to the monitoring data may adversely affect botnet takedown attempts.

3. Overbot: Starnberger et al. [24] proposed a botnet calledOverbot, which does not
disclose the information of other bots or the botmaster if compromised by security
researchers. The idea of Overbot is to let the infectedmachines to communicate to
the botmaster usingDHTkeys that are generated by encrypting a sequence number
with the public key of the botmaster. Bots utilize theDHT spacewithin an existing
P2P file sharing network like Overnet to publish intentions to communicate with
the botmaster. By deploying several sensor nodes that listen for and decrypt search
requests, a botmaster can identify bot-originated requests and communicate to the
infected machines individually. However, since the sensors are assumed to have
a copy of the botmasters private key, they pose themselves as a single point of
failure if any sensor is compromised. Moreover, since bots continuously search
for keys, such a pattern and noise can easily raise suspicions.
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4. Rambot: Focusing on unstructured P2P botnets, Hund et al. proposed Rambot
which uses a credit-point system to build bilateral trust amongst bots and use
it as a proof-of-work scheme to protect against exploitation of its neighborlist
exchange mechanism [12]. All nodes including crawlers are required to complete
some computationally intensive tasks like crypto-puzzles before neighborlists
are returned. However, with the advancement of computing resources that are
available today, this proof-of-work mechanism can be easily circumvented.

5. Manual neighborlist update: Wang et al. in [28] proposed to allow botmasters
to manually update the neighborlist of all bots from time to time. However, the
design of the botnet requires frequent interactions from botmasters to instruct
bots to report to a specific node with the information of their respective neigh-
borlists and IDs. The authors also provided several suggestions to overcome the
problem of this proposal posing itself as a single point of failure. Nevertheless,
the design of the proposed botnet requires the botmaster to actively participate
in the management of the botnet. This design not only increases the risk of the
botmaster being exposed but also do not scale.

Very few work is available on anti-monitoring mechanisms against sensors.
Andriesse et al. reported that is often difficult to identify sensors compared to crawlers
that are in nature more aggressive in monitoring [2]. The authors also mentioned that
due to the passive characteristics of sensor nodes and the difficulty in distinguish-
ing them from bots, sensors often remain undetected. However, aggressive sensor
popularization strategies such as Popularity Boosting [32] can be easily detected by
mechanisms to detect crawlers (cf. Sect. 2.4.3.2).

It is worth mentioning that there are mechanisms deployed in existing botnets
that are presumably aimed at preventing potential sinkholing attacks. These attacks
often require the complete neighborlists of existing bots to be invalidated or filled
up with only sinkhole servers. Since the sinkhole servers are a variation of sensors,
those mechanisms aimed at preventing such attacks are listed in the following.

1. IP-based filtering: Most botnets, including Sality and ZeroAccess, have IP
address filtering mechanisms that prevent multiple sensors sharing a single IP
to infiltrate a botnet. Therefore, this mechanism prevents an organization or per-
son with a single IP address from carrying out sinkholing attacks on the botnet.
GameOver Zeus implements a more strict filtering mechanism that enforces that
there is only a single entry allowed for a /20 subnet [1].

2. Local reputation mechanism: Bots in Sality use a local reputation mechanism
that tracks the behavior of their neighbors based on the valid replies received
when being probed (cf. Sect. 3.2.2). This mechanism slows down the rate of
deployment of sensor nodes throughout the botnet as bots in Sality prefer existing
and responsive neighbors over new bots.

3. High-frequency swappingofneighborlist entries: ZeroAccess uses a very small
MM-cycle interval (cf. Sect. 3.3.2) to ensure that all neighbors are probed and
cycled at a high rate. As a consequence, on the one hand, a sensor node loses its
popularity unless it continuously announces itself to bots in ZeroAccess [32]. On
the other, sensor that continuously announce itself would incur a high overhead
in terms of the amount of communication messages.
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2.4.3.2 Detection

Anti-monitoring mechanisms make it more difficult to monitor botnets. However,
since this field is an arms race between the researchers and botmasters, it is only a
matter of time before workarounds to circumvent or tolerate such mechanisms are
available [16]. Hence, it is important that a detection mechanism is also in place to
detect monitoring activities.

In the following, detection mechanisms for crawlers are presented:

1. Rate-limitation of requesting neighborlists: GameOver Zeus introduced a sim-
ple rate-limitation mechanism to detect crawling activities [1]. For that, a bot
keeps track of the number of messages from each observed IP address within
a sliding window of 60 s. If any IP address contacts a bot more than six times
within an observation period, the IP is flagged as a crawler and remediation actions
like blacklisting (cf. Sect. 2.4.3.3) are immediately taken. It is believed that the
threshold value is set high enough, i.e., >6, to take into account possible false
positives due to multiple bots sharing the same IPs, i.e., effects of NAT. Crawling
is still possible although it requires more effort and delays between successive
crawls for the same node. However, significant network noise and bias is intro-
duced in the resulting botnet snapshot as more time is required for obtaining it.
To circumvent this detection mechanism, a distributed crawling from a pool of
unique IP addresses is required. The available IP addresses can be rotated among
the crawlers to allow parallel crawling of bots without triggering the detection
mechanism.

2. Collaborative detection mechanism: Andriesse et al. proposed a crawler detec-
tion mechanism that detects protocol anomalies resulting from improper protocol
(re)implementations [2]. However, this can be easily evaded by strictly following
the protocol. In addition, the authors also proposed a crawler detection approach
that uses multiple colluding sensors to detect a crawler. This approach correlates
the number of sensor nodes being contacted by a node and classifies one as crawler
if the number of contacted sensors exceeds a certain threshold, e.g., maximum
neighborlist size. The authors evaluated this mechanism with a deployment of up
to 256 sensors in GameOver Zeus and Sality. Hence, this detection mechanism
can also be easily implemented by botmasters on a large scale to detect crawlers.

Andriesse et al. reported that sensors are a more stealthy monitoring mechanism
than crawlers due to their indistinguishableness frombots [2].Althoughmany sensors
are observed to be highly popular, i.e., known by many bots [3], this behavior is
indistinguishable from popular bots. Not much work has been done in the scope
of detecting sensors that are deployed in botnets. In contrast, as one of the major
contribution of this book, Sect. 5 will introduce three mechanisms to detect sensor
nodes.
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2.4.3.3 Response

After the detection of an ongoing monitoring activity, a response can be initiated.
There are several possible actions to be implemented:

1. Static blacklisting: Many botnets are shipped with a list of IP addresses of orga-
nizations known to monitor botnets. Based on this list, bots can refuse to com-
municate to requests originating from those addresses.

2. Automated blacklisting: GameOver Zeus deploys an additional variation of
blacklisting mechanism. It does not only rely upon the botmaster to update the list
of blacklisted IPs. The botnet uses a rate-limiting mechanism (cf. Sect. 2.4.3.2)
to identify crawling activities and subsequently blacklist them automatically [1].
Take note that the blacklisted entries are locally maintained and is not propagated
to other bots.

3. DDoS attack: A more aggressive response is DDoS attacks on the IP or network
of themonitoring node. This has been observed with the botmasters of GameOver
Zeus who retaliated to the sinkholing attempts of their botnet [4]. Similar obser-
vations also been reported by researchers on the Storm botnet [25].

2.5 Summary

This chapter introduced requirements to botnet monitoring and presented a for-
mal model for botnets that is used in this book, i.e., Chaps. 3–5. In addition, this
chapter thoroughly analyzed the state of the art in botnet monitoring mechanisms
(cf. Sect. 2.3); namely honeypots, crawlers, and sensors. From the analysis, it can
be concluded that although honeypots can be quickly deployed, their monitoring
coverage are limited compared to the other mechanisms. In particular, crawlers can
enumerate and capture the inter-connectivity of many bots but with a drawback of
missing out a fraction of bots, i.e., those behind NAT. Meanwhile, sensors are more
effective in enumerating bots but often fail in capturing the inter-connectivity infor-
mation. Hence, for best results, both crawlers and sensors should be deployed by
complementing each other.

However, many of the previously discussed monitoring mechanisms were found
to be not compliant with most of the non-functional requirements proposed in
Sect. 2.1.2. Table 2.2 provides a summary of the existing monitoring mechanisms
with respect to the compliance of the proposed requirements (cf. Sects. 2.1.1 and
2.1.2).

This chapter has also presented a thorough discussion in Sect. 2.4 on the three
major challenges that need to be considered in botnet monitoring. These challenges,
if left unaddressed, could impede the effectiveness of a monitoring mechanism. This
would also not comply to the non-functional requirements proposed in Sect. 2.1.2.

Firstly, the dynamic nature of P2P botnets introduces significant amount of
noise which may skew measurement results due to the presence of churn, diur-
nal effects, and IP address aliasing issues. State of the art reported that the usage of
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high-frequency crawling in combination with a long-term crawling can minimize
bias introduced by churn and diurnal effects in P2P botnets. In addition, bias from
IP address aliasing can be further reduced (or eliminated) using UIDs of botnets; if
the UIDs are persistent and unique.

Secondly, the noise introduced by unknown third party monitoring activities (cf.
Sect. 2.4.2) could also distort the resulting monitoring data. This particular chal-
lenge has seen very little attention from the research community in the context of
P2P botnets. Analysis of the state of the art indicated that most of the existing bot-
net monitoring mechanisms were implemented only on a best-effort basis, and, as
such, may have had their measurements tainted by noise originating from unknown
monitoring activities, e.g., abnormally high uptime of sensor nodes.

Thirdly, anti-monitoring mechanisms which impede the performance of the mon-
itoring mechanisms (cf. Sect. 2.4.3) also pose itself as a major hurdle for botnet
monitoring. Fortunately, most of the existing anti-monitoring mechanisms observed
deployed in the wild are still in their infancy in terms of their effectiveness. Although
some of them can be circumvented or tolerated by the existing monitoring mecha-
nisms, it may just be a matter of time before more advanced countermeasures are
implemented by botmasters to raise the stakes. Along that line, this bookwill propose
advanced countermeasures from the perspective of a botmaster in Sects. 4.2 and 5.1
to anticipate the retaliation of the botmasters against botnet monitoring.

Concluding, crawlers and sensors seemed to be the only viable solution tomonitor
P2P botnets in an effective and efficient manner. However, more effort has to be taken
to ensure the stealthiness, efficiency, and accuracy of the monitoring mechanisms is
improved to obtain high quality monitoring data. Therefore, futuremonitoringmech-
anisms need to also carefully consider and address the various challenges discussed
in Sect. 2.4 to ensure an effective botnet monitoring that can be useful for further
steps such as botnet takedown attempts or malware cleanup campaigns.
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Chapter 3
The Anatomy of P2P Botnets

Most P2P-based botnets implement (MM) mechanisms, with different initialized
parameters, to ensure bots remain connected among one another in a distributed
manner. However, existing botnets often implement highly customized communi-
cation protocols and designs, hence these botnets need to be reverse engineered to
fully understand their MM mechanism and the utilized communication protocols.
The reverse engineering information is crucial for botnet monitoring mechanisms to
interact with bots in a botnet.

Although there are many available resources describing the anatomy of existing
P2P botnets, they are only described on a very coarse-grained level. Therefore, own
reverse engineering work is often required to complement the existing literature for
a better understanding of the anatomy of a botnet.

For the purpose of this book, three botnets were picked as case studies: GameOver
Zeus, Sality, and ZeroAccess. These selected botnets are not only some of the most
prevalent P2P botnets but also deployed anti-monitoring strategies as discussed in
Sect. 2.4.3 to impede botnet monitoring. The first three sections of this chapter
(Sects. 3.1, 3.2 and 3.3) describes the MM mechanism of GameOver Zeus, Sality,
and ZeroAccess using the formal model presented in Sect. 2.2. In addition, botnet-
specific details that are useful for discussion in the later part of this book are also
highlighted based on own reverse engineering results.The results not only managed
to validate the findings of other work on these botnets, but also provided new insights
that were important foundation for the works presented in this book. Finally, Sect. 3.4
summarizes this chapter.

3.1 Dissecting GameOver Zeus

GameOver Zeus or also known as P2P Zeus is a variant of the infamous banking
trojan Zeus first observed in the wild around September 2011 [1]. Detailed technical
descriptions of this botnet are available as published technical reports and scientific
articles in [1–4].
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.,
part of Springer Nature 2018
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Security Systems and Networks, https://doi.org/10.1007/978-981-10-9050-9_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-9050-9_3&domain=pdf
http://dx.doi.org/10.1007/978-981-10-9050-9_2


28 3 The Anatomy of P2P Botnets

In the following, Sect. 3.1.1 describes the bootstrapping process of bots in
GameOver Zeus. Section3.1.2 discusses about the membership management mech-
anism of this botnet. Finally, Sect. 3.1.3 introduces the blacklisting mechanism used
by this botnet.

3.1.1 Bootstrapping Process

Upon infecting a new machine, the malware of GameOver Zeus generates a 160-
bits unique identifier (UID) based on the hash value of the concatenated strings
of the operating system’s ComputerName and the VolumeID of the first hard-drive
in the infected machine. Since the same UID is always reproducible as long as
the mentioned variables do not change, the UID is persistent through reboots. This
UID is stored and heavily used throughout the communication among other bots
in GameOver Zeus as described in Sect. 3.1.2 and can be represented as a 40-
hexadecimal characters string.

The bots are suppliedwith a bootstraplist embedded in their binarywhich consists
of 50 entries of other existing infected machines or bots. The information in this list
consists of a tuple of IP Address, Port number and a UID for each entry. After
successfully infecting a machine, a bot utilizes this list to bootstrap itself into the
botnet overlay as described in Sect. 3.1.2.3. This list also effectively becomes the
initial NL of the bot as depicted as an example in Table 3.1 with a maximum of 50
entries, i.e., NLMAX = 50.

3.1.2 Membership Maintenance Mechanism

Bots in GameOver Zeus carry out their maintenance activities periodically every
30min. Within each MMcycle, i.e., MM-cycle, a bot probes for the responsiveness
of its neighbors for up to five times using the probeMsg (see Sect. 2.2). Take note that
the probeMsgmessage is also commonly referred to as the VersionRequest message
in other literature [3, 4] as the message is also used to query and exchange the latest
botmaster update(s).

Table 3.1 Example of a GameOver Zeus bootstrap/neighborlist

No IP Address Port UID

1 123.100.12.201 25235 45d5f530d28f49...<truncated>

2 214.86.57.2 15687 c89d3abf771315...<truncated>

... ... ... ...

50 150.80.86.87 29001 d1649c62b94280...<truncated>
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A valid response that is received to a sent probeMsg indicates that a particular
neighbor is responsive, i.e., being online.If a neighbor remained unresponsive for
five consecutive attempts, it is discarded from the NL and the probing process is
continued with the next entry in the NL. If a bot has less than 50 responsive entries
at the end of the MM-cycle, it looks into a queue that contains information about
the senders of unsolicited request messages, i.e., request messages sent by other bots
during their MM-cycle, that were successfully processed by the bot. The bot sends
a probe message to each of the candidate that is not already in the NL.If a valid
response is received and the NL is not full, i.e., |NLv| < NLMAX, the bot is added
into the NL.

In addition, another mechanism to refresh the NL kicks in after every sixth MM-
cycle or 180min if the NL is low on entries, i.e., |NLv| < 25. After considering all the
senders of unsolicited requests, the bot actively requests for new neighbors from its
responsive neighbors using the message requestL (see Sect. 2.2). Bots in GameOver
Zeus include their UID or key s in every sent requestLmessage. Upon receiving such
a request, a bot replies the message by returning ten entries from their NL, which are
selected based on a neighbor selection criteria as described in the following.

3.1.2.1 Neighbor Selection Criteria

Bots that need information about other bots in the network use the requestL(s)
method to request neighbors, where s is the key of the requesting bot. Take note
that s can also be generated or spoofed, as long as it is a valid key, i.e., a 160-bit
key. On receiving a valid NL request, a bot returns a subset of its NL of size l, in
GameOver Zeus usually l = 10, which are closer to key s of the query with regards
to the Kademlia-like XOR-distance using the method processRequestL(s) [5]. As
detailed in Algorithm3.1, the queried node replies as follows: it first constructs a list
L containing up to the first ten elements listed in its NL NL (Line 2). Then, it iterates
over all remaining elements in L (Line 3). The key of each element L[i] is compared
to the elements of NL under consideration (Line 5). As soon as the algorithm finds
an element L[i] with a smaller XOR-distance to s than NL[ j], NL[ j] is replaced
with L[i] (Line 6).

Therefore, entries or keys with closer XOR-distance aremore likely to be returned
(Line 5), but only the entry with the closest key to s is guaranteed. The algorithm
may not return the second-closest key if it is the first element in the initial list NL
(cf. Line 2); in this case, if the closest key is stored at an index larger than 9, it will be
definitely compared to the second largest key at index 0 and, used as a replacement
for the second largest key at index 0, and not considered further. Obviously, other
constellations may exist which may lead to some of the closest-ten nodes to be
discarded.In summary, the algorithm will return close-by nodes but not necessarily
the ten closest nodes. The order of the entries stored in a bot’sNL is non-deterministic,
e.g., they can be sorted by the XOR-distance of the neighbor to the bot or by the
timestamp an entry was last updated.
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Algorithm 3.1: processRequestL(s)
1 for i = 0; i < l && i < |NL|; i + + do
2 L[i] ← NL[i]
3 end
4 for i = l; i < |NL|; i + + do
5 for j = 0; j < l; j + + do
6 if XOR(NL[i], s) < XOR(L[ j], s) then
7 L[ j] ← NL[i] break
8 end
9 end

10 end
11 return L

This particular neighbor selection criterion introduces bias in the entries within
a bot’s NL towards a its key. Although this selection criterion is similar to the DHT
implementation in Kademlia, GameOver Zeus remains an unstructured P2P botnet.

3.1.2.2 Inserting New Entries

Whenever a bot decides to add new neighbors, each new neighbor candidate goes
through a two-step sanitization phase (for the newest variant of GameOver Zeus).
The candidates need to satisfy the following conditions:

1. PortRange:A candidate’s source port is required to bewithin the range 10, 000 −
30, 000.

2. Sub-network Range: Only one IP entry is allowed in the NL for every /20
sub-network.

The algorithm discards candidates that failed to fulfil any of the conditions and
appends the rest in the NL.

3.1.2.3 Node Announcement and Update of Existing Entries

Since a botnet needs to include new infections within the botnet overlay, the botnet
MM uses the announceMsg to announce the arrival of the new bots to others in the
overlay (see Sect. 2.2). In the case of GameOver Zeus, the feature of a announceMsg
is incorporatedwithin theprobeMsg sent by bots.Abot that receives a validprobeMsg
will consider the sender to be added directly into the NL if the sender is not already
included and the NL is not full. Alternatively, if the NL is full, the bot adds the sender
to a queue which consists of potential candidates when the size of the NL falls below
a threshold value of |NL| < 25. Therefore, when a newly infected machine attempts
to probe entries in the bootstraplist (see Sect. 3.1.1), the bot possibly also inserts
itself as a potential candidate for consideration. If a bot inserts this newly infected
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machine in its NL, information about the new bot will be propagated further when
other bots request for neighbors.

To address the IP address aliasing issue (see Sect. 2.4.1), GameOver Zeus uses a
reboot-persistent UID to uniquely identify bots. This UID is transmitted in a field
within all communication messages of bots in GameOver Zeus. Whenever a bot
receives a probeMsg that consists of a UID already known to the bot (in the NL) but
with a different IP address and/or port number, the bot updates the entry with the new
information. This update mechanism ensures that a bot eventually gets to update the
entries of neighbors that rejoin the network with new IP addresses or port numbers.

3.1.3 Blacklisting Mechanism

GameOver Zeus implements a two-fold blacklisting mechanism in the bots to deter
crawling activities of known and unknown researchers. Firstly, all bots have a static
list of IP addresses that they refuse to communicate to, e.g., security organizations
known to perform botnet monitoring [3]. Secondly, bots also implement a simple
local rate-limiting mechanism to detect and blacklist crawlers [3]. For this, a bot that
receives more than six request messages from a single IP address within a sliding
windowof 60 s, automatically adds the IP address into a list of blacklisted IP addresses
and stop communicating [1]. This list is maintained locally and not exchanged with
other bots.

3.2 Dissecting Sality

Sality is a botnet family that propagates through file-infection that has been around
since mid-2003 [6]. This family has evolved from traditionally communicating with
the botmaster via emails, to a complete P2P-based communication in early 2008 [6].
Based on the initial reporting on the P2P variant of Sality, there could have been up
to four versions of this P2P botnet.

The first version of P2P Sality observed in the wild transmitted “Version 2” in its
communication messages. Around early 2009, Sality version 3 has been first seen
and said to be the largest variant of the P2P Sality [6]. This variant still remains
active at the time of writing. Falliere reported that differences between the protocols
implemented in version 2 and 3 are minimal [6]. Around late 2010, version 4 of
this botnet was first seen.This variant introduces new features, leading to improved
security and robustness, by addressing some of the weaknesses found in the earlier
versions of the botnet. Nevertheless, most of the communication protocols of the
botnets as mentioned earlier remain the same, except for the transmitted version
number.

Since the information that is needed to understand the various work within the
scope of this book is common across these different botnets, i.e., communication pro-
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tocols, all variants of P2P Sality are henceforth referred to as Sality in the remainder
part of this book, unless mentioned otherwise. Detailed technical description of this
botnet for interested readers is available as published technical reports and scientific
publications in [6, 7].

3.2.1 Bootstrapping Process

Upon infecting a newmachine, a Sality malware starts to listen on a (UDP) socket for
incoming request messages following the node announcement procedure explained
in Sect. 3.2.2.1. This socket or port number is derived based on the operating system’s
ComputerName using a simple built-in algorithm. Bots in Sality utilize UIDs for
some of the inter-bot communication messages but the UIDs are not persistent over
reboots. Bots in Sality obtain their UID through a process that involves an existing
superpeer helping to assign it (explained later in Sect. 3.2.2). The assigned UIDs are
integer values between 0 − 2.0 × 107. In the bootstrap phase, this UID is initialized
to a default value of 0.

Next, the bootstraplist which is passed on from the previous file infector, i.e.,
bot, is used to initialize the NL of the new bot. This list typically consists of up
to 1000 entries. The bot’s NL can hold up to a maximum of 1000 entries, i.e.,
NLMAX = 1000, and has a structure as depicted in Table3.2. Initially, the values for
all fields in this list is set to a default value of 0. Then, the bot copies the IP Address
and Port Number of entries from the bootstraplist into the NL. After initialization of
the NL, the bot executes the bootstrapping process by invoking the first MM cycle.
The following section details the MM as well as the purpose of the different fields
within the NL of a bot.

3.2.2 Membership Management Mechanism

Each bot in Sality utilizes aMM to ensure connectivity amongst bots with an interval
of 40min.Within eachMM-cycle, a bot v probes all neighbors in itsNLv, sequentially
by executing three different but inter-related processes.

Table 3.2 Example of a Sality bot’s NL

No IP Address Port UID GoodCount LastOnline

1 123.100.12.201 25235 1.8 × 107 65 0

2 214.86.57.2 15687 1.9 × 107 45 2356

... ... ... ... ... ...

1000 150.80.86.87 29001 1.1 × 107 21 5561
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Firstly, the bot probes the responsiveness of a neighbor using theprobeMsgmethod
(cf. Sect. 2.2) which utilizes a Sality-specific Hello message.When a bot receives a
valid response to the sentHellomessage, the neighbor’s LastOnline value is set to the
current timestamp. Otherwise, the value is set to zero if an invalid reply is received
or the request timed out, before the next entry in the NL is probed. The LastOn-
line is widely used within Sality as a flag to indicate that a particular neighbor was
responsive within the last MM-cycle. For each successful verification of a neigh-
bor’s responsiveness, the GoodCount of the corresponding entry is incremented by
one.Similarly, when a timeout occurred, or an invalid reply is received, the bot decre-
ments the neighbor’s GoodCount accordingly. Over time, neighbors that are often
responsive have a higher GoodCount value compared to those that are not.

TheHellomessage exchange is also leveraged to ensure the latest command from
the botmaster is disseminated to all bots. A command comes in the form of a digitally
signed and encrypted file which is also known as a URLPack [6]. An URLPack
consists of a list of URLs which usually host additional malicious binaries that needs
to be downloaded and executed frequently by the bots in their local machine, i.e.,
approximately twice every hour. Within each Hello message, the newest sequence
number of the URLPack known to a bot is always transmitted.

By comparing the sequence number transmitted in the receivedmessages, bots can
update themselves with the latest update from the botmaster. Consider the scenarios
where Botx is sending a Hello message to Boty :

1. Botx has an older URLPack than Boty : Upon inspecting the received mes-
sage, Boty will notice that Botx has an older URLPack installed. Therefore, Boty
responds to the message by attaching the latest URLPack which would later be
applied by Botx .

2. Botx has a newerURLPack than Boty : Upon inspecting the sequence number of
the received message, Boty will notice that Botx has a newer URLPack installed.
Therefore, Boty responds with a message by stating the sequence number of
its currently installed URLPack. Upon receiving the message and noticing that
Boty has an older URLPack, Botx sends an additional Hellomessage to Boty that
attaches the latest URLPack. Boty can then apply the newer update accordingly.

3. Both bots have the same URLPack: No steps are taken if both bots have the
same URLPack.

After verifying the responsiveness of a neighbor, the bot checks if it has a status
of either a superpeer or non-superpeer (see Sect. 3.2.2.1). Bots in Sality use the
default UID value ofU I D = 0 as an indicator that a bot’s status has not been tested.
Similarly, a non-zero value indicates that a bot’s capability is tested and this second
process is omitted. Section3.2.2.1 elaborates this testing process in detail.

If the number of entries in the NL is low, i.e., |NLv| < 980, at the beginning of
the MM-cycle, a Sality-specific Neighborlist Request message (NLReq) is sent to
the responsive neighbor using the method requestL (cf. Sect. 2.2). Bots receiving an
NLReq will respond with a Neighborlist Reply (NLRep) message containing informa-
tion of one randomly picked bot from a list of only responsive neighbors. For this,
a temporary list is first constructed from the main NL but consisting of only entries
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that have non-zero LastSeen values. Upon receiving an NLRep reply message, the
returned entry can be considered as a potential candidate for the bot’s NL as elabo-
rated in Sect. 3.2.2.2. It is also worth noting that all entries within a Sality’s NL are
only superpeers. After completing the three processes for the picked neighbor, the
next neighbor is probed until all neighbors within the NL have been probed.

After all neighbors are probed, a bot conducts an additional clean-up step on the
NL if the size of the list was at least 500 at the beginning of that particular MM-
cycle. This clean-up process discards all entries that have low GoodCount values,
i.e., GoodCount < −30, or UIDs that are not within a superpeer’s assigned range,
i.e., UID < 1.6 × 107 (see Sect. 3.2.2.1).

3.2.2.1 Testing Superpeer Capability and Node Announcement

Since there is no centralized infrastructure in Sality, the testing of superpeer capability
is done with the help of other existing superpeers within the overlay. For that, Botx
first sends a Node Announcement Request message via the announceMsg method
(cf. Sect. 2.2) to Boty , i.e., a responsive neighbor. Within the sent message, Botx
includes information of which UDP port it listens for incoming unsolicited requests
(cf. Sect. 3.2.1). Upon receiving this request message, Boty sends aHellomessage to
the IP address of Botx using the port specified within the received request message.

The premise of this decision is; if Botx is publicly reachable from the Internet, it
should be able to respond successfully to the receivedHellomessage. Hence, a valid
response to the probe message indicates Botx ’s superpeer-capability and the failure
to respond, e.g., timeout occurred, signifies its incapability. Based on the verification,
Boty responds to the initial Node Announcement Request with a reply that includes
a value: a random value between [0 − 1.6 × 107) when Botx is not reachable on the
listening socket, i.e., non-superpeer, or [1.6 × 107 − 2.0 × 107] otherwise. If Botx
is identified as a superpeer candidate, Boty additionally adds Botx into its NL as well
(cf. Sect. 3.2.2.2). This way, to further propagate the information about itself being
a potential superpeer to other bots that may need additional neighbors, Botx relies
only upon Boty .

Finally, upon receiving the Node Announcement Reply message from Boty , Botx
uses the returned value as its own UID and omits to repeat this process in subsequent
MM-cycles until the next reboot. However, in case a reply was not received from
Boty , i.e., a timeout occurred, Botx sets its UID to zero and repeats this testing
procedure with the next responsive neighbor.

3.2.2.2 Inserting New Entries

There are two different scenarios where a bot attempts to add a new neighbor: (1)
through NL exchange when having a low number of neighbors (cf. Sect. 3.2.2) and
(2) when testing a bot for superpeer capabilities (cf. Sect. 3.2.2.1). Algorithm3.2
describes the method insertNeighbor() for both scenarios with an input parameter
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Algorithm 3.2: insert Neighbor(entr y, isT ested)

1 if NL .isFull() && isT ested �= True then
2 return // NL is full
3 end
4 if entr y.I P ∈ NL .get All I Ps() then
5 if NL[entr y.I P].Port �= entr y.Port then
6 if NL[entr y.I P].Status �= Online || isT ested then
7 NL[entr y.I P].Port = entr y.Port // Update Port
8

9 return // Nothing else to do
10 if NL .isFull() && isT ested then
11 // Make room for a new entry
12 NL .popEntryWithLowestGoodCount ()
13 end

// Append entry at the end
14 NL .append(entr y)

entr y, i.e., IP address and port number. To distinguish the different scenarios, Sality
uses a flag parameter isT ested to indicate if the entr y is being considered after
being tested for its superpeer capability or not.

First, the bot checks if the current NL is already full (Line 1) and returns if
the method was invoked within Scenario 1. Otherwise, the algorithm proceeds and
checks if the IP address of entr y is already present within the NL (Line 3). In
case the IP address is present, it is checked whether the corresponding port in the
reply matches with the existing entry in the NL (Line 5). If the ports do not match,
the bot additionally checks (Line 5) if the entry in the NL was marked offline, i.e.,
LastSeen = 0, during the lastMM-cycle or if themethodwas invokedwithinScenario
2. If either one of the conditions is satisfied, the old port of the entry is replaced with
that in the entr y (Line 6) and the method returns. This entry updating feature allows
an existing bot that reappeared on a different port to be updated by existing bots by
retaining the old entry along with its corresponding GoodCount value as well.

However, if the address is unknown and the method was invoked from within
Scenario 2 when having a full NL , the bot additionally removes one entry from its
NL that has the lowest GoodCount value to make room for this new candidate (Line
10). Finally, entr y is appended to the end of NL (Line 11).

3.3 Dissecting ZeroAccess

ZeroAccess is a malware dropper family that distributes additional malware that
focuses on financial fraud through pay-per-click (PPC) advertising [8]. The botnet
utilizes plugins as dropped modules to enable bots conducting the above-mentioned
malicious activities. As of early 2016, researchers have reported the discovery of
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Table 3.3 Distinct botnets distinguished by ports in ZeroAccess Version 2

Ports for 32-bit Ports for 64-bit

Bitcoin mining 16464 16465

Click-fraud 16471 16470

two versions of ZeroAccess [4, 8]: Version 1 in May 2011 and Version 2 in April
2012. In contrast to the former that uses TCP protocol for communications between
bots, the latter version adopts UDP protocol instead. In the newer version, the set
of commands utilized for inter-communication has also been reduced. This includes
the removal of a command that can be exploited to launch sinkholing attack on the
botnet.The removal of the command enhanced the efficiency and resiliency of the
botnet [8]. Since it was difficult to find active bots to bootstrap in the Version 1 of
this botnet, the remainder part of this book focuses only on the Version 2 [4]. Take
note that this botnet was partially sinkholed by Symantec in 2013, but remnants of
it remained active until now [9].

ZeroAccessVersion2primarily performs two types ofmalicious activities:Bitcoin
mining and Click-Fraud. For each activity, there exist two separate networks of bots
distinguished by the OS architecture of the infected machines, i.e., 32-bit or 64-bit.
As such, there are four distinct networks of ZeroAccess Version 2 as detailed in
Table3.3. Each of the networks distinguishes itself by the usage of distinct UDP
hard-coded ports for communications.

Since the information that is needed to understand the various work within the
scope of this book requires only the understanding of the communication protocols
that is common across these different networks, all networks of ZeroAccess Version
2 are henceforth referred to simply as ZeroAccess in the remainder part of this book.
Detailed technical description of this botnet is available as published technical reports
and scientific publications in [4, 8–10].

3.3.1 Bootstrapping Process

Upon infecting a new machine, a ZeroAccess malware listens on a fixed UDP socket
for incoming request messages as depicted in Table3.3. Bots in ZeroAccess also
generate a UID upon initialization that is not persistent over reboots. Next, the bots
download all available plugins that enable add-on features as intended by the botmas-
ters, e.g., Click-fraud and Bitcoin mining, and store them on the infected machine
[8].

According to the reverse-engineering results of a malware variant1, the bots have
three types of NLs: primary, secondary and backup list. The bot’s primary NL
can hold up to a maximum of 256 entries, i.e., NLMAX = 256, and has a structure

1md5 = ea039a854d20d7734c5add48f1a51c34
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Table 3.4 Example of a ZeroAccess Primary NL

Index IP Address LastOnline

0 123.100.12.201 2564

1 214.86.57.2 1082

... ... ..

255 150.80.86.87 220

as depicted in an example in Table 3.4. The primary NL only maintains the IP
address of a neighbor as all bots listen on a dedicated port that is unique to the
network they reside in. The bootstraplist of the malware that typically has up to 256
entries is used to initialize the primary NL of the new bot. The remaining lists which
have a significantly larger length, i.e., 16 × 106 entries, are initialized empty during
infection and information of all responsive and known bots throughout the lifetime
of the particular bot is continuously added/updated in both lists. However, only the
backup list is persistent over reboots. The presence of this list allows a bot to recover
from any potential sinkhole attempts using bots that were responsive in the past
(cf. Sect. 3.3.2). After initialization of the NLs, the bot executes the bootstrapping
process by invoking the first MM cycle.

3.3.2 Membership Management Mechanism

Each bot in ZeroAccess utilizes a MM mechanism with an interval of 256s. Within
each MM-cycle, a bot v sequentially probes each neighbor in its primary NLv and
optionally two additional bots from the secondary and backup lists, every second
using the probeMsg method (cf. Sect. 2.2).A bot starts probing entries from index
0 − 255 each every second. Upon reaching the final entry, i.e., index = 255, the
iteration process wraps up to start again from index = 0.

Maintenance of the NL in the bots relies on two types of message exchanged
among bots: getL and retL.As explained above in Sect. 3.3.1, each bot listens on
the botnet-specific port for unsolicited requests, i.e., server port, and sends such
requests fromanOS-allocated but fixedUDPport or a client port. As such, all probing
messages originateonly from the client port. Figure3.1 depicts such a probing process
between two bots: BotX and BotY .

Let’s assume BotX probes BotY for its responsiveness. Upon receiving a getL
message, BotY responds with a retL message that consists of a subset of its
own primary NL and a list of all plugins available for sharing, i.e., using TCP
connections.
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Fig. 3.1 Message exchange
for BotX probing BotY in
ZeroAccess

Section3.3.2.2 discusses the details on the neighbor selection criteria utilized to
pick the neighbors to be included in a reply. In addition to the reply, a probe message
is sent to the server port ofBotX , i.e., lower part in Fig. 3.1. This process which serves
as a method to verify if BotX is a superpeer, requires BotX responding to the probe
message of BotY using the server port as the source port in the reply. A successful
response indicates that BotX is routable, i.e., superpeer.

Algorithm 3.3: processGet L(sender,msg)

1 // Reply to all received requests
2 rep ← createRet L(msg.get Flag())
3 send(sender, rep) // Send a retL to sender
4 if msg.get Flag() == 0 then
5 // Send a getL+
6 send(sender, createGet L( f lag = 1))
7 end

To avoid the exchange of messages to be continuously looped, a flag in the mes-
sages is set when being probed to indicate no further probing is needed as depicted
in Algorithm 3.3. Such messages are differentiated by using getL+ and retL+ when
referring to the set of messages that do not require additional probing.

Upon receiving either a retL or retL+, bots process the message by performing
the following steps:

1. Inserts the sender in the primary NL as described in Sect. 3.3.2.1.
2. Inserts the sender and the returned neighbors (if any) in the secondary NL.
3. If there is, at least, one plugin information in the reply, inserts the sender in the

backup NL.

Although the sender is added into all threeNLs, for the remainder part of this book,
only the primary NL is focused, which is used to select neighbors to be returned in
retL and retL+ messages. Take note that due to the communication design adopted
by this botnet, researchers have reported that they were able to leverage them to
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conduct UDP hole-punching to communicate continuously to non-superpeers that
first reached out to a sensor node [4].

3.3.2.1 Inserting New Entries

Upon receiving a valid response, a sender’s IP is added or updated within the primary
NL of each bot.For that, the IP is used as a parameter to invoke Algorithm 3.4 that
is responsible for handling this process. Firstly, bots check if the sender’s IP exists
in their primary NL (Line 2). If the IP exists, this entry is removed from the NL
(Line 4).After removing this entry, all subsequent entries are shifted up one position
to bridge the gap originating from the deletion process. Finally, the sender’s IP is
used to create an entry at the beginning of the NL, i.e., index = 0. Afterward, the
LastSeen value is set to the value of the current timestamp.

Algorithm 3.4: insert I nPrimaryList (sender)

1 // Check if sender known
2 if sender ∈ NL .get All I Ps() then
3 // Remove existing entry and close the gap
4 NL .pop(sender)
5 end
6 // Push entry at the beginning of list
7 NL .push(sender)
8 // Set sender’s LastSeen to now
9 NL[sender ].Last Seen = getCurrentT imestamp()

Due to the nature of the process of inserting neighbors, the primaryNLof ZeroAc-
cess bots is sorted bymost-recently responsive neighbors. If the NL is full and a new
(but non-existing) entry needs to be added, the last entry, i.e., index = 255, is dis-
carded when the new entry is pushed at the beginning of the NL.

3.3.2.2 Neighbor Selection Criteria

Bots need to respond to each of received probe messages, i.e., getL and getL+ mes-
sages, with a retL message that includes a subset of neighbors that have their respon-
siveness most recently verified. According to the protocol, a bot can include up to
16 entries in a resulting reply but an empty reply is also valid.Since the primary NL
of the bots is always sorted by most responsive neighbors first, a bot simply returns
the first-16 entries from the NL in the reply message.
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3.4 Summary

This chapter described the anatomy of three P2P botnets: GameOver Zeus, Sality, and
ZeroAccess, based on own work of malware reverse engineering. Particularly, the
bootstrapping and MMmechanism of each botnet was thoroughly analyzed, and the
differences among them were outlined. From the analysis, existing P2P botnets are
found to share similarities on commonMMdesigns and anti-monitoringmechanisms
aimed at impeding botnet monitoring.

However, some of the parameters used by the botnets differed greatly among one
another, e.g., MM-interval or the size of the NL used by the botnets, as described in
the following:

• MM-interval: The MM-interval directly influences the rate of stale information
in the NL of bots as well as the incurred communication overhead. For instance,
a long interval may cause a bot to be isolated from the overlay due to many of its
neighbors being non-responsive, e.g., bots gone offline. However, the communi-
cation overhead caused by such large intervals are lesser and is helpful to remain
stealthy. Sality and GameOver Zeus utilized such intervals with 40 and 30min
respectively.
In contrast, a short interval may ensure responsive neighbors are always retained in
theNL.Therefore, chances of a botwith short interval to be isolated from the botnet
overlay is much lesser than those with larger interval. However, a short interval
also implies that higher communication overhead is incurred by frequently probing
the responsiveness of the neighbors. This in turn may easily raise suspicions to
network administrators. ZeroAccess is an example of such botnet with a short
interval, i.e., 256 s.

• Size of NL: Ensuring a bot remains connected to the botnet overlay is also often
influenced by the availability of sufficient number of responsive neighbors to com-
municate with. Moreover, the size of the NL utilized by botnets also influences
how quickly a command issued by a botmaster is disseminated throughout the bot-
net. In the context of the analyzed botnets, GameOver Zeus utilized the smallest
size for its NL, i.e., |NL| = 50. This is followed by ZeroAccess with a size of
|NL| = 256 and Sality with the biggest NL size, i.e., |NL| = 1000.

• Anti-monitoring mechanisms: Each of the anti-monitoring mechanisms imple-
mented by the analyzed botnets are unique and has its special purpose in protecting
the botnet either from being monitored or taken down. GameOver Zeus is by far
the most advanced botnet among the three botnets analyzed in this chapter. It uti-
lized an NL restriction mechanism that returns only a subset of its NL following a
special node selection criteria as described in Sect. 3.1.2.1. In addition, the botnet
also uses IP address-based filtering to ensure sensors or sinkhole server entries are
not able to quickly or easily fill up the NL of a bot. Finally, GameOver Zeus also
utilizes blacklisting mechanisms to refuse communicating to known or aggressive
crawlers.
Sality also introduced an NL restriction mechanism that returns only one random
entry out of the 1000 entries for each received NL request. Moreover, it also
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implemented a local reputation mechanism whereby previously-known neighbors
are preferred to new neighbors. This reputation mechanism prevents sinkholing
attacks that aim to invalidate all entries easily within the NL of a bot.
Finally, ZeroAccess utilizes the short MM-interval to make it difficult for sinkhol-
ing attacks by cycling entries within the NL with a high frequency. Since most
sinkholing attack requires the existing entries in the NL of a bot to be invalidated,
this mechanism quickly flushes away the invalidated entries. As a consequence, a
successful sinkholing attack requires a lot of resources to continuously invalidate
the entries in the NL of all bots in the botnet. In addition to this design, the botnet
also maintains two additional NLs on top of the main NL used for regular MM
activities. These two NLs keep track of all responsive bots ever discovered since
the last reboot of an infected machine. Entries within these NLs are also contacted
from time to time to allow the botnet to recover even from a powerful ongoing
sinkholing attack.

Many of the analysis presented in this chapter serve as a foundation to other works
presented in this book. For instance, the neighbor selection criteria ofGameOverZeus
that is presented in Sect. 3.3.2.2, is important to understand the work on circumvent-
ing this particular mechanism (see Sect. 4.1.1). In addition, the MM design of Sality
andZeroAccess as presented in this chapter is leveraged in thework on autonomously
detecting crawlers in P2P botnets (see Sect. 4.2.2).Moreover, the communication and
MM designs utilized by both Sality and ZeroAccess are also leveraged to present
several novel sensor detection mechanisms in Chap. 5.
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Chapter 4
Crawling Botnets

Crawlers are widely used in botnet monitoring (see Sect. 2.3.2) to enumerate bots
and to discover the interconnectivity among them. Such information is vital to law
enforcement agencies in botnet takedown attempts. In response, botmasters have
introduced several anti-crawling mechanisms to impede monitoring activities. In
particular, GameOver Zeus can be considered as the most sophisticated P2P botnet
seen to date [1] due to the significant efforts that are taken to impede monitoring
activities. As discussed in Sect. 2.4.3, such anti-crawling mechanisms can introduce
a significant amount of noise and distortion to the data gathered by monitoring.
Hence, it is important to circumvent these mechanisms to obtain monitoring data of
better quality and to anticipate future botnet advancements.

Section4.1 presents work on circumventing the NL restrictionmechanism and the
automated blacklisting mechanism of GameOver Zeus from an attacker perspective,
i.e., researchers and legal enforcement agencies. Section4.2 introduces advanced
anti-crawling mechanisms that aim at impeding crawling activities and on the detec-
tion of ongoing crawling activities from the perspective of botmasters. Section4.3
presents the evaluation results of the proposed mechanisms on the newly introduced
countermeasures and the advanced crawling mechanisms. Finally, Sect. 4.4 provides
a brief discussion and summarizes this chapter.

4.1 Circumventing Anti-crawling Mechanisms

In this section, the anti-crawling mechanism of GameOver Zeus (see Sect. 3.3.2.2)
are thoroughly analyzed, and methods to circumvent them are presented. In addition,
a novel crawling strategy is also proposed to improve the efficiency of crawlers.
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4.1.1 Restricted NL Reply Mechanism of GameOver Zeus

GameOver Zeus is dubbed a sophisticated botnet due to the effective mechanisms
adopted to impede monitoring activities and to recover in a case of a potential take-
down [1, 2]. One particularly interesting defense mechanisms is the NL restriction
mechanism that deterministically picks and returns a subset of neighbors, specific to
the requester, when being requested (see Sect. 3.1.2.1). This subsection will intro-
duce a novel algorithm called ZeusMilker that circumvents this restriction mech-
anism. For that, background information on the restriction mechanism is detailed in
Sect. 4.1.1.1. Then, Sect. 4.1.1.2 introduces ZeusMilker algorithm.

4.1.1.1 Background

Bots in Gameover Zeus regularly exchange subsets of their NLs on a request basis
to maintain and improve the connectivity of the botnet. The exchanged subsets are
selected based on an XOR-distance metric between the sender’s key included in
request messages and the entries in the NL (see Sect. 3.1.2). Hence, two bots that
request an NL from a bot may receive two different sets of entries. Thus, a botnet
crawler has to query each node multiple times using distinct spoofed keys, which
decreases the performance of a crawler considerably [3].

Rossow et al. first proposed a method to circumvent this mechanism by spoofing
the querying keys randomly, hoping to obtain all neighbors [1]. In contrast, in the
following, a reliable method to provably obtain all neighbors from a bot by strate-
gically spoofing requester UIDs or keys is presented. This method is the only work
known to provide solution in successfully circumventing the restriction mechanism
of GameOver Zeus.

4.1.1.2 ZEUSMILKER Algorithm

The ZeusMilker algorithm that is presented in Algorithm4.5 leverages the design
of the NL restriction mechanism itself (see Sect. 3.1.2.1). First, important notations
to understand the algorithm is introduced.

Notations

Each bot is assigned a unique key in the form of a b-bit string. 1(i) is used to denote
a bit string of i 1s and analogously 0(i) denotes a string of i 0s. Furthermore, |s|
denotes the length of a string s, and || is the concatenation operator. For two b-bit
keys x and y, the function cp(x, y) returns their common prefix. An order on the
set of b-bit keys is defined by associating the key’s bits bb−1 . . . b0 with an integer
value

∑b−1
i=0 2

bi . In particular, a key y is defined bigger, smaller or equal than a
key x by comparing the integer values. The operators + and − are then defined as
the respective operators in Z, the set of all integers. Two keys x and y are called
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consecutive if y = x + 1 mod 2b. Finally, I (x, y) = {x + 1, . . . , y − 1} is used to
denote the set of all possible keys ‘between’ x and y. Note that the set is empty if
y ≤ x .

ZeusMilker aims on retrieving the complete NL NL of a bot using the method
requestL(s) as described in the formal model (see Sect. 2.2). Algorithm4.5 achieves
this goal by discovering pairs of keys (x, y) such that the NL is guaranteed not to
contain any keys in I (x, y) and thus NL ∩ I (x, y) = ∅. The algorithm terminates
if no sets of I (x, y) can contain additional and yet unknown keys, guaranteeing
that the list of returned keys L is identical with NL . The NL of bots is assumed to
remain static during crawling. As GameOver Zeus has a rate-limiting mechanism
(see Sect. 3.1.3) in place, several unique IP addresses are assumed to be utilized to
circumvent this mechanism, i.e., crawling bots using multiple IP addresses.

The neighbor selection mechanism (see Sect. 3.1.2.1) returns ten entries that are
close to the supplied key s through the method requestL(s). The selection of the
returned neighbors is based on a well-known XOR-distance metric that was intro-
duced in Kademlia [4]. However, the design of the GameOver Zeus mechanism is
such that only the closest key is always guaranteed to be returned. This observation
along with the nature of an XOR operation is leveraged by ZeusMilker to circum-
vent the GameOver Zeus restriction mechanism. Before discussing Algorithm4.5 in
detail, a short explanation is provided on how spoofing with two consecutive keys
s1, s2 ∈ I (x, y) results in a set I (x, y), such that all keys in I (x, y) are not contained
in NL .

Consider the left-hand side of Fig. 4.1: Here, all possible b-bit keys are repre-
sented in the form of a ring. Note that all the keys in the right half of the ring
are closer to 0(b) than 1(b)with regard to the XOR-distance, whereas all keys
on the left half are closer to 1(b). Similarly, when considering only the keys
on the right half, the keys in the upper right quarter are closer to 00||1(b − 2)
than to 01||0(b − 2), whereas the keys in the lower right quarter are closer to
01||0(b − 2).

In this manner, one can successively divide keys into sets according to their
closeness in their XOR-distances to the supplied or spoofed keys. This division is
leveraged to identify keysnot contained in theNL NL and the keyspossibly contained
in NL as follows. Let

s1 = c||0||1(i), s2 = s1 + 1 = c||1||0(i) (4.1)

for some common prefix c and i ≥ 0, i.e., s1 is a key ending with a string of 1s, and
s2 is the next higher key, thus ending with a string of 0s. First note that for any keys
id1 and id2, XOR(id1, id2) starts with a string of 0s of the length of their common
prefix. So, if id1 shares a longer common prefix with id2 than with a key id3, id1 is
closer to id2 than to id3 with regard to the XOR distance. Now, assume that the NL
contains keys k1 and k2 starting with c||0 and c||1, respectively. As a consequence,
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Fig. 4.1 Visual representation of the key space (Example27). The ‘+’ keys discover the next bigger
key, whereas the ‘−’ keys reveal the next smaller key

x and y, the closest keys in NL to s1 and s2 with respect to the XOR distance, have
to start with c||0 or c||1, respectively. So, requestL(s2) returns a list containing a key
y = c||1||ry = s2 + ry for some i-bit string ry . Similarly, requestL(s1) returns a list
containing a key x = c||0||rx = s1 − 1(i) + rx for some rx . Therefore, it is shown
that indeed x and y are such that NL ∩ I (x, y) = ∅. By the definition of I (x, y),
I (x, y) = I (x, s2)∪ I (s1, y). The claim that NL∩ I (x, y) = ∅ follows from showing
that all zx ∈ I (x, s2) and zy ∈ I (s1, y) have a lower XOR distance to s1 or s2 than
x or y, respectively, and hence cannot be contained in NL . Note that all z ∈ I (x, y)
share the prefix c. Consider zy = c||1||q ∈ I (s1, y) for an i-bit string q, so that
XOR(z, s2) = q = z − s2. As a consequence, XOR(zy, s2) < XOR(y, s2) for all
keys zy ∈ I (s1, y), so that zy /∈ NL if y is the closest key to s2 in NL . Similarly, for
any zx = c||0||q ∈ I (x, s2), rx < q ≤ 1(i), so that XOR(zx , s1) = 1(i) − q and
hence XOR(zx , s1) < XOR(x, s1). Hence, zx /∈ NL if x is the closest returned key
to s1. In summary, all keys in I (x, y) are not contained in NL , and thus a method to
reliably identify sets of keys that are guaranteed not to be contained in NL is found.
However, without further queries, it is not possible to say which keys in I (k1, x) and
I (y, k2) are contained in NL .

Example 4.1 As an example consider the neighborlist
NLex = {00000, 00100, 01010, 01100, 10010, 11000} and assume for sim-
plicity that each query via requestL() only returns l = 1 key. Assume it
is already discovered that k1 = 00000 and k2 = 01100 with common
prefix c = 0. The next step is to query with s1 = 0||0||111 = 00111
and s2 = 01000. requestL(s1) is guaranteed to return x = 00100 and
requestL(s2) returns y = 01010. However, the reply does not tell if any keys
in I (k1, x) = {00001, 00010, 00011} or I (y, k2) = {01011} are contained in
NLex .
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Algorithm 4.5: ZeusMilker()
// Initialization

1 L ← ∅ // Crawled keys
// Get smallest key

2 M ← requestL(0(b))
3 L ← L ∪ M
4 k f irst ← getClosestKey(M, 0(b))
// Get largest key

5 M ← requestL(1(b))
6 L ← L ∪ M
7 klast ← getClosestKey(M, 1(b))
8 if k f irst 	= klast&&k f irst 	= klast − 1 then
9 R.push((k f irst , klast )) // Push undiscovered range

// While not fully discovered
10 while not R = ∅ do

// Get keys for spoofing
11 (k1, k2) ← R.pop()
12 c ← getCommonPrefix(k1, k2)
13 s1 ← c||0||1(b − length(c) − 1)
14 s2 ← c||1||0(b − length(c) − 1)

// Execute queries and add new sets
15 if k1 < s1 then
16 M ← requestL(s1) // query with s1
17 L ← L ∪ M
18 x ← getClosestKey(M, s1)
19 if x 	= k1 then
20 R.push((k1, x))

21 if k2 > s2 then
22 M ← requestL(s2) // query with s2
23 L ← L ∪ M
24 y ← getClosestKey(M, s2)
25 if y 	= k2 then
26 R.push((y, k2))

27 return L

Algorithm4.5 now subsequently identifies sets of keys which cannot be contained
in NL , while at the same time finding newkeys k1 and k2 that are used for determining
the keys s1 and s2. Initially, the list of discovered keys L is empty (Line 1). Then
s1 = 0(b) and s2 = 1(b) are used as keys for the first two queries with the returned
list requestL(s1) and requestL(s2) added to the set of discovered keys (Lines 2–7).
In particular, requestL(s1) has to contain the smallest key k f irst and largest klast in
NL , i.e., the closest keys to 0(b) and 1(b). Hence, the set I (klast , k f irst ) is the first
detected set of keys that are not contained in NL . However, I (k f irst , klast ) potentially
contains undiscovered keys, given that it is non-empty, i.e., the two keys are not equal
or consecutive. So, the pair (k f irst , klast ) is the first element in R (Line 9), which
is implemented as a queue. Hence, R contains pairs (k1, k2) whose common prefix
defines the spoofed keys in future iterations. In each iteration of the while loop
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(Lines 10–26), such a pair (k1, k2) from the front of the queue is considered. The
common prefix c of k1 and k2, determines the two spoofed keys s1 and s2, such that
s1 = c||0||1(b−length(c)−1), which consists of the common prefix c, 0, and a string
of 1s achieving a total length of b, is the largest key closer to k1 than to k2 (in terms
of the XOR-distance). Analogously, s2 = c||1||0(b − length(c)− 1) = s1 + 1 is the
smallest key closer to k2 than k1 (Lines 12–14). If s1 is not bigger than k1, I (k1, s1)
is empty, hence it is not necessary to query with s1. Analogously, if s2 is not smaller
than k2, I (s2, k2) is empty. If s1 is bigger than k1, the method call requestL(s1) is
executed, the returned list M added to L, and the key x is chosen as the closest key
to s1 in M (Lines 16–18). Similar, if s2 is smaller than k2, y is chosen as the closest
key to s2 in the set returned by requestL(s2) (Lines 22–24). As discussed above,
keys in I (x, y) are guaranteed to not contained in NL , hence only the sets I (k1, x)
and I (y, k2) can contain undiscovered keys if they are non-empty. Hence, the pairs
(k1, x) and (y, k2) are added to the end of R (Line 20 and 26, respectively).

Example 4.2 The exemplary neighborlist
NLex = {00000, 00100, 01010, 01100, 10010, 11000} from Example 4.1 is
used, which is sorted for simplicity and indexed by id j = NLex [ j], for
j = 0 . . . 5. The ring on the left of Fig. 4.1 depicts how these keys map onto the
whole key space. For simplicity, it is assumed that only l = 1 keys are returned
per query.However, for larger l < |NLex |, the samenumber of steps is required
to guarantee that all keys in NLex are returned, though individual keys might
be discovered much earlier. Initially, two queries are conducted, one with key
11111 (Line 5, Algorithm4.5) and onewith key 00000 (Line 2, Algorithm4.5),
which will return two entries from NL , namely k f irst = id0 = 00000 (Line
4, Algorithm4.5) and klast = id5 = 11000 (Line 7, Algorithm4.5), respec-
tively. Hence, it can be deduced that there are no keys in I (id5, id0). Then, as
described in the following and as depicted on the right of Fig. 4.1, five itera-
tions of the loop are executed as follows:
(1) The pair of keys k1 = id0 = 00000, and k2 = id5 = 11000 is retrieved
from R. They do not share a common prefix, so spoofing with s1 = 01111
and s2 = 10000 discovers x = id3 = 01100 and y = id4 = 10010. The
pairs (id0, id3) and (id4, id5) are added to the set R. After this step, it can be
guaranteed that NLex does not contain keys in I (id3, id4) since they would
have been returned when spoofing IDs s1 or s2.
(2) The pair (id4, id5) = (10010, 11000) is retrieved, sharing common prefix
1. The spoofed keys are thus s1 = 10111 and s2 = 11000. Because s2 is
identical to id5 and hence there are no keys in I (s2, id5), it is not necessary to
spoof with s2. Spoofing with s1 does not result in any closer key to s1 than id4.
No new pairs are added to R, and it is guaranteed that NLex does not contain
keys in I (id4, id5).
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(3) The pair (id0, id3) = (00000, 01100) is retrieved. Spoofing with s1 =
00111 and s2 = 01000 leads to the discovery of id1 = 00100 and id2 = 01010.
Therefore, the pairs (id0, id1) and (id2, id3) are added to R. As a consequence,
it is known that NLex does not contain keys in I (id1, id2).
(4) The pair (id2, id3) = (01010, 01100) is retrieved, but spoofing with s1 =
01011 (spoofing s2 = 01100 not required) reveals that NLex does not contain
keys in I (id2, id3).
(5) The pair (id0, id1) = (00000, 00100) is retrieved, but spoofing with s1 =
00011 (spoofing s2 = 00100 not required) reveals that NLex does not contain
keys in I (id0, id1).

The example indicates that in each step, Algorithm4.5 discovers a pair of
keys x and y, such that it is guaranteed that the NL NL does not contain keys
in I (x, y). A detailed analysis to show that the observation holds for all steps
and the complexity of Algorithm4.5 is presented in [2] for interested readers.

4.1.2 Less Invasive Crawling Algorithm (LICA)

Crawling introduces communication overhead that is easily observable and may
disclose the crawler to the botmasters. Although a crawler can request NLs from all
known nodes iteratively, this is neither stealthy nor efficient (cf. Sect. 2.4). Current
BFS and DFS-based crawling algorithms exhaustively crawl all possible nodes to
provide a snapshot. The unnecessary activity of frequently requestingNLs is not only
suspicions but also introduce bias if the crawl is not carried out quickly [5]. This is
especially true if the reason for crawling is only to perform bot enumerations, i.e.,
identifying infected machines, and not to discover the full interconnectivity between
bots. In the case of the former, it is desirable to minimize the necessary amount of
interactions between crawler and the botnet.

The idea behind is to crawl only a subset of all nodes to obtain a minimum vertex
cover, which is a problem known from graph theory. A vertex cover is a set of vertices
of a graph that has all edges in the graph incident to at least one vertex of the set. The
minimum vertex cover in a botnet is then defined as a set of minimum nodes, Vmin ,
that has all other routable nodes in the network reachable from one or more nodes in
the set according to our formal botnet model (cf. Sect. 2.2) as described in Eq.4.2.

Vmin = argmin{|V ′| | V ′ ⊆ V :
(

⋃

v∈V ′
NLv

)

= V } (4.2)

However, this is a N P-hard problem and all known approximation algorithms
require a global view of the graph, e.g., the algorithm of Bar-Yehuda [6].
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Therefore, this work approximates the minimum vertex cover during a crawl. For
that, this work tries to identify the stable core of a botnet and crawl those bots first.
The MM of bots ensures information of reliable and responsive bots are regularly
exchanged among all bots [5]. To exploit this observation, an iterative crawling
algorithmnamedLess InvasiveCrawlingAlgorithm (LICA) is proposed that employs
a heuristic to plan the next crawling steps iteratively using these reliable bots and to
establish a vertex cover in the botnet that operateswith such sparse graph information.
This crawling algorithm attempts to optimize the coverage of subsequent crawling
steps and thus decreases the required overall number of steps for crawling a botnet.
Hence, this algorithm intends not to discover the full botnet interconnectivity, but to
extend the monitoring coverage to have the best, i.e., largest, snapshot of a botnet
overlay along with the superpeers in it. It is assumed that bots in the botnet are all
online at the same time; hence, diurnal patterns and churn effects are ignored in this
work.

Algorithm 4.6: LICA(seedpeer , R, w, t)
// Initialization

1 Vknown ← seedpeer
2 ccrawl ← 0
// Maximum allowed requests (per node)

3 for i = 0, i < r, i = i + 1 do
// Utilize previous crawl

4 Vcrawl ← Vknown
5 Vvisi ted ← ∅
6 do

// Reset gain if necessary
7 if ccrawl mod w = 0 then
8 gain ← 0

// select the next node to crawl
9 Choose u ∈ argmax∀v∈Vcrawl

∑
∀y∈Vknown |NLy | − |NLy − v|

// Crawl + get neighborlist of u
10 NLu ← crawl(u)

// Update list of visited nodes
11 Vvisi ted ← Vvisi ted ∪ {u}

// Update list of nodes to crawl
12 Vcrawl ← (Vcrawl ∪ NLu) − Vvisi ted
13 ccrawl ← ccrawl + 1

// Calculate gain
14 gain ← gain + |NLu | − |Vknown ∩ NLu |

// Update visited nodes
15 Vknown ← Vknown ∪ NLu

16 while Vcrawl 	= ∅ & (ccrawl mod w 	= 0 || gain ÷ w > t);

LICA which is described in Algorithm4.6, not only aims at crawling efficiency
but is also configurable for an adaptation to a specific environment or a specific botnet
via parameters seedpeer , r , w, and t .
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The seedpeer is the start node of the crawl. Parameter r is the maximum number
of requests allowed to be sent, i.e., subsequent crawling iterations, to any node in the
network within a particular full crawl. A full crawl ends when all nodes have been
discovered.

The window parameter w determines the number of subsequent requests, for
which a gain, e.g., ≥ 0, is calculated. The gain measures the number of new nodes
discovered during a crawling window w. Thus, the gain divided by w requests gives
the learning curve during the crawl which terminates the algorithm execution when
dropping below a threshold t , ≥ 0.

LICA utilizes the initial seedpeer for bootstrapping itself into the botnet overlay.
Then, starting with the seedpeer , the algorithm obtains the NL NLu from u (line 10)
and extends its knowledge by iteratively requesting NLs from the discovered peers.
For each request sent by LICA, the counter ccrawl is incremented by one.

Upon receiving an NL from u, it is immediately added to Vvisi ted (line 11) and the
undiscovered peers in the received entries are added to Vcrawl (line 15) as potential
candidates for the crawl.

Line 9 in the algorithm selects the next candidate for the crawl. The algorithm
goes through all received NLs of peers in Vknown and ranks all remaining peers in
Vcrawl based on their popularity, i.e., their in-degree. Since the exact in-degree is not
known, an approximation is obtained by counting the number of the occurrences
a candidate or peer is seen among the NLs of other crawled peers. The function
argmax returns the most-popular peer, i.e., highest ranked, as the next candidate to
be crawled. In the event of equally ranked peers, the algorithm randomly chooses
one among them.

At every window interval, i.e., after w requests, the algorithm checks the accumu-
lated gain (line 14) within the past window and terminates the current crawl iteration
if the ratio of the observed gain drops below threshold t (line 16). Depending on
the value of r , LICA may repeat another crawl; however, this time, LICA utilizes
the information of previously crawled peers Vknown instead of the seedpeer . The
algorithm terminates when there are no more undiscovered peers, the number of
maximum allowed iterations is exceeded, or gain is below t .

4.2 Advanced Anti-crawling Countermeasures

ZeusMilker and LICA as presented in Sect. 4.1 circumvents existing anti-crawling
mechanisms. However, it is expected that botmasters will introduce newer counter-
measures to send the defenders back at trying to circumvent themyet again. Therefore
in this section, by assuming the role of a botmaster, some advanced anti-crawling
countermeasures that can be expected in the near future are proposed. Although
mechanisms presented here can be utilized to fortify or improve future botnets, the
introduction of these advanced countermeasures is necessary to trigger researchers
to anticipate and be prepared before such mechanisms are seen in the wild.
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In the following, two advanced anti-crawling countermeasures are proposed
to undermine some of the non-functional requirements proposed in Sect. 2.1.2.
First, improved NL restriction mechanisms over the GameOver Zeus’ mechanism
(cf. Sect. 3.1.2.1) as a crawling prevention mechanism are presented. Second, a
lightweight crawler detection mechanism that is easily deployable in existing P2P
botnets is proposed.

4.2.1 Enhancing GameOver Zeus’ NL Restriction
Mechanism

The NL restriction mechanism of GameOver Zeus had one major weakness: the
requester can manipulate the returned entries. The existing mechanism accepts any
input, i.e., key, in the sender’s message (cf. Sect. 3.1.2.1) without validating the
input or key. This feature allowed ZeusMilker to manipulate the mechanism by
deterministically spoofing keys to retrieve the bot’s entire NL. Hence, it is important
that any future mechanism that aims to prevent crawling activities (cf. Sect. 2.4.3.1)
ensures that the requester cannot manipulate the selection of returned neighbors.
Therefore, a crawler can no longer obtain an accurate snapshot (Non-Functional
Requirement #4).

Take note that one important aspect of anMM is to ensure a robust botnet overlay.
Therefore, all NL restrictionmechanisms also need to ensure that the botnet’s overlay
connectivity is not adversely affected by the restriction techniques. In the following,
two countermeasures to improve the existing GameOver Zeus NL restriction mech-
anism are presented along with another countermeasure that returns random nodes
when being requested. The evaluation results of the countermeasures along with a
discussion is presented in Sect. 4.3.1.5.

4.2.1.1 Random Node Return

In Sality [7], bots return exactly one entry that is randomly chosen from their respec-
tive NLs to the requesting bot (cf. Sect. 3.2.2). Hence, the requesting bot has no
influence on the returned entries at all. Therefore, all entries have an equal likeli-
hood to be returned. This approach from Sality is considered as one of the potential
countermeasures in this work.

4.2.1.2 Bit-XOR+

Bit-XOR+ adds additional randomness at the side of the recipient of an NL request.
The recipient, i.e., bot, generates a random key uniformly for each IP address it
receives a request from and stores it. This key is then XOR-ed with the key of the
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requesting node, and the resulting key is then used as an input for Algorithm4.1
to return the neighbor entries. Hence, the set of keys that is returned is now biased
towards the new XOR-ed key, and an attacker loses its ability to strategically spoof
keys. By including a randomly generated key into the selection process, each entry
in the NL has the equal likelihood to be returned, such that Bit-XOR+ is expected
not to affect the connectivity between the bots negatively.

4.2.1.3 Bit-AND

Bit-AND is a variation of the Bit-XOR+ countermeasure that executes a bit-wise
AND operation between the stored key and the requester’s key before using the
resulting key to return NL entries. However, due to the nature of the AND operation
whereupon each bit of the resulting key has a tendency to be 0 with a probability 3/4,
the set of returned keys for Bit-AND is likely to be biased towards keys starting with
0s. On the one hand, such a bias can considerably decrease the performance of all
crawlers because the returned sets are expected to have a larger overlap in contrast to
uniformly selected sets. On the other hand, keys starting with 1s are expected to be
present in fewer NLs, potentially damaging the connectivity and thus the resilience
of the botnet. Therefore, while Bit-AND is expected to achieve the best performance
out of the three countermeasures, its disadvantages likely outweigh its benefits.

4.2.2 BoobyTrap: Detecting Persistent Crawlers

This section focuses on detecting crawlers that may still be able to tolerate the
proposed NL restriction mechanisms in Sect. 4.2.1 from the perspective of a botmas-
ter. From the observations of crawlers deployed in existing P2P botnets [8], most
crawlers exhibit similar characteristics, i.e., greedy and aggressive in contacting all
bots, compared to regular bots. Moreover, since researchers manually re-implement
the botnet’s protocol, it is also observed that many crawlers have incomplete or sim-
plified (re)implementations of the botnet’s protocol. Such characteristics of a crawler
can be leveraged to detect them when crawling.

For that, Sect. 4.2.2.1 introduces a set of lightweight detection techniques called
BoobyTrap (BT), which identify crawlers exhibiting peculiar characteristics. Sec-
tions4.2.2.2 and 4.2.2.3 presents the adaptation of BT to Sality and ZeroAccess.
Although similar adaptations of BT is possible for GameOver Zeus, it was not pos-
sible to evaluate it as GameOver Zeus has been sinkholed since 2014.

4.2.2.1 BoobyTrap (BT)

An BT node can be a regular bot or a sensor node (cf. Sect. 2.3.3) that is enriched
with detection mechanisms or ‘traps’ to autonomously identify misbehaving nodes
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that are contacting it. As a proof-of-concept, a sensor is implemented as a BT node
through the remainder part of this work. All communication with the BT node is
logged with correspondingmetadata: timestamp, payload, source IP, and source port.
Compared to conventional sensors, BT nodes can have additional functionalities such
as responding to NL requests with valid replies and (re)sending valid probemessages
to the sender of a request message. BT nodes can also listen for incoming connections
or messages on a secondary port (if required), as it is needed for one of the traps
(described later). Take note that in this work, the deployed BT nodes only return
non-bot entries, i.e., other sensor nodes, to avoid participating in the regular botnet
maintenance activities due to legal constraints.

The BT mechanism leverages upon the following assumptions of crawlers that
are derived from the observations in real-world botnets.

1. Crawlers greedily attempt to discover/contact all bots by aggressively abusing the
botnet’s protocol to request NL .

2. Crawlers cannot distinguish BT nodes from normal bot without first interacting
with them.

The main idea of BT is to identify “misbehaving” nodes, i.e., crawlers, by distin-
guishing their behavior from bots on the basis of violations of the respective botnet’s
MM protocol. These behaviors can be categorized according to the following classes:
Defiance, Abuse, and Avoidance, that are generic to any P2P botnet.

Defiance

Bots that defy the botnet-specific MM protocols can be classified as crawlers. An
example of such defiance includes omitting certain prerequisite actions or mandatory
message exchange(s) before requesting an NL . In some cases, it is also possible to
identify a crawler based on its behavior of contacting all discovered entries, even
when the botnet protocol applies certain restriction to entries that should be chosen
as potential neighbors. For example, entries that have a matching /20 subnet with
an existing entry are ignored by GameOver Zeus (cf. Sect. 3.1.2.2). As such, if a BT
node returns an entry of another (BT) node that is from the same /20 subnet, and if
new node is contacted by the same node, this behavior can be classified as a crawler.

Abuse

In P2P botnets, the ability to request new neighbors is necessary to prevent getting
isolated from the botnet overlay. However, crawlers make use of this NL exchange
mechanism to reconstruct the network topology of the botnet (cf. Sect. 2.3.2). There-
fore, bots in most recent P2P botnets return only a subset of their NL to prevent a
crawler from retrieving the entire NL easily (cf. Sect. 2.4.3.1). Since the presence of
churn also encourages crawlers to obtain snapshots of the botnet as fast as possible
to avoid introducing bias in the monitoring results (cf. Sect. 2.4.1), crawlers typically
crawl aggressively [2]. In contrast, bots usually probe their neighbors only once per
the defined interval of the MM-cycle. Thus, a frequency-based detection mechanism
can be utilized to detect crawlers that abuse the NL exchange mechanism. In fact,
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such a countermeasure is already implemented by the GameOver Zeus botnet (cf.
Sect. 3.1.3).

Avoidance

TheMMof a botnet defines the sequence ofmessage exchange aswell as the structure
of the messages required for botnet communication. Crawlers may omit some of
it, which could be optional, to reduce communication overhead or to refrain from
helping the botnet, e.g., sharing of botmaster commands. By deliberately sending
botnet-specific requests that would otherwise generate a verifiable reply, crawlers
that are refusing to respond (or ignore the requests) can be detected accordingly.

4.2.2.2 Adaptation of BoobyTrap for Sality

In the following, three crawler detection mechanisms or traps are adapted for Sality,
adhering to two out of the three misbehavior classes presented in Sect. 4.2.2. Each
trap’s name for Sality is prefixed with an S, and the abbreviation of the respective
detection class. There are two traps for Sality in the class of Defiance, i.e., SD1-
IgnoreTrap and SD2-BaitTrap, and one trap from the class of Abuse, i.e., SAB-
BurstTrap. Take note that a trap can also be set up from the class of Avoidance based
on the appended URLPack within the Hello message exchange process. However,
such a trap for Sality is omitted in this work as it may induce self-DDoS on the BT
node itself as an amplification attack [9].

SD1-IgnoreTrap

The MM protocol of Sality dictates that a bot uses a Hello message to probe the
responsiveness of its neighbors (cf. Sect. 3.2.2). If the neighbors are responsive, and if
the probing bot requires additional neighbors, only then, it sends an additional NLReq

message. As such, an NLReq is always preceded by a Hello message. Crawlers, that
want to simplify this process to reduce the communication overhead for crawling,
may decide to ignore the Hello message and send only NLReq messages to the bots.
Moreover, simplifying the process also reduces the amount of time required for the
crawler to obtain a snapshot. For each received NL request, the BT node checks if
there has been a preceding Hellomessage logged in the database. If no record exists
for the Hello message, the node is flagged as a crawler.

SD2-BaitTrap

The MM protocol of Sality also ensures that an IP address can only be present once
in a bot’s NL (Line 3, Algorithm4.2).When a bot discovers a potential neighbor with
the same IP but different port (Line 5, Algorithm4.2), it omits the new entry. This trap
exploits this behavior by deliberately responding to all received NLReq with an entry
that points back to the BT node’s secondary port. Legitimate bots would ignore such
a reply, since the initial entry, i.e., the entry with the primary port, is still responsive
in the NL from the previousMM cycle. Since crawlers are often greedy, the crawlers
may also probe the secondary port of BT and trigger the detection mechanism. Take
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note that this particular baitingmechanism can also be executed using two (or more)
colluding BT nodes.

SAB-BurstTrap

Bots in Sality probe the responsiveness of their neighbors once every 40min (cf.
Sect. 3.2.2). Bots can also (optionally) request neighbors of their neighbor by sending
an NLReq. As such, this trap keeps track of a bot’s NL requesting frequency, i.e.,
based on the IP address of the requester. If a bot sends too many NL requests within
a short interval, i.e., < 40min, this behavior triggers the detection mechanism.

4.2.2.3 Adaptation of BoobyTrap for ZeroAccess

In the following, three crawler detectionmechanismsor traps are adapted forZeroAc-
cess from the different misbehavior classes presented in Sect. 4.2.2. Each trap’s name
is prefixed by an abbreviation of the botnet’s name and the respective detection class.

ZD-NonComplianceTrap

The MM protocol of ZeroAccess allows bots to identify if a getL message was
received. This is done by checking the flag value of the received request message, i.e.,
f lag == 0. In reply, legitimate bots always send a getL+ message that has its flag
set to 1. However, it would still be protocol-compliant if a bot sends a getL+message
with the flag set to any non-zero integers, i.e., f lag 	= 0. This trap deliberately sends
a getL+with a modified flag-value, e.g., f lag = 3, for every received getLmessage.
A legitimate bot will respond to all requests with retL or retL+messages that have the
flag values copied from the received requestmessages (Line 2). In addition, due to the
possibility of UDP hole-punching in ZeroAccess [1], all legitimate bots (including
those behind NAT-like devices) should respond to any getL+ message received.
Hence, the BT node examines whether the received replies contain inconsistent flags
and detect the crawlers accordingly.

ZAB-BurstTrap

The MM mechanism of ZeroAccess indicates that a bot would only contact a par-
ticular neighbor at most three times within a duration of 256s (cf. Sect. 3.3.2). This
observation is exploited in this trap that triggers when any bot attempts to contact
the BT node aggressively in quick successions, i.e., more than three requests within
256s. Similar to SAB-BurstTrap, if more than three requests are received from a
single bot within a short interval, i.e.,< 256s, this detection mechanism is triggered.

ZAV-IgnoreTrap

This trap works in tandem with the ZD-NonComplianceTrap. Crawlers that received
the BT node’s getL+ requests with modified flag values may (intentionally or unin-
tentionally) decide not to respond to the message. Considering the fact that UDP hole
punching is exploited, all bots including those behind NAT are expected to respond
to all valid requests. Therefore, any node deliberately refuse to reply can be flagged
as a crawler.
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4.3 Evaluation

This section presents the evaluation results and analysis of the mechanisms proposed
in Sects. 4.1 and 4.2 in three parts. In the first part (Sect. 4.3.1), a thorough analysis
of ZeusMilker is presented in the context of circumventing the NL restriction
mechanism of GameOver Zeus as described in Sect. 4.1.1. In addition, the evaluation
of the enhanced restriction mechanisms as introduced in Sect. 4.2.1 is also presented.

The second part of this section (Sect. 4.3.2) presents the evaluation results of the
Less Invasive Crawling Algorithm (LICA) as described in Sect. 4.1.2. The final part
(Sect. 4.3.3) provides an analysis of the ability to detect crawlers in existing botnets
through the mechanisms introduced in Sect. 4.2.2.

4.3.1 Evaluation of ZEUSMILKER

The evaluation of ZeusMilker is outlined below. First, the dataset utilized for eval-
uating ZeusMilker is discussed in Sect. 4.3.1.1. Then, Sect. 4.3.1.2 elaborates on
the setup for the experiments and Sect. 4.3.1.3 introduces the metrics used in the
evaluations. After that, the investigated research questions are listed along with the
expectations of the outcome in Sect. 4.3.1.4. Finally, the results of the experiments
are presented in Sect. 4.3.1.5.

4.3.1.1 Dataset

A real-world GameOver Zeus dataset is used in the evaluation that consists of crawl
information collected for a duration of approximately five hours from the botnet on
25th April 2013. The sanitized dataset contains information of 900 bots that have
between 10 to 70 entries in their respective NL. The median of the dataset is 34
entries with a standard deviation of 18.37.

4.3.1.2 Experimental Setup

The MM of GameOver Zeus was implemented in OMNeT++1 by making use of
OverSim2 [10] as the simulation framework. OMNeT++ is a discrete event simulator
that allows simulation of networks. OverSim adds the required functionality for
overlays that is leveraged in implementing the membership management mechanism
of the botnets. For ZeusMilker, the implementation includes the NL restriction
mechanism as described in Algorithm4.1. As for the generation of random keys

1http://www.omnetpp.org
2http://www.oversim.org

http://www.omnetpp.org
http://www.oversim.org
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withinOverSim, theOverlayKey class is utilized to generate keys following a uniform
distribution to investigate the effects of key distribution within the NLs.

For each iteration of the experiment, data for each bot in the simulation is uni-
formly selected at random from the dataset described in Sect. 4.3.1.1 depending on
the investigated NL size. The bots are then assigned the selected key and have their
NL filled with the associated NL entries. Since the order of entries in a bot’s NL is
non-deterministic, a random permutation is applied to the contained entries before
storing them as the NL.

The following approaches were also implemented in the simulation framework
to evaluate the effectiveness of the NL restriction mechanism in GameOver Zeus as
well as the efficiency of ZeusMilker in comparison to the following approaches:

• ZEUSMILKER is the proposed approach for strategically spoofing keys to milk
all entries from a bot’s NL implemented as per Algorithm4.5.

• Random is the only other known monitoring approach for monitoring GameOver
Zeus [1]. The spoofed keys are 160-bit in length and generated uniformly at random
for each request.

• BinaryHalving spoofs keys by halving the ID space in the manner of a binary
search algorithm. For each iteration of the algorithm, two keys are derived between
two previously crawled keys. This halving process is repeated until the maximum
number of permitted requests is reached. For that, BinaryHalving initially spoofs
with 0(b) and 1(b), and adds the pair (0(b), 1(b)) to a FIFO queue Q. Then it
executes the following statement T times:

1. Remove the head (K1, K2) of Q and determine the keys h1 = 
 K1+K2
2 � and

h2 = h1 + 1,
2. Crawl using spoofed keys h1 and h2, and
3. Add (K1, h1) and (h2, K2) to Q.

For each experiment, the results were averaged over 50 independent trials with
confidence intervals of 95%. Furthermore, for each iteration of the experiments, a
unique seed value has been used to initialize the simulation models and to choose a
random node from the dataset. In all of the experiments, the maximum number of
requests is limited to 2n requests, where n = |NL|.

4.3.1.3 Evaluation Metric

The success of anti-crawling countermeasures and the performance of ZeusMilker
is measured by the discovery ratio. It is defined as the unique fraction of an NL
that is retrieved during crawling. Hence, the discovery ratio is an assessment of both
the efficiency of the crawling algorithm as well as the effectiveness of the botnet’s
countermeasures, allowing the comparison of different crawling and anti-monitoring
strategies.



4.3 Evaluation 59

4.3.1.4 Research Questions and Expectations

One of the countermeasures to hamper successful botnet monitoring is to restrict
the number of entries that are returned after receiving NL request (cf. Sect. 2.4.3.1).
Hence, the following research question needs to be answered in the evaluation:

• What is the influence on different NL sizes n and NL return sizes l?

ZeusMilker is expected to obtain all entries successfully with at most 2n requests in
every scenario. Meanwhile, Random and BinaryHalving are expected to miss some
entries. The Random crawling strategy retrieves a randomized set of entries and has a
high probability of missing a few keys.BinaryHalving, in contrast, divides the search
space strategically, but does not make use of knowledge gained in previous steps and
as such may continue to query regions with few or no keys intensively. Furthermore,
the performance of all algorithms is expected to improve with increasing l, because
more keys are discovered in each step. The increase should be particularly strong
for Random as the probability to be successful when spoofing randomly is highly
dependent on the number of trials.

The distribution of keys within a real world GameOver Zeus bot’s NL is observed
biased to the key of the bot itself [1]. However, due to the botnet’s NL return mech-
anism (cf. Sect. 3.1.2.1), different key distributions may influence the number of
requests needed to be able to retrieve the entire NL.

Examples of other distributions that could occur in a bot’s NL are:
1. Random Distribution: A node’s NL contains only randomly generated

keys.
2. Consecutive Entries: A node’s NL contains only consecutive keys, e.g.,

k j+1 = k j + 1 mod 2160.

Therefore, the following research question needs to be answered in the evaluation:

• How do the different distributions of keys within a bot’s NL influence the perfor-
mance of the spoofing algorithms?

ZeusMilker is expected to retrieve all entries within a bot’s NL independent of
the chosen distribution. However, in the case of Consecutive Entries, it is expected
to retrieve all unique entries in only n requests instead of 2n, as it is not necessary
to check for additional keys between two neighboring keys. In contrast, Random
and BinaryHalving are expected to require more crawling requests in this setting.
Especially, BinaryHalving is expected to perform worst, as it spoofs many keys that
yield no new knowledge in the Consecutive Entries setting. However, in the Random
Distribution setting, both are expected to be closer, but still inferior to the crawling
performance of ZeusMilker, as a result of the uniform key distribution.

The existing NL restriction mechanism of GameOver Zeus is exploitable as the
requestingbot canmanipulate the choice of returned entries basedon the supplied key.
Newer countermeasures presented in Sect. 4.2.1 attempt to either deny the possibility
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of manipulating the entries at all or allow restricted degree of manipulation on the
returned entries. As such, the following research question needs to be answered in
the evaluation:

• How does the crawling algorithms perform in the presence of countermeasures
like Random Node Return, Bit-XOR+, and Bit-AND?

For Random Node Return, both Random and BinaryHalving algorithms are
expected to be comparable in performance since the returned entries are not influ-
enced by their key spoofing algorithm. However, ZeusMilker is expected to perform
poorly if the choice of keys returned by the bot mislead the algorithm into believing
that there are no more keys left undiscovered.

For Bit-XOR+, Random is expected to perform best compared to the other two
algorithms as it produces higher entropy of keys used in selecting neighbors to be
returned. Finally, for Bit-AND, all algorithms are expected to perform poorly since
the bits of the returned entries are highly biased to 0 with a probability of 3/4.

4.3.1.5 Results

In the following, the findings are summarized on the impact of parameters l, n, the
assumed key distribution, and effectiveness against advanced countermeasures on
the three different crawling algorithms.

Impact of the size of the returned neighborlists l

First, the impact of the size of the returned NL l is discussed. Figure4.2a summarizes
the discovery ratio for a default parameter setting of GameOver Zeus with n = 50
and l = 10 in dependence on the number of requests for all three crawling strategies.
As can be observed, ZeusMilker can successfully retrieve all entries in a bot’s NL
within 100 requests. At the same time, Random discovers only 92% and BinaryHalv-
ing only 53%of all entries in a bot’s NL. Thus, the results confirm the expectation that
BinaryHalving is not suitable for such biased NLs. BinaryHalving performs poorly
because of retrievingmanyduplicate entries as a result of spoofingkeyswithin a range
of the key space that provides no additional new information. For all algorithms, the
number of initially retrieved entries increases fast with only a few queries. Later
on, when only a few keys are left undiscovered, the slope of the performance curve
decreases. Note that during the first few queries, the Random crawling algorithm
even manages to discover more number of unique keys than ZeusMilker. A poten-
tial reason for the initially weaker performance of ZeusMilker is the choice of the
two spoofed keys s1, s2 (see Eq.4.1), which are potentially very close and hence can
result in returned sets with a high overlap. However, ZeusMilker is clearly superior
to Random and BinaryHalving in discovering larger portions or even the complete
NL.

Figure4.2b shows the discovery ratio in dependence on the number of crawling
requests for n = 50 and l = 1. ZeusMilker still retrieves all entries within the pre-
dicted 100 requests, though slower than for l = 10. As only one entry per request can
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(a) MilkingAnalysis (n = 50,l = 10) (b) MilkingAnalysis (n = 50,l = 1)

(c) MilkingAnalysis (n = 50) (d) MilkingAnalysis (l = 10)

Fig. 4.2 Performance analysis of ZeusMilker, Random, and BinaryHalving on GameOver Zeus
for various NL sizes n and returned NL sizes l

be obtained, the number of retrieved keys initially increases linearly and then con-
verges slowly to a discovery ratio of 1. The decrease in performance is more apparent
for Random and BinaryHalving: The discovery ratio for both approaches decreases
drastically compared to l = 10, to 19% for BinaryHalving and 37% for Random at
100 requests. Amore detailed analysis of the impact of l is given in Fig. 4.2c showing
the discovery ratio in dependence on l for n = 50. ZeusMilker successfully obtains
all neighbor entries within 2n = 100 queries independent of l, whereas the discov-
ery ratios after 2n queries of the other two strategies are significantly affected by l.
Since both algorithms are unable to strategically spoof keys, the fraction of retrieved
keys drastically decreases when the number of returned keys l is reduced. Hence, the
results of this analysis match the initial expectation that smaller values of l restrict
the amount of new knowledge the crawling algorithms could obtain. However, since
ZeusMilker can strategically spoof keys to discover all entries in a NL, its ability
to retrieve the complete list remains unaffected by different values of l.
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(a) GameOver Zeus Milking
Analysis for Random Distribution

(b) GameOver Zeus Milking
Analysis for Consecutive Entries

Fig. 4.3 Performance analysis of ZeusMilker, Random, and BinaryHalving for different key
distributions in NLs (n = 50, l = 1)

Impact of the size of the neighborlists n

Next, the impact of the size of the NL n on the crawling performance is analyzed.
Figure4.2d shows the discovery ratio of the different algorithms in dependence on
n for l = 10. Independent of n, ZeusMilker successfully discovers all nodes in
an NL. In contrast, the performance of Random slowly decreases with increasing n,
because it is harder to discover large sets simply by random trials than on smaller
sets. The slight decrease in performance of BinaryHalving is not significant.

Influence of different key distributions

Apart from n and l, different key distributions in NLs may also influence the perfor-
mance of crawling algorithms. Figure4.3a shows the discovery ratio in dependence
on the number of requests for all three crawling strategies in the Random Distribu-
tion setting. As expected, ZeusMilker can obtain all entries with at most 2n = 100
requests whereas Random and BinaryHalving only discover about 80 and 90% of all
NL entries, respectively. Both strategies perform considerably better than the results
for the real-world data set, increasing their discovery ratio by more than a factor of 2
and 4, respectively. This improved performance is contributed by the well-distributed
keys, resulting in fewer duplicates during successive crawling attempts. As expected,
BinaryHalving also performs much better than Random when the uniform key dis-
tribution assumed by BinaryHalving is indeed given.

The inability ofBinaryHalving to dealwith non-uniformkeydistributions becomes
evident when considering Consecutive Entries. Most of the time, BinaryHalving
discovers only two keys, i.e., discovery ratio is about 4%. A potential reason is the
repeated spoofing of keys at distances away from all keys in the NL. As a result,
the same two keys are returned repetitively. ZeusMilker, in contrast, can suc-
cessfully discover all entries with only n requests instead of 2n because the sets
I (K j , K j+1) are empty so that no additional n keys need to be spoofed to verify that
I (K j , K j+1) ∩ NL = ∅. In contrast, the performance of the Random crawling is
similar to its performance when considering randomly distributed keys.
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(a) Random Node Return (b) Bit-XOR+

(c) Bit-AND

Fig. 4.4 Performance analysis of ZeusMilker, Random, and BinaryHalving on the presence of
different advanced countermeasures (n = 50)

Enhanced Restriction Mechanisms

The evaluation results of the proposed anti-crawling countermeasures in Sect. 4.2.1 as
depicted in Fig. 4.4 is presented in the following. The Random Node Return analysis
in Fig. 4.4a indicates the inefficiency of this countermeasure in restricting the crawler.
BothRandom andBinaryHalvingwere able to retrievemore than 80%of a bot’sNL in
all parameter settings after 100 requests. However, ZeusMilker performed poorly
due to the inherent incorrect assumptions made on the returned keys that led the
algorithm to falsely assume there are no more keys left undiscovered.

The results for the Bit-XOR+ countermeasure indicate that Random performs best
with an average of about 80% of nodes discovered for l ≥ 4, as displayed in Fig. 4.4b.
Hence, the performance of Random is largely not influenced by bits flipping, as
can be seen from comparing Fig. 4.4b and Fig. 4.2c, depicting the performance of
the crawling for the unaltered GameOver Zeus. Although BinaryHalving initially
performs better than ZeusMilker for l ≤ 7, its performance degrades for l > 7, as



64 4 Crawling Botnets

a result of spoofing keys that yield more duplicate entries. However, ZeusMilker’s
strategy of deriving keys based on previous knowledge provides more randomness,
i.e., a variety of key prefixes, in the spoofed keys, hence obtains a slight improvement
than BinaryHalving towards the end.

Bit-AND, as displayed in Fig. 4.4c, presents a better restriction mechanism than
Random Node Return and Bit-XOR+ as the discovery ratio of all crawling algo-
rithms is kept below 50% for l ≤ 10. The discovery ratio increases with the size of
the returned NLs l in a close to linearly manner. Although the poor performance of
all strategies in terms of discovery ratio indicates the effectiveness of this counter-
measure, the bias resulting from this strategy may negatively affect the robustness
of the resulting overlay.

4.3.2 Evaluation of the Less Invasive Crawling Algorithm
(LICA)

The evaluation of LICA is outlined below. First, the dataset utilized for evaluating
LICA is discussed in Sect. 4.3.2.1. Then, Sect. 4.3.2.2 elaborates the setup for the
experiments and Sect. 4.3.2.3 introduces the evaluation metric. After that, the inves-
tigated research questions are listed along with the expectations of the outcome in
Sect. 4.3.2.4. Finally, the results of the experiments are presented in Sect. 4.3.2.5.

4.3.2.1 Dataset

Two different real-world unstructured P2P network datasets in the form of directed
graphs, i.e., GameOver Zeus and Gnutella, were used to evaluate the performance
of crawling algorithms.

The GameOver Zeus dataset used in this evaluation consists of crawling infor-
mation collected in approximately five hours from the GameOver Zeus botnet on
25th April 2013. It has been obtained from previous work in analyzing GameOver
Zeus [1]. From the initial 1, 061, 402 edge entries in the database, 667, 704 edge
entries were removed that consist of biases that were made known by the authors:
sinkholed nodes (identified by an out-degree < 10), sensor nodes (identified by an
in-degree> 500), and duplicated edges. Take note that, since the crawl data consists
of multiple continuous crawls over a longer period, some bots may have reported a
lot of neighbors than usual, i.e., 50. This is mainly due to churn dynamics within the
botnet (cf. Sect. 2.4.1).

The second dataset is the crawl data of the unstructured P2P file-sharing network
Gnutella, in August 2002 that was obtained from the SNAP repository.3 This dataset
was used as it is for the evaluation, i.e., without any sanitization. A summary of

3SNAP: http://snap.stanford.edu/data/

http://snap.stanford.edu/data/
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Table 4.1 Graph properties of the datasets

Dataset name Gameover zeus Gnutella

Nodes 82,471 62,586

Nodes (out-degree > 10) 10,794 16,387

Avg. NL size 4.6 2.4

Highest NL size 97 78

Edges 379,088 147,892

Avg. clustering coefficient 0.01934 0.00047

Diameter 11 31

Avg. path length 5.2 9.2

the dataset properties is provided in Table 4.1. Please note that properties listed for
GameOver Zeus in the table are the post-sanitize properties of the dataset.

4.3.2.2 Experimental Setup

The analysis was conducted using Python and the NetworkX module [11], with all
crawling algorithms discussed in Sect. 4.1.2, i.e., Less Invasive Crawling Algorithm
(LICA), Breadth-First Search (BFS), and Depth-First Search (DFS), implemented
as Python scripts. To address the issue of some nodes having NL size of more than
50, all entries of a bot are shuffled and split into a sequence of chunks, i.e., 50
entries in each chunk. This value is chosen to resemble closely the GameOver Zeus’
implementation of the NL size.

For every received NL request from the implemented crawling algorithms, a node
will return a single chunk from its sequence and repeats the sequence after returning
the last chunk (if queried further). In the experiments, a full crawl ends when there
are no more new peers to crawl. In addition, LICA also ends its crawl when the
maximum allowed iterations have exceeded (cf. Sect. 4.1.2).

Fifty (50) independent experiments were executed on each of the experiments
and the final results were averaged over them. For each iteration of the experiment,
the simulation uniformly chooses a common seed peer to begin crawling for all the
algorithms. Furthermore, for the clarity of the resulting plots, all algorithms terminate
their crawling as soon as 95% (indicated by the horizontal dashed lines) of nodes in
the datasets have been discovered unless stated otherwise.

4.3.2.3 Evaluation Metric

To evaluate the performance of a crawling algorithm, a ratio of discovered peers
is used as an evaluation metric. This metric represents the ratio of unique peers
discovered dependent on the number of sent request messages.
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Meanwhile, to evaluate the efficiency of a crawling algorithm, the local-ratio
approximation ofminimumvertex cover presented byBar-Yehuda et al. [6] is utilized.
This approximation provides a value of the number of minimum nodes to be crawled
to obtain a snapshot of the botnet graph, i.e., a vertex cover. The approximation ratio
of this algorithm is 2− 1

k , where k is the smallest integer. The implementation of this
approximation algorithm that is available inNetworkX operates on undirected graphs.
Hence, it has been modified to be applied to directed graphs. In the remainder of this
evaluation, this modified algorithm is referred as Approximative Minimum Vertex
Cover (AMVC).

4.3.2.4 Research Questions and Expectations

LICA is a flexible crawling algorithm that requires a combination of parameters to
perform well. Depending on the choice of the parameters, an ongoing LICA-based
crawlmay terminate quickly or much later. However, the process of selecting the best
combination of parameters w, r , and t is not very intuitive. For that, the following
research question needs to be answered:

• What is the best combination of parameters for LICA in GameOver Zeus and the
Gnutella dataset?

DFS and BFS-based crawling algorithms attempt to discover all bots in a greedy
manner. However, not much have been discussed on the performance of these algo-
rithms in a real world botnet scenarios. Therefore, the following research question
needs to be answered:

• How well do the different crawling algorithms perform on real world datasets?

LICA is expected to perform better compared to the other algorithms as it priori-
tizes backbone nodes and terminates as soon as the ratio of discovery falls below the
threshold value. BFS is expected to perform better than DFS due to candidate priori-
tizing strategy adopted by this algorithm, i.e., first come first serve, which discovers
more number of new peers than its counterpart.

In addition, since the best results – relative to the goals of LICA – in enumerating
all bots in a botnet is to obtain aminimumvertex cover, it is of interest to identifywhich
crawling algorithm perform closest to the AMVC value. Therefore, the following
research question needs to be answered:

• Which crawling algorithm provides best efficiency?

LICA is expected to perform the best due to the presence of a natural backbone
that can be leveraged by the crawlers. Meanwhile, BFS is expected to perform also
slightly better than DFS due to the candidate selection strategy that discovers more
number of unique peers in the beginning.
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4.3.2.5 Results

Rationale

Existing crawling algorithms which are implemented using BFS or DFS methods to
crawl botnets may not be efficient. The node selection criterion used by both these
algorithms is not based upon any other information except the order the nodes are
stored and processed. Therefore, a series of experiments is conducted to understand
the impact of the node selection criteria on the crawling performance of LICA.

Best combination of parameters for LICA

First, it is investigated on when to terminate an ongoing crawling process to avoid too
many unnecessary crawling steps. For that, LICA contains a simple mechanism that
checks the gain after a window w of crawling steps, and that terminates when the
gain drops below threshold t during the crawl. As the algorithm utilizes a learning
curve to terminate the crawl, the algorithm is adjustable by manipulating its param-
eters. For example, to overcome the blacklisting mechanism of GameOver Zeus, 4

the R value can be set to 11, i.e., maximum number of requests that are allowed to be
sent to a particular node. Alternatively, subsequent full crawls can be delayed by 60 s.
The value R is set to 2 in all experiments because it is known from the GameOver
Zeus datasets, that all algorithms need to request the NLs from any node at most
twice, i.e., two chunks, to obtain the full NL.

Also, by deciding combinations of values for the window size w and threshold t ,
the resulting crawl can also be shaped. For example, by specifying a high threshold
value, e.g., > 1.0 in combination with a high window size, e.g., 3000, the backbone
nodes may be targeted for crawling. Similarly, when the intention is to crawl as many
nodes as possible, the threshold value can be set to a relatively low value, e.g.,< 0.05
in combination with a low window size, e.g., 300. The values of the window size and
threshold used in this work were obtained through a parameter study with various
combinations. The effects of different combinations of promising values are analyzed
on the GameOver Zeus dataset with the value R = 2 as presented in Fig. 4.5a.

From the analysis, it is identified that when the threshold value t , is low, e.g., 0.1,
and with the window value w of 300, a full crawl results in about 94.7% of the entire
dataset known just with about 29, 000 sent requests. Meanwhile, the parameter com-
bination of t = 0.45,w = 1000 obtained a lower coverage of 93.3% although with
17.4% fewer requests than the previous combination. However, with an increased
threshold value, e.g., 0.8, and window value w = 2000, LICA terminates with a
coverage of 93.9% despite requiring 1, 800 requests more than the previous com-
bination. Therefore, it is decided that the combination, t = 0.8,w = 2000 is more
reasonable to crawl the GameOver Zeus dataset efficiently. Unfortunately, the cri-
teria for selecting the best combination of parameters are not straightforward, i.e.,
the combination of parameters can only be selected based on the basis of a trial and

4At the time of this work, GameOver Zeus allowed 12 requests to be received within a sliding
window of a minute. This value was later changed in a subsequent botnet binary update to only 6
requests. (cf. Sect. 3.1.3)



68 4 Crawling Botnets

(a) Analysis of LICA’s Parameter
Selection on P2P Zeus Dataset

(b) P2P Zeus Restricted Crawl Analysis

(c) Gnutella Restricted Crawl Analysis (d) P2P Zeus Unrestricted Crawl Analysis

Fig. 4.5 Performance analysis of LICA, BFS, and DFS. (a) The performance of LICA under
different combination of parameters. The performance of all observed crawling algorithms on (b)
GameOver Zeus and on (c) the Gnutella dataset, measured in the ratio of nodes discovered in
dependence on the total number of requests sent. (d) contains the results of all crawling algorithms
on the GameOver Zeus dataset without any NL restrictions, plotted by the ratio of nodes discovered
depending on the total number of nodes crawled

error. Although some general combination of values can be utilized, based on the
requirement of the crawl, LICA performs better if fine-tuned with more appropriate
parameters to improve the crawling efficiency, i.e., based on results from previous
crawls.

Performance analysis of crawling algorithms

The results of the crawl performance analysis are presented in Fig. 4.5b and 4.5c.
LICA was executed on the GameOver Zeus dataset using the previously chosen
parameter combination: r = 2, t = 0.8, and w = 2000. The crawl performance in
Fig. 4.5b indicates a much better performance of LICA in comparison to the other
methods. For LICA, the points in which there were results less than 16 individual
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experiments were omitted as a confidence interval cannot be obtained from that.
LICA required 25, 780 requests to obtain a 93.86% coverage of the peers in the
botnet. This is about 27% of the total requests made by the BFS algorithm to obtain a
95.0% coverage.DFS performed worst in this analysis by requiring additional 400%
requests than needed by LICA.

The convergence point between the BFS and DFS algorithm indicates the point
where all known nodes during the initial crawl have been crawled. The growth that
is observed after that point is from new nodes discovered from re-requesting NLs
from previously known nodes, i.e., subsequent chunks of their NL. This conver-
gence behavior is not observed in LICA because it terminates the crawling when the
observed gain drops below the threshold, and the gain immediately picks up in the
subsequent crawl iteration.

It is worthmentioning that by reducing the size of theNLs or the returned subset of
the list, the effort to crawl the entire network increases proportionally for all crawling
algorithms. This is verified by running another set of experiment with a returned NL
of size 30 and R = 3. The observed performance between the crawling algorithms
remain relatively similar to the results in Fig. 4.5b.

The experiment is repeated on theGnutella dataset using the following parameter
combination: r = 2, w = 400, and t = 0.3. However, the performance gain of
LICA for Gnutella dataset in Fig. 4.5c is not as significant as in the GameOver Zeus
dataset. Further investigation revealed that this behavior is due to the diameter of this
dataset being very high, i.e., 31, with an average path length of 9.2. Moreover, nodes
in this dataset have a rather low average size of the NL, e.g., 2.4 entries. Hence, due
to the inherent network structure in this dataset which is unlike the structure of most
P2P botnets, the gain is much lower, as all crawlers need to go through almost every
available node to obtain a full view. Nevertheless, the performance of LICA is better
compared to the other two algorithms as presented in Fig. 4.5c. For example, with
31, 941 requests, LICA discovered 75.5% of nodes that is about 7% more than the
other algorithms.

Efficiency analysis of crawling algorithms

For this purpose, the performance of all the three crawling algorithms on the
GameOver Zeus dataset are compared with respect to the AMVC value in Fig. 4.5d.
The simulation settings weremodified to allow all available neighbors of a node to be
returned in a single request and disabled the crawl termination mechanism in LICA.
As such, the purpose of this particular analysis is to find out how many nodes need
to be crawled to obtain the full view of the network.

Based on this analysis, it is demonstrated by heuristic that LICAoutperforms other
methods in performing closer to the calculated AMVC value, 14, 050 nodes. At the
point of the AMVC, LICA discovered a total of 90.6% nodes in comparison with BFS
that only discovered 54.1% orDFS with 38.2% of nodes. This is interesting because
it indicates that by crawling and prioritizing the ‘popular’ peers, the backbone of the
network is being leveraged and crawled. This corresponds to the finding of Stutzbach
et al. [5] that reports the existence of biased connectivity with peers with higher
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uptime, i.e., popular nodes in this work. This allowed LICA to exploit this feature
and outperform existing crawling algorithms.

4.3.3 Evaluation of the BoobyTrap Mechanism

The evaluation of the BoobyTrap (BT) mechanisms as proposed in Sect. 4.2.2 is out-
lined next. First, the dataset utilized for evaluating BT is discussed in Sect. 4.3.3.1.
Then, Sect. 4.3.3.2 elaborates the setup for the experiments. After that, the inves-
tigated research questions are listed along with the expectations of the outcome in
Sect. 4.3.3.3. Finally, the results of the experiments are presented in Sect. 4.3.3.4.

4.3.3.1 Dataset

The datasets that were used for evaluation were obtained using a real deployment of
BT nodes, i.e., sensors, in Sality Version 3 (cf. Sect. 3.2) and ZeroAccess Network
2 (port 16470) (cf. Sect. 3.3). Each BT node was popularized for two weeks before
the measurements were obtained. After that, the measurements were collected for a
duration of one week in each botnet: Sality (23/09/2015 00:00:00 CET to 29/09/2015
23:59:99 CET) and ZeroAccess (02/10/2015 15:57:55 CET to 09/10/2015 15:57:54).
Table 4.2 presents the summary of the datasets.

4.3.3.2 Experimental Setup

The experiments were conducted with BT-enhanced sensors that were implemented
inPython language for both botnets, i.e., Sality andZeroAccess.All detectionmecha-
nisms were triggered by the type and contents of the responses received (or missing)
from a node. However, only for the frequency-based detection mechanisms, i.e.,
Abuse class, a configurable sliding window-based detection mechanism was imple-
mented to help identify IPs of aggressive crawlers. This detection mechanism takes
two input parameters: length of the sliding window t (in seconds) and the mini-
mum number of messages nmin to trigger the detection mechanism. If a particular

Table 4.2 Statistics of the collected data

Sality (Version 3) ZeroAccess (Port 16470)

Total IPs 735, 443 25, 236

Average IPs/day 162, 804 7, 128

Min IPs/day 155, 957 5, 905

Max IPs/day 177, 267 7, 864
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node from an IP address sent more than nmin messages within any observed sliding
window, a detection will be triggered.

To evaluate the performance of the proposed mechanisms, the amount of IP
addresses that triggered the BTs were considered and manual verification was con-
ducted on the log data to identify if the behavior of a node behind an IP matched
with that of a possible crawler. Some of the characteristics that were inspected and
considered are listed in the following:

• Rate of consecutive request messages along with the pattern of utilized source
ports (if any)

• Fixed values of certain fields within a message that would otherwise be not-fixed
• Refuse to exchange neighbors or botmaster update/attack payloads

Since manual checking cannot always yield a binary answer, i.e., yes or no, the IPs
are classified on a best-effort basis using the following classifications: (1) Highly
Possible, (2) Possible, (3) Unknown, and (4) False Positive. A node is classified
as Highly Possible when there is significant evidence that resembles a crawler’s
behavior, e.g., avoiding to exchange information. A node is classified as Possible
when there is evidence that (almost) equally resembles as both a possible crawler
and a bot. A node is classified asUnknownwhen the available evidence is not helpful
to make any conclusion. Finally, a node is classified as False Positivewhen logs only
indicate the behaviors of a bot. An explanation of why those bots were flagged is
also provided.

For the evaluation, an analysis to identify the best threshold values for the param-
eters t and nmin in the frequency-based detection mechanisms, i.e., SAB-BurstTrap
and ZAB-BurstTrap, is first done for both botnets. These threshold values are impor-
tant to minimize the false positives that may occur due to bots behind NAT and
proxy-like devices. Then, the performance BT is evaluated based on the research
questions presented in Sect. 4.3.3.3. Finally, the common characteristics exhibited
by the detected crawlers are discussed.

4.3.3.3 Research Questions and Expectations

BT detection mechanisms assume an IP address could only be associated to a single
crawler or bot. However, the threshold value to trigger a detection in the observed
sliding window can be configured in the detection mechanisms (when applicable)
to take into consideration influences of bots behind NAT and proxies. Hence, the
following research question needs to be answered in the evaluation:

• What are the suitable threshold values to minimize false positives generated by
bots behind NAT and proxies for frequency-based detection mechanisms, i.e., traps
within the class of Abuse?

A BT node can be deployed in most of existing botnets. However, the ques-
tion remains on how susceptible are current generation of crawlers against such
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crawler detection mechanisms. Therefore, the following research question needs to
be answered in the evaluation:

• How susceptible are current crawlers against the BT detection mechanisms?

Considering that not much work has been done in this aspect and the fact that current
and previous botnets have only implemented simple crawler detection/prevention
mechanisms, it is expected that most of current crawlers are not anticipating such
countermeasures. As such, many of the crawlers are expected to be detected by the
BT detection mechanisms. However, take note that there might be some crawlers
that were left undetected by BT.

Implementation of a crawler can range anywhere from bare minimum to full
functionality support of a botnet’s protocol (cf. Sect. 2.3.2). Moreover, a crawler
can also adopt various strategies to improve its efficiency in crawling the botnets,
e.g., multi-threading or distributed crawling. However, very little is known about the
characteristics or design choice of the crawlers currently out in the wild. Therefore,
the following research question needs to be answered in the evaluation:

• What are the common characteristics of existing crawlers in the wild?

4.3.3.4 Results

This section is outlined as following. Firstly, the results of a parameter study for
obtaining the threshold values for the BT mechanisms is presented. Then, the evalu-
ation results of the crawler detection mechanisms adapted for Sality and ZeroAccess
are presented. Finally, the common characteristics exhibited by the detected crawlers
are presented.

Parameter study of suitable threshold values for t and nmin

A parameter study of the various combination of parameters of t and nmin is con-
ducted. For Sality, the sliding window interval was varied, i.e., 60, 120, . . . , 2400 s,
and the experiments were repeated with different number of minimum messages
required to trigger a detection, i.e., 10, 20, . . . , 100 requests. Results indicated that
Sality’s BT performs best with the parameters t = 120 and nmin = 30. The analysis
was also repeated in a similar manner for ZeroAccess, and the results indicated that
the best parameters are t = 60 and nmin = 40. The higher number of messages
required to trigger detection for ZeroAccess in comparison to Sality is speculated to
be contributed by short the MM interval.

Performance of the BoobyTrap mechanisms

The overall results of the detection mechanisms are presented in Table4.3 according
to the respective classes of misbehaviors (cf. Sect. 4.2.2).

For the class of Defiance, two BTs were set up for Sality (SD1 and SD2) and one
for ZeroAccess (ZD). The SD2-BaitTrap for Sality was least triggered by crawlers.
However, this particular trap is also themost obvious indicator for a crawler as bots in
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Table 4.3 Performance of our BoobyTrap mechanism

Defiance Abuse Avoidance

SD1 SD2 ZD SAB ZAB ZAV

Detected IPs 4,212 3 88 11 188 108

After sanitization 966 – – – – –

Highly possible 4 3 7 9 116 35

Possible – – 81 1 72 73

Unknown 962 – – – – –

False positives 3,246 – – 1 – –

Sality would simply ignore entries that are already known and responsive, i.e., a bot
would ignore the entry of the BT’s secondary port as long as the entry with primary
port is still responsive. The SD1-IgnoreTrap was triggered by 4, 212 IPs throughout
the week, which seems abnormally high compared to other traps. Detailed analysis
of the results indicates that many of the flagged IPs are behind ISPs that use multiple
NAT IPs or load balancing configurations. Since each request in Sality is sent from a
new port (cf. Sect. 3.2.2), NAT devices assume that a new flow or connection is being
established and may decide to route the packet using a different proxy or NAT IP as
a load balancing technique. As such, the BT node recorded Hello messages from a
different IP than the one received for the NLReq , thus triggering the trap. These cases
were identified and sanitized by correlating a Sality-specific identifier. As a result,
we 77% of the detected IPs were identified to be false positives. Out of the remaining
966 IPs, only four IPs exhibited strong indication as crawlers. The remaining 962
IPs could not be reliably classified as their identifiers were set to Sality’s default
identifier, i.e., 1 (cf. Sect. 3.2.2.1). Hence, they were classified as Unknown.

The ZD-NonComplianceTrap was triggered by 88 IPs. Seven of those IPs, which
were detected on the first day, consistently responded with a retL message contain-
ing a fixed flag, i.e., f lag = 0. These IPs are particularly interesting because they
responded with exactly 65 messages before they stopped to contact the BT node. It is
suspected that these are crawlers that implement a blacklisting mechanism to avoid
crawling or contacting other sensors. These IPs were also observed to keep commu-
nicating with another instance of sensor node after the BT sensor was (presumably)
blacklisted. The remaining IPs responded with a flag value set to either 0 or 1 up
to a maximum of five replies. As possibility for such behavior is not observed in
the reverse-engineered malware variants (cf. Sect. 3.3), there is no other explanation
other than them being crawlers.

The evaluation on the BTs within the class of Abuse was conducted based on
the frequency of received NL request messages for both botnets. The parameters of
the BTs were set according to the results of the previous parameter study: Sality
(t = 120, nmin = 30) and ZeroAccess (t = 60, nmin = 40). Results indicated 11
flagged IPs by the SAB-BurstTrap. Out of the 11, nine IPs were classified as Highly
Possible. A daily analysis of this particular BT as presented in Fig. 4.6 indicated
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Fig. 4.6 Daily analysis of
SAB-BurstTrap

that an average of four crawlers is successfully identified every day. Meanwhile, the
single false positive was identified to be caused by many bots behind a particular
shared IP coincidentally contacting our BT node around the same time.

The ZAB-BurstTrap flagged a total of 188 IP addresses throughout the measure-
ment period. After manual inspection, 116 IPs were classified as strongly exhibiting
crawler-like behaviors. The remaining IPs that were classified as Possible exhibited
similar behaviors to bots that lack responsive neighbors in their NL during their ini-
tial bootstrapping phase. This speculation could especially be true considering that a
large portion of the ZeroAccess botnet was sinkholed in 2013 [12]. As such, bots that
experience lack of neighbors could also have requested NLs with a higher frequency.

The ZAV-IgnoreTrap, as an avoidance trap, within the class of Avoidance attempts
to identify crawlers that are refusing to respond to the crafted requests sent in the ZD-
NonComplianceTrap. The evaluation of this BT indicates 108 IPs in the ZeroAccess
dataset that never responded to any of the request messages. More precisely, 35 IPs
were classified asHighly Possible crawlers because theBTnode recorded abnormally
high number of received getL requests, i.e., between 10 and 14, 800, but without
any replies for any of the crafted request messages. Seventy-three (73) IPs were
classified as Possible crawlers. These IPs seemed to be shared among many bots,
i.e., identified by distinct botnet-specific identifiers, but originate only from selected
network prefixes. An alternative hypothesis for this observation can be explained if
there is any packet-level filtering mechanism deployed within those networks that
drops all inbound ZeroAccess’ requests or replies. Such a scenario could result in
the BT node observing the behavior of bots refusing to respond.

Characterization of detected crawlers

The various detected crawlers were analyzed to identify common characteristics
exhibited by them. The characteristics can be categorized as the following:
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• Blacklisting: Some crawlers were noticed to be using some blacklisting mecha-
nisms to improve the quality of their crawl data, i.e., ignore sensor nodes. Such
crawlers seemed to identify sensor nodes based on the responses received from
bots/sensors (explained next), e.g., empty or duplicated NL replies.

• Sanity Checking: Some crawlers also seemed to perform sanity-checking on
the results obtained from bots. The detection mechanisms within the class of
Defiance detected a smaller fraction of crawlers than those within the class Abuse.
For instance, the SD2 detected only three crawlers whereas SAB detected nine.
Hence, it appears that some crawlers does follow the implementation of the botnet
protocols very closely.

• Aggressive and/or Persistent Crawling: Within the frequency-based detection
mechanism, only few were observed to crawl continuously, i.e., 24x7. Neverthe-
less, some of theme crawled the BTs aggressively, i.e., an average 15 requests per
minute in the case of Sality.

• CrawlingRedundancies: Somecrawlerswere observed to utilize identical botnet-
specific identifiers and port numbers across different instances at the same time.
This observation may indicate identical crawler instances deployed for redundan-
cies or for obtaining additional vantage points.Multiple vantage points for crawling
also help in obtaining amore accurate crawl data if some crawlers suffered network
failure or other network-specific issues when crawling.

• Efficient Crawler Design: Unlike regular bots, some crawlers were observed to
use dedicated a port, i.e., fixed source port, to process incoming NL replies (cf.
Sect. 3.3.2). Such a communication design can improve the crawling efficiency as
it allows the response-processing thread to be detached from the request-sender
thread, allowing the crawler to efficiently crawl more bots in parallel.

• Identity Hiding: By checkingWHOIS information on the detected IP addresses, it
is observed that only some of the IP addresses disclose information about the orga-
nization or individual that is behind the crawling activities. In fact, some crawlers
are observed sharing residential IP addresses, i.e., behind ISP NAT devices. In
addition, IPs of some of these crawlers were also observed to constantly change
due to dynamic IP address reallocation by ISPs, i.e., IP address aliasing. Such sce-
narios makes it more difficult to detect crawlers via any frequency-based detection
mechanisms.

• Neutral: Finally, based on the analysis of the detected crawlers, it can be concluded
that the crawlers are neutral. They do not seem to aid the botnets in any manner,
e.g., dissemination of botnet commands. Even in cases where neighbors are being
returned, these were either other sensors or invalid entries.

4.4 Summary

This chapter presented works on advanced monitoring on the basis of crawling P2P
botnets and outlined three major contributions. The first contribution presented a
novel crawling algorithm called ZeusMilker (see Sect. 4.1.1) that deterministically
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spoofs keys to request NL from bots to circumvent the GameOver Zeus’ NL restric-
tion mechanism. ZeusMilker is the first and the only known solution to provably
retrieve all NL entries of a GameOver Zeus bot. ZeusMilker can circumvent the
NL restriction mechanism of GameOver Zeus by exploiting the deterministic neigh-
bor selection mechanism and the fact that keys included in the NL requests can be
spoofed. Concluding, both above-mentioned factors have allowed this anti-crawling
mechanism to be circumvented by ZeusMilker.

To anticipate the retaliation of the botmasters against ZeusMilker, Sect. 4.2.1
proposed several enhancements, i.e.,RandomNodeReturn,Bit-XOR+, andBit-AND,
to the existing GameOver Zeus NL restriction mechanism. These proposed counter-
measures address the drawbacks of the original mechanism: preventing the requester
to manipulate the returned entries. The evaluation of the new proposals indicated that
Bit-AND performs best compared to the other two proposed mechanisms in imped-
ing the performance of crawlers. However, this countermeasure adversely affects the
resulting botnet overlay, so it is not likely to be used. Therefore, theBit-XOR+ is most
likely to be adopted by future botnets. Both above-mentioned mechanisms can affect
the ability of a crawler to retrieve the (complete) NL of a bot, and therefore need
urgent attention of the researchers as future botnets may adopt these mechanisms.

The second contribution in this chapter proposes a novel crawling algorithm called
LICA (cf. Sect. 4.1.2) that attempts to enumerate as many bots as possible econom-
ically. LICA attempts to approximate a minimum vertex cover that represents the
minimum set of bots that need to be crawled to discover all bots in the botnet. By
prioritizing popular bots that are returned by other bots, this algorithm crawls the
backbone of the botnet and can terminate as soon as the ratio of newly discovered
bots falls under a certain threshold value. Evaluation results indicated that LICA out-
performs other state of the art crawling algorithms, in particular BFS and DFS-based
graph traversal techniques. This algorithm can be utilized in crawling P2P botnets
in a more stealthy manner.

As the third contribution, a lightweight crawler detection mechanism called
BoobyTrap (BT) that exploits botnet-specific protocol and design constraints was
proposed. BT aims at detecting crawlers in an autonomous manner by analyzing the
communication of other bots with itself. Based on simple test-cases, a behavior of
a crawler can be distinguished from bots. Evaluation results in Sect. 4.3.3 indicated
that many crawlers in Sality and ZeroAccess can already be detected by BT.

The findings of the different work presented within this chapter imply that more
advanced monitoring mechanisms are needed to tackle future P2P botnets. Addition-
ally, such advanced mechanisms should focus on the following:

• Larger pool of IP addresses: Since most of the existing and proposed anti-
crawling mechanisms are based on the fact that an IP address represents a crawler,
it is important to acquire a larger pool of IP addresses that can be used for future
crawling activities. Most importantly, these IP addresses should not be of a sin-
gle contagious block or range of IP addresses to avoid bots applying IP prefix-
based blacklisting similar to that implemented by GameOver Zeus. This way,
even if some of the IP addresses were blacklisted, other IP addresses can serve as
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redundancies to continue monitoring. Such non-contagious block of IP addresses
could also be obtained through the cooperation of several interested organizations
or institutions.

• Distributed crawling : Future botnet monitoring activities should also consider
using distributed crawlers in combination with a large pool of IP addresses to
circumvent IP-based anti-crawling mechanisms, e.g., BT or NL restriction mech-
anisms, to capture the characteristics of bots accurately. Hence, crawlers can easily
circumvent any IP address or frequency-based anti-crawling mechanisms.
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Chapter 5
Deployment of Sensor Nodes in Botnets

The deployment of sensors within P2P botnets allows additional vantage points
in monitoring bots. In particular, sensors can enumerate bots that are otherwise not
discoverable by crawlers due to their inability to contact bots behind network devices
like NAT and stateful firewalls (see Sect. 2.3.2).

A sensor node is deployed in a botnet by announcing its presence to other super-
peers leveraging the node announcement mechanism of the botnet (see Sect. 1.1.3).
Sensor announcements are often carried out by crawlers that (in)directly announce the
presence of the sensor during crawling.After beingwell-known amongstmany super-
peers, the information of the sensor will be frequently handed out to non-superpeers
that may request additional neighbors from existing superpeers. Thereafter, a sen-
sor node receives increased communication requests from non-superpeers that have
added the sensor as a candidate in their NL. As a consequence, an effective sensor
is usually very popular amongst all bots in a botnet, i.e., known by many bots.

By combining the monitoring data of both crawlers and sensors, a more accurate
enumeration of a botnet’s population can be obtained for further analysis. In addition,
a variation of a sensor is often used as a sinkhole server in botnet takedown attempts.
Such sinkhole serverswould usually aim to remain responsive to probingmessages of
bots as outlined in Sect. 2.2. In addition, the sinkhole servers would not disseminate
any new botnet updates or commands to prevent the bots from communicating with
the botmaster. Therefore, sensors do not only pose as a threat to botnets due to its
monitoring capabilities but also as a tool or stepping stone to launch botnet takedown
attacks. Nevertheless, not much work has been done in the area of preventing or
detecting sensors in P2P botnets.

Unlike the content organization of Chap.4, due to the lack of prior work, this
chapter starts from a perspective of a botmaster in Sect. 5.1 to introduce three mech-
anisms to detect sensor nodes deployed in botnets. Then, from the perspective of
a defender, Sect. 5.2 proposes countermeasures to circumvent the detection mecha-
nisms. Finally, Sect. 5.4 concludes this chapter.
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5.1 Detecting Sensor Nodes in Botnets

As indicated by the lack of prior work, there are many challenges in detecting sensor
nodes deployed in P2P botnets. In contrast, this section will show that it is indeed
possible to detect sensor nodes by relying upon graph-theoretic metrics of the botnet
overlay. First, some introduction is presented to understand on why is it challenging
to detect sensors. After that, the detection mechanisms are detailed.

5.1.1 Introduction

This subsection provides some basic introduction on sensors and the issues in detect-
ing them. Particularly, Sect. 5.1.1.1 introduces and discusses the most important fea-
ture of a sensor node: handling of botnet request messages. Section5.1.1.2 briefly
describes the process of deploying the sensor node in a P2P botnet. Section5.1.1.3
presents a set of assumptions for a sensor node detectionmechanism thatwere derived
from the discussions of Sects. 5.1.1.1 and 5.1.1.2 and own observations on sensors
deployed in existing botnets. These assumptions are important and are the basis
for the remaining work presented in this chapter. Finally, Sect. 5.1.1.4 discusses the
challenges often faced in detecting sensor nodes.

5.1.1.1 Message Handling by a Sensor Node

The main functionality of a sensor node is the handling of botnet-specific commu-
nication messages, i.e., responding request messages with valid replies. A sensor
is usually only required to handle a few relevant messages for the purpose of bot-
net monitoring. Some of the most common types of messages are detailed in the
following:

1. (Responsiveness) Probe Messages: probeMsg is usually sent by bots to assert
the responsiveness of a particular bot (see Sect. 2.2). If a sensor node fails to
respond to these messages, bots will eventually flush the entry of the sensor from
their NL. Therefore, a sensor needs to always be able to handle and respond to the
messages.Moreover, by remaining in the NL of many bots, the information about
the sensor can be quickly propagated to newer bots that may request potential
neighbors.

2. NL Request Messages: requestL is usually sent by bots that require additional
neighbors (see Sect. 2.2). Although this message handling is often optional for
a sensor node, it does help the sensor not to raise suspicions if the handling is
not implemented. A sensor that deliberately ignores handling or replying such
messages may alert an attentive botmaster. Based on observations, there are some
sensors that either do not respond at all to such request messages, i.e., ignoring
the messages, or respond with just an empty but valid reply. The second approach
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of returning empty replies can be more suspicious although such replies are also
valid in some botnet protocols, e.g., GameOver Zeus and Sality.

3. BotmasterCommandRequestMessages: This type ofmessage is sent by bots to
query if there are any newer updates from the botmaster that can be downloaded
by the bots, e.g., Hello message for Sality or VersionRequest for GameOver
Zeus. However, all of the three analyzed botnets integrate the functionality of this
message along with the probeMsg described earlier. Bots use sequence numbers
to indicate the most current botmaster command known to them. Whenever a
bot shares the information that it knows of a newer command, other bots will try
to pull the latest update. As such, the probe for the responsiveness of a bot also
checks if its neighbor has any new updates.

5.1.1.2 Popularizing the Sensor Node

Deploying a sensor within a botnet is often done by leveraging the node announce-
ment mechanism of the botnet to popularize the sensor. Thereafter, popularization of
a sensor is usually performed in tandem using a crawler. Aggressive popularization
strategies such as Popularity Boosting by Yan et al. [9] can be detected by crawler
detection mechanisms such as the BT mechanism (see Sect. 4.2.2). However, a non-
aggressive popularization strategy is sufficient to deploy the sensor in most botnets.
The only drawback with a slow popularization technique is the fact it takes longer
before most bots discovers the sensor.

5.1.1.3 Assumptions for a Sensor Node Detection Mechanism

In the following, a set of assumptions for a sensor detection mechanism is pre-
sented based on the discussions in Sects. 5.1.1.1 and 5.1.1.2. These assumptions
were derived from own observations of the sensor deployed in the wild as well as to
adhere to legal requirements.

1. A sensor is already deployed in the botnet. Since sensors can be deployed and
popularized using less aggressive strategies, detection mechanisms need to focus
on detecting sensors that are already deployed; those that have evaded BT-like
detection mechanisms.

2. The sensor node does not return any valid bots as neighbors. A sensor should
adhere to legal requirements by not aid the bots in the regular maintenance of
the botnet overlay or malicious activities of the botnet. Hence, a sensor should
not return any valid bot information when being requested. Instead, the node
can either not respond to the message, or return information of other sensors, or
invalid entries.

3. The sensor does not disseminate or exchange any valid update or command
from the botmaster with other bots. This assumption is relevant in the context
of adhering to the legal requirements by not participating in a botnet related
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maintenance. Instead, a sensor node should avoid returning any valid command
or update that may benefit the botnet. This can be easily achieved by bluffing on
the latest command that is known to the sensor or by not responding.

4. The total number of sensors under the control of any attacker is lesser than
the total number of bots. An attacker, e.g., a researcher, is assumed to deploy
only lesser number of (colluding) sensor nodes than the total number of bots in the
botnet, i.e., <50%. This assumption holds because it usually does not require too
many sensor nodes to be deployed to monitor a botnet. Furthermore, any party
that might have deployed more sensors than the total bots would have already
tainted most of the botnet monitoring data rendering any collected monitoring
data useless.

5.1.1.4 Challenges in Detecting Sensors

The main challenge in detecting a sensor is to distinguish it from regular bots [1].
Sensor nodes are usually very popular among bots, i.e., having high indegree. How-
ever, this behavior is similar with superpeers that have been reliable for a long period.
Moreover, the passive nature of a sensor that generates onlyminimal network traffic as
it only responds to incoming requests, in comparison to crawlers that actively generate
requests at high frequencies [1], makes a sensor more difficult to be distinguished. In
contrast, the work presented in Sects. 5.1.2–5.1.4 will show that connectivity metrics
can be used to distinguish sensors from bots.

5.1.2 Local Clustering Coefficient (LCC)

This detection mechanism attempts to detect sensors based on the inter-connectivity
relationship amongst neighbors of a node. This detection mechanism exploits the
observation that in unstructured P2P botnets, nodes with high uptime tend to estab-
lish neighborhood relationships among themselves and thus form a backbone. As
backbone nodes are popularly contained in the NLs of most bots in the botnet, there
is a high probability that an ordinary bot has several backbone bots in its NL.

The degree of inter-connectivity of the neighbors of a bot can be represented by the
clustering coefficient metric. The clustering coefficient is often used to express the
density of networks. In this work, the Local Clustering Coefficient (LCC) introduced
byWatts and Strogatz [8] is used to express the connectivity of a node’s neighbors by
computing their degree of inter-connectivity. Extreme values of 0.0 and 1.0 indicate
that the neighbors are either not connected at all amongst each other or that they are
completely mesh.

To detect sensors, a snapshot of the botnet overlay is required. The directed variant
of the LCC is calculated using these snapshots for each bot x , lcc+(x), to analyze the
inter-connectivity of its neighbors by using Eq. (5.1). E is the set of all edges in the
network and NLx represents the NL of a bot x . The mechanism sets lcc+(x)=0.0 if
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|NLx | = 0 or 1 (the numerator will fast-evaluate to 0)

lcc+(x) = |{(u, v) ∈ E : u, v ∈ NLx , u �=v}|
|NLx | × (|NLx | − 1)

(5.1)

Figure5.1 presents the analysis of LCC on Sality V3 for a given snapshot on the
LCC values of nodes in dependence to their popularity, i.e., indegree. It is clear that
most bots exhibit a similar degree of inter-connectivity in their neighborhood due to
the presence of common set of backbone nodes in their NLs, i.e., a majority of the
bots having 0.6 <= lcc+(x) < 0.8. However, according to the assumptions laid out
above, sensors do not share valid bots when they receive a NL request. Thus, their
lcc+ would differ from bots.

As depicted in Fig. 5.2, a sensor has three possible behaviors upon receiving a
NL-request as explained in Sect. 5.1:

1. Returnnoneighbors or ignore the request. This behaviorwill lead to lcc+(x)=0.0,
e.g., SA in Fig. 5.2.

2. Return only invalid neighbors. As invalid neighbors are not inter-connected or
reachable, again lcc+(x)=0.0 holds, e.g., SA in Fig. 5.2.

3. Return only responsive sensors. If each of the returned sensors return each other
as their neighbors, lcc+(x)=1.0 will hold since the sensors are in a full mesh,
e.g., SB , SC , or SD in Fig. 5.2. However, if the connectivity among the returned
sensors is as in a directed cycle or not connected at all, it will lead to lcc+(x)=0.0.

As depicted in Fig. 5.1, due to the tendency of having common set of backbone
nodes in the NLs, regular bots will not have these extreme lcc+ values. Therefore,
nodes exhibiting extreme values can be flagged as potential sensors by LCC.

5.1.3 SensorRanker

The second sensor detectionmechanism is called SensorRanker. It uses thePageRank
algorithm [4] to distinguish sensors from bots. The PageRank algorithmwas initially
designed to determine the importance, i.e., popularity, of websites based on the

Fig. 5.1 LCC values of bots
in Sality V3
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Fig. 5.2 Extreme values of LCC can be used to identify sensors deployed within a botnet, i.e.,
lcc+(x) = 0.0 or 1.0

number of pages referring to them via hyperlinks. Towards this, a relation of websites
and hyperlinks is modeled as directed graphs with the websites as nodes or vertices
and the hyperlinks as edges. This botnet formal model is extended in the following
to describe PageRank and SensorRanker in more detail.

Extended Botnet Formal Model

The neighborhood relationship, i.e., NL, of a peer v ∈ V can be defined as the suc-
cessors of v, succv = NLv = {u|∀u ∈ V : (v, u) ∈ E, v �= u} that contains the set
of all peers to which v has an outgoing connection. The NL can also be more
specifically expressed as NLt

v to reflect the exact view, i.e., outdegree, of the NL
of peer v at time t . Consequently, the set of bots that have bot v as their neigh-
bors or incoming connections to v can be expressed by the set of predecessors
predv = {u|∀u ∈ V : (u, v) ∈ E, v �= u}, i.e., indegree.

The PageRank algorithm assigns values between 0.0 and 1.0, where a higher
value denotes higher rank or popularity of a node v, e.g., PRv = 1.0. The values
are calculated based on a node’s predecessors predv and their respective ranks. In
each iteration of the algorithm, the rank of a node is distributed equally among all
its outgoing edges, i.e., succv. The rank-value distributed over all edges of a node v
is expressed as edgeweightv = PRv

|succv | . The PageRank value of a node, in turn, is the
sum of the edge-weights of all of its predecessors.

The concept of ranks in PageRank is also directly comparable to the popularity of
bots in a P2P botnet. Bots becomemorewidely known and popular in the botnet when
they have been available and responsive for a prolonged period. However, sensors
are also equally popular when they are widely known amongst many bots. As such,
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popularity alone is not sufficient nor effective to distinguish sensor from popular
bots [1]. However, when taking PageRank into consideration, the edge-weights on
outgoing edges for sensors differ greatly than popular bots because they have, either
none or very few outgoing edges compared to the popular bots, i.e., sensor nodes have
higher edge-weights due to very few (if any) out going connections. This discrepancy
can be exploited to distinguish sensors from bots using the edge-weight as a reliable
metric.

Nevertheless, due to the churn dynamics in P2P botnets, using the original PageR-
ank algorithm as it is may indicate unpopular bots, i.e., bots known only by a small
fraction of superpeers, that have some predecessors that are coincidentally with very
high PageRank values, to appear as having a very high edge-weight. The edge-weight
of a node v is normalized to address this drawback by multiplying it by its popularity
ratio, i.e., ratio of predecessors over the size of the botnet population. This adapted
PageRank algorithm is the proposed SensorRank value and is defined as:

SensorRankv = edgeweightv × |predv|
|V | (5.2)

Although the SensorRank values for sensors would be significantly higher than
those of bots, a means to automate the detection of sensors is still needed from
the perspective of a botmaster. For this, clustering algorithms from the domain of
machine learning are utilized to assist in distinguishing sensors from bots. The details
of the clustering algorithms are elaborated later in Sect. 5.3.2.

5.1.4 SensorBuster

The third proposed mechanism is called SensorBuster. It utilizes the Strongly Con-
nected Component (SCC) connectivity metric introduced by Robert Tarjan [7] to
identify sensors. An SCC of a directed graph G is defined as a maximum set of ver-
tices C ⊆ V with a directed path between each pair of nodes (u, v) ∈ C , i.e., u → v
and v → u.

Considering that P2P botnets rely heavily on the inter-connectivity among bots to
prevent segmentation or partitioning of the overlay, bots B ⊆ V often form a single
SCC where there is a path to and from one bot to another. From here onward, such
an SCC is referred to as the main SCC. Please note that from the fourth assumption
presented in Sect. 5.1.1.3, the largest SCC can be safely assumed as the main SCC,
i.e., the SCC formed by bots are larger than those formed by sensor nodes.Without the
main SCC, any new command disseminated in a botnet would require a longer period
to reach all bots. Due to the assumptions about sensors presented in Sect. 5.1.1.3, a
sensor would not be part of this main SCC, since a sensor node will not have any
bot as its successor, i.e., no paths from the sensor into the main SCC. Therefore,
sensors will form their own SCC consisting of either only a single sensor or multiple
colluding sensors. As such, all nodes that are not included in the main SCC are most
likely sensors (see Fig. 5.3).
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Fig. 5.3 Sensors that do not return valid bots as neighbors would not be part of the main SCC

5.2 Circumventing Sensor Detection Mechanisms

The previous section proposed three detection mechanisms to detect sensors. In this
section, from the perspective of a defender, methods to circumvent the sensor detec-
tion mechanisms as discussed in Sect. 5.1 are proposed. All proposed methods in
this section require a set of colluding sensors to circumvent the detection mecha-
nisms. Specifically, sensors utilize a distributed sensor deployment strategy called
Distributed Sensor Injection (DSI). In this strategy, sensors controlled by a user are
used to manipulate the observed connectivity metrics by intelligently distributing
loads among multiple colluding sensors.

The DSI strategy assumes the following:

1. At least four colluding sensors are available, i.e., |S| ≥ 4.
2. Colluding sensors communicate with the user using out-of-band communication

channels.
3. The user can instruct the sensors to ignore communications from selected bots or

attempt to inject or announce themselves into the NL of other bots.

The remainder of this section is outlined as follows: Sect. 5.2.1 introduces a
method to manipulate LCC. Meanwhile, Sect. 5.2.2 presents a method to circum-
vent SensorRanker. Finally, Sect. 5.2.3 discusses methods to evade SensorBuster.
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5.2.1 Circumventing LCC

LCC calculates the clustering coefficient of each bot v and identifies sensors that
have extreme values of lcc+(v) = 0.0 or lcc+(v) = 1.0. Such values indicate that
neighbors of a bot v are not connected at all or connected in a full mesh. As the
majority of bots have common neighbors in the form of reliable backbone nodes
[2], it is unlikely that a bot could have neighbors that are not inter-connected at all,
i.e., lcc+(v) = 0.0. Therefore, it could only be of sensors that refuse to share any
neighbors or those that shared non-existent neighbors.

Moreover, due to large NL sizes in botnets such as Sality and ZeroAccess, i.e.,
|NL| ≥ 256, it is also unlikely that all neighbors seen in NL have exactly each other
in their NL. Nodes having each other in their NL is more likely the case of a group
of sensors attempting to popularize themselves.

Since LCC detects only extreme values, it can be easily circumvented by having
sensors not exhibiting these extreme values. By using aminimum of four sensors that
are connected among themselves as depicted in Fig. 5.4, each sensor can intelligently
yield a clustering coefficient of lcc+(Si ) = 0.5. The main idea is to avoid having a
fullmesh connectivity between the sensors but at the same time having some common
connectivitywith other sensors, i.e., lcc+(v) �= 0.0 and lcc+(v) �= 1.0. Therefore, for
a group of N sensors where N > 3, a user needs to connect each sensor Si , i ∈ [0, N ]
to all other sensors except Si−1 mod N and to the sensor itself, i.e., to avoid self-loop.

5.2.2 Evading SensorRanker

The SensorRanker mechanism requires a more sophisticated mechanism to evade
detection. SensorRanker focuses on the popularity of nodes; that is defined by their
indegree. As such, the more popular a bot is, the higher the SensorRank value is.
Therefore, it is important that sensors avoid being abnormally popular. Moreover,
having sufficient outgoing edges help to reduce the SensorRank value of a node.

Fig. 5.4 A minimalistic
example of colluding sensors
evading the LCC mechanism
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By using theDSI strategy, a user can distribute the popularity of his sensors among
the set of sensors in an optimal manner, i.e., distributed evenly. For instance, to obtain
the full enumeration of the botnet’s population |V |, one could distribute N sensors to
have |V |

N predecessors. It is also important that the set of predecessors of a sensor Si is
to be distributed evenly among all sensors based on the edge-weight of the bots that
would also influence the SensorRanker detectionmechanism (cf. Sect. 5.1.3). Hence,
sensors not only reduce their popularity significantly but the increased number of
interconnections with other sensors also further reduces the SensorRank value of a
sensor.

SR(Si ) = PR(Si )

Nmin − 2
× 1

Nmin
≤ Avg(SR(V − S)) (5.3)

To circumvent the SensorRanker mechanism, one additional assumption is
adopted: SensorRanker can be evaded if the SensorRank value of a sensor Si is
lower than or equal to the average value of all bots, i.e., SR(Si ) ≤ Avg(SR(V − S).
As such, the minimum amount of sensors needed to circumvent SensorRank, i.e.,
Nmin = |S|, can be calculated by satisfying Eq. (5.3). This equation calculates the
SensorRank value of a sensor Si depending on the number of outgoing edges, i.e.,
other sensors, to satisfy the condition of being lesser or equal to the average value of
all bots. However, depending on a botnet’s NL-size, this method could be resource-
intensive or costly regarding the numbers of sensors needed to evade this mechanism.
Detailed analysis through a simulation study on the feasibility of circumventing the
SensorRanker mechanism is presented in Sect. 5.3.4.

5.2.3 Evading SensorBuster

The DSI strategies proposed above will still be detected by SensorBuster as the
colluding sensors create their own SCC with no connection back to any other bots.
Evading SensorBuster requires, at least, one connection from any of the sensors,
to and back from the main SCC. However, to the best of knowledge, there are no
possible strategies to evade this mechanism, unless an assumption that is presented
in Sect. 5.1.1.3 is ignored, i.e., handing out bots as neighbors when being requested.

Therefore, for the sake of completeness, this assumption is ignored in the context
of evading SensorBuster. By ignoring the assumption, the proposed DSI strategies
not only can circumvent SensorBuster but also all other detection mechanisms, i.e.,
LCC and SensorRanker. Therefore, that particular assumption is relieved so that
handing out legitimate neighbors would be permitted for sensors.

The following method circumvents the detection mechanisms by returning bots
when being requested. However, this method also attempts to ensure that the botnet
receives only minimal benefits from the returned bot. Stutzbach and Rejaie reported
that nodes in P2P networks which already exhibit a long uptime would most likely
continue to remain available [6]. In contrast, nodes that are newly seen have a higher
probability of leaving the network immediately. Since the observation can also be
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generalized to P2P botnets, only neighbors that have recently joined would be picked
and returned when being requested. Such bots have higher tendency to be less useful,
i.e., most likely to go offline soon. One could also argue that well-known bots should
be returned instead of newer bots. However, well-known bots usually form the back-
bone of a botnet overlay and are very important to the maintenance of the botnet
overlay. In contrast, returning newer ones allows the SensorBuster mechanism to be
circumvented with a very minimum assistance offered to the botnet.

For this, each sensor would be required to keep track of two timestamps of each
discovered superpeer, i.e., firstSeen and lastSeen.Then, sensors may choose to alter-
nate between returning other sensors and sometimes return legitimate neighbors by
picking bots with the most recent firstSeen. By returning bots, sensor(s) would no
longer form an isolated strongly connected component but merge with that of the
whole botnet itself since there is a path to and from the main component and hence
circumvents SCC.

5.3 Evaluation

This section presents the evaluation results and analysis of the mechanisms proposed
in Sects. 5.1 and 5.2 as outlined in the following. Section5.3.1 describes the datasets
utilized for evaluating the sensor detection mechanisms. Then, Sect. 5.3.2 elaborates
the setup for the experiments. Section5.3.3 discusses the investigated research ques-
tions as well as the expected outcomes. Finally, Sect. 5.3.4 presents the results of the
experiments.

5.3.1 Datasets

The datasets were obtained by continuously crawling the Sality (Version 3) and
ZeroAccess botnets for a duration of one week, respectively. Sality was crawled
from 08/10/2015 00:00:00 UTC to 14/10/2015 23:59:59 UTC. Due to the neigh-
borlist return mechanism in Sality that returns only one entry when requested (cf.
Sect. 3.2.2), a multi-session crawling that sends 30 simultaneous requests to each bot
for every crawl session was conducted. Please note that for Sality, a Hello request
message is additionally sent to each bot before crawling the bot for every crawl ses-
sion. A response to the sent message allows the crawler to assert the responsiveness
of a bot before crawling it. The ZeroAccess botnet was crawled from 07/11/2015
00:00:00UTC to 13/10/2015 23:59:59UTCwith a single request message that yields
16 neighbors for every crawl session.

From the initial 32,693 bots discovered in Sality, 4,131 bots have been pruned
because they have never responded to any Hello messages, i.e., suspected artifacts
resulting from bots that went offline. Similarly, out of 95,668 bots discovered in
ZeroAccess, 93,632 bots have been removed, because they never responded to
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Table 5.1 Summary of the sanitized datasets

Sality (Version 3) ZeroAccess

Total bots 28,562 2,306

Hourly Avg. (bots) 1,479 105

Max. Neighbors 656 134

Min. Neighbors 0 0

Avg. Neighbors 318 86

Median Neighbors 369 93

requests, i.e., suspected artifacts resulting from bots that went offline and an ongo-
ing active pollution attack. The summarized details of both sanitized datasets are
presented in Table5.1.

5.3.2 Experimental Setup

The performance evaluation experiments utilized Python scripts that were built upon
theNetworkX [3] and scikit-learn [5]modules to implement LCC, SensorRanker, and
SensorBuster. The detection mechanisms require the crawl data as an input to detect
sensors on the basis of the connectivity characteristics. However, several potential
issues will surface in both using the snapshots and to accurately detecting sensor
nodes. The following subsection addresses these concerns:

As it is difficult to capture the ‘complete’ state of a bot’s NL at a given point in
time, Sect. 5.3.2.1 suggests a method to split crawl sessions into smaller chunks and
use them as a representation of a bot’s NL instead. Section5.3.2.2 discusses how
auxiliary data obtained during crawling can be used to help to assert a detection
of a sensor or help to identify false positives. Meanwhile, Sect. 5.3.2.3 presents a
mechanism to identify and remove artifacts within the obtained snapshots that could
otherwise adversely affect the performance of the detection mechanism.

5.3.2.1 Splitting Crawl Data into Snapshots

Since theNL-replymechanism that is adoptedbybothSality andZeroAccess prevents
a crawler from capturing the complete NLt

v of a bot v at time t , an approximation or
a near-complete representation is required as a replacement. Therefore, the results
from the multiple crawl sessions are aggregated into hourly snapshots to represent
as the near-complete NL of bots at any given hour t ∈ [1, 24].

Each snapshot in the Sality dataset has an average of 81 crawl sessions, which
corresponds up to about 2,430 requests sent to each bot within an hour. As for
ZeroAccess, each snapshot in the dataset has an average of 299.7 crawl sessions.
Each of these snapshots is considered as a “complete” botnet topology at the given
point of time, i.e., hours. Only one snapshot per day is chosen and selected based
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Table 5.2 Summary of the selected snapshots

Sality (Version 3) ZeroAccess

Total bots 3,975 325

Hourly Avg. (bots) 1,061 91

Max. Neighbors 564 111

Min. Neighbors 0 0

Avg. Neighbors 340 72

Median Neighbors 434 77

on the one with the lowest number of bots seen in a day. Since sensors always
attempt to be responsive (cf. Sect. 5.1), it is inherently assumed that a sensor would be
responsive throughout every hour of a given day. Therefore, it is sufficient to execute
the detection mechanisms on the snapshot with the least nodes as such a snapshot
reduces the probability of increased false positives or artifacts (if applicable). From
the analysis of the hourly snapshots, the 5th snapshot of any day, i.e., 04:00:00–
04:59:59, is the lowest for Sality. In comparison, it was the 7th snapshot of any day
for the ZeroAccess botnet. Details of the seven selected snapshots for each botnet is
presented in Table 5.2.

These snapshots which are used as inputs for each of the detection mechanisms
are hereafter referred to as the respective botnet’s dataset itself. After running the
detection mechanisms on the input datasets, each mechanism will generate a list of
IPs that are flagged as potential sensors.

5.3.2.2 Using Auxiliary Data to Help in Making Decisions

Although the sensor detection mechanisms can flag potential sensors, it would be
important for a botmaster to inspect the flagged nodes further before deciding if
they are indeed true positives or false positives. For that, all metadata and payload
contents of each received response should be logged by the crawler.

Strengthening Confidence

Bots in Sality that receive a Hello message with an older URLPack would respond
by attaching the latest URLPack known to them. Hence, by transmitting an older
sequence number of the URLPack within the sent Hello messages before crawling a
bot, the corresponding response should consist of an attached recent URLPack from
the bots. Similarly, all getL messages that are sent to a ZeroAccess bot should also
be responded with a retL message that would consist of all plugins that are available
for download from the responding bot. The details of which URLPack or plugin is
missing within the responses are logged as part of the auxiliary data. In addition, the
neighbors returned by bots in Sality and ZeroAccess for each received NLRep or retL
is also logged.

Based on the auxiliary data, it is possible to strengthen the confidence of accurately
flagging a sensor by inspecting if there were any logged misbehavior, e.g., missing
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URLPack or plugins. Although the usage of the auxiliary data itself can be used as a
technique to identify sensors, there are an arbitrary number of reasons that canmislead
this detection technique, e.g., network-specific anomalies. For instance, Andriesse
et al. reported that they were not able to observe any node that refused to exchange
the URLPack in Sality [1]. In contrast, a more current analysis conducted within
the scope of this work indicated that there were indeed nodes that were refusing
to exchange their URLPack when requested. Hence, the collected data is only used
as a reference to further strengthening the confidence of any flagged nodes by the
proposed detection mechanisms.

Identifying False Positives

It is also possible to identify false positives due to temporal network issues expe-
rienced by bots based on historical data. For instance, all neighbors of a bot could
coincidentally be offline at the same time and forced the bot to exhibit the behavior
of not having any valid neighbors to share. However, by looking at past or future
historical records of the particular bot, it is possible to identify such a scenario and
mark the detection as a false positive correspondingly.

Classifying Flagged Nodes

Based on the collected auxiliary data, nodes flagged by the detection mechanisms
can be classified into the following categories:

1. Sensor: Nodes exhibiting characteristics that correspond to the assumptions in
Sect. 5.1

2. False Positive: Nodes exhibiting characteristics that conform to the botnet proto-
col

3. Unknown: Nodes that are not able to be classified as either Sensor or Bot due to
lack of information

5.3.2.3 Handling of Churn Artifacts

Since the detection mechanisms heavily depend on connectivity-specific metrics,
artifacts introduced during crawling may influence the accuracy of the detection
mechanisms. Two different strategies can be adopted to remove such artifacts from
the datasets. The first strategy is to remove bots that have no neighbors at all, i.e.,
bots that have never responded to any NL-request messages. However, this strategy
is not recommended as it may also remove sensors that are designed to ignore such
messages.

The second strategy is tomeasure and utilize the responsiveness of a bot to identify
and remove artifacts. The responsiveness of a bot v at time t can be expressed as
the ratio of the number of received replies to the number of sent requests between
t − δt and t :

Rt
v =

t∑

τ=t−δ

repτ
v × 1

t∑
τ=t−δ

reqτ
v

(5.4)
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The responsiveness for bots in Sality is measured based on the number of received
Hello replies, while for ZeroAccess the number of received retL messages. By spec-
ifying the minimum ratio of responsiveness that is required for any bot within a
given snapshot, poorly responsive bots can be identified as artifacts or churn affected
nodes. For instance, a value of R = 0.4 represents all bots that have been responsive
at least 40% of the whole monitoring period, i.e., the total number of crawl sessions
within that particular snapshot. Take note that a value of R = 0.0 is used to repre-
sent bots that have responded at least once to the probe requests. Sensors usually do
not get flagged as artifacts as they would aim to be responsive to the probing mes-
sages as much as possible unless they are experiencing poor network connectivity.
Therefore, all detection mechanism would simply ignore nodes without a minimum
responsiveness threshold value from their final classification.

5.3.3 Research Questions and Expectations

In the following, research questions that focus on the evaluation of the sensor detec-
tion mechanisms are presented along with investigated parameters.

An important aspect of any detectionmechanism is the need to specify the baseline
or ground truth. Hence, the following research question needs to be answered in the
evaluation:

• How to establish ground truth on the total number of sensors present in a datasets?

Since it is difficult to establish such ground truth in botnets, the SensorBuster mech-
anism is used to provide a baseline information on the maximum number of sensors
present in the datasets. The simplistic design of SensorBuster allows it to detect
sensor nodes that adhere to the assumptions presented in Sect. 5.1.1.3. Since sensor
nodes are assumed to not return a bot as a neighbor, sensors would establish isolated
strongly connected component(s) which will not have any bots within them. Hence,
all IPs flagged by this mechanism needs to be inspected, and the total number of sen-
sors detected by this mechanism is to be assumed as being the maximum number of
sensors (or True Positives) present in the datasets.In the investigation to answer this
research question, each snapshot within the datasets is evaluated using SensorBuster
with varied responsiveness threshold R from 0.0 to 0.9.

Next, since the SensorRanker mechanism relies upon clustering algorithms to
help distinguishing sensors from bots, the following research question also needs to
be answered:

• Which clustering algorithm is suitable in distinguishing sensors from bots when
applied to the results of the SensorRanker mechanism?

For that, the effectiveness of five clustering algorithms, namely K-Means,DBSCAN,
Gaussian Mixture Models, SpectralClustering, and Agglomerative Clustering from
the scikit-learn module is evaluated to be used in SensorRanker to classify sensors.
These algorithms were chosen due to their simplicity (in operation) as they easily
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create two clusters from any given set of data, i.e., distinguishing between bots
and sensors. The effectiveness of a clustering algorithm is evaluated by the highest
number of classified sensors, i.e., True Positives, in combination with the lowest
number of False Positives. This experiment is conducted with the responsiveness
threshold of R = 0.0 for each snapshot within both datasets. Based on the results of
the experiment, the best algorithm is then chosen and used for subsequent analysis.

As artifacts present in datasets can highly influence the accuracy of the detection
mechanisms, the following research question needs to be answered in the evaluation:

• How influential are the artifactswhich are present in datasets towards the accuracy
of the detection mechanisms?

All three detection mechanisms are evaluated for each snapshot in both datasets with
varying responsiveness threshold R from 0.0 to 0.9 to answer this question. It is
expected that with a higher value of R, the number of artifacts or false positives
decreases accordingly (if applicable).

It is also of interest to identify and evaluate the strengths of each of the pro-
posed detection mechanisms. Therefore, the following research question needs to be
answered in the evaluation:

• Which mechanism performs best amongst the three sensor detection mechanisms?

For this, the performance of all three mechanisms is evaluated and compared on
both datasets. This evaluation is performed by selecting the appropriate clustering
algorithm for SensorRanker and best values of R to eliminate the influence of artifacts
within the datasets by answering the previous research questions.

Finally, the feasibility of the methods proposed to circumvent the detection mech-
anism in Sect. 5.2 need to be analyzed. Hence, the following research question needs
to be answered in the evaluation:

• How feasible are the proposed DSI strategies in circumventing the three detection
mechanism?

An analysis is conducted on the Sality dataset to demonstrate the feasibility of the
proposed strategy to circumvent the three mechanisms.

5.3.4 Results

In answer to the research questions presented in Sect. 5.3.3, the evaluation results are
presented.

Establishing Baseline Information

The SensorBuster mechanism is evaluated using both datasets with varying values
of responsiveness threshold R 0.0–0.9 to establish the baseline information on the
total available sensors. Analysis of the Sality dataset indicated a combined total of
61 nodes were flagged by the SensorBuster mechanism with the threshold value
of R = 0.0.11 nodes were verified to be Sensor and seven of them were classified
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as Unknown based on manual analysis using the auxiliary data (see Sect. 5.3.2.2).
However, all Unknown nodes were later found out to be artifacts. The remaining 43
nodes were false positives, i.e., churn affected nodes that were present for only a
short period. Detailed results of the total sensors present in the different snapshots,
i.e., days, are provided in Table 5.3 in dependence on the various values of R. A
value within the table should be interpreted as the total number of sensors that were
present on a particular day with a responsiveness ratio of at least R.

The analysis on theZeroAccess dataset indicated a total of four nodeswere flagged
by the SensorBuster mechanism with the minimum value of R = 0.0. Out of these
nodes, three nodes were verified to be Sensor and one was a false positive. These
nodes were also consistently seen across all thresholds throughout the week.

Both sets of information for Sality from Table 5.3 and for ZeroAccess are then
assumed as the ground truth. This data is then used for evaluation for the remainder
part of this chapter.

Suitable Clustering Algorithm for SensorRanker

To investigate the effectiveness of different clustering algorithms in classifying sen-
sors based on the SensorRank values, the evaluation was carried out on both datasets
with the responsiveness threshold set to R ≥ 0.0. In the results, the performance of
K-Means, Gaussian Mixture Models, and SpectralClustering were identical across
the different days and thresholds regarding the number of detected sensors and false
positives. Therefore, these algorithms are grouped and referred to as All Others for
clarity purposes. Figure5.4 presents the performance of DBSCAN, Agglomerative
Clustering, and All Others depending on the day of the measurement within the Sal-
ity dataset. The individual markers represent the number of detected sensors, and the
bar plots indicate the number of false positives incurred by the algorithm for a given
day. The results indicate that all algorithms except DBSCAN incurred exactly one
false negative. DBSCAN incurred two false positives throughout the whole week.
Also, there were no false positives generated by all detection mechanisms between
day three and six (cf. Table5.4).

Upon further investigation, it is discovered that all algorithms missed a particular
node that had low popularity. This node which had only one incoming connection,

Table 5.3 Maximum sensors present on a particular day dependent on R in the Sality dataset

Day Minimum responsiveness threshold, R≥
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 10 10 10 9 9 9 8 8 7 7

2 11 11 11 11 10 10 9 9 8 8

3 11 11 11 11 11 11 11 11 10 9

4 11 11 11 11 11 11 11 11 11 10

5 10 10 10 10 10 10 10 10 10 9

6 10 10 10 10 10 10 10 10 10 10

7 10 10 10 10 10 10 10 10 10 10
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Table 5.4 Effectiveness of different clustering algorithms with R = 0.0 on accurately classifying
sensors in the Sality dataset

Day Agglomerative DBSCAN All others Total sensors

TP FP TP FP TP FP

1 9 0 9 2 9 0 10

2 10 1 10 1 9 1 11

3 10 0 10 0 10 0 11

4 10 0 10 0 10 0 11

5 9 0 9 0 9 0 10

6 9 0 9 0 9 0 10

7 9 0 9 0 9 0 10

was an instance of BT node that was deployed within Sality (see. Sect. 4.2.2). How-
ever, since the nature of this BT node satisfy all characteristics of a sensor node
(see Sect. 5.1.1.3), this node should have also been detected as a sensor. DBSCAN
is observed to perform inferior to the other algorithms as it generated lesser false
positives compared to the others.

The evaluation is repeated on the ZeroAccess dataset and all algorithm were
found to successfully detect three sensors throughout the week with no incurred false
positives or false negatives. After considering the analysis results of both datasets, the
Agglomerative Clustering algorithmwas picked to be used as the choice of clustering
algorithm in SensorRanker for the rest of the analysis, including on the ZeroAccess
dataset, due to its improved performance particularly on Day 2 within the Sality
dataset.

Influence of Artifacts Present Within Datasets

As artifacts could adversely affect the performance of the detectionmechanisms, their
influence was investigated with varying values of R, i.e., between 0.0 and 0.9, on all
three detection mechanisms using both datasets. Results indicate that high number
of false positives were observed for both SensorBuster and LCC in the Sality dataset
when R = 0.0. Both mechanisms managed to detect all existing sensors, i.e., 11, at
the expense of 43 and 70 false positives respectively. Since the high number of false
positives distort the overall representation of the results, the analysis of the Sality
dataset is presented inFig. 5.5 only for values of R = [0.1, 0.9]. This figure represents
the number of nodes classified as Sensor by the respective detection mechanisms
along with the corresponding false positives dependent on varying values of R.

The results of this analysis met the initial expectation presented in Sect. 5.3.3
that with increasing values of R, false positives can be reduced considerably. The
observation of reduced false positives is particularly true for LCC that was able to
reduce 90% of its false positives from the initial 70 to only seven false positives when
R is set from 0.0 to 0.5. Although, similar observations were seen for SensorBuster,
this was only observed for values of R ≤ 0.5. Interestingly, SensorRanker was found
to be least affected by the different values of R. It incurred only one false positive
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Fig. 5.5 Analysis of the influence of artifacts to the detection mechanisms with R = [0.0, 0.9] on
the Sality dataset

for all values of R < 0.9. However, the mechanism also incurred one false negative
throughout the different values of R.

Similar observations were also seen in the evaluation for the ZeroAccess dataset.
All detection mechanism were able to detect all present sensors, i.e., three sensors.
However, SensorRanker did not generate any false positives regardless of the different
values of R. Meanwhile, both SensorBuster and LCC eliminated their only false
positive with threshold values of R ≥ 0.1 and R ≥ 0.2 respectively.

In conclusion, as presented in Table 5.5, only SensorRanker was found to be
minimally affected (if any) by the different values of R. Hence, they would perform
the same regardless of the presence of artifacts in the snapshot. Furthermore, it is
also observed that LCC is heavily influenced by the presence of artifacts compared
to the SensorBuster mechanism. As such, a minimum responsiveness threshold of
R ≥ 0.6 is found to be a conservative value for all detection mechanisms without
accidentally ignoring sensors with poor responsiveness within the Sality dataset.
Similarly, a threshold of R ≥ 0.2 is observed to be appropriate for all detection
mechanisms on the ZeroAccess dataset. The disparity between the threshold values
of the Sality and ZeroAccess dataset can be argued as being directly influenced by
the MM interval of the respective botnets. Sality, which has a longer MM interval
compared to ZeroAccess, has a higher probability of introducing artifacts from stale
nodes in their NLs. In contrast, the shorter MM interval of ZeroAccess reduces the
probability for its bots to have stale entries in their NLs.
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Table 5.5 Performance comparison of all three sensor detection mechanisms

LCC SensorRanker SensorBuster

True positives High Medium High

False positives High Low Low

Sensitivity to artifacts High Low Medium

Fig. 5.6 Performance comparison of all detection mechanism with R = 0.6 on the Sality dataset

Performance Comparison of all Detection Mechanism

A comparative analysis of the performance of all three detection mechanisms is
performed on both datasets with responsiveness threshold of R = 0.6 and R = 0.2
respectively. Figure5.6 presents the results on the Sality datasetwhereby the accuracy
of each detection mechanism in dependence on the day of the snapshot is plotted.
Meanwhile, Table 5.5 provides a brief summary of the performance comparison
among the three detection mechanisms.

Figure5.6 indicates that both SensorRanker and LCC were able to detect all
sensors on each day. SensorRanker, although incurred one false negative compared
to the other mechanisms, has the least number of false positive throughout the whole
week. In comparison,LCCperformsworst compared to all othermechanisms in terms
of the number of incurred false positives. Meanwhile, the analysis of the ZeroAccess
dataset indicated that all algorithms were able to detect exactly three sensors with
no false positives or false negatives.
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(a) Range of PR values in Day 1 (Sality) (b) Estimated SR values in dependence to
number of sensors

Fig. 5.7 Feasibility analysis of evading SensorRanker

Feasibility of Circumventing LCC

As discussed in Sect. 5.2.1, LCC can be circumvented using the DSI strategy with a
minimum of four colluding sensor nodes. In fact, as long as the DSI strategy is able
to obtain any non-extreme value, i.e., lcc+ /∈ {0.0, 1.0}, LCC can be circumvented.
However, if the LCC-values of the sensors are significantly different than most of the
bots in the botnet, clustering algorithms can be used to identify such anomalies in
the values as used in the SensorRanker detection mechanism. Therefore, additional
effort may be required to first identify the average value of the botnet, and the sensors
should try to approximate this value using the DSI strategy to avoid being detected
through the usage of clustering algorithms.

Feasibility of Evading SensorRanker

An analysis (cf. Fig. 5.7) was conducted in an attempt to provide a lower bound
estimation of the number of sensors needed to evade the SensorRanker detection
based on the Sality dataset. For this, sensors are assumed to evade detection if their
SensorRank value is lower than or equal to the average value of all bots. As such, the
minimum number of sensors Nmin = |S| that are required to satisfy Eq. (5.3) needed
to be calculated to evade the mechanism.

However, it is not easy to calculate the PageRank (PR) values of a sensor Si ,
as it is not only influenced by its predecessors but also by the rank of all of its
predecessors. As such, the distribution of existing PR values for bots on Day 1
in the Sality dataset is referred. Figure5.7a represents the maximum, minimum and
average PR values with respect to the range of total predecessors in the investigated
snapshot. The classification results indicate a linear increase in PR-values relative
to increasing range of total predecessors, i.e., higher popularity yields higher ranks.
Moreover, some ranges are also observed to have extreme PR values compared to
their next ranges, e.g., compare the range of (225, 250] and (250, 275]. This behavior
is due to one or more predecessors of some bots within the range (225, 250] having
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abnormally high rank, hence increasing the max PR of the bot(s) within this range
compared to those in range (250, 275].

Based on the distribution of PR values in Fig. 5.7a, all possible SensorRank
(SR) values is calculated by considering scenarios of deploying up to 20 colluding
sensorswithin the Sality botnet as presented in Fig. 5.7bwith respect to the number of
colluding sensors. The values plotted in this figure are the corresponding maximum,
minimum and average SR values considering the possible range of total predecessors
each of the sensors would have. As the average SR value for the whole dataset
is 2.5145 × 10−6, the maximum SR value of each colluding sensor needs to be
less than it. Therefore, at least 14 colluding sensors are needed to safely evade the
SensorRanker detection mechanism based on the utilized snapshot.

However, the estimation shown in Fig. 5.7b does not represent the worst case
scenario, where one of the sensors has the |V |

N highest ranked nodes as predecessors.
Hence, the estimation provides only a best-case scenario, but in reality requires
additional efforts to distribute the PR values intelligently or with more sensors to
evade this detection mechanism. In conclusion, SensorRanker can be circumvented
provided sufficient resources be available at disposal to deploy additional sensors.

Feasibility of Circumventing SensorBuster

As discussed in Sect. 5.2.3, to the best of knowledge, SensorBuster can only be
circumvented if sensor nodes return valid bots when being requested. Instead of
returning any bot in the NL replies, a less useful bot is suggested to be returned, i.e.,
newly joined bots. From the perspective of a sensor, this strategy incurs onlyminimal
overhead to keep track of the timestamps of bots recently joined and known to the
sensor. However, considering the fact that newly joined bots have the tendency to
leave the botnet overlay immediately, the returned bot may not be responsive, i.e.,
offline, when a crawler captures the snapshot prior to the SensorBuster analysis. As
a consequence, the sensor can once again be detected by SensorBuster due to the
missing path(s) into the main SCC of the botnet. Therefore, it is advisable to return
more than one of such newly joined bots, i.e., redundancies, to ensure there is at least
one path into the main SCC.

5.4 Summary

This chapter focused on advanced monitoring on the basis of using sensor nodes in
P2P botnets and outlined anothermajor contribution as part of this book. In particular,
contrary to the reports of other researchers, works presented in Sect. 5.1 indicates
that it is indeed possible to detect deployed sensor nodes in P2P botnets. Evaluation
results of the LCC, SensorRanker, and SensorBuster suggest that many existing
sensors are currently susceptible to the proposed detection mechanisms.
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Detecting Sensor Nodes

All proposed mechanisms were successful in detecting sensors deployed in Sality
and ZeroAccess. However, LCC is more prone to false positives resulting from arti-
facts present in the datasets than SensorBuster. Meanwhile, SensorRanker is able
to perform reasonably well in detecting sensors and only minimally influenced by
artifacts. Therefore, a future botmaster would potentially deploy the SensorBuster
mechanism if he is only concerned on detecting all sensors that are present in the bot-
net but tolerant to some false positives. However, this mechanism requires additional
responsiveness information of the bots in addition to the connectivity information.
In the absence of such information or if accurately identifying sensors is the only
concern, the botmaster should utilize SensorRanker instead.

Circumventing the Detection Mechanisms

This chapter also introduced methods to circumvent the proposed detection mech-
anisms using a set of colluding sensors, i.e., DSI. While it is relatively easy to
circumvent LCC and SensorRanker, it is more complicated to circumvent Sensor-
Buster. As discussed in Sect. 5.2.3, it requires a sensor to return valid bots when
being requested for neighbors to evade the detection of SensorBuster. As a result,
such actions may have some legal implications as it could contradict with cyber-laws
of many countries. In view of this, more work needs to be done to investigate the
extent of which an organization or individual should be allowed to go in future bot-
net monitoring. This is especially important in anticipating future anti-monitoring
countermeasures that could enforce strategies that require all bots, including sensors
or crawlers, to participate in regular botnet maintenance activities before they can
retrieve any information, e.g., additional neighbors. In the next chapter, this book is
concluded and an outlook is presented.
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Chapter 6
Conclusion and Outlook

In the previous chapters, issues relevant to advanced P2P botnet monitoring were
visited. Particularly, existing botnet monitoring mechanisms were analyzed regard-
ing the challenges faced by them: the dynamic nature of P2P botnets and the various
anti-monitoring mechanisms implemented by botnets. Based on that, this book pro-
posed several countermeasures to circumvent existing anti-monitoring mechanisms.
In addition, several new and advanced anti-monitoring mechanisms have also been
introduced to anticipate the next steps of the botmasters. This chapter summarizes
the main contributions and findings of this book and presents an outlook.

6.1 Conclusion

The adoption of a P2P-based architecture by recent botnets made monitoring them
more difficult. Specialized monitoring mechanisms such as crawlers and sensors are
required tomonitor them.However, botmasters have equipped their botnetswith anti-
monitoring mechanisms that impede botnet monitoring. Examples of such botnets
are GameOver Zeus, Sality, and ZeroAccess. To make things worst, the dynamic
nature of P2P botnets also represents itself as a hurdle for botnet monitoring.

In this book, requirements for an advanced botnet monitoring mechanism was
derived to serve as a guideline for a discussion of the current state of the art in
Chap.2. The proposed requirements are not only aimed at producing high-quality
monitoring data, but also stealthier monitoring. Analysis revealed that many of the
existingmonitoringmechanisms only partially fulfil the non-functional requirements
that were outlined in Sect. 2.1.2. Continued usage of such mechanisms may produce
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biased results, and introduce noise that adversely affect the monitoring results of
others.

Moreover, anti-monitoring mechanisms of existing botnets also cause the existing
monitoring mechanisms fail in fulfilling the Stealthiness or Accuracy requirements.
One example of such a mechanism is the NL restriction and automated blacklisting
mechanism of GameOver Zeus that targets crawlers. In this book, a countermeasure
called ZeusMilker is proposed to circumvent this NL restriction mechanism of
GameOver Zeus that provably retrieves all neighbors of a bot. Then, to address the
issue of evading the automated blacklisting mechanism of GameOver Zeus, a novel
crawling algorithm called (LICA) is proposed which minimizes the number of bots
that needs to be crawled to enumerate bots in the botnet.

However, it is just a matter of time before the botmasters come up with newer
mechanisms to impede monitoring. For this reason, this book also introduces several
anti-monitoring countermeasures from the perspective of a botmaster to raise the
stake in this arms race. In particular, a lightweight crawler detectionmechanismcalled
(BTs) is proposed that leverages design constraints of existing botnets. Evaluation
results of these mechanisms on Sality and ZeroAccess dataset indicates that many
crawlers are susceptible to them. This is indeed worrying, since the idea of BT is
relatively simple and can be easily implemented in existing botnets.

Prior to the work done in this book, some researchers have claimed that sensors
are a more stealthy monitoring mechanism as they are indistinguishable from bots.
However, as another major contribution of this book, three sensor detection mecha-
nisms were proposed by leveraging graph-theoretic metrics to discern sensors from
bots. Evaluation results of these mechanisms in Sality and ZeroAccess indicates that
many sensors are susceptible to the proposed mechanisms. Particularly, the Sensor-
Bustermechanism can accurately detect independent and colluding sensors deployed
in a botnet. To give the upper hand back to the defenders, this book also discussed
strategies that should be adopted by future sensors to remain undetected from the
proposed sensor detection mechanisms.

One major problem that can be foreseen with the advancement of botnet moni-
toring mechanisms is that most of these mechanisms would become stealthier than
now. While being stealthy may help to perform monitoring, this may also introduce
adverse effects, i.e., unnoticeable noise, to themonitoring data of others. For instance,
the stealthy monitoring footprint of an individual or organization will be assumed
by others to be those of the botnet itself. This in turn would affect the accuracy and
quality of the monitoring data.

Concluding, the works presented in this book indicate that the existing anti-
monitoring mechanisms implemented by botnets or proposed by researchers are
still in their infancy. They can either be circumvented or tolerated with sufficient
resources at disposal. However, botmasters are expected to improve and introduce
more advanced anti-monitoring mechanisms. For that, the defenders need to be pre-
pared to face such advancements. This can be done by preempting the possible
advancements from botmasters, i.e., proposing advanced anti-monitoring mecha-
nisms, and attempt to design countermeasures against them.
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This book primarily focused on proposing countermeasures to circumvent or tolerate
existing anti-monitoring mechanisms. However, it would be interesting to identify to
which extent botnet monitoring can always be performed. To answer this question,
an in-depth investigation and analysis is required starting with the set of assumptions
that are applied on both the botnets and the monitoring mechanisms themselves. For
instance, crawling can enumerate bots by leveraging theMMprotocols of the botnets.
If future botnets does not require exchange of neighbors tomaintain connectivitywith
the overlay, crawling may no longer be useful. Therefore, understanding the possible
extents of monitoring will help defenders to prioritize and focus in developing new
countermeasures or monitoring mechanisms.

The monitoring data collected in the context of this book also requires additional
analysis. For instance, it is important to understand the impact of unknown third
party monitoring activities on monitoring data, e.g., network properties like average
path length. The need to return valid bots to circumvent the SensorBuster mechanism
may be illegal from the perspective of cyber-laws of certain countries. Therefore, it
may be necessary to revise the laws to grant some flexibility to the defenders when
monitoring.

In addition, circumventing IP-based anti-monitoring mechanisms like those of
GameOver Zeus requires a defender to possess a large pool of IP addresses at his
disposal. Since this is not always feasible, there should be a focus in developing a
collaborative botnet monitoring ecosystem that can utilize a large pool of shared IP
addresses and resources from interested users and organizations, e.g., collaborative
and distributed botnet crawling.

Finally, existing anti-monitoring mechanisms that were analyzed in this book can
be either circumvented or tolerated with sufficient computing and network resources.
Therefore, to anticipate further advancements from the botmasters, more work from
the perspective of a botmaster needs to be carried out. Particularly, the author believes
that future botnets may attempt to restrict further the botnet information that are
shared among bots to impede botnet monitoring. However, this exchange of infor-
mation among bots itself is important for the management of the botnet’s overlay.
Therefore, it is interesting to investigate the impact of such restriction mechanisms
or botnet design to the robustness and resilience of the constructed botnet overlay.
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